
Compilation Technology

 Februrary 18, 2009 | SCINET Compiler Tutorial © 2009 IBM Corporation

Software Group

Performance Programming
with IBM pSeries Compilers
and Libraries

Roch Archambault (archie@ca.ibm.com)

mailto:archie@ca.ibm.com

2

Compilation Technology

SCINET Compiler Tutorial | Performance Programming | February 18, 2009 © 2009 IBM Corporation

Software Group

Agenda

 Quick overview of compilers, libraries and tools
 Getting started

Installation, invocation
 Common compiler controls

Language levels, environment, checking
 Optimization controls

Optimization levels, target machine, profile feedback, link-time optimization
 Directives and pragmas
 The MASS Library

Content, usage, performance and accuracy
 Shared memory parallelism

Options, directives, environment
 Performance programming

What can my compiler do for me?

What can I do for my compiler?
 VMX exploitation
 Programming for POWER6

3

Compilation Technology

SCINET Compiler Tutorial | Performance Programming | February 18, 2009 © 2009 IBM Corporation

Software Group

Overview of Compilers,
Libraries and Tools

4

Compilation Technology

SCINET Compiler Tutorial | Performance Programming | February 18, 2009 © 2009 IBM Corporation

Software Group

Roadmap of XL Compiler Releases

Dev Line

2007 2008 2009

All information subject to change without notice

V11.1 & V13.1 LNX

V9.0 & V11.1 BG/P

V9.0 & V11.1 BG/L

SLES 10

SLES 9

 V9.0 for CELL

V11.1 & V13.1 AIX

SLES 10 SLES 11

V11.1 for CELL

V10.1 & V12.1 AIX

V10.1 & V12.1 LNX

V10.1 for CELL

2010

5

Compilation Technology

SCINET Compiler Tutorial | Performance Programming | February 18, 2009 © 2009 IBM Corporation

Software Group

The System p Compiler Products: Previous Versions

 All POWER4, POWER5, POWER5+ and PPC970 enabled

XL C/C++ Enterprise Edition V8.0 for AIX

XL Fortran Enterprise Edition V10.1 for AIX

XL C/C++ Advanced Edition V8.0 for Linux (SLES 9 & RHEL4)

XL Fortran Advanced Edition V10.1 for Linux (SLES 9 & RHEL4)

XL C/C++ Advanced Edition V8.0.1 for Linux (SLES 10 & RHEL4)

XL Fortran Advanced Edition V10.1.1 for Linux (SLES 10 & RHEL4)

XL C/C++ Enterprise Edition for AIX, V9.0 (POWER6 enabled)

XL Fortran Enterprise Edition for AIX, V11.1 (POWER6 enabled)

XL C/C++ Advanced Edition for Linux, V9.0 (POWER6 enabled)

XL Fortran Advanced Edition for Linux, V11.1 (POWER6 enabled)

6

Compilation Technology

SCINET Compiler Tutorial | Performance Programming | February 18, 2009 © 2009 IBM Corporation

Software Group

The System p Compiler Products: Latest Versions

 All POWER4, POWER5, POWER5+ and PPC970 enabled
XL C/C++ Enterprise Edition for AIX, V10.1 (July 2008)

XL Fortran Enterprise Edition for AIX, V12.1 (July 2008)

XL C/C++ Advanced Edition for Linux, V10.1 (September 2008)

XL Fortran Advanced Edition for Linux, V12.1 (September 2008)

 Blue Gene (BG/L and BG/P) enabled
XL C/C++ Advanced Edition for BG/L, V9.0

XL Fortran Advanced Edition for BG/L, V11.1

XL C/C++ Advanced Edition for BG/P, V9.0

XL Fortran Advanced Edition for BG/P, V11.1

 Cell/B.E. cross compiler products:
XL C/C++ for Multicore Acceleration for Linux on System p, V9.0

XL C/C++ for Multicore Acceleration for Linux on x86 Systems, V9.0

XL Fortran for Multicore Acceleration for Linux on System p, V11.1

7

Compilation Technology

SCINET Compiler Tutorial | Performance Programming | February 18, 2009 © 2009 IBM Corporation

Software Group

The System p Compiler Products: Latest Versions

 Technology Preview currently available from alphaWorks

XL UPC language support on AIX and Linux

 Download: http://www.alphaworks.ibm.com/tech/upccompiler

XL C/C++ for Transactional Memory for AIX

Download: http://www.alphaworks.ibm.com/tech/xlcstm

8

Compilation Technology

SCINET Compiler Tutorial | Performance Programming | February 18, 2009 © 2009 IBM Corporation

Software Group

The System p Compiler Products: Future Versions

 Cell/B.E. cross compilers:
XL C/C++ for Multicore Acceleration for Linux on System p, V10.1 (4Q2008)

XL C/C++ for Multicore Acceleration for Linux on x86 Systems, V10.1 (4Q2008)

 POWER7 support
XL C/C++ Enterprise Edition for AIX, V11.1 (approx. 2010)

XL Fortran Enterprise Edition for AIX, V13.1 (approx 2010)

XL C/C++ Advanced Edition for Linux, V11.1 (approx 2010)

XL Fortran Advanced Edition for Linux, V13.1 (approx 2010)

All information subject to change without notice

9

Compilation Technology

SCINET Compiler Tutorial | Performance Programming | February 18, 2009 © 2009 IBM Corporation

Software Group

Common Fortran, C and C++ Features

 Linux (SLES and RHEL) and AIX, 32 and 64 bit
 Debug support

Debuggers on AIX:

Total View (TotalView Technologies), DDT (Allinea), IBM Debugger and DBX

Debuggers on Linux:

TotalView, DDT and GDB
 Full support for debugging of OpenMP programs (TotalView)
 Snapshot directive for debugging optimized code
 Portfolio of optimizing transformations

Instruction path length reduction

Whole program analysis

Loop optimization for parallelism, locality and instruction scheduling

Use profile directed feedback (PDF) in most optimizations

 Tuned performance on POWER3, POWER4, POWER5, PPC970, PPC440,
POWER6 and CELL systems

 Optimized OpenMP

10

Compilation Technology

SCINET Compiler Tutorial | Performance Programming | February 18, 2009 © 2009 IBM Corporation

Software Group

TPOTPO

IPA IPA
ObjectsObjects

Other Other
ObjectsObjects

System System
LinkerLinker

Optimized Optimized
ObjectsObjects

EXE

DLL
PartitionsPartitions

TOBEYTOBEY

C FEC FE C++ FEC++ FE FORTRAN FORTRAN
FEFECompile Step

Optimization

LibrariesLibraries

PDF infoPDF info

Link Step
Optimization
 O4 and O5

Wcode+

Wcode

Wcode+

Instrumented
runs

Wcode
Wcode

Wcode

Wcode

IBM XL Compiler Architecture

 noopt and O2
 O3, O4 and O5

11

Compilation Technology

SCINET Compiler Tutorial | Performance Programming | February 18, 2009 © 2009 IBM Corporation

Software Group

XL Fortran Roadmap: Strategic Priorities

 Superior Customer Service
Continue to work closely with key ISVs and customers in scientific and technical

computing industries

 Compliance to Language Standards and Industry Specifications
OpenMP API V2.5

Fortran 77, 90 and 95 standards

Fortran 2003 Standard

 Exploitation of Hardware
Committed to maximum performance on POWER4, PPC970, POWER5,

POWER6, PPC440, PPC450, CELL and successors

Continue to work very closely with processor design teams

12

Compilation Technology

SCINET Compiler Tutorial | Performance Programming | February 18, 2009 © 2009 IBM Corporation

Software Group

XL Fortran Version 12.1 for AIX/Linux – Summer/Fall 2008

New features since XL Fortran Version 10.1:
Continued rollout of Fortran 2003

Compliant to OpenMP V2.5

Perform subset of loop transformations at –O3 optimization level

Tuned BLAS routines (DGEMM and DGEMV) are included in compiler runtime
(libxlopt)

Recognize matrix multiply and replace with call to DGEMM

Runtime check for availability of ESSL

Support for auto-simdization and VMX intrinsics (and data types) on AIX

Inline MASS library functions (math functions)

