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Objective: Long-time stable, optimally accelerated MD

Slow dynamics of a super-cooled liquid close to the glass transition
� soft-sphere particles interact via short-ranged C 2 potential (LJ)
� propagated by a symplectic integrator (velocity-Verlet)

Parallel implementation for NVIDIA G80/G200 GPUs with CUDA
� challenge: speedup of GPU over CPU of order 100
� floating-point precision is crucial
� challenge: absent or mediocre (1/8 DP/SP) native double precision
� correlation functions for 105 or more particles
� challenge: low memory bandwidth between GPU and host system
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Concurrency: Parallelization of the MD step

velocity-Verlet trivial to parallelize for the GPU
� n-th thread 7→ n-th particle
� coalesced (linearly ordered) memory access
forces parallelized by domain decomposition
� bin particles into variable-length cells on GPU

� order particles into cells with radix sort
� efficient use of memory due to consecutive cells

� construct Verlet neighbour lists on GPU
� scan own and 26 (or 8) neighbour cells
� store in fixed-size neighbour lists (uncoalesced)

� “skin” to delay updates to every 10-100 steps
� reduce particle displacements on GPU
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Texture locality: Hilbert’s space-filling curve

� coordinates of interacting particles read in random order
� fetch coordinates via read-only texture cache
� small texture cache size necessitates memory locality

� periodically reorder particles in memory
� Hilbert space-filling curve maps 3D 7→ 1D
� recursively generate Hilbert curve on GPU using 8 vertex rules
� generate permutation using radix sort
� reorder particles using texture reads and coalesced writes
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Performance: 80-fold speedup of GPU over CPU

GTX 280 Opteron 2216 HE
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Double-single floating-point precision

NVE ensemble simulation runs over 107 steps
� large center of mass velocity drift with repulsive LJ potential
� smaller time-step does not improve energy conservation
� C 2 smoothing function does not decrease energy drift

Cause: accumulation of rounding errors

Solution: implement double-single using native single precision
� DSFUN90 package provides double-single Fortran routines
� porting to CUDA straightforward
� only needed in force summing and Verlet integrator
� execution times (GTX 280) increase merely by 20%
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Precision: Energy conservation
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Evaluation of time-correlation functions

Observe slowing dynamics over many decades in time
� evaluate on logarithmic time-grid using blocking scheme
� time interval ∆t increases with block level
� blocks are correlated within a block level

0 1 2 3 4 5 6 7 8

0 5 10 15 20 25 30

0 25 50 75 100

0 125 250 375 500

Trajectories are kept in GPU memory to avoid bandwidth bottleneck
� correlation functions are averaged using reduction
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Dynamic properties of the Kob-Andersen mixture
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� C++ templates for code reuse and performance
template <

typename Vector
, dsfloat (*CorrelationFunction)(Vector/*r*/ , Vector/*r0*/ , Vector/*q*/ )
, typename T, typename U

>
__global__ void accumulate(T const* g_r, T const* g_r0, U q_vector, ...)
{

dsfloat sum = 0;
for (uint i = GTID; i < n; i += GTDIM) {

sum += CorrelationFunction(g_r[i], g_r0[i], q_vector);
}
...

}
// bind CUDA kernel to cuda::function<>
... = accumulate<vector<float, 3>, incoherent_scattering_function>;
... = accumulate<vector<float, 2>, incoherent_scattering_function>;
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� 4D/3D/2D (double-single) vector algebra template functions
vector<dsfloat, dimension> vcm = 0; // first moment <v>
dsfloat vsq = 0; // second moment <v^2>
for (unsigned int i = GTID; i < npart; i += GTDIM) {

vector_type v;
unsigned int tag;
tie(v, tag) = untagged<vector_type>(g_v[i]);
vcm += v;
vsq += inner_prod(v, v);

}
// reduced values for this thread
s_vcm[TID] = vcm; s_vv[TID] = vv;
__syncthreads();
// compute reduced value for all threads in block
reduce<threads / 2, complex_sum_>(vcm, vv, s_vcm, s_vv);
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� random number generators and distributions
typedef variant<set<rand48_rng, ...> > random_number_generator;
static __constant__ random_number_generator rng;

// fill array with normal distributed random numbers in [0.0, 1.0)
template <typename Rng>
__global__ void normal(float* v, unsigned int len, float mean, float sigma)
{

// read random number generator state from global device memory
typename Rng::state_type state = get<Rng>(rng)[GTID];

for (unsigned int k = GTID; k < len; k += 2 * GTDIM) {
tie(v[k], v[k + GTID]) = normal(get<Rng>(rng), state, mean, sigma);

}
// store random number generator state in global device memory
get<Rng>(rng)[GTID] = state;

}
12 of 16



� CUDA C++ wrapper for integration into host code (g++, icc)
// fill array with normal distributed random numbers in [0.0, 1.0)
template <typename Rng>
void random<Rng>::normal(cuda::vector<float>& g_v, float mean, float sigma)
{

try {
cuda::configure(rng.dim.grid, rng.dim.block);
get_random_kernel<Rng>().normal(g_v, g_v.size(), mean, sigma);
cuda::thread::synchronize();

}
catch (cuda::error const& e) {

LOG_ERROR("CUDA: " << e.what());
throw exception("failed to fill vector with normal random numbers");

}
}
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Conclusion

� soft-sphere MD simulation optimal for CUDA acceleration
� 80-fold speedup of GPU over CPU!

� optimized performance by use of basic parallel algorithms
� radix sort
� reduction

� numerical precision crucial for long-time stability
� single precision simulations may yield incorrect results
� double-single precision implements double with native single precision
� acceptable performance penalty if used only for summing

� avoid GPU to host (and vice versa) memory bandwidth bottleneck
� online evaluation of time-correlation functions
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. . . and thank you!

Preprint: P. H. Colberg and F. Höfling, arXiv:0912.3824.

http://research.colberg.org/projects/halmd

HALMD is freely available under the GNU General Public License.

Stay tuned for fully modular HALMD v0.1.0!
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