
Deep Computing

© 2007 IBM Corporation

Introduction to MPI Workshop
Nov 6-7, 2008 Part I

Kirk E Jordan
Emerging Solutions Executive
-----
Deep Computing
Systems & Technology Group
------
Computational Science Center 
T.J. Watson Research Center

kjordan@us.ibm.com

mailto:kjordan@us.ibm.com


Deep Computing

© 2007 IBM Corporation2  MPI wkshp     kjordan@us.ibm.com 04/29/09

Outline for Part 1 (Goal – get basic background)

 Some basic user information/background

 Characteristics of the hardware

 Software overview

 User Environment – setup/site dependent

 Run an application

 What is MPI?

 Getting Started

 Essential Management Routines

 Run an MPI Program

 Summary 



Deep Computing

© 2007 IBM Corporation3  MPI wkshp     kjordan@us.ibm.com 04/29/09

HPC Centre

Overview Systems
Integrated by design

Common Scheduler - Moab

GPC
iDataPlex

Common Management – xCAT 2.0

Global Storage Namespace - GPFS

TCS
P6-IH

Storage
DCS 9900*

*Storage was proposed in partnership with Datadirect Networks, with the intention of moving to an IBM branded solution if possible.



Deep Computing

© 2007 IBM Corporation4  MPI wkshp     kjordan@us.ibm.com 04/29/09

Solution Overview & Segments

30k
Cores

300
TFlops
Peak

3.3k
Cores

60
TFlops
Peak

5PB
Disk

Highest
Density

2.4MW
2.5k sqft

Datacenter

1.16
PUE



5 © 2005 IBM Corporation

Hardware Overview

• Core:

• Processors:

• Nodes:

• Clusters:



6
© 2007 IBM Corporation

IBM Systems

IBM System p

p575
POWER6



Deep Computing

© 2007 IBM Corporation7  MPI wkshp     kjordan@us.ibm.com 04/29/09

B
in

ary 
B

in
ary C

o
m

p
atib

ility

ServersServersPOWER3
POWER4

POWER4+

POWER2

POWER5

POWER : The Most Scaleable Architecture

Embedded
Embedded

PPC
401

PPC 
405GP

PPC 
440GP

PPC 
440GX

Desktop

Games
PPC 
603e

PPC 
750

PPC 
750CXe

PPC 
750FX

PPC 
750GX

PPC 
970FX



Deep Computing

© 2007 IBM Corporation8  MPI wkshp     kjordan@us.ibm.com 04/29/09

Autonomic Computing  Enhancements

2001

POWER4  
2007*

POWER6

65 nm

L2 caches

~5.0 
GHz 
Core

Advanced System
Features & Switch

Chip Multi Processing
 - Distributed Switch
 - Shared L2
Dynamic LPARs (16)

180 nm

1.3 GHz
Core

1.3 GHz
Core

Distributed Switch

Shared L2

2002-3

POWER4+

1.7 
GHz 
Core

1.7 
GHz 
Core

130 nm

Reduced size
Lower power
Larger L2
More LPARs (32)

Shared L2

Distributed 
Switch

2004

POWER5
2005-06

POWER5+

Simultaneous multi-threading
Sub-processor partitioning
Dynamic firmware updates
Enhanced scalability, parallelism
High throughput performance
Enhanced memory subsystem

90 nm

Shared L2

2.2 
GHz 
Core

2.2 
GHz 
Core

Distributed 
Switch

130 nm

1.9 
GHz
Core

1.9 
GHz 
Core

Distributed 
Switch

Shared L2

POWER Server Roadmap

**Planned to be offered by IBM.  All statements about IBM’s future direction and intent are subject to change or withdrawal without notice and represent goals and objectives only.

~5.0 
GHz 
Core

Ultra High Frequency
Very Large L2
Robust Error Recovery
High ST and HPC Perf
High throughput Perf
More LPARs (1024)
Enhanced memory
     subsystem



9
© 2007 IBM Corporation

IBM Systems

IBM System p

POWER6: Simultaneous Multithreading

CRL

FX0

FX1

LSO

LS1

FP0

FP1

BRZ

Thread1 active

Thread0 active
No thread active

 Utilizes unused execution unit cycles
 Reuse of existing transistors vs. performance from additional transistors
 Presents symmetric multiprocessing (SMP) programming model to software
 Dispatch two threads per processor:  “It’s like doubling the number of processors.” 
 Net result: 

– Better performance
– Better processor utilization

Appears as four CPUs 
per chip to the

operating system  
(AIX V5.3 and Linux)

S
ys

te
m

 t
h

ro
u

g
h

p
u

t

POWER5
SMT

ST

POWER6 Enhanced Simultaneous Multithreading

POWER6
SMT

POWER5  Simultaneous Multithreading



Deep Computing

© 2007 IBM Corporation10  MPI wkshp     kjordan@us.ibm.com 04/29/09

 Ultra-high frequency dual-core chip

– 7-way superscalar, 2-way SMT core
•up to 5 instr. for one thread, up to 2 for 
other

– 8 execution units
•   2LS, 2FP, 2FX, 1BR, 1VMX

– 790M transistors, 341 mm2 die
– Up to 64-core SMP systems
– 2x4MB on-chip L2 – point of coherency
– On-chip L3 directory and controller
– Two memory controllers on-chip

 Technology

– CMOS 65nm lithography, SOI Cu

 High-speed elastic bus interface at 2:1 
freq

– I/Os: 1953 signal, 5399 Power/Gnd

 Full error checking and recovery

IFU

LSU

SDU

FXU

RU

VMX
FPU

L2
QUAD

L2
QUAD

L2
QUAD

L2
QUADIFU

LSU

SDU

FXU

RU

VMX
FPU

L2
CNTL

L2
CNTL

M
C

M
C

L3
CNTL

L3
CNTL

GXCFBC

Core0

Core1

POWER6 Chip Overview



Deep Computing

© 2007 IBM Corporation11  MPI wkshp     kjordan@us.ibm.com 04/29/09

 Processor Core 

 High single-thread performance with ultra high frequency (13FO4) and optimized pipelines

 Higher instruction throughput: improved SMT 

 Cache and Memory Subsystem

 Increase cache sizes and associativity

 Low memory latency and increased bandwidth

 System Architecture

 Fully integrated SMP fabric switch

– Predictive subspace snooping for significant reduction of snoop traffic
– Higher coherence bandwidth
– Excellent scalability

 Ultra-high frequency buses
– High bandwidth per pin 
– Enables lower cost packaging

 Power

 Minimize latch count

 Dynamic Power management

POWER6 Objectives



Deep Computing

© 2007 IBM Corporation12  MPI wkshp     kjordan@us.ibm.com 04/29/09

HPC Performance

 Collectively, HPC emphasizes (almost) everything in the microarchitecture 

Latencies are usually the bottleneck (as opposed to lack of a resource)

Within the pipeline (recursive math)

From cache/memory – cache misses

From other processors – interventions

Trade-offs abound and everything matters (from each pipeline stage to the 
application, compiler, and developer)

 

SMT helps to fill in the holes



Deep Computing

© 2007 IBM Corporation13  MPI wkshp     kjordan@us.ibm.com 04/29/09

Power6 Highlights for performance

Single cycle FX to FX pipeline (two per core)

Six-cycle FP pipeline (two per core)

4MB L2 per core with 32MB L3 per chip extension

Comprehensive and flexible data prefetching 
system with 

High bandwidth capability from DIMMS and 
caches into the registers

VMX for 32bit calculations (fixed/single-precision)



Deep Computing

© 2007 IBM Corporation14  MPI wkshp     kjordan@us.ibm.com 04/29/09

SMT
Core 0

Memory 
Cntlr 0

Fabric
Switch

I/O 
Interface:
4B Read,
4B Write 

at 3:1 the pc 

On-Node Fabric Buses (3 pairs):
2B/bc or 8B/bc per unidirectional pair

Off-Node Fabric Buses (2 pairs):

