
Compilation Technology

SCINET | February 17-18, 2009 © 2009 IBM Corporation

Software Group

 Compiling for Power6

Damien Bonaventure
IBM Toronto Lab
damien@ca.ibm.com

2

Compilation Technology

SCINET Briefing | Compiling for Power6 © 2009 IBM Corporation

Software Group

Agenda

 Power6 specific tuning

 Interesting Optimizations

 VMX Exploitation

 Optimization Reports and Examples

3

Compilation Technology

SCINET Briefing | Compiling for Power6 © 2009 IBM Corporation

Software Group

Architecture and Tuning

 Two of the most important compilation flags when targeting Power6

 The architecture flag (e.g -qarch=pwr6) specifies what instructions
the compiler is allowed to use.

 The tuning flag (e.g -qtune=pwr6) specifies the microarchitecture
for which the compiler will tune the code

 Code compiled for a specific architecture can only be run on that
specific machine, otherwise an illegal instruction trap may result.

 Running a binary compiled with an incorrect -qtune sub-option will
not cause runtime errors, but may cause sub-optimal performance.

4

Compilation Technology

SCINET Briefing | Compiling for Power6 © 2009 IBM Corporation

Software Group

Power5 / Power6 differences (summary)

 Power6 executes instructions in order
Helps to reach high clock rate, but potentially more stalls

 Store Queue has to be managed to prevent load/store stalls
Careful arrangement of stores can get the bandwidth back in

 Power6 does not do store forwarding
High cost for store and reload

 Fixed point multiplies are done in the floating point unit
Extra cost can be mitigated by grouping them

 Compiler technology is key to extracting performance from the P6

5

Compilation Technology

SCINET Briefing | Compiling for Power6 © 2009 IBM Corporation

Software Group

Compiling for Power6

 New -qarch suboptions for Power6:
 -qarch=pwr6e - Generate all P6 instructions

 -qarch=pwr6 - Generate all except for raw-mode only instructions

 Some P6 instructions are only available when the P6 is in “raw
mode”

 mffgpr, mftgpr: move between float and integer registers

 stfdp: store float double pair

 Using -qarch=pwr6 will ensure that your binaries continue to run on
upcoming processors, while -qarch=pwr6e may provide additional
performance.

6

Compilation Technology

SCINET Briefing | Compiling for Power6 © 2009 IBM Corporation

Software Group

Ganging Fixed Point Multiplies

 Integer multiplies need to be handled specially on the Power6
These execute in the floating point unit (FPU)

Each multiply takes 17 cycles, and stalls dispatch for 1 cycle, but this can

be mitigated if they are next to each other within a group

 Adjacent multiplies take an additional 2 cycles only
mullw,mullw,mullw,add,sub = min of 23 (17 + 2 + 2 + 2) cycles

mullw,add,mullw,sub,mullw = min of 51 (17 + 2 + 17 + 2 + 17) cycles

 Group independent multiplies together in groups that are as long as
possible.

7

Compilation Technology

SCINET Briefing | Compiling for Power6 © 2009 IBM Corporation

Software Group

Store Queue Management (cont.)

 Use 1 store float double pair (stfdp) instruction to replace 2 store
float double (stfd) instructions, when possible

A stfdp takes up just 1 STQ entry

Rules: (1) the 2 stfd’s store consecutive registers (2) the address of the
stfdp must be 16-byte aligned

 Currently done in function prologues only

 | 000000 PDEF pov::pov_shellout(SHELLTYPE)
 466| PROC
 0| 006A20 mfspr 7C0802A6 1 LFLR gr0=lr
 0| 006A24 stfd DBE1FFF8 1 STFL #stack(gr1,-8)=fp31
 0| 006A28 stfd DBC1FFF0 1 STFL #stack(gr1,-16)=fp30

 | 000000 PDEF pov::pov_shellout(SHELLTYPE)
 466| PROC
 0| 006A20 mfspr 7C0802A6 1 LFLR gr0=lr
 0| 006A24 stfdp F7C1FFF0 1 STFQ #stack(gr1,-16)=fp30,fp31

