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Agenda

Coarray background
Programming model
Synchronization
Comparing coarrays to UPC and MPI
Q&A
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Existing parallel model

MPI: de facto standard on distributed memory systems
 Difficult to program

OpenMP: popular on shared memory
 Lack of data locality control
 Not designed for distributed systems
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Coarray background

Proposed by Numrich and Reid [1998]
 Natural extension of Fortran's array language
 Originally named F-- (as jokey reference to C++)

One of the Partitioned Global Address Space languages (PGAS)
 Other GAS languages: UPC and Titanium

Benefits
 One-sided communication
 User controlled data distribution and locality
 Suitable for a variety of architectures: distributed, shared or hybrid

Standardized as a part of Fortran 2008
 Expected to be published in 2010
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Programming model

Single Program Multiple Data (SPMD)
 Fixed number of processes (images)

• “Everything is local!” [Numerich]
 All data is local
 All computation is local

Explicit data partition with one-sided communication
 Remote data movement through codimensions

Programmer explicitly controls the synchronizations
 Good or bad?
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Coarray syntax

CODIMENSION attribute
 double precision, dimension(2,2), CODIMENSION[*] :: x

• or simply use [ ] syntax
 double precision :: x(2,2)[*]

a coarray can have a corank higher than 1
● double precision :: A(100,100)[5,*]

• from ANY single image, one can refer to the array x on image Q using [ ]
• X(:,:)[Q]
• e.g. Y(:,:)    = X(:,:)[Q]
•      X(2,2)[Q] = Z

Coindexed objects
Normally the remote data

• Without [ ] the data reference is local to the image
● X(1,1) = X(2,2)[Q]
● !LHS is local data; RHS is a coindexed object, likely a
● !remote data
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Image 1

x(1,1) x(1,2)

x(2,1) x(2,2)

Image 2

x(1,1) x(1,2)

x(2,1) x(2,2)

Image p

x(1,1) x(1,2)

x(2,1) x(2,2)

Image q

x(1,1) x(1,2)

x(2,1) x(2,2)

Image n

x(1,1) x(1,2)

x(2,1) x(2,2)

Logical view of coarray X(2,2)[*]

Coarray memory model

 

  A fixed number of images during execution
Each has a local array of shape (2 x 2)

examples of data access: local data and remote data
  X(1,1)    =  X(2,2)[q] !assignment occurs on all images
 if (this_image() == 1) X(2,2)[q] = SUM(X(2,:)[p])
                       !computation of SUM occurs on image 1



Compilation Technology

SCINET compiler workshop  | coarray Fortran                © 2009 IBM Corporation

Software Group

Image 1

Real :: X(N)[*]

x ( 1 )

X (N)

x ( n )x(2:n-1)

Image T

x ( 1 )

X (N)

x ( n )x(2:n-1)

Me

x ( 1 )

X (N)

x ( n )x(2:n-1)

Left

x ( 1 )

X (N)

x ( n )x(2:n-1)

Right

x ( 1 )

X (N)

x ( n )x(2:n-1)

 image indexing

me = this_image()
if (me == 1) then
    left = num_images()
else
    left = me - 1
end if

 Execute the shift

SYNC ALL
temp = x(n-1)
x(2:n-1) = x(1:n-2)
x(1) = x(n)[left]
SYNC ALL
x(n) = temp

Example: circular shift by 1

 “Global view” on coarray 
Fortran intrinsic CSHIFT only works 
on local arrays
 this_image(): index of the executing 
image
 num_images(): the total number of 
images
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Synchronization primitives

Multi-image synchronization
 SYNC ALL

 Synchronization across all images
 SYNC IMAGES

 Synchronization on a list of images
Memory barrier

 SYNC MEMORY

Image serialization
 CRITICAL (“the big hammer”)

 Allows one image to execute the block at a time
 LOCK: provide fine-grained disjoint data access

 Simple lock support
Some statements may imply synchronization

 SYNC ALL implied when the application starts
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Image 1

 Master image to distribute and collect data

distribute data

sync images (*)

