

This material is based upon work supported by the Defense Advanced Research Projects Agency under its Agreement No. HR0011-07-9-0002.
Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect
the views of the Defense Advanced Research Projects Agency.

PACT 08

Productive Parallel Programming in PGAS

Calin Cascaval - IBM TJ Watson Research Center
Gheorghe Almasi - IBM TJ Watson Research Center
Ettore Tiotto - IBM Toronto Laboratory
Kit Barton - IBM Toronto Laboratory

2

Productive Parallel Programming in PGAS

This material is based upon work supported by the Defense Advanced Research Projects Agency under its Agreement No.
HR0011-07-9-0002.
Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect
the views of the Defense Advanced Research Projects Agency.

PACT 08

Outline

1. Overview of the PGAS programming model

2. Scalability and performance considerations

3. Compiler optimizations

4. Examples of performance tuning

5. Conclusions

This material is based upon work supported by the Defense Advanced Research Projects Agency under its Agreement No. HR0011-07-9-0002.
Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect
the views of the Defense Advanced Research Projects Agency.

PACT 08

1. Overview of the PGAS programming model

Some slides adapted with permission from Kathy Yelick

4

Productive Parallel Programming in PGAS

This material is based upon work supported by the Defense Advanced Research Projects Agency under its Agreement No.
HR0011-07-9-0002.
Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect
the views of the Defense Advanced Research Projects Agency.

PACT 08

 Partitioned Global Address Space
 Explicitly parallel, shared-memory like programming model

 Global addressable space

– Allows programmers to declare and “directly” access data distributed across the
machine

 Partitioned address space

– Memory is logically partitioned between local and remote (a two-level hierarchy)

– Forces the programmer to pay attention to data locality, by exposing the inherent
NUMA-ness of current architectures

 Single Processor Multiple Data (SPMD) execution model

– All threads of control execute the same program

– Number of threads fixed at startup

– Newer languages such as X10 escape this model, allowing fine-grain threading

 Different language implementations:

– UPC (C-based), CoArray Fortran (Fortran-based), Titanium and X10 (Java-based)

5

Productive Parallel Programming in PGAS

This material is based upon work supported by the Defense Advanced Research Projects Agency under its Agreement No.
HR0011-07-9-0002.
Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect
the views of the Defense Advanced Research Projects Agency.

PACT 08

 Computation is performed in
multiple places.

 A place contains data that can be
operated on remotely.

 Data lives in the place it was
created, for its lifetime.

 A datum in one place may point to a
datum in another place.

 Data-structures (e.g. arrays) may be
distributed across many places.

 Places may have different
computational properties (mapping to a
hierarchy of compute engines)

A place expresses locality.

Address Space

Shared Memory

OpenMP

PGAS

UPC, CAF, X10
Message passing

MPI

Process/Thread

 Partitioned Global Address Space

6

Productive Parallel Programming in PGAS

This material is based upon work supported by the Defense Advanced Research Projects Agency under its Agreement No.
HR0011-07-9-0002.
Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect
the views of the Defense Advanced Research Projects Agency.

PACT 08

UPC Overview and Design Philosophy

 Unified Parallel C (UPC) is:

– An explicit parallel extension of ANSI C

– A partitioned global address space language

 Similar to the C language philosophy

– Programmers are clever and careful, and may need to get close to hardware

• to get performance, but
• can get in trouble

– Concise and efficient syntax

 Common and familiar syntax and semantics for parallel C with simple
extensions to ANSI C

 Based on ideas in Split-C, AC, and PCP

7

Productive Parallel Programming in PGAS

This material is based upon work supported by the Defense Advanced Research Projects Agency under its Agreement No.
HR0011-07-9-0002.
Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect
the views of the Defense Advanced Research Projects Agency.

PACT 08

UPC Execution Model

 A number of threads working independently in a SPMD fashion

– Number of threads available as program variable THREADS

– MYTHREAD specifies thread index (0..THREADS-1)

– upc_barrier is a global synchronization: all wait

– There is a form of parallel loop that we will see later

 There are two compilation modes

– Static Threads mode:

• THREADS is specified at compile time by the user (compiler option)
• The program may use THREADS as a compile-time constant
• The compiler generates more efficient code

– Dynamic threads mode:

• Compiled code may be run with varying numbers of threads
• THREADS is specified at runtime time by the user (via env. variable)

8

Productive Parallel Programming in PGAS

This material is based upon work supported by the Defense Advanced Research Projects Agency under its Agreement No.
HR0011-07-9-0002.
Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect
the views of the Defense Advanced Research Projects Agency.

PACT 08

Hello World in UPC
 Any legal C program is also a legal UPC program

 If you compile and run it as UPC with N threads, it will run N copies
of the program (Single Program executed by all threads).

#include <upc.h>
#include <stdio.h>

int main() {
 printf("Thread %d of %d: Hello UPC world\n", MYTHREAD,
THREADS);
 return 0;
}
hello > xlupc helloWorld.upc
hello > env UPC_NTHREADS=4 ./a.out
Thread 1 of 4: Hello UPC world
Thread 0 of 4: Hello UPC world
Thread 3 of 4: Hello UPC world
Thread 2 of 4: Hello UPC world

9

Productive Parallel Programming in PGAS

This material is based upon work supported by the Defense Advanced Research Projects Agency under its Agreement No.
HR0011-07-9-0002.
Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect
the views of the Defense Advanced Research Projects Agency.

PACT 08

Private vs. Shared Variables in UPC
 Normal C variables and objects are allocated in the private memory space for

each thread.

 Shared variables are allocated only once, with thread 0

 shared int ours;

 int mine;

 Shared variables may not be declared automatic, i.e., may not occur in a in a
function definition, except as static. Why?

Shared

G
lo

b
al

 a
d

d
re

ss

sp
ac

e

Private
mine: mine: mine:

Thread0 Thread1 Threadn

ours:

10

Productive Parallel Programming in PGAS

This material is based upon work supported by the Defense Advanced Research Projects Agency under its Agreement No.
HR0011-07-9-0002.
Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect
the views of the Defense Advanced Research Projects Agency.

PACT 08

Shared Arrays
 Shared arrays are spread over the threads, distributed in a

cyclic fashion

shared int x[THREADS]; /* 1 element per thread */

shared int y[3][THREADS]; /* 3 elements per thread */

shared int z[3][3]; /* 2 or 3 elements per thread */

 Assuming THREADS = 4:

x

y

z

Think of a linearized C
array, then map round-
robin on THREADS

11

Productive Parallel Programming in PGAS

This material is based upon work supported by the Defense Advanced Research Projects Agency under its Agreement No.
HR0011-07-9-0002.
Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect
the views of the Defense Advanced Research Projects Agency.

PACT 08

 The owner computes rule is very common in parallel programming
– Loop over all; work on those owned by this proc

 UPC adds a special type of loop

 upc_forall(init; test; loop; affinity)

 statement;

 Programmer indicates the iterations are independent
– Undefined if there are dependencies across threads

 Affinity expression indicates which iterations to run on each
thread. It may have one of two types:

– Integer: affinity%THREADS is MYTHREAD

 upc_forall(i=0; i<N; ++i; i)

– Pointer: upc_threadof(affinity) is MYTHREAD

 upc_forall(i=0; i<N; ++i; &A[i])

Work Sharing with upc_forall()

12

Productive Parallel Programming in PGAS

This material is based upon work supported by the Defense Advanced Research Projects Agency under its Agreement No.
HR0011-07-9-0002.
Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect
the views of the Defense Advanced Research Projects Agency.

PACT 08

shared int A[10],B[10],C[10];

upc_forall(i=0; i < 10; i++; &A[i]) {
A[i] = B[i] + C[i];

}

 Similar to C for loop, 4th field indicates the affinity

 Thread that “owns” elem. A[i] executes iteration

th0 th1

Work Sharing with upc_forall()

i = 0 i = 2 i = 4 i = 6 i = 8i = 1 i = 3 i = 5 i = 7 i = 9

2 threads
No communication

13

Productive Parallel Programming in PGAS

This material is based upon work supported by the Defense Advanced Research Projects Agency under its Agreement No.
HR0011-07-9-0002.
Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect
the views of the Defense Advanced Research Projects Agency.

PACT 08

Vector Addition with upc_forall

 #define N 100*THREADS

shared int v1[N], v2[N], sum[N];

void main() {
int i;
upc_forall(i=0; i<N; i++; i)

 sum[i]=v1[i]+v2[i];
}

• Equivalent code could use “&sum[i]” for affinity

• The code would be correct but slow if the affinity expression were i+1
rather than i.

14

Productive Parallel Programming in PGAS

This material is based upon work supported by the Defense Advanced Research Projects Agency under its Agreement No.
HR0011-07-9-0002.
Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect
the views of the Defense Advanced Research Projects Agency.

PACT 08

UPC Global Synchronization

 Controls relative execution of threads
 UPC has two basic forms of barriers:

– Barrier: block until all other threads arrive
 upc_barrier

– Split-phase barriers
 upc_notify; this thread is ready for barrier

 do computation unrelated to barrier

 upc_wait; wait for others to be ready

 Optional labels allow for debugging
#define MERGE_BARRIER 12

if (MYTHREAD%2 == 0) {

 ...

 upc_barrier MERGE_BARRIER;

} else {

 ...

 upc_barrier MERGE_BARRIER;

}

15

Productive Parallel Programming in PGAS

This material is based upon work supported by the Defense Advanced Research Projects Agency under its Agreement No.
HR0011-07-9-0002.
Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect
the views of the Defense Advanced Research Projects Agency.

PACT 08

Recap: Shared Variables, Work sharing
and Synchronization

 With what you’ve seen until now, you can write a bare-
bones data-parallel program

 Shared variables are distributed and visible to all threads
– Shared scalars have affinity to thread 0

– Shared arrays are distributed (cyclically by default) on all threads

– We shall look next at how to control memory layouts, shared pointers, etc.

 Execution model is SPMD with the upc_forall provided
to share work

 Barriers and split barriers provide global synchronization

16

Productive Parallel Programming in PGAS

This material is based upon work supported by the Defense Advanced Research Projects Agency under its Agreement No.
HR0011-07-9-0002.
Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect
the views of the Defense Advanced Research Projects Agency.

PACT 08

Blocked Layouts in UPC
• The cyclic layout is typically stored in one of two ways

• Distributed memory: each processor has a chunk of memory
• Thread 0 would have: 0,THREADS, THREADS*2,… in a chunk

• Shared memory machine: all data may be on one chunk

• Shared memory would have: 0,1,2,…THREADS,THREADS+1,…

• Vector addition example can be rewritten as follows

blocked layout

#define N 100*THREADS

shared int [*] v1[N], v2[N], sum[N];

void main() {
int i;
upc_forall(i=0; i<N; i++; &a[i])

sum[i]=v1[i]+v2[i];

}

17

Productive Parallel Programming in PGAS

This material is based upon work supported by the Defense Advanced Research Projects Agency under its Agreement No.
HR0011-07-9-0002.
Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect
the views of the Defense Advanced Research Projects Agency.

PACT 08

Layouts in General

 All non-array objects have affinity with thread zero.

