
Deep Computing

© 2007 IBM Corporation

Introduction to MPI Workshop
February 23-26 Part II – Review from November

Kirk E Jordan
Emerging Solutions Executive

Computational Science Center 
T.J. Watson Research Center

kjordan@us.ibm.com

mailto:kjordan@us.ibm.com


Deep Computing

© 2007 IBM Corporation2  MPI wkshp     kjordan@us.ibm.com 04/29/09

Outline for Part 1- review (Goal – get basic background)

 Quick review of characteristics of the hardware

 Overview Discussion of Parallel Programming

 Quick review of compilers – mpCC and mpxlf

 User Environment – setup/site dependent – SciNet 
staff provide

 Compile and Run/Execute a code

 Summary 



Deep Computing

© 2007 IBM Corporation3  MPI wkshp     kjordan@us.ibm.com 04/29/09

Solution Overview & Segments

30k
Cores

300
TFlops
Peak

3.3k
Cores

60
TFlops
Peak

5PB
Disk

Highest
Density

2.4MW
2.5k sqft

Datacenter

1.16
PUE



4 © 2005 IBM Corporation

Hardware Overview

• Core:

• Processors:

• Nodes:

• Clusters:



5
© 2007 IBM Corporation

IBM Systems

IBM System p

p575
POWER6



6
© 2007 IBM Corporation

IBM Systems

IBM System p

POWER6: Simultaneous Multithreading

CRL

FX0

FX1

LSO

LS1

FP0

FP1

BRZ

Thread1 active

Thread0 active
No thread active

 Utilizes unused execution unit cycles
 Reuse of existing transistors vs. performance from additional transistors
 Presents symmetric multiprocessing (SMP) programming model to software
 Dispatch two threads per processor:  “It’s like doubling the number of processors.” 
 Net result: 

– Better performance
– Better processor utilization

Appears as four CPUs 
per chip to the

operating system  
(AIX V5.3 and Linux)

S
ys

te
m

 t
h

ro
u

g
h

p
u

t

POWER5
SMT

ST

POWER6 Enhanced Simultaneous Multithreading

POWER6
SMT

POWER5  Simultaneous Multithreading



Deep Computing

© 2007 IBM Corporation7  MPI wkshp     kjordan@us.ibm.com 04/29/09

 Ultra-high frequency dual-core chip

– 7-way superscalar, 2-way SMT core
•up to 5 instr. for one thread, up to 2 for 
other

– 8 execution units
•   2LS, 2FP, 2FX, 1BR, 1VMX

– 790M transistors, 341 mm2 die
– Up to 64-core SMP systems
– 2x4MB on-chip L2 – point of coherency
– On-chip L3 directory and controller
– Two memory controllers on-chip

 Technology

– CMOS 65nm lithography, SOI Cu

 High-speed elastic bus interface at 2:1 
freq

– I/Os: 1953 signal, 5399 Power/Gnd

 Full error checking and recovery

IFU

LSU

SDU

FXU

RU

VMX
FPU

L2
QUAD

L2
QUAD

L2
QUAD

L2
QUADIFU

LSU

SDU

FXU

RU

VMX
FPU

L2
CNTL

L2
CNTL

M
C

M
C

L3
CNTL

L3
CNTL

GXCFBC

Core0

Core1

POWER6 Chip Overview



Deep Computing

© 2007 IBM Corporation8  MPI wkshp     kjordan@us.ibm.com 04/29/09

 Processor Core 

 High single-thread performance with ultra high frequency (13FO4) and optimized pipelines

 Higher instruction throughput: improved SMT 

 Cache and Memory Subsystem

 Increase cache sizes and associativity

 Low memory latency and increased bandwidth

 System Architecture

 Fully integrated SMP fabric switch

–Predictive subspace snooping for significant reduction of snoop traffic
–Higher coherence bandwidth
–Excellent scalability

 Ultra-high frequency buses
–High bandwidth per pin 
–Enables lower cost packaging

 Power

 Minimize latch count

 Dynamic Power management

POWER6 Objectives



Deep Computing

© 2007 IBM Corporation9  MPI wkshp     kjordan@us.ibm.com 04/29/09

Power6 Highlights for performance

Single cycle FX to FX pipeline (two per core)