Asdasd
Partial support for OpenMP V3.0

Fine grain control for –qstrict option

Improved compile/link time

More Interprocedural data reorganization optimizations

13

Compilation Technology

SCINET Compiler Tutorial | Performance Programming | February 18, 2009 © 2009 IBM Corporation

Software Group

XL C/C++ Roadmap: Strategic Priorities

 Superior Customer Service
 Compliance to Language Standards and Industry Specifications

ANSI / ISO C and C++ Standards

OpenMP API V3.0

 Exploitation of Hardware
Committed to maximum performance on POWER4, PPC970, POWER5, PPC440,

POWER6, PPC450, CELL and successors

Continue to work very closely with processor design teams

 Exploitation of OS and Middleware
Synergies with operating system and middleware ISVs (performance, specialized

function)

Committed to AIX Linux affinity strategy and to Linux on pSeries

 Reduced Emphasis on Proprietary Tooling
Affinity with GNU toolchain

14

Compilation Technology

SCINET Compiler Tutorial | Performance Programming | February 18, 2009 © 2009 IBM Corporation

Software Group

XL C/C++ Version 10.1 for AIX/Linux – Summer/Fall 2008

New features since XL C/C++ Version 8.0:
Exploit “restrict” keyword in C 1999

Partial compliance to C++ TR1 libraries and Boost 1.34.0

Support for -qtemplatedepth which allows the user to control number of
recursive template instantiations allowed by the compiler.

Exploit DFP and VMX on Power6.

Improved inline assembler support

Full support for OpenMP V3.0

Fine grain control for –qstrict option

Improved compile/link time

More Interprocedural data reorganization optimizations

15

Compilation Technology

SCINET Compiler Tutorial | Performance Programming | February 18, 2009 © 2009 IBM Corporation

Software Group

MASS (Math Acceleration SubSystem)

 Fast elementary functions
 Scalar and vector forms
 Tradeoff between accuracy and performance different than libm or

compiler generated code
Accuracy differences small and usually tolerable

Vector function results does not depend on vector length

 Exceptions not always reported correctly
Some exceptions masked, some spuriously reported

 MASS functions assume round to nearest mode
 More later on performance and accuracy
 Included with XL Fortran V9.1 and XL C/C++ V7.0 compilers and

subsequent releases
 More info: http://www.ibm.com/software/awdtools/mass/

16

Compilation Technology

SCINET Compiler Tutorial | Performance Programming | February 18, 2009 © 2009 IBM Corporation

Software Group

ESSL (Engineering & Scientific Subroutine Library)

 Over 400 high-performance subroutines specifically tuned for
pSeries and POWER4

 Parallel ESSL has over 100 high-performance subroutines designed
for SP systems up to 512 nodes

 BLAS, ScaLAPACK and PBLAS compatibility
 Linear Algebraic Equations, Eigensystem Analysis, Fourier

Transforms, Random Numbers
 More info:

http://www.ibm.com/servers/eserver/pseries/library/sp_books/essl.html

17

Compilation Technology

SCINET Compiler Tutorial | Performance Programming | February 18, 2009 © 2009 IBM Corporation

Software Group

Getting Started

18

Compilation Technology

SCINET Compiler Tutorial | Performance Programming | February 18, 2009 © 2009 IBM Corporation

Software Group

Compiler commands

 The command used to invoke the compiler implies a predefined set
of compiler options

 These can be controlled using the configuration file (default
is /etc/xlf.cfg but you can write your own)

 Examples:
xlf –c a.f -g

Compiles F77 source in a.f and generates debugging information

xlf90 –c –O2 b.f –qsuffix=f=f90 c.f90

Compiles F90 source in b.f and c.f90 with optimization level 2

xlf95_r -c d.f –qsmp

Compiles F95 source in d.f for SMP (compiler and libraries assume
threaded code)

19

Compilation Technology

SCINET Compiler Tutorial | Performance Programming | February 18, 2009 © 2009 IBM Corporation

Software Group

Example Configuration File Stanza

xlf95: use = DEFLT
 libraries = -lxlf90,-lxlopt,-lxlf,-lxlomp_ser,-lm,-lc
 proflibs = -L/lib/profiled,-L/usr/lib/profiled
 options = -qfree=f90

Compiler
command

Components
to use

Libraries
to link

Libraries
to link when
profiling

Extra compile
options

20

Compilation Technology

SCINET Compiler Tutorial | Performance Programming | February 18, 2009 © 2009 IBM Corporation

Software Group

Installation of Multiple Compiler Versions

 Installation of multiple compiler versions is supported
 The vacppndi and xlfndi scripts shipped with VisualAge C++ 6.0 and

XL Fortran 8.1 and all subsequent releases allow the installation of
a given compiler release or update into a non-default directory

 The configuration file can be used to direct compilation to a specific
version of the compiler

Example: xlf_v8r1 –c foo.f

May direct compilation to use components in a non-default
directory

 Care must be taken when multiple runtimes are installed on the
same machine (details on next slide)

21

Compilation Technology

SCINET Compiler Tutorial | Performance Programming | February 18, 2009 © 2009 IBM Corporation

Software Group

Coexistence of Multiple Compiler Runtimes

 Backward compatibility
C, C++ and Fortran runtimes support backward compatibility.

Executables generated by an earlier release of a compiler will work with a later
version of the run-time environment.

 Concurrent installation
Multiple versions of a compiler and runtime environment can be installed on the

same machine

Full support in xlfndi and vacppndi scripts is now available
 Limited support for coexistence

LIBPATH must be used to ensure that a compatible runtime version is used with a
given executable

Only one runtime version can be used in a given process.

Renaming a compiler library is not allowed.

Take care in statically linking compiler libraries or in the use of dlopen or load .

Details in the compiler FAQ
http://www.ibm.com/software/awdtools/fortran/xlfortran/support/

 http://www.ibm.com/software/awdtools/xlcpp/support/

22

Compilation Technology

SCINET Compiler Tutorial | Performance Programming | February 18, 2009 © 2009 IBM Corporation

Software Group

Common Compiler
Controls

23

Compilation Technology

SCINET Compiler Tutorial | Performance Programming | February 18, 2009 © 2009 IBM Corporation

Software Group

Controlling Language Level: Fortran

 Compiler invocations for standard compliant compilations
xlf or f77: Fortran 77

xlf90: Fortran 90

xlf95: Fortran 95

xlf2003: Fortran 2003

 Finer control through -qlanglvl, -qxlf77 and –qxlf90 options
Slight tweaks to I/O behaviour

Intrinsic function behaviour

-qlanglvl can be used for additional diagnostics

 Non-standard language variations
-qautodbl to promote real types

-qintsize and -qrealsize to set default integer and real size

-qport for various extensions from other vendors

New!

24

Compilation Technology

SCINET Compiler Tutorial | Performance Programming | February 18, 2009 © 2009 IBM Corporation

Software Group

Controlling Language Level: C/C++

 Compiler invocations for standard compliant compilations
cc: “traditional” K&R C

xlc or c89: ANSI89 standard C

xlC: ANSI98 standard C++

c99: ANSI99 standard C

gxlc: “gcc-like” command line

gxlC: “g++-like” command line

 Finer control through -qlanglvl
strict conformance checking

lots of C++ language variations

gcc compatibility control

 Non-standard language variations
-qansialias, -qchars, -qcpluscmt, -qdollar, -qkeepinlines, -qkeyword, -qrtti

25

Compilation Technology

SCINET Compiler Tutorial | Performance Programming | February 18, 2009 © 2009 IBM Corporation

Software Group

Common Environment Variables

 TMPDIR
Redirect temporary disk storage used by the compiler

 OBJECT_MODE
OBJECT_MODE=32 or OBJECT_MODE=64 supported

 LANG
Specifies language to use for messages

 NLSPATH
Specified search path for messages – useful in non-default installations

 XLFRTEOPTS
Tweak Fortran runtime behaviour

 XLSMPOPTS
Tweak SMP runtime behaviour

26

Compilation Technology

SCINET Compiler Tutorial | Performance Programming | February 18, 2009 © 2009 IBM Corporation

