
Software Group | Compiler Technology

SCINET compiler workshop | Feb 17-18, 2009 © 2009 IBM Corporation

OpenMP API 3.0

Kelvin Li
(kli@ca.ibm.com)

Software Group | Compiler Technology

© 2009 IBM CorporationSCINET compiler workshop | Feb 17-18, 2009

OpenMP API

 “… a collection of compiler directives, library routines, and
environment variables that can be used to specify shared-
memory parallelism in C, C++ and Fortran programs”

 maintained by the OpenMP Architecture Review Board (ARB)

 ARB members:

– permanent members: AMD, Cray, Fujitsu, HP, IBM, Intel, NEC,
The Portland Group (STMicroelectronics), SGI, Sun
Microsystems, Microsoft

– auxiliary members: ASC/LLNL, cOMPunity, EPCC, NASA,
RWTH Aachen University

Software Group | Compiler Technology

© 2009 IBM CorporationSCINET compiler workshop | Feb 17-18, 2009

A brief history of OpenMP API

Fortran V1.1

C & C++ V1.0

C & C++ V2.0

Fortran, C & C++

V2.5

Fortran, C & C++

V3.0

Fortran V2.0

Fortran V1.0

1997

1998

1999 2000 2001

2002

2003 2004 2005 2006 2007 2008 2009

Software Group | Compiler Technology

© 2009 IBM CorporationSCINET compiler workshop | Feb 17-18, 2009

OpenMP API support

 XL Fortran for AIX V12.1 (7/2008 GA)
XL Fortran for Linux V12.1 (10/2008 GA)

– full support for V2.5 and partial support for V3.0

 XL C/C++ for AIX V10.1 (7/2008 GA)
XL C/C++ for Linux V10.1 (10/2008 GA)

– full support for V3.0

Software Group | Compiler Technology

© 2009 IBM CorporationSCINET compiler workshop | Feb 17-18, 2009

Task directive
 irregular parallelism

 a task has

– code to execute

– a data environment (it owns its data)

– an assigned thread executes the code and uses the data

 two activities: packaging and execution

– each encountering thread packages a new instance of a task (code
and data)

– some thread in the team executes the task

 task construct

– defines an explicit task

– directive: task / end task

– clause: if, untied, private, firstprivate, default, and shared

Software Group | Compiler Technology

© 2009 IBM CorporationSCINET compiler workshop | Feb 17-18, 2009

Task directive (cont’d)
 generate independent works with task
construct

!$OMP parallel
!$OMP single
 do while (...)
!$OMP task
 call process(p)
!$OMP end task
 enddo
!$OMP end single
!$OMP end parallel

Software Group | Compiler Technology

© 2009 IBM CorporationSCINET compiler workshop | Feb 17-18, 2009

Task directive (cont’d)
 an example from the spec

 recursive integer funciton fib(n)
 integer :: n, i, j
 if (n .lt. 2) then
 fib = n
 else
!$OMP task shared(i)
 i = fib(n-1)
!$OMP end task
!$OMP task shared(j)
 j = fib(n-2)
!$OMP end task
!$OMP taskwait
 fib = i + j
 endif
 end function

Software Group | Compiler Technology

© 2009 IBM CorporationSCINET compiler workshop | Feb 17-18, 2009

Task directive (cont’d)
 task switching

– the act of a thread to switch from executing one task to another task

 task scheduling point

– a point during the execution of the current task region at which it can
be suspended to be resumed later; or the point of task completion,
after which the executing thread may switch to a different task region

– e.g. encountered task constructs, encountered taskwait constructs

Software Group | Compiler Technology

© 2009 IBM CorporationSCINET compiler workshop | Feb 17-18, 2009

Task directive (cont’d)
 why?