-qarch=pwr5

-qarch=pwr6

8

Compilation Technology

SCINET Briefing | Compiling for Power6 © 2009 IBM Corporation

Software Group

Store/Re-Load Cost

 Power6 has no store forwarding: relatively high cost for loading
from a storage location that was recently stored into

e.g. type conversions, parameter passing

 Two new instructions are available to transfer data between floating
point and general purpose registers.

mffgpr, mftgpr

 These will be generated automatically by the compiler for type
conversions only if -qarch=pwr6e is used

These insns have not been added to the PPC architecture

Builtins available for user code

9

Compilation Technology

SCINET Briefing | Compiling for Power6 © 2009 IBM Corporation

Software Group

Other Power6 Specific Changes

 Pair long running instructions (fdiv, fsqrt) so that they are in the
same dispatch group. They execute in parallel. If they are in different
dispatch groups, they may execute serially

 Use special group-ending NOP instruction to force early termination
of dispatch groups, when needed

ORI 1,1,0 special on Power6, regular NOP on Power5

 P6 aware loop unrolling:
Unroll loops enough to cover the 5 cycle redirect penalty

Unroll to find store grouping opportunities

10

Compilation Technology

SCINET Briefing | Compiling for Power6 © 2009 IBM Corporation

Software Group

Prefetch Enhancements for P6

 Exploit the 16 streams available on Power6 (only 8 on P4/P5)

 Support new store stream prefetch
Compiler automatically determines when prefetch insertion is profitable

and inserts calls to prefetch stores

 Exploit both L1 and L2 touch instructions
Compiler automatically determines if data is more likely to be needed in

L1

or L2 and inserts the prefetch required.

 Exploit prefetch depth control

Compiler tries to fetch further ahead

Tricky to get right, may compete with immediately needed lines in L1

11

Compilation Technology

SCINET Briefing | Compiling for Power6 © 2009 IBM Corporation

Software Group

VMX Exploitation

 Support the VMX unit on P6
User directed via explicit intrinsic programming

Automatically generate VMX code by loop analysis, and efficiently

handling alignment constraints

Both of the above are fully optimized and scheduled for P6

 Symbolic debug support at opt0

 SIMDization reports to tell users which loops were SIMDized, which
were not, and what prevented SIMDization

 More on this later …

12

Compilation Technology

SCINET Briefing | Compiling for Power6 © 2009 IBM Corporation

Software Group

Balanced Tuning (-qtune=balanced)

 This is the default tuning target since XL C/C++ V9.0 and XLF 11.1

 We try to balance the competing optimization priorities of Power5
and Power6

Insert special group ending NOP when required, on P5 this acts just like a

regular NOP

Have “loads only” and “stores only” groups when possible

Group fixed point multiplies together in a sequence

13

Compilation Technology

SCINET Briefing | Compiling for Power6 © 2009 IBM Corporation

Software Group

 Interesting Optimizations

14

Compilation Technology

SCINET Briefing | Compiling for Power6 © 2009 IBM Corporation

Software Group

Matmul Idiom Recognition

 We used to shipped some matmul functions in libxlopt
Users could insert explicit calls to these routines in their code

The libxlopt versions would automatically call the equivalent ESSL
functions if ESSL was installed on the system.

 In V9/11.1, the compiler recognizes some limited loop nest patterns
as matrix multiplies and automatically generates calls to matmul
functions in libxlopt or ESSL.

sgemm, dgemm

 The loop nest can be interchanged in any order, example next slide

15

Compilation Technology

SCINET Briefing | Compiling for Power6 © 2009 IBM Corporation

Software Group

Matmul Idiom Recognition (cont.)

 subroutine foo(M,N,L,A,B,C,D)

 ...
 do i=1,M
 do j=1,N
 do k=1,L
 C(i,j) = C(i,j) + A(i,k)*B(k,j)
 end do
 end do
 end do

 do i=1,M
 do k=1,L
 do j=1,N
 D(i,j) = D(i,j) + A(i,k)*B(k,j)
 end do
 end do
 end do

 return
 end

.foo:
 mfspr r0,LR
 stfd fp31,-8(SP)
 stfd fp30,-16(SP)
 st r31,-20(SP)

 lfs fp31,0(r11)
 stfd fp31,136(SP)
 stfd fp31,144(SP)
 bl .dgemm{PR}

 st r26,68(SP)
 st r0,72(SP)
 l r9,172(SP)
 bl .dgemm{PR}
 oril r0,r0,0x0000
 l r12,248(SP)
 lfd fp31,232(SP)
 ...

