
Rational Software Corporation®

IBM Rational PurifyPlus for Linux and UNIX
IBM Rational PurifyPlus for AIX
IBM Rational Purify for Linux and UNIX

Getting Started
VERSION: 7.0.1

MATERIAL ID: GI11-9427-00

Contents
Preface . vii

What’s in this guide? . vii
Audience . vii
Other resources .viii
Contacting IBM Software Support .viii

Using Purify. 13
Purify: What it does . 13
Finding errors in Hello World . 14
Instrumenting a program . 15

Compiling and linking in separate stages. 15
Running the instrumented program . 16
Seeing all your errors at a glance. 17
Finding and correcting errors. 18

Understanding the cause of the error . 18
Correcting the ABR error . 20

Finding leaked memory . 21
Correcting the MLK error . 22
Looking at the heap analysis . 23

Comparing program runs. 24
Suppressing Purify messages. 24
Saving Purify output to a view file . 25

Saving a run to a view file from the Viewer. 25
Opening a view file . 26

Using your debugger with Purify . 26
Using Purify with PureCoverage . 26
Purify API functions . 27
Build-time options . 28
Conversion characters for filenames . 28
Runtime options. 29
Purify messages . 31
How Purify finds memory-access errors . 32

How Purify checks statically allocated memory . 33
Contents iii

Using PureCoverage . 35
PureCoverage: What it does .35
Finding untested Java code .36
Finding untested C/C++ code .38

Instrumenting a C/C++ program .39
Running the instrumented C/C++ program .39
Displaying C/C++ coverage data. .40
Improving Hello World’s test coverage .44

Viewing UNIX coverage data on Windows .47
Using report scripts .47
PureCoverage options .49

Build-time options .49
Runtime options. .50
Analysis-time options .50
Analysis-time mode options .51

Using Quantify . 53
Quantify: What it does .53

Profiling runtime performance .53
How Quantify profiles application performance .54
Collecting performance data .54
Using Quantify’s data analysis windows .56
The Function List window .57

Sorting the function list .57
Restricting functions .58

The Call Graph window .58
Using the pop-up menu .59
Expanding and collapsing descendants .60

The Function Detail window .60
Changing the scale and precision of performance data .61
Saving function detail data .61

The Annotated Source window. .62
Changing annotations for performance data .63

Saving data on exit .63
Comparing program runs with qxdiff .63
Quantify options .64

Build-time options .64
iv Contents

qv runtime options . 65
Runtime options . 66

API functions . 67

Notices . 69
Contents v

vi Contents

Preface
What’s in this guide?

This guide is designed to help you get up and running quickly with the
components of IBM® Rational® PurifyPlus™. It includes information about:

n Using Purify to automatically pinpoint bugs and memory leaks everywhere
in your C and C++ application code.

n Using PureCoverage to prevent untested C, C++, and Java applications
from reaching end users.

n Using Quantify to improve the performance of your C and C++
applications by finding and eliminating bottlenecks.

Note: PurifyPlus for C/C++ applications is supported on commonly used
UNIX platforms; see the release notes for specific information. For Java, you
can use PureCoverage with applications running on the Solaris SPARC 32-bit
Java virtual machine.

PurifyPlus—the essential tool for delivering reliable, high-performance
applications—inserts monitoring instructions into the program’s object code
(C/C++) or byte code (PureCoverage for Java). This enables you to check your
entire program, including third-party code and shared libraries, even when you
don’t have the source code.

Starting to use PurifyPlus is as easy as adding one of the component names
(purify, purecov, or quantify) to the front of your link command line. For
example, for a C program:

% purify cc -g hello_world.c

Audience

Read this guide for an introduction to the use of Purify, PureCoverage, or
Quantify.
vii

Other resources

n A complete online help system is available for each application. Select
Help > Help topics in the user interface.

For help with a window, select Help > On window. For help with a specific
menu item or control button in a window, select Help > On context, then
click the menu item or control button.

Note: You can also view the help systems independently of the user
interface if a web browser is on your PATH. Use the following commands:
q purify -onlinehelp

q purecov -onlinehelp

q quantify -onlinehelp

n Rational developerWorks provides guidance and information that can help
you implement and deepen your knowledge of Rational tools and best
practices. It includes access to white papers, artifacts, source code,
discussion forums, training, and documentation

To access Rational developerWorks, go to
www.ibm.com/developerWorks/rational/.

n For information about IBM Rational Software products, go to
www.ibm.com/software/rational.

Contacting IBM Software Support

If you have questions about installing, using, or maintaining this product,
contact IBM Software Support as follows:

The IBM Software Support Internet site provides you with self-help resources
and electronic problem submission. The IBM Software Support Home page for
Rational products can be found at www.ibm.com/software/rational/support/.

Voice Support is available to all current contract holders by dialing a telephone
number in your country (where available). For specific country phone
numbers, go to www.ibm.com/planetwide/.

For information regarding electronic problem submission and tracking, visit
www.ibm.com/software/esr/

Note: When contacting IBM Software Support, please be prepared to supply
the following information:
viii Preface

www.ibm.com/planetwide
http://www.ibm.com/developerworks/rational
www.ibm.com/software/esr
www.ibm.com/software/rational/support/
www.ibm.com/software/rational/support/
http://www.ibm.com/software/rational/support
http://www.ibm.com/developerworks/rational
http://www.ibm.com/software/rational
http://www.ibm.com/planetwide
http://www.ibm.com/software/esr

n Your name, company name, ICN number (IBM Customer Number),
telephone number, and e-mail address

n Operating system, version number, and any service packs or patches you
have applied

n Compiler version number

n Product name and release number

n Type of bug (examples: installation, build-time warning, build-time crash,
run-time warning, run-time crash, unexpected results, user-interface
problem)

n Instructions for reproducing the problem

n Workarounds used

n Your PMR number (if you are following up on a previously reported
problem)
Contacting IBM Software Support ix

x Chapter - Preface

1Using Purify
Purify: What it does

Purify® is the most comprehensive dynamic analysis tool available for
automatically finding software bugs. It checks all the code in your program,
including any application, system, and third-party libraries. Purify works with
complex software applications, including multi-threaded and multi-process
applications.

Purify checks every memory access operation, pinpointing where errors occur
and providing detailed diagnostic information to help you analyze why the
errors occur. Among the many errors that Purify helps you locate and
understand are:

n Reading or writing beyond the bounds of an array

n Using uninitialized memory

n Reading or writing freed memory

n Reading or writing beyond the stack pointer

n Reading or writing through null pointers

n Leaking memory and file descriptors

With Purify, you can develop clean code from the start, rather than spending
valuable time debugging problem code later.

This chapter introduces the basic concepts involved in using Purify. For
complete information, see the Purify online help system.
13

Finding errors in Hello World

This chapter shows you how to use Purify to find memory errors in an example
Hello World program. If you run the example yourself, you should expect
minor platform-related differences in program output from what is shown here.

Before you begin:

1 Create a new working directory. Go to the new directory and copy all files
that begin with hello from the <purifyhome>/example directory. For
example:

% mkdir /usr/home/chris/pwork
% cd /usr/home/chris/pwork
% cp <purifyhome>/example/hello* .

2 Examine the code in hello_world.c. The version of hello_world.c
provided with Purify is slightly different from the traditional version.

1 /*
2 * (C) Copyright IBM Corporation. 1992, 2009. All
Rights Reserved.

...
9 * This is a test program used in Purifying Hello World
10 */
11
12 #include <stdio.h>
13 #include <malloc.h>
14
15 static char *helloWorld = "Hello, World";
16
17 main()
18 {
19 char *mystr = malloc(strlen(helloWorld));
20
21 strncpy(mystr, helloWorld, 12);
22 printf("%s\n", mystr);
23 }

At first glance there are no obvious errors, yet the program actually contains a
memory access error and leaked memory that Purify will help you to identify.
14 Chapter 1 - Using Purify

Instrumenting a program

1 Compile and link the Hello World program, then run the program to verify
that it produces the expected output:

2 Instrument the program by adding purify to the front of the compile/link
command line. To get the maximum amount of detail in Purify messages,
use the -g option:

% purify cc -g hello_world.c

Compiling and linking in separate stages
If you compile and link your program in separate stages, specify purify only
on the link line. For example:

On the compile line, use:

% cc -c -g hello_world.c

On the link line, use:

% purify cc -g hello_world.o

% cc -g hello_world.c

% a.out

Hello, Worldoutput
Instrumenting a program 15

Running the instrumented program

Run the instrumented Hello World program:

% a.out

This prints “Hello, World” in the current window and displays the Purify
Viewer.

Notice that the instrumented Hello World program starts, runs, and exits
normally. Purify does not stop the program when it finds an error.