Perform task

sync images (*)

collect data

perform IO

(Wait for data)

sync images (1)

Perform task

sync images (1)

Image p

(Wait for data)

sync images (1)

Perform task

sync images (1)

Image q

(Wait for data)

sync images (1)

Perform task

sync images (1)

Image n

if (this_image() == 1) then
    call distributeData ()
    SYNC IMAGES (*)
    call performTask ()
    SYNC IMAGES (*)
    call collectData ()
    call performIO ()

else
   SYNC IMAGES (1)
    call performTask ()
    SYNC IMAGES (1)
    call otherWork ()
end if

Other work Other work Other work

 Good:
 Image q starts performTask once its own 

data are set – no wait for image p
 Works well on a balanced system

 Bad if the load is not balanced
 Efficient if collaboration among small set 

of images

Example: SYNC IMAGES
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Atomic load and store

Two atomic operations provided for spin-lock-loop
ATOMIC_DEFINE and ATOMIC_REF

 LOGICAL(ATOMIC_LOGICAL_KIND),SAVE :: LOCKED[*] = .TRUE.
 LOGICAL :: VAL
 INTEGER :: IAM, P, Q
 IAM = THIS_IMAGE()
 IF (IAM == P) THEN
     ! preceding work
     SYNC MEMORY
     CALL ATOMIC_DEFINE (LOCKED[Q], .FALSE.)
     SYNC MEMORY
 ELSE IF (IAM == Q) THEN
     VAL = .TRUE.
     DO WHILE (VAL)
         CALL ATOMIC_REF (VAL, LOCKED)
     END DO
     SYNC MEMORY
     ! Subsequent work
 END IF
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CAF implementation and Performance studies

Existing coarray implementations
 Cray
 Rice University
 G95

Coarray applications
 Most on large distributed systems
 e.g. ocean modeling

Performance evaluation
 A number of performance studies have been done
 CAF  Fortran 90 + MPI

IBM is implementing coarrays
 CAF and UPC on a common run-time
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Standardization status

Coarray is in base language of Fortran 2008
 Could be finalized this May
 Standard to be published in 2010
 Fortran to be the first general purpose language to support parallel 

programming
The coarray TR (future coarray features)

 TEAM and collective subroutines
 More synchronization primitives

 notify / query (point – to – point)
 Parallel IO: multiple images on same file
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CAF :  REAL :: X(2)[*]

 
UPC : shared [2]   float x[2*THREADS]

Image 1 Image 2

Image num_images()

 ... X (2)

X (1)

X (2)

X (1)

X (2)

X (1)

Thread 0 Thread 1

Thread THREADS-1

 ... x[2*THREADS-1]

 x[2*THREADS-2]

x [3]

x [2]

x [1]

x [0]

Comparison between CAF and UPC 
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Coarrays and MPI

Early experience demonstrated coarrays and MPI can coexist in the same 
application
Migration from MPI to coarray has shown some success

Major obstacle: CAF is not widely available
Fortran J3 committee willing to work with MPI forum

 Two issues Fortran committee is currently working on to support:
 C interop with void *

 void * buf; (C)
 TYPE(*), dimension(...) :: buf (Fortran)

 MPI nonblocking calls: MPI_ISEND, MPI_IRECV and MPI_WAIT
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Example: comparing CAF to MPI

MPI:
if (master) then
  r(1) = reynolds
  ...
  r(18) = viscosity
  call mpi_bcast(r,18,real_mp_type, 
                 masterid,
                 MPI_comm_world,
                 ierr)
else
  call mpi_bcast(r, 18,
                 real_mp_type,
                 masterid,
                 MPI_comm_world,
                 ierr)
  reynolds = r(1)
   ...
   viscosity = r(18)
endif

(Ashby and Reid, 2008)

CAF:
sync all
if (master) then
  do i=1, num_images()-1
    reynolds[i] = reynolds
    ...
    viscosity[i] = viscosity
    end do
end if
sync all

Or simply:

sync all
reynolds = reynolds[masterid]
...
viscosity = viscosity[masterid]
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Q & A