4B/bc or 8B/bc per unidirectional pair  

Buses scale at 2:1 with core frequency

2 MB L2
Quad 0 
(Core0)

2 MB L2
Quad 1
(Core0)

SMT
Core 1

2 MB L2
Quad 0 
(Core 1)

I/O Ctlr

2 MB L2
Quad 2 
(Core 1)

2 MB L2
Quad 3 
(Core 1)

Memory 
Cntlr 1

L3 
Ctrl
Dir

L3 
Ctrl
Dir

I/O Cntlr

L2 
Ctrl
Dir

L2 
Ctrl
Dir

32 MB1

L3 
(2x16MB)

L2 reload: 32B/Pc

Memory  bus (1 of 2):

8B/bc Read (4x2B),

4B/bc Write (4x1B)

L3 buses:
16B/bc Read
16B/bc Write
(Split into two,
      8 and 8)

pc = processor clock
bc = bus clock
2 pc = 1 bc

Nova

Nova

Nova

Nova

Nova

Nova

Nova

Nova

Nova

Nova

Nova

Nova

Nova

Nova

Nova

Nova

(same as
MC0)

DRAM Memory: 
4 channels, 533 – 800MHz DIMMS
 DDR2 (4X DRAM frequency)

Total L2
on chip: 8MB

64KB L1D

64KB L1D

1May be a single 32MB L3 chip with 8B buses

POWER6 I/O: Speeds and Feeds



15
© 2007 IBM Corporation

IBM Systems

IBM System p

POWER6 p575 Node  

N+1 Support
        1 - 4 Nodes  2 Line Cords
        5+ Nodes     4 Line Cords

POWER

YesIVE

Water / AirCooling

Dual GX Bus Adapters
Expansion 
Slots

Yes    Quantity: 1
PCI-X  ( 20 Slots )

Two Dual 10/100/1000 Ethernet
Optional Dual 10Gb

Yes

PCIe / PCI-X support
2  SAS DASD  ( 2.5”)

4 to 256 GB  ( Buffered )
L3: 32MB / chip

32-core node
1 – 14 nodes / rack ( 448 Cores )

4.7 GHz

Compute Node

Remote IO 
Drawers

Integrated 
Ethernet

Integrated SAS

Expansion
DASD / Bays
DDR2 Memory
Cache

Architecture

Linux
AIX V5.3



16
© 2007 IBM Corporation

IBM Systems

IBM System p

Photo of p575 
Mechanical 

Model

POWER6 575 Water Cooled Node



17
© 2007 IBM Corporation

IBM Systems

IBM System p

Top View

 

   I/O Unit
(Lite or FF)

          PCI Riser
       (2 x PCIe   or 
1x PCIe, 1x PCI-X DDR2)

          PCI Riser
       (2 x PCIe   or 
1x PCIe, 1x PCI-X DDR2)

Dual 2 port 4x Host Channel Adapter
     (Displaces Lower PCI Slot)

Processor Unit
I/O Section

Air Moving Device
(Fans)

16x DCM
(p6 + L3)

32 x DIMM 
32 x DIMM 

Cold Plate

Dual 2 port 4x Host Channel Adapter
     (Displaces Lower PCI Slot)



18
© 2007 IBM Corporation

IBM Systems

IBM System p

P6 p575   Rear View…

Ethernet Support (IVE)
 Two Dual 10/100/1000
 Optional  Dual 10Gb

I/O
 PCIe    0 / 2 / 4  slots
PCI-X  0 / 2 slots
 Expansion slots
 Two GX++ slots

 SAS DASD
 Dual Drives: 73 or 146 GB

 IO Interconnect
 12X 
 Single IO Drawer



© 2005 IBM

Parallel Programming Basics

Comments



20 © 2007 IBM Corporation

Distributed Memory Program Architecture
Characteristics in early 1990s

• Clusters of single CPU systems were used to run MPI jobs

• Each system had its own OS

• Single compute process ran on each system

• Each process had its own address space

• Message passing between processes had to go through 
network

• MPI standard was initially developed to support this 
hardware scenario

   

Memory

CPU1

CPU2

CPU3

CPU0

proc1

proc2

proc3

proc0

Memory

Memory

Memory

Memory

CPU1

CPU2

CPU3

CPU0

proc1

proc2

proc3

proc0

Memory

Memory

Memory

Network



21 © 2007 IBM Corporation

Distributed Memory Program Architecture
New characteristics in late 1990s

• Large SMP systems started to be used to run MPI jobs

• It had  multiple CPU systems, Each system had its own OS

• Multiple compute processes ran within each system

• Each process had its own address space

• Message passing between the processes can go through memory 
instead of network

• Hardware vendors developed algorithm using shared memory to 
conduct message passing between the processes

• There’s no need to change MPI standard for this scenario

Memory
CPU1

CPU2

CPU3

CPU0

proc1

proc2

proc3

proc0

Just add the following into MPI job run script
export MP_SHARED_MEMORY=yes



22 © 2007 IBM Corporation

Distributed Memory System Architecture
New characteristics in 2000s

Memory

CPU0

CPU1

CPU2

CPUn

Memory

CPU0

CPU1

CPU2

CPUn

network
proc0

proc1

proc2

procn

proc0

proc1

proc2

procn

User shared-memory for message passing

• Cluster of SMP systems started to be used to run MPI jobs

• Each system has multiple CPUs, each system had its own OS

• Multiple compute processes ran on each system

• Each process had its own address space

• Message passing between the processes may go through both 
memory and network

• We can still use shared memory for message passing between 
processes within each SMP system

• There’s no need to change MPI standard for this scenario



23 © 2007 IBM Corporation

Comparison: Shared Memory Programming vs.
Distributed Memory Programming

• Shared memory 
Single process ID 
for all threads
• List threads 

• ps –om THREAD

• Distributed memory
• Each “task” has own process ID

• List tasks:

• ps

Process A

Thread 0

Thread 1

Process A

Task 0

Process B

Task 1

Process C

Task 2

Thread 2

As we saw in SMP chapter



24 © 2005 IBM Corporation

Parallel programming is essential to exploit 
modern computer architectures

• Single processor performance is reaching 
limits
• Moore’s Law still holds for transistor density, 
but…

• Frequency is limited by heat dissipation and signal 
cross talk

• Multi-core chips are everywhere...

• Advances in network technology allow for 
extreme parallelization



25 © 2005 IBM Corporation

Parallel choices

• MPI
• Good for tightly coupled computations

• Exploits all networks and all OS

• No limit on number of processors

• Significant programming effort; debugging can be difficult

• Master/Slave paradigm is supported, as well
• OpenMP

• Easy to get parallel speed up

• Limited to SMP (single node)

• Typically applied at loop level   limited scalability
• Automatic parallelization by compiler

• Need clean programming to get advantage
• pthreads = Posix threads

• Good for loosely coupled computations

• User controlled instantiation and locks
• fork/execl

• Standard Unix/Linux technique



26 © 2005 IBM Corporation

Parallel programming recommendations (for scientific 
and engineering computations)

• Use MPI if possible
• Performance on SMP node is almost always at least as good as 

OpenMP

• For 1-D, 2-D domain decomposition: schedule 2 months work

• For 3-D domain decomposition: schedule 3-4 months
• OpenMP can get good parallel speed up with minimal effort

• 1 week to get 70% efficient on 4 cores; 3 weeks to get 90%

• May get best performance with  –qsmp=omp instead of relying 
on compiler to auto-parallelize for older codes

• Can use -qsmp –qreport=smplist to get candidate loops.
• Hybrid is also possible

• OpenMP under MPI
• pthreads are fine.  Use them if it makes sense for your program.