The Purify Viewer
displays messages

about the program,
including errors such

as this ABR error

Purify displays the number of access errors and
leaked bytes detected

For a description of a
message, right click the

message, then select
Explain message from

the pop-up menu

Click for a list of Purify
error messages
16 Chapter 1 - Using Purify

Seeing all your errors at a glance

The Purify Viewer displays the results of the run of the instrumented Hello
World program. You can expand each message to see additional details.

Note: The Viewer displays messages for a single executable only. It is specific
to the name of the executable, the directory containing the executable, and the
user ID.

Select one or more messages in the Viewer,
then click to expand the messages

Click to expand
a message or item

The configuration
message shows the

execution process ID
(pid) and the Purify

options used

You can use the
program controls to

run a debugging cycle.
To display them, select

View > Program
Controls
Seeing all your errors at a glance 17

Finding and correcting errors

Purify reports an array bounds read (ABR) memory access error in the Hello
World program. You can expand the ABR message to see the exact location of
the error.

Note: To make debugging easier, Purify reports line numbers, source
filenames, and local variable names whenever possible if you use the -g
compiler option when you build the program. If you do not use the -g option,
Purify reports only function names and object filenames.

Understanding the cause of the error
To understand the cause of the ABR error, look at the code in hello_world.c
again.

Click to expand the
ABR message

 The function call chain
indicates an error

occurring in _doprnt
called by printf,

in turn called
on line 22 of main

The exact location
of the error

The allocation call chain
shows that the memory

block is allocated
in the function main

on line 19

The details of the access
error
18 Chapter 1 - Using Purify

On line 22, the program requests printf to display mystr, which is initialized
by strncpy on line 21 for the 12 characters in “Hello, World.” However,
_doprnt is accessing one byte more than it should. It is looking for a NULL
byte to terminate the string. The extra byte for the string’s NULL terminating
character has not been allocated and initialized.

For more information, see How Purify finds memory-access errors on page 32.

.

.

.
15 static char *helloWorld = "Hello, World";
16
17 main()
18 {
19 char *mystr = malloc(strlen(helloWorld));
20
21 strncpy(mystr, helloWorld, 12);
22 printf("%s\n", mystr);
23 }

Purify reports that the
ABR error occurs here

Start of the memory block
(0x44230)

Allocated block size (12)

Accessing 1 byte past
the end of the block
causes an ABR error

H e l l o , W o r l d

Location accessed
(0x4423c)
Finding and correcting errors 19

Correcting the ABR error
To correct this ABR error:

1 Click the Edit tool to open an editor.

Note: By default, Purify displays seven lines of the source code file in the
Viewer. You can change the number of lines of source code displayed by
setting an X resource.

2 Change lines 19 and 21 as follows:

19 char *mystr = malloc(strlen(helloWorld)+1);
20
21 strncpy(mystr, helloWorld, 13);

Or click here to edit
the source code

Click to edit the source code
20 Chapter 1 - Using Purify

Finding leaked memory

When a program exits, Purify searches for memory leaks and reports all
memory blocks that were allocated but for which no pointers exist.

Note: When you run longer-running instrumented programs, you can click the
New Leaks tool to generate a new leaks summary while the program is
running.

1 Expand the memory-leaked summary for Hello World.

The memory-leaked summary shows the number of leaked bytes as a
percentage of the total heap size. If there is more than one memory leak,
Purify sorts them by the number of leaked bytes, displaying the largest
leaks first.

2 Expand the MLK message.

The memory-leaked
summary reports 12 bytes

of leaked memory

Memory analysis by
category

The call chain shows
how the leaked

memory was allocated

When you run your programs, click the New Leaks tool to
generate a new leaks summary while the program is running
Finding leaked memory 21

Correcting the MLK error
It is not immediately obvious why this memory was leaked. If you look closer,
however, you can see that this program does not have an exit statement at the
end. Because of this omission, the main function returns rather than calls
exit, thereby making mystr— the only reference to the allocated
memory—go out of scope.

If main called exit at the end, mystr would remain in scope at program
termination, retaining a valid pointer to the start of the allocated memory
block. Purify would then have reported it as memory in use rather than
memory leaked. Alternatively, main could free mystr before returning,
deallocating the memory so it is no longer in use or leaked.

To correct this MLK error:

1 Click the Edit tool to open an editor.

2 Add a call to exit(0) at the end of the Hello World program.

Line 19 of
hello_world.c

in main allocates
12 bytes of

leaked memory.
The start of this

memory block is
0x44230, the same
block with the array

bounds read error
in _doprnt
22 Chapter 1 - Using Purify

Looking at the heap analysis
Purify distinguishes between three memory states, reporting both the number
of blocks in each state and the sum of their sizes:

n Leaked memory

n Potentially leaked memory

n Memory in use

The exit status message provides information about:

n Basic memory usage containing statistics not easily available from a single
shell command. It includes program code and data size, as well as
maximum heap and stack memory usage in bytes.

n Shared-library memory usage indicating which libraries were dynamically
linked and their sizes.

 A true memory leak
(MLK) is memory to which

your program
has no pointer

A potential memory leak
(PLK) is memory that

does not have a pointer to
its beginning, but does

have one
to its interior

Memory in use
(MIU) is memory to
which your program

has pointers
(these are not leaks)
Finding leaked memory 23

Comparing program runs

To verify that you have corrected the ABR and MLK errors, recompile the
program with purify, and run it again.

Purify displays the results of the new run in the same Viewer as the previous
run so it’s easy to compare them. In this simple Hello World program, you can
quickly see that the new run no longer contains the ABR and MLK errors.

Congratulations! You have successfully Purify’d the Hello World program.

Suppressing Purify messages

A large program can generate hundreds of error messages. To quickly focus on
the most critical ones, you can suppress the less critical messages based on
their type and source. For example, you might want to hide all informational
messages, or hide all messages that originate in a specific file.

You can suppress messages in the Viewer either during or after a run of your
program. To suppress a message in the Viewer:

1 Select the message you want to suppress.

2 Select Options > Suppressions.

In the new run, Purify
reports no errors

and no memory leaks

In the previous run, Purify
reported one error

and twelve leaked bytes
24 Chapter 1 - Using Purify

Purify displays the Suppressions dialog, containing information about the
selected message.

You can also specify suppressions directly in a .purify file. Suppressions
created in the Viewer take precedence over suppressions in .purify files;
however, they apply only to the current Purify session. Unless you click Make
permanent, they do not remain when you restart the Viewer.

Saving Purify output to a view file

A view file is a binary representation of all messages generated in a Purify run
that you can browse with the Viewer or use to generate reports independent of
a Purify run. You can save a run to a view file to compare the results of one run
with the results of subsequent runs, or to share the file with other developers.

Saving a run to a view file from the Viewer
To save a program run to a view file from the Viewer:

1 Wait until the program finishes running, then click the run to select it.

2 Select File > Save As.

3 Type a filename, using the .pv extension to identify the run as a Purify
view file.

Purify saves suppressions in
.purify files

Select a message to suppress

Select where to suppress
the message

Click to make a
suppression permanent

The suppression
directive

Control the depth of the
call-chain match

You can save the suppression
directive to another .purify file
Saving Purify output to a view file 25

Opening a view file
To open a view file from the Viewer:

1 Select File > Open.

2 Select the view file you want to open.

Purify displays the run from the view file in the Viewer. You can work with the
run just as you would if you had run the program from the Viewer.

You can also use the -view option to open a view file. For example:

% purify -view <filename>.pv

This opens the <filename>.pv view file in a new Viewer.

Using your debugger with Purify

You can run an instrumented program directly under your debugger so that
when Purify finds an error, you can investigate it immediately.

Alternatively, you can enable Purify’s just-in-time (JIT) debugging feature to
have Purify start your debugger only when it encounters an error—and you can
specify which types of errors trigger the debugger. JIT debugging is useful for
errors that appear only once in a while. When you enable JIT debugging,
Purify suspends execution of your program just before the error occurs,
making it easier to analyze the error.

Using Purify with PureCoverage

Purify is designed to work closely with PureCoverage, the component of
PurifyPlus used for code coverage analysis. PureCoverage identifies the parts
of your program that have not yet been tested so you can tell whether you’re
exercising your program sufficiently for Purify to find all the memory errors in
your code.

To use Purify with PureCoverage, add both product names to the front of your
link line. For example:

% purify <purifyoptions> purecov <purecovoptions> \
cc -g hello_world.c -o hello_world

To start PureCoverage from the Purify Viewer, click the PureCoverage icon
 in the toolbar.

For more information, see Purify: What it does on page 13.
26 Chapter 1 - Using Purify

Purify API functions

You can call Purify’s API functions from your source code or from your
debugger to gain more control over Purify’s error checking. By calling these
functions from your debugger, you get additional control without modifying
your source code. You can use Purify’s API functions to check memory state
and to search for memory and file-descriptor leaks.

For example, by default Purify reports memory leaks only when you exit your
program. However, if you call the API function purify_new_leaks at key
points throughout your program, Purify reports the memory leaks that have
occurred since the last time the function was called. This periodic checking
enables you to locate and track memory leaks more effectively.

To use Purify API functions, include <purifyhome>/purify.h in your code
and link with <purifyhome>/purify_stubs.a.

Commonly used API functions Description

int purify_describe (char *addr) Prints specific details about memory

int purify_is_running (void) Returns "TRUE" if the program is
instrumented

int purify_new_inuse (void) Prints a message on all memory newly in
use

int purify_new_leaks (void) Prints a message on all new leaks

int purify_new_fds_inuse (void) Lists the new open file descriptors

int purify_printf (char *format, ...) Prints formatted text to the Viewer or
log-file

int purify_watch (char *addr) Watches for memory write, malloc,
free

int purify_watch_n (char *addr, int size,
char *type)

Watches memory: type = "r", "w", "rw"

int purify_watch_info (void) Lists active watchpoints

int purify_watch_remove (int watchno) Removes a specified watchpoint

int purify_what_colors (char *addr, int
size)

Prints the color coding of memory
Purify API functions 27

Build-time options

Specify build-time options on the link line when you instrument a program
with Purify. For example:
% purify -cache-dir=$HOME/cache -always-use-cache-dir cc ...

Conversion characters for filenames

Use these conversion characters when specifying filenames for options such as
-log-file and -view-file.

Commonly used build-time options Default

-always-use-cache-dir

Forces all instrumented object files to be written to the global cache directory
no

-cache-dir

Specifies the global directory where Purify caches instrumented object files
<purifyhome>/cache

-ignore-runtime-environment

Prevents the runtime Purify environment from overriding the option values used
in building the program

no

-linker

Sets the alternative linker to build the executables instead of the system default
system-dependent

-print-home-dir

Prints the name of the directory where Purify is installed, then exits

Character Converts to

%V Full pathname of program with “/” replaced by “_”

%v Program name

%p Process id (pid)

qualified filenames (./%v.pv) Absolute or relative to current working directory

unqualified filenames (no ‘/’) Directory containing the program
28 Chapter 1 - Using Purify

Runtime options

Specify runtime options on the link line or by using the PURIFYOPTIONS
environment variable. For example:

% setenv PURIFYOPTIONS "-log-file=mylog.%v.%p ‘printenv PURIFYOPTIONS‘"

Commonly used runtime options Default

-auto-mount-prefix

Removes the prefix used by file system auto-mounters
/tmp_mnt

-chain-length

Sets the maximum number of stack frames to print in a report
6

-fds-in-use-at-exit

Specifies that the file descriptor in use message be displayed at program exit
yes

-follow-child-processes

Controls whether Purify monitors child processes in an instrumented program
no

-jit-debug
Enables just-in-time debugging

none

-leaks-at-exit

Reports all leaked memory at program exit
yes

-log-file a

Writes Purify output to a log file instead of the Viewer window

stderr

-messages

Controls display of repeated messages: "first", "all", or in a "batch" at
program exit

first

-program-name
Specifies the full pathname of the instrumented program if argv[0] contains an
undesirable or incorrect value

argv[0]

-show-directory

Shows the directory path for each file in the call chain, if the information is available
no

-show-pc

Shows the full pc value in each frame of the call chain
no

-show-pc-offset

Appends a pc-offset to each function name in the call chain
no
Runtime options 29

-view-file 1

Saves Purify output to a view file (.pv) instead of the Viewer.
none

-user-path
Specifies a list of directories in which to search for programs and source code

none

-windows

Redirects Purify output to stderr instead of the Viewer if -windows=no
none

a. Can use the conversion characters listed on page 28

Commonly used runtime options Default
30 Chapter 1 - Using Purify

Purify messages

Purify reports the following messages. For detailed, platform-specific
information, see the Purify online help system.

* Message severity: F=Fatal, C=Corrupting, W=Warning, I=Informational

Message Description Severity* Message Description Severity*

ABR Array Bounds Read W NPR Null Pointer Read F

ABW Array Bounds Write C NPW Null Pointer Write F

BRK Misuse of Brk or Sbrk C PAR Bad Parameter W

BSR Beyond Stack Read W PLK Potential Leak W

BSW Beyond Stack Write W PMR Partial UMR W

COR Core Dump Imminent F SBR Stack Array Bounds Read W

FIU File Descriptors In Use I SBW Stack Array Bounds Write C

FMM Freeing Mismatched
Memory

C SIG Signal I

FMR Free Memory Read W SOF Stack Overflow W

FMW Free Memory Write C UMC Uninitialized Memory Copy W

FNH Freeing Non Heap Memory C UMR Uninitialized Memory Read W

FUM Freeing Unallocated
Memory

C WPF Watchpoint Free I

IPR Invalid Pointer Read F WPM Watchpoint Malloc I

IPW Invalid Pointer Write F WPN Watchpoint Entry I

MAF Malloc Failure I WPR Watchpoint Read I

MIU Memory In-Use I WPW Watchpoint Write I

MLK Memory Leak W WPX Watchpoint Exit I

MRE Malloc Reentrancy Error C ZPR Zero Page Read F

MSE Memory Segment Error W ZPW Zero Page Write F
Purify messages 31

How Purify finds memory-access errors

Purify monitors every memory operation in your program, determining
whether it is legal. It keeps track of memory that is not allocated to your
program, memory that is allocated but uninitialized, memory that is both
allocated and initialized, and memory that has been freed after use but is still
initialized.

Purify maintains a table to track the status of each byte of memory used by
your program. The table contains two bits that represent each byte of memory.
The first bit records whether the corresponding byte has been allocated. The
second bit records whether the memory has been initialized. Purify uses these
two bits to describe four states of memory: red, yellow, green, and blue.

Purify checks each memory operation against the color state of the memory
block to determine whether the operation is valid. If the program accesses
memory illegally, Purify reports an error.

Blue

Yellow

Illegal to read, write, or free
red and blue memory

malloc

free

write

free

Legal to read and write
(or free if allocated
by malloc)

Legal to write or
free, but illegal

to read

Green

unallocated and
uninitialized freed but still

initialized

Red

allocated but
uninitialized

allocated and
initialized

memory memory

memory
memory
32 Chapter 1 - Using Purify

n Red: Purify labels heap memory and stack memory red initially. This
memory is unallocated and uninitialized. Either it has never been allocated,
or it has been allocated and subsequently freed.

In addition, Purify inserts guard zones around each allocated block and
each statically allocated data item, in order to detect array bounds errors.
Purify colors these guard zones red and refers to them as red zones. It is
illegal to read, write, or free red memory because it is not owned by the
program.

n Yellow: Memory returned by malloc or new is yellow. This memory has
been allocated, so the program owns it, but it is uninitialized. You can write
yellow memory, or free it if it is allocated by malloc, but it is illegal to
read it because it is uninitialized. Purify sets stack frames to yellow on
function entry.

n Green: When you write to yellow memory, Purify labels it green. This
means that the memory is allocated and initialized. It is legal to read or
write green memory, or free it if it was allocated by malloc or new. Purify
initializes the data and bss sections of memory to green.

n Blue: When you free memory after it is initialized and used, Purify labels it
blue. This means that the memory is initialized, but is no longer valid for
access. It is illegal to read, write, or free blue memory.

Since Purify keeps track of memory at the byte level, it catches all
memory-access errors. For example, it reports an uninitialized memory read
(UMR) if an int or long (4 bytes) is read from a location previously initialized by
storing a short (2 bytes).

How Purify checks statically allocated memory
In addition to detecting access errors in dynamic memory, Purify detects
references beyond the boundaries of data in global variables and static
variables; that is, data allocated statically at link time as opposed to
dynamically at run time.

Here is an example of data that is handled by the static checking feature:

int array[10];
main() {

array[11] = 1;
}

In this example, Purify reports an array bounds write (ABW) error at the
assignment to array[11] because it is 4 bytes beyond the end of the array.
How Purify finds memory-access errors 33

Purify inserts red zones around each variable in your program’s static-data
area. If the program attempts to read from or write to one of these red zones,
Purify reports an array bounds error (ABR or ABW).

Purify inserts red zones into the data section only if all data references are to
known data variables. If Purify finds a data reference that is relative to the start
of the data section as opposed to a known data variable, Purify is unable to
determine which variable the reference involves. In this case, Purify inserts red
zones at the beginning and end of the data section only, not between data
variables.

