
Deep Computing

© 2008 IBM Corporation

The IBM High Performance Computing Toolkit

Advanced Computing Technology Center
http://www.research.ibm.com/actc
/usr/lpp/ppe.hpct/

Rajiv Bendale bendale@us.ibm.com
Jerrold Heyman jheyman@us.ibm.com
Kirk E. Jordan kjordan@us.ibm.com
Brian Smith smithbr@us.ibm.com
Robert E. Walkup walkup@us.ibm.com

http://www.research.ibm.com/actc
mailto:bendale@us.ibm.com
mailto:jheyman@us.ibm.com
mailto:kjordan@us.ibm.com
mailto:walkup@us.ibm.com

Deep Computing

© 2008 IBM Corporation2 ORNL July 2008

Outline

 Various Tools for Improved Performance

 Performance Decision Tree

 IBM HPCToolkit

 Remarks

Deep Computing

© 2008 IBM Corporation

Performance

Compilers
Libraries
Tools
Running

Deep Computing

© 2008 IBM Corporation4 ORNL July 2008

HPC Tools Available for HPC

 XL Compilers
 Externals preserved
 New options to optimize for specific

Blue Gene functions

 LoadLeveler
 Same externals for job submission

and system query functions
 Backfill scheduling to achieve

maximum system utilization

 GPFS
 Provides high performance file

access, as in current pSeries and
xSeries clusters

 Runs on IO nodes and disk servers

 ESSL/MASSV
 Optimization library and intrinsics for

better application performance
 Serial Static Library supporting 32-bit

applications
 Callable from FORTRAN, C, and C+

+

 TotalView Technologies TotalView

– Parallel Debugger

 Lustre File System

– Enablement underway at LLNL

 FFT Library

– FFTW Tuned functions by TU-Vienna

 Performance Tools

– Total View

– HPC Toolkit

– Paraver

– Kojak

IBM Software Stack Other Software

Deep Computing

© 2008 IBM Corporation5 ORNL July 2008

Performance Decision Tree

Total Performance

Computation Communication

Xprofiler HPM

Routines/Source Summary/Blocks

Compiler

Source Listing

MP_Profiler

Summary/Events

I/O

MIO Library

Deep Computing

© 2008 IBM Corporation6 ORNL July 2008

IBM High Performance Computing Toolkit - What is it?

• IBM long-term goal:

• An automatic performance tuning framework

• Assist users to identify performance problems

• A common application performance analysis environment across all HPC
platforms

• Look at all aspects of performance (communication, memory, processor, I/O,
etc) from within a single interface

• Where we are: one consolidated package

• One consolidate package (Blue Gene, AIX, Linux/Power)

• Operate on the binary and yet provide reports in terms of source-level
symbols

• Dynamically activate/deactivate data collection and change what information
to collect

• One common visualization GUI

Deep Computing

© 2008 IBM Corporation7 ORNL July 2008

IBM High Performance Computing Toolkit

 MPI performance: MPI Profiler/Tracer

 CPU performance: Xprofiler, HPM

 Threading performance: OpenMP profiling

 I/O performance: I/O profiling

 Visualization and analysis: PeekPerf

HPMMP_Profiler/MP_Tracer MIO

PeekPerf

Xprofiler

Deep Computing

© 2008 IBM Corporation8 ORNL July 2008

Structure of the HPC toolkit

pSigma

Binary Application

PeekPerf GUI

Communication Profiler

CPU Profiler

Memory Profiler

Shared-Memory Profiler I/O Profiler

Visualization

Query

Analysis

Instrumented Binary

execution

Binary instrumentation

Deep Computing

© 2008 IBM Corporation9 ORNL July 2008

Instrumentation

Visualization

Analysis

PeekPerf: Graphical Instrumentation, Visualization and Analysis

Action Point Binary

Instrumentation

Symbolic Binary

Instrumentation

Action Point
List inst

Runtime
lib

Visualization

XMLSymb.
Descr.