 Array layouts are controlled by layout specifiers:

– Empty (cyclic layout)

– [*] (blocked layout)

– [0] or [] (indefinitely layout, all on 1 thread)

– [b] or [b1][b2]…[bn] = [b1*b2*…bn] (fixed block size)

 The affinity of an array element is defined in terms of:

– block size, a compile-time constant

– and THREADS.

 Element i has affinity with thread

 (i / block_size) % THREADS

 In 2D and higher, linearize the elements as in a C representation, and
then use above mapping

Productive Parallel Programming in PGAS

This material is based upon work supported by the Defense Advanced Research Projects Agency under its Agreement No.
HR0011-07-9-0002.
Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect
the views of the Defense Advanced Research Projects Agency.

PACT 08

Distribution of a shared array in UPC

 Elements are distributed in block-cyclic fashion

 Each thread “owns” blocks of adjacent elements

0 1

th0 th0 th1 th1 th0 th0 th1 th1 th0 th0

2 3 4 5 6 7 8 9

2 threads

shared [2] int X[10];

Blocking factor

Productive Parallel Programming in PGAS

This material is based upon work supported by the Defense Advanced Research Projects Agency under its Agreement No.
HR0011-07-9-0002.
Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect
the views of the Defense Advanced Research Projects Agency.

PACT 08

Physical layout of shared arrays

shared [2] int X[10];

0 1

th0 th0 th1 th1 th0 th0 th1 th1 th0 th0

2 3 4 5 6 7 8 9

2 threads

Logical Distribution

0 1

th0 th0 th0 th0 th0 th0

4 5 8 9

th1 th1

2 3

th1 th1

6 7

Physical Distribution

Productive Parallel Programming in PGAS

This material is based upon work supported by the Defense Advanced Research Projects Agency under its Agreement No.
HR0011-07-9-0002.
Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect
the views of the Defense Advanced Research Projects Agency.

PACT 08

Terminology

upc_threadof(&a[i])
– Thread that owns a[i]

upc_phaseof(&a[i])
– The position of a[i] within its block

course(&a[i])
– The block index of a[i]

0 1

th0 th0 th1 th1 th0 th0 th1 th1 th0 th0

2 3 4 5 6 7 8 9

Examples

shared [2] int X[10];

upc_threadof(&a[2]) = 1

upc_threadof(&a[5]) = 0

upc_phaseof(&a[2]) = 0

upc_phaseof(&a[5]) = 1

course(&a[2]) = 0

course(&a[5]) = 1

21

Productive Parallel Programming in PGAS

This material is based upon work supported by the Defense Advanced Research Projects Agency under its Agreement No.
HR0011-07-9-0002.
Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect
the views of the Defense Advanced Research Projects Agency.

PACT 08

UPC Matrix Vector Multiplication Code

#define N THREADS
shared [BF] int a[N][N];
shared int b[N], c[N];

int main (void) {
 int i, j;
 upc_forall(i = 0; i < N; i++; i) {
 c[i] = 0;
 for (j = 0; j < N; j++)
 c[i] += a[i][j]*b[j];
 }
 return 0;
}

• Matrixvector multiplication with matrix stored by rows

BF = 1

X

BF = 4

X

22

Productive Parallel Programming in PGAS

This material is based upon work supported by the Defense Advanced Research Projects Agency under its Agreement No.
HR0011-07-9-0002.
Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect
the views of the Defense Advanced Research Projects Agency.

PACT 08

Pointers to Shared vs. Arrays

#define N 100*THREADS

shared int v1[N], v2[N], sum[N];

void main() {
int i;
shared int *p1, *p2;

p1=v1; p2=v2;
for (i=0; i<N; i++, p1++, p2++){

 if (i%THREADS == MYTHREAD)
sum[i]= *p1 + *p2;

 }

}

• In the C tradition, array can be access through pointers
• Here is the vector addition example using pointers

v1

p1

23

Productive Parallel Programming in PGAS

This material is based upon work supported by the Defense Advanced Research Projects Agency under its Agreement No.
HR0011-07-9-0002.
Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect
the views of the Defense Advanced Research Projects Agency.

PACT 08

UPC Pointers

SS (p4)SP (p2)Shared

PS (p3)PP (p1)Private

SharedLocal

Where does the pointer point to?

Where does the
pointer reside?

int *p1; /* private pointer to local memory */
shared int *p2; /* private pointer to shared space */
int *shared p3; /* shared pointer to local memory */
shared int *shared p4; /* shared pointer to shared space */

Shared to private is not recommended. Why?

24

Productive Parallel Programming in PGAS

This material is based upon work supported by the Defense Advanced Research Projects Agency under its Agreement No.
HR0011-07-9-0002.
Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect
the views of the Defense Advanced Research Projects Agency.

PACT 08

UPC Pointers

int *p1; /* private pointer to local memory
*/
shared int *p2; /* private pointer to shared space
*/
int *shared p3; /* shared pointer to local memory
*/
shared int *shared p4; /* shared pointer to shared space
*/

Shared

G
lo

b
a

l
ad

d
re

ss
 s

p
a

ce

Private

Thread0 Thread1 Threadn

p2: p2: p2:

p1: p1: p1:

p4: p4: p4:

p3: p3: p3:

Pointers to shared often require more storage and are more costly to
dereference; they may refer to local or remote memory.

25

Productive Parallel Programming in PGAS

This material is based upon work supported by the Defense Advanced Research Projects Agency under its Agreement No.
HR0011-07-9-0002.
Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect
the views of the Defense Advanced Research Projects Agency.

PACT 08

Common Uses for UPC Pointer Types
int *p1;

– These pointers are fast (just like C pointers)

– Use to access local data in part of code performing local work

– Often cast a pointer-to-shared to one of these to get faster access
to shared data that is local

shared int *p2;

– Use to refer to remote data

– Larger and slower due to test-for-local + possible communication

int * shared p3;

– Not recommended

shared int * shared p4;
– Use to build shared linked structures, e.g., a linked list

26

Productive Parallel Programming in PGAS

This material is based upon work supported by the Defense Advanced Research Projects Agency under its Agreement No.
HR0011-07-9-0002.
Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect
the views of the Defense Advanced Research Projects Agency.

PACT 08

UPC Pointers

 Pointer arithmetic supports blocked and non-blocked array
distributions

 Casting of shared to private pointers is allowed but not vice
versa !

 When casting a pointer to shared to a private pointer, the thread
number of the pointer to shared may be lost

 Casting of shared to private is well defined only if the object
pointed to by the pointer to shared has affinity with the thread
performing the cast

27

Productive Parallel Programming in PGAS

This material is based upon work supported by the Defense Advanced Research Projects Agency under its Agreement No.
HR0011-07-9-0002.
Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect
the views of the Defense Advanced Research Projects Agency.

PACT 08

Pointer Query Functions

 size_t upc_threadof(shared void *ptr);
– returns the thread number that has affinity to the pointer to shared

 size_t upc_phaseof(shared void *ptr);
– returns the index (position within the block)field of the pointer to shared

 size_t upc_addrfield(shared void *ptr);
– returns the address of the block which is pointed at by the pointer to shared

 shared void *upc_resetphase(shared void *ptr);
– resets the phase to zero

28

Productive Parallel Programming in PGAS

This material is based upon work supported by the Defense Advanced Research Projects Agency under its Agreement No.
HR0011-07-9-0002.
Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect
the views of the Defense Advanced Research Projects Agency.

PACT 08

Synchronization primitives
 We have seen upc_barrier, upc_notify and upc_wait

 UPC supports locks:

– Represented by an opaque type: upc_lock_t

– Must be allocated before use:

upc_lock_t *upc_all_lock_alloc(void);

 allocates 1 lock, pointer to all threads

upc_lock_t *upc_global_lock_alloc(void);

 allocates 1 lock, pointer to all threads

– To use a lock:

void upc_lock(upc_lock_t *l)

void upc_unlock(upc_lock_t *l)

 use at start and end of critical region

– Locks can be freed when not in use

void upc_lock_free(upc_lock_t *ptr);

29

Productive Parallel Programming in PGAS

This material is based upon work supported by the Defense Advanced Research Projects Agency under its Agreement No.
HR0011-07-9-0002.
Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect
the views of the Defense Advanced Research Projects Agency.

PACT 08

Dynamic memory allocation
 As in C, memory can be dynamically allocated

 UPC provides several memory allocation routines to obtain space in the
shared heap

– shared void* upc_all_alloc(size_t nblocks, size_t nbytes)

• a collective operation that allocates memory on all threads
• layout equivalent to: shared [nbytes] char[nblocks * nbytes]

– shared void* upc_global_alloc(size_t nblocks, size_t nbytes)

• A non-collective operation, invoked by one thread to allocate memory on all threads
• layout equivalent to: shared [nbytes] char[nblocks * nbytes]

– shared void* upc_alloc(size_t nbytes)

• A non-collective operation to obtain memory in the thread’s shared section of
memory

– void upc_free(size_t nbytes)

• A non-collective operation to free data allocated in shared memory

• Why do we need just one version?

30

Productive Parallel Programming in PGAS

This material is based upon work supported by the Defense Advanced Research Projects Agency under its Agreement No.
HR0011-07-9-0002.
Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect
the views of the Defense Advanced Research Projects Agency.

PACT 08

Distributed arrays allocated dynamically

typedef shared [] int *sdblptr;

shared sdblptr directory[THREADS];

int main() {

 …

 directory[MYTHREAD] = upc_alloc(local_size*sizeof(int));

 upc_barrier;

 …

 /* use the array */

 upc_barrier;

 upc_free(directory[MYTHREAD]);

}

31

Productive Parallel Programming in PGAS

This material is based upon work supported by the Defense Advanced Research Projects Agency under its Agreement No.
HR0011-07-9-0002.
Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect
the views of the Defense Advanced Research Projects Agency.

PACT 08

Data movement

 Fine grain (array element, by array element access) are easy to program
in an imperative way. However, especially on distributed memory
machines, block transfers are more efficient

 UPC provides library functions for data movement and collective
operations:

– upc_memset

• Set a block of values in shared memory

– upc_memget, upc_memput

• Transfer blocks of data from shared memory to/from private memory

– upc_memcpy

• Transfer blocks of data from shared memory to shared memory

 Collective operations (broadcast, reduce, etc.)
• A set of function calls is specified in the standard, but it’s being reworked. More about

this a bit later

32

Productive Parallel Programming in PGAS

This material is based upon work supported by the Defense Advanced Research Projects Agency under its Agreement No.
HR0011-07-9-0002.
Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect
the views of the Defense Advanced Research Projects Agency.

PACT 08

Memory Consistency

 The consistency model defines the order in which one thread may see another
threads accesses to memory

– If you write a program with unsychronized accesses, what happens?

– Does this work?

data = … while (!flag) { };

flag = 1; … = data; // use the data

 UPC has two types of accesses:

– Strict: will always appear in order

– Relaxed: may appear out of order to other threads

 There are several ways of designating the type, commonly:

– Use the include file:

#include <upc_relaxed.h>

– Which makes all accesses in the file relaxed by default

– Use strict on variables that are used as synchronization (flag)

33

Productive Parallel Programming in PGAS

This material is based upon work supported by the Defense Advanced Research Projects Agency under its Agreement No.
HR0011-07-9-0002.
Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect
the views of the Defense Advanced Research Projects Agency.