Purify provides several command-line options and directives to aid in
maximizing the benefits of static checking.
34 Chapter 1 - Using Purify

2Using PureCoverage
PureCoverage: What it does

During the development process, software changes daily, sometimes hourly.
Unfortunately, test suites do not always keep pace. PureCoverage® is a simple,
easily deployed tool that identifies the lines and functions in your code that
have not been exercised by testing.

PureCoverage supports C and C++ applications, as well as Java applications
running on a Solaris SPARC 32-bit Java virtual machine (JVM).

Using PureCoverage, you can:

n Pinpoint untested areas of your code

n Accumulate coverage data over multiple runs and multiple builds

n Merge data from different programs sharing common source code

n Work closely with Purify to make sure that Purify finds errors throughout
your entire application

n Automatically generate a wide variety of useful reports

n Access the coverage data so you can write your own reports

n Collect coverage data on UNIX for viewing on a Windows system

PureCoverage provides the information you need to identify gaps in testing
quickly, saving time and effort.

This chapter introduces the basic concepts involved in using PureCoverage.
For complete information, see the PureCoverage online help, including the
Java Supplement for PureCoverage.
35

Finding untested Java code

PureCoverage provides accurate coverage information that identifies all the
gaps in your testing of Java code.

Before you run your Java application under PureCoverage, note that the default
setting for Java, unlike C and C++, is to collect data at the method level.
Method-level data allows you to identify which methods are the least tested.

Unless you already know which classes you want to focus on, collect
method-level data the first time you run your program. Then, when you know
the classes you want to investigate in detail, collect line-level data for them. To
collect line-level data for specific classes:

1 Specify the PureCoverage option -purecov-granularity=line. Note
that debug data must be available for PureCoverage to collect data at this
level.

2 Define directives in the <purecovhome>\.purecov.java file to limit
profiling to the classes that you want to analyze. The file provides
information about the directive syntax. You can find the <purecovhome>
directory with the following command:

% purecov -printhomedir

To collect method-level code coverage data for Java code, run PureCoverage
with the -java option, as follows:

n For an applet:

% purecov [<PureCoverage options>] -java \
<applet viewer> [<applet viewer options>] <html file>

n For a class file:

% purecov [<PureCoverage options>] -java \
<Java executable> <Java options>] <class>

n For a JAR file:

% purecov [<PureCoverage options>] -java \
<Java executable> [<Java options>] <JAR switch> \
<JAR file>.jar

n For a container program:

% purecov [<PureCoverage options>] -java <exename> \
[<arguments to exename>]
36 Chapter 2 - Using PureCoverage

To display the coverage data for the program, use a command such as the
following:

% purecov -view java.234.0.pcv

where 234 is the process id and 0 is a sequence number assigned when the data
file is saved.

For an example showing how to use PureCoverage to monitor Java code, and
for information about ways to control code monitoring, see the Java Code
Coverage Supplement for PureCoverage, which is included with the
PureCoverage online help.
Finding untested Java code 37

Finding untested C/C++ code

This chapter shows you how to use PureCoverage to find the untested parts of
the hello_world.c program.

Before you begin:

1 Create a new working directory. Go to the new directory, and copy the files
that begin with hello from the <purecovhome>/example directory:

% mkdir /usr/home/pat/example
% cd /usr/home/pat/example
% cp <purecovhome>/example/hello* .

2 Examine the code in hello_world.c.

The version of hello_world.c provided with PureCoverage is slightly
more complicated than the usual textbook version.

#include <stdio.h>
void display_hello_world();
void display_message();

main(argc, argv)
int argc;
char** argv;
{
if (argc == 1)
display_hello_world();
else
display_message(argv[1]);
exit(0);
}

void
display_hello_world()
{

printf("Hello, World\n");
}

void
display_message(s)

char *s;
{

printf("%s, World\n", s);
}

38 Chapter 2 - Using PureCoverage

Instrumenting a C/C++ program
1 Compile and link the Hello World program, then run the program to verify

that it produces the expected output:

2 Instrument the program by adding purecov to the front of the compile/link
command line. To have PureCoverage report the maximum amount of
detail, use the -g option:

% purecov cc -g hello_world.c

Note: If you compile your code without the -g option, PureCoverage
provides only function-level data. It does not show line-level data.

A message appears, indicating the version of PureCoverage that is
instrumenting the program:

PureCoverage 7.0.1 Solaris 2 (32-bit), (C) Copyright IBM
Corporation. 1994, 2009. All Rights Reserved.
Instrumenting: hello_world.o Linking

Note: When you compile and link in separate stages, add purecov only to the
link line.

Running the instrumented C/C++ program
Run the instrumented Hello World program:

% a.out

% cc -g hello_world.c

% a.out

Hello, Worldoutput
Finding untested C/C++ code 39

PureCoverage displays the following:

The a.out program produces its normal output, just as if it were not
instrumented. When the program completes execution, PureCoverage writes
coverage information for the session to the file a.out.pcv. Each time the
program runs, PureCoverage updates this file with additional coverage data.

Displaying C/C++ coverage data
To display the coverage data for the program, use the command:

% purecov -view a.out.pcv

This displays the PureCoverage Viewer.

**** PureCoverage instrumented a.out (pid 3466 at Wed May 10 10:32:40 2009)
* PureCoverage 7.0.1 (32-bit), (C) Copyright IBM Corporation. 1994, 2009.
 * All Rights Reserved.
 * For contact information type: "purecov -help"

* Options settings: -purecov \
 -purecov-home=/usr/rational/releases/purecov.sol.7.0.1
 * License successfully checked out
 * Command-line: a.out
Hello, World

**** PureCoverage instrumented a.out (pid 3466) ****
 * Saving coverage data to /usr/home/pat/example/a.out.pcv.
 * To view results type: purecov -view /usr/home/pat/example/a.out.pcv

Name of the instrumented executable You can use this command to display
technical support contact information

Start-up banner

Normal program
output

 PureCoverage saves
coverage data to

a .pcv file
40 Chapter 2 - Using PureCoverage

In this example, there is only one source directory, so the information
displayed for the directory is identical to the Total Coverage information.

Note: The default header for line statistics is ADJUSTED LINES, not just
LINES. This is because PureCoverage has an adjustment feature that lets you
adjust coverage statistics by excluding specific lines. Under certain
circumstances, the adjusted statistics give you a more practical reflection of
coverage status than the actual coverage statistics. The ADJS column in this
example contains zeroes, indicating that it does not include adjustments.

Summary information for
the entire program

These columns show
statistics for function usage

These columns show
statistics for line usage

This column shows the
number of adjusted lines

Information for the source
directory
Finding untested C/C++ code 41

Expanding the file-level detail
Click next to .../example/ to expand the file-level information for the
directory.

You used only one file in the example directory to build a.out. Therefore the
FUNCTIONS and ADJUSTED LINES information for the file is the same as for
the directory. The number 1 in the Runs column indicates that you ran the
instrumented a.out only once.

Note: When you are examining data collected for multiple executables, or for
executables that have been rebuilt with some changed files, the number of runs
can be different for each file.

Examining function-level detail
Expand the hello_world.c line to show function-level information.

The Viewer shows coverage information for the functions
display_message, main, and display_hello_world.

t
File-level information

includes the number
of runs for which

PureCoverage
collected data
42 Chapter 2 - Using PureCoverage

PureCoverage does not list the printf function or any functions that it calls.
The printf function is a part of the system library, libc. By default,
PureCoverage excludes collection of data from system libraries.

Examining the annotated source
To see the source code for main annotated with coverage information, click the
Annotated Source tool next to main in the Viewer. PureCoverage displays
the Annotated Source window.

Note: The Annotated Source window is available only for files that you
compile using the -g debugging option. If you are working with Java code,
you must, in addition, specify the option -purecov-granularity=line
when you run the program.

Function-level
information includes the

number of times
the program called

each function

The Calls column shows how many times the
program called each function

The FUNCTIONS columns tell
at a glance whether each
function was used or unused
Finding untested C/C++ code 43

PureCoverage highlights code that was not used when you ran the program. In
this file only two pieces of code were not used:

n The display_message(argv[1]); statement in main

n The entire display_message function

A quick analysis of the code reveals the reason: the program was invoked
without arguments.

Improving Hello World’s test coverage
To improve the test coverage for Hello World:

1 Without exiting PureCoverage, run the program again, this time with an
argument. For example:

% a.out Goodbye

PureCoverage displays the following:
**** PureCoverage instrumented a.out (pid 3466 at Wed May 10
10:32:40 2009)
* PureCoverage 7.0.1 (32-bit), (C) Copyright IBM
Corporation. 1994, 2009.