Software Group

Program Checking

 -qcheck
In Fortran, does bounds checking on array references, array sections and

character substrings

In C/C++, checks for NULL pointers, for divide by zero and for array
indices out of bounds

 -qextchk, -btypchk
Generates type hash codes so that the AIX linker can check type

consistency across files (also done by -qipa)

 -qinitauto
Generates extra code to initialize stack storage

Can be done bytewise or wordwise

27

Compilation Technology

SCINET Compiler Tutorial | Performance Programming | February 18, 2009 © 2009 IBM Corporation

Software Group

Program Behaviour Options (-qstrict)

 -q[no]strict
Default is -qstrict with -qnoopt and -O2, -qnostrict with -O3, -O4, -O5

-qnostrict allows the compiler to reorder floating point calculations and
potentially excepting instructions

Use -qstrict when your computation legitimately involves NaN, INF or
denormalized values

Use -qstrict when exact compatibility is required with another IEEE
compliant system

Note that -qstrict disables many potent optimizations so use it only when
necessary and consider applying it at a file or even function level to
limit the negative impact

28

Compilation Technology

SCINET Compiler Tutorial | Performance Programming | February 18, 2009 © 2009 IBM Corporation

Software Group

Program Behaviour Options (Aliasing)

 -qalias (Fortran)
Specified as -qalias=[no]std:[no]aryovrlp:others

Allows the compiler to assume that certain variables do not refer to
overlapping storage

std (default) refers to the rule about storage association of reference
parameters with each other and globals

aryovrlp (default) defines whether there are any assignments between
storage-associated arrays - try -qalias=noaryovrlp for better
performance your Fortran 90 code has no storage associated
assignments

29

Compilation Technology

SCINET Compiler Tutorial | Performance Programming | February 18, 2009 © 2009 IBM Corporation

Software Group

Program Behaviour Options (Aliasing)

 -qalias (C, C++)
Similar to Fortran option of the same name but focussed on overlap of

storage accessed using pointers

Specified as -qalias=subopt where subopt is one of:

[no]ansi: Enable ANSI standard type-based alias rules (ansi is default
when using "xlc", noansi is default when using "cc")

[no]typeptr: Assume pointers to different types never point to the same or
overlapping storage - use if your pointer usage follows strict type rules

[no]allptrs: Assume that different pointer variables always point to non-
overlapping storage - use only in selected situations where pointers
never overlap

[no]addrtaken: Assume that external variables do not have their address
taken outside the source file being compiled

30

Compilation Technology

SCINET Compiler Tutorial | Performance Programming | February 18, 2009 © 2009 IBM Corporation

Software Group

Why the big fuss about aliasing?

 The precision of compiler analyses is gated in large part by the
apparent effects of direct or indirect memory writes and the apparent
presence of direct or indirect memory reads.

 Memory can be referenced directly through a named symbol,
indirectly through a pointer or reference parameter, or indirectly
through a function call.

 Many apparent references to memory are false and these constitute
barriers to compiler analysis.

 The compiler does analysis of possible aliases at all optimization
levels but analysis of these apparent references is best when using -
qipa since it can see through most calls.

 Options such as -qalias and directives such as disjoint, isolated_call,
CNCALL, PERMUTATION and INDEPENDENT can have pervasive
effect since they fundamentally improve the precision of compiler
analysis.

31

Compilation Technology

SCINET Compiler Tutorial | Performance Programming | February 18, 2009 © 2009 IBM Corporation

Software Group

Floating Point Control (-qfloat)

 Precise control over the handling of floating point calculations
 Defaults are almost IEEE 754 compliant
 Specified as -qfloat=subopt where subopt is one of:

[no]fold: enable compile time evaluation of floating point calculations -
may want to disable for handling of certain exceptions (eg. overflow,
inexact)

[no]maf: enable generation of multiple-add type instructions - may want to
disable for exact compatibility with other machines but this will come at
a high price in performance

[no]rrm: specifies that rounding mode may not be round-to-nearest
(default is norrm) or may change across calls

[no]rsqrt: allow computation of a divide by square root to be replaced by a
multiply of the reciprocal square root

32

Compilation Technology

SCINET Compiler Tutorial | Performance Programming | February 18, 2009 © 2009 IBM Corporation

Software Group

Floating Point Control (-qfloat)

 New –qfloat suboptions added in XL Fortran V11.1 and XL C/C++ V9.0

[no]fenv: asserts that FPSCR may be accessed (default is nofenv)

[no]hscmplx better performance for complex divide/abs (defaults is nohscmplx)

[no]single does not generate single precision float operations (default is single)

[no]rngchk does not generate range check for software divide (default is rngchk)

New!

 -qxlf90=nosignedzero now the default when –qnostrict
improves max/min performance by generating fsel instruction instead
of branch sequenceNew!

33

Compilation Technology

SCINET Compiler Tutorial | Performance Programming | February 18, 2009 © 2009 IBM Corporation

Software Group

Floating Point Trapping (-qflttrap)

 Enables software checking of IEEE floating point exceptions
 Usually more efficient than hardware checking since checks can be

executed less frequently
 Specified as -qflttrap=imprecise | enable | ieee_exceptions

-qflttrap=imprecise: check for error conditions at procedure entry/exit,
otherwise check after any potentially excepting instruction

-qflttrap=enable: enables generation of checking code, also enables
exceptions in hardware

-qflttrap=overflow:underflow:zerodivide:inexact: check given conditions

 In the event of an error, SIGTRAP is raised
As a convenience the -qsigtrap option will install a default handler which

dumps a stack trace at the point of error (Fortran only)

34

Compilation Technology

SCINET Compiler Tutorial | Performance Programming | February 18, 2009 © 2009 IBM Corporation

Software Group

Optimization Controls

35

Compilation Technology

SCINET Compiler Tutorial | Performance Programming | February 18, 2009 © 2009 IBM Corporation

Software Group

Optimization Levels

-O2 -O3 -O4 -O5-qnoopt

Fast compile

Full debug support

More extensive optimization

Some precision tradeoffs

Low level optimization

Partial debug support

Interprocedural optimization

Loop optimization

Automatic machine tuning

-O3 -qipa=level=1 –qarch=auto

-O3 –qipa=level=2 –qarch=auto

36

Compilation Technology

SCINET Compiler Tutorial | Performance Programming | February 18, 2009 © 2009 IBM Corporation

Software Group

Example: Matrix Multiply

DO I = 1, N1
 DO J = 1, N3
 DO K = 1, N2
 C(I,J) = C(I,J) + A(K,I) * B(J,K)
 END DO
 END DO
END DO

37

Compilation Technology

SCINET Compiler Tutorial | Performance Programming | February 18, 2009 © 2009 IBM Corporation

Software Group

Matrix Multiply inner loop code with -qnoopt

__L1:
 lwz r3,160(SP)
 lwz r9,STATIC_BSS
 lwz r4,24(r9)
 subfi r5,r4,-8
 lwz r11,40(r9)
 mullw r6,r4,r11
 lwz r4,36(r9)
 rlwinm r4,r4,3,0,28
 add r7,r5,r6
 add r7,r4,r7
 lfdx fp1,r3,r7
 lwz r7,152(SP)
 lwz r12,0(r9)
 subfi r10,r12,-8
 lwz r8,44(r9)
 mullw r12,r12,r8
 add r10,r10,r12
 add r10,r4,r10
 lfdx fp2,r7,r10

 lwz r7,156(SP)
 lwz r10,12(r9)
 subfi r9,r10,-8
 mullw r10,r10,r11
 rlwinm r8,r8,3,0,28
 add r9,r9,r10
 add r8,r8,r9
 lfdx fp3,r7,r8
 fmadd fp1,fp2,fp3,fp1
 add r5,r5,r6
 add r4,r4,r5
 stfdx fp1,r3,r4
 lwz r4,STATIC_BSS
 lwz r3,44(r4)
 addi r3,1(r3)
 stw r3,44(r4)
 lwz r3,112(SP)
 addic. r3,r3,-1
 stw r3,112(SP)
 bgt __L1