LibnLib1

a.outsrc

Deep Computing

© 2008 IBM Corporation10 ORNL July 2008

Message-Passing Performance
MPI Profiler/Tracer

– Implements wrappers around MPI calls using the PMPI interface
• start timer
• call pmpi equivalent function
• stop timer

– Captures MPI calls with source code traceback

– No changes to source code, but MUST compile with -g
– Does not synchronize MPI calls
– Compile with –g and link with libmpitrace.a
– Generate XML files for peekperf

MPI Tracer

– Captures “timestamped” data for MPI calls with source
traceback

– Provides a color-coded trace of execution

– Very useful to identify load-balancing issues

Deep Computing

© 2008 IBM Corporation11 ORNL July 2008

MPI Profiler Output

Deep Computing

© 2008 IBM Corporation12 ORNL July 2008

MPI Tracer output

Deep Computing

© 2008 IBM Corporation13 ORNL July 2008

MPI Message Size Distribution

9E-0710485761M ... 4M1 (B)MPI_Isend

1.7E-06786432256K ... 1M2 (A)MPI_Isend

1.7E-0619660864K ... 256K2 (9)MPI_Isend

1.3E-064915216K ... 64K2 (8)MPI_Isend

1.3E-06122884K ... 16K2 (7)MPI_Isend

1.3E-0630721K ... 4K2 (6)MPI_Isend

1.3E-06768257 ... 1K2 (5)MPI_Isend

1.3E-0619265 ... 2562 (4)MPI_Isend

1.3E-064817 ... 642 (3)MPI_Isend

1.4E-06125 ... 162 (2)MPI_Isend

0.00000630 ... 42 (1)MPI_Isend

1E-0700 ... 41 (1)MPI_Comm_rank

1E-0700 ... 41 (1)MPI_Comm_size

Walltime#Bytes
Message

Size#CallsMPI Function

7.8E-0600 ... 45 (1)MPI_Barrier

1.98E-0500 ... 421 (1)MPI_Waitall

0.00051710485761M ... 4M1 (B)MPI_Irecv

0.00039786432256K ... 1M2 (A)MPI_Irecv

9.98E-0519660864K ... 256K2 (9)MPI_Irecv

2.23E-054915216K ... 64K2 (8)MPI_Irecv

7.1E-06122884K ... 16K2 (7)MPI_Irecv

3.4E-0630721K ... 4K2 (6)MPI_Irecv

2.6E-06768257 ... 1K2 (5)MPI_Irecv

2.4E-0619265 ... 2562 (4)MPI_Irecv

1.5E-064817 ... 642 (3)MPI_Irecv

1.4E-06125 ... 162 (2)MPI_Irecv

4.7E-0630 ... 42 (1)MPI_Irecv

Walltime#BytesMessage Size#CallsMPI Function

Deep Computing

© 2008 IBM Corporation14 ORNL July 2008

Xprofiler

 CPU profiling tool similar to gprof

 Can be used to profile both serial and parallel applications

 Use procedure-profiling information to construct a graphical display of the
functions within an application

 Provide quick access to the profiled data and helps users identify functions
that are the most CPU-intensive

 Based on sampling (support from both compiler and kernel)

 Charge execution time to source lines and show disassembly code

Deep Computing

© 2008 IBM Corporation15 ORNL July 2008

CPU Profiling

 Compile the program with -pg

 Run the program

 gmon.out file is generated (MPI applications
generate gmon.out.1, …, gmon.out.n)

 Run Xprofiler component

Deep Computing

© 2008 IBM Corporation16 ORNL July 2008

Xprofiler - Initial View

Clustered
functions

Library
calls

Deep Computing

© 2008 IBM Corporation17 ORNL July 2008

Xprofiler - Unclustering Functions

on “Filter” menu

on “Filter” menu
select “Uncluster
 Functions”

Deep Computing

© 2008 IBM Corporation18 ORNL July 2008

Xprofiler - Full View - Application and Library Calls

Deep Computing

© 2008 IBM Corporation19 ORNL July 2008

Xprofiler - Hide Lib Calls Menu

Now select
“Hide All

Library Calls”