– !$omp parallel
!$omp single
 do i=1, 1000000
!$omp task
 call process(items(i))
!$omp end task
 enddo
!$omp end single
!$omp end parallel

– too many tasks generated and unassigned; the “task pool”
becomes very large that may exceed resource limit

– the thread that generates tasks (t1) is allowed to suspend the
task generation and
• execute the unassigned task (draining the “task pool”); or
• execute the encountered task (could be very cache-friendly)

– when the number of unassigned tasks is reduced, t1 will resume
the task generation

Software Group | Compiler Technology

© 2009 IBM CorporationSCINET compiler workshop | Feb 17-18, 2009

Task directive (cont’d)
 what is the untied clause?

– by default, without untied clause, a task is tied to the thread that starts
the execution (i.e. suspend and resume by the same thread)

– untied task is a task that can be suspended by one thread and
resumed by any thread in the team (not tied to any thread)

– using the same example (adding the untied clause to the task
directive)

• when t1 suspended the task generation but execute a long task

• when all the unassigned tasks are finished by other threads

• another thread can resume the task generation (that task is not tied
to any thread)

Software Group | Compiler Technology

© 2009 IBM CorporationSCINET compiler workshop | Feb 17-18, 2009

Task directive (cont’d)
 taskwait construct

– specifies a way to wait on the completion of child tasks generated
since the beginning of the current task

– encountering task suspends at the point of the directive until all
children tasks created within the encountering task up to this point are
complete

Software Group | Compiler Technology

© 2009 IBM CorporationSCINET compiler workshop | Feb 17-18, 2009

Loop collapse

 collapse perfect nested loops

 clause: collapse(n), where n specifies how many
loops are associated to the loop construct (by
default the loop that follows the construct)

 !$OMP do collapse(2) private(i,j,k) ! associated
 ! two outer loops
 do k=kl, ku, ks
 do j=jl, ju, js
 do i=il, iu, is
 call sub(a,i,j,k)
 enddo
 enddo
 enddo

Software Group | Compiler Technology

© 2009 IBM CorporationSCINET compiler workshop | Feb 17-18, 2009

Stack size control

 controls the size of the stack for threads

 but not control the stack size for the initial thread
(i.e. the master thread in a team)

 envirnoment variable:
OMP_STACKSIZE=size|size B|size K|size M|size G

Software Group | Compiler Technology

© 2009 IBM CorporationSCINET compiler workshop | Feb 17-18, 2009

Thread wait policy

 a hint about the desired behavior of waiting
threads during the execution of an OpenMP
program

 environment variable:
OMP_WAIT_POLICY=ACTIVE|PASSIVE

– ACTIVE – waiting threads be active (i.e. consume
processor cycles, while waiting)

– PASSIVE – waiting threads mostly be passive (i.e. not
consume processor cycels, while waiting)

Software Group | Compiler Technology

© 2009 IBM CorporationSCINET compiler workshop | Feb 17-18, 2009

SCHEDULE kind - AUTO
 specifies that the compiler/runtime can choose any possible

mapping of iterations to threads and may be different in different
loops

 environment variable:
OMP_SCHEDULE=static | dynamic | guided | auto

 runtime routines:

– [C/C++]
omp_set_schedule(omp_sched_t sched, int arg)
omp_get_schedule(omp_sched_t *sched, int *arg)

[Fortran]
subroutine omp_set_schedule(kind, modifier)
 integer(kind=omp_sched_kind) :: kind
 integer :: modifier

subroutine omp_get_schedule(kind, modifier)
 integer(kind=omp_sched_kind) :: kind
 integer :: modifier

Software Group | Compiler Technology

© 2009 IBM CorporationSCINET compiler workshop | Feb 17-18, 2009

Preserving private variable

 remove possibility of reusing the storage of the
original variable for private variables

 x = 10
!$OMP parallel private(x)
 ...
 ! unspecified if reference original x
 ... = x
!$OMP end parallel
 ! x is defined after the region

Software Group | Compiler Technology

© 2009 IBM CorporationSCINET compiler workshop | Feb 17-18, 2009

Allocatable arrays

 allow allocatable arrays on firstprivate, lastprivate,
reduction, copyin and copyprivate clauses

 relax the requirement of having the allocatable
arrays to be “not currently allocated” on entry to
and on exit from the construct