38 instructions, 31.4 cycles per iteration

38

Compilation Technology

SCINET Compiler Tutorial | Performance Programming | February 18, 2009 © 2009 IBM Corporation

Software Group

Matrix Multiply inner loop code with -qnoopt

__L1:
 lwz r3,160(SP)
 lwz r9,STATIC_BSS
 lwz r4,24(r9)
 subfi r5,r4,-8
 lwz r11,40(r9)
 mullw r6,r4,r11
 lwz r4,36(r9)
 rlwinm r4,r4,3,0,28
 add r7,r5,r6
 add r7,r4,r7
 lfdx fp1,r3,r7
 lwz r7,152(SP)
 lwz r12,0(r9)
 subfi r10,r12,-8
 lwz r8,44(r9)
 mullw r12,r12,r8
 add r10,r10,r12
 add r10,r4,r10
 lfdx fp2,r7,r10

 lwz r7,156(SP)
 lwz r10,12(r9)
 subfi r9,r10,-8
 mullw r10,r10,r11
 rlwinm r8,r8,3,0,28
 add r9,r9,r10
 add r8,r8,r9
 lfdx fp3,r7,r8
 fmadd fp1,fp2,fp3,fp1
 add r5,r5,r6
 add r4,r4,r5
 stfdx fp1,r3,r4
 lwz r4,STATIC_BSS
 lwz r3,44(r4)
 addi r3,1(r3)
 stw r3,44(r4)
 lwz r3,112(SP)
 addic. r3,r3,-1
 stw r3,112(SP)
 bgt __L1

necessary instructions

39

Compilation Technology

SCINET Compiler Tutorial | Performance Programming | February 18, 2009 © 2009 IBM Corporation

Software Group

Matrix Multiply inner loop code with -qnoopt

__L1:
 lwz r3,160(SP)
 lwz r9,STATIC_BSS
 lwz r4,24(r9)
 subfi r5,r4,-8
 lwz r11,40(r9)
 mullw r6,r4,r11
 lwz r4,36(r9)
 rlwinm r4,r4,3,0,28
 add r7,r5,r6
 add r7,r4,r7
 lfdx fp1,r3,r7
 lwz r7,152(SP)
 lwz r12,0(r9)
 subfi r10,r12,-8
 lwz r8,44(r9)
 mullw r12,r12,r8
 add r10,r10,r12
 add r10,r4,r10
 lfdx fp2,r7,r10

 lwz r7,156(SP)
 lwz r10,12(r9)
 subfi r9,r10,-8
 mullw r10,r10,r11
 rlwinm r8,r8,3,0,28
 add r9,r9,r10
 add r8,r8,r9
 lfdx fp3,r7,r8
 fmadd fp1,fp2,fp3,fp1
 add r5,r5,r6
 add r4,r4,r5
 stfdx fp1,r3,r4
 lwz r4,STATIC_BSS
 lwz r3,44(r4)
 addi r3,1(r3)
 stw r3,44(r4)
 lwz r3,112(SP)
 addic. r3,r3,-1
 stw r3,112(SP)
 bgt __L1

necessary instructions loop control

40

Compilation Technology

SCINET Compiler Tutorial | Performance Programming | February 18, 2009 © 2009 IBM Corporation

Software Group

Matrix Multiply inner loop code with -qnoopt

__L1:
 lwz r3,160(SP)
 lwz r9,STATIC_BSS
 lwz r4,24(r9)
 subfi r5,r4,-8
 lwz r11,40(r9)
 mullw r6,r4,r11
 lwz r4,36(r9)
 rlwinm r4,r4,3,0,28
 add r7,r5,r6
 add r7,r4,r7
 lfdx fp1,r3,r7
 lwz r7,152(SP)
 lwz r12,0(r9)
 subfi r10,r12,-8
 lwz r8,44(r9)
 mullw r12,r12,r8
 add r10,r10,r12
 add r10,r4,r10
 lfdx fp2,r7,r10

 lwz r7,156(SP)
 lwz r10,12(r9)
 subfi r9,r10,-8
 mullw r10,r10,r11
 rlwinm r8,r8,3,0,28
 add r9,r9,r10
 add r8,r8,r9
 lfdx fp3,r7,r8
 fmadd fp1,fp2,fp3,fp1
 add r5,r5,r6
 add r4,r4,r5
 stfdx fp1,r3,r4
 lwz r4,STATIC_BSS
 lwz r3,44(r4)
 addi r3,1(r3)
 stw r3,44(r4)
 lwz r3,112(SP)
 addic. r3,r3,-1
 stw r3,112(SP)
 bgt __L1

necessary instructions loop control addressing code

41

Compilation Technology

SCINET Compiler Tutorial | Performance Programming | February 18, 2009 © 2009 IBM Corporation

Software Group

Optimization Level –O2 (same as –O)

 Comprehensive low-level optimization
Global assignment of user variables to registers

Strength reduction and effective usage of addressing modes

Elimination of unused or redundant code

Movement of invariant code out of loops

Scheduling of instructions for the target machine

Some loop unrolling and pipelining
 Partial support for debugging

Externals and parameter registers visible at procedure boundaries

Snapshot pragma/directive creates additional program points for storage
visibility

-qkeepparm option forces parameters to memory on entry so that they can
be visible in a stack trace

42

Compilation Technology

SCINET Compiler Tutorial | Performance Programming | February 18, 2009 © 2009 IBM Corporation

Software Group

Matrix Multiply Inner Loop with –O2

 lfdux fp0,r12,r8
__L1:
 lfdux fp1,r31,r7
 lfdu fp2,8(r30)
 fmadd fp0,fp1,fp2,fp0
 bdnz __L1
 stfd fp0,0(r12)

load/store of "C"
moved out of loop

strength reduction
update-form loads

hardware assisted
loop control

3 instructions, 3.1 cycles per iteration

43

Compilation Technology

SCINET Compiler Tutorial | Performance Programming | February 18, 2009 © 2009 IBM Corporation

Software Group

Matrix Multiply Inner Loop with –O2 –qtune=pwr4

 lfdux fp2,r31,r7
 lfdu fp1,8(r30)
 bdz __L2
__L1:
 fmadd fp0,fp2,fp1,fp0
 lfdux fp2,r31,r7
 lfdu fp1,8(r30)
 bdnz __L1
__L2:
 fmadd fp0,fp2,fp1,fp0

pipelined
execution

44

Compilation Technology

SCINET Compiler Tutorial | Performance Programming | February 18, 2009 © 2009 IBM Corporation

Software Group

Optimization Level –O3

 More extensive optimization
Deeper inner loop unrolling

Loop nest optimizations such as unroll-and-jam and interchange (-qhot subset)

Better loop scheduling

Additional optimizations allowed by -qnostrict

Widened optimization scope (typically whole procedure)

No implicit memory usage limits (-qmaxmem=-1)

 Some precision tradeoffs
Reordering of floating point computations

Reordering or elimination of possible exceptions (eg. divide by zero, overflow)

New!

45

Compilation Technology

SCINET Compiler Tutorial | Performance Programming | February 18, 2009 © 2009 IBM Corporation

Software Group

Matrix Multiply inner loop code with -O3 -qtune=pwr4

__L1:
 fmadd fp6,fp12,fp13,fp6
 lfdux fp12,r12,r7
 lfd fp13,8(r11)
 fmadd fp7,fp8,fp9,fp7
 lfdux fp8,r12,r7
 lfd fp9,16(r11)
 lfdux fp10,r12,r7
 lfd fp11,24(r11)
 fmadd fp1,fp12,fp13,fp1
 lfdux fp12,r12,r7
 lfd fp13,32(r11)
 fmadd fp0,fp8,fp9,fp0
 lfdux fp8,r12,r7
 lfd fp9,40(r11)
 fmadd fp2,fp10,fp11,fp2
 lfdux fp10,r12,r7
 lfd fp11,48(r11)
 fmadd fp4,fp12,fp13,fp4
 lfdux fp12,r12,r7
 lfd fp13,56(r11)
 fmadd fp3,fp8,fp9,fp3
 lfdux fp8,r12,r7
 lfdu fp9,64(r11)
 fmadd fp5,fp10,fp11,fp5
 bdnz __L1

unrolled by 8

dot product accumulated in
8 interleaved parts (fp0-fp7)
(combined after loop)