Six-cycle FP pipeline (two per core)

4MB L2 per core with 32MB L3 per chip extension

Comprehensive and flexible data prefetching 
system with 

High bandwidth capability from DIMMS and caches into 
the registers

VMX for 32bit calculations (fixed/single-precision)



10
© 2007 IBM Corporation

IBM Systems

IBM System p

POWER6 p575 Node  

N+1 Support
        1 - 4 Nodes  2 Line Cords
        5+ Nodes     4 Line Cords

POWER

YesIVE

Water / AirCooling

Dual GX Bus Adapters
Expansion 
Slots

Yes    Quantity: 1
PCI-X  ( 20 Slots )

Two Dual 10/100/1000 Ethernet
Optional Dual 10Gb

Yes

PCIe / PCI-X support
2  SAS DASD  ( 2.5”)

4 to 256 GB  ( Buffered )
L3: 32MB / chip

32-core node
1 – 14 nodes / rack ( 448 Cores )

4.7 GHz

Compute Node

Remote IO 
Drawers

Integrated 
Ethernet

Integrated SAS

Expansion
DASD / Bays
DDR2 Memory
Cache

Architecture

Linux
AIX V5.3



© 2005 IBM

Parallel Programming Basics

Comments



12 © 2007 IBM Corporation

Distributed Memory Program Architecture
Characteristics in early 1990s

• Clusters of single CPU systems were used to run MPI jobs

• Each system had its own OS

• Single compute process ran on each system

• Each process had its own address space

• Message passing between processes had to go through 
network

• MPI standard was initially developed to support this 
hardware scenario

   

Memory

CPU1

CPU2

CPU3

CPU0

proc1

proc2

proc3

proc0

Memory

Memory

Memory

Memory

CPU1

CPU2

CPU3

CPU0

proc1

proc2

proc3

proc0

Memory

Memory

Memory

Network



13 © 2007 IBM Corporation

Distributed Memory Program Architecture
New characteristics in late 1990s

• Large SMP systems started to be used to run MPI jobs

• It had  multiple CPU systems, Each system had its own OS

• Multiple compute processes ran within each system

• Each process had its own address space

• Message passing between the processes can go through memory 
instead of network

• Hardware vendors developed algorithm using shared memory to 
conduct message passing between the processes

• There’s no need to change MPI standard for this scenario

Memory
CPU1

CPU2

CPU3

CPU0

proc1

proc2

proc3

proc0

Just add the following into MPI job run script
export MP_SHARED_MEMORY=yes



14 © 2007 IBM Corporation

Distributed Memory System Architecture
New characteristics in 2000s

Memory

CPU0

CPU1

CPU2

CPUn

Memory

CPU0

CPU1

CPU2

CPUn

network
proc0

proc1

proc2

procn

proc0

proc1

proc2

procn

User shared-memory for message passing

• Cluster of SMP systems started to be used to run MPI jobs

• Each system has multiple CPUs, each system had its own OS
• Multiple compute processes ran on each system
• Each process had its own address space

• Message passing between the processes may go through both memory 
and network

• We can still use shared memory for message passing between processes 
within each SMP system

• There’s no need to change MPI standard for this scenario



15 © 2007 IBM Corporation

Comparison: Shared Memory Programming vs.
Distributed Memory Programming

• Shared memory 
Single process ID 
for all threads
• List threads 

• ps –om THREAD

• Distributed memory
• Each “task” has own process ID

• List tasks:

• ps

Process A

Thread 0

Thread 1

Process A

Task 0

Process B

Task 1

Process C

Task 2

Thread 2

As we saw in SMP chapter



16 © 2005 IBM Corporation

Parallel programming is essential to exploit 
modern computer architectures

• Single processor performance is reaching 
limits
• Moore’s Law still holds for transistor density, 
but…

• Frequency is limited by heat dissipation and signal 
cross talk

• Multi-core chips are everywhere...

