
Software Group | Compiler Technology

SCINET compiler workshop | Feb 17-18, 2009 © 2009 IBM Corporation

OpenMP API 3.0

Kelvin Li
(kli@ca.ibm.com)

Software Group | Compiler Technology

© 2009 IBM CorporationSCINET compiler workshop | Feb 17-18, 2009

OpenMP API

 “… a collection of compiler directives, library routines, and
environment variables that can be used to specify shared-
memory parallelism in C, C++ and Fortran programs”

 maintained by the OpenMP Architecture Review Board (ARB)

 ARB members:

– permanent members: AMD, Cray, Fujitsu, HP, IBM, Intel, NEC,
The Portland Group (STMicroelectronics), SGI, Sun
Microsystems, Microsoft

– auxiliary members: ASC/LLNL, cOMPunity, EPCC, NASA,
RWTH Aachen University

Software Group | Compiler Technology

© 2009 IBM CorporationSCINET compiler workshop | Feb 17-18, 2009

A brief history of OpenMP API

Fortran V1.1

C & C++ V1.0

C & C++ V2.0

Fortran, C & C++

V2.5

Fortran, C & C++

V3.0

Fortran V2.0

Fortran V1.0

1997

1998

1999 2000 2001

2002

2003 2004 2005 2006 2007 2008 2009

Software Group | Compiler Technology

© 2009 IBM CorporationSCINET compiler workshop | Feb 17-18, 2009

OpenMP API support

 XL Fortran for AIX V12.1 (7/2008 GA)
XL Fortran for Linux V12.1 (10/2008 GA)

– full support for V2.5 and partial support for V3.0

 XL C/C++ for AIX V10.1 (7/2008 GA)
XL C/C++ for Linux V10.1 (10/2008 GA)

– full support for V3.0

Software Group | Compiler Technology

© 2009 IBM CorporationSCINET compiler workshop | Feb 17-18, 2009

Task directive
 irregular parallelism

 a task has

– code to execute

– a data environment (it owns its data)

– an assigned thread executes the code and uses the data

 two activities: packaging and execution

– each encountering thread packages a new instance of a task (code
and data)

– some thread in the team executes the task

 task construct

– defines an explicit task

– directive: task / end task

– clause: if, untied, private, firstprivate, default, and shared

Software Group | Compiler Technology

© 2009 IBM CorporationSCINET compiler workshop | Feb 17-18, 2009

Task directive (cont’d)
 generate independent works with task
construct

!$OMP parallel
!$OMP single
 do while (...)
!$OMP task
 call process(p)
!$OMP end task
 enddo
!$OMP end single
!$OMP end parallel

Software Group | Compiler Technology

© 2009 IBM CorporationSCINET compiler workshop | Feb 17-18, 2009

Task directive (cont’d)
 an example from the spec

 recursive integer funciton fib(n)
 integer :: n, i, j
 if (n .lt. 2) then
 fib = n
 else
!$OMP task shared(i)
 i = fib(n-1)
!$OMP end task
!$OMP task shared(j)
 j = fib(n-2)
!$OMP end task
!$OMP taskwait
 fib = i + j
 endif
 end function

Software Group | Compiler Technology

© 2009 IBM CorporationSCINET compiler workshop | Feb 17-18, 2009

Task directive (cont’d)
 task switching

– the act of a thread to switch from executing one task to another task

 task scheduling point

– a point during the execution of the current task region at which it can
be suspended to be resumed later; or the point of task completion,
after which the executing thread may switch to a different task region

– e.g. encountered task constructs, encountered taskwait constructs

Software Group | Compiler Technology

© 2009 IBM CorporationSCINET compiler workshop | Feb 17-18, 2009

Task directive (cont’d)
 why?

