o
Accelerate MHD

Bijia PANG

Department of Physics, University of Toronto

Outline

e Magneto-hydrodynamics

e Physics problem (video)

e The algorithm of solving MHD

e Implementation on heterogeneous system
e CUDA on a mini GPU cluster

e Summary

Magneto-hydrodynamcs (MHD)

Mass conservation

N +(veV)v = _ivp 1 B x (V x B) Momentum conservation

ot o, Ao
2
é (E sz + ps + B_) — —V(pv(ivz + e+ E) + B x (v B)) Energy conservation
ot 2 87 2 o, A

8t5 =V x (vxb) Induction equation

Veb =0 No magnetic monopole

P = P(p,T) Gas: equation of state

eFluid dynamics under magnetic field Landau & Lifshitz

MHD code

The code was written by Ue-li Pen in 2003, and was
expanded by Phil Arras, Shingkwong Wong, Hugh Merz,
Matthias Liebendoerfer, Stephen Green, Bijia Pang.

The code is a second-order accurate (in space and time)
high-resolution total variation diminishing (TVD) MHD

parallized code.

Kinetic, thermal, and magnetic energy are conserved and
divergent of magnetic field was kept to zero by flux
constrained transport.

The code is short and simple, easy for GPU acceleration.

Three groups, H. Wong (arXiv:0908.4362), and H.-Y.
Schive (arXiv:0907.3390), and B. Pang (arXiv:1004.1680)
programmed it using CUDA on Nvidia GPU.

Simulation video

Algorithm of MHD code

Finite difference + finite volume + time dependent
u(5) fluid variable, stored on center

b(3) magnetic variable, stored on cell face
Second-order total variation diminishing scheme
Dimension split for 3D box

Fluid and magnetic update separately (1D)
Matrix transpose is used for coalescing memory

X Y Z Z Y X

Algorithm — fluid & magnetic

e Fluid: 1D advection equation

8tﬁ+VXI_f:O

e Maagnetic: 2D advection-constraint step. The same
electro-motive force is used immediately in the
constraint step to preserve zero divergent of

magnetic field

QBsz@xm Veb =0

Grid dependence i
ﬂ Pen, Arras, & Wong 2003

Heterogeneous platform

Controlling processor + computing processors:

CELL: Power Processor Element (PPE) + Synergistic
Processmg Elements (SPE) supported by IBM & MITACS

GPU: CPU + unified shaders

CELL: CELL SDK
Nvidia: Compute Unified Device Architecture (CUDA)
ATIl: Open Computing Language (OpenCL)

The code Is suited for acceleration

e The code Is simple
e One dimensional update (same

operation for every grid)

e Linear memory-access patterns (data
transfer)

128”3 box on one CELL/GPU

Results on different platforms

Single-precision & milli-second

Architecture

X86(1)

X86(8)

Cell

N-GPU

A-GPU

Respective tune
OpenCL tune
Peak Gflops
Peak GB/s
Power(Watts)
Code speed-up
Fractional speed-up
FLOPS fraction
Bandwidth fraction

8770
N/A
17
19.2
N/A
1.0
1.0
3.1%
1.3%

1315
6435
136
19.2
170
6.7
0.83
2.6%
8.8%

864
N/A
409.6
204.8
440
10.2
0.42
1.3%
1.3%

64
65
1030
144
550
137
2.0
7.0%
24.2%

128
128
2720
153.6
360
68.5
0.43
1.3%
11.3%

XeonE5506@
2.13GHz

Cell blade Q22

Tesla C2050

HD 5870

Code speed-up: ratio on the platform compared to a single core x86

Fractional speed-up: ratio of code speed-up to theoretical peak performance ratic

FLOPS fraction: ratio of actual FLOPS to theoretical peak performance

Bandwidth fraction: ratio of actual data transfer to theoretical bandwidth(on-chip)

CUDA & openCL On Nvidia GPU

Tesla C2050

Domain size
Architecture 51 323 | 643
x86(1) 140 | 1096
Nvidia (CUDA) : 2.3 8.8
Nvidia (OpenCL) : 2.5 9.3
Nvidia (CUDA) 2 3.7 17.9 Double precision
Speedup (CUDA:x86) 61 125

Fortran MPIl + CUDA

e CUDA for Nvidia GPU

e Overcome low PCI-e bandwidth - let more data stay
on GPU, less data for communication

e CPUtoGPU (1to 1)

compute main data on GPU | > Next time step

compute buffer & update to main data on GPU

GPUe——>CPU == CPU = GPU ﬁ

Buffer transfer

Result on MPI + CUDA

MPI + cuda w=s CPU MPI

speed-up (CUODA:openMP) : 8.286/2.449=3.4

single precision (2econd)

Time | euadai2) | euda(l) | fortram(2) | fortran(?) omp |
two 21873 | 2.4489 | 1.488 | 31.08 | 8.286 |
note:

two cube for this table:

cuda (2) : 1 GPU on 1 node, 2 node=s together

cuda (1) = Z2 GPU on 1 node

fortran(2) : 1 CPU on 1 node, 2 nodes together, only fortran

Tortran(2) omp: 1 CPU on 1 node, 2 nodes together, openMP fortran

lo=st on communication: 1.330/0.662=2

one cube for this table:
cuda (1) : 1 GPU on 1 node, including the MPI communication