Software Group | Compiler Technology

© 2009 IBM CorporationSCINET compiler workshop | Feb 17-18, 2009

Allocatable arrays (cont’d)

 if it is allocated, the private copy will have an
initial state of allocated with the same array
bounds

 integer, allocatable :: arr(:,:)
 allocate(arr(500,4))
!$OMP parallel private(arr)
 ! private arr is allocated with the same
 ! bound and shape but not initialized
 ...
!$OMP end parallel

 not yet supported in XLF

Software Group | Compiler Technology

© 2009 IBM CorporationSCINET compiler workshop | Feb 17-18, 2009

STATIC schedule

 modify STATIC schedule to allow safe use of NOWAIT

 ensure the same assignment of iteration numbers to threads
will be used in two consecutive worksharing loops

 !$OMP do schedule(STATIC)
 do i=1, N
 a(i) = ...
 enddo
!$OMP end do nowait
!$OMP do schedule(STATIC)
 do i=1, N
 ... = a(i)
 enddo

Software Group | Compiler Technology

© 2009 IBM CorporationSCINET compiler workshop | Feb 17-18, 2009

Nesting support

 define maximum number of OpenMP threads a
program can have

– runtime routine

• omp_get_thread_limit – returns the maximum number of
OpenMP threads available to the program

– environment variable

• OMP_THREAD_LIMIT – sets the number of OpenMP
threads to use for the whole OpenMP program

Software Group | Compiler Technology

© 2009 IBM CorporationSCINET compiler workshop | Feb 17-18, 2009

Nesting support (cont’d)

 define the max depth of nested active parallel
regions

– runtime routine

• omp_set_max_active_levels – limits the number of nested
active parallel regions

• omp_get_max_active_levels – returns the maximum number
of nested active parallel regions

– environment variable

• OMP_MAX_ACTIVE_LEVELS – controls the maximum
number of nested active parallel regions

Software Group | Compiler Technology

© 2009 IBM CorporationSCINET compiler workshop | Feb 17-18, 2009

Nesting support (cont’d)

 nesting information

– runtime routine
• omp_get_level – returns the number of nested parallel

reigions enclosing the task that contains the call
• omp_get_ancestor_thread_num – returns, for a given nested

level of the current thread, the thread number of the ancestor
or the current thread

• omp_get_team_size – returns, for a given nested level of the
current thread, the size of the thread team to which the
ancestor or the current thread belongs

• omp_get_active_level – returns the number of nested, active
parallel regions enclosing the task that contains the call

Software Group | Compiler Technology

© 2009 IBM CorporationSCINET compiler workshop | Feb 17-18, 2009

Miscellanous features

 [C/C++] allow unsiged int as the for-loop iteration
variable (only signed int is listed in 2.5)

 [C++] random access iterators can be used as
loop iterators in loops associated with a loop
construct

 [C++] static class members variables can appear
in a threadprivate variable

 [C++] where constructors/destructors are called,
how threadprivate objects should be initialized

Software Group | Compiler Technology

© 2009 IBM CorporationSCINET compiler workshop | Feb 17-18, 2009

Miscellanous features (cont’d)

 multiple internal control variables

– only one global copy of internal variable in a program in
V2.5

– define some internal control variables in per thread base

• dyn-var (ref: OMP_DYNAMIC)
• nest-var (ref: OMP_NESTED)
• nthreads-var (ref: OMP_NUM_THREADS)

 [Fortran] default clause allows firstprivate

Software Group | Compiler Technology

© 2009 IBM CorporationSCINET compiler workshop | Feb 17-18, 2009

More information …

 OpenMP API

– http://www.openmp.org

 about IBM XL compilers:

– http://www-01.ibm.com/software/awdtools/fortran/

– http://www-01.ibm.com/software/awdtools/xlcpp/

