

POWER6[™] Processor and Systems

Jim McInnes jimm@ca.ibm.com Compiler Optimization IBM Canada Toronto Software Lab

Role

- I am a Technical leader in the Compiler Optimization Team
 - Focal point to the hardware development team
 - Member of the Power ISA Architecture Board
- For each new microarchitecture I
 - help direct the design toward helpful features
 - Design and deliver specific compiler optimizations to enable hardware exploitation

Ξī	-	Ξ	Ξ	
		-	=	
_				

POWER5 Chip Overview

High frequency dual-core chip

- 8 execution units
 - * 2LS, 2FP, 2FX, 1BR, 1CR
- 1.9MB on-chip shared L2 point of coherency, 3 slices
- On-chip L3 directory and controller
- On-chip memory controller
- Technology & Chip Stats
 - 130nm lithography, Cu, SOI
 - 276M transistors, 389 mm²
 - I/Os: 2313 signal, 3057 Power/Gnd

arding IBM future directions and intent are subject to change or withdrawal without notice and represent goals and objectives only

POWER6 Chip Overview

- Ultra-high frequency dual-core chip
 - 8 execution units
 - * 2LS, 2FP, 2FX, 1BR, 1VMX
 - 2 x 4MB on-chip L2 point of coherency, 4 quads
 - On-chip L3 directory and controller
 - Two on-chip memory controllers
- Technology & Chip stats
 - CMOS 65nm lithography, SOI Cu
 - 790M transistors, 341 mm² die
 - I/Os: 1953 signal, 5399 Power/Gnd
- Full error checking and recovery (RU)

POWER4 / POWER5 / POWER6

POWER6 I/O: Speeds and Feeds L2 reload: 32B/Pc

	_	
	_	

POWER6 Core Pipelines

IBM POWER6 Overview

ments regarding IBM future directions and intent are subject to change or withdrawal without notice and represent goals and objectives only

POWER5 vs. POWER6 Pipeline Comparison

Side-by-Side comparisons

	POWER5+	POWER6
Style	General out-of-order execution	Mostly in-order with special case out-of-order execution
Units	2FX, 2LS, 2FP, 1BR, 1CR	2FX, 2LS, 2FP, 1BR/CR, 1VMX
Threading	2 SMT threads Alternate ifetch Alternate dispatch (up to 5 instructions)	2 SMT threads Priority-based dispatch Simultaneous dispatch from two threads (up to 7 instructions)

IBM POWER6 Overview nents regarding IBM future directions and intent are subject to change or withdrawal without notice and represent goals and objectives only

Side-by-side comparisons...

	POWER5+	POWER6
L1 Cache		
ICache capacity, associativity	64 KB, 2-way	64 KB, 4-way
DCache capacity, associativity	32 KB, 4-way	64 KB, 8-way
L2 Cache	Point of Coherency	Point of Coherency
Capacity, line size	1.9 MB, 128 B line	2 x 4 MB, 128 B line
Associativity, replacement	10-way, LRU	each 8-way, LRU
Off-chip L3 Cache		
Capacity, line size	36 MB, 256 B line	32 MB, 128 B line
Associativity, replacement	12-way, LRU	16-way, LRU
Memory Memory bus	4 TB maximum 2x DRAM frequency	8 TB maximum 4x DRAM frequency

¹ IBM POWER6 Overview Tents regarding IBM future directions and intent are subject to change or withdrawal without notice and represent goals and objectives only

	_	
_	_	
	_	
 _	_	
	-	_

Latency Profiles

Processor Core Functional Features

PowerPC AS Architecture Simultaneous Multithreading (2 threads) Decimal Floating Point (extension to PowerPC ISA) **48 Bit Real Address Support** Virtualization Support (1024 partitions) Concurrent support of 4 page sizes (4K, 64K, 16M, 16G) New storage key support **Bi-Endian Support Dynamic Power Management** Single Bit Error Detection on all Dataflow Robust Error Recovery (R unit) CPU sparing support (dynamic CPU swapping) Common Core for I, P, and Blade