27 © 2007 IBM Corporation

Terminology Review:  Processor vs. Node

• At the scale of microprocessors
• CPU = processor = core

• Chip = socket

• IBM started delivering dual-core POWER4 technology 
to the user community in 2001

• At the scale of a computer system
• Node = system = box

• Cluster = many nodes connected together via fast 
network

• A node runs a SINGLE image of operating system

Identical to what we said for SMP



28 © 2007 IBM Corporation

Terminology Review:  Thread vs. Process

• Thread:
• An independent flow of control, may operate within a 

process with other threads.

• An schedulable entity

• Has its own stack, thread-specific data, and own registers

• Set of pending and blocked signals
• Process

• Can not share memory directly

• Can not share file descriptors

• A process can own multiple threads 
• An OpenMP job is a process.  It creates and owns one or 

more SMP threads.  All the SMP threads share the same 
PID

• An MPI job is a set of concurrent processes (or tasks). 
Each process has its own PID and communicates with 
other processes via MPI calls

In addition to what we said for SMP



29 © 2007 IBM Corporation

Apply MPI Technology to Real World Problem 

• Multiple steps in applying MPI technology to 
solve a Sci&Eng problem
• 1. Divide workload to multiple processes (domain 
decomposition)

• 2. Execute your MPI program

• 3. Collect and process the output data
• Questions

• Which filesystem should I use for my input, scratch and 
output files? What do I do if global filesystem is not 
available (i.e. grid computing scenario)?

• How to map the MPI processes to available 
processors?  



30 © 2007 IBM Corporation

3 Steps in a Distributed Computing Job

• Step 1: Domain Decomposition (workload 
partition)
• To divide workload into N chunks, one for each MPI 
tasks

• Often carried out as a serial or SMP pre-processing 
job/  Example: FLENT, PowerFLOW,STARCD

• Step 2: the MPI program 
• To performance computation

• Step 3: final result assembly
• Some code merge this into stage 2

• while others need to run a post-processing job to 
assemble output from each MPI tasks.  Example: 
LSDYNA.  LSDYNA also merged stage 1 and stage 2.



31 © 2007 IBM Corporation

Schematic Flow of an MPI Code
Program ParallelWork

start the program
Call MPI_Init(ierr)
read input
set up comp. parameters
…
DO i=1,imax
…
…
End do
…
serial work
…
DO i=1,imax
…
…
End do
…
serial work
…
DO i=1,imax
…
…
End do
…
Output
Call MPI_Finalize
End program ParallelWork

proc0 proc1 proc2 proc3
master slaves

MPI_Init

msg pasing: Input parameters

MPI Finalize

message passing

message passing

message passing



32 © 2007 IBM Corporation

Schematic Flow of an MPI Code
Program ParallelWork

start the program
Call MPI_Init(ierr)
read input
set up comp. parameters
…
DO i=1,imax
…
…
End do
…
serial work
…
DO i=1,imax
…
…
End do
…
serial work
…
DO i=1,imax
…
…
End do
…
Output
Call MPI_Finalize
End program ParallelWork

proc0 proc1 proc2 proc3
master slaves

MPI_Init

barrier if needed

msg pasing: Input parameters

MPI Finalize

message passing

message passing

message passing

barrier if needed

wait for msg, 
synchronization



33 © 2007 IBM Corporation

Review: Schematic Flow of an SMP Code
Program ParallelWork

start the program
read input
set up comp. parameters
initialize variable
…
DO i=1,imax
…
…
End do
…
serial work
…
DO i=1,imax
…
…
End do
…
serial work
…
DO i=1,imax
…
…
End do
…
Output

End program ParallelWork

th’d0 th’d0 th’d1 th’d2 th’d3

master slaves

fork

join (sync.)

spin/yield

join (sync.)

spin/yield

join (sync.)

spin/yield

gang sched



34 © 2005 IBM Corporation

MPI options

• IBM Parallel Environment
• POE

• Highly optimized for IBM processors, adapters, and 
networks

• Have to purchase license
• MPICH

• Uses TCP/IP protocol

• Free
• LAM MPI

• Free
• OpenMPI

• Free, but new…
• etc., etc.



© 2005 IBM

Software Environment
(brief Interlude - go to SW Env 02)

Some Useful System 
Commands



36

Compilation Technology

IU Compiler Tutorial  |  September 11, 2006 © 2006 IBM Corporation

Software Group

IBM XL compiler architecture

IPA IPA 
ObjectsObjects

Other Other 
ObjectsObjects

System System 
LinkerLinker

Optimized Optimized 
ObjectsObjects

EXE

DLL
PartitionsPartitions

TOBEYTOBEY

TPOTPO

C FEC FE C++ FEC++ FE FORTRAN FORTRAN 
FEFE

Compile Step
Optimization LibrariesLibraries

PDF infoPDF info

Link Step
Optimization

Wcode+

Wcode

Wcode+

Instrumented
runs

Wcode
Wcode

Wcode

Wcode



Deep Computing

© 2007 IBM Corporation37  MPI wkshp     kjordan@us.ibm.com 04/29/09

Some Environment Hints

 If you get mpicc: 

– Command not found. or something similar, your PATH doesn't contain 
the location of the MPI commands. 

– You may need something like (for the MPICH implementation) 
setenv PATH /usr/local/mpi/lib/sun4/ch_p4:/usr/local/mpi/bin:$PATH 
rehash 
• Or something similar. 
• The exact path will depend on your MPI installation and the devices that you 

are using.
• The MPI standard does not specify how MPI programs are compiled or run; 

this is up to the implementation. The examples here are for the MPICH 
implementation. 

 If your program runs, but runs with only one processor, you may be 
accessing an mpirun for a different version of MPI. 

– Give the command 
which mpirun 
• Make sure that the PATH given matches the one that cooresponds to the 

MPI implementation that you are using. 

http://www-unix.mcs.anl.gov/mpi/www/www1/mpicc.html
http://www-unix.mcs.anl.gov/mpi/www/www1/MPI.html
http://www-unix.mcs.anl.gov/mpi/www/www1/MPI.html
http://www-unix.mcs.anl.gov/mpi/www/www1/MPI.html
http://www-unix.mcs.anl.gov/mpi/www/www1/MPI.html
http://www-unix.mcs.anl.gov/mpi/www/www1/mpirun.html
http://www-unix.mcs.anl.gov/mpi/www/www1/MPI.html
http://www-unix.mcs.anl.gov/mpi/www/www1/mpirun.html
http://www-unix.mcs.anl.gov/mpi/www/www1/MPI.html


Deep Computing

© 2007 IBM Corporation

Distributed memory Programming: 
Message Passing Interface (MPI)

 



Deep Computing

© 2007 IBM Corporation39  MPI wkshp     kjordan@us.ibm.com 04/29/09

What Is MPI?
 Message Passing Interface (MPI): 

– A specification for message passing libraries, designed to 
be a standard for distributed memory, message passing, 
parallel computing. 

 The goal of the Message Passing Interface: 

– provide a widely used standard for writing message-
passing programs. 

– establish a practical, portable, efficient, and flexible 
standard for message passing. 

 The MPI standard can be obtained from 
http://www-unix.mcs.anl.gov/mpi/standard.html 

http://www-unix.mcs.anl.gov/mpi/standard.html
http://www-unix.mcs.anl.gov/mpi/standard.html


40 © 2007 IBM Corporation

Historical Development of MPI

• 1980-early 1990: distributed 
memory parallel computing 
application develops and calls 
for a standard

• 1992: MPI Forum established

• 1993: draft MPI standard presented at SC’93
• May, 1994: MPI-1 final version released, 115 routines 

defined
• 1996; MPI-2 finalized, which picked up “difficult” 

issues that MPI-1 intentionally left off.
• Most vendors have full implementation of MPI-1, but 

partial implementation of MPI-2



Deep Computing

© 2007 IBM Corporation41  MPI wkshp     kjordan@us.ibm.com 04/29/09

Reasons for using MPI

 Standardization - MPI is the only message passing library 
which can be considered a standard. It is supported on 
virtually all HPC platforms. 

 Portability - there is no need to modify your source code 
when you port your application to a different platform which 
supports MPI. 

