
Deep Computing

© 2008 IBM Corporation

The IBM High Performance Computing Toolkit

Advanced Computing Technology Center
http://www.research.ibm.com/actc
/usr/lpp/ppe.hpct/

Rajiv Bendale bendale@us.ibm.com
Jerrold Heyman jheyman@us.ibm.com
Kirk E. Jordan kjordan@us.ibm.com
Brian Smith smithbr@us.ibm.com
Robert E. Walkup walkup@us.ibm.com

http://www.research.ibm.com/actc
mailto:bendale@us.ibm.com
mailto:jheyman@us.ibm.com
mailto:kjordan@us.ibm.com
mailto:walkup@us.ibm.com

Deep Computing

© 2008 IBM Corporation2 ORNL July 2008

Outline

 Various Tools for Improved Performance

 Performance Decision Tree

 IBM HPCToolkit

 Remarks

Deep Computing

© 2008 IBM Corporation

Performance

Compilers
Libraries
Tools
Running

Deep Computing

© 2008 IBM Corporation4 ORNL July 2008

HPC Tools Available for HPC

 XL Compilers
 Externals preserved
 New options to optimize for specific

Blue Gene functions

 LoadLeveler
 Same externals for job submission

and system query functions
 Backfill scheduling to achieve

maximum system utilization

 GPFS
 Provides high performance file

access, as in current pSeries and
xSeries clusters

 Runs on IO nodes and disk servers

 ESSL/MASSV
 Optimization library and intrinsics for

better application performance
 Serial Static Library supporting 32-bit

applications
 Callable from FORTRAN, C, and C+

+

 TotalView Technologies TotalView

– Parallel Debugger

 Lustre File System

– Enablement underway at LLNL

 FFT Library

– FFTW Tuned functions by TU-Vienna

 Performance Tools

– Total View

– HPC Toolkit

– Paraver

– Kojak

IBM Software Stack Other Software

Deep Computing

© 2008 IBM Corporation5 ORNL July 2008

Performance Decision Tree

Total Performance

Computation Communication

Xprofiler HPM

Routines/Source Summary/Blocks

Compiler

Source Listing

MP_Profiler

Summary/Events

I/O

MIO Library

Deep Computing

© 2008 IBM Corporation6 ORNL July 2008

IBM High Performance Computing Toolkit - What is it?

• IBM long-term goal:

• An automatic performance tuning framework

• Assist users to identify performance problems

• A common application performance analysis environment across all HPC
platforms

• Look at all aspects of performance (communication, memory, processor, I/O,
etc) from within a single interface

• Where we are: one consolidated package

• One consolidate package (Blue Gene, AIX, Linux/Power)

• Operate on the binary and yet provide reports in terms of source-level
symbols

• Dynamically activate/deactivate data collection and change what information
to collect

• One common visualization GUI

Deep Computing

© 2008 IBM Corporation7 ORNL July 2008

IBM High Performance Computing Toolkit

 MPI performance: MPI Profiler/Tracer

 CPU performance: Xprofiler, HPM

 Threading performance: OpenMP profiling

 I/O performance: I/O profiling

 Visualization and analysis: PeekPerf

HPMMP_Profiler/MP_Tracer MIO

PeekPerf

Xprofiler

Deep Computing

© 2008 IBM Corporation8 ORNL July 2008

Structure of the HPC toolkit

pSigma

Binary Application

PeekPerf GUI

Communication Profiler

CPU Profiler

Memory Profiler

Shared-Memory Profiler I/O Profiler

Visualization

Query

Analysis

Instrumented Binary

execution

Binary instrumentation

Deep Computing

© 2008 IBM Corporation9 ORNL July 2008

Instrumentation

Visualization

Analysis

PeekPerf: Graphical Instrumentation, Visualization and Analysis

Action Point Binary

Instrumentation

Symbolic Binary

Instrumentation

Action Point
List inst

Runtime
lib

Visualization

XMLSymb.
Descr.

LibnLib1

a.outsrc

Deep Computing

© 2008 IBM Corporation10 ORNL July 2008

Message-Passing Performance
MPI Profiler/Tracer

– Implements wrappers around MPI calls using the PMPI interface
• start timer
• call pmpi equivalent function
• stop timer

– Captures MPI calls with source code traceback

– No changes to source code, but MUST compile with -g
– Does not synchronize MPI calls
– Compile with –g and link with libmpitrace.a
– Generate XML files for peekperf

MPI Tracer

– Captures “timestamped” data for MPI calls with source
traceback

– Provides a color-coded trace of execution

– Very useful to identify load-balancing issues

Deep Computing

© 2008 IBM Corporation11 ORNL July 2008

MPI Profiler Output

Deep Computing

© 2008 IBM Corporation12 ORNL July 2008

MPI Tracer output

Deep Computing

© 2008 IBM Corporation13 ORNL July 2008

MPI Message Size Distribution

9E-0710485761M ... 4M1 (B)MPI_Isend

1.7E-06786432256K ... 1M2 (A)MPI_Isend

1.7E-0619660864K ... 256K2 (9)MPI_Isend

1.3E-064915216K ... 64K2 (8)MPI_Isend

1.3E-06122884K ... 16K2 (7)MPI_Isend

1.3E-0630721K ... 4K2 (6)MPI_Isend

1.3E-06768257 ... 1K2 (5)MPI_Isend

1.3E-0619265 ... 2562 (4)MPI_Isend

1.3E-064817 ... 642 (3)MPI_Isend

1.4E-06125 ... 162 (2)MPI_Isend

0.00000630 ... 42 (1)MPI_Isend

1E-0700 ... 41 (1)MPI_Comm_rank

1E-0700 ... 41 (1)MPI_Comm_size

Walltime#Bytes
Message

Size#CallsMPI Function

7.8E-0600 ... 45 (1)MPI_Barrier

1.98E-0500 ... 421 (1)MPI_Waitall

0.00051710485761M ... 4M1 (B)MPI_Irecv

0.00039786432256K ... 1M2 (A)MPI_Irecv

9.98E-0519660864K ... 256K2 (9)MPI_Irecv

2.23E-054915216K ... 64K2 (8)MPI_Irecv

7.1E-06122884K ... 16K2 (7)MPI_Irecv

3.4E-0630721K ... 4K2 (6)MPI_Irecv

2.6E-06768257 ... 1K2 (5)MPI_Irecv

2.4E-0619265 ... 2562 (4)MPI_Irecv

1.5E-064817 ... 642 (3)MPI_Irecv

1.4E-06125 ... 162 (2)MPI_Irecv

4.7E-0630 ... 42 (1)MPI_Irecv

Walltime#BytesMessage Size#CallsMPI Function

Deep Computing

© 2008 IBM Corporation14 ORNL July 2008

Xprofiler

 CPU profiling tool similar to gprof

 Can be used to profile both serial and parallel applications

 Use procedure-profiling information to construct a graphical display of the
functions within an application

 Provide quick access to the profiled data and helps users identify functions
that are the most CPU-intensive

 Based on sampling (support from both compiler and kernel)

 Charge execution time to source lines and show disassembly code

Deep Computing

© 2008 IBM Corporation15 ORNL July 2008

CPU Profiling

 Compile the program with -pg

 Run the program

 gmon.out file is generated (MPI applications
generate gmon.out.1, …, gmon.out.n)

 Run Xprofiler component

Deep Computing

© 2008 IBM Corporation16 ORNL July 2008

Xprofiler - Initial View

Clustered
functions

Library
calls

Deep Computing

© 2008 IBM Corporation17 ORNL July 2008

Xprofiler - Unclustering Functions

on “Filter” menu

on “Filter” menu
select “Uncluster
 Functions”

Deep Computing

© 2008 IBM Corporation18 ORNL July 2008

Xprofiler - Full View - Application and Library Calls

Deep Computing

© 2008 IBM Corporation19 ORNL July 2008

Xprofiler - Hide Lib Calls Menu

Now select
“Hide All

Library Calls”

Can also filter by:
 Function Names,
 CPU Time,
 Call Counts

Deep Computing

© 2008 IBM Corporation20 ORNL July 2008

Xprofiler - Application View

• Width of a bar:
time including
called routines

• Height of a bar:
time excluding
called routines

• Call arrows
labeled with
number of calls

• Overview window
for easy
navigation
(View 
Overview)

Deep Computing

© 2008 IBM Corporation21 ORNL July 2008

Xprofiler: Zoom In

Deep Computing

© 2008 IBM Corporation22 ORNL July 2008

Xprofiler: Flat Profile

• Menu Report provides usual gprof reports plus some extra ones

– Flat
Profile

– Call
Graph
Profile

– Function
Index

– Function
Call
Summary

– Library
Statistics

Deep Computing

© 2008 IBM Corporation23 ORNL July 2008

Xprofiler: Source Code Window

• Source code
window displays
source code
with time profile
(in ticks=0.01 sec)

• Access

– Select function
in main display

–  context menu

– Select function
in flat profile

–  Code Display

–  Show Source
 Code

Deep Computing

© 2008 IBM Corporation24 ORNL July 2008

Xprofiler - Disassembler Code

Deep Computing

© 2008 IBM Corporation25 ORNL July 2008

Xprofiler: Tips and Hints
• Simplest when gmon.out.*, executable, and source code are in one directory

– Select “Set File Search Path” on “File” menu to set source
directory when source, and executable are not in the same
directory

– Can use -qfullpath to encode the path of the source files into the
binary

• By default, call tree in main display is “clustered”

– Menu Filter  Uncluster Functions

– Menu Filter  Hide All Library Calls

• Libraries must match across systems!

– on measurement nodes

– on workstation used for display!

• Must sample realistic problem (sampling rate is 1/100 sec)

Deep Computing

© 2008 IBM Corporation26 ORNL July 2008

HPM: What Are Performance Counters
• Extra logic inserted in the

processor to count specific
events

• Updated at every cycle

• Strengths:

– Non-intrusive

– Accurate

– Low overhead

• Weaknesses:

– Specific for each
processor

– Access is not well
documented

– Lack of standard and
documentation on
what is counted

• Cycles

• Instructions

• Floating point instructions

• Integer instructions

• Load/stores

• Cache misses

• TLB misses

• Branch taken / not taken

• Branch mispredictions

• Useful derived metrics

IPC - instructions per cycle
Float point rate (Mflop/s)
Computation intensity
Instructions per load/store
Load/stores per cache miss
Cache hit rate
Loads per load miss
Stores per store miss
Loads per TLB miss
Branches mispredicted %

HPM: Hardware Counters Examples

Deep Computing

© 2008 IBM Corporation27 ORNL July 2008

Event Sets

 4 sets (0-3); ~1000 events

 Information for

– Time

– FPU

– L3 memory

– Processing Unit

– Tree network

– Torus network

Deep Computing

© 2008 IBM Corporation28 ORNL July 2008

Functions

 hpmInit(taskID, progName) / f_hpminit(taskID, progName)

– taskID is an integer value indicating the node ID.

– progName is a string with the program name.

 hpmStart(instID, label) / f_hpmstart(instID, label)

– instID is the instrumented section ID. It should be > 0 and <= 100
(can be overridden)

– Label is a string containing a label, which is displayed by PeekPerf.

 hpmStop(instID) / f_hpmstop(instID)

– For each call to hpmStart, there should be a corresponding call to
hpmStop with matching instID

 hpmTerminate(taskID) / f_hpmterminate(taskID)

– This function will generate the output. If the program exits without
calling hpmTerminate, no performance information will be generated.

Deep Computing

© 2008 IBM Corporation29 ORNL July 2008

Use MPI
taskID with

MPI programs

LIBHPM

• Supports MPI (OpenMP, threads on
other PowerPC platforms)

• Multiple instrumentation points

• Nested sections

• Supports Fortran, C, C++

• Declaration:

– #include f_hpm.h

• Use:

 call f_hpminit(0, “prog”)

 call f_hpmstart(1, “work”)

 do

 call do_work()

 call f_hpmstart(22, “more work”)

– call compute_meaning_of_life()

 call f_hpmstop(22)

 end do

 call f_hpmstop(1)

 call f_hpmterminate(0)

Go in the source code and instrument different sections independently

Deep Computing

© 2008 IBM Corporation30 ORNL July 2008

HPM Data Visualization

Deep Computing

© 2008 IBM Corporation31 ORNL July 2008

HPM component

Plain Text File Output

libhpm v3.2.1 (IHPCT v2.2.0) summary

 ######## Resource Usage Statistics ########

 Total amount of time in user mode :
6.732208 seconds
 Total amount of time in system mode :
5.174914 seconds
 Maximum resident set size : 12184
Kbytes
 Average shared memory use in text segment :
17712 Kbytes*sec
 Average unshared memory use in data segment :
61598 Kbytes*sec
 Number of page faults without I/O activity : 13829
 Number of page faults with I/O activity : 0
 Number of times process was swapped out : 0
 Number of times file system performed INPUT : 0
 Number of times file system performed OUTPUT : 0
 Number of IPC messages sent : 0
 Number of IPC messages received : 0
 Number of signals delivered : 0
 Number of voluntary context switches : 233
 Number of involuntary context switches : 684

 ####### End of Resource Statistics ########

Instrumented section: 7 - Label: find_my_seed
 process: 274706, thread: 1
 file: is.c, lines: 412 <--> 441
 Context is process context.
 No parent for instrumented section.

 Inclusive timings and counter values:

 Execution time (wall clock time) : 0.000290516763925552 seconds
 Initialization time (wall clock time): 1.15633010864258e-05 seconds
 Overhead time (wall clock time) : 1.44504010677338e-05 seconds

 PM_FPU_1FLOP (FPU executed one flop instruction) : 1259
 PM_FPU_FMA (FPU executed multiply-add instruction) : 247
 PM_ST_REF_L1 (L1 D cache store references) : 20933
 PM_LD_REF_L1 (L1 D cache load references) : 38672
 PM_INST_CMPL (Instructions completed) : 157151
 PM_RUN_CYC (Run cycles) : 254222

 Utilization rate : 52.895 %
 MIPS : 540.936
 Instructions per load/store : 2.637
 Algebraic floating point operations : 0.002 M
 Algebraic flop rate (flops / WCT) : 6.034 Mflop/s
 Algebraic flops / user time : 11.408 Mflop/s
 FMA percentage : 28.180 %
 % of peak performance : 0.172 %

Deep Computing

© 2008 IBM Corporation32 ORNL July 2008

PomProf - “Standard” OpenMP Monitoring API?

• Problem:

– OpenMP (unlike MPI) does not define
standard monitoring interface (at SC06 they accepted a
proposal from SUN and others)

– OpenMP is defined mainly by directives/pragmas

• Solution:

– POMP: OpenMP Monitoring Interface

– Joint Development
• Forschungszentrum Jülich
• University of Oregon

– Presented at EWOMP’01, LACSI’01 and SC’01
• “The Journal of Supercomputing”, 23, Aug. 2002.

Deep Computing

© 2008 IBM Corporation33 ORNL July 2008

Profiling of OpenMP Applications: POMP

• Portable cross-platform/cross-language API to simplify the design and
implementation of OpenMP tools

• POMP was motivated by the MPI profiling interface (PMPI)

– PMPI allows selective replacement of MPI routines at link time

– Used by most MPI performance tools (including MPI Profiler/Tracer)

User Program

Call MPI_Bcast

Call MPI_Send

MPI Library

MPI_Bcast

PMPI_Send

MPI_Send

MPI Library

MPI_Bcast

PMPI_Send

MPI_Send

Profiling Library

MPI_Send

Deep Computing

© 2008 IBM Corporation34 ORNL July 2008

POMP Proposal

• Three groups of events

– OpenMP constructs and directives/pragmas
• Enter/Exit around each OpenMP construct

– Begin/End around associated body

• Special case for parallel loops:
– ChunkBegin/End, IterBegin/End, or IterEvent instead of Begin/End

• “Single” events for small constructs like atomic or flush

– OpenMP API calls
• Enter/Exit events around omp_set_*_lock() functions
• “single” events for all API functions

– User functions and regions

• Allows application programmers to specify and control
amount of instrumentation

Deep Computing

© 2008 IBM Corporation35 ORNL July 2008

 1: int main() {
 2: int id;
 3:
 4: #pragma omp parallel private(id)
 5: {
 6: id = omp_get_thread_num();
 7: printf("hello from %d\n", id);
 8: }
 9: }

Example: POMP Instrumentation
 1: int main() {
 2: int id;

 3:

 4: #pragma omp parallel private(id)
 5: {

 6: id = omp_get_thread_num();
 7: printf("hello from %d\n", id);

 8: }

 9: }

*** POMP_Init();

*** POMP_Finalize();

*** { POMP_handle_t pomp_hd1 = 0;
*** int32 pomp_tid = omp_get_thread_num();

*** int32 pomp_tid = omp_get_thread_num();

*** }

*** POMP_Parallel_enter(&pomp_hd1, pomp_tid, -1, 1,
*** "49*type=pregion*file=demo.c*slines=4,4*elines=8,8**");

*** POMP_Parallel_begin(pomp_hd1, pomp_tid);

*** POMP_Parallel_end(pomp_hd1, pomp_tid);

*** POMP_Parallel_exit(pomp_hd1, pomp_tid);

Deep Computing

© 2008 IBM Corporation36 ORNL July 2008

POMP Profiler (PompProf)

Generates a detailed profile describing overheads and time
spent by each thread in three key regions of the parallel
application:

– Parallel regions

– OpenMP loops inside a parallel region

– User defined functions

–

• Profile data is presented in the form of an XML file that can
be visualized with PeekPerf

Deep Computing

© 2008 IBM Corporation37 ORNL July 2008

Deep Computing

© 2008 IBM Corporation38 ORNL July 2008

Modular I/O (MIO)

 Addresses the need of application-level optimization for I/O.

 Analyze and tune I/O at the application level

– For example, when an application exhibits the I/O pattern of
sequential reading of large files

– MIO

• Detects the behavior
• Invokes its asynchronous prefetching module to prefetch user data.

 Source code traceback

 Future capability for dynamic I/O instrumentation

Deep Computing

© 2008 IBM Corporation39 ORNL July 2008

Modular I/O Performance Tool (MIO)

• I/O Analysis

– Trace module

– Summary of File I/O Activity + Binary Events File

– Low CPU overhead

• I/O Performance Enhancement Library

– Prefetch module (optimizes asynchronous prefetch and write-
behind)

– System Buffer Bypass capability

– User controlled pages (size and number)

Deep Computing

© 2008 IBM Corporation40 ORNL July 2008

Performance Visualization

reads
writes

JFS performance

4500 15500

vmtune -p20 -P80 -f120 -F128 -r2 -R8

time (seconds)

fil
e

po
si

tio
n

 (
 b

yt
es

)

Deep Computing

© 2008 IBM Corporation41 ORNL July 2008

Eclipse Integration - Instrumentation

Deep Computing

© 2008 IBM Corporation42 ORNL July 2008

Performance Data Visualization

Deep Computing

© 2008 IBM Corporation43 ORNL July 2008

MPI Trace Visualization

Deep Computing

© 2008 IBM Corporation44 ORNL July 2008

• The IBM HPC Toolkit provides an integrated framework for
performance analysis

• Support iterative analysis and automation of the performance
tuning process

• The standardized software layers make it easy to plug in new
performance analysis tools

• Operates on the binary and yet provide reports in terms of
source-level symbols

• Provides multiple layers that the user can exploit (from low-
level instrumentations to high-level performance analysis)

• Full source code traceback capability

• Dynamically activate/deactivate data collection and change
what information to collect

• IBM Redbook: IBM System Blue Gene Solution: High
Performance Computing Toolkit for Blue Gene/P

Summary Remarks