Achieving High Frequency: POWER6 13FO4 Challenge Example

Circuit Design

- I FO4 = delay of 1 inverter that drives 4 receivers
- 1 Logical Gate = 2 FO4
- 1 cycle = Latch + function + wire
 - \star 1 cycle = 3 FO4 + function + 4 FO4
- Function = 6 FO4 = 3 Gates

Integration

- It takes 6 cycles to send a signals across the core
- Communication between units takes 1 cycle using good wire
- Control across a 64-bit data flow takes a cycle

Sacrifices associated with high frequency

- In-order design instead of out-of-order
- Longer pipelines
 - •Fp-compare latency
- FX multiply done in FPU
- Memory bandwidth reduced
 - Esp. Store queue draining bandwidth

Mitigating this:

14

SMT implementation is improved

In-Order vs. Out of Order

15

egarding IBM future directions and intent are subject to change or withdrawal without notice and represent goals and objectives only

P5 vs. P6 instruction groups

- Both machines are "superscalar," meaning that instructions are formed into groups and dispatched together. There are two big differences between P5 and P6:
- On P5 there are few restrictions on what types on insns and how many can be grouped together, while on P6 each group must fit in the available resources (2 fp, 2 fx, 2 ldst,..)
- On P5, insns are placed in queues to wait for operands to be ready, while on P6 dispatch must wait until all operands are ready for the whole group
- → On p6, cycles are shorter, but there are more stall cycles and more partial instruction groups

Strategic NOP insertion

ORI 1,1,0 terminates a dispatch group early

Suppose at cycle 10 the current group contains

- FMA, FMA, LFL and all are ready to go.
- And the only other available instruction is a LFL ready in cycle 15

Including the LFL holds up the first three -

- Could be harmless or catastrophic
- Sometimes Nops are inserted to fix this

FP compares

Fp compare has an 11-cycle latency to its use

This is a significant delay – the best defence is for the programmer to work around it – arranging lots of work between a compare and where it is used.

Several branch free sequences are available for such code. The compiler will in some cases try to replace fp compares with fx compares.

Store Queue optimizations

- On Power6 stores are placed into a queue to await completion.
- This queue can drain 1 store every other cycle
- If the next store in the queue is to consecutive storage with the first, they both can go that cycle.
- A 2*8 byte fp store is provided to make this more convenient

Symmetric Multithreading (SMT)

- P6 operates in two modes, ST (single thread) and SMT (multithreaded)
- In SMT mode two independent threads execute simultaneously, possibly from the same parallel program
- Instructions from both threads can dispatch in the same group, subject to unit availability
- This is highly profitable on P6 it is a good way to fill otherwise empty machine cycles and achieve better resource usage

FPU details

- Two Binary Floating Point units and one Decimal Floating Point unit
- 7 stage FPU with bypass in 6 stages locally and 8 stages to other fpu
- Interleaves execution of independent arithmetic instructions with divide/sqrt
- Handles fixed point multiply/divide (pipelined)
- Always run at or behind other units
 - 10 group entry queues (group= 2ldf and 2 fp/stf instructions)
 - Allows pipelined issue of dependent store instructions
- 10 group entry load target buffer allowing speculative FP load execution
- Multiple Interrupt modes
 - Ignore, imprecise non-recoverable, imprecise recoverable, precise

IBM POWER6 Overview

22

Il statements regarding IBM future directions and intent are subject to change or withdrawal without notice and represent goals and objectives only

Linpack HPC Performance

23

nts regarding IBM future directions and intent are subject to change or withdrawal without notice and represent goals and objectives only

Datastream Prefetching in POWER6

- Load-Look-Ahead (LLA) mode
 - Triggered on a data cache miss to hide latency
- Datastream prefetching with no filtering
 - Sixteen (16) Prefetch Request Queues (PRQs)
 - Prefetch 2 lines ahead to L1, up to 24 to L2, demand paced
 - Speculative L2 prefetch for next line on cache miss
 - Depth/aggressiveness control via SPR and dcbt instructions
 - * int dscr_ctl()
 - ★ dscrctl change O/S default
 - Store prefetching into L2 (with hardware detection)
 - Full compliment of line and stream touches for both loads and stores
 - Sized for dual-thread performance (8 PRQs/thread)