16

Compilation Technology

SCINET Briefing | Compiling for Power6 © 2009 IBM Corporation

Software Group

MASS Enhancements
 Mathematical Acceleration SubSystem is a library of highly

tuned, machine specific, mathematical functions available for
download from IBM

Contains both scalar and vector versions of many (mostly trig.) functions

Trades off very limited accuracy for greater speed

The compiler tries to automatically vectorize scalar math functions and
generate calls to the MASS vector routines in libxlopt

Failing that, it tries to inline the scalar MASS routines

Failing that, it generates calls to the scalar routines instead of those in
libm

 New Power6 tuned library with 60+ routines.
single and double precision versions of:

 sin(), cos(), log(), exp(), acos() etc..
 More info: http://www-306.ibm.com/software/awdtools/mass/

17

Compilation Technology

SCINET Briefing | Compiling for Power6 © 2009 IBM Corporation

Software Group

MASS example

subroutine mass_example (a,b)
 real a(100), b(100)
 integer i

 do i = 1, 100
 a(i) = sin(b(i))
 enddo;
end subroutine mass_example

 SUBROUTINE mass_example (a, b)
 @NumElements0 = int(100)
 CALL __vssin_P6 (a, b, &@NumElements0)
 RETURN
 END SUBROUTINE mass_example

 -O3 –qhot –qarch=pwr6

Aliasing prevents vectorization:

void c_example(float *a, float *b)
{
 for (int i=0; i < 100; i++)
 {
 a[i] = sin(b[i]);
 b[i] = (float) i;
 }
}

void c_example(float *a, float *b)
{
 @CIV0 = 0;
 do {
 a[@CIV0] = __xl_sin(b[@CIV0]);
 b[@CIV0] = (float) @CIV0;
 @CIV0 = @CIV0 + 1;
 } while ((unsigned) @CIV0 < 100u);
 return;
}

18

Compilation Technology

SCINET Briefing | Compiling for Power6 © 2009 IBM Corporation

Software Group

VMX Exploitation

19

Compilation Technology

SCINET Briefing | Compiling for Power6 © 2009 IBM Corporation

Software Group

VMX exploitation

 User directed
Vector data types and routines available for C, C++ and Fortran

Programmer manually re-writes program, carefully adhering to alignment
constraints

 Automatic SIMD Vectorization (SIMDization)
The compiler automatically identifies parallel operations in the scalar code
and generates SIMD versions of them.

The compiler performs all analysis and transformations necessary

to fulfill alignment constraints.

Programmer assistance may improve generated code

20

Compilation Technology

SCINET Briefing | Compiling for Power6 © 2009 IBM Corporation

Software Group

User directed VMX

 Data types:
C/C++: vector float, vector int, vector unsigned char

Fortran: vector(real(4)), vector (integer), vector(unsigned(1))

 VMX intrinsics
vec_add(), vec_sub(), vec_ld(), vec_st(), etc.

The Fortran VMX intrinsic names are the same as those of C/C++

 Symbolic debug (gdb, dbx) support at no-opt.

 Fully optimized at -O2 and above with suite of classical optimizations
such as dead code removal, loop invariant code motion, software
pipelining and Power6 instruction scheduling

21

Compilation Technology

SCINET Briefing | Compiling for Power6 © 2009 IBM Corporation

Software Group

Example: Fortran VMX intrinsics

subroutine xlf_madd (a,b,c,x)
 vector(real(4)) a(100), b(100), c(100)
 vector(real(4)) x(100)
 integer i

 do i = 1, 100
 x(i) = vec_madd(a(i), b(i), c(i))
 enddo;
end subroutine xlf_madd

 CL.5:
VLQ vr0=a[](gr4,gr7,0)
VLQ vr1=b[](gr5,gr7,0)
VLQ vr2=c[](gr6,gr7,0)
VMADDFP vr0=vr0-vr2,nj
VSTQ x[](gr3,gr7,0)=vr0
AI gr7=gr7,16
BCT ctr=CL.5,,100,0