PACT 08

Data movement Collectives

 Used to move shared data across threads:
- upc_all_broadcast(shared void* dst, shared void* src, size_t nbytes, …)

• A thread copies a block of memory it “owns” and sends it to all threads
- upc_all_scatter(shared void* dst, shared void *src, size_t nbytes, …)

• A single thread splits memory in blocks and sends each block to a different
thread

- upc_all_gather(shared void* dst, shared void *src, size_t nbytes, …)

• Each thread copies a block of memory it “owns” and sends it to a single
thread

- upc_all_gather_all(shared void* dst, shared void *src, size_t nbytes, …)

• Each threads copies a block of memory it “owns” and sends it to all threads
- upc_all_exchange(shared void* dst, shared void *src, size_t nbytes, …)

• Each threads splits memory in blocks and sends each block to all thread
- upc_all_permute(shared void* dst, shared void *src, shared int* perm, size_t nbytes, …)

• Each threads copies a block of memory and sends it to thread in perm[i]

34

Productive Parallel Programming in PGAS

This material is based upon work supported by the Defense Advanced Research Projects Agency under its Agreement No.
HR0011-07-9-0002.
Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect
the views of the Defense Advanced Research Projects Agency.

PACT 08

upc_all_broadcast

THREAD 0

THREAD i

THREAD n

 Thread 0 copies a block of memory and sends it to all threads

dst

dst

dst

src

35

Productive Parallel Programming in PGAS

This material is based upon work supported by the Defense Advanced Research Projects Agency under its Agreement No.
HR0011-07-9-0002.
Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect
the views of the Defense Advanced Research Projects Agency.

PACT 08

upc_all_scatter

THREAD 0

THREAD i

THREAD n

Thread 0 sends a unique block to all threads

dst

dst

dst

src

36

Productive Parallel Programming in PGAS

This material is based upon work supported by the Defense Advanced Research Projects Agency under its Agreement No.
HR0011-07-9-0002.
Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect
the views of the Defense Advanced Research Projects Agency.

PACT 08

upc_all_gather

THREAD 0

THREAD i

THREAD n

Each thread sends a block to thread 0

src

src

src

dst

37

Productive Parallel Programming in PGAS

This material is based upon work supported by the Defense Advanced Research Projects Agency under its Agreement No.
HR0011-07-9-0002.
Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect
the views of the Defense Advanced Research Projects Agency.

PACT 08

Computational Collectives

 Used to perform data reductions
- upc_all_reduceT(shared void* dst, shared void* src, upc_op_t op, …)

- upc_all_prefix_reduceT(shared void* dst, shared void *src, upc_op_t op, …)

 One version for each type T (22 versions in total)

 Many operations are supported:

• OP can be: +, *, &, |, xor, &&, ||, min, max

• perform OP on all elements of src array and place result in dst array

38

Productive Parallel Programming in PGAS

This material is based upon work supported by the Defense Advanced Research Projects Agency under its Agreement No.
HR0011-07-9-0002.
Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect
the views of the Defense Advanced Research Projects Agency.

PACT 08

upc_all_reduce

THREAD 0

THREAD i

THREAD n

Threads perform partial sums, each partial sum added and result
stored on thread 0

1 2 3

4 5 6

7 8 9

6

15

24

45 dst

src

src

src

This material is based upon work supported by the Defense Advanced Research Projects Agency under its Agreement No. HR0011-07-9-0002.
Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect
the views of the Defense Advanced Research Projects Agency.

PACT 08

Scalability and performance considerations

Productive Parallel Programming in PGAS

This material is based upon work supported by the Defense Advanced Research Projects Agency under its Agreement No.
HR0011-07-9-0002.
Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect
the views of the Defense Advanced Research Projects Agency.

PACT 08

Scalability: Rules of thumb

 Things to avoid:

– UPC tempts user into fine-grain communication

– UPC tempts user into bad data layouts

– The siren song of UPC locks

 Things to take advantage of:

– Global view makes reasoning about program easier

• The “G” ins PGAS

– Collective communication

Productive Parallel Programming in PGAS

This material is based upon work supported by the Defense Advanced Research Projects Agency under its Agreement No.
HR0011-07-9-0002.
Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect
the views of the Defense Advanced Research Projects Agency.

PACT 08

Simple sum: Introduction

 Simple forall loop to add values into a sum

shared int values[N], sum;

sum = 0;
upc_forall (int i=0; i<N; i++; &values[i])
 sum += values[i];

 Is there a problem with this code ?

 Implementation is broken: “sum” is not guarded by a lock

 Write-after-write hazard; will get different answers every time

Productive Parallel Programming in PGAS

This material is based upon work supported by the Defense Advanced Research Projects Agency under its Agreement No.
HR0011-07-9-0002.
Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect
the views of the Defense Advanced Research Projects Agency.

PACT 08

Simple sum: using locks

 Correct implementation

 But horrible performance

 Lock is used for every array value !!!

 Easy you say … let’s use a lock !

shared int values[N], sum;
upc_lock_t mylock;

upc_forall (int i=0; i<N; i++; &values[i]) {
 upc_lock (&mylock);
 sum += values[i];
 upc_unlock (&mylock);
}

Productive Parallel Programming in PGAS

This material is based upon work supported by the Defense Advanced Research Projects Agency under its Agreement No.
HR0011-07-9-0002.
Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect
the views of the Defense Advanced Research Projects Agency.

PACT 08

Simple sum: minimizing lock use

 Better performance if N >> THREADS

 Still O(N) communication!

shared int values[N], sum;
shared int partialsums[THREADS];

partialsum[MYTHREAD]=0;
upc_forall (int i=0; i<N; i++; &values[i]) {

 partialsum[MYTHREAD] += values[i];
}

upc_forall (int i=0; i<THREADS; i++; partialsums[i]) {
 upc_lock (&mylock);
 sum += partialsums[i];
 upc_unlock (&mylock);

}

Productive Parallel Programming in PGAS

This material is based upon work supported by the Defense Advanced Research Projects Agency under its Agreement No.
HR0011-07-9-0002.
Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect
the views of the Defense Advanced Research Projects Agency.

PACT 08

Simple sum: avoiding locks

 Assuming N = k * THREADS (or array padded with zeroes)

shared int values[N], sum;

upc_all_reduceI (&sum,
 values,
 UPC_ADD,
 THREADS,
 N/THREADS,
 NULL,
 UPC_IN_ALLSYNC|UPC_OUT_ALLSYNC);

 Typical O(log(n)) scalability (like MPI reductions)

 Your lesson: avoid locks! There is almost always a better
solution

Productive Parallel Programming in PGAS

This material is based upon work supported by the Defense Advanced Research Projects Agency under its Agreement No.
HR0011-07-9-0002.
Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect
the views of the Defense Advanced Research Projects Agency.

PACT 08

Access Granularity: Stencil

Naive solution:

shared double A[N][N];

upc_forall (i=1; i<N-1; i++; continue)
 upc_forall (j=1; j<N-1; j++; &A[i][j])
 A[i][j] = 0.25 *(A[i-1][j]+A[i+1][j]+A[i][j-1]+A[i][j+1];

This is bad because all accesses right of 0.25 are likely non-local.

Communication traffic:
4 * N * N * THREADS elements
4 * N * N * THREADS accesses

Productive Parallel Programming in PGAS

This material is based upon work supported by the Defense Advanced Research Projects Agency under its Agreement No.
HR0011-07-9-0002.
Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect
the views of the Defense Advanced Research Projects Agency.

PACT 08

Access Granularity: Banded Stencil

Better solution: banded layout

shared [N*N/THREADS] double A[N][N];

upc_forall (i=1; i<N-1; i++; continue)
 upc_forall (j=1; j<N-1; j++; &A[i][j])
 A[i][j] = 0.25 *(A[i-1][j]+A[i+1][j]+A[i][j-1]+A[i][j+1];

Better, because only 2*N accesses per thread are non-local

Communication traffic:
2 * N * THREADS elements
2 * N * THREADS accesses

Productive Parallel Programming in PGAS

This material is based upon work supported by the Defense Advanced Research Projects Agency under its Agreement No.
HR0011-07-9-0002.
Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect
the views of the Defense Advanced Research Projects Agency.

PACT 08

Access Granularity: Shadow
Exchange

Banded layout with shadow regions:

#define B (N*(N+2*THREADS)/THREADS)
shared [B] double A[N+2*THREADS][N];

/* exchange shadows (code incomplete, no bounds checks!) */
int l=MYTHREAD*B; /* lower shadow */
upc_memget (&A[l][0], &A[l-2][0], N*sizeof(double));
int u=(MYTHREAD+1)*B-1; /* upper shadow row */
upc_memget (&A[u][0], &A[u+2][0], N*sizeof(double));

/* stencil code as usual */
...

Shadow region exchange

Communication traffic:
2 * N * THREADS elements
2 * THREADS accesses

Productive Parallel Programming in PGAS

This material is based upon work supported by the Defense Advanced Research Projects Agency under its Agreement No.
HR0011-07-9-0002.
Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect
the views of the Defense Advanced Research Projects Agency.

PACT 08

Access Granularity: Tiled layout

Tiled layout (UPC extension)

#define B
shared [B][B] double A[N][N];

 Very complicated code (exchange buffers are not contiguous) (*)

 Highly scalable: per-thread communication costs decrease with
scaling

Communication traffic:
4 * N * sqrt(T) elements
4 * T accesses

(*) compiler aggregation optimization can help
keep code small

Productive Parallel Programming in PGAS

This material is based upon work supported by the Defense Advanced Research Projects Agency under its Agreement No.
HR0011-07-9-0002.
Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect
the views of the Defense Advanced Research Projects Agency.

PACT 08

Matrix multiplication: Introduction

shared double A[M][P], B[P][N], C[M][N];

forall (i=0; i<M; i++; continue)
 forall (j=0; j<N; j++; &C[i][j])
 for (k=0; k<P; k++)
 C[i][j] += A[i][k]*B[k][j];

Problem:

 Accesses to A and B are mostly non-local

 Fine grain remote access == bad performance!

Productive Parallel Programming in PGAS

This material is based upon work supported by the Defense Advanced Research Projects Agency under its Agreement No.
HR0011-07-9-0002.
Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect
the views of the Defense Advanced Research Projects Agency.

PACT 08

Matrix multiplication: Block matrices
shared struct { int x[B][B]; } A[M1][P1], B[P1][N1], C[M1]
[N1];

forall (i=0; i<M1; i++; continue)
 forall (j=0; j<N1; j++; &C[i][j])
 for (k=0; k<P1; k++) {
 upc_memget (alocal, &A[i][k], B*B*sizeof(double));
 upc_memget (blocal, &B[k][j], B*B*sizeof(double));
 dgemm (alocal, blocal, &C[i][j]);
 }

– Good:

• Fewer accesses, large granularity
• Improved single-node performance (ESSL library call)

– Bad:

• Code has changed significantly
• Still not scalable performance: O(n3) communication

Productive Parallel Programming in PGAS

This material is based upon work supported by the Defense Advanced Research Projects Agency under its Agreement No.
HR0011-07-9-0002.
Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect
the views of the Defense Advanced Research Projects Agency.