Unused code

Number of times each line was executed

Adjustments

Source code
line numbers

Unused code

Source code
44 Chapter 2 - Using PureCoverage

 * All Rights Reserved.
* For contact information type: "purecov -help"
* Options settings: -purecov \
-purecov-home=/usr/rational/releases/purecov.sol.7.0.1
* License successfully checked out
* Command-line: a.out Goodbye
Goodbye, World

**** PureCoverage instrumented a.out (pid 17331) ****
* Saving coverage data to
/usr/home/pat/example/a.out.pcv.
* To view results type: purecov -view
/usr/home/pat/example/a.out.pcv

2 PureCoverage displays a dialog confirming that coverage data has changed
for this run. Select Reload changed .pcv files and click OK.

Note: This dialog appears only if the PureCoverage Viewer is open when
you run the program.

Reload the changed
a.out.pcv file
Finding untested C/C++ code 45

PureCoverage updates the coverage information in the Viewer and the
Annotated Source window.

Note: If you still have untested lines, it is possible that your compiler is
generating unreachable code.

3 Select File > Exit.

Function and line coverage is now 100%

and the function
display_message are

now shown as used

The statement
display_message

(argv[1]);. . .
46 Chapter 2 - Using PureCoverage

Viewing UNIX coverage data on Windows

You can collect coverage data on your UNIX system and view it on Windows
using Rational PureCoverage for Windows.

To collect coverage data for viewing on Windows, assign the value windows
or both to the -view-file-format option. You can specify the option in the
environment variable PURECOVOPTIONS or on the command line.

With the option set to windows, PureCoverage saves coverage data to a .cfy
file, which you can analyze using PureCoverage for Windows. With the option
set to both, PureCoverage saves data to a .pcv file as well.

PureCoverage for UNIX does not merge .cfy files, unlike .pcv files. You can
merge .cfy files when you view them on Windows.

For more information, see the online help for PureCoverage on both UNIX and
Windows.

Using report scripts

You can use PureCoverage report scripts to format and process PureCoverage
data. The report scripts are located in the <purecovhome>/scripts
directory.

Select File > Run script to open the script dialog.

You can also run report scripts from the command line.

Select a script from the selection list Type arguments

Report scripts

pc_annotate Produces an annotated source text file

% pc_annotate [-force-merge][-apply-adjustments=no]\
[-file=<basename>...][-type=<type>][<prog>.pcv...]

pc_below Reports low coverage

% pc_below [-force-merge][-apply-adjustments=no][-percent=<pct>]\
[<prog>.pcv...]
Viewing UNIX coverage data on Windows 47

pc_build_diff Compares PureCoverage data from two builds of an application

% pc_build_diff [-apply-adjustments=no][-prefix=XXXX....] old.pcv \
new.pcv

pc_covdiff Annotates the output of diff for modified source code

Note: Cannot run from Viewer

% yourdiff <name> | pc_covdiff [-context=<lines>] \
[-format={diff|side-by-side|new-only}][-lines=<boolean>] \
[-tabs=<stops>][-width=<width>][-force-merge][-apply-adjustments=no] \
-file=<name> <prog>.pcv...

pc_diff Lists files for which coverage has changed

% pc_diff [-apply-adjustments=no] old.pcv new.pcv

pc_email Mails a report to the last person who modified insufficiently covered files

% pc_email [-force-merge][-apply-adjustments=no][-percent=<pct>] \
[<prog>.pcv...]

pc_select Identifies the subset of tests required to exercise modified source code

% <list of changed files> | pc_select \
[-diff=<rules>][-canonicalize=<rule>]test1.pcv test2.pcv...

pc_ssheet Produces a summary in spreadsheet format

% pc_ssheet [-force-merge][-apply-adjustments=no][<prog>.pcv...]

pc_summary Produces an overall summary in table format

% pc_summary [-file=<name>...] [-force-merge] [-apply-adjustments=no]
[<prog>.pcv...]

Report scripts
48 Chapter 2 - Using PureCoverage

PureCoverage options

PureCoverage provides command-line options for controlling operations and
handling coverage data both for C/C++ and Java code.

Build-time options
For a C or C++ application, specify build-time options on the link line when
you instrument with PureCoverage. For example:

% purecov -always-use-cache-dir cc ...

For a Java application, specify these options (which for Java are not actually
build-time options) on the command line when you run the application with
PureCoverage.

For C, C++, and Java applications, you can also set these options using the
PURECOVOPTIONS environment variable. For example:

% setenv PURECOVOPTIONS "-always-use-cache-dir"

Commonly used build-time options Default

-always-use-cache-dir

Forces all PureCoverage instrumented object files to be written to the global cache
directory. Does not apply to Java.

no

-auto-mount-prefix

Removes the prefix used by file system auto-mounters.

/tmp_mnt

-cache-dir

Specifies the global directory for caching instrumented object files. Does not apply
to Java.

<purecovhome>/cache

-ignore-runtime-environment

Prevents the runtime PureCoverage environment from overriding the option values
used in building the program. Does not apply to Java.

no

-linker

Specifies a linker other than the system default for building executables. Does not
apply to Java.

system-dependent
PureCoverage options 49

Runtime options
For a C or C++ application, specify runtime options on the link line when you
instrument with PureCoverage. For a Java application, specify these options on
the command line when you run the application with PureCoverage.

For C, C++, and Java applications, you can also set these options using the
PURECOVOPTIONS environment variable. For example:

% setenv PURECOVOPTIONS \
"-counts-file=./test1.pcv ‘printenv PURECOVOPTIONS‘"

Analysis-time options
Use analysis-time options with analysis-time mode options. For example:
% purecov -merge=result.pcv -force-merge filea.pcv fileb.pcv

Commonly used runtime options Default

-counts-file

Specifies an alternate file for writing coverage count data in binary format. Can
use the conversion characters listed on page 28.

%v.pcv for C/C++;
%v%p%n.pcv for Java,
where %n is a sequence
number.

-follow-child-processes

Controls whether PureCoverage is enabled in forked child processes

no

-log-file

Specifies a log file for PureCoverage runtime messages. Can use the conversion
characters listed on page 28.

stderr

-program-name

Specifies the full pathname of the PureCoverage instrumented program. Does not
apply to Java.

argv[0]

-user-path

Specifies a list of directories to search for source code. Can use the conversion
characters listed on page 28

none
50 Chapter 2 - Using PureCoverage

Analysis-time mode options
Command-line syntax:

% purecov -<mode option> [analysis-time options] \
<file1.pcv file2.pcv ...>

Commonly used analysis-time options Default

-apply-adjustments

Applies all adjustments in the $HOME/.purecov.adjust file to exported
coverage data

yes

-force-merge

Forces the merging of coverage data files (.pcv) obtained from different
versions of the same object file

no

Analysis-time mode options Compatible options

-export

Merges and writes coverage counts from multiple coverage data files (.pcv) in
export format to a specified file (-export=<filename>) or to stdout

-apply-adjustments

-extract

Extracts adjustment data from source code files and writes it to
$HOME/.purecov.adjust

none

-merge=<filename.pcv>

Merges and writes coverage counts from multiple coverage data files (.pcv) in
binary format

-force-merge

-view

Opens the PureCoverage Viewer for analysis of one or more coverage data
files (.pcv)

-force-merge,
-user-path
PureCoverage options 51

52 Chapter 2 - Using PureCoverage

3Using Quantify
Quantify: What it does

Your application’s runtime performance—its speed—is one of its most visible
and critical characteristics. Developing high-performance software that meets
the expectations of customers is not an easy task. Complex interactions
between your code, third-party libraries, the operating system, hardware,
networks, and other processes make it difficult to identify the causes of
performance degradation. Use Quantify® to improve your code’s runtime
performance.

Profiling runtime performance
Quantify is a powerful analytic tool that identifies the portions of you
application that dominate its execution time. It supports C and C++
applications. Quantify gives you the insight to eliminate performance problems
so that your software runs faster. With Quantify, you can:

n Get accurate and reliable performance data

n Control how data is collected, collecting data for a small portion of your
application’s execution or the entire run

n Compare before and after runs to see the impact of your changes on
performance

n Easily locate and fix only the problems with the highest potential for
improving performance

This chapter introduces the basic concepts involved in using Quantify to
collect and analyze runtime performance data. For complete information, see
the Quantify online help system.
53

How Quantify profiles application performance

Unlike sampling-based profilers, Quantify reports performance data for your
program without any profiler overhead. The numbers you see represent the
time your program would take without Quantify. Quantify instruments and
reports performance data for all the code in your program, including system
and third-party libraries, shared libraries, and statically linked modules.

Quantify counts machine cycles: Quantify uses Object Code Insertion (OCI)
technology to count the instructions your program executes and to compute
how many cycles they require to execute. Counting cycles means that the time
Quantify records in your code is independent of accidental local conditions
and, assuming that the input does not change, identical from run to run. The
fact that performance data is repeatable enables you to see precisely the
effects of algorithm and data-structure changes.