– !$omp parallel
!$omp single
 do i=1, 1000000
!$omp task
 call process(items(i))
!$omp end task
 enddo
!$omp end single
!$omp end parallel

– too many tasks generated and unassigned; the “task pool”
becomes very large that may exceed resource limit

– the thread that generates tasks (t1) is allowed to suspend the
task generation and
• execute the unassigned task (draining the “task pool”); or
• execute the encountered task (could be very cache-friendly)

– when the number of unassigned tasks is reduced, t1 will resume
the task generation

Software Group | Compiler Technology

© 2009 IBM CorporationSCINET compiler workshop | Feb 17-18, 2009

Task directive (cont’d)
 what is the untied clause?

– by default, without untied clause, a task is tied to the thread that starts
the execution (i.e. suspend and resume by the same thread)

– untied task is a task that can be suspended by one thread and
resumed by any thread in the team (not tied to any thread)

– using the same example (adding the untied clause to the task
directive)

• when t1 suspended the task generation but execute a long task

• when all the unassigned tasks are finished by other threads

• another thread can resume the task generation (that task is not tied
to any thread)

Software Group | Compiler Technology

© 2009 IBM CorporationSCINET compiler workshop | Feb 17-18, 2009

Task directive (cont’d)
 taskwait construct

– specifies a way to wait on the completion of child tasks generated
since the beginning of the current task

– encountering task suspends at the point of the directive until all
children tasks created within the encountering task up to this point are
complete

Software Group | Compiler Technology

© 2009 IBM CorporationSCINET compiler workshop | Feb 17-18, 2009

Loop collapse

 collapse perfect nested loops

 clause: collapse(n), where n specifies how many
loops are associated to the loop construct (by
default the loop that follows the construct)

 !$OMP do collapse(2) private(i,j,k) ! associated
 ! two outer loops
 do k=kl, ku, ks
 do j=jl, ju, js
 do i=il, iu, is
 call sub(a,i,j,k)
 enddo
 enddo
 enddo

Software Group | Compiler Technology

© 2009 IBM CorporationSCINET compiler workshop | Feb 17-18, 2009

Stack size control

 controls the size of the stack for threads

 but not control the stack size for the initial thread
(i.e. the master thread in a team)

 envirnoment variable:
OMP_STACKSIZE=size|size B|size K|size M|size G

Software Group | Compiler Technology

© 2009 IBM CorporationSCINET compiler workshop | Feb 17-18, 2009

Thread wait policy

 a hint about the desired behavior of waiting
threads during the execution of an OpenMP
program

 environment variable:
OMP_WAIT_POLICY=ACTIVE|PASSIVE

– ACTIVE – waiting threads be active (i.e. consume
processor cycles, while waiting)

– PASSIVE – waiting threads mostly be passive (i.e. not
consume processor cycels, while waiting)

Software Group | Compiler Technology

© 2009 IBM CorporationSCINET compiler workshop | Feb 17-18, 2009

SCHEDULE kind - AUTO
 specifies that the compiler/runtime can choose any possible

mapping of iterations to threads and may be different in different
loops

 environment variable:
OMP_SCHEDULE=static | dynamic | guided | auto

 runtime routines:

– [C/C++]
omp_set_schedule(omp_sched_t sched, int arg)
omp_get_schedule(omp_sched_t *sched, int *arg)

[Fortran]
subroutine omp_set_schedule(kind, modifier)
 integer(kind=omp_sched_kind) :: kind
 integer :: modifier

subroutine omp_get_schedule(kind, modifier)
 integer(kind=omp_sched_kind) :: kind
 integer :: modifier

Software Group | Compiler Technology

© 2009 IBM CorporationSCINET compiler workshop | Feb 17-18, 2009

Preserving private variable

 remove possibility of reusing the storage of the
original variable for private variables

 x = 10
!$OMP parallel private(x)
 ...
 ! unspecified if reference original x
 ... = x
!$OMP end parallel
 ! x is defined after the region

Software Group | Compiler Technology

© 2009 IBM CorporationSCINET compiler workshop | Feb 17-18, 2009

Allocatable arrays

 allow allocatable arrays on firstprivate, lastprivate,
reduction, copyin and copyprivate clauses

 relax the requirement of having the allocatable
arrays to be “not currently allocated” on entry to
and on exit from the construct