3 instructions, 1.6 cycles per iteration
2 loads and 1 fmadd per iteration

46

Compilation Technology

SCINET Compiler Tutorial | Performance Programming | February 18, 2009 © 2009 IBM Corporation

Software Group

Tips for getting the most out of –O2 and –O3

 If possible, test and debug your code without optimization before using -O2
 Ensure that your code is standard-compliant. Optimizers are the ultimate

conformance test!
 In Fortran code, ensure that subroutine parameters comply with aliasing

rules
 In C code, ensure that pointer use follows type restrictions (generic pointers

should be char* or void*)
 Ensure all shared variables and pointers to same are marked volatile
 Compile as much of your code as possible with -O2.
 If you encounter problems with -O2, consider using -qalias=noansi or

-qalias=nostd rather than turning off optimization.
 Next, use -O3 on as much code as possible.
 If you encounter problems or performance degradations, consider using –

qstrict, -qcompact, or -qnohot along with -O3 where necessary.
 If you still have problems with -O3, switch to -O2 for a subset of

files/subroutines but consider using -qmaxmem=-1 and/or -qnostrict.

New!

47

Compilation Technology

SCINET Compiler Tutorial | Performance Programming | February 18, 2009 © 2009 IBM Corporation

Software Group

High Order Transformations (-qhot)

 Supported for all languages
 Specified as -qhot[=[no]vector | arraypad[=n] | [no]simd]
 Optimized handling of F90 array language constructs (elimination of

temporaries, fusion of statements)
 High level transformation (eg. interchange, fusion, unrolling) of loop nests to

optimize:
memory locality (reduce cache/TLB misses)

usage of hardware prefetch

loop computation balance (typically ld/st vs. float)
 Optionally transforms loops to exploit MASS vector library (eg. reciprocal,

sqrt, trig) - may result in slightly different rounding
 Optionally introduces array padding under user control - potentially unsafe if

not applied uniformly
 Optionally transforms loops to exploit VMX unit when –qarch=ppc970 or

–qarch=pwr6New!

48

Compilation Technology

SCINET Compiler Tutorial | Performance Programming | February 18, 2009 © 2009 IBM Corporation

Software Group

Matrix multiply inner loop code with -O3 -qhot -qtune=pwr4
__L1:
 fmadd fp1,fp4,fp2,fp1
 fmadd fp0,fp3,fp5,fp0
 lfdux fp2,r29,r9
 lfdu fp4,32(r30)
 fmadd fp10,fp7,fp28,fp10
 fmadd fp7,fp9,fp7,fp8
 lfdux fp26,r27,r9
 lfd fp25,8(r29)
 fmadd fp31,fp30,fp27,fp31
 fmadd fp6,fp11,fp30,fp6
 lfd fp5,8(r27)
 lfd fp8,16(r28)
 fmadd fp30,fp4,fp28,fp29
 fmadd fp12,fp13,fp11,fp12
 lfd fp3,8(r30)
 lfd fp11,8(r28)
 fmadd fp1,fp4,fp9,fp1
 fmadd fp0,fp13,fp27,fp0
 lfd fp4,16(r30)
 lfd fp13,24(r30)
 fmadd fp10,fp8,fp25,fp10
 fmadd fp8,fp2,fp8,fp7
 lfdux fp9,r29,r9
 lfdu fp7,32(r28)
 fmadd fp31,fp11,fp5,fp31
 fmadd fp6,fp26,fp11,fp6
 lfdux fp11,r27,r9
 lfd fp28,8(r29)
 fmadd fp12,fp3,fp26,fp12
 fmadd fp29,fp4,fp25,fp30
 lfd fp30,-8(r28)
 lfd fp27,8(r27)
 bdnz __L1

unroll-and-jam 2x2
inner unroll by 4
interchange "i" and "j" loops

2 instructions, 1.0 cycles per
iteration
balanced: 1 load and 1 fmadd
per iteration

49

Compilation Technology

SCINET Compiler Tutorial | Performance Programming | February 18, 2009 © 2009 IBM Corporation

Software Group

With XLF V9.1 (-O3 -qhot –qarch=pwr4)

__L1:
 fmadd fp15=fp10,fp6,fp3
 fmadd fp9=fp9,fp5,fp3
 lfd fp10=@TILEA0(gr27,-6168)
 addi gr27=gr27,16
 fmadd fp11=fp11,fp8,fp3
 fmadd fp16=fp12,fp7,fp3
 lfd fp24=a[](gr26,-23992)
 lfd fp23=a[](gr26,-15992)
 fmadd fp31=fp31,fp6,fp4
 fmadd fp3=fp13,fp5,fp4
 lfd fp22=a[](gr26,-7992)
 lfd fp21=a[](gr26,8)
 fmadd fp30=fp30,fp8,fp4
 fmadd fp29=fp29,fp7,fp4
 lfd fp12=@TILEA0(gr27,-4120)
 fmadd fp17=fp27,fp6,fp19
 fmadd fp28=fp28,fp5,fp19
 fmadd fp25=fp25,fp8,fp19
 fmadd fp4=fp26,fp7,fp19
 lfd fp27=@TILEA0(gr27,-2056)
 fmadd fp18=fp2,fp10,fp24
 fmadd fp1=fp1,fp10,fp23
 fmadd fp0=fp0,fp10,fp21
 fmadd fp20=fp20,fp10,fp22
 lfd fp2=@TILEA0(gr27,8)
 addi gr26=gr26,16
 fmadd fp9=fp9,fp24,fp12
 fmadd fp10=fp15,fp23,fp12

 lfd fp19=@TILEA0(gr27,-6176)
 fmadd fp11=fp11,fp21,fp12
 lfd fp5=a[](gr26,-24000)
 lfd fp6=a[](gr26,-16000)
 fmadd fp12=fp16,fp22,fp12
 fmadd fp13=fp3,fp24,fp27
 fmadd fp31=fp31,fp23,fp27
 lfd fp7=a[](gr26,-8000)
 lfd fp8=a[](gr26,0)
 fmadd fp30=fp30,fp21,fp27
 fmadd fp29=fp29,fp22,fp27
 lfd fp3=@TILEA0(gr27,-4112)
 fmadd fp28=fp28,fp24,fp2
 fmadd fp27=fp17,fp23,fp2
 fmadd fp25=fp25,fp21,fp2
 fmadd fp26=fp4,fp22,fp2
 lfd fp4=@TILEA0(gr27,-2048)
 fmadd fp1=fp1,fp19,fp6
 fmadd fp2=fp18,fp19,fp5
 fmadd fp0=fp0,fp19,fp8
 fmadd fp20=fp20,fp19,fp7
 lfd fp19=@TILEA0(gr27,16)
 bndz __L1

Unroll-and-Jam 4x4

Inner unroll by 2

Interchange “i” and “j” loops

Tile “i” and “j” loops

Transpose blocks of b array

32 iterations in 20 cycles

50

Compilation Technology

SCINET Compiler Tutorial | Performance Programming | February 18, 2009 © 2009 IBM Corporation

Software Group

Matmul Idiom Recognition

 In V8/10.1, we shipped some matmul functions in libxlopt
Users could insert explicit calls to these routines in their code

The libxlopt versions would automatically call the equivalent ESSL
functions if ESSL was installed on the system.

 In V9/11.1, the compiler recognizes some limited loop nest patterns
as matrix multiplies and automatically generates calls to matmul
functions in libxlopt or ESSL.

sgemm, dgemm

 The loop nest can be interchanged in any order, example next slide

New!