PACT 08

Blocked Matrix Multiply scaling
P5 cluster, 4 nodes x 8 threads/node

4 8 16 24 32
0

20

40

60

80

100

120

140

160

180

200

4 nodes
4 nodesideal

Number of threads

Pe
rfo

rm
an

ce
 (G

Fl
op

s)

Productive Parallel Programming in PGAS

This material is based upon work supported by the Defense Advanced Research Projects Agency under its Agreement No.
HR0011-07-9-0002.
Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect
the views of the Defense Advanced Research Projects Agency.

PACT 08

Matrix multiplication: New Layout

typedef shared { int x[B][B]; } Block;
shared [M1*sizeof(Block)] Block A[M1][P1];
shared [P1*sizeof(Block)] Block B[P1][N1];
shared [M1*sizeof(Block)] Block C[M1][N1];

Good:

– no locality issues on A and C (traversing the same way)

 Bad:

– B is traversed across block layout (communication!)

x =

Productive Parallel Programming in PGAS

This material is based upon work supported by the Defense Advanced Research Projects Agency under its Agreement No.
HR0011-07-9-0002.
Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect
the views of the Defense Advanced Research Projects Agency.

PACT 08

Matrix Multiplication: Tiled Layouts

#pragma processors C(Tx, Ty)
shared [B][B] double C[M][N];

 Good:
– Allows control of block placement on processor grid

– Allows C to be accessed as array, not as struct

– Allows communication among rows, cols of processors (scalable
communication)

 Bad:

– UPC extension: not available in vanilla UPC

– Not yet available in IBM UPC

 Good:
– Attempting to add this into standard

Productive Parallel Programming in PGAS

This material is based upon work supported by the Defense Advanced Research Projects Agency under its Agreement No.
HR0011-07-9-0002.
Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect
the views of the Defense Advanced Research Projects Agency.

PACT 08

Scalability: Matrix multiplication:
Tiled layout key to performance

UPC matrix multiplication on a 16-rack Blue Gene/L

This material is based upon work supported by the Defense Advanced Research Projects Agency under its Agreement No. HR0011-07-9-0002.
Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect
the views of the Defense Advanced Research Projects Agency.

PACT 08

3. Compiler optimizations3

56

Productive Parallel Programming in PGAS

This material is based upon work supported by the Defense Advanced Research Projects Agency under its Agreement No.
HR0011-07-9-0002.
Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect
the views of the Defense Advanced Research Projects Agency.

PACT 08

UPC hybrid runtime stack

Distributed UPC API

BlueGene

Messag.

Myrinet

GM / MX

TCP/IP

sockets
LAPI

PERCS

HFI

shared

array

indexing

memory

allocation

deref

assign

update

startup

shutdown
SVD

UPC compiler/runtime API

collective

API

Internal UPC API

di
st

rib

u
te

d
th

re
a

d
ed

lo
ca

lit
y-

aw
a

re

xlUPC Front-end (based on xlc)

TPO (High level optimizations + UPC specific optimizations)

57

Productive Parallel Programming in PGAS

This material is based upon work supported by the Defense Advanced Research Projects Agency under its Agreement No.
HR0011-07-9-0002.
Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect
the views of the Defense Advanced Research Projects Agency.

PACT 08

XL-UPC Runtime System

Designed for scalability

 Implementations available for
– SMP using pthreads

– Clusters using LAPI

– BlueGene/L using the BG/L message layer

Provides a unique API to the compiler for all the
above implementations

Provides management of and access to shared data
in a scalable manner using the Shared Variable
Directory

58

Productive Parallel Programming in PGAS

This material is based upon work supported by the Defense Advanced Research Projects Agency under its Agreement No.
HR0011-07-9-0002.
Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect
the views of the Defense Advanced Research Projects Agency.

PACT 08

Anatomy of a shared access

Anatomy of a runtime call

SVD
access

55

offset calc
555

Memory
access

555

T
im

e
 (

n
s

)

shared [BF] int A[N],B[N],C[N];

upc_forall (i=0; i < N, ++i; &A[i])

 A[i] = B[i] + C[i];

Generated code (loop body):

__xlupc_deref_array(C_h, __t1, i, sizeof(int), …);

__xlupc_deref_array(B_h, __t2, i, sizeof(int), …);

__t3 = __t1 + __t2;

__xlupc_assign_array(A_h, __t3, i, sizeof(int), …);

59

Productive Parallel Programming in PGAS

This material is based upon work supported by the Defense Advanced Research Projects Agency under its Agreement No.
HR0011-07-9-0002.
Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect
the views of the Defense Advanced Research Projects Agency.

PACT 08

UPC Optimizer Infrastructure

Constant
Propagation

Copy
Propagation

Dead store
elimination

Dead Code
Elimination

Data and Control Flow Optimizer

Expression
simplification

Backward and
Forward store
motion

Loop
Normalization

Loop
Unrolling Redundant

Condition
Elimination

Loop
Unswitching

UPC Transformations

Thread Local Storage
Transformations

Loop Optimizer

UPC Forall
Versioning

UPC
Privatization

UPC Remote
Update

UPC Forall
Loop Reshape

Traditional Loop
Optimizations

(subset)

UPC Locality
Analysis

1) Remove overhead

2) Exploit Locality

3) Reduce communication

- UPC Forall Loop Reshape

- UPC Forall Loop Versioning
- UPC Privatization

- UPC Remote Update

Code Generation

Optimizer infrastructure applicable to other PGAS languages (Co-Array Fortran)

60

Productive Parallel Programming in PGAS

This material is based upon work supported by the Defense Advanced Research Projects Agency under its Agreement No.
HR0011-07-9-0002.
Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect
the views of the Defense Advanced Research Projects Agency.

PACT 08

Optimizing Shared Object Accesses

 When shared data is accessed, function calls to the
RTS are used to set or get the shared data

 The calls to the RTS use the Shared Variable
Directory (SVD) to locate the shared data

– This lookup requires several pointer dereferences and is expensive

 When the compiler can determine the relative thread
that owns each shared reference, it can perform
several different optimizations to reduce the
overhead of RTS calls

61

Productive Parallel Programming in PGAS

This material is based upon work supported by the Defense Advanced Research Projects Agency under its Agreement No.
HR0011-07-9-0002.
Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect
the views of the Defense Advanced Research Projects Agency.

PACT 08

UPC Locality Analysis

shared [4] int A[Z][Z], B[Z][Z], C[Z][Z];

int main () {

int k , l ;

for (k =0; k<Z ; k++) {

upc_forall (l=0; l < Z; l++; &A[k][l]) {

A[k][l] = 0 ;

B[k][l+1] = m+2;

C[k][l+14] = m*3;

}

}

}

All accesses of A[k][l] are

local to executing thread

4 UPC Threads

62

Productive Parallel Programming in PGAS

This material is based upon work supported by the Defense Advanced Research Projects Agency under its Agreement No.
HR0011-07-9-0002.
Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect
the views of the Defense Advanced Research Projects Agency.

PACT 08

UPC Locality Analysis

shared [4] int A[Z][Z], B[Z][Z], C[Z][Z];

int main () {

int k , l ;

for (k =0; k<Z ; k++) {

upc_forall (l=0; l < Z; l++; &A[k][l]) {

A[k][l] = 0 ;

B[k][l+1] = m+2;

C[k][l+14] = m*3;

}

}

}

Some accesses of A[k][l] are

local, some are remote

The point where the locality

changes is called the cut

4 UPC Threads

63

Productive Parallel Programming in PGAS

This material is based upon work supported by the Defense Advanced Research Projects Agency under its Agreement No.
HR0011-07-9-0002.
Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect
the views of the Defense Advanced Research Projects Agency.

PACT 08

UPC Locality Analysis

shared [4] int A[Z][Z], B[Z][Z], C[Z][Z];

int main () {

int k , l ;

for (k =0; k<Z ; k++) {

upc_forall (l=0; l < Z; l++; &A[k][l]) {

A[k][l] = 0 ;

B[k][l+1] = m+2;

C[k][l+14] = m*3;

}

}

}

Some accesses of A[k][l] are

remote, some are local

Account for the block-cyclic

distribution in UPC

4 UPC Threads

64

Productive Parallel Programming in PGAS

This material is based upon work supported by the Defense Advanced Research Projects Agency under its Agreement No.
HR0011-07-9-0002.
Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect
the views of the Defense Advanced Research Projects Agency.

PACT 08

UPC Locality Analysis

 Compiler refactors the original loop nest into
regions where the locality is constant

 The regions are created using cuts

 Once the loop is refactored, the compiler builds a
Shared Reference Map that maps the shared
references to the relative thread that owns them

65

Productive Parallel Programming in PGAS

This material is based upon work supported by the Defense Advanced Research Projects Agency under its Agreement No.
HR0011-07-9-0002.
Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect
the views of the Defense Advanced Research Projects Agency.

PACT 08

Shared Reference Map

shared [4] int A[N][N], B[N][N], C[N][N] ;

int main () {

 int i, j ;

 for (i=0; i < N; i++) {

 upc_forall (j=0; j < N; j++; &A[i][j]) {

 if (j < 2) {

 A[i][j] = 0 ; / / A1

 B[i][j+1] = m+2; / / B1

 C[i][j+14] = m*3; / / C1

 } else if (j < 3) {

 A[i][j] = 0 ; / / A2

 B[i][j+1] = m+2; / / B2

 C[i][j+14] = m*3; / / C2

 } else {

 A[i][j] = 0 ; / / A3

 B[i][j+1] = m+2; / / B3

 C[i][j+14] = m*3; / / C3

 }

Region 2

Position [0,0]

Region 3

Position [0,2]

Region 4

Position [0,3]

Thread Shared References

MYTHREAD

MYTHREAD+3

MYTHREAD+2

MYTHREAD+1

A1 A2 A3

C1

C2 C3B1 B2

B3

66

Productive Parallel Programming in PGAS

This material is based upon work supported by the Defense Advanced Research Projects Agency under its Agreement No.
HR0011-07-9-0002.
Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect
the views of the Defense Advanced Research Projects Agency.

PACT 08

Shared Reference Map

 The shared reference map gives the compiler
information about the relative thread that owns
each shared reference

 The shared reference map is not concerned about
machine configuration

 This information can then be used to perform
locality optimizations
– Privatization: Local shared references can be accessed directly

without requiring the RTS

– Coalescing: Remote shared references owned by the same thread
can be accessed in groups

– Scheduling: Remote shared references that require communication

67

Productive Parallel Programming in PGAS

This material is based upon work supported by the Defense Advanced Research Projects Agency under its Agreement No.
HR0011-07-9-0002.
Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect
the views of the Defense Advanced Research Projects Agency.

PACT 08

Shared Object Access Privatization

 All shared references that map to MYTHREAD in
the SRM are local to the accessing thread

 Machine architecture can also be used to find
accesses for co-located threads

 Compiler converts each local shared-object
access into a traditional C pointer access
– Base address obtained from RTS once

– Offset computed based on index and shared array shape

68

Productive Parallel Programming in PGAS

This material is based upon work supported by the Defense Advanced Research Projects Agency under its Agreement No.
HR0011-07-9-0002.
Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect
the views of the Defense Advanced Research Projects Agency.