Software Group | Compiler Technology

© 2009 IBM CorporationSCINET compiler workshop | Feb 17-18, 2009

Allocatable arrays (cont’d)

 if it is allocated, the private copy will have an
initial state of allocated with the same array
bounds

 integer, allocatable :: arr(:,:)
 allocate(arr(500,4))
!$OMP parallel private(arr)
 ! private arr is allocated with the same
 ! bound and shape but not initialized
 ...
!$OMP end parallel

 not yet supported in XLF

Software Group | Compiler Technology

© 2009 IBM CorporationSCINET compiler workshop | Feb 17-18, 2009

STATIC schedule

 modify STATIC schedule to allow safe use of NOWAIT

 ensure the same assignment of iteration numbers to threads
will be used in two consecutive worksharing loops

 !$OMP do schedule(STATIC)
 do i=1, N
 a(i) = ...
 enddo
!$OMP end do nowait
!$OMP do schedule(STATIC)
 do i=1, N
 ... = a(i)
 enddo

Software Group | Compiler Technology

© 2009 IBM CorporationSCINET compiler workshop | Feb 17-18, 2009

Nesting support

 define maximum number of OpenMP threads a
program can have

– runtime routine

• omp_get_thread_limit – returns the maximum number of
OpenMP threads available to the program

– environment variable

• OMP_THREAD_LIMIT – sets the number of OpenMP
threads to use for the whole OpenMP program

Software Group | Compiler Technology

© 2009 IBM CorporationSCINET compiler workshop | Feb 17-18, 2009

Nesting support (cont’d)

 define the max depth of nested active parallel
regions

– runtime routine

• omp_set_max_active_levels – limits the number of nested
active parallel regions

• omp_get_max_active_levels – returns the maximum number
of nested active parallel regions

– environment variable

• OMP_MAX_ACTIVE_LEVELS – controls the maximum
number of nested active parallel regions

Software Group | Compiler Technology

© 2009 IBM CorporationSCINET compiler workshop | Feb 17-18, 2009

Nesting support (cont’d)

 nesting information

– runtime routine
• omp_get_level – returns the number of nested parallel

reigions enclosing the task that contains the call
• omp_get_ancestor_thread_num – returns, for a given nested

level of the current thread, the thread number of the ancestor
or the current thread

• omp_get_team_size – returns, for a given nested level of the
current thread, the size of the thread team to which the
ancestor or the current thread belongs

• omp_get_active_level – returns the number of nested, active
parallel regions enclosing the task that contains the call

Software Group | Compiler Technology

© 2009 IBM CorporationSCINET compiler workshop | Feb 17-18, 2009

Miscellanous features

 [C/C++] allow unsiged int as the for-loop iteration
variable (only signed int is listed in 2.5)

 [C++] random access iterators can be used as
loop iterators in loops associated with a loop
construct

 [C++] static class members variables can appear
in a threadprivate variable

 [C++] where constructors/destructors are called,
how threadprivate objects should be initialized

Software Group | Compiler Technology

© 2009 IBM CorporationSCINET compiler workshop | Feb 17-18, 2009

Miscellanous features (cont’d)

 multiple internal control variables

– only one global copy of internal variable in a program in
V2.5

– define some internal control variables in per thread base

• dyn-var (ref: OMP_DYNAMIC)
• nest-var (ref: OMP_NESTED)
• nthreads-var (ref: OMP_NUM_THREADS)

 [Fortran] default clause allows firstprivate

Software Group | Compiler Technology

© 2009 IBM CorporationSCINET compiler workshop | Feb 17-18, 2009

More information …

 OpenMP API

– http://www.openmp.org

 about IBM XL compilers:

– http://www-01.ibm.com/software/awdtools/fortran/

– http://www-01.ibm.com/software/awdtools/xlcpp/