51

Compilation Technology

SCINET Compiler Tutorial | Performance Programming | February 18, 2009 © 2009 IBM Corporation

Software Group

Matmul Idiom Recognition (cont.)

 subroutine foo(M,N,L,A,B,C,D)

 ...
 do i=1,M
 do j=1,N
 do k=1,L
 C(i,j) = C(i,j) + A(i,k)*B(k,j)
 end do
 end do
 end do

 do i=1,M
 do k=1,L
 do j=1,N
 D(i,j) = D(i,j) + A(i,k)*B(k,j)
 end do
 end do
 end do

 return
 end

.foo:
 mfspr r0,LR
 stfd fp31,-8(SP)
 stfd fp30,-16(SP)
 st r31,-20(SP)

 lfs fp31,0(r11)
 stfd fp31,136(SP)
 stfd fp31,144(SP)
 bl .dgemm{PR}

 st r26,68(SP)
 st r0,72(SP)
 l r9,172(SP)
 bl .dgemm{PR}
 oril r0,r0,0x0000
 l r12,248(SP)
 lfd fp31,232(SP)
 ...

52

Compilation Technology

SCINET Compiler Tutorial | Performance Programming | February 18, 2009 © 2009 IBM Corporation

Software Group

Tips for getting the most out of -qhot

 Try using -qhot along with -O2 or -O3 for all of your code. It is designed to
have neutral effect when no opportunities exist.

 If you encounter unacceptably long compile times (this can happen with
complex loop nests) or if your performance degrades with the use of -qhot,
try using -qhot=novector, or -qstrict or -qcompact along with -qhot.

 If necessary, deactivate -qhot selectively, allowing it to improve some of your
code.

 Read the transformation report generated using –qreport. If your hot loops
are not transformed as you expect, try using assertive directives such as
INDEPENDENT or CNCALL or prescriptive directives such as UNROLL or
PREFETCH.

 When –qarch=ppc970, the default with –qhot is to perform SIMD-
vectorization. You can specify –qhot=nosimd to disable SIMD-vectorization

 New with Fortran V10.1 and C/C++ V8.0:
 support –qhot=level=x where x is 0 or 1. Default is –qhot=level=1 when –qhot is

specified.

-qhot=level=0 is the default when –O3 is specified.
New!

53

Compilation Technology

SCINET Compiler Tutorial | Performance Programming | February 18, 2009 © 2009 IBM Corporation

Software Group

Link-time Optimization (-qipa)

 Supported for all languages
 Can be specified on the compile step only or on both compile and

link steps ("whole program" mode)
 Whole program mode expands the scope of optimization to an entire

program unit (executable or shared object)
 Specified as -qipa[=level=n | inline= | fine tuning]

level=0: Program partitioning and simple interprocedural optimization

level=1: Inlining and global data mapping

level=2: Global alias analysis, specialization, interprocedural data flow

inline=: Precise user control of inlining

fine tuning: Specify library code behaviour, tune program partitioning, read
commands from a file

54

Compilation Technology

SCINET Compiler Tutorial | Performance Programming | February 18, 2009 © 2009 IBM Corporation

Software Group

Tips for getting the most out of -qipa

 When specifying optimization options in a makefile, remember to
use the compiler driver (cc, xlf, etc) to link and repeat all options on
the link step:

LD = xlf

OPT = -O3 -qipa

FFLAGS=...$(OPT)...

LDFLAGS=...$(OPT)...

 -qipa works when building executables or shared objects but always
compile 'main' and exported functions with -qipa.

 It is not necessary to compile everything with -qipa but try to apply it
to as much of your program as possible.

55

Compilation Technology

SCINET Compiler Tutorial | Performance Programming | February 18, 2009 © 2009 IBM Corporation

Software Group

More -qipa tips

 When compiling and linking separately, use -qipa=noobject on the
compile step for faster compilation.

 Ensure there is enough space in /tmp (at least 200MB) or use the
TMPDIR variable to specify a different directory.

 The "level" suboption is a throttle. Try varying the "level" suboption
if link time is too long. -qipa=level=0 can be very beneficial for little
cost.

 Look at the generated code. If too few or too many functions are
inlined, consider using -qipa=[no]inline

56

Compilation Technology

SCINET Compiler Tutorial | Performance Programming | February 18, 2009 © 2009 IBM Corporation

Software Group

Target Machines

 -qarch
Specifies the target machine or machine family on which the generated program is

expected to run successfully

-qarch=ppc targets any PowerPC (default with XLF V11.1)

-qarch=pwr4 targets POWER4 specifically

-qarch=auto targets the same type of machine as the compiling machine
 -qtune

Specifies the target machine on which the generated code should run best

Orthogonal to –qarch setting but some combinations not allowed

-qtune=pwr4 tunes generated code for POWER4 machines

-qtune=auto tunes generated code to run well on machines similar to the compiling
machine

-qtune=balanced tunes generated code to run well on POWER5 and POWER6

(Default with XLF V11.1)New!

57

Compilation Technology

SCINET Compiler Tutorial | Performance Programming | February 18, 2009 © 2009 IBM Corporation

Software Group

Getting the most out of target machine options

 Try to specify with -qarch the smallest family of machines possible
that will be expected to run your code correctly.

-qarch=ppc is better if you don't need to run on Power or Power2 but this
will inhibit generation of sqrt or fsel, for example

-qarch=ppcgr is a bit better, since it allows generation of fsel but still no
sqrt

To get sqrt, you will need -qarch=pwr3. This will also generate correct
code for Power 4.

 Try to specify with -qtune the machine where performance should be
best.

If you are not sure, try -qtune=balanced. This will generate code that
should generally run well on most machines.

58

Compilation Technology

SCINET Compiler Tutorial | Performance Programming | February 18, 2009 © 2009 IBM Corporation

Software Group

The –O4 and –O5 Options

 Optimization levels 4 and 5 automatically activate several other
optimization options as a package

 Optimization level 4 (-O4) includes:
-O3

-qhot

-qipa

-qarch=auto

-qtune=auto

-qcache=auto

 Optimization level 5 (-O5) includes everything from -O4 plus:
-qipa=level=2

59

Compilation Technology

SCINET Compiler Tutorial | Performance Programming | February 18, 2009 © 2009 IBM Corporation

Software Group

Profile Feedback

 Profile directed feedback (PDF) is a two-stage compilation process that allows
the user to provide additional detail about typical program behaviour to the
compiler.

Compile with
-qpdf1

Source
code Instrumented

executable

Compile with
-qpdf2

Profile
data

Sample
runs

Optimized
executable

60

Compilation Technology

SCINET Compiler Tutorial | Performance Programming | February 18, 2009 © 2009 IBM Corporation

Software Group

Profile Directed Feedback: Details
 Stage 1 is a regular compilation (using an arbitrary set of optimization options) with

the -qpdf1 option added.
the resulting object code is instrumented for the collection of program control flow and

other data
 The executable or shared object created by stage 1 can be run in a number of

different scenarios for an arbitrary amount of time
 Stage 2 is a recompilation (only relinking is necessary with Fortran 8.1.1 or C/C++

6.0) using exactly the same options except -qpdf2 is used instead of -qpdf1.
the compiler consumes previously collected data for the purpose of path-biased

optimization

code layout, scheduling, register allocation

inlining decisions, partially invariant code motion, switch code generation, loop
optimizations

 PDF should be used mainly on code which has rarely executed conditional error
handling or instrumentation

 PDF usually has a neutral effect in the absence of firm profile information (ie. when
sample data is inconclusive)

 However, always use characteristic data for profiling. If sufficient data is
unavailable, do not use PDF.

 The –qshowpdf options and showpdf tool can be used to view the PDF information
accumulated from the –qpdf1 run.