 Performance - vendor implementations should be able to 
exploit native hardware features to optimize performance. 

 Functionality (over 115 routines in MPI-1, more in MPI-2) 

 Availability - a variety of implementations are available, both 
vendor and public domain. 



Deep Computing

© 2007 IBM Corporation42  MPI wkshp     kjordan@us.ibm.com 04/29/09

General Remarks

 Target platform is a distributed memory system including 
massively parallel machines, SMP clusters, workstation 
clusters and heterogenous networks. 

 All parallelism is explicit: the programmer is responsible for 
correctly identifying parallelism and implementing the 
resulting algorithm using MPI constructs. 

 The number of tasks dedicated to run a parallel program is 
static. New tasks can not be dynamically spawned during 
run time. (MPI-2 is attempting to address this issue). 

 Able to be used with C and Fortran programs in MPI-1. C++ 
and Fortran 90 language bindings are in MPI-2. 



Deep Computing

© 2007 IBM Corporation43  MPI wkshp     kjordan@us.ibm.com 04/29/09

Overview of MPI Program Structure 

 MPI include file

• 
• 
• 

Initialize MPI environment

• 
• 
• 

Do work and make message passing calls

• 
• 
• 

Terminate MPI Environment



Deep Computing

© 2007 IBM Corporation44  MPI wkshp     kjordan@us.ibm.com 04/29/09

Communicators and Groups 

 MPI uses objects called communicators and 
groups to define which collection of processes 
may communicate with each other. Most MPI 
routines require you to specify a communicator as 
an argument. 

 Simply use MPI_COMM_WORLD whenever a 
communicator is required - it is the predefined 
communicator which includes all of your MPI 
processes.



Deep Computing

© 2007 IBM Corporation45  MPI wkshp     kjordan@us.ibm.com 04/29/09

Rank

 Within a communicator, every process has its own unique, 
integer identifier assigned by the system when the process 
initializes. 

 A rank is sometimes also called a "process ID". 

 Ranks are contiguous and begin at zero. 

 Programmer uses to specify the source and destination of 
messages. 

 Often used conditionally by the application to control 
program execution (if rank=0 do this / if rank=1 do that). 



Deep Computing

© 2007 IBM Corporation46  MPI wkshp     kjordan@us.ibm.com 04/29/09

Multiple Communicators



Deep Computing

© 2007 IBM Corporation47  MPI wkshp     kjordan@us.ibm.com 04/29/09

Describe (briefly) 3 Classes of MPI Routines 

 Environment Management Routines - setup and 
query the environment 

 Point to Point Communication Routines - provide 
message passing between 2 processors 

 Collective Communication Routines - involve all 
processors in scope of communicator 

 (Other routines but another session)



Deep Computing

© 2007 IBM Corporation48  MPI wkshp     kjordan@us.ibm.com 04/29/09

MPI has many routines – focus on a few

 Many routines in MPI - may seem overwhelming - all operations can 
be reduced to a much smaller set of primitives. 

 These primitives should be the focus of a first exposure to MPI 
  

– MPI_Init MPI_Finalize 

– MPI_Comm_size 

– MPI_Comm_rank 

– MPI_Isend 

– MPI_Irecv 

– MPI_Iprobe 

– MPI_Test 



49 © 2007 IBM Corporation

General MPI Program Structure
•   program hello
•   implicit none
•   include 'mpif.h'
•   integer   ::         myrank, nprocs, n, islave, master
•   integer   ::         status(MPI_STATUS_SIZE)
•   integer   ::         ierr, resultlen, tag
•   character (LEN=MPI_MAX_PROCESSOR_NAME) :: hostname  
•   !-----------------------------------------------------------
•   call MPI_Init(ierr)
•   call MPI_Comm_Rank(MPI_COMM_WORLD, myrank, ierr)
•   call MPI_Comm_Size(MPI_COMM_WORLD, nprocs, ierr)  
•   call MPI_Get_processor_name(hostname, resultlen, ierr)  
•   call MPI_Barrier (MPI_COMM_WORLD, ierr)
•   !-----------------------------------------------------------
•   write (*,*) "Hello! --- Rank ", myrank, " out of ", nprocs,  &
•     " processes running on ", hostname(1:index(hostname,".")-1)
•   !-----------------------------------------------------------
•   call MPI_Barrier (MPI_COMM_WORLD, ierr)
•   write (*,*) "slave ", myrank, ": ", t2-t1, " seconds"
•   call MPI_Finalize(ierr )

•   end program hello

MPI include file

Initialize MPI 
environment

Do work and make 
message passing calls

Exit MPI



Deep Computing

© 2007 IBM Corporation50  MPI wkshp     kjordan@us.ibm.com 04/29/09

C Language  File  - minim.c /* 
===================================================
= 
   .              Minim:                              . 
   .              -----                               . 
   . MINIMAL program construction.                    . 
   . Functions used:                                  . 
   .                                                  . 
   .       MPI_Init                          . 
   .       MPI_Comm_size                     . 
   .       MPI_Comm_rank                     . 
   .       MPI_Finalize                      . 
      . This is a minimal program that starts up, does simple I/O and then quits, all to 
illustrate the . 
   . basic initializing and finalizing calls under 
MPI.                                             . 
      
===================================================
= */ 
#include <stdio.h> 
#include "mpi.h" 
main(int argc, char **argv) 
{ 
 int nnode;  /* Number of processor.     */ 
 int inode;  /* This specific processor. */ 
 MPI_Init(&argc, &argv); 
 MPI_Comm_size(MPI_COMM_WORLD, &nnode); 
 MPI_Comm_rank(MPI_COMM_WORLD, &inode); 
 /* Print only from node 0.  */ 
 if (inode == 0) { 
   printf(" Running program %s\n", argv[0]); 
   printf(" The total number of nodes is %d \n", nnode); 
        } 
 /* Print from all nodes. */ 
 printf(" Hello from node %d\n", inode); 
 MPI_Finalize();  /* Clean-up. */ 
}



Deep Computing

© 2007 IBM Corporation51  MPI wkshp     kjordan@us.ibm.com 04/29/09

Need to compile, link and execute - 

 Compile & Link: 

– mpcc -o minim minim.c

 Via Loadlever, submit for execution: 

– llsubmit minim.cmd

 Execution line: 

– mpirun -np 512 -cwd `pwd` -exe minim.x



52 © 2007 IBM Corporation

Summary: MPI Subroutines

Mapping/ordering MPI processes into a 
geometric “shape

Create data types for other MPI 
routines to use

Managing MPI group, a set of ordered 
processes which is always associated 

with a communicator object

Communication involving all processes 

Msg passing between two different 
tasks

- Success not acknowledged

Msg passing between two different 
tasks

- Success acknowledged

Env. Initialization, termination, etc

Functionality Description

MPI_Type_size, MPI_Type_struct
MPI_hvector, MPI_Type_lb

Derived Types

MPI_Group_incl, MPI_Group_union, 
MPI_Comm_group, MPI_Comm_size, 

MPI_Comm_rank, 
MPI_Intercomm_merge

Group and 
Communicator 
Management

MPI_Send, MPI_Recv
MPI_Ssend, MPI_Bsend

MPI_Buffer_attach, MPI_Wait

Point-to-point 
communication

- Blocking

MPI_Cart_create, MPI_Cart_shift
MPI_Graph_create, MPI_Graph_get

Virtual Topology

MPI_Barrier, MPI_Bcast, MPI_Gather, 
MPI_Scatter, 

Collective 
Communication

MPI_ISend, MPI_IRecv
MPI_ISsend, MPI_IBsend

MPI_Testsome, MPI_Iprobe

Point-to-point 
communication
- Non-Blocking

MPI_Init, MPI_Wtime, MPI_Error_class, 
MPI_Finalize

MPI_Pack, MPI_Pcontrol

Environment 
management

& misc.