PACT 08

SOAP Example: Stream Triad

#define SCALAR 3.0

shared double a[N], b[N], c[N];

void StreamTriad() {

 int i;

 upc_forall(i=0;i<N;i++;&a[i])

 a[i] = b[i] + SCALAR*c[i];

}

Naïve transformation results in
3 calls to the UPC Runtime

in every iteration

#define SCALAR 3.0

shared double a[N], b[N], c[N];

void StreamTriad() {

 int i;

 upc_forall(i=0; i<N; i++; i) {

 __xlupc_deref_array(c_h, tmp1, i);

 __xlupc_deref_array(b_h, tmp2, i);

 tmp3 = tmp2 + 3.0*tmp1;

 __xlupc_assign_array(a_h, tmp3, i);

 }

}

69

Productive Parallel Programming in PGAS

This material is based upon work supported by the Defense Advanced Research Projects Agency under its Agreement No.
HR0011-07-9-0002.
Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect
the views of the Defense Advanced Research Projects Agency.

PACT 08

SOAP Example: Stream Triad

#define SCALAR 3.0

shared double a[N], b[N], c[N];

void StreamTriad() {

 int i;

 upc_forall(i=0;i<N;i++;&a[i])

 a[i] = b[i] + SCALAR*c[i];

}

#define SCALAR 3.0

shared double a[N], b[N], c[N];

void StreamTriad() {

 int i;

 aBase = __xlupc_base_address(a_h);

 bBase = __xlupc_base_address(b_h);

 cBase = __xlupc_base_address(c_h);

 upc_forall(i=0;i<N;i++;&a[i]) {

 aOffset = ComputeOffset(i);

 bOffset = ComputeOffset(i);

 cOffset = ComputeOffset(i);

 *(aBase+aOffset) = *(bBase+bOffset) +

 SCALAR*(*(cBase + cOffset));

 }

}

Get base addresses
outside of loop

Traditional “C” pointer
access

70

Productive Parallel Programming in PGAS

This material is based upon work supported by the Defense Advanced Research Projects Agency under its Agreement No.
HR0011-07-9-0002.
Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect
the views of the Defense Advanced Research Projects Agency.

PACT 08

SOAP Example: Stream Triad

71

Productive Parallel Programming in PGAS

This material is based upon work supported by the Defense Advanced Research Projects Agency under its Agreement No.
HR0011-07-9-0002.
Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect
the views of the Defense Advanced Research Projects Agency.

PACT 08

Shared Object Access Coalescing

 All shared references that map to the same
remote thread can be coalesced together

 This reduces the number of messages, thereby
reducing the execution time

 Requires support from the UPC Runtime

 Current runtime interface requires coalesced
shared references to have
– The same base symbol

– The same owner

– The same type (read or write)

72

Productive Parallel Programming in PGAS

This material is based upon work supported by the Defense Advanced Research Projects Agency under its Agreement No.
HR0011-07-9-0002.
Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect
the views of the Defense Advanced Research Projects Agency.

PACT 08

SOAC Example: Sobel Edge Detection
shared [COLUMNS] BYTE orig[ROWS][COLUMNS];

shared [COLUMNS] BYTE edge[ROWS][COLUMNS];

int Sobel() {

 int i, j, gx, gy;

 double gradient;

 for (i=1; i < ROWS-1; i++) {

 upc_forall (j=1; j < COLUMNS-1; j++; &orig[i][j]) {

 gx = (int) orig[i-1][j+1] - orig[i-1][j-1];

 gx += ((int) orig[i][j+1] - orig[i][j-1]) * 2;

 gx += (int) orig[i+1][j+1] - orig[i+1][j-1];

 gy = (int) orig[i+1][j-1] - orig[i-1][j-1];

 gy += ((int) orig[i+1][j] - orig[i-1][j]) * 2;

 gy += (int) orig[i+1][j+1] - orig[i-1][j+1];

 gradient = sqrt((gx*gx) + (gy*gy));

 if (gradient > 255) gradient = 255;

 edge[i][j] = (BYTE) gradient;

 } } }

Shared arrays blocked by row

Loop body contains 12
shared array access

3 Local Accesses

9 Remote Accesses

73

Productive Parallel Programming in PGAS

This material is based upon work supported by the Defense Advanced Research Projects Agency under its Agreement No.
HR0011-07-9-0002.
Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect
the views of the Defense Advanced Research Projects Agency.

PACT 08

2 UPC Threads

SOAC Example: Sobel Edge Detection
shared [COLUMNS] BYTE orig[ROWS][COLUMNS];

shared [COLUMNS] BYTE edge[ROWS][COLUMNS];

int Sobel() {

 int i, j, gx, gy;

 double gradient;

 for (i=1; i < ROWS-1; i++) {

 upc_forall (j=1; j < COLUMNS-1; j++; &orig[i][j]) {

 gx = (int) orig[i-1][j+1] - orig[i-1][j-1];

 gx += ((int) orig[i][j+1] - orig[i][j-1]) * 2;

 gx += (int) orig[i+1][j+1] - orig[i+1][j-1];

 gy = (int) orig[i+1][j-1] - orig[i-1][j-1];

 gy += ((int) orig[i+1][j] - orig[i-1][j]) * 2;

 gy += (int) orig[i+1][j+1] - orig[i-1][j+1];

 gradient = sqrt((gx*gx) + (gy*gy));

 if (gradient > 255) gradient = 255;

 edge[i][j] = (BYTE) gradient;

 } } }

Thread Shared References

MYTHREAD

MYTHREAD+1

edge[i][j]

orig[i][j]

orig[i-1][j-1] orig[i-1][j]

orig[i-1][j+1] orig[i+1][j-1]

orig[i+1][j]orig[i+1][j+1]

orig[i][j-1]

orig[i][j+1]

74

Productive Parallel Programming in PGAS

This material is based upon work supported by the Defense Advanced Research Projects Agency under its Agreement No.
HR0011-07-9-0002.
Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect
the views of the Defense Advanced Research Projects Agency.

PACT 08

2 UPC Threads

SOAC Example: Sobel Edge Detection
shared [COLUMNS] BYTE orig[ROWS][COLUMNS];

shared [COLUMNS] BYTE edge[ROWS][COLUMNS];

int Sobel() {

 int i, j, gx, gy;

 double gradient;

 for (i=1; i < ROWS-1; i++) {

 upc_forall (j=1; j < COLUMNS-1; j++; &orig[i][j]) {

 CoalescedRemoteAccess(tmp1, orig, ((i-1)*COLUMNS)+j-1, 3, 1);

 CoalescedRemoteAccess(tmp2, orig, ((i+1)*COLUMNS)+j-1,3, 1);

 gx = (int) tmp1[2] - tmp1[0]; gx += ((int) orig[i][j+1] - orig[i][j-1]) * 2;

 gx += (int) tmp2[2] - tmp2[0]; gy = (int) tmp2[0] - tmp1[0];

 gy += ((int) tmp2[1] - tmp1[1] * 2; gy += (int) tmp2[2] - tmp1[2];

 gradient = sqrt((gx*gx) + (gy*gy));

 if (gradient > 255) gradient = 255;

 edge[i][j] = (BYTE) gradient;

} } }

Two calls to the UPC runtime to
retrieve remote shared data

Temporary buffers created
and managed by compiler

All accesses are now local

75

Productive Parallel Programming in PGAS

This material is based upon work supported by the Defense Advanced Research Projects Agency under its Agreement No.
HR0011-07-9-0002.
Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect
the views of the Defense Advanced Research Projects Agency.

PACT 08

SOAC Example: Sobel Edge Detection

76

Productive Parallel Programming in PGAS

This material is based upon work supported by the Defense Advanced Research Projects Agency under its Agreement No.
HR0011-07-9-0002.
Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect
the views of the Defense Advanced Research Projects Agency.

PACT 08

Shared-Object Access Scheduling

 In UPC when a thread executes a runtime call it will wait
until the call has been serviced.

__xlupc_deref_array(C_h, __t1, i, sizeof(int), …); wait
__xlupc_deref_array(B_h, __t2, i, sizeof(int), …); wait again
__t3 = __t1 + __t2;
__xlupc_assign_array(A_h, __t3, i, sizeof(int), …); wait again !

 Runtime calls are blocking, but we could use non-
blocking pairs of calls (notify/wait)

req = __xlupc_deref_array_elt_post(…);

__xlupc_wait(req);

 Notify call initiates the RT access of the shared object

 Wait call should be placed before the first use

77

Productive Parallel Programming in PGAS

This material is based upon work supported by the Defense Advanced Research Projects Agency under its Agreement No.
HR0011-07-9-0002.
Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect
the views of the Defense Advanced Research Projects Agency.

PACT 08

Scheduling of post/wait calls

.. = b[i];

.. = b[i];

b[i] = ..;

entry

exit

Def. Point

Use

Use

GOAL: place the post call as early as possible

• Collect shared loads used in a loop

• Split the blocking calls in a post/wait pair

• Find the definition point of the shared ref.

• Move the post call to the earliest program
point with the following properties:
• shared ref. is executed on all paths from P to exit

• P is dominated by its shared ref. definition

• Redundant post calls for the same object can
be eliminated

• Consecutive post calls may be aggregated in a
bulk transfer

post()
post()

wait()

wait()

post()
wait()

post()
wait()

post()

Work in
Progress

78

Productive Parallel Programming in PGAS

This material is based upon work supported by the Defense Advanced Research Projects Agency under its Agreement No.
HR0011-07-9-0002.
Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect
the views of the Defense Advanced Research Projects Agency.

PACT 08

SOAS Example: Synthetic Benchmark

shared double MySharedData[SDS], RemoteData[SDS];

double MyPrivateData[PDS];

void Compute() {

 int i, j, k;

 double sum=0.0;

 upc_forall (i=0; i < SHARED_DATA_SIZE; i++; &MySharedData[i]) {

 for (j=0; j < PRIVATE_DATA_SIZE; j++) {

 sum += MyPrivateData[j];

 }

 MySharedData[i] = sum * RemoteData[(i+1)%(SDS)];

 }

}
Remote access

Execution waits until
access is finished

Local Computation

79

Productive Parallel Programming in PGAS

This material is based upon work supported by the Defense Advanced Research Projects Agency under its Agreement No.
HR0011-07-9-0002.
Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect
the views of the Defense Advanced Research Projects Agency.

PACT 08

SOAS Example: Synthetic Benchmark
shared double MySharedData[SDS], RemoteData[SDS];

double MyPrivateData[PDS];

void Compute() {

 int i, j, k;

 double sum=0.0;

 wait = deref_array_post(RemoteData_h, MYTHREAD);

 upc_forall (i=0; i < SHARED_DATA_SIZE; i++; &MySharedData[i]) {

 for (j=0; j < PRIVATE_DATA_SIZE; j++) {

 sum += MyPrivateData[j];

 }

 offset=THREADS;

 deref_array_wait(wait);

 tmp2 = tmp;

 if (i+THREADS) < SHARED_DATA_SIZE)

 wait = deref_array_post(RemoteData_h,&tmp,(i+THREADS+1)%SHARED_DATA_SIZE);

 MySharedData[i] = sum * tmp2;

 } }

Prefetch first iteration

Local Computation

Wait for data from previous iteration

Prefetch next iteration

80

Productive Parallel Programming in PGAS

This material is based upon work supported by the Defense Advanced Research Projects Agency under its Agreement No.
HR0011-07-9-0002.
Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect
the views of the Defense Advanced Research Projects Agency.