• Advances in network technology allow for 
extreme parallelization



17 © 2005 IBM Corporation

Parallel choices

• MPI
• Good for tightly coupled computations

• Exploits all networks and all OS

• No limit on number of processors

• Significant programming effort; debugging can be difficult

• Master/Slave paradigm is supported, as well
• OpenMP

• Easy to get parallel speed up

• Limited to SMP (single node)

• Typically applied at loop level   limited scalability
• Automatic parallelization by compiler

• Need clean programming to get advantage
• pthreads = Posix threads

• Good for loosely coupled computations

• User controlled instantiation and locks
• fork/execl

• Standard Unix/Linux technique



18 © 2005 IBM Corporation

Parallel programming recommendations (for scientific 
and engineering computations)

• Use MPI if possible
• Performance on SMP node is almost always at least as good as 

OpenMP

• For 1-D, 2-D domain decomposition: schedule 2 months work

• For 3-D domain decomposition: schedule 3-4 months
• OpenMP can get good parallel speed up with minimal effort

• 1 week to get 70% efficient on 4 cores; 3 weeks to get 90%

• May get best performance with  –qsmp=omp instead of relying 
on compiler to auto-parallelize for older codes

• Can use -qsmp –qreport=smplist to get candidate loops.
• Hybrid is also possible

• OpenMP under MPI
• pthreads are fine.  Use them if it makes sense for your program.



19 © 2007 IBM Corporation

Terminology Review:  Processor vs. Node

• At the scale of microprocessors
• CPU = processor = core

• Chip = socket

• IBM started delivering dual-core POWER4 technology 
to the user community in 2001

• At the scale of a computer system
• Node = system = box

• Cluster = many nodes connected together via fast 
network

• A node runs a SINGLE image of operating system

Identical to what we said for SMP



20 © 2007 IBM Corporation

Terminology Review:  Thread vs. Process

• Thread:
• An independent flow of control, may operate within a 

process with other threads.

• An schedulable entity

• Has its own stack, thread-specific data, and own registers

• Set of pending and blocked signals
• Process

• Can not share memory directly

• Can not share file descriptors

• A process can own multiple threads 
• An OpenMP job is a process.  It creates and owns one or 

more SMP threads.  All the SMP threads share the same 
PID

• An MPI job is a set of concurrent processes (or tasks). 
Each process has its own PID and communicates with 
other processes via MPI calls

In addition to what we said for SMP



21 © 2007 IBM Corporation

Apply MPI Technology to Real World Problem 

• Multiple steps in applying MPI technology to 
solve a Sci&Eng problem
• 1. Divide workload to multiple processes (domain 
decomposition)

• 2. Execute your MPI program

• 3. Collect and process the output data
• Questions

• Which filesystem should I use for my input, scratch and 
output files? What do I do if global filesystem is not 
available (i.e. grid computing scenario)?

• How to map the MPI processes to available 
processors?  



22 © 2007 IBM Corporation

3 Steps in a Distributed Computing Job

• Step 1: Domain Decomposition (workload 
partition)
• To divide workload into N chunks, one for each MPI 
tasks

• Often carried out as a serial or SMP pre-processing 
job/  Example: FLUENT, PowerFLOW,STARCD

• Step 2: the MPI program 
• To performance computation

• Step 3: final result assembly
• Some code merge this into stage 2

• while others need to run a post-processing job to 
assemble output from each MPI tasks.  Example: 
LSDYNA.  LSDYNA also merged stage 1 and stage 2.



23 © 2007 IBM Corporation

Schematic Flow of an MPI Code
Program ParallelWork

start the program
Call MPI_Init(ierr)
read input
set up comp. parameters
…
DO i=1,imax
…
…
End do
…
serial work
…
DO i=1,imax
…
…
End do
…
serial work
…
DO i=1,imax
…
…
End do
…
Output
Call MPI_Finalize
End program ParallelWork

proc0 proc1 proc2 proc3
master slaves

MPI_Init

msg pasing: Input parameters

MPI Finalize

message passing

message passing

message passing



24 © 2007 IBM Corporation

Schematic Flow of an MPI Code
Program ParallelWork

start the program
Call MPI_Init(ierr)
read input
set up comp. parameters
…
DO i=1,imax
…
…
End do
…
serial work
…
DO i=1,imax
…
…
End do
…
serial work
…
DO i=1,imax
…
…
End do
…
Output
Call MPI_Finalize
End program ParallelWork

proc0 proc1 proc2 proc3
master slaves

MPI_Init

barrier if needed

msg pasing: Input parameters

MPI Finalize

message passing

message passing

message passing

barrier if needed

wait for msg, 
synchronization



25 © 2007 IBM Corporation

Review: Schematic Flow of an SMP Code
Program ParallelWork

start the program
read input
set up comp. parameters
initialize variable
…
DO i=1,imax
…
…
End do
…
serial work
…
DO i=1,imax
…
…
End do
…
serial work
…
DO i=1,imax
…
…
End do
…
Output