Examples
Functionality 

category



53 © 2007 IBM Corporation

Calling MPI Routines in C or Fortran 

# include “mpi.h”

C include file

Include ‘mpif.h’

Fortran include fle

Returned as “rc” or
MPI_SUCCESS 

rc=MPI_Bsend(&buf,count,type,des
t,tag,comm)

Rc=MPI_Xxxxx(parameters, …)

C

Returned as ierr paremeter, or 
MPI_SUCCESSError code

CALL MPI_Bsend(buf,count,type
,dest,tag,comm,ierr)Example

CALL MPI_Xxxxx(parameter, …, ierr)Format

FortranLanguage

-  Include file: required for all programs/routines 
      which make MPI library calls

-  Format of MPI calls



Deep Computing

© 2007 IBM Corporation54  MPI wkshp     kjordan@us.ibm.com 04/29/09

Env Routines - C Language - simple.c 
    #include "mpi.h" 
    #include <stdio.h> 
    int main(argc,argv) 
    int argc; 
    char *argv[]; { 
    int    numtasks, rank, rc; 

    rc = MPI_Init(&argc,&argv); 

    if (rc != 0) { 
        printf ("Error starting MPI program. Terminating.\n"); 
        MPI_Abort(MPI_COMM_WORLD, rc); 
        } 

     MPI_Comm_size(MPI_COMM_WORLD,&numtasks); 
     MPI_Comm_rank(MPI_COMM_WORLD,&rank); 

     printf ("Number of tasks= %d My rank= %d\n", numtasks,rank); 
     /*******  do some work *******/ 

     MPI_Finalize(); 
     }



Deep Computing

© 2007 IBM Corporation55  MPI wkshp     kjordan@us.ibm.com 04/29/09

Env Routines - Fortran Language - simple.f 
      program simple 
      include 'mpif.h' 
      integer numtasks, rank, ierr, rc 

      call MPI_INIT(ierr) 

      if (ierr .ne. 0) then 
          print *,'Error starting MPI program. Terminating.' 
          call MPI_ABORT(MPI_COMM_WORLD, rc, ierr) 
      end if 
      call MPI_COMM_RANK(MPI_COMM_WORLD, rank, ierr) 
      call MPI_COMM_SIZE(MPI_COMM_WORLD, numtasks, ierr) 

      print *, 'Number of tasks=',numtasks,' My rank=',rank 
C ****** do some work ****** 

      call MPI_FINALIZE(ierr) 
      end



56 © 2007 IBM Corporation

Invoking the MPI Compiler

mpxlf90Fortran 90

mpCCC++

mpccC

mpxlf95Fortran 95

mpxlfFortran 77

CompilerLanguage



Deep Computing

© 2007 IBM Corporation57  MPI wkshp     kjordan@us.ibm.com 04/29/09

Simple example program

program  hej

  IMPLICIT NONE

  include "mpif.h"

  character(LEN=MPI_MAX_PROCESSOR_NAME):: name

  character(LEN=MPI_MAX_PROCESSOR_NAME), &

       allocatable :: all_names(:)

  integer:: rank, nproc, lname, ierr, i 

  call MPI_Init(ierr)

  call MPI_Comm_rank(MPI_COMM_WORLD,rank,ierr)

  call MPI_Comm_size(MPI_COMM_WORLD,nproc,ierr)

   

 call MPI_Get_processor_name(name,lname,ierr)

 allocate(all_names(nproc))

 call MPI_Gather(name,len(name), MPI_CHARACTER,  &

      all_names,len(all_names(1)), MPI_CHARACTER,  &

      0, MPI_COMM_World, ierr)

 if(rank==0)then

   write(*,'(i4,": ",a)') (i-1,trim(all_names(i)), 
i=1,nproc)

 endif

 call MPI_Finalize(ierr)

end program



Deep Computing

© 2007 IBM Corporation58  MPI wkshp     kjordan@us.ibm.com 04/29/09

Example program execution

Starting program at Sun Aug 26 17:18:37 CEST 
2007

    
Using /bgl/BlueLight/ppcfloor/bglsys/bin/mpir
un -shell /pdc/vol/openssh/4.5p1/bin/ssh 
-verbose 1 -cwd /gpfs/scratch/s/smeds/test 
-mode VN -env BGLMPI_MAPPING=TXYZ -env 
MPIP='-c' /gpfs/scratch/s/smeds/test/hej-
traced "arg 1"  "arg 2"

...

<Aug 26 17:18:38.878163> FE_MPI (Info) : Waiting 
for job to terminate

mpiP: Found MPIP environment variable ['-c']

mpiP: mpiP V3.1.1 (Build Aug 21 2007/15:21:35)

mpiP: Direct questions and errors to mpip-
help@lists.sourceforge.net

 0: Processor <0,0,0,0> in a <4, 4, 2, 2> mesh

 1: Processor <0,0,0,1> in a <4, 4, 2, 2> mesh

...

62: Processor <3,3,1,0> in a <4, 4, 2, 2> mesh

63: Processor <3,3,1,1> in a <4, 4, 2, 2> mesh

mpiP: 

mpiP: Storing mpiP output in [./Unknown.
64.0.1.mpiP].

mpiP: 

<Aug 26 17:18:44.400667> BE_MPI (Info) : Job 
3350 switched to state TERMINATED ('T')

<Aug 26 17:18:44.400704> BE_MPI (Info) : Job 
successfully terminated

...

<Aug 26 17:18:44.970018> FE_MPI (Info) : == Exit 
status:   0 ==

Program finished Sun Aug 26 17:18:44 CEST 2007

    Program exit code: 0



59 © 2007 IBM Corporation

MPI Performance Considerations
Dive Deeper …

• Dive Deeper into MPI
• Terminology – MPI performance related
• Factors affecting MPI performance
• IBM Environment variables that may improve 

performance



60 © 2007 IBM Corporation

Dive Deeper into MPI: P-to-P communications

• Two MPI tasks send receive messages
• Multiple types of send and receive routines

• Synchronous send

• Blocking send/blocking receive

• Non-blocking send/non-blocking receive

• Buffered send

• Combined send/receive

• “Ready” send
• Any type of send can be paired with any type of recv 
• Several routines associated with send-receive 

operations



61 © 2007 IBM Corporation

Dive Deeper into MPI P-to-P Communications: 
Need for Buffering

• Only in perfect world, every send is perfectly in 
sync with its matching receive

• Need for buffer:
• Scenario 1: a send operation occurs 5 sec before the 
receive is ready – where to place the message?

• Scenario 2: multiple sends arrive at the same 
receiving task which can only accept one send at a 
time – where to place the backing up messages

• Vendor implement solutions for these 
situations using system buffer.  This is not 
defined by MPI standard.



62 © 2007 IBM Corporation

Dive Deeper into MPI P-to-P Communications:
System Buffer and Application Buffers

• System buffer
• Allows asynchronous send-receive, 
thus may improve performance

• Managed entirely by the MPI library, 
opaque to programmer

• A finite resource that can be easy to exhaust

• Often mysterious and not well documented

• May exist on sending side, receiving side, or both

• Help to improve program performance

• Application buffer – user managed address space



63 © 2007 IBM Corporation

Dive Deeper into MPI P-to-P Communication:
Blocking vs. Non-blocking

• Blocking send
• will only return after it is safe to modify the application buffer (your send data)

• Safe: modifications will not affect the data intended for the receiving task
• Safe: no guarantee the data was actually received

• can be synchronous – handshaking occurred with the receive task to confirm 
a safe send

• can be asynchronous when system buffer is used to hold the data for 
eventual delivery

• Blocking receive 
• only returns after the data has arrived and is ready for the program to use

• Non-blocking send and receive
• Simply request the MPI library to perform the operation when it is able.

• Return almost immediately, without wait for any communication events to 
complete

• User is responsible to know when the application buffer is safe to be modified 
– use wait routines when needed

• Use no-blocking routines to overlap communication with computation. – to 
explore possible performance gains.



64 © 2007 IBM Corporation

• Order:  MPI guarantees that messages will not 
overtake each other
• Between a pair of sender and receiver, “first” 
message sent will arrive first, and “first” requested 
message will arrive first.

• Order rule does not apply when more than 2 tasks 
participate in communications

• Fairness: 
• MPI does not guarantee fairness.  

• Programmer needs to prevent “racing condition”: if 
task0 and task1 both send a competing message to 
task2, only one send will complete.

Dive Deeper into MPI P-to-P Communication:
Order and Fairness



65 © 2007 IBM Corporation

• Must involve all processes in the scope of 
communicator

• Types of collective operations
• Synchronization – i.e. barrier, 

• Data movement – i.e. broadcast, scatter/gather, all to 
all

• Reduction – i.e. one member collects data from the 
others and performs an operation (min, max, add, etc)

• Restrictions
• Collective op. are blocking

• No message tag argument needed

• To apply collective op. to a subset of processes, first 
partition the subset into new groups and attach the 
new groups to new communicators.

• Can only be used with MPI predefined data types, not 
with MPI derived data types.

Dive Deeper into MPI: Collective Communication



66 © 2007 IBM Corporation

Dive Deeper into MPI: 
Predefined Primitive MPI Data Types

MPI_DOUBLE_PRECISIONMPI_DOUBLEDouble / Double Precision

MPI_LONG_DOUBLELong double

MPI_COMPLEXcomplex

MPI_DOUBLE_COMPLEXDouble complex 

MPI_LOGICALlogical

MPI_BYTEMPI_BYTE8 binary digits

MPI_UNSIGNED_CHARUnsigned char

MPI_UNSIGNED_SHORTUnsigned short int

MPI_UNSIGNED_INTUnsigned int

MPI_UNSIGNED_LONGUnsigned long int

MPI_REALMPI_FLOATFloat / Real

MPI_PACKED

MPI_LONG

MPI_INT

MPI_SHORT

MPI_CHAR

C

Signed short int

MPI_PACKED
Data packet or unpacket with 

MPI_Pack()/MPI_Unpack

Signed long int

MPI_INTEGERSigned int

MPI_CHARACTERSigned char

FortranData Type



67 © 2007 IBM Corporation

Dive Deeper into MPI:  Group and Communicator

• A group is an ordered set of processes
• Each process has it unique integer rank, starting at 0 and 

goes to N-1

• A group is represented A group is always associated with 
a communicator object

• A communicator is a group of processes that may 
communicate with each other 
• It can be considered as an extra “tag” required by every     

               MPI calls.
• Both group and communicator are represented within 

system memory as objects, accessible to programmers 
only by “handles”.
• The handle for the communicator that comprises all tasks 

is MPI_COMM_WORLD
• Primary purposes of group and communicator objects



68 © 2007 IBM Corporation

Terminology – MPI Performance Related

• Latency: overhead associated with sending a 0-byte 
message

• Bandwidth:
• Application buffer: user program space which holds the 

data that is to be sent or received
• System buffer: system address space for storing 

messages – need it to enable async communication
• Blocking communication: a communication is blocking if 

its completion depends on  certain “events”.
• non-blocking:
• Synchronous: a synchronous send operation is complete 

only after receiving acknowledgement from receiving 
process

• Asynchronous:



69 © 2007 IBM Corporation

Two Types of MPI communications

• Point-to-point communication routines: for data 
exchange between a send task and a receive task.

• Blocking (7 routines)

• Non-blocking (5)

• Persistent communications (7)

• Completion/testing (4)
• Collective communication routines: for all tasks within 

the communicator participate in a communication 
operation

• All are blocking (14)

• MPI-2 specifies non-blocking corollaries for these 
routines.



70 © 2007 IBM Corporation

Factors Affecting MPI Performance

• Platform / Architecture Related
• CPU, memory subsystem, Network adapters, OS,

• Network related
• Hardware, Protocols, configurations, network tuning, 

network contention
• Application related

• Algorithm, communication/computation ratio, load 
balance, memory usage pattern, IO, message size 
used, types of MPI routines used

• MPI implementation related
• Message buffering

• Message passing protocols – eager, rendezvous, order

• Send-receiving synchronization – polling, interrupt

• Routine internals – efficiency of algorithm used to 
implement routines



71 © 2007 IBM Corporation

Message Buffering
• A temporary  space to store the data being sent to receiver

• System buffer: provided by the system and not visible by the user.  
MPI standard is purposefully vague.

• User buffer: explicitly declared and managed by the programmer
• 4 ways to implement standard send

• 1. buffer at the sending side

• 2. buffer at the receiving side
• 3. no buffer at all.
• 4. buffer under some condition and not others.  i.e. eager vs. 

rendezvous protocols.
• Using user buffer:

• MPI_Buffer_attach - allocates user buffer space
• MPI_Buffer_detach   - frees user buffer space

• MPI_Bsend - buffer send, blocking
• MPI_Ibsend   - buffer send, non-blocking

• Advantage: permits comm. to be asynch with computation.
• Disadvantages:

• Buffer exhaustion/overflow can cause program failure
• It can be hard for programmer to know when and how to use buffer
• Potential portability problem if 



72 © 2007 IBM Corporation

Introducing MPI Message Passing Protocols
Eager vs. Rendezvous

• These are internal methods and polices an MPI 
implementation employs to accomplish message 
deliver.  No MPI standard here.

• Two common protocols:

• 1. Eager – an asynchronous protocol that allows a 
send operation to complete without acknowledgement 
from a matching receive

• 2. Rendezvous – a synchronous protocol that requires 
an acknowledgement from a matching receive 

• An implementation can use a combination of the 2 
protocols: eager protocol for small messages, and 
rendezvous protocol for large message.

• In conjunction with message buffer



73 © 2007 IBM Corporation

MPI Message Passing Protocols
Eager

• Assumption:
• Send process assumes the receiver can store the message if 

it is sent.  It is receiver’s responsibility to buffer the message 
upon arrival

• implementation's guarantee of certain amount of buffer 
space on the receive process.

• Used for smaller messages (upto KB), and small number of 
MPI tasks

• Advantage: 
• Reduce sync delay; 

• Simple programming: only need to use MPI_Send
• Disadvantages:

• Not scalable.  Larger buffer required when the number of 
senders increases

• program error when receive buffer is exceeded

• Buffer wastage when there’s only small amount of msgs

• Consume CPU cycle to copy data and manger the buffer



74 © 2007 IBM Corporation

MPI Message Passing Protocols
Rendezvous

• Used when assumption of Eager Protocol can not be made, 
or when Eager Limit is exceeded.

• Requires “handshaking” between sender and receiver:
• 1. Sender process sends mgs envelope to destination 

process

• 2. Envelop received and stored by destination process

• 3. When buffer space is available, destination process 
replies to sender that requested data can be sent

• 4. Sender receives reply and then sends data.

• 5. Destination process receives data
• Advantages:

• Scalable, robust, envelope can be small

• May eliminate a data copy – user space to user space direct.
• Disadvantages:

• Synch delay due to the handshaking requirement

• More programming complexity



75 © 2007 IBM Corporation

Default Eager Limits

• Small Message 
(MP_EAGER_LIMIT)
• Send header and message

• Large Message
• Send header

• Acknowledge

• Send message

10244097 - 8192

20482049 – 4096

40961025 – 2048

8192513 – 1024

16384257 – 512

327681 - 256

MP_EAGER_LIMIT
(default, bytes)

No. Tasks



76 © 2007 IBM Corporation

Sender-Receiver Synchronization
polling or interrupt

• Cooperation between sending and receiving tasks are 
required for synchronous MPI communication
• Polling mode: user MPI tasks check for and service 

communication events at regular intervals

• Interrupt mode: user MPI tasks be interrupted by the 
system for communication events when they occur

• Interrupt mode has advantages in the following 
situations:
• 1. apps that use nonblocking send or receive

• 2. apps that have non-synchronized set of send or 
receive pairs

• 3. apps that do not issuewaits for nonblocking send or 
receive



77 © 2007 IBM Corporation

Example: Polling and Interrupt



78 © 2007 IBM Corporation

Message Size

• Typically, increasing the message size will 
yield better performance.