Since Quantify counts cycles, it gives you accurate data at any scale. You do
not need to create long runs or make numerous short runs to get meaningful
data as you must with sampling-based profilers—one short run and you have
the data. As soon as you can run a test program, you can collect meaningful
performance data and establish a baseline for future comparison.

Quantify times system calls: Quantify measures the elapsed (wall clock) time
of each system call made by your program and reports how long your program
waited for those calls to complete. You can immediately see the effects of
improved file access or reduced network delay on your program. You can
optionally choose to measure system calls by the amount of time the kernel
records for the process, which is the same as the time the UNIX /bin/time
utility records.

Quantify distributes time accurately: Quantify distributes each function’s
time to its callers so you can tell at a glance which function calls were
responsible for the majority of your program’s time. Unlike gprof, Quantify
does not make assumptions about the average cost per function. Quantify
measures it directly.

Collecting performance data

To collect performance data for a C/C++ program:

1 Add quantify to the front of the link command line. For example:

% quantify cc -g hello_world.c -o hello_world
54 Chapter 3 - Using Quantify

2 Run the instrumented program as you usually do:

% hello_world

When the program starts, Quantify prints license and support information,
followed by the expected output from your program.

When the program finishes execution, Quantify transmits the performance data
it collected to qv, Quantify’s data-analysis program.

Interpreting the program summary
After each dataset is transmitted, Quantify prints a program summary showing
at a glance how the original, non-instrumented, program is expected to
perform.

**** Quantify instrumented hello_world (pid 20352 at Sat 5
Jul 08:41:27 2009)
Quantify 7.0.1 Solaris 2, (C) Copyright IBM Corporation.
1993, 2009. All Rights Reserved.

* For contact information type: “quantify -help”
* Quantify licensed to Quantify Evaluation User
* Quantify instruction counting enabled.

Hello, World.

Quantify: Sending data for 37 of 1324 functions
from hello_world (pid 20352).........done.

Program output

Data transmission

 Time Quantify expects the original program to take

Time spent executing
program functions
(compute-bound)

Time taken to collect data
includes Quantify’s

counting overhead and any
memory effects

Time spent loading
dynamic libraries

Time spent waiting for
system calls to complete
Collecting performance data 55

Using Quantify’s data analysis windows

After transmitting the last dataset, Quantify displays the Control Panel. From
here, you can display Quantify’s data analysis windows and begin analyzing
your program’s performance.

ANNOTATED SOURCE

FUNCTION LIST

FUNCTION DETAIL

CONTROL PANEL

CALL GRAPH

Performance
56 Chapter 3 - Using Quantify

The Function List window

The Function List window, for performance profiling runs, shows the functions
that your program executed. By default, it displays all the functions in your
program, sorted by their function time. This is the amount of time a function
spent performing computations (compute-bound) or waiting for system calls to
complete.

Sorting the function list
For performance data, you can sort the function list based on the various types
of data Quantify collects. To do this, select View > Display data.

Function list description

Click a function
to select it

Find a function by name or
filter by expression
The Function List window 57

Restricting functions
To focus attention on specific types of functions, or to speed up the preparation
of the function list report in large programs, you can restrict the functions
shown in the report. Select View > Restrict functions.

The Call Graph window

For performance profiling runs, the Call Graph window presents a graph of the
functions called during the run. It uses lines of varying thickness to graphically
depict where your program spends its time. Thicker lines correspond directly
to larger amounts of time spent along a path.

The call graph helps you understand the calling structure of your program and
the major call paths that contributed to the total time of the run. Using the call
graph, you can quickly discover the sources of bottlenecks.
58 Chapter 3 - Using Quantify

By default, Quantify expands the call paths to the top 20 functions contributing
to the overall time of the program.

Using the pop-up menu
To display the pop-up menu, right-click any function in the call graph.

You can use the pop-up menu to:

n Expand and collapse the function’s subtree

n Locate individual caller and descendant functions

n Change the focus of the call graph to the selected function

n Display the annotated source code or the function detail for the selected
function

Or click and drag the
Viewport to move
to a new location

The selected function

Click and drag
anywhere in the

call graph to move to
a new location

Thicker lines mean more
expensive paths
The Call Graph window 59

Expanding and collapsing descendants
Use the pop-up menu to expand or collapse the subtrees of descendants for
individual functions.

After expanding or collapsing subtrees, you can select View > Redo layout to
remove any gaps that your changes create in the call graph.

The Function Detail window

The Function Detail window, for performance profiling runs, presents detailed
performance data for a single function, showing its contribution to the overall
execution of the program.

For each function, Quantify reports both the time spent in the function’s own
code (its function time) and the time spent in all the functions that it called (its
descendants time). Quantify distributes this accumulated
function+descendants time to the function’s immediate caller.

Select to expand
or collapse

descendant subtrees

The functions that called
malloc

All the data collected
for malloc

The immediate descendants of malloc, and how they contributed
to malloc’s function+descendants time

The minimum and
maximum time

spent in malloc
on any one call
60 Chapter 3 - Using Quantify

Double-click a caller or descendant function to display the detail for that
function.

The function time and the function+descendants time are shown as a
percentage of the total accumulated time for the entire run. These percentages
help you understand how this function’s computation contributed to the overall
time of the run. These times correspond to the thickness of the lines in the call
graph.

Changing the scale and precision of performance data
Quantify can display recorded performance data in cycles (the number of
machine cycles) and in microseconds, milliseconds, or seconds.
To change the scale of data, select View > Scale factors.

To change the precision of data, select View > Precision.

Saving function detail data
To save the current function detail display to a file, select
File > Save current function detail as.

To append additional function detail displays to the same file, select
File > Append to current detail file.
The Function Detail window 61

The Annotated Source window

Quantify’s Annotated Source window presents line-by-line performance data
using the function’s source code.

Note: The Annotated Source window is available only for files that you
compile using the -g debugging option.

The numeric annotations in the margin reflect the time recorded for that line or
basic block over all calls to the function. By default, Quantify shows the
function time for each line, scaled as a percentage of the total function time
accumulated by the function.

Source file

Function summary

Annotations show how
function+descendants

time was distributed over
its source lines

Find text in
the source code
62 Chapter 3 - Using Quantify

Changing annotations for performance data
To change annotations for performance data, use the View menu. You can
select both function and function+descendants data, either in cycles or seconds
and as a percentage of the function+descendants time.

Saving data on exit

To exit Quantify, select File > Exit Quantify. If you analyze a dataset
interactively, Quantify does not automatically save the last dataset it receives.
When you exit, you can save the dataset for future analysis.

By default, Quantify saves data to binary .qv files, and assigns file names that
reflect the program name and its runtime process identifier. You can analyze a
saved dataset at a later time by running qv, Quantify’s data analysis program.

You can also save Quantify data in export format. This is a clear-text version of
the data suitable for processing by scripts.

Comparing program runs with qxdiff

The qxdiff script compares two export data files and reports any changes in
performance or memory usage.

To use the qxdiff script:

1 Save baseline performance or memory data to an export file. Select
File > Export Data As in any data analysis window.

2 Change the program and run Quantify on it again.
Saving data on exit 63

3 Select File > Export Data As to export the data for the new run.

4 Use the qxdiff script to compare the two export data files. For example:

% qxdiff -i testHash.pure.20790.0.qx
improved_testHash.pure.20854.0.qx

You can use the -i option to ignore functions that make calls to system
calls.

Below is the output from this example:

Quantify options

Quantify provides command-line options for controlling operations and
handling data.

Build-time options
Specify build-time options on the link line when you instrument with Quantify.
For example:

% quantify -cache-dir=$HOME/cache -always-use-cache-dir \
cc ...

You can also set these options by using the QUANTIFYOPTIONS environment
variable. For example:

% setenv QUANTIFYOPTIONS "-always-use-cache-dir"

qxdiff lists the
functions that have

changed . . .

and summarizes the
differences for the entire

run

Differences between:

program testHash.pure (pid 20790) and

program improved_testHash.pure (pid 20854)

Function name Calls Cycles % change

! strcmp -40822 -1198640 93.77% faster

! putHash 0 -32912 6.61% faster

! getHash 0 -28376 7.86% faster

! remHash 0 -7856 5.91% faster

! hashIndex 0 10000 1.49% slower

5 differences; -1257784 cycles (-0.025 secs at 50 MHz)

25.01% faster overall (ignoring system calls).
64 Chapter 3 - Using Quantify

qv runtime options
To run qv, specify the option and the saved .qv file. For example:

% qv -write-summary-file a.out.23.qv

Commonly used build-time options Default

-always-use-cache-dir
Specifies whether instrumented files are written to the global cache
directory.

no

-cache-dir
Specifies the global cache directory.

