
Compilation Technology

SCINET compiler workshop | February 17-18, 2009 © 2009 IBM Corporation

Software Group

Fortran 2003

Jim Xia
IBM Toronto Lab
jimxia@ca.ibm.com

2

Compilation Technology

SCINET compiler workshop | Fortran 2003 © 2009 IBM Corporation

Software Group

Agenda

 Background
 What’s new in Fortran 2003
 IBM XL Fortran
 Q&A

3

Compilation Technology

SCINET compiler workshop | Fortran 2003 © 2009 IBM Corporation

Software Group

Background

 50 year anniversary in 2007
 Fortran 2003 published in Nov, 2004

– Fourth edition of Fortran standard

– number of pages increased from 356 (Fortran 95) to 569

– many new features added

– include many interpretations to Fortran 95

– include two Technical Reports
 allocatable dummy arguments and allocatable components
 support for IEEE Floating Point Standard (IEEE 1989) (IEEE

intrinsic modules)
 Next revision (Fortran 2008) is near FCD phase

– Publication date is set in 2010

– Major features added: coarrays, submodules

4

Compilation Technology

SCINET compiler workshop | Fortran 2003 © 2009 IBM Corporation

Software Group

What’s new in Fortran 2003

 Object-oriented programming support
 I/O Enhancements
 Scoping and data manipulation enhancements
 C interoperability
 Procedure enhancements
 Parameterized derived type

5

Compilation Technology

SCINET compiler workshop | Fortran 2003 © 2009 IBM Corporation

Software Group

Object-oriented programming

 type extension (inheritance)

 type fluid
 real :: viscosity

 real, allocatable :: velocity(:,:,:)
 end type

 type, extends(fluid) :: magnetofluid
 real, allocatable :: magnetic_field(:,:,:)
 end type

– type magnetofluid inherited ALL of properties of
fluid: viscosity and velocity

– Only support single-rooted inheritance hierarchy

6

Compilation Technology

SCINET compiler workshop | Fortran 2003 © 2009 IBM Corporation

Software Group

Object-oriented programming (cont’d)

 type-bound procedures

 type point
 real x, y
 contains
 procedure :: length => lenBetween2Points
 end type

 ...!definition of lenBetween2Points
 real function lenBetween2Points(this, p)
 class(point), intent(in) :: this, p
 ... ! compute the length
 end function
 ...! in main program
 type(point) :: pa, pb
 ...

 distance = pa%length(pb)

7

Compilation Technology

SCINET compiler workshop | Fortran 2003 © 2009 IBM Corporation

Software Group

Object-oriented programming (cont’d)

 Declaration of polymorphic data
– CLASS keyword

 class(fluid) A !could be fluid or magnetofluid

 SELECT TYPE construct
– Allows execution flow controled by dynamic type of the selector

 select type(A)
 type is (fluid)
 ... !block for fluid
 class is (magnetofluid)
 ... !block for magnetofluid
 class default
 ...
 end select

8

Compilation Technology

SCINET compiler workshop | Fortran 2003 © 2009 IBM Corporation

Software Group

Object-oriented programming (cont’d)

 abstract types and deferred binding
– No concrete objects can be declared to have an abstract type

– Deferred binding: defer implementation for type-bound procedures to
extending types, only providing well-defined interfaces

 type, abstract :: shape
 contains
 procedure(shapeArea), deferred :: area
 end type

– abstract interface
 real function shapeArea (this)
 import shape
 class(shape), intent(in) :: this

– end function
 end interface

9

Compilation Technology

SCINET compiler workshop | Fortran 2003 © 2009 IBM Corporation

Software Group

I/O enhancements

 user-defined derived-type I/O
– allows user to provide procedures (subroutines) to be used for reading

or writing a derived type

– user defined procedures are invoked by Fortran's READ, WRITE or
PRINT statement as if an intrinsic IO

– useful for derived types with POINTER/ALLOCATABLE components
 stream access I/O
 asynchronous I/O
 Infinities and NaNs in formatted READ and WRITE

– [+/-]INF or [+/-]INFINITY for infinities

– NaN[(...)], for NaNs. e.g. NaN(Q)

10

Compilation Technology

SCINET compiler workshop | Fortran 2003 © 2009 IBM Corporation

Software Group

I/O enhancements (cont’d)

 specifier enhancements: allow more control at data transfer
– BLANK= specifier

– PAD= specifier

– DELIM= specifier
 New specifiers for more control

– SIGN= specifier
 controls whether the plus sign is displayed for positive numbers in

formatted I/O
– DECIMAL= specifier

 specifies the decimal separator for floating-point number
– ROUND= specifier

 controls the rounding mode for formatted I/O

11

Compilation Technology

SCINET compiler workshop | Fortran 2003 © 2009 IBM Corporation

Software Group

Data manipulation and scoping enhancements

 allocatable components for derived type
 fine-grained data protection

– private derived type components
 deferred length type parameters:

– character(:), allocatable :: str ! Length of str can be changed at run-time
 array constructors enhancement

– square brackets in array constructors
 [1, 2, 3] is equivalent to (/ 1, 2, 3 /)

– allow type specification
 [real :: 1, 2, 3, 4, 5]

 pointer assignment enhancement
– allow lower bounds to be specified for pointer objects

 p(0:,0:) => a !p's lower bounds are [0,0]

– remapping of the elements of a rank-one array
 p(1:m,1:2*m) => b !b is a rank-one array

12

Compilation Technology

SCINET compiler workshop | Fortran 2003 © 2009 IBM Corporation

Software Group

Data manipulation and scoping enhancements (cont’d)

 allow character dummy arguments for MIN, MAX, MINLOC,
MAXLOC, MINVAL and MAXVAL

 access host entities via IMPORT statement in interface block
integer, parameter :: dp = selected_real_kind(15)

!in the same scope of definition of dp

interface

 function distribution_function (x) result (res)

 IMPORT dp

 real(kind = dp), intent(in) :: x

 real(kind=dp) res

 end function

end interface

13

Compilation Technology

SCINET compiler workshop | Fortran 2003 © 2009 IBM Corporation

Software Group

Data manipulation and scoping enhancements (cont’d)

 allocate statement with source-expr
 integer, dimension(4,20) :: arr0

 ...
 allocate(arr1(4,20), source=arr0)

 allocatable array automatic reallocation on assignment
 real, dimension(:,:), allocatable :: A

 real :: B(2, 10), C (5, 5), D(5,5)
 A = B ! A is automatically allocated as 2 x 10
 ...
 A = C ! A is automatically reallocated as 5 x 5
 !reallocation == deallocate -> allocate
 A(:,:) = D !NO reallocation here

14

Compilation Technology

SCINET compiler workshop | Fortran 2003 © 2009 IBM Corporation

Software Group

Data manipulation and scoping enhancements (cont’d)

 rename operators on USE statement
use a_mod, operator (.plus.) => operator (.add.)

 PROTECTED module data
module temperature_mod

 real, protected :: temperature

 contains

 subroutine set_temperature (temp)

 real, intent(in) :: temp

 temperature = temp

 end subroutine

end module

15

Compilation Technology

SCINET compiler workshop | Fortran 2003 © 2009 IBM Corporation

Software Group

C interoperability

 provide a standardized mechanism for interoperating with C
 intrinsic module ISO_C_BINDING – contains named constant

holding kind type parameter values for intrinsic types

type named constant C type or types
integer C_INT int
...
real C_FLOAT float
 C_DOUBLE double

 provide facilities of interoperability with C data, pointers, struct, and
procedures

– Interop with C global data variables

real(C_FLOAT),dimension(100),bind(C,name='Alpha')::alpha

bound to

float Alpha[100];

16

Compilation Technology

SCINET compiler workshop | Fortran 2003 © 2009 IBM Corporation

Software Group

C interoperability (cont'd)

– Interop with C struct

type, BIND(C) :: point

 real(C_FLOAT) :: x, y

end type

interoperable with

typedef struct{

 float x1, x2;

} point_t;

17

Compilation Technology

SCINET compiler workshop | Fortran 2003 © 2009 IBM Corporation

Software Group

C interoperability (cont'd)

– Interop with C procedure and procedure interfaces

interface

 subroutine sub (i, r) bind(C, name='proc')

 integer(C_INT), VALUE :: i

 real(C_DOUBLE) r

 end subroutine

end interface
 Fortran interface interoperable with C prototype

void proc (int, double *);
 Call sub in Fortran resolves to an invocation on a procedure

named “proc”

18

Compilation Technology

SCINET compiler workshop | Fortran 2003 © 2009 IBM Corporation

Software Group

More C interoperability

 enumerations
 enum, bind(C)
 enumerator :: two=2, five=5
 enumerator :: six
 end enum
declares an enumerator with constants 2, 5 and 6

19

Compilation Technology

SCINET compiler workshop | Fortran 2003 © 2009 IBM Corporation

Software Group

Procedure enhancements

 VALUE attribute on dummy argument
– call by value

 abstract interface
– declares a procedure interface without declaring an actual procedure

 declare procedures using procedure interface name (prototype)
procedure(problem_solver) :: forward_euler, backward_euler

 procedure pointer
 procedure(problem_solver), pointer :: solution
solution => forward_euler

20

Compilation Technology

SCINET compiler workshop | Fortran 2003 © 2009 IBM Corporation

Software Group

Parameterized derived types

 derived type allowed to have KIND and LENGTH type parameters
 integer, parameter::dp = selected_real_kind(15)
 type matrix(kind,m,n)
 integer, kind :: kind=dp
 integer, len :: m, n
 real(kind) :: element(m,n)
 end type

 type(matrix(dp,10,20)) :: a
declares a double-precision matrix of size 10 x 20

• type(matrix(dp, :, :)), allocatable :: mat
• ...
• ALLOCATE (matrix(dp, m, n) :: mat)
• size of matrix mat is determined at runtime

21

Compilation Technology

SCINET compiler workshop | Fortran 2003 © 2009 IBM Corporation

Software Group

IBM XL Fortran

 standard compliance is one of the XL compiler priorities
 IBM actively participates in the standard development
 implement Fortran 2003 features since V8.1 (GA 2002)
 V12.1 contains all Fortran 2003 features except parameterized

derived types
– First OO Fortran compiler in the industry

 V12.1 supports most OpenMP3.0 features
 implemented features are available on all supported platforms
 for more information, please visit

http://www-01.ibm.com/software/awdtools/fortran/

http://www-01.ibm.com/software/awdtools/fortran/

22

Compilation Technology

SCINET compiler workshop | Fortran 2003 © 2009 IBM Corporation

Software Group

Q & A