End program ParallelWork

th’d0 th’d0 th’d1 th’d2 th’d3

master slaves

fork

join (sync.)

spin/yield

join (sync.)

spin/yield

join (sync.)

spin/yield

gang sched



26 © 2005 IBM Corporation

MPI options

• IBM Parallel Environment
• POE

• Highly optimized for IBM processors, adapters, and 
networks

• Have to purchase license
• MPICH

• Uses TCP/IP protocol

• Free
• LAM MPI

• Free
• OpenMPI

• Free, but new…
• etc., etc.



27

Compilation Technology

IU Compiler Tutorial  |  September 11, 2006 © 2006 IBM Corporation

Software Group

IBM XL compiler architecture

IPA IPA 
ObjectsObjects

Other Other 
ObjectsObjects

System System 
LinkerLinker

Optimized Optimized 
ObjectsObjects

EXE

DLL
PartitionsPartitions

TOBEYTOBEY

TPOTPO

C FEC FE C++ FEC++ FE FORTRAN FORTRAN 
FEFE

Compile Step
Optimization LibrariesLibraries

PDF infoPDF info

Link Step
Optimization

Wcode+

Wcode

Wcode+

Instrumented
runs

Wcode
Wcode

Wcode

Wcode



Deep Computing

© 2007 IBM Corporation28  MPI wkshp     kjordan@us.ibm.com 04/29/09

Some Environment Hints

 If you get mpcc: 

– Command not found. or something similar, your PATH doesn't contain 
the location of the MPI commands. 

– You may need something like (for the MPICH implementation) 
setenv PATH /usr/local/mpi/lib/sun4/ch_p4:/usr/local/mpi/bin:$PATH 
rehash 
• Or something similar. 
• The exact path will depend on your MPI installation and the devices that you 

are using.
• The MPI standard does not specify how MPI programs are compiled or run; 

this is up to the implementation. The examples here are for the MPICH 
implementation. 

 If your program runs, but runs with only one processor, you may be 
accessing an mpexec for a different version of MPI. 

– Give the command 
which mpiexec 
• Make sure that the PATH given matches the one that cooresponds to the 

MPI implementation that you are using. 

http://www-unix.mcs.anl.gov/mpi/www/www1/mpicc.html
http://www-unix.mcs.anl.gov/mpi/www/www1/MPI.html
http://www-unix.mcs.anl.gov/mpi/www/www1/MPI.html
http://www-unix.mcs.anl.gov/mpi/www/www1/MPI.html
http://www-unix.mcs.anl.gov/mpi/www/www1/MPI.html
http://www-unix.mcs.anl.gov/mpi/www/www1/MPI.html
http://www-unix.mcs.anl.gov/mpi/www/www1/MPI.html


Deep Computing

© 2007 IBM Corporation29  MPI wkshp     kjordan@us.ibm.com 04/29/09

Overview of MPI Program Structure 

 MPI include file

• 
• 
• 

Initialize MPI environment

• 
• 
• 

Do work and make message passing calls

• 
• 
• 

Terminate MPI Environment



30 © 2007 IBM Corporation

Invoking the MPI Compiler

mpxlf90Fortran 90

mpCCC++

mpccC

mpxlf95Fortran 95

mpxlfFortran 77

CompilerLanguage



Deep Computing

© 2007 IBM Corporation31  MPI wkshp     kjordan@us.ibm.com 04/29/09

Need to compile, link and execute - 

 Compile & Link: 

– mpcc -o minim minim.c

– mpxlf –o minim minim.f

 Via Loadlever, submit for execution: 

– llsubmit minim.cmd

 Execution line: 