79 © 2007 IBM Corporation

Point-to-Point Communications

• Many way to mix and match send and receive operations
• Send routines (match any receive, probe; non-blocking can 

match any completion/testing)
• Blocking – standard, buffered, ready, sync

• non-blocking – standard, buffered, ready, sync

• Persistent – standard, buffered, ready, sync
• Receiving routines (match any send)

• Blocking

• Non-blocking

• Persistent
• Probe routines (match any send)

• Blocking

• Non-blocking
• Completion/testing routines (match any non-blocking 

send/receive
• Blocking – one, some , any, all

• Non-blocking one, some, any, all



80 © 2007 IBM Corporation

Point-to-Point bandwidth comparison: 
Small Messages



81 © 2007 IBM Corporation

Point-to-Point bandwidth comparison: 
Small Messages



04/29/09  82

A first application

• Compute a numerical 
approximation to the definite 
integral

          ∫      f(x) dx

   using the trapezoidal rule

a

 
b



04/29/09  83

How the trapezoidal rule works
• Divide the interval [a,b] into n 

segments of size h=1/n
• Approximate the area under an 

interval using a trapezoid
• Area under the ith trapezoid

 ½ (f(a+i×h)+f(a+(i+1)×h)) ×h
• Area under the entire curve 

 ≈ sum of all the trapezoids

h

a+i*h    a+(i+1)*h



04/29/09  84

Reference material

•    For a discussion of the trapezoidal rule 
http://metric.ma.ic.ac.uk/integration/techniques/definite/n
umerical-methods/trapezoidal-rule

•   A applet to carry out integration
http://www.csse.monash.edu.au/~lloyd/tildeAlgDS/Numerical/I
ntegration

•    Code (from Pacheco hard copy text)
   PUB = /export/home/cs260x-public
  Serial Code

PUB/Pacheco/ppmpi_c/chap04/serial.c
  Parallel Code
        PUB/Pacheco/ppmpi_c/chap04/trap.c
 



04/29/09  85

Serial code (Following Pacheco)
main() {
    float f(float x)   { return  x*x;  } // Function we're integrating  
 
    float h = (b-a)/n; //   h = trapezoid base width

//   a and b: endpoints 
//   n = # of trapezoids  

    float integral = (f(a) + f(b))/2.0;
    
    float  x;   int    i;

    for (i = 1, x=a; i <= n-1; i++) {
        x += h;
        integral = integral + f(x);
    }
    integral = integral*h;
  }



04/29/09  86

The parallel algorithm

• Decompose the integration interval into sub-
intervals, one per processor

• Each processor computes the integral on its local 
subdomain

• Processors combine their local integrals into a 
global one



04/29/09  87

First version of the parallel code
    local_n = n/p;  // Number of trapezoids; assume p divides n evenly
    float local_a = a + my_rank*local_n*h,
            local_b = local_a + local_n*h,
            integral = Trap(local_a, local_b, local_n, h);

   if (my_rank == 0) { // Sum the integrals calculated by all the processes
        total = integral;
        for (source = 1; source < p; source++) {
            MPI_Recv(&integral, 1, MPI_FLOAT, source, tag, WORLD, &status);
            total += integral;
        }
    } else    
        MPI_Send(&integral, 1, MPI_FLOAT, dest, tag, WORLD);



04/29/09  88

Improvements

• The result does not depend on the order in 
which the sums are taken 

• We use a linear time algorithm to accumulate 
contributions, but there are other orderings

for (source = 1; source < p; source++) 
{

         MPI_Recv(&integral, 1, MPI_FLOAT,      

               MPI_ANY_SOURCE, tag, 
  WORLD, &status);

            total += integral;
     }



Deep Computing

© 2007 IBM Corporation89  Harvard MPI wkshp     kjordan@us.ibm.com 04/29/09

 Fortran - trap.f  (1/2)
    program trap 
       include "mpif.h" 
       double precision PI25DT 
       parameter (PI25DT = 3.141592653589793238462643d0) 
       double precision mypi, pi, h, sum, x, f, a 
       integer n, myid, numprocs, i, ierr, sizetype, 
     1 sumtype 
       f(a)=4.d0/(1.d0+a*a) 
       call MPI_INIT(ierr) 
       call MPI_COMM_RANK(MPI_COMM_WORLD, myid, ierr) 
       call MPI_COMM_SIZE(MPI_COMM_WORLD, numprocs, ierr) 
       sizetype = 1 
       sumtype = 2 
    10 if ( myid .eq. 0 ) then 
           print *, 'Enter the number of intervals: (0 quits)' 
           read(*,*) n 
       endif
c 
c    broadcast n 
c 

       call MPI_BCAST(n,1,MPI_INTEGER,0,MPI_COMM_WORLD,ierr) 
c 
c    check for quit signal 
c 



Deep Computing

© 2007 IBM Corporation90  Harvard MPI wkshp     kjordan@us.ibm.com 04/29/09

Fortran - trap.f  (2/2)
if ( n .le. 0 ) goto 30 
c 
c    calculate the interval size 
       h = 1.0d0/n 
       sum = 0.0d0 
       do 20 i = myid+1, n, numprocs 
           x = h*(dble(i) - 0.5d0) 
           sum = sum + f(x) 
    20 enddo 
       mypi = h*sum 
c 
       print *, 'myid ', myid, 'mypi ',mypi 
c    collect all the partial sums 
c 
       call MPI_REDUCE(mypi,pi,1,MPI_DOUBLE_PRECISION, 
     1 MPI_SUM,0,MPI_COMM_WORLD,ierr) 
c 
c    node 0 prints the answer. 
       if ( myid .eq. 0 ) then 
           print *, 'pi is ', pi, 'Error is', abs(pi - PI25DT) 
       endif 
       goto 10 
    30 call MPI_FINALIZE(ierr) 
       stop 
       end



Deep Computing

© 2007 IBM Corporation91  Harvard MPI wkshp     kjordan@us.ibm.com 04/29/09

Comment on MPI Performance

 Keep track of communication

– Communication performance as a function of P

– Bulk numbers are usually sufficient

– MPI_Wait and collective inbalance usually indicates load 
inbalance and/or serialization

– HPC Toolkit, mpiP



Deep Computing

© 2007 IBM Corporation92  Harvard MPI wkshp     kjordan@us.ibm.com 04/29/09

MPI Program to Approximate PI via Integration

 Apply the Trapezoidal Rule to approximate PI by 
integrating f(x)= 4/(1+x*x).  

 We use collective routines to accomplish this.

 Provide some number of intervals.  

 Each processor will contributed a portion to the 
sum. 
 



Deep Computing

© 2007 IBM Corporation93  Harvard MPI wkshp     kjordan@us.ibm.com 04/29/09

Example : MPI Profile (1/2)

elapsed time from clock-cycles using freq = 700.0 MHz
-----------------------------------------------------------
MPI Routine            #calls     avg. bytes      time(sec)
-----------------------------------------------------------
MPI_Comm_size               6            0.0          0.000
MPI_Comm_rank               1            0.0          0.000
MPI_Send               285196         6694.6         35.545
MPI_Recv               210284          698.5         20.959
MPI_Probe               81243            0.0        124.980
MPI_Iprobe             352732            0.0          0.358
MPI_Bcast                   5            4.0          0.000
MPI_Barrier             10000            0.0         85.153
MPI_Gather              10002            8.0          0.803
MPI_Allgather               3           14.7          0.001
MPI_Allreduce               6           17.3          0.660
-----------------------------------------------------------
MPI task 0 of 512 had the minimum communication time.
total communication time = 268.460 seconds.
total elapsed time       = 434.298 seconds.
top of the heap address  = 47.293 MBytes.
-----------------------------------------------------------



Deep Computing

© 2007 IBM Corporation94  Harvard MPI wkshp     kjordan@us.ibm.com 04/29/09

Example : MPI Profile (cont 2/2)

Message size distributions:
MPI_Send            #calls    avg. bytes      time(sec)
                     73141          16.0          0.273
                       380          45.9          0.004
                       786          98.9          0.002
                      2325         196.8          0.016
                      5768         379.1          0.082
                    121925         998.1         22.893
                      1023        1600.2          0.011
                       643        4079.7          0.112
                       511        5721.0          0.019
                     77672       10240.0          5.937
                      1022      960000.0          6.198

-env BGLMPI_EAGER=900   (BG/L default = 1000) to get 

adaptive routes for messages of ~1K, and better performance.