PACT 08

SOAC Example: Synthetic Benchmark

81

Productive Parallel Programming in PGAS

This material is based upon work supported by the Defense Advanced Research Projects Agency under its Agreement No.
HR0011-07-9-0002.
Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect
the views of the Defense Advanced Research Projects Agency.

PACT 08

The upc_forall work-sharing construct

shared int A[N],B[N],C[N];

upc_forall(i=0; i < N; i++; i){
A[i] = B[i] + C[i];

}

shared int A[N],B[N],C[N];

for (i=0; i < N; i++) {

 if ((i % THREADS)== MYTHREAD)

 A[i] = B[i] + C[i];

}

Similar to C for loop, 4th field indicates the affinity
– Integer affinity: Thread with ID == affinity value executes the iteration

– Pointer-to-shared affinity: thread that “owns” shared element executes
the iteration

Affinity test exec. on each iteration by all threads

Affinity Test Branch

82

Productive Parallel Programming in PGAS

This material is based upon work supported by the Defense Advanced Research Projects Agency under its Agreement No.
HR0011-07-9-0002.
Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect
the views of the Defense Advanced Research Projects Agency.

PACT 08

The upc_forall work-sharing construct

shared [BF] int A[N],B[N],C[N];

upc_forall(i=0; i < N; i++; &A[i]) {
A[i] = B[i] + C[i];

}

shared [BF] int A[N],B[N],C[N];

for (i=0; i < N; i++) {

 if (upc_threadof(A[i]) == MYTHREAD)

 A[i] = B[i] + C[i];

}

Similar to C for loop, 4th field indicates the affinity
– Integer affinity: Thread with ID == affinity value executes the iteration

– Pointer-to-shared affinity: thread that “owns” shared element executes
the iteration

Affinity test exec. on each iteration by all threads

Affinity Test Branch

83

Productive Parallel Programming in PGAS

This material is based upon work supported by the Defense Advanced Research Projects Agency under its Agreement No.
HR0011-07-9-0002.
Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect
the views of the Defense Advanced Research Projects Agency.

PACT 08

Parallel Loop Reshaping
(Integer Affinity)

shared int A[N], B[N], C[N];

for (i=MYTHREAD; i < N; i+= THREADS) {

A[i] = B[i]+C[i];

}

 Iteration space is partitioned

 Each thread starts executing at iteration MYTHREAD

 Each thread executes every THREADs elements

shared int A[N],B[N],C[N];

upc_forall(i=0; i < N; i++; i){
A[i] = B[i] + C[i];

}

84

Productive Parallel Programming in PGAS

This material is based upon work supported by the Defense Advanced Research Projects Agency under its Agreement No.
HR0011-07-9-0002.
Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect
the views of the Defense Advanced Research Projects Agency.

PACT 08

Parallel Loop Reshaping
(Pointer-to-shared affinity)

shared [2] int A[N], B[N], C[N];

for (i=MYTHREAD * 2; i < N; i+= THREADS*2) {

 for (j=i; j < i+BF; j++)

 A[j] = B[i]+C[i];

}

 Strip-mining optimization

 Create a 2-level loop nest
– Outer loop iterates over blocks owned by MYTHREAD

– Inner loop iterates through each block element

i = 0

j = 0

th0 th0 th1 th1 th0 th0 th1 th1 th0 th0

i = 0

j = 1

i = 2

j = 0

i = 2

j = 1

i = 4

j = 0

i = 4

j = 1

i = 6

j = 0

i = 6

j = 1

i = 8

j = 0

i = 8

j = 1

85

Productive Parallel Programming in PGAS

This material is based upon work supported by the Defense Advanced Research Projects Agency under its Agreement No.
HR0011-07-9-0002.
Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect
the views of the Defense Advanced Research Projects Agency.

PACT 08

 Consider an upper-triangle parallel loop nest that
uses pointer-to-shared affinity

 Shared array elements are initialized to -1

 Shared array elements are assigned the thread ID
of their owner

shared [2] double A[6] [6] ;

void UpperTriangularLoop () {
 int i , j ;

 for (i =0; i < 6 ; i ++)

 upc_forall (j=i; j<6; j++; &A[i][j])

 A[i] [j] = (double) MYTHREAD;
} 1-1-1-1-1-1

00-1-1-1-1

110-1-1-1

0011-1-1

11001-1

001100

Parallel Loop Reshaping
(Pointer-to-shared affinity)

86

Productive Parallel Programming in PGAS

This material is based upon work supported by the Defense Advanced Research Projects Agency under its Agreement No.
HR0011-07-9-0002.
Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect
the views of the Defense Advanced Research Projects Agency.

PACT 08

 For every iteration of the i loop, the upc_forall
loop has a different iteration vector

 Thus, the compiler must compute the bounds of
the new loop nest at runtime

1-1-1-1-1-1

00-1-1-1-1

110-1-1-1

0011-1-1

11001-1

001100shared [2] double A[6] [6] ;

void UpperTriangularLoop () {
 int i , j ;

 for (i =0; i < 6 ; i ++)

 upc_forall (j=i; j<6; j++; &A[i][j])

 A[i] [j] = (double) MYTHREAD;
}

Parallel Loop Reshaping
(Pointer-to-shared affinity)

87

Productive Parallel Programming in PGAS

This material is based upon work supported by the Defense Advanced Research Projects Agency under its Agreement No.
HR0011-07-9-0002.
Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect
the views of the Defense Advanced Research Projects Agency.

PACT 08

 The compute bound functions determine the
iteraton vector for the new loop nests at runtime
– For each iteration of the i loop, compute the position of the next block

owned by thread MYTHREAD

shared [2] double A[6] [6] ;

void UpperTriangularLoop() {
 int i, j;
 outerLB = ComputeOuterLowerBound();
 outerUB = ComputeOuterUpperBound();
 innerLB = ComputeInnerLowerBound();
 innerUB = ComputeInnerUpperBound();

 for (i=0; i<6 ;i++)
 for (k=outerLB; k<outerUB; k++)
 for (l=innerLB; l < innerUB; l++)
 A[i] [k+l] = (double) MYTHREAD;
}

1-1-1-1-1-1

00-1-1-1-1

110-1-1-1

0011-1-1

11001-1

001100

Parallel Loop Reshaping
(Pointer-to-shared affinity)

88

Productive Parallel Programming in PGAS

This material is based upon work supported by the Defense Advanced Research Projects Agency under its Agreement No.
HR0011-07-9-0002.
Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect
the views of the Defense Advanced Research Projects Agency.

PACT 08

1-1-1-1-1-1

00-1-1-1-1

110-1-1-1

0011-1-1

11001-1

001100

Thread 1Thread 0
i=0

i=5

i=1
i=2

i=3

i=4

P=0, C=0 P=0, C=0

P0 P0 P1 P1 P2 P2 P3 P3 P4 P4 P5 P5 P6 P6 P7 P7 P8 P8

Parallel Loop Reshaping
(Pointer-to-shared affinity)

89

Productive Parallel Programming in PGAS

This material is based upon work supported by the Defense Advanced Research Projects Agency under its Agreement No.
HR0011-07-9-0002.
Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect
the views of the Defense Advanced Research Projects Agency.

PACT 08

1-1-1-1-1-1

00-1-1-1-1

110-1-1-1

0011-1-1

11001-1

001100

Thread 1Thread 0
i=0

i=5

i=1
i=2

i=3

i=4

P=0, C=0

P=2, C=0 P=1, C=1

P=0, C=0

P0 P0 P1 P1 P2 P2 P3 P3 P4 P4 P5 P5 P6 P6 P7 P7 P8 P8

Parallel Loop Reshaping
(Pointer-to-shared affinity)

90

Productive Parallel Programming in PGAS

This material is based upon work supported by the Defense Advanced Research Projects Agency under its Agreement No.
HR0011-07-9-0002.
Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect
the views of the Defense Advanced Research Projects Agency.

PACT 08

1-1-1-1-1-1

00-1-1-1-1

110-1-1-1

0011-1-1

11001-1

001100

Thread 1Thread 0
i=0

i=5

i=1
i=2

i=3

i=4

P=0, C=0

P=2, C=0
P=3, C=0
P=1, C=1

P=4, C=0

P=0, C=0

P0 P0 P1 P1 P2 P2 P3 P3 P4 P4 P5 P5 P6 P6 P7 P7 P8 P8

Parallel Loop Reshaping
(Pointer-to-shared affinity)

91

Productive Parallel Programming in PGAS

This material is based upon work supported by the Defense Advanced Research Projects Agency under its Agreement No.
HR0011-07-9-0002.
Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect
the views of the Defense Advanced Research Projects Agency.

PACT 08

1-1-1-1-1-1

00-1-1-1-1

110-1-1-1

0011-1-1

11001-1

001100

Thread 1Thread 0
i=0

i=5

i=1
i=2

i=3

i=4

P=0, C=0

P=2, C=0
P=3, C=0
P=1, C=1

P=4, C=0

P=5, C=1

P=0, C=0

P=5, C=0

P0 P0 P1 P1 P2 P2 P3 P3 P4 P4 P5 P5 P6 P6 P7 P7 P8 P8

Parallel Loop Reshaping
(Pointer-to-shared affinity)

92

Productive Parallel Programming in PGAS

This material is based upon work supported by the Defense Advanced Research Projects Agency under its Agreement No.
HR0011-07-9-0002.
Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect
the views of the Defense Advanced Research Projects Agency.

PACT 08

1-1-1-1-1-1

00-1-1-1-1

110-1-1-1

0011-1-1

11001-1

001100

Thread 1Thread 0
i=0

i=5

i=1
i=2

i=3

i=4

P=0, C=0

P=2, C=0
P=3, C=0
P=1, C=1

P=4, C=0

P=5, C=1

P=7, C=0

P=0, C=0

P=5, C=0

P=0, C=0

P0 P0 P1 P1 P2 P2 P3 P3 P4 P4 P5 P5 P6 P6 P7 P7 P8 P8

Parallel Loop Reshaping
(Pointer-to-shared affinity)

93

Productive Parallel Programming in PGAS

This material is based upon work supported by the Defense Advanced Research Projects Agency under its Agreement No.
HR0011-07-9-0002.
Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect
the views of the Defense Advanced Research Projects Agency.

PACT 08

1-1-1-1-1-1

00-1-1-1-1

110-1-1-1

0011-1-1

11001-1

001100

Thread 1Thread 0
i=0

i=5

i=1
i=2

i=3

i=4

P=0, C=0

P=2, C=0
P=3, C=0
P=1, C=1

P=4, C=0

P=5, C=1

P=7, C=0
P=0, C=0

P=0, C=0

P=5, C=0

P=0, C=0
P=8, C=1

P0 P0 P1 P1 P2 P2 P3 P3 P4 P4 P5 P5 P6 P6 P7 P7 P8 P8

Parallel Loop Reshaping
(Pointer-to-shared affinity)

94

Productive Parallel Programming in PGAS

This material is based upon work supported by the Defense Advanced Research Projects Agency under its Agreement No.
HR0011-07-9-0002.
Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect
the views of the Defense Advanced Research Projects Agency.

