
© 2007 IBM Corporation
1

MASS, MASSV & ESSL 4.3

© 2007 IBM Corporation
2

MASS and MASSV

 Three libraries provide elementary math functions:
 C/Fortran intrinsics

 MASS/MASSV (Math Acceleration Subroutine System)

 ESSL/PESSL (Engineering Scientific Subroutine Library)

 Language intrinsics are the most convenient, but not
the best performers

© 2007 IBM Corporation
3

The Elementary functions included…

MASS
 sqrt, rsqrt, exp, log, sin, cos, tan, atan, atan2, sinh,

cosh, tanh, dnint, x**y
MASSV

 cos, dint, exp, log, sin, log, tan, div, rsqrt, sqrt,
atan

© 2007 IBM Corporation
4

Comparison of standard lib and MASS intrinsic functions

171.03.72981324493266e+29 627.13.72981324493266e+29 pow

 141.6-7.56021669449782e+02

398.2-7.56021669449783e+02 atan2

 71.0 1.88661487104410e+26

244.61.88661487104410e+26 cosh

76.0 2.79285108669777e+24

273.42.79285108669777e+24 sinh

120.9 -2.53424519590047e+05

207.6 -2.53424519590047e+05 Atan

90.1-6.62879483877644e+06

307.5-6.62879483877644e+06 tan

73.41.81730644467472e+05 200.5 1.81730644467472e+05 cos

 75.47.61032543425560e+04 217.67.61032543425560e+04 sin

 95.01.10235345203187e+08 306.51.10235345203187e+08 log

 65.02.22314235567424e+26 177.02.22314235567424e+26 exp

 35.09.88776148452464e+01 189.0 9.88776148452464e+01 rsqrt

 40.0 3.34427772158389e+11 159.0 3.34427772158389e+11 sqrt

Clock-
cycles

Sum from libmass.aClock-
cycles

Sum from libm.aFunction

© 2007 IBM Corporation
5

Comparison of libm and MASSV functions

20.71.08946996172333e+08vlog308.01.08946996172333e+08log

18.93.31109589135987e+26vexp177.13.31109589135987e+26Exp

32.1-5.20893404460221e+04vcos203.7-5.20893404460221e+04Cos

32.2-1.16545301554582e+05vsin217.9-1.16545301554582e+05Sin

57.74.95000000000000e+06vsincos429.64.95000000000000e+06cos,sin

6.59.83390477971166e+01vrsqrt189.09.83390477971166e+01rsqrt

11.23.30047180089010e+11vsqrt159.13.30047180089010e+11dsrt

4.13.82109600477247e-03vrec 29.03.82109600477247e-03div

5.52.35022308885783e+07vdiv29.12.35022308885783e+07 div

Clock-
cycles

SumMASSV
function

Clock-
cycles

Sum Libm
function

© 2007 IBM Corporation
6

Libm, MASS and MASSV

 No discernable difference in result –
 Exception: atan2 difference in 14th significant place between

libm & MASS

© 2007 IBM Corporation
7

What are ESSL and Parallel ESSL?

 The Engineering and Scientific Subroutine Library (ESSL) family
of products is a state-of-the-art collection of mathematical
subroutines.

 Running on IBM Power servers and clusters, the ESSL family
provides a wide range of high-performance mathematical
functions for a variety of scientific and engineering applications

© 2007 IBM Corporation
8

What Products are available?

 ESSL 4.3 contains over 500 high-performance serial and SMP
mathematical subroutines tuned for Power4, Power4+, Power5,
Power5+, Power6, PPC 970 and PowerPC 450 processors

 Parallel ESSL 3.3 contains over 125 high-performance SPMD
mathematical subroutines specifically designed to exploit the full
power of clusters of Power servers connected with a high
performance switch

© 2007 IBM Corporation
9

What Operating Systems are supported?

ESSL 4.3
 AIX 6.1

 AIX 5.3

 AIX 5.2

 SLES10

 RHEL5

© 2007 IBM Corporation
10

What ESSL Libraries are Available?

 Thread-Safe Serial and SMP Libraries
 32 bit integers/32 bit pointers

 32 bit integers/64 bit pointers

 64 bit integers/64 bit pointers

© 2007 IBM Corporation
11

What mathematical areas are supported?

 ESSL
Linear Algebra Subprograms

Matrix Operations

Linear Algebraic Equations

Eigensystems Analysis

Fourier Transforms, Convolution &
Correlation & Related Computations

Sorting & Searching

Interpolation

Numerical Quadrature

Random Number Generation

© 2007 IBM Corporation
12

What applications are supported?

 Callable from FORTRAN, C, and C++
 32-bit integer, 32-bit pointer application support
 32-bit integer, 64-bit pointer application support
 64-bit integer, 64-bit pointer application support (ESSL Only)
 SMP Libraries are OpenMP based
 BLAS and Parallel BLAS Compatibility
 LAPACK and ScaLAPACK Compatibility

© 2007 IBM Corporation
13

What do you get?

 ESSL
Libraries

Header File for C and C++

Manpages

Guide and Reference (Internet)

Install Guide (Internet)

Installation Verification
Programs

© 2007 IBM Corporation
14

How do you use ESSL?

 Create a source program or change an existing source program
to call ESSL subroutines

 Compile the program
 Correct compiler-detected user errors
 Link-edit, load, and run the program
 Debug the program to isolate run-time errors
 Validate the program against test data
 Change the program and/or compiler options to improve

performance
 Run the final version of the program to do work

© 2007 IBM Corporation
15

What techniques are used to obtain high performance?