Deep Computing

© 2007 IBM Corporation95  Harvard MPI wkshp     kjordan@us.ibm.com 04/29/09

Network Exchange
Random Exchange 8x8x8 Torus

0

50

100

150

200

250

300

10 100 1000 10000 100000 1000000 10000000

Message Size (Bytes)

E
xc

h
an

g
e 

B
an

d
w

id
th

 (
M

B
/s

ec
)

Eager Limit 10000

Eager Limit 450 Bytes

For exchange between random sites on the torus, adaptive routing helps.  (December 2005) 
default was 1000 byte eager limit, with static routes for eager messages.  

If all communication is collinear on the torus, adaptive routes can’t help, because there is only 
one minimal route on the linear path, and it may be better to increase the eager limit: 
BGLMPI_EAGER=10000, for example. 



Deep Computing

© 2007 IBM Corporation96  Harvard MPI wkshp     kjordan@us.ibm.com 04/29/09

mpiP output

> .../mpiP-3.1.1/bin/mpip-insert-src ./hej-traced Unknown.64.0.1.mpiP 

@ mpiP

@ Command : 

@ Version               : 3.1.1

@ MPIP Build date       : Aug 21 2007, 15:21:35

@ Start time            : 2007 08 26 15:18:41

@ Stop time             : 2007 08 26 15:18:41

@ Timer Used            : rts_get_timebase

@ MPIP env var          : '-c'

@ Collector Rank        : 0

@ Collector PID         : 0

@ Final Output Dir      : .

@ Report generation     : Single collector task

@ MPI Task Assignment   : 0 Processor <0,0,0,0> in a <4, 4, 2, 2> mesh

@ MPI Task Assignment   : 1 Processor <0,0,0,1> in a <4, 4, 2, 2> mesh

....



Deep Computing

© 2007 IBM Corporation97  Harvard MPI wkshp     kjordan@us.ibm.com 04/29/09

mpiP - Overall statistics

@--- MPI Time (seconds) ----------------------------------------------

Task    AppTime    MPITime     MPI%

   0    0.00351   0.000305     8.70

   1   3.01e-05   7.93e-06    26.32

   2   5.08e-05   2.76e-05    54.21

...

  62   5.42e-05   3.12e-05    57.52

  63   3.04e-05   7.84e-06    25.78

   *    0.00859    0.00396    46.07

@--- Callsites: 1 ----------------------------------------------------

 ID Lev File/Address        Line Parent_Funct             MPI_Call

  1   0 hej.f90            18 hej                      Gather           
   



Deep Computing

© 2007 IBM Corporation98  Harvard MPI wkshp     kjordan@us.ibm.com 04/29/09

mpiP - Top twenty sites...

@--- Aggregate Time (top twenty, descending, milliseconds) -----------

Call                 Site       Time    App%    MPI%     COV

Gather                  1       3.96   46.07  100.00    2.36

@--- Aggregate Sent Message Size (top twenty, descending, bytes) -----

Call                 Site      Count      Total       Avrg  Sent%

Gather                  1         64   8.13e+03        127 100.00



Deep Computing

© 2007 IBM Corporation99  Harvard MPI wkshp     kjordan@us.ibm.com 04/29/09

mpiP - all sites

@--- Callsite Time statistics (all, milliseconds): 64 ----------------

Name         Site Rank  Count      Max     Mean      Min   App%   MPI%

Gather          1    0      1    0.305    0.305    0.305   8.70 100.00

...

Gather          1    *     64    0.647   0.0618  0.00743  46.07 100.00

@--- Callsite Message Sent statistics (all, sent bytes) --------------

Name         Site Rank   Count       Max      Mean       Min       Sum

Gather          1    0       1       127       127       127       127

...

Gather          1    *      64       127       127       127      8128

@--- End of Report ---------------------------------------------------



Deep Computing

© 2007 IBM Corporation100  MPI wkshp     kjordan@us.ibm.com 04/29/09

MPI on Blue Gene 
 MPI implementation based on MPICH-2 (Argonne)

 Include path for <mpi.h>, mpif.h :

– -I/bgl/BlueLight/ppcfloor/bglsys/include

 Libraries to link for MPI:

– -L/bgl/BlueLight/ppcfloor/bglsys/lib

– -lmpich.rts -lmsglayer.rts -lrts.rts -ldevices.rts

 Sample Makefile:
FC = blrts_xlf
FFLAGS = -g -O -qarch=440 -qmaxmem=64000
MPI_INC = -I/bgl/BlueLight/ppcfloor/bglsys/include
MPI_LIB = -L/bgl/BlueLight/ppcfloor/bglsys/lib \

            -lmpich.rts -lmsglayer.rts -lrts.rts -ldevices.rts
LD = blrts_xlf
LDFLAGS = -g
hello.x : hello.o

$(LD) $(LDFLAGS) hello.o $(MPI_LIB) -o hello.x
hello.o : hello.f

$(FC) -c $(FFLAGS) $(MPI_INC) hello.f



Deep Computing

© 2007 IBM Corporation101  MPI wkshp     kjordan@us.ibm.com 04/29/09

Submitting jobs with mpirun 

 You can use “mpirun” to submit jobs.  The Blue Gene mpirun is in
– /bgl/BlueLight/ppcfloor/bglsys/bin

 Typical use:
– mpirun -np 512 -cwd `pwd` -exe your.x

 common options:
-args “list of arguments”
-env “VARIABLE=value”
-mode CO/VN  (coprocessor/virtual-node)

 coprocessor mode : one MPI process per node, 512 MB or 1 GB limit per 
process.

 virtual-node mode : two MPI processes per node, 256 MB or 512 MB limit per 
process; L3 cache, memory, networks, are shared.

 More details: mpirun -h (for help)

 redbook: Blue Gene/L System Administration     (www.redbooks.ibm.com, 
sg247178)

 Limitations:  one job per partition, limited partition sizes 

http://www.redbooks.ibm.com/


Deep Computing

© 2007 IBM Corporation102  MPI wkshp     kjordan@us.ibm.com 04/29/09

Remarks
 Read more about it – IBM REDBOOKS:

–http://www.ibm.com/redbooks

•Application Development Guide

•System Administration Guide
•Performance Tools

http://www.ibm.com/redbooks


Deep Computing

© 2007 IBM Corporation103  MPI wkshp     kjordan@us.ibm.com 04/29/09

 This exercise presents a simple program to determine the 
value of pi. The algorithm suggested here is chosen for its 
simplicity. The method evaluates the integral of 4/(1+x*x) 
between 0 and 1. The method is simple: the integral is 
approximated by a sum of n intervals; the approximation to 
the integral in each interval is (1/n)*4/(1+x*x). The master 
process (rank 0) asks the user for the number of intervals; 
the master should then broadcast this number to all of the 
other processes. Each process then adds up every n'th 
interval (x = rank/n, rank/n+size/n,...). Finally, the sums 
computed by each process are added together using a 
reduction. You may want to use these MPI routines in your 
solution:
MPI_Bcast MPI_Reduce 

http://www-unix.mcs.anl.gov/mpi/www/www3/MPI_Bcast.html
http://www-unix.mcs.anl.gov/mpi/www/www3/MPI_Reduce.html