PACT 08

0

500

1000

1500

2000

2500

3000

0 5 10 15 20 25 30 35

Parallel Loop Reshaping

Objective: remove branch overhead in naïve upc_forall translation

shared [BF] int A[N],B[N],C[N];

upc_forall (i=0; i < N; i++; &A[i])

A[i] = B[i] + k*C[i];

shared [BF] int A[N],B[N],C[N];

for (i=0; i < N; i++)

 if (upc_threadof(A[i]) == MYTHREAD)

 A[i] = B[i] + k*C[i];

branc
h

Threads

MB/s

Branch overhead

naïve translation

shared [BF] int A[N], B[N], C[N];

for (i=MYTHREAD*BF; i<N; i+=THREADS*BF)

 for (j=i; j < i+BF; j++)

 A[j] = B[j] + k*C[j];

optimized loop

8.5X
improvement

Stream Triad (SMP)
20 million elem. – address affinity

No UPC Optimizations

Forall Reshape

Removed
overhead

AIX 5.3, Power5, 2.3 GHz

95

Productive Parallel Programming in PGAS

This material is based upon work supported by the Defense Advanced Research Projects Agency under its Agreement No.
HR0011-07-9-0002.
Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect
the views of the Defense Advanced Research Projects Agency.

PACT 08

Parallel Loop Reshaping

96

Productive Parallel Programming in PGAS

This material is based upon work supported by the Defense Advanced Research Projects Agency under its Agreement No.
HR0011-07-9-0002.
Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect
the views of the Defense Advanced Research Projects Agency.

PACT 08

shared [BF] int B[N], C[N];

int main() {

 upc_forall(int i=0; i<N; ++i; &B[i])

 B[i] = C[i] = i*MYTHREAD;

 upc_barrier;

 shared [BF] int *pA = (shared [BF] int*)
upc_all_alloc(N/BF*sizeof(int), BF);

 func1(pA, &C[0]);

 func2(pA, &C[0]);

}

void func1(shared int *pA, shared int *pC) {

 upc_forall (i=0; i < N; i++; &B[i])

 pA[i] = B[i] op k*pC[i];

}

void func2(shared int *pA, shared int *pC) {

 upc_forall (i=0; i < N; i++; &B[i])

 pA[i+BF] = B[i] op k*pC[i+BF];

}

Locality Analysis for shared pointers

 Initialize arrays B and C

Allocate an array on N integers and

blocking factor equal to BF

Pass the address of the 2 arrays

What do we know about the locality

of the 2 pointers to shared

in the called function ?

97

Productive Parallel Programming in PGAS

This material is based upon work supported by the Defense Advanced Research Projects Agency under its Agreement No.
HR0011-07-9-0002.
Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect
the views of the Defense Advanced Research Projects Agency.

PACT 08

func1(shared int *p1, shared int *p2)
{

 p1[i] = … p2[i];

}

func2(shared int *p1, shared int *p2) {

 p1[i+BF] = … p2[i+BF];

}

Possible approach: function cloning

func1(pA, &C[0]);

func2(pA, &C[0]);

func1(shared int *p1, shared int *p2)
{

 p1[i] = … p2[i];

}

func2(shared int *p1, shared int *p2) {

 p1[i+BF] = … p2[i+BF];

}

func1(&C[BF], pA
+BF);

func2(&C[BF], pA
+BF);

p1&C[BF]; p2pA+BF

p1 pA; p2 &C[0]

p1 pA; p2 &C[0]

p1&C[BF]; p2pA+BF

Red: indicates a local access

Blue: indicates a remote access

Local accesses

Local accesses

Remote accesses

Remote accesses

EXEC. ON 2 THREADS

98

Productive Parallel Programming in PGAS

This material is based upon work supported by the Defense Advanced Research Projects Agency under its Agreement No.
HR0011-07-9-0002.
Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect
the views of the Defense Advanced Research Projects Agency.

PACT 08

Possible approach: function cloning
Analysis:

– Create call graph

– Label call edges with arguments

– Merge call edges with same source and
target and same actual arguments

– For each edge into a node identify
privatization opportunities. If
opportunities exist duplicate calee
nodes and adjust edges

– Label privatizable shared references in
a node

Drawbacks:

– This approach is an all program inter-
procedural analysis

– Potentially large code growth: entire
function code is cloned

99

Productive Parallel Programming in PGAS

This material is based upon work supported by the Defense Advanced Research Projects Agency under its Agreement No.
HR0011-07-9-0002.
Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect
the views of the Defense Advanced Research Projects Agency.

PACT 08

A second approach: loop versioning

Analysis:

– gather candidate pointer dereferences in the upc_forall loops in the program

– candidate pointers must be loop invariant and have the same blocking factor as
the affinity expression

– generate a copy of the original loop (version the loop)

– versioning condition uses UPC runtime calls in order to determine at runtime
that pointers point to a shared array with appropriate layout

shared [BF] int A[N], B[N], C[N];

void foo(shared int *pA, shared int *pC) {

 upc_forall (i=0; i < N; i++; &B[i])

 pA[i] = B[i] op k*pC[i];

}

- B[i] is a shared local access

- the target of pA, pC is not known until the
program executes

- How can we determine the affinity of pA, pB ?

Objective: privatize pointer-to-shared dereferences

100

Productive Parallel Programming in PGAS

This material is based upon work supported by the Defense Advanced Research Projects Agency under its Agreement No.
HR0011-07-9-0002.
Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect
the views of the Defense Advanced Research Projects Agency.

PACT 08

shared [BF] int A[N], B[N], C[N];

void foo(shared int *pA, shared int *pC) {

 upc_forall (i=0; i < N; i++; &B[i])

 pA[i] = B[i] op k*pC[i];

}

void foo(shared int *pA, shared int *pC) {

 ver_pA = (upc_threadof(pA)==0) ? (upc_phaseof(pA)==0) ? 1 : 0;

 ver_pC = (upc_threadof(pC)==0) ? (upc_phaseof(pC)==0) ? 1 : 0;

 if (ver_pA && ver_pC) {

 upc_forall (i=0; i < N; i++; &B[i])

 pA[i] = B[i] op k*pC[i];

 } else if (ver_pA) {

 upc_forall (i=0; i < N; i++; &B[i])

 pA[i] = B[i] op k*pC[i];

 } else if (ver_pC) {

 upc_forall (i=0; i < N; i++; &B[i])

 pA[i] = B[i] op k*pC[i];

 } else {

 upc_forall (i=0; i < N; i++; &B[i])

 pA[i] = B[i] op k*pC[i];

 }

}

UPC Forall Loop Versioning

All 3 references

can be privatized

Only reference B[j]

can be privatized

2 references

can be privatized

2 references

can be privatized

Advantages:

– Intra-procedural loop based
analysis. Does not require all
program knowledge.

– Code growth limited to
upc_forall loops.

– Can limit code growth by using
an all or nothing strategy: only
one conditional branch is
generated.

– Conditional branches can be
folded by propagating
information from the caller to
the callee (inter-procedurally).

 Create versioning conditions

 Version 1 of the loop: both
pointers dereference access
local memory

 Version 2 of the loop: pA[i]
access local memory

 Version 3 of the loop: pC[i]
access local memory

Original Loop

101

Productive Parallel Programming in PGAS

This material is based upon work supported by the Defense Advanced Research Projects Agency under its Agreement No.
HR0011-07-9-0002.
Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect
the views of the Defense Advanced Research Projects Agency.

PACT 08

0

1000

2000

3000

4000

5000

6000

0 5 10 15 20 25 30 35

UPC Forall Loop Versioning

MB/s

Threads

1.4X
improvement

Stream Triad (SMP)
20 million elements

No UPC Optimizations
Array Privatization

Loop Versioning

0

100

200

300

400

500

600

700

800

0 10 20 30 40 50 60 70

No UPC Optimizations
Array Privatization

Loop Versioning

Stream Triad (LAPI)
2 million elements

MB/s

Threads

1.9X
improvement

AIX 5.3, Power5, 2.3 GHz

Exploited
Locality

3.2X
improvement

0.4X

102

Productive Parallel Programming in PGAS

This material is based upon work supported by the Defense Advanced Research Projects Agency under its Agreement No.
HR0011-07-9-0002.
Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect
the views of the Defense Advanced Research Projects Agency.

PACT 08

Remote Update Optimization

u64Int ran = starts(NUPDATE/THREADS * MYTHREAD);

upc_forall (i = 0; i < NUPDATE; i++; i) {

 ran = (ran << 1) ^ (((s64Int) ran < 0) ? POLY : 0);

 Table[ran & (TableSize-1)] ^= ran;

}

Table[]

ran = Random();

index1

ran & (TabelSize-1)

index2index3

HPCC Random Access

– table allocated across distributed
system memory

– table elements updated randomly

– small point-to-point communication

103

Productive Parallel Programming in PGAS

This material is based upon work supported by the Defense Advanced Research Projects Agency under its Agreement No.
HR0011-07-9-0002.
Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect
the views of the Defense Advanced Research Projects Agency.

PACT 08

Remote Update Optimization

Table[]ran = Random();

ran & (TabelSize-1)
random index

Communication in Random Access

– 1 fine grained messages (get) to retrieve the remote array element

– Update the array element locally

– 1 fine grained message (put) to store the updated value

– Compiler cannot predict whether the access is shared local or shared remote

Get table element

Store table element

Shared SpaceLocal Space

Performance limited
by the network cross-

section bandwidth

 UPDATE

104

Productive Parallel Programming in PGAS

This material is based upon work supported by the Defense Advanced Research Projects Agency under its Agreement No.
HR0011-07-9-0002.
Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect
the views of the Defense Advanced Research Projects Agency.

PACT 08

Remote Update Optimization

Table[]ran = Random();

ran & (TabelSize-1)

random index

Owner computes Idea

– Compiler recognize update pattern and issues 1 message:

__xlupc_update(Table_h, index, ran, ^=);

– the update is now done on the remote node

– the communication overhead is reduced by half

PAYLOAD

Shared SpaceLocal Space

Send to remote node

One message instead
of two messages

105

Productive Parallel Programming in PGAS

This material is based upon work supported by the Defense Advanced Research Projects Agency under its Agreement No.
HR0011-07-9-0002.
Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect
the views of the Defense Advanced Research Projects Agency.

PACT 08

Remote Update Optimization
Reduced

communication

0

1

2

3

4

5

6

7

8

9

10

0 10 20 30 40 50 60 70

Random Access (LAPI)

2.1X
improvement

MUP/s

Threads

No UPC Optimizations
Remote Update

u64Int ran = starts(NUPDATE/THREADS * MYTHREAD);

upc_forall (i = 0; i < NUPDATE; i++; i) {

 ran = (ran << 1) ^ (((s64Int) ran < 0) ? POLY : 0);

 Table[ran & (TableSize-1)] ^= ran;

}

u64Int ran = starts(NUPDATE/THREADS * MYTHREAD);

upc_forall (i = 0; i < NUPDATE; i++; i) {

 ran = (ran << 1) ^ (((s64Int) ran < 0) ? POLY : 0);

 __xlupc_update(Table_h, index, ran, ^=);
}

106

Productive Parallel Programming in PGAS

This material is based upon work supported by the Defense Advanced Research Projects Agency under its Agreement No.
HR0011-07-9-0002.
Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect
the views of the Defense Advanced Research Projects Agency.

