
Compilation Technology

SCINET compiler workshop | February 17-18, 2009             © 2009 IBM Corporation

Software Group

Coarray: a parallel
extension to Fortran

Jim Xia
IBM Toronto Lab
jimxia@ca.ibm.com



2

Compilation Technology

SCINET compiler workshop  | coarray Fortran                © 2009 IBM Corporation

Software Group

Agenda

Coarray background
Programming model
Synchronization
Comparing coarrays to UPC and MPI
Q&A



3

Compilation Technology

SCINET compiler workshop  | coarray Fortran                © 2009 IBM Corporation

Software Group

Existing parallel model

MPI: de facto standard on distributed memory systems
 Difficult to program

OpenMP: popular on shared memory
 Lack of data locality control
 Not designed for distributed systems



Compilation Technology

SCINET compiler workshop  | coarray Fortran                © 2009 IBM Corporation

Software Group

Coarray background

Proposed by Numrich and Reid [1998]
 Natural extension of Fortran's array language
 Originally named F-- (as jokey reference to C++)

One of the Partitioned Global Address Space languages (PGAS)
 Other GAS languages: UPC and Titanium

Benefits
 One-sided communication
 User controlled data distribution and locality
 Suitable for a variety of architectures: distributed, shared or hybrid

Standardized as a part of Fortran 2008
 Expected to be published in 2010



Compilation Technology

SCINET compiler workshop  | coarray Fortran                © 2009 IBM Corporation

Software Group

Programming model

Single Program Multiple Data (SPMD)
 Fixed number of processes (images)

• “Everything is local!” [Numerich]
 All data is local
 All computation is local

Explicit data partition with one-sided communication
 Remote data movement through codimensions

Programmer explicitly controls the synchronizations
 Good or bad?



Compilation Technology

SCINET compiler workshop  | coarray Fortran                © 2009 IBM Corporation

Software Group

Coarray syntax

CODIMENSION attribute
 double precision, dimension(2,2), CODIMENSION[*] :: x

• or simply use [ ] syntax
 double precision :: x(2,2)[*]

a coarray can have a corank higher than 1
● double precision :: A(100,100)[5,*]

• from ANY single image, one can refer to the array x on image Q using [ ]
• X(:,:)[Q]
• e.g. Y(:,:)    = X(:,:)[Q]
•      X(2,2)[Q] = Z

Coindexed objects
Normally the remote data

• Without [ ] the data reference is local to the image
● X(1,1) = X(2,2)[Q]
● !LHS is local data; RHS is a coindexed object, likely a
● !remote data



Compilation Technology

SCINET compiler workshop  | coarray Fortran                © 2009 IBM Corporation

Software Group

Image 1

x(1,1) x(1,2)

x(2,1) x(2,2)

Image 2

x(1,1) x(1,2)

x(2,1) x(2,2)

Image p

x(1,1) x(1,2)

x(2,1) x(2,2)

Image q

x(1,1) x(1,2)

x(2,1) x(2,2)

Image n

x(1,1) x(1,2)

x(2,1) x(2,2)

Logical view of coarray X(2,2)[*]

Coarray memory model

 

  A fixed number of images during execution
Each has a local array of shape (2 x 2)

examples of data access: local data and remote data
  X(1,1)    =  X(2,2)[q] !assignment occurs on all images
 if (this_image() == 1) X(2,2)[q] = SUM(X(2,:)[p])
                       !computation of SUM occurs on image 1



Compilation Technology

SCINET compiler workshop  | coarray Fortran                © 2009 IBM Corporation

Software Group

Image 1

Real :: X(N)[*]

x ( 1 )

X (N)

x ( n )x(2:n-1)

Image T

x ( 1 )

X (N)

x ( n )x(2:n-1)

Me

x ( 1 )

X (N)

x ( n )x(2:n-1)

Left

x ( 1 )

X (N)

x ( n )x(2:n-1)

Right

x ( 1 )

X (N)

x ( n )x(2:n-1)

 image indexing

me = this_image()
if (me == 1) then
    left = num_images()
else
    left = me - 1
end if

 Execute the shift

SYNC ALL
temp = x(n-1)
x(2:n-1) = x(1:n-2)
x(1) = x(n)[left]
SYNC ALL
x(n) = temp

Example: circular shift by 1

 “Global view” on coarray 
Fortran intrinsic CSHIFT only works 
on local arrays
 this_image(): index of the executing 
image
 num_images(): the total number of 
images



Compilation Technology

SCINET compiler workshop  | coarray Fortran                © 2009 IBM Corporation

Software Group

Synchronization primitives

Multi-image synchronization
 SYNC ALL

 Synchronization across all images
 SYNC IMAGES

 Synchronization on a list of images
Memory barrier

 SYNC MEMORY

Image serialization
 CRITICAL (“the big hammer”)

 Allows one image to execute the block at a time
 LOCK: provide fine-grained disjoint data access

 Simple lock support
Some statements may imply synchronization

 SYNC ALL implied when the application starts



Compilation Technology

SCINET compiler workshop  | coarray Fortran                © 2009 IBM Corporation