 SMP Algorithms
 SIMD Algorithms (e.g., VMX, BG/P PPC450D)
 Block Algorithms

 Data Reuse (Data Caches and TLB)
 Data Prefetching
 Minimize Stride

 If enough computations, copy to temporary space if used more than
once

 Loop unrolling in computational kernels
 Fully utilize the 2 Floating-Point Units, 2 Load-Store Units, and Floating-

Point Registers

 Careful scheduling of loops to avoid pipeline stalls

© 2007 IBM Corporation
16

How usable are ESSL and Parallel ESSL?

 Easy to Use Call Interface
 Fortran oriented but header file provided to assist C and C++ users
 Dynamic allocation of work space

 Easy to obtain high performance
 Replace key computational kernels with calls to math subroutines. As applications are run

on new platforms simply relink to obtain high performance
 Obtain high performance on SMP processors by relinking serial applications with ESSL SMP

(Open MP) Library
 Informative and Flexible Error Handling

 Messages are readily understandable - reference material not required
 Single comprehensive message when all MPI tasks detect the same error

 Comprehensive Documentation
 HTML, PDF and manpages available on the Internet
 Quickly retrieve information
 Organized according to the tasks performed
 Readable by a wide class of users

 Easy to Install and Service

© 2007 IBM Corporation
17

What about Migration?

 Long History of easy migrations
 Customer applications almost always migrate to new releases

and versions with no source code changes

 Customer applications migrate to new hardware with no source
code changes

 New XLF and VAC Compilers supported when they GA
 New AIX Operating System releases supported at GA (ESSL)

© 2007 IBM Corporation
18

What’s new in ESSL 4.3?

POWER6
Serial and SMP Libraries with 64 bit ints/64 bit ptrs
VMX Support on Power6 and JS21
 29 New LAPACK Subroutines
RHEL5

© 2007 IBM Corporation
19

What new subroutines are in ESSL 4.3?

 SGECON, DGECON, CGECON, ZGECON
 Estimate the Reciprocal of the Condition Number of a General Matrix

 SPOCON, DPOCON, CPOCON, ZPOCON
 SPPCON, DPPCON, CPPCON, ZPPCON

 Estimate the Reciprocal of the Condition Number of a Positive Definite
Real Symmetric or Complex Hermitian Matrix

 SLANGE, DLANGE, CLANGE, ZLANGE
 General Matrix Norm

 SLANSY, DLANSY, CLANHE, ZLANHE
 SLANSP, DLANSP, CLANHP, ZLANHP

 Real Symmetric or Complex Hermitian Matrix Norm
 CPPTRI, ZPPTRI

 Positive Definite Complex Hermitian Matrix Inverse
 SGEQRF, CGEQRF, ZGEQRF

 General Matrix QR Factorization

© 2007 IBM Corporation
20

Note on Core files

 Core files are text files. Look at the core file with a text editor,
focus on the function call chain; feed the hex addresses to
addr2line.
 addr2line -e your.x hex_address

 tail -n 10 core.511 | addr2line -e your.x

 Use grep and word-count (wc) to examine large numbers of core
files:
 grep hex_address “core.*” | wc -l

© 2007 IBM Corporation
21

MPI_bug1

 Compile and execute mpi_bug1

 EXPLANATION: mpi_bug1 demonstrates how miscoding even a
simple parameter like a message tag can lead to a hung
program. Verify that the message sent from task 0 is not exactly
what task 1 is expecting. Matching the send tag with the receive
tag solves the problem.

© 2007 IBM Corporation
22

MPI_bug2

 Compile and execute mpi_bug2

 EXPLANATION: mpi_bug2 shows another type of miscoding.
The data type of the message sent by task 0 is not what task 1
expects. Nevertheless, the message is received, resulting in a
segmentation fault or abnormal termination - depending upon the
AIX version. Matching the send data type with the receive data
type solves the problem.

© 2007 IBM Corporation
23

MPI_bug3

 Compile and execute mpi_bug3

 EXPLANATION: mpi_bug3 shows what happens when the MPI
environment is not initialized or terminated properly. Inserting the
MPI init and finalize calls in the right locations will solve the
problem.

© 2007 IBM Corporation
24

MPI_bug4

 Compile and execute mpi_bug4

 Number of MPI tasks must be divisible by 4.

 EXPLANATION: mpi_bug4 shows what happens when a task
does not participate in a collective communication call. In this
case, task 0 needs to call MPI_Reduce as the other tasks do

© 2007 IBM Corporation
25

MPI_bug5

 Compile and execute mpi_bug5

 EXPLANATION: mpi_bug5 demonstrates an unsafe program,
because sometimes it will execute fine, and other times it will fail.
The reason why the program fails or hangs is due to buffer
exhaustion on the receiving task side, as a consequence of the
way IBM has implemented an eager protocol for messages of a
certain size. This subject is discussed in more detail in the MPI
Performance Topics tutorial. One possible solution is to include
an MPI_Barrier call in the both the send and receive loops.

© 2007 IBM Corporation
26

MPI_bug6

 Compile and execute mpi_bug6

 Requires 4 MPI tasks.

 EXPLANATION: mpi_bug6 has a bug that will terminate the
program under AIX, but be ignored under Intel Linux. The
problem is that task 2 performs a blocking operation, but then
hits the MPI_Wait call near the end of the program. Only the
tasks that make non-blocking calls should hit the MPI_Wait. The
coding error in this case is easy to fix - simply make sure task 2
does not encounter the MPI_Wait call.