PACT 08

Array Idiom Recognition

shared [BF] int A[N], B[N], C[N];

int a[N];

int main() {

 if (MYTHREAD == 0) {

 for (int i = 0; i < N; i++)

 A[i] = i;

 upc_barrier;

 for (int i = 0; i < N; i++)

 a[i] = A[i];

 for (int i = 0; i < N; i++)

 B[i] = a[i];

 upc_barrier;

 for (int i = 0; i < N; i++)

 C[i] = B[i];

}

Common array initialization idioms:

2. Initialize all shared array elements

3. Copy the shared array to a local array

4. Copy the local array to a second shared array

5. Copies one shared array to another shared array

 Observations:

- Each operations requires fine grain
communication

- How can we avoid the overhead of many small
transfers to/from shared memory ?

107

Productive Parallel Programming in PGAS

This material is based upon work supported by the Defense Advanced Research Projects Agency under its Agreement No.
HR0011-07-9-0002.
Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect
the views of the Defense Advanced Research Projects Agency.

PACT 08

Array Idiom Recognition

shared [BF] int A[N];

int a[N];

int main() {

 if (MYTHREAD == 0)

 for (i = 0; i < N; i+=BF)
 upc_memput(&A[i], &a[i], BF*sizeof(a[i]));

}

shared [BF] int A[N];

int a[N];

int main() {

 if (MYTHREAD == 0)

 for (int i = 0; i < N; i++)

 A[i] = a[i];

}

Analysis:

2. Collect stride one accesses to shared array

3. Only non-strict accesses are considered

4. Classify the pattern into one of:
- upc_memset: write same value to shared array

- upc_memget: read from shared array to local array

- upc_memput: write to shared array from local array

- upc_memcpy: write from shared array to shared array

5. Generate the upc_mem* call and adjust the loop
increment.

 Extensions:
A[i+k] = a[i] // how do we handle the offset ?

for(i=0; i<N; ++i) {
 if (i%BF < k)
 A[i] = a[i]; // first k accesses in block
 if (i%BF == k)
 upc_memput(&A[i], &a[i], (BF-k)*sizeof(a[i]));
}

108

Productive Parallel Programming in PGAS

This material is based upon work supported by the Defense Advanced Research Projects Agency under its Agreement No.
HR0011-07-9-0002.
Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect
the views of the Defense Advanced Research Projects Agency.

PACT 08

0

20

40

60

80

100

0 4 8 12 16

Threads

Time(s)

Original Loop

upc_memput

~50% improvement

NQueens LAPI (N=16)

16.39

8.88

AIX 5.3, Power5, 2.3 GHz

shared [MAXTS] long int * finalPtr =
&FINALSOL[offset[MYTHREAD]];

step = SOLUT[MYTHREAD];

for (p = 0; p < step; p++)

 finalPtr[p] = ptr[p];

shared [MAXTS] long int * finalPtr =
&FINALSOL[offset[MYTHREAD]];

step = SOLUT[MYTHREAD];

for (p = 0; p < step; p+=MAXTS)

 upc_memput(finalPtr, ptr, …);

Array Idiom Recognition
Reduced

communication

109

Productive Parallel Programming in PGAS

This material is based upon work supported by the Defense Advanced Research Projects Agency under its Agreement No.
HR0011-07-9-0002.
Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect
the views of the Defense Advanced Research Projects Agency.

PACT 08

Locality Optimizations and
Forall Optimizations

 Each of the optimizations presented has a
reasonable impact on performance
– Reduce overhead of accessing shared data

– Reduce overhead of executing parallel loop

 However, when all optimizations are combined,
they have a dramatic impact on performance

110

Productive Parallel Programming in PGAS

This material is based upon work supported by the Defense Advanced Research Projects Agency under its Agreement No.
HR0011-07-9-0002.
Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect
the views of the Defense Advanced Research Projects Agency.

PACT 08

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

0 4 8 12 16 20 24 28 32

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

220000

0 8 16 24 32 40 48 56 64

HPCC Stream Triad

AIX 5.3, Power5, 2.3 GHz

Threads

MB/s
Stream Triad (SMP)

66X improvement

No UPC Optimizations

Fully Optimized

MB/s
Stream Triad (LAPI)

Threads

OpenMP MPI

Fully Optimized

221 GB/s

216 GB/s

155 GB/s

138 GB/s

12%No UPC Optimizations

~2000X improvement

3.2 GB/s

111

Productive Parallel Programming in PGAS

This material is based upon work supported by the Defense Advanced Research Projects Agency under its Agreement No.
HR0011-07-9-0002.
Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect
the views of the Defense Advanced Research Projects Agency.

PACT 08

UPC Fish - Predator-prey model

Threads

Time(s) SMP (1024X1024 Ocean)

AIX 5.3, Power5, 2.3 GHz

Threads

Time(s) LAPI (256X256 Ocean)

0

10

20

30

40

50

60

70

0 8 16 24 32 40 48 56 64

0

10

20

30

40

50

60

70

80

90

100

110

120

0 8 16 24 32 40 48 56 64

Fully Optimized

No UPC Optimizations
Privatization
No UPC Optimizations

Fully Optimized

9.5% and 28% improvements

32% improvement

15.38
13.91
11.03

16.07
10.91

Privatization

112

Productive Parallel Programming in PGAS

This material is based upon work supported by the Defense Advanced Research Projects Agency under its Agreement No.
HR0011-07-9-0002.
Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect
the views of the Defense Advanced Research Projects Agency.

PACT 08

NAS 3.2 CG – UPC vs OMP and MPI

AIX 5.3, Power5, 2.3 GHz

0

1000

2000

3000

4000

5000

6000

7000

0 5 10 15 20 25 30 35

Threads

MB/s NAS CG (SMP) – Class C

No UPC Optimizations

Forall Reshape and Priv.

Fully Optimized

Open MP

3.
7X

 im
pr

o
ve

m
en

t

6X
 im

pr
o

ve
m

en
t

6443 MB/s

6722 MB/s

953 MB/s

4494 MB/s

MB/s

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 5 10 15 20 25 30 35

Threads

NAS CG (LAPI) – Class B

No UPC Optimizations

Forall Reshape and Priv.

Fully Optimized

MPI

~15X improvement

 4
3X

 d
iff

er
en

ce

3510 MB/s

217 MB/s

9668 MB/s

~1.8X gap

This material is based upon work supported by the Defense Advanced Research Projects Agency under its Agreement No. HR0011-07-9-0002.
Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect
the views of the Defense Advanced Research Projects Agency.

PACT 08

4. Examples of performance tuning

114

Productive Parallel Programming in PGAS

This material is based upon work supported by the Defense Advanced Research Projects Agency under its Agreement No.
HR0011-07-9-0002.
Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect
the views of the Defense Advanced Research Projects Agency.

PACT 08

Molecular Dynamics

 N particles in 3D space interact with each other

 Compute particles new position, velocity, acceleration at each
time step

 GOOD:

– Given force acting on each
particle the computation of
particles position, velocity,
acceleration is an embarrassing
parallel problem

 BAD:

– Force acting on particle p.f[i] is a
function of the gravitational
attraction of all other particles …

115

Productive Parallel Programming in PGAS

This material is based upon work supported by the Defense Advanced Research Projects Agency under its Agreement No.
HR0011-07-9-0002.
Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect
the views of the Defense Advanced Research Projects Agency.

PACT 08

Molecular Dynamics

Compute forces acting on
particles

 Compute particles
position, velocity,
acceleration

Result

N
 t

im
e

 s
te

p
s

Initial State

upc_forall(int i = 0; i < NPARTS; i++; &PARTS[i])

 for(int j = 0; j < NDIM; j++) {

 PARTS[i].p[j] += PARTS[i].v[j]*dt + 0.5*dt*dt*PARTS[i].a[j];

 PARTS[i].v[j] += 0.5*dt*(PARTS[i].f[j]*rmass + PARTS[i].a[j]);

 PARTS[i].a[j] = PARTS[i].f[j]*rmass;

 }

typedef struct {

 double p[3]; // particle position

 double v[3]; // particle velocity

 double a[3]; // particle acceleration

 double f[3]; // force acting on particle

} particle_t;

#define BF (NPARTS/THREADS)

shared [BF] particle_t PARTS[NPARTS];

shared [BF] double POT[NPARTS];

shared [BF] double KIN[NPARTS];

All Local access

116

Productive Parallel Programming in PGAS

This material is based upon work supported by the Defense Advanced Research Projects Agency under its Agreement No.
HR0011-07-9-0002.
Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect
the views of the Defense Advanced Research Projects Agency.

PACT 08

Molecular Dynamics

Compute forces acting on
particles

 Compute particles
position, velocity,
acceleration

Result

N
 t

im
e

 s
te

p
s

Initial State

 upc_forall (i = 0; i < NPARTS; i++; &PARTS[i]) {

 …

 for (j = 0; j < NPARTS; j++) {

 if (i != j) {

 d = dist(&PARTS[i].p[0], &PARTS[j].p[0], rij);

 POT[i] += 0.5*V(d);

 for (k = 0; k < NDIM; k++)

 PARTS[i].f[k] = PARTS[i].f[k] - rij[k]*DV(d)/d;

 }

 }

double dist (shared double *r1, shared double *r2, double *dr) {

 for (int i=0; i < NDIM; i++) {

 dr[i] = r1[i] - r2[i];

 d += dr[i]*dr[i];

 }

 return sqrt(d);

}

Remote accesses

117

Productive Parallel Programming in PGAS

This material is based upon work supported by the Defense Advanced Research Projects Agency under its Agreement No.
HR0011-07-9-0002.
Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect
the views of the Defense Advanced Research Projects Agency.

PACT 08

Molecular Dynamics

Compute forces acting on
particles

 Compute particles
position, velocity,
acceleration

Result

N
 t

im
e

 s
te

p
s

Initial State

upc_forall (i = 0; i < NPARTS; i++; &PARTS[i]) {

 particle_t *p = (particle_t*) &PARTS[i];

 …

 for (j = 0; j < NPARTS; j++) {

 if (i != j) {

 d = dist_local(&p->pos[0], &PARTS[j].pos[0], rij);

 POT[i] = POT[i] + 0.5*V(d);

 for (k = 0; k < NDIM; k++)

 p->f[k] = p->f[k] - rij[k]*DV(d)/d;

 }

 }

double dist _local (double *r1, shared double *r2, double *dr) {

 for (int i=0; i < NDIM; i++) {

 dr[i] = r1[i] - r2[i];

 d += dr[i]*dr[i];

 }

 return sqrt(d);

}

Local access

Further Improvements:

– Prefetch r2[i] with upc_memget ?

– Prefetch PARTS[j] in caller ?

This material is based upon work supported by the Defense Advanced Research Projects Agency under its Agreement No. HR0011-07-9-0002.
Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect
the views of the Defense Advanced Research Projects Agency.

PACT 08

6. Conclusions

119

Productive Parallel Programming in PGAS

This material is based upon work supported by the Defense Advanced Research Projects Agency under its Agreement No.
HR0011-07-9-0002.
Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect
the views of the Defense Advanced Research Projects Agency.

PACT 08

Conclusions

– Simple syntax based on C

– Easy partitioning of shared data

– Work-sharing construct with locality
information

– No explicit need to manage
communication with function calls

– Simple thread synchronization

UPC = Performance + Productivity

– Exploitation of data locality

– Coalescing of communication

– Overlapping communication and
computation

– One-sided communication

– Optimized collective library

ProductivityPerformance

http://www.alphaworks.ibm.com/tech/upccompiler