Software Group

Image 1

 Master image to distribute and collect data

distribute data

sync images (*)

Perform task

sync images (*)

collect data

perform IO

(Wait for data)

sync images (1)

Perform task

sync images (1)

Image p

(Wait for data)

sync images (1)

Perform task

sync images (1)

Image q

(Wait for data)

sync images (1)

Perform task

sync images (1)

Image n

if (this_image() == 1) then
    call distributeData ()
    SYNC IMAGES (*)
    call performTask ()
    SYNC IMAGES (*)
    call collectData ()
    call performIO ()

else
   SYNC IMAGES (1)
    call performTask ()
    SYNC IMAGES (1)
    call otherWork ()
end if

Other work Other work Other work

 Good:
 Image q starts performTask once its own 

data are set – no wait for image p
 Works well on a balanced system

 Bad if the load is not balanced
 Efficient if collaboration among small set 

of images

Example: SYNC IMAGES



Compilation Technology

SCINET compiler workshop  | coarray Fortran                © 2009 IBM Corporation

Software Group

Atomic load and store

Two atomic operations provided for spin-lock-loop
ATOMIC_DEFINE and ATOMIC_REF

 LOGICAL(ATOMIC_LOGICAL_KIND),SAVE :: LOCKED[*] = .TRUE.
 LOGICAL :: VAL
 INTEGER :: IAM, P, Q
 IAM = THIS_IMAGE()
 IF (IAM == P) THEN
     ! preceding work
     SYNC MEMORY
     CALL ATOMIC_DEFINE (LOCKED[Q], .FALSE.)
     SYNC MEMORY
 ELSE IF (IAM == Q) THEN
     VAL = .TRUE.
     DO WHILE (VAL)
         CALL ATOMIC_REF (VAL, LOCKED)
     END DO
     SYNC MEMORY
     ! Subsequent work
 END IF



Compilation Technology

SCINET compiler workshop  | coarray Fortran                © 2009 IBM Corporation

Software Group

CAF implementation and Performance studies

Existing coarray implementations
 Cray
 Rice University
 G95

Coarray applications
 Most on large distributed systems
 e.g. ocean modeling

Performance evaluation
 A number of performance studies have been done
 CAF  Fortran 90 + MPI

IBM is implementing coarrays
 CAF and UPC on a common run-time



Compilation Technology

SCINET compiler workshop  | coarray Fortran                © 2009 IBM Corporation

Software Group

Standardization status

Coarray is in base language of Fortran 2008
 Could be finalized this May
 Standard to be published in 2010
 Fortran to be the first general purpose language to support parallel 

programming
The coarray TR (future coarray features)

 TEAM and collective subroutines
 More synchronization primitives

 notify / query (point – to – point)
 Parallel IO: multiple images on same file



Compilation Technology

SCINET compiler workshop  | coarray Fortran                © 2009 IBM Corporation

Software Group

CAF :  REAL :: X(2)[*]

 
UPC : shared [2]   float x[2*THREADS]

Image 1 Image 2

Image num_images()

 ... X (2)

X (1)

X (2)

X (1)

X (2)

X (1)

Thread 0 Thread 1

Thread THREADS-1

 ... x[2*THREADS-1]

 x[2*THREADS-2]

x [3]

x [2]

x [1]

x [0]

Comparison between CAF and UPC 



Compilation Technology

SCINET compiler workshop  | coarray Fortran                © 2009 IBM Corporation

Software Group

Coarrays and MPI

Early experience demonstrated coarrays and MPI can coexist in the same 
application
Migration from MPI to coarray has shown some success

Major obstacle: CAF is not widely available
Fortran J3 committee willing to work with MPI forum

 Two issues Fortran committee is currently working on to support:
 C interop with void *

 void * buf; (C)
 TYPE(*), dimension(...) :: buf (Fortran)

 MPI nonblocking calls: MPI_ISEND, MPI_IRECV and MPI_WAIT



Compilation Technology

SCINET compiler workshop  | coarray Fortran                © 2009 IBM Corporation

Software Group

Example: comparing CAF to MPI

MPI:
if (master) then
  r(1) = reynolds
  ...
  r(18) = viscosity
  call mpi_bcast(r,18,real_mp_type, 
                 masterid,
                 MPI_comm_world,
                 ierr)
else
  call mpi_bcast(r, 18,
                 real_mp_type,
                 masterid,
                 MPI_comm_world,
                 ierr)
  reynolds = r(1)
   ...
   viscosity = r(18)
endif

(Ashby and Reid, 2008)

CAF:
sync all
if (master) then
  do i=1, num_images()-1
    reynolds[i] = reynolds
    ...
    viscosity[i] = viscosity
    end do
end if
sync all

Or simply:

sync all
reynolds = reynolds[masterid]
...
viscosity = viscosity[masterid]



Compilation Technology

SCINET compiler workshop  | coarray Fortran                © 2009 IBM Corporation

Software Group

Q & A