Compile options:

 xlf -O2 -qarch=pwr6 -qlist -c

Additionally, compiling on AIX requires -qenablevmx

22

Compilation Technology

SCINET Briefing | Compiling for Power6 © 2009 IBM Corporation

Software Group

Automatic SIMDization
 Automatically generate VMX code

– Compiler attempts to extract parallelism from a variety of sources:

– Largely within innermost loops
– Can also handle some non-loop statements

– Handles the various constraints in the source as well as hardware

– The transformation framework is mostly machine independent

 Currently targeting: CELL, BlueGene, PPC970 and P6

– Handle potentially complex data alignment problems, automatically

– Large set of source assertions available to the programmer

– Provides detailed information on SIMDized loops

23

Compilation Technology

SCINET Briefing | Compiling for Power6 © 2009 IBM Corporation

Software Group

Successful Simdization

for (i=0; i<256; i++)

 a[i] =

loop level

 a[i+0] =

 a[i+1] =

 a[i+2] =

 a[i+3] =

basic-block level

for (i=0; i<8; i++)
 a[i] =

entire short loop

GENERIC

VMX SPE

multiple targets

load b[i]

load a[i] unpack

add

store

load a[i+4]unpack

add

store

SHORT

INT 2INT 1

data size conversion

b0 b1 b2 b3 b4 b5 b6 b7 b8 b9

16-byte boundaries

vload b[1]

b0 b1 b2 b3

vload b[5]

b4 b5 b6 b7

vpermute

b1 b2 b3 b4

...b1

b1

b1

alignment constraints

b0b1b2b3

c0c1c2c3

b0+
c0

b1+
c1

b2+
c2

b3+
c3

b0 b2b3b4b5b6b7b8b9b10

c0c1 c3c4c5c6c7c8c9c10c2

b1

+

R1

R2

R3

Extract Parallelism Satisfy Constraints

b0 b1 b2 b3 b4 b5 b6 b7 b8 b9

non stride-one

24

Compilation Technology

SCINET Briefing | Compiling for Power6 © 2009 IBM Corporation

Software Group

Coding choices that impact SIMDization

 How loops are organized
Loop must be countable, preferably with literal trip count
Only innermost loops are candidates for simdization, except when
nested loops have a short literal iteration count

Loops with control flow are harder to simdize. Compiler tries to remove
control flow, but not always successful

 How data is accessed and laid out in memory
Data accesses should preferably be stride-one

Layout the data to maximize aligned accesses

Prefer use of arrays to pointer arithmetic

 Dependences inherent to the algorithm
Loops with inherent data dependences are not simdizable

Avoid pointers; pointer aliasing may impede transformations

25

Compilation Technology

SCINET Briefing | Compiling for Power6 © 2009 IBM Corporation

Software Group

Assisting the compiler to perform auto-SIMD

 Loop structure
Inline function calls inside innermost loops

Automatically (-O5 more aggressive, use inline pragma/directives)

 Data alignment
Align data on 16-byte boundaries

 __attribute__((aligned(16))

Describe pointer alignment

 _alignx(16, pointer)

Can be placed anywhere in the code, preferably close to the loop

Use -O5 (enables inter-procedural alignment analysis)

 Pointer aliasing
Refine pointer aliasing #pragma disjoint(*p, *q) or restrict keyword

Use -O5 (enables interprocedural pointer analysis)

26

Compilation Technology

SCINET Briefing | Compiling for Power6 © 2009 IBM Corporation

Software Group

Compiler options for VMX code generation

 For programs with VMX intrinsics:
C/C++: -qaltivec -qarch=pwr6

Fortran: -qarch=pwr6

 Automatic SIMD vectorization:
Optimization level -O3 -qhot or higher and -qarch=pwr6

 -q[no]enablevmx - Compiler is allowed to generate VMX instructions
AIX defaults to -qnoenablevmx (must be explicitly turned on by user)

Linux defaults to -qenablevmx

27

Compilation Technology

SCINET Briefing | Compiling for Power6 © 2009 IBM Corporation

Software Group

Did we SIMDize the loop?

 The -qreport option produces a list of high level transformation
performed by the compiler

Everything from unrolling, loop interchange, SIMD transformations, etc.

Also contains transformed “pseudo source”

 All loops considered for SIMDization are reported
Successful candidates are reported

If SIMDization was not possible, the reasons that prevented it are also

provided

 Can be used to quickly identify opportunities for speedup

28

Compilation Technology

SCINET Briefing | Compiling for Power6 © 2009 IBM Corporation

Software Group

Example – SIMD problems reported

1586-535 (I) Loop (loop index 1) at d.c <line 9> was not SIMD vectorized because the aliasing-induced dependence
prevents SIMD vectorization.
1586-536 (I) Loop (loop index 1) at d.c <line 9> was not SIMD vectorized because it contains memory references with
non-vectorizable alignment.
1586-536 (I) Loop (loop index 1) at d.c <line 11> was not SIMD vectorized because it contains memory references
((char *)b + (4)*((@CIV0 + 1))) with non-vectorizable alignment.
1586-543 (I) <SIMD info> Total number of the innermost loops considered <"1">. Total number of the innermost loops
SIMD vectorized <"0">.

 5 | long main()
 {
 9 | @ICM.b0 = b;
 if (!1) goto lab_5;
 @CIV0 = 0;
 __prefetch_by_stream(1,((char *)@ICM.b0 + (0 - 128) + (4)*(@CIV0 + 2)))
 __iospace_lwsync()
 11 | @ICM.c1 = c;
 9 | do { /* id=1 guarded */ /* ~4 */
 /* region = 8 */
 /* bump-normalized */
 11 | @ICM.b0[@CIV0] = @ICM.b0[@CIV0] - @ICM.c1[@CIV0 - 1];
 9 | @CIV0 = @CIV0 + 1;
 } while ((unsigned) @CIV0 < 1024u); /* ~4 */
 lab_5:
 rstr = 0;
 14 | return rstr;
 } /* function */

extern int *b, *c;

int main()
{
 for (int i=0; i<1024; ++i)
 b[i] = b[i] - c[i-1];
}

29

Compilation Technology

SCINET Briefing | Compiling for Power6 © 2009 IBM Corporation

Software Group

Example: correcting SIMD inhibitors
extern int * restrict b, * restrict c;

int main()
{
 /* __alignx(16, c); Not strictly required since compiler */
 /* __alignx(16, b); inserts runtime alignment check */

 for (int i=0; i<1024; ++i)
 b[i] = b[i] - c[i];
}

586-542 (I) Loop (loop index 1 with nest-level 0 and iteration count 1024) at d_good.c <line 9>
was SIMD vectorized.
1586-542 (I) Loop (loop index 2 with nest-level 0 and iteration count 1024) at d_good.c <line 9>
was SIMD vectorized.
1586-543 (I) <SIMD info> Total number of the innermost loops considered <“2">. Total number of the innermost loops
SIMD vectorized <“2”>.

 7 | long main()
 {
 @ICM.b0 = b;
 @ICM.c1 = c;
 9 | @ICMB = (0 - 128);
 @ICM4 = (long) @ICM.c1 & 15;
 @CSE2 = (long) @ICM.b0;

 . . .

30

Compilation Technology

SCINET Briefing | Compiling for Power6 © 2009 IBM Corporation

Software Group

Other examples of SIMD messages

 Loop was not SIMD vectorized because it contains operation which is not
suitable for SIMD vectorization.

 Loop was not SIMD vectorized because it contains function calls.

 Loop was not SIMD vectorized because it is not profitable to vectorize.

 Loop was not SIMD vectorized because it contains control flow.

 Loop was not SIMD vectorized because it contains unsupported vector data
types

 Loop was not SIMD vectorized because the floating point operation is not
vectorizable under -qstrict.

 Loop was not SIMD vectorized because it contains volatile reference

31

Compilation Technology

SCINET Briefing | Compiling for Power6 © 2009 IBM Corporation

Software Group

Q & A