– mpiexec -n 5 -cwd `pwd` -exe minim.x



Deep Computing

© 2007 IBM Corporation32  MPI wkshp     kjordan@us.ibm.com 04/29/09

How to submit jobs at SciNet

 Submission process - Loadleveler

 Overview of queues

 Other environment setup



Deep Computing

© 2007 IBM Corporation33  MPI wkshp     kjordan@us.ibm.com 04/29/09

C Language  File  - minim.c /* 
===================================================
= 
   .              Minim:                              . 
   .              -----                               . 
   . MINIMAL program construction.                    . 
   . Functions used:                                  . 
   .                                                  . 
   .       MPI_Init                          . 
   .       MPI_Comm_size                     . 
   .       MPI_Comm_rank                     . 
   .       MPI_Finalize                      . 
      . This is a minimal program that starts up, does simple I/O and then quits, all to 
illustrate the . 
   . basic initializing and finalizing calls under 
MPI.                                             . 
      
===================================================
= */ 
#include <stdio.h> 
#include "mpi.h" 
main(int argc, char **argv) 
{ 
 int nnode;  /* Number of processor.     */ 
 int inode;  /* This specific processor. */ 
 MPI_Init(&argc, &argv); 
 MPI_Comm_size(MPI_COMM_WORLD, &nnode); 
 MPI_Comm_rank(MPI_COMM_WORLD, &inode); 
 /* Print only from node 0.  */ 
 if (inode == 0) { 
   printf(" Running program %s\n", argv[0]); 
   printf(" The total number of nodes is %d \n", nnode); 
        } 
 /* Print from all nodes. */ 
 printf(" Hello from node %d\n", inode); 
 MPI_Finalize();  /* Clean-up. */ 
}



Deep Computing

© 2007 IBM Corporation34  MPI wkshp     kjordan@us.ibm.com 04/29/09

Env Routines - C Language - simple.c 
    #include "mpi.h" 
    #include <stdio.h> 
    int main(argc,argv) 
    int argc; 
    char *argv[]; { 
    int    numtasks, rank, rc; 

    rc = MPI_Init(&argc,&argv); 

    if (rc != 0) { 
        printf ("Error starting MPI program. Terminating.\n"); 
        MPI_Abort(MPI_COMM_WORLD, rc); 
        } 

     MPI_Comm_size(MPI_COMM_WORLD,&numtasks); 
     MPI_Comm_rank(MPI_COMM_WORLD,&rank); 

     printf ("Number of tasks= %d My rank= %d\n", numtasks,rank); 
     /*******  do some work *******/ 

     MPI_Finalize(); 
     }



Deep Computing

© 2007 IBM Corporation35  MPI wkshp     kjordan@us.ibm.com 04/29/09

Env Routines - Fortran Language - simple.f 
      program simple 
      include 'mpif.h' 
      integer numtasks, rank, ierr, rc 

      call MPI_INIT(ierr) 

      if (ierr .ne. 0) then 
          print *,'Error starting MPI program. Terminating.' 
          call MPI_ABORT(MPI_COMM_WORLD, rc, ierr) 
      end if 
      call MPI_COMM_RANK(MPI_COMM_WORLD, rank, ierr) 
      call MPI_COMM_SIZE(MPI_COMM_WORLD, numtasks, ierr) 

      print *, 'Number of tasks=',numtasks,' My rank=',rank 
C ****** do some work ****** 

      call MPI_FINALIZE(ierr) 
      end



Deep Computing

© 2007 IBM Corporation36  MPI wkshp     kjordan@us.ibm.com 04/29/09

Summary

 Brief overview of system

 Comment on basics of parallel programming

 Compiling and linking a program –  to get started

– Minimum MPI program 

– Simple program

 Loadleveler – job scheduler



Deep Computing

© 2007 IBM Corporation37  MPI wkshp     kjordan@us.ibm.com 04/29/09

Note on Core files

 Core files are text files.  Look at the core file with a 
text editor, focus on the function call chain; feed 
the hex addresses to addr2line.

– addr2line -e your.x  hex_address

– tail -n 10 core.511 | addr2line -e your.x

 Use grep and word-count (wc) to examine large 
numbers of core files: 

– grep hex_address “core.*” | wc -l