Can also filter by:
 Function Names,
 CPU Time,
 Call Counts

Deep Computing

© 2008 IBM Corporation20 ORNL July 2008

Xprofiler - Application View

• Width of a bar:
time including
called routines

• Height of a bar:
time excluding
called routines

• Call arrows
labeled with
number of calls

• Overview window
for easy
navigation
(View
Overview)

Deep Computing

© 2008 IBM Corporation21 ORNL July 2008

Xprofiler: Zoom In

Deep Computing

© 2008 IBM Corporation22 ORNL July 2008

Xprofiler: Flat Profile

• Menu Report provides usual gprof reports plus some extra ones

– Flat
Profile

– Call
Graph
Profile

– Function
Index

– Function
Call
Summary

– Library
Statistics

Deep Computing

© 2008 IBM Corporation23 ORNL July 2008

Xprofiler: Source Code Window

• Source code
window displays
source code
with time profile
(in ticks=0.01 sec)

• Access

– Select function
in main display

– context menu

– Select function
in flat profile

– Code Display

– Show Source
 Code

Deep Computing

© 2008 IBM Corporation24 ORNL July 2008

Xprofiler - Disassembler Code

Deep Computing

© 2008 IBM Corporation25 ORNL July 2008

Xprofiler: Tips and Hints
• Simplest when gmon.out.*, executable, and source code are in one directory

– Select “Set File Search Path” on “File” menu to set source
directory when source, and executable are not in the same
directory

– Can use -qfullpath to encode the path of the source files into the
binary

• By default, call tree in main display is “clustered”

– Menu Filter Uncluster Functions

– Menu Filter Hide All Library Calls

• Libraries must match across systems!

– on measurement nodes

– on workstation used for display!

• Must sample realistic problem (sampling rate is 1/100 sec)

Deep Computing

© 2008 IBM Corporation26 ORNL July 2008

HPM: What Are Performance Counters
• Extra logic inserted in the

processor to count specific
events

• Updated at every cycle

• Strengths:

– Non-intrusive

– Accurate

– Low overhead

• Weaknesses:

– Specific for each
processor

– Access is not well
documented

– Lack of standard and
documentation on
what is counted

• Cycles

• Instructions

• Floating point instructions

• Integer instructions

• Load/stores

• Cache misses

• TLB misses

• Branch taken / not taken

• Branch mispredictions

• Useful derived metrics

IPC - instructions per cycle
Float point rate (Mflop/s)
Computation intensity
Instructions per load/store
Load/stores per cache miss
Cache hit rate
Loads per load miss
Stores per store miss
Loads per TLB miss
Branches mispredicted %

HPM: Hardware Counters Examples

Deep Computing

© 2008 IBM Corporation27 ORNL July 2008

Event Sets

 4 sets (0-3); ~1000 events

 Information for

– Time

– FPU

– L3 memory

– Processing Unit

– Tree network

– Torus network

Deep Computing

© 2008 IBM Corporation28 ORNL July 2008

Functions

 hpmInit(taskID, progName) / f_hpminit(taskID, progName)

– taskID is an integer value indicating the node ID.

– progName is a string with the program name.

 hpmStart(instID, label) / f_hpmstart(instID, label)

– instID is the instrumented section ID. It should be > 0 and <= 100
(can be overridden)

– Label is a string containing a label, which is displayed by PeekPerf.

 hpmStop(instID) / f_hpmstop(instID)

– For each call to hpmStart, there should be a corresponding call to
hpmStop with matching instID

 hpmTerminate(taskID) / f_hpmterminate(taskID)

– This function will generate the output. If the program exits without
calling hpmTerminate, no performance information will be generated.