<quantifyhome>/cache

-collection-granularity
Specifies the level of collection granularity.

line

-ignore-runtime-environment
Prevents the runtime Quantify environment from overriding option values
used in building the program.

no

-linker
Specifies an alternative linker to use instead of the system linker.

system-dependent

-use-machine
Specifies the build-time analysis of instruction times according to a
particular machine.

system-dependent

qv options Default

-add-annotation
Specifies a string to add to the binary file.

none

-print-annotations
Writes the annotations to stdout.

no

-windows
Controls whether Quantify runs with the graphical interface.

yes

-write-export-file
Writes the recorded data in the dataset to a file in export format.

none

-write-summary-file
Writes the program summary for the dataset to a file.

none
Quantify options 65

Runtime options
Specify runtime options on the link line when you instrument with Quantify.

You can also set these options using the QUANTIFYOPTIONS environment
variable. For example:

% setenv QUANTIFYOPTIONS "-windows=no"; a.out

Commonly used runtime options Default

-avoid-recording-system-calls
Avoids recording specified system calls.

system-dependent

-measure-timed-calls
Specifies measurement for timing system calls.

elapsed-time

-record-child-process-data
Records data for child processes created by fork and vfork.

no

-record-system-calls
Records system calls.

yes

-report-excluded-time
Reports time that was excluded from the dataset.

0.5

-run-at-exit
Specifies a shell script to run when the program exits.

none

-run-at-save
Specifies a shell script to run each time the program saves counts.

none

-save-data-on-signals
Saves data on fatal signals.

yes

-save-thread-data
Saves composite or per-stack thread data.

composite

-write-export-file
Writes the dataset to an export file as ASCII text.

none

-write-summary-file
Writes the program summary for the dataset to a file.

/dev/tty

-windows
Specifies whether Quantify runs with the graphical interface.

yes
66 Chapter 3 - Using Quantify

API functions

To use Quantify API functions, include <quantifyhome>/quantify.h in
your code and link with <quantifyhome>/quantify_stubs.a

Commonly used C/C++ functions Description

quantify_help (void) Prints description of Quantify API
functions

quantify_is_running (void) Returns true if the executable is
instrumented

quantify_print_recording_state (void) Prints the recording state of the process

quantify_save_data (void) Saves data from the start of the program or
since last call to
quantify_clear_data

quantify_save_data_to_file (char * filename) Saves data to a file you specify

quantify_add_annotation (char * annotation) Adds the specified string to the next saved
dataset

quantify_clear_data (void) Clears the performance data recorded to
this point

quantify_<action>_recording_data (void)a

a. <action> is one of: start, stop, is. For example: quantify_stop_recording_system_call

Starts and stops recording of all data

quantify_<action>_recording_dynamic_library_
data (void)a

Starts and stops recording dynamic library
data

quantify_<action>_recording_register_window_
traps (void)a

Starts and stops recording
register-window-trap data

quantify_<action>_recording_system_call
(char *system_call_string)a

Starts and stops recording specific
system-call data

quantify_<action>_recording_system_calls
(void)a

Starts and stops recording of all
system-call data
API functions 67

68 Chapter 3 - Using Quantify

4Notices
This information was developed for products and services offered in the
U.S.A. IBM may not offer the products, services, or features discussed in this
document in other countries. Consult your local IBM representative for
information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or
imply that only that IBM product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe any
IBM intellectual property right may be used instead. However, it is the user’s
responsibility to evaluate and verify the operation of any non-IBM product,
program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send license inquiries, in writing, to:
IBM Director of Licensing
IBM Corporation, North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the
IBM Intellectual Property Department in your country or send inquiries, in
writing, to:
IBM World Trade Asia Corporation Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES
THIS PUBLICATION ‘AS IS’ WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
Some states do not allow disclaimer of express or implied warranties in certain
transactions, therefore, this statement may not apply to you.
69

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for this
IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the mutual
use of the information which has been exchanged, should contact:
IBM Corporation
Department BCFB
20 Maguire Road
Lexington, MA 02421
U.S.A.

Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer
Agreement, IBM International Program License Agreement or any equivalent
agreement between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments
may vary significantly. Some measurements may have been made on
development-level systems and there is no guarantee that these measurements
will be the same on generally available systems. Furthermore, some
measurement may have been estimated through extrapolation. Actual results
may vary. Users of this document should verify the applicable data for their
specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available
sources. IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

COPYRIGHT LICENSE:
70 Chapter 4 - Notices

This information contains sample application programs in source language,
which illustrates programming techniques on various operating platforms. You
may copy, modify, and distribute these sample programs in any form without
payment to IBM, for the purposes of developing, using, marketing or
distributing application programs conforming to the application programming
interface for the operating platform for which the sample programs are written.
These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of
these programs. You may copy, modify, and distribute these sample programs
in any form without payment to IBM for the purposes of developing, using,
marketing, or distributing application programs conforming to IBMís
application programming interfaces.

Each copy or any portion of these sample programs or any derivative work,
must include a copyright notice as follows:

(c) (your company name) (year). Portions of this code are derived from IBM
Corp. Sample Programs. (c) Copyright IBM Corp. _enter the year or years_.
All rights reserved.

Additional legal notices are described in the legal_information.html file that is
included in your Rational software installation.

Trademarks

AIX, ClearCase, ClearCase Attache, ClearCase MultiSite, ClearDDTS,
ClearGuide, ClearQuest, DB2, DB2 Universal Database, DDTS, Domino,
IBM, Lotus Notes, MVS, Notes, OS/390, Passport Advantage, ProjectConsole,
PureCoverage, Purify, PurifyPlus, Quantify, Rational, Rational Rose, Rational
Suite, Rational Unified Process, RequisitePro, RUP, S/390, SoDA, SP1, SP2,
Team Unifying Platform, WebSphere, XDE, and z/OS are trademarks of
International Business Machines Corporation in the United States, other
countries, or both.

Java and all Java-based trademarks and logos are trademarks of Sun
Microsystems, Inc. in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and
other countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or
both.

Other company, product or service names may be trademarks or service marks
of others.
71

72 Chapter 4 - Notices

Index
Symbols
.cfy data file (PureCoverage for Windows) 47
.pcv view files (PureCoverage) 40, 47
.pv view files (Purify) 25
.qv view files (Quantify)

performance profiling 63
%V, %v, %p 28
A
ABR, array bounds read error

correcting 20
in Hello World 18

access errors, how Purify finds 32
-add-annotation 65
adjusted lines 41
-always-use-cache-dir 28, 49, 65
analysis-time options (PureCoverage) 50
Annotated Source window

PureCoverage 44
Quantify 43, 62, 63

API functions
Purify 27
Quantify (C/C++) 67

appending function detail 61
-apply-adjustments 51
-auto-mount-prefix 29, 49
-avoid-recording-system-calls 66
B
basic steps

collecting C/C++ performance data 55
finding memory leaks and errors 14
finding untested C/C++ code 38
finding untested Java code 36

blue memory color 33
build-time options

PureCoverage 49
Purify 28

Quantify 64
C
-cache-dir 28, 49, 65
caching options

PureCoverage 49
Purify 28
Quantify 64

Call Graph window (Quantify) 60
Calls column (PureCoverage) 43
-chain-length 29
changing annotations (Quantify) 63
characters, conversion 28
code, see source code
collapsing subtrees, Quantify call graph 60
-collection-granularity 65
color, see memory color
comparing program runs

with PureCoverage 44
with Purify 24
with Quantify 63

compiling and linking
PureCoverage 39
Purify 15
Quantify 54

compute-bound
functions 57
time 55

configuration message (Purify) 17
Contacting IBM Software Support viii
container programs

collecting Java coverage data 36
controls, Purify program 17
conversion characters for filenames 28
-counts-file 50
coverage data

annotations on source code 43
displaying 40
file level 42

formatting with scripts 47
function level 42
in PureCoverage Viewer 40
viewing UNIX data on Windows systems 47

cycles
counted by Quantify 54
scale factor 61

D
debug data

PureCoverage 39
Purify 18
Quantify (performance profiling) 43, 54, 62

debuggers
JIT debugging 26
using with Purify 26

debugging option, see -g debugging option
dynamic library, timing 55
E
editing source code 20, 22
Electronic problem submission viii
environment variables

PURECOVOPTIONS 49, 50
PURIFYOPTIONS 29
QUANTIFYOPTIONS 64, 66

error and leak data
comparing program runs 24
heap analysis 23
message acronyms 31
saving 25
viewing 16

expanding subtrees, Quantify call graph 60
-export 51
exporting Quantify data 63
-extract 51
F
-fds-in-use-at-exit 29
filename conversion characters 28
files