61

Compilation Technology

SCINET Compiler Tutorial | Performance Programming | February 18, 2009 © 2009 IBM Corporation

Software Group

Miscellaneous Performance Options

 -qcompact: specified as -q[no]compact
Prefers final code size reduction over execution time performance when a

choice is necessary

Can be useful as a way to constrain -O3 optimization

 -qinline: specified as -qinline[+names | -names] or -qnoinline
Controls inlining of named functions - usable at compile time and/or link

time

Synonymous with -qipa=inline and -Q

 -qunroll: specified as -q[no]unroll
Independently controls loop unrolling (implicitly activated under -O2 and -

O3)

62

Compilation Technology

SCINET Compiler Tutorial | Performance Programming | February 18, 2009 © 2009 IBM Corporation

Software Group

Miscellaneous Performance Options

 -qinlglue: specified as -q[no]inlglue
Inline calls to "glue" code used in calls through function pointers (including

virtual) and calls to functions which are dynamically bound

Pointer glue is inlined by default for -qtune=pwr4
 -qtbtable

Controls the generation of traceback table information:

-qtbtable=none inhibits generation of tables - no stack unwinding is
possible

-qtbtable=small generates tables which allow stack unwinding but omit
name and parameter information - useful for optimized C++

This is the default setting when using optimization

-qtbtable=full generates full tables including name and parameter
information - useful for debugging

63

Compilation Technology

SCINET Compiler Tutorial | Performance Programming | February 18, 2009 © 2009 IBM Corporation

Software Group

Miscellaneous Performance Options

 -q[no]eh (C++ only)
Asserts that no throw is reachable from compiled code - can improve

execution time and reduce footprint in the absence of C++ exception
handling

 -q[no]unwind
Asserts that the stack will not be unwound in such a way that register

values must be accurately restored at call points

Usually true in C and Fortran and allows the compiler to be more
aggressive in register save/restore

Usage of -qipa can set this option automatically in many situations

64

Compilation Technology

SCINET Compiler Tutorial | Performance Programming | February 18, 2009 © 2009 IBM Corporation

Software Group

Miscellaneous Performance Options

 -qlargepage
Hint to the compiler that the heap and static data will be allocated from

large pages at execution time (controlled by linker option -blpdata)

Compiler will divert large data from the stack to the heap

Compiler may also bias optimization of heap or static data references

 -qsmallstack
Tells the compiler to compact stack storage (may increase heap usage)

65

Compilation Technology

SCINET Compiler Tutorial | Performance Programming | February 18, 2009 © 2009 IBM Corporation

Software Group

Directives and Pragmas

66

Compilation Technology

SCINET Compiler Tutorial | Performance Programming | February 18, 2009 © 2009 IBM Corporation

Software Group

Summary of Directives and Pragmas

 OpenMP
 Legacy SMP directives and pragmas

Most of these are superceded by OpenMP - use OpenMP

 Assertive directives (Fortran)
 Assertive pragmas (C)
 Embedded Options
 Prescriptive directives (Fortran)
 Prescriptive pragmas (C)

67

Compilation Technology

SCINET Compiler Tutorial | Performance Programming | February 18, 2009 © 2009 IBM Corporation

Software Group

Overview of OpenMP (Fortran)

 Specified as directives (eg. !$OMP ...)
 PARALLEL / END PARALLEL

Parallel region - SPMD-style execution

Optional data scoping (private/shared), reductions, num_threads

 DO / END DO
Work sharing DO - share execution of iterations among threads

Optional scheduling specification (STATIC, GUIDED, etc)

 SECTIONS / SECTION / END SECTIONS
Share execution of a fixed number of code blocks among threads

 WORKSHARE / END WORKSHARE
Share execution of array assignments, WHERE or FORALL

68

Compilation Technology

SCINET Compiler Tutorial | Performance Programming | February 18, 2009 © 2009 IBM Corporation

Software Group

Overview of OpenMP (continued)

 SINGLE, MASTER
Execute block with a single thread

 CRITICAL, ATOMIC, ORDERED
Mutual exclusion

 FLUSH, BARRIER
Low level synchronization

 THREADPRIVATE
Thread local copies of externals

 Runtime
get/set num threads, low level synchronization, nested parallelism

69

Compilation Technology

SCINET Compiler Tutorial | Performance Programming | February 18, 2009 © 2009 IBM Corporation

Software Group

Assertive Directives (Fortran)

 ASSERT (ITERCNT(n) | [NO]DEPS)
Same as options of the same name but applicable to a single loop - much more

useful
 INDEPENDENT

Asserts that the following loop has no loop carried dependences - enables locality
and parallel transformations

 CNCALL
Asserts that the calls in the following loop do not cause loop carried dependences

 PERMUTATION (names)
Asserts that elements of the named arrays take on distinct values on each iteration

of the following loop

Useful for gather/scatter codes
 EXPECTED_VALUE (param, value)

to specify a value that a parameter passed in a function call is most likely to take at
run time. The compiler can use this information to perform certain optimizations,
such as function cloning and inlining. (XL Fortran V11.)

New!

70

Compilation Technology

SCINET Compiler Tutorial | Performance Programming | February 18, 2009 © 2009 IBM Corporation

Software Group

Assertive Pragmas (C)

 isolated_call (function_list)
asserts that calls to the named functions do not have side effects

 disjoint (variable_list)
asserts that none of the named variables (or pointer dereferences) share

overlapping areas of storage

 independent_loop
equivalent to INDEPENDENT

 independent_calls
equivalent to CNCALL

71

Compilation Technology

SCINET Compiler Tutorial | Performance Programming | February 18, 2009 © 2009 IBM Corporation

Software Group

Assertive Pragmas (C)

 permutation
equivalent to PERMUTATION

 iterations
equivalent to ASSERT(ITERCNT)

 execution_frequency (very_low)
asserts that the control path containing the pragma will be infrequently

executed

 leaves (function_list)
asserts that calls to the named functions will not return (eg. exit)

72

Compilation Technology

SCINET Compiler Tutorial | Performance Programming | February 18, 2009 © 2009 IBM Corporation

Software Group

Prescriptive Directives (Fortran)

 PREFETCH
PREFETCH_BY_LOAD (variable_list): issue dummy loads to cause the

given variables to be prefetched into cache - useful on Power
machines or to activate Power 3 hardware prefetch

PREFETCH_FOR_LOAD (variable_list): issue a dcbt instruction for each
of the given variables.

PREFETCH_FOR_STORE (variable_list): issue a dcbtst instruction for
each of the given variables.

 CACHE_ZERO
Inserts a dcbz (data cache block zero) instruction with the given address

Useful when storing to contiguous storage (avoids the L2 store miss
entirely)

73

Compilation Technology

SCINET Compiler Tutorial | Performance Programming | February 18, 2009 © 2009 IBM Corporation

Software Group

Prescriptive Directives (Fortran)

 UNROLL
Specified as [NO]UNROLL [(n)]

Used to activate/deactivate compiler unrolling for the following loop.

Can be used to give a specific unroll factor.

Works for all loops (not just innermost).

 PREFETCH_BY_STREAM_FORWARD / BACKWARD
Emit a dcbt encoded as a hardware stream startup

Use LIGHT_SYNC after a block of these

 LIGHT_SYNC
Emit a lwsync instruction

 NOSIMD
Specifies that the following loop should not be SIMD-vectorized (PPC970)

 NOVECTOR
Specifies that the following loop should not be vectorized

74

Compilation Technology

SCINET Compiler Tutorial | Performance Programming | February 18, 2009 © 2009 IBM Corporation

Software Group

Prescriptive Directives (Fortran)

 SUBSCRIPTORDER
Reorder the dimensions of an array

 COLLAPSE
Reduce an entire array dimension to 1 element

 DO SERIAL
Specify that the following loop must not be parallelized

 SNAPSHOT
Set a legal breakpoint location with variable visibility

 UNROLL_AND_FUSE
 Used to activate unroll-and-jam for outer loops

 STREAM_UNROLL
 Used to activate innerloop unrolling for streams

75

Compilation Technology

SCINET Compiler Tutorial | Performance Programming | February 18, 2009 © 2009 IBM Corporation

Software Group

Prescriptive Directives

 BLOCK_LOOP directive – Stripmining example

 tilesize=compute_tile_size(M)
!IBM* BLOCK_LOOP(tilesize, myloop)
 do i=1, N
!IBM* LOOPID(myloop)
 do j=1, M

 end do
 end do

 tilesize=compute_tile_size(M)
 do jj=1, M, tilesize
 do i=1, N
 do j=jj, min(jj+tilesize, M)
 ...
 end do
 end do
 end do

76

Compilation Technology

SCINET Compiler Tutorial | Performance Programming | February 18, 2009 © 2009 IBM Corporation

Software Group

Prescriptive Directives

 BLOCK_LOOP directive – Loop Interchange example

 do i=1,N
 do j=1,N
!IBM* BLOCK_LOOP(1, myloop1)
 do k=1, M
!IBM* LOOPID(myloop1)
 do l=1, M
 ...
 end do
 end do
 end do
 end do

 do i=1, N
 do j=1, N
 do ll=1, M
 do k=1, M
 l=ll
 ...
 end do
 end do
 end do
 end do

77

Compilation Technology

SCINET Compiler Tutorial | Performance Programming | February 18, 2009 © 2009 IBM Corporation

Software Group

Prefetch Directives for POWER5 (XLF V9.1 & XL C/C++ V7.0)

 Power 5 supports enhanced variants of the Data Cache Block Touch (dcbt) to provide
additional control of the prefetch hardware.