Deep Computing

© 2008 IBM Corporation29 ORNL July 2008

Use MPI
taskID with

MPI programs

LIBHPM

• Supports MPI (OpenMP, threads on
other PowerPC platforms)

• Multiple instrumentation points

• Nested sections

• Supports Fortran, C, C++

• Declaration:

– #include f_hpm.h

• Use:

 call f_hpminit(0, “prog”)

 call f_hpmstart(1, “work”)

 do

 call do_work()

 call f_hpmstart(22, “more work”)

– call compute_meaning_of_life()

 call f_hpmstop(22)

 end do

 call f_hpmstop(1)

 call f_hpmterminate(0)

Go in the source code and instrument different sections independently

Deep Computing

© 2008 IBM Corporation30 ORNL July 2008

HPM Data Visualization

Deep Computing

© 2008 IBM Corporation31 ORNL July 2008

HPM component

Plain Text File Output

libhpm v3.2.1 (IHPCT v2.2.0) summary

 ######## Resource Usage Statistics ########

 Total amount of time in user mode :
6.732208 seconds
 Total amount of time in system mode :
5.174914 seconds
 Maximum resident set size : 12184
Kbytes
 Average shared memory use in text segment :
17712 Kbytes*sec
 Average unshared memory use in data segment :
61598 Kbytes*sec
 Number of page faults without I/O activity : 13829
 Number of page faults with I/O activity : 0
 Number of times process was swapped out : 0
 Number of times file system performed INPUT : 0
 Number of times file system performed OUTPUT : 0
 Number of IPC messages sent : 0
 Number of IPC messages received : 0
 Number of signals delivered : 0
 Number of voluntary context switches : 233
 Number of involuntary context switches : 684

 ####### End of Resource Statistics ########

Instrumented section: 7 - Label: find_my_seed
 process: 274706, thread: 1
 file: is.c, lines: 412 <--> 441
 Context is process context.
 No parent for instrumented section.

 Inclusive timings and counter values:

 Execution time (wall clock time) : 0.000290516763925552 seconds
 Initialization time (wall clock time): 1.15633010864258e-05 seconds
 Overhead time (wall clock time) : 1.44504010677338e-05 seconds

 PM_FPU_1FLOP (FPU executed one flop instruction) : 1259
 PM_FPU_FMA (FPU executed multiply-add instruction) : 247
 PM_ST_REF_L1 (L1 D cache store references) : 20933
 PM_LD_REF_L1 (L1 D cache load references) : 38672
 PM_INST_CMPL (Instructions completed) : 157151
 PM_RUN_CYC (Run cycles) : 254222

 Utilization rate : 52.895 %
 MIPS : 540.936
 Instructions per load/store : 2.637
 Algebraic floating point operations : 0.002 M
 Algebraic flop rate (flops / WCT) : 6.034 Mflop/s
 Algebraic flops / user time : 11.408 Mflop/s
 FMA percentage : 28.180 %
 % of peak performance : 0.172 %

Deep Computing

© 2008 IBM Corporation32 ORNL July 2008

PomProf - “Standard” OpenMP Monitoring API?

• Problem:

– OpenMP (unlike MPI) does not define
standard monitoring interface (at SC06 they accepted a
proposal from SUN and others)

– OpenMP is defined mainly by directives/pragmas

• Solution:

– POMP: OpenMP Monitoring Interface

– Joint Development
• Forschungszentrum Jülich
• University of Oregon

– Presented at EWOMP’01, LACSI’01 and SC’01
• “The Journal of Supercomputing”, 23, Aug. 2002.

Deep Computing

© 2008 IBM Corporation33 ORNL July 2008

Profiling of OpenMP Applications: POMP

• Portable cross-platform/cross-language API to simplify the design and
implementation of OpenMP tools

• POMP was motivated by the MPI profiling interface (PMPI)

– PMPI allows selective replacement of MPI routines at link time

– Used by most MPI performance tools (including MPI Profiler/Tracer)

User Program

Call MPI_Bcast

Call MPI_Send

MPI Library

MPI_Bcast

PMPI_Send

MPI_Send

MPI Library

MPI_Bcast

PMPI_Send

MPI_Send

Profiling Library

MPI_Send

Deep Computing

© 2008 IBM Corporation34 ORNL July 2008

POMP Proposal

• Three groups of events

– OpenMP constructs and directives/pragmas
• Enter/Exit around each OpenMP construct

– Begin/End around associated body

• Special case for parallel loops:
– ChunkBegin/End, IterBegin/End, or IterEvent instead of Begin/End

• “Single” events for small constructs like atomic or flush

– OpenMP API calls
• Enter/Exit events around omp_set_*_lock() functions
• “single” events for all API functions

– User functions and regions

• Allows application programmers to specify and control
amount of instrumentation

Deep Computing

© 2008 IBM Corporation35 ORNL July 2008

 1: int main() {
 2: int id;
 3:
 4: #pragma omp parallel private(id)
 5: {
 6: id = omp_get_thread_num();
 7: printf("hello from %d\n", id);
 8: }
 9: }

Example: POMP Instrumentation
 1: int main() {
 2: int id;

 3:

 4: #pragma omp parallel private(id)
 5: {

 6: id = omp_get_thread_num();
 7: printf("hello from %d\n", id);

 8: }

 9: }

*** POMP_Init();

*** POMP_Finalize();

*** { POMP_handle_t pomp_hd1 = 0;
*** int32 pomp_tid = omp_get_thread_num();

*** int32 pomp_tid = omp_get_thread_num();

*** }

*** POMP_Parallel_enter(&pomp_hd1, pomp_tid, -1, 1,
*** "49*type=pregion*file=demo.c*slines=4,4*elines=8,8**");

*** POMP_Parallel_begin(pomp_hd1, pomp_tid);

*** POMP_Parallel_end(pomp_hd1, pomp_tid);

*** POMP_Parallel_exit(pomp_hd1, pomp_tid);

Deep Computing

© 2008 IBM Corporation36 ORNL July 2008

POMP Profiler (PompProf)

Generates a detailed profile describing overheads and time
spent by each thread in three key regions of the parallel
application:

– Parallel regions

– OpenMP loops inside a parallel region

– User defined functions

–

• Profile data is presented in the form of an XML file that can
be visualized with PeekPerf

Deep Computing

© 2008 IBM Corporation37 ORNL July 2008

Deep Computing

© 2008 IBM Corporation38 ORNL July 2008

Modular I/O (MIO)

 Addresses the need of application-level optimization for I/O.

 Analyze and tune I/O at the application level

– For example, when an application exhibits the I/O pattern of
sequential reading of large files

– MIO

• Detects the behavior
• Invokes its asynchronous prefetching module to prefetch user data.

 Source code traceback

 Future capability for dynamic I/O instrumentation

Deep Computing

© 2008 IBM Corporation39 ORNL July 2008

Modular I/O Performance Tool (MIO)

• I/O Analysis

– Trace module

– Summary of File I/O Activity + Binary Events File

– Low CPU overhead

• I/O Performance Enhancement Library

– Prefetch module (optimizes asynchronous prefetch and write-
behind)

– System Buffer Bypass capability

– User controlled pages (size and number)

Deep Computing

© 2008 IBM Corporation40 ORNL July 2008

Performance Visualization

reads
writes

JFS performance

4500 15500

vmtune -p20 -P80 -f120 -F128 -r2 -R8

time (seconds)

fil
e

po
si

tio
n

 (
 b

yt
es

)

Deep Computing

© 2008 IBM Corporation41 ORNL July 2008

Eclipse Integration - Instrumentation

Deep Computing

© 2008 IBM Corporation42 ORNL July 2008

Performance Data Visualization

Deep Computing

© 2008 IBM Corporation43 ORNL July 2008

MPI Trace Visualization

Deep Computing

© 2008 IBM Corporation44 ORNL July 2008

• The IBM HPC Toolkit provides an integrated framework for
performance analysis

• Support iterative analysis and automation of the performance
tuning process

• The standardized software layers make it easy to plug in new
performance analysis tools

• Operates on the binary and yet provide reports in terms of
source-level symbols

• Provides multiple layers that the user can exploit (from low-
level instrumentations to high-level performance analysis)

• Full source code traceback capability

• Dynamically activate/deactivate data collection and change
what information to collect

• IBM Redbook: IBM System Blue Gene Solution: High
Performance Computing Toolkit for Blue Gene/P

Summary Remarks