.cfy (PureCoverage/Windows data files) 47

.pcv (PureCoverage view files) 40, 47

.pv (Purify view files) 25

.qv (Quantify view files) 63
focusing Quantify data 58, 59
-follow-child-processes 29, 50
-force-merge 51
Function Detail window (Quantify) 60

scale and precision of data 61
Function List window (Quantify)

finding top contributors 57
restricting functions 58

function+descendants time 60
functions

coverage detail 42
restricting display (performance profiling) 58
sorting (performance profiling) 57
See also API functions

Functions columns (PureCoverage) 43
G
-g debugging option

and PureCoverage 39
and Purify 18
and Quantify 43, 62

graph, see Call Graph window
green memory color 33
H
heap analysis (Purify) 23
Hello World example

PureCoverage 38
Purify 14

help
displaying online help systems viii
technical support viii

hiding
functions in Quantify call graph 58
messages in Purify 24

I
-ignore-runtime-environment 28, 49, 65
instrumenting programs

with PureCoverage 39
with Purify 15

integration, Purify and PureCoverage 26
J
Java

PureCoverage 36
-java

PureCoverage 36
-jit-debug 29
just-in-time debugging 26
L
leaks, see memory leaks
-leaks-at-exit 29
library

system and PureCoverage 43
time loading dynamic 55

line numbers
-g option (Purify) 15, 18

-linker 28, 49, 65
local variable names, displaying 15
-log-file 29, 50
M
machine cycles 54
-measure-timed-calls 66
memory access errors

example 18
how Purify finds 32

memory color 32
memory in use message 23
memory leaks

definition (C/C++) 23
heap analysis 23
message 21
new leaks button 21
potential 23

purify_new_leaks 27
menu, Quantify pop-up 59
-merge 51
-messages 29
messages

Purify 29
suppressing Purify messages 24

Microsoft Windows, displaying UNIX coverage data 47
MLK, memory leak 21, 22
N
new memory leaks (Purify) 21
O
Object Code Insertion (OCI) 54
options

PureCoverage analysis-time 50
PureCoverage build-time 49
PureCoverage runtime 50
Purify build-time 28
Purify runtime 29
Quantify build-time 64
Quantify runtime 66

options (by name)
-add-annotation 65
-always-use-cache-dir 28, 49, 65
-apply-adjustments 51
-auto-mount-prefix 29, 49
-avoid-recording-system-calls 66
-cache-dir 28, 49, 65
-chain-length 29
-collection-granularity 65
-counts-file 50
-export 51
-extract 51
-fds-in-use-at-exit 29
-follow-child-processes 29, 50
-force-merge 51
-ignore-run-time-environment 49
-ignore-runtime-environment 28, 65

-java 36
-jit-debug 29
-leaks-at-exit 29
-linker 28, 49, 65
-log-file 29, 50
-measure-timed-calls 66
-merge 51
-messages 29
-print-annotations 65
-print-home-dir 28
-program-name 29, 50
-record-child-process-data 66
-record-system-calls 66
-report-excluded-time 66
-run-at-exit 66
-run-at-save 66
-save-data-on-signals 66
-save-thread-data 66
-show-directory 29
-show-pc 29
-show-pc-offset 29
-use-machine 65
-user-path 30, 50
-view 37, 40, 51
-view-file 30
-windows 30, 65, 66
-write-export-file 65, 66
-write-summary-file 65, 66

overhead (Quantify performance profiling) 55
P
performance data

comparing export files 64
saving 63

pop-up menu (Quantify) 59
potential memory leaks 23
-print-annotations 65
-print-home-dir 28
program controls (Purify) 17

program runs, comparing
with PureCoverage 44
with Purify 24
with Quantify 63

program summary
performance profiling 55

-program-name 29, 50
programs, running instrumented

PureCoverage 39
Purify 16

PureCoverage
basic steps (C/C++) 38
basic steps (Java) 36
benefits 35
for Windows 47
using with Purify 26
Viewer 40
with Java 36

PURECOVOPTIONS environment variable 49, 50
Purify

API functions 27
basic steps 14
instrumenting a program 15
messages 29
Viewer 16

PURIFYOPTIONS environment variable 29
Q
Quantify

API functions (C/C++) 67
basic steps (C/C++) 55
build-time options 64
Call Graph window 58, 60
overhead 55
repeatability of timing 54
runtime options (performance profiling) 66

QUANTIFYOPTIONS environment variable 64, 66
qv

performance profiling 55

qxdiff script (Quantify) 64
R
Rational developerWorks viii
Rational PureCoverage for Windows 47
Rational Software website

home page viii
-record-child-process-data 66
-record-system-calls 66
red memory color 33
Redo layout (Quantify) 60
-report-excluded-time 66
reports

program summary (performance profiling) 55
PureCoverage scripts 47

restricting functions in Quantify 58
-run-at-exit 66
-run-at-save 66
running instrumented programs

PureCoverage 39
Purify 16

runs
comparing in PureCoverage 44
comparing in Purify 24
comparing in Quantify (performance profiling) 63

runs column (PureCoverage) 42
runtime options

PureCoverage 50
Purify 29
Quantify 66

S
-save-data-on-signals 66
-save-thread-data 66
saving

Purify error data 25
Quantify function detail data 61
Quantify performance data 63

scale factors 61
scripts

PureCoverage report scripts 47
qxdiff 63

-show-directory 29
-show-pc 29
-show-pc-offset 29
sorting function list 57
source code

annotated (PureCoverage) 43
annotated (Quantify) 43, 62, 63
displaying filenames (Purify) 18
editing from Viewer (Purify) 20
line numbers (Purify) 18
number of lines displayed (Purify) 20

statically allocated memory 33
subtrees, Quantify call graph 60
support, technical viii
suppressing Purify messages 24
system call timing 54
system libraries and PureCoverage 43
T
technical support viii
time

compute-bound 55
function+descendants 60
in code 55
loading dynamic libraries 55
to collect the data 55

Total Coverage row (PureCoverage) 41
U
-use-machine 65
-user-path 30, 50
V
-view 37, 40, 51
view files

PureCoverage (.pcv) 40, 47
Purify (.pv) 25
Quantify (.qv) 63

Viewer 40

PureCoverage 40
Purify 16

-view-file 30
viewport, call graph 59
W
websites

Rational software viii
-windows 30, 65, 66
windows

PureCoverage annotated source 44
PureCoverage viewer 40
Purify viewer 16
Quantify annotated source 43, 62, 63
Quantify call graph 60
Quantify data analysis 56
Quantify function detail 60
Quantify function list 57

Windows (Microsoft), displaying UNIX coverage data 47
-write-export-file 65, 66
-write-summary-file 65, 66
Y
yellow memory color 33

	Preface
	What’s in this guide?
	Audience
	Other resources
	Contacting IBM Software Support

	Using Purify
	Purify: What it does
	Finding errors in Hello World
	Instrumenting a program
	Compiling and linking in separate stages

	Running the instrumented program
	Seeing all your errors at a glance
	Finding and correcting errors
	Understanding the cause of the error
	Correcting the ABR error

	Finding leaked memory
	Correcting the MLK error
	Looking at the heap analysis

	Comparing program runs
	Suppressing Purify messages
	Saving Purify output to a view file
	Saving a run to a view file from the Viewer
	Opening a view file

	Using your debugger with Purify
	Using Purify with PureCoverage
	Purify API functions
	Build-time options
	Conversion characters for filenames
	Runtime options
	Purify messages
	How Purify finds memory-access errors
	How Purify checks statically allocated memory

	Using PureCoverage
	PureCoverage: What it does
	Finding untested Java code
	Finding untested C/C++ code
	Instrumenting a C/C++ program
	Running the instrumented C/C++ program
	Displaying C/C++ coverage data
	Expanding the file-level detail
	Examining function-level detail
	Examining the annotated source

	Improving Hello World’s test coverage

	Viewing UNIX coverage data on Windows
	Using report scripts
	PureCoverage options
	Build-time options
	Runtime options
	Analysis-time options
	Analysis-time mode options

	Using Quantify
	Quantify: What it does
	Profiling runtime performance

	How Quantify profiles application performance
	Collecting performance data
	Interpreting the program summary

	Using Quantify’s data analysis windows
	The Function List window
	Sorting the function list
	Restricting functions

	The Call Graph window
	Using the pop-up menu
	Expanding and collapsing descendants

	The Function Detail window
	Changing the scale and precision of performance data
	Saving function detail data

	The Annotated Source window
	Changing annotations for performance data

	Saving data on exit
	Comparing program runs with qxdiff
	Quantify options
	Build-time options
	qv runtime options
	Runtime options

	API functions

	Notices
	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