N0 COIm: 1 GPU on 1 node, no communication
—

2 Tesla C1060 GPU + MPI 12273 detail link

Summary

® Heterogeneous system can accelerate:
Cell(10x), CUDA(137x), ATI(68x)

e ATI has a good theoretical peak performance,
but CUDA on Nvidia perform better. (our
openCL code not fully vectorized)

e CUDA & openCL perform the same on C2050
e CUDA + MPI can accelerate(3.4x to openMP)

e Future work: improve CUDA + MPI

Reference:

e H. Wong, U. Wong, X. Feng, and Z. Tang,
"Magnetohydrodynamics simulations on graphics
processing units," Imprint, 2009

H.-Y. Schive, Y.-C, Tsal, and T. Chiueh, "GAMER: a
GPU-Accelerated Adaptive Mesh Refinement Code for
Astrophysics,"Astrophys. J. Suppl., vol. 186, pp. 457-
484, 2010

B. Pang, U. Pen, M. Perrone, "Magnetohydrodynamics
on Heterogeneous architectures: a performance
comparison,” Imprint, 2010

Acknowledgement:

We would like to thank Jonathan Dursi, Wenda Han, Qi Liu,
Harald Pfeiffer, Scott Rostup, Daniele P. Scarpazza for helpful
suggestions.

We thank Scott Rostup, Hsi-Yu Schive, Tomoyoshi Shimobaba
for providing their code for our reference, and Hon-Cheng Wong
for providing the detail of their simulation results, and Kiyoshi
Wesley Masui for reviewing the draft, and Gojko Vujanovic for
providing the power consumption measurement.

We acknowledge IBM TJ Watson Research Center for providing
the IBM QS22 Cell blade. Part of Cell computations were
performed on the Cell cluster at the SciNet HPC Consortium.
SciNet is funded by: the Canada Foundation for Innovation under
the auspices of Compute Canada; the Government of Ontario;
Ontario Research Fund - Research Excellence; and the
University of Toronto.

The work of BP is supported by the MITACS ACCELERATE
Scholarship.

Thank you!

How to update magnetic

¢ Find a second-order-accurate, upwind
ElectroMotiveForce V_y*B X

e In the advection step to update b_x and
then immediately use the same EMF for
the constraint step to update b .

b=V X (vXbh), Obx + Oy (vyhx) =

v-s=0, by = Oe(vyby)

Pen, Arras, & Wong 2003

back

Upwind methods

e Upwind methods take into account the
physical nature of the flow when
assigning fluxes for the discrete solution.

e Excellent at capturing shocks and also
hlghly Stab Ie' Courant, Isaason, & Reeves (1952)

Total variation diminishing

e Nonlinear stability condition
e Overall number of oscillations I1s bounded

e A strongly nonlinear flux limiter that adds just
enough diffusion to prevent numerical
instabilitiesN

V)= lu,-u| TV@U™)<TV (')
=1

AI:nt+1/2 — ¢ (AFnL+’1t/2 ’ AFanLf/z

Harten (1983)

Relaxing system

e Euler equation: momentum and energy fluxes
depend on the pressure.

e The flow is considered as a sum of a right-
moving wave u_R and a left-moving u_L.

1-v/c 1+v/c
ut = () " = ()

ou +8FR _8FL B
ot OX OX

0

Jin & Xin 1995

Comparison between OpenCL & CUDA

Time vs Box size (Log-Log)

dot diarmonat OpenCL. on ATE
dash choie: OpeEnCL on MNvida

dash diof asierst: CUDA om Mvidla 4
g0l kot lm=ar L 5 ope-3]

Algorithm — fluid part

e 1D advection egquation

wo=(uy, 2, Uy, 0, U5)

(9, pUx, pry, pUz, €)

Cell dependence

Algorithm — magnetic part

e Constrained transport(CT):
e 1. store magnetic field at cell faces;

e 2. the same electro-motive force is used
Immediately in the constraint step to preserve
zero divergent of magnetic field.

0,b =V x(vxbh) Veb =0

Pen, Arras, & Wong 2008

Cell dependence

Detall for 122”3 box

zingle precision [zecond)

one cube for tThis
cuda (1) : 1 GPU on 1 node, including the MPT communication

no COIm: 1 GPU on 1 node, no communication

for one 12273, extra 230 m=s for communication
including:

device tTo host:

initiate buffer commuinication:

copy inside gpu: (overlan)
wait for communication:

host to device:

buffer calculation on device:

update main matrix data:

	Accelerate MHD
	Outline
	Simulation video
	
	Heterogeneous platform
	The code is suited for acceleration
	Results on different platforms
	CUDA & openCL On Nvidia GPU
	Fortran MPI + CUDA
	Result on MPI + CUDA
	Summary
	Reference:
	Acknowledgement:
	
	Comparison between OpenCL & CUDA
	Detail for 122^3 box