 Software will be able to specify the hardware stream which should be used. the direction
and length of the prefetch, and whether the data is transient.

 Support provided by new compiler directives in XLF V9.1:
PROTECTED_UNLIMITED_STREAM_SET_GO_FORWARD(prefetch_variable, stream_id)

PROTECTED_UNLIMITED_STREAM_SET_GO_BACKWARD(prefetch_variable, stream_id)

PROTECTED_STREAM_SET_FORWARD(prefetch_variable, stream_id)

PROTECTED_STREAM_SET_BACKWARD(prefetch_variable, stream_id)

PROTECTED_STREAM_COUNT(unit_count, stream_id)

PROTECTED_STREAM_GO

PROTECTED_STREAM_STOP(stream_id)

PROTECTED_STREAM_STOP_ALL

EIEIO
 Similar support provided by new intrinsics functions in XL C/C++ V7.0

78

Compilation Technology

SCINET Compiler Tutorial | Performance Programming | February 18, 2009 © 2009 IBM Corporation

Software Group

Prefetch Directives for POWER5 (XLF V9.1 & XL C/C++ V7.0)

Example 1: for short streams (less than 1024 cache lines),
__protected_stream_set/count/go can be used as follows:

 double a[N], b[N], c[N];

 /* the size of stream a is N*sizeof(double). If the stream size is less than
1024 cache lines, then __protected_stream_set/count/go can be used */
 __protected_stream_set(FORWARD, a[0], 1);
 __protected_stream_count(N*sizeof(double)/CacheLineSize, 1);
 __protected_stream_set(FORWARD, b[0], 2);
 __protected_stream_count(n*sizeof(double)/CacheLineSize, 2);
 __eieio();
 __protected_stream_go();
 for (i=0; i< N; i++) {
 c[i] = a[i]*b[i];
 }

79

Compilation Technology

SCINET Compiler Tutorial | Performance Programming | February 18, 2009 © 2009 IBM Corporation

Software Group

Prefetch Directives for POWER5 (XLF V9.1 & XL C/C++ V7.0)

Example 2: for long streams (equal and greater than 1024 cache lines),
__protected_unlimited_stream_set_go/__protected_stream_stop can be used.

__protected_unlimited_stream_set_go(FORWARD, a[0], 1);
__protected_unlimited_stream_set_go(FORWARD, b[0], 2);
__protected_unlimited_stream_set_go(FORWARD, c[0], 3);
__protected_unlimited_stream_set_go(FORWARD, d[0], 4);
for (i=0; i<n; i++) {
 ...= a[i];
 ...= b[i];
 ...= c[i];
 ...= d[i];
}
__protected_stream_stop(1);
__protected_stream_stop(2);
__protected_stream_stop(3);
__protected_stream_stop(4);

80

Compilation Technology

SCINET Compiler Tutorial | Performance Programming | February 18, 2009 © 2009 IBM Corporation

Software Group

Performance With New Prefetch Directives On POWER5

 do k=1,m
 lcount = nopt2
 do j=ndim2,1,-1
!!IBM PROTECTED_STREAM_SET_FORWARD(x(1,j),0)
!!IBM PROTECTED_STREAM_COUNT(lcount,0)
!!IBM PROTECTED_STREAM_SET_FORWARD(a(1,j),1)
!!IBM PROTECTED_STREAM_COUNT(lcount,1)
!!IBM PROTECTED_STREAM_SET_FORWARD(b(1,j),2)
!!IBM PROTECTED_STREAM_COUNT(lcount,2)
!!IBM PROTECTED_STREAM_SET_FORWARD(c(1,j),3)
!!IBM PROTECTED_STREAM_COUNT(lcount,3)
!!IBM EIEIO
!!IBM PROTECTED_STREAM_GO
 do i=1,n
 x(i,j)= x(i,j)+a(i,j)*b(i,j) + c(i,j)
 enddo
 enddo
 call dummy(x,n)
 enddo

10 100 1000 10000

Vector length

1.0

2.0

3.0

4.0

5.0

6.0

7.0

Bi
lli

on
s

By
te

s/
se

c baseline
with edcbt

Four stream performance
Power5 BUV 1-chip/4SMI 1.6GHz

DDR1 266MHz

81

Compilation Technology

SCINET Compiler Tutorial | Performance Programming | February 18, 2009 © 2009 IBM Corporation

Software Group

Software Divide Intrinsics for POWER5 (XLF V9.1 & XL C/C++ V7.0)

 Provide alternative to hardware floating point divide instructions.

 Single precision and double precision supported :

SWDIV(X,Y)
where X and Y must be same type (real*4 or real*8)
result is X / Y
no argument value restrictions

SWDIV_NOCHK(X,Y)

 same as above except argument values cannot be infinity
or denormalized. Denominator (Y) cannot be zero.

 Similar instrinsics are available in C/C++

82

Compilation Technology

SCINET Compiler Tutorial | Performance Programming | February 18, 2009 © 2009 IBM Corporation

Software Group

Software Divide Intrinsics for POWER5 (XLF V9.1 & XL C/C++ V7.0)

 Must specify –qarch=pwr5 to use these intrinsics

 Compiler will automatically expand double precision divides found in loops.
The profitability analysis is done as part of modulo scheduling.

All information subject to change without notice

Software Divide Instrinsics

0

10

20

30

40

50

60

70

80

90

100

%
 I

m
ro

v
em

en
t

v
s

h
ar

d
w

ar
e

d
iv

id
e

SP SWDIV
SP SWDIV_NOCHK

DP SWDIV
DP SWDIV_NOCHK

DP SWDIV -qnostrict
DP SWDIV_NOCHK -qnostrict

83

Compilation Technology

SCINET Compiler Tutorial | Performance Programming | February 18, 2009 © 2009 IBM Corporation

Software Group

NI Mode: An Alternate Method Of Using Faster Divides on Power5

subroutine sub(x,y,z,n,m)
 implicit none
 include "common.inc"
 real*8 x(*),y(*),z(*)
 include "ind_vars.inc"
 integer*4, parameter :: NI=29
 intrinsic setfsb0, setfsb1
 call setfsb1(NI)
 do j=1,m
 do i=1,n
 x(i)=z(i)/y(i)
 enddo
 call dummy(x,y,n)
 enddo
 call setfsb0(NI)
 return
 end

Set NI mode

Reset NI mode

27 cycles instead of 33 cycles

84

Compilation Technology

SCINET Compiler Tutorial | Performance Programming | February 18, 2009 © 2009 IBM Corporation

Software Group

How to Read a Compiler
Listing

85

Compilation Technology

SCINET Compiler Tutorial | Performance Programming | February 18, 2009 © 2009 IBM Corporation

Software Group

Compile Listing Format
Section Description
Header Compiler version, source file,

date/time

Options Compiler option settings
Activated by -qlistopt

Source Listing of source code and inline
messages
Activated by -qsource

Transformation Report Report of transformations done
by -qsmp or -qhot
Activated by -qreport

Attribute and Cross-reference Report of symbol declarations,
attributes and references
Activated by -qattr or -qxref

Object Listing of generated object code
and meta-data
Activated by -qlist

File Table Listing of files used in the
compilation

86

Compilation Technology

SCINET Compiler Tutorial | Performance Programming | February 18, 2009 © 2009 IBM Corporation

Software Group

Object Listing (-qlist)
XL Fortran for AIX Version 08.01.0000.0002 --- kernel.f 11/05/02 22:20:25

>>>>> OPTIONS SECTION <<<<<
<snip>
>>>>> SOURCE SECTