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Objective: Long-time stable, optimally accelerated MD

Slow dynamics of a super-cooled liquid close to the glass transition
®m soft-sphere particles interact via short-ranged C? potential (LJ)
® propagated by a symplectic integrator (velocity-Verlet)

Parallel implementation for NVIDIA G80/G200 GPUs with CUDA

m challenge: speedup of GPU over CPU of order 100

m floating-point precision is crucial

® challenge: absent or mediocre (1/8 DP/SP) native double precision
® correlation functions for 10% or more particles

m challenge: low memory bandwidth between GPU and host system
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Concurrency: Parallelization of the MD step

velocity-Verlet trivial to parallelize for the GPU
m n-th thread — n-th particle

m coalesced (linearly ordered) memory access
forces parallelized by domain decomposition

® bin particles into variable-length cells on GPU

O order particles into cells with radix sort
0 efficient use of memory due to consecutive cells

m construct Verlet neighbour lists on GPU

O scan own and 26 (or 8) neighbour cells
O store in fixed-size neighbour lists (uncoalesced)

m “skin” to delay updates to every 10-100 steps
0 reduce particle displacements on GPU
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Texture locality: Hilbert's space-filling curve

m coordinates of interacting particles read in random order
O fetch coordinates via read-only texture cache
O small texture cache size necessitates memory locality

m periodically reorder particles in memory
O Hilbert space-filling curve maps 3D +— 1D

O recursively generate Hilbert curve on GPU using 8 vertex rules
O generate permutation using radix sort

O reorder particles using texture reads and coalesced writes
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Performance: 80-fold speedup of GPU over CPU
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Double-single floating-point precision

NVE ensemble simulation runs over 107 steps
® |arge center of mass velocity drift with repulsive LJ potential
® smaller time-step does not improve energy conservation

® C? smoothing function does not decrease energy drift

Cause: accumulation of rounding errors

Solution: implement double-single using native single precision
m DSFUNO9O0 package provides double-single Fortran routines
porting to CUDA straightforward

only needed in force summing and Verlet integrator
m execution times (GTX 280) increase merely by 20%
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Precision: Energy conservation
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Evaluation of time-correlation functions

Observe slowing dynamics over many decades in time
® evaluate on logarithmic time-grid using blocking scheme
B time interval At increases with block level

m blocks are correlated within a block level
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Trajectories are kept in GPU memory to avoid bandwidth bottleneck

m correlation functions are averaged using reduction
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Dynamic properties of the Kob-Andersen mixture
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HALMD @ HAL’s MD package

m C++ templates for code reuse and performance

template <
typename Vector
, dsfloat (*CorrelationFunction)(Vector/#r#*/, Vector/+r0+/, Vector/#*q+*/)
, typename T, typename U

>
__global__ void accumulate(T const* g_r, T const* g_r0, U g_vector, ...)
{

dsfloat sum = 0;

for (uint i = GTID; i < n; i += GTDIM) {

sum += CorrelationFunction(g_r[i], g_rO[i], gq_vector);

}

}

// bind CUDA kernel to cuda::function<>
. = accumulate<vector<float, 3>, incoherent_scattering_function>;
. = accumulate<vector<float, 2>, incoherent_scattering_function>;

10 of 16



HALMD @ HAL’s MD package

m 4D/3D/2D (double-single) vector algebra template functions

vector<dsfloat, dimension> vcm = 0; // first moment <v>
dsfloat vsq = 0; // second moment <v~2>
for (unsigned int i = GTID; i < npart; i += GIDIM) {
vector_type v;
unsigned int tag;
tie(v, tag) = untagged<vector_type>(g_v[il]);
vem += v
vsq += inner_prod(v, v);
}
// reduced values for this thread
s_vem[TID] = vem; s_vv[TID] = vv;
__syncthreads () ;
// compute reduced value for all threads in block
reduce<threads / 2, complex_sum_>(vcm, vv, s_vcm, S_vv);
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HALMD @ HAL’s MD package

® random number generators and distributions

typedef variant<set<rand48_rng, ...> > random_number_generator;
static __constant__ random_number_generator rng;

// fill array with normal distributed random numbers in [0.0, 1.0)
template <typename Rng>

__global__ void normal(float* v, unsigned int len, float mean, float sigma)
{
// read random number generator state from global device memory
typename Rng::state_type state = get<Rng>(rng) [GTID];
for (unsigned int k = GTID; k < len; k += 2 * GIDIM) {
tie(v[k], v[k + GTID]) = normal(get<Rng>(rng), state, mean, sigma);
}
// store random number gemerator state in global device memory
get<Rng>(rng) [GTID] = state;
}
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HALMD @ HAL’s MD package

m CUDA C++ wrapper for integration into host code (g++, icc)

// fill array with normal distributed random numbers in [0.0, 1.0)
template <typename Rng>
void random<Rng>::normal(cuda::vector<float>& g_v, float mean, float sigma)
{
try {
cuda: :configure(rng.dim.grid, rng.dim.block);
get_random_kernel<Rng>() .normal(g_v, g_v.size(), mean, sigma);
cuda: :thread: :synchronize() ;
}
catch (cuda::error const& e) {

LOG_ERROR("CUDA: " << e.what());
throw exception("failed to fill vector with normal random numbers");
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Conclusion

m soft-sphere MD simulation optimal for CUDA acceleration
0 80-fold speedup of GPU over CPU!

m optimized performance by use of basic parallel algorithms
O radix sort
O reduction

® numerical precision crucial for long-time stability

O single precision simulations may yield incorrect results
O double-single precision implements double with native single precision
O acceptable performance penalty if used only for summing

® avoid GPU to host (and vice versa) memory bandwidth bottleneck
O online evaluation of time-correlation functions
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...and thank youl

Preprint: P. H. Colberg and F. Hofling, arXiv:0912.3824.

HALMD @ HAL’s MD package

http://research.colberg.org/projects/halmd
HALMD is freely available under the GNU General Public License.

Stay tuned for fully modular HALMD v0.1.0!
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