
CUDA Development

Tools

Advanced CUDA

Programming

NVIDIA Confidential

GPU Tools

Profiler

Available for all supported OSs

Command-line or GUI

Sampling signals on GPU for:

Memory access parameters

Execution (serialization, divergence)

Debugger

Windows: Parallel Nsight, Linux: cuda-gdb

Debug directly on the GPU

NVIDIA Confidential

cuda-gdb: CUDA Application Debugging

Included with CUDA toolkit

Superset of GDB commands to support GPU programming

Specific “cuda” commands to navigate threads

Support for instruction level debugging within a CUDA

kernel

Compile with “nvcc -g –G” flags for symbols

Invoke on command line or as backend to DDD,

Emacs, etc…

Documentation:
/usr/local/cuda/doc/CUDA_GDB_v3-0.pdfs

NVIDIA Confidential

CUDA-GDB in
emacs

Parallel Source
Debugging

CUDA-gdb in
emacs

NVIDIA Confidential

Parallel Source
Debugging

CUDA-gdb in
DDD

NVIDIA Confidential

CUDA-MemCheck

Available with CUDA 3.0 Release

Track out of bounds and misaligned accesses

Supports CUDA C

Integrated into the CUDA-GDB debugger

Available as standalone tool on all OS platforms.

NVIDIA Confidential

Parallel Source
Memory
Checker

CUDA-
MemCheck

NVIDIA Confidential

cuda-gdb: Demo

Debugging example code:
bitreverse_debugger.cu

Debugging example code:

bitreverse_debugger-infloop.cu

NVIDIA Confidential

cudaprof: CUDA application profiling

Included as part of CUDA toolkit
Command line usage with no re-compile

Configurable through environment variables

Low overhead hardware counters

Measures both instruction and memory operations

Set environmental variable: CUDA_PROFILE=1

Run application as normal
Examine profile output: cuda_profile_0.log

Configure options and four active profile signals via a
configuration file: CUDA_PROFILE_CONFIG=configuration-
file

Visual profiler: cudaprof provides ease of use and
enhanced reporting

Documentation:
/usr/local/cuda/docs/CUDA_Profiler_3.0.txt

NVIDIA Confidential

Cudaprof Collection Options

The profiler supports the following options:

timestamp : Time stamps for kernel launches and memory transfers. This can be used for
timeline analysis.

gpustarttimestamp : Time stamp when kernel starts execution in GPU.

gpuendtimestamp : Time stamp when kernel ends execution in GPU.

gridsize : Number of blocks in a grid along the X and Y dimensions for a kernel launch

threadblocksize : Number of threads in a block along the X, Y and Z dimensions for a kernel
launch

dynsmemperblock : Size of dynamically allocated shared memory per block in bytes for a kernel
launch

stasmemperblock : Size of statically allocated shared memory per block in bytes for a kernel
launch

regperthread : Number of registers used per thread for a kernel launch.

memtransferdir : Memory transfer direction, a direction value of 0 for host->device memory
copies and a value of 1 for device->host memory
copies.

memtransfersize : Memory copy size in bytes

memtransferhostmemtype : Host memory type (pageable or page-locked)

streamid : Stream Id for a kernel launch

NVIDIA Confidential

Cudaprof Collection Signals

The profiler supports logging of following counters during kernel execution on all
architectures:

local_load : Number of executed local load instructions per warp in a SM

local store : Number of executed local store instructions per warp in a SM

gld_request : Number of executed global load instructions per warp in a
SM

gst_request : Number of executed global store instructions per warp in a
SM

divergent_branch : Number of unique branches that diverge

branch : Number of unique branch instructions in program

sm_cta_launched : Number of threads blocks executed on a SM

NVIDIA Confidential

Cudaprof Collection Signals

The profiler supports logging of following counters during kernel execution only on GPUs with Compute
Capability 1.x:

gld_incoherent : Non-coalesced (incoherent) global memory loads

gld_coherent : Coalesced (coherent) global memory loads

gld_32b : 32-byte global memory load transactions

gld_64b : 64-byte global memory load transactions

gld_128b : 128-byte global memory load transactions

gst_incoherent : Non-coalesced (incoherent) global memory stores

gst_coherent : Coalesced (coherent) global memory stores

gst_32b : 32-byte global memory store transactions

gst_64b : 64-byte global memory store transactions

gst_128b : 128-byte global memory store transactions

instructions : Instructions executed

warp_serialize : Number of thread warps that serialize on address conflicts to either shared or constant memory

cta_launched : Number of threads blocks executed

NVIDIA Confidential 13

CUDA Visual Profiler

NVIDIA Confidential

cudaprof: Demo

Profiling example code:
code2.cu

Profiling example code:

fdtd_cuda.cu

NVIDIA Confidential

NVIDIA Parallel Nsight

The first development environment
for massively parallel applications.

Hardware GPU Source Debugging

Platform-wide Analysis

Complete Visual Studio integration

http://developer.nvidia.com/object/nsight.html

Graphics
Inspector

Platform Trace

Parallel Source
Debugging

http://developer.nvidia.com/object/nexus.html
http://developer.nvidia.com/object/nexus.html