Memory Physical Organization

DIMMs populated in quads Single NOVA per DIMM (or pair of DIMMS) DIMMs may be 1/2/4 ranks

Actual bandwidth depends on:

- DIMM speed, type
- # of ranks/DIMMs/channel
- DIMM channel b/w
- MC read/write bandwidth (from/to buffers)
- pattern of reads/writes presented to MC

POWER5 vs POWER6 bus architecture

Combined buses

Address buses

Data buses

26

nents regarding IBM future directions and intent are subject to change or withdrawal without notice and represent goals and objectives only

_	_		
_	_	_	
	_	_	
_	_	-	_

POWER6 Eight-Processor Node

Off-node SMP interconnect

Building block for larger systems

64-way system has 8 nodes

Eight off-node SMP links

- Fully connects 8 nodes in a 64-way
- Additional link for RAS
- Can be used to build 128-core SMP

Off-node SMP interconnect

27

 -	-

POWER6 64 way high-end system

28

IBM POWER6 Overview Its regarding IBM future directions and intent are subject to change or withdrawal without notice and represent goals and objectives only

	_	
	_	
	_	

3.1.2 SMP Bus Topology

HV8

(1) DCM - 8 way maximum

31

I IBM POWER6 Overview.

Snoop Filtering: Broadcast Localized Adaptive-Scope Transaction Protocol (BLAST)

- Most significant microarchitectural enhancement to P6 nest
- Coherence broadcasts may be speculatively limited to subset (node or possibly chip) of SMP
 - NUMA-directory-like combination of cache states and domain state info in memory provide ability to resolve coherence without global broadcast
- Provides significant leverage for SW that exhibits node or chip level processor/memory affinity
- Several system designs significantly cost reduced by cutting bandwidth of chip interconnect

Snoop Filtering: Local/System/Double Pump

Send request to entire system (System Pump)

- Longer latency within local node
- Shorter latency to remote nodes
- •burn address bandwidth on all nodes

Send request to local node only (Local Pump)

- •better latency if data is found locally
- uses only local XYZ address bandwidth
- re-send to entire system if not found (Double Pump)

Adds 100-200 pclks latency (depends on system type)
Local predictor uses thread ID, request type, memory address

Tracking off-node copies

T/Te/Tn/Ten:

"e"=not dirty / "n"=no off-node copies

In/Ig: on- or off-node request took line away

castout Ig state to memory directory bit

Memory directory

- extra bit per cache line tells whether off node copies exist
- MC updates when sourcing data off-node
- allows node pump to work (MC can provide data)
- always know from Ig or mem dir if off-node copies exist

Double pump

- No on-node cache has any info about line
- If memory directory tells us off-node copies exist with data return (data not valid), have to do second pump

POWER6 Summary

- Extends POWER leadership for both Technical and Commercial Computing
 - Approx. twice the frequency of P5+, with similar instruction pipeline length and dependency
 - ★ 6 cycle FP to FP use, same as P5+
 - \star Mostly in-order but with OOO-like features (LTB, LLA)
 - ★ 5 instruction dispatch group from a thread, up to 7 for both threads, with one branch at any position
 - Significant improvement in cache-memory-latency profile
 - ★ More cache with higher associativity
 - Lower latency to all levels of cache and to memory
 - \star Enhanced datastream prefetching with adjustable depth, store-stream prefetching
 - \star Load look-ahead data prefetching
 - Advanced simultaneous multi-threading gives added dimension to chip level performance
 - Predictive subspace snooping for vastly increased SMP coherence throughput

Continued technology exploitation

- CMOS 65nm, Cu SOI Technology
- All buses scale with processor frequency

Enhanced Power Management

Advanced server virtualization

Advanced RAS: robust error detection, hardware checkpoint and recovery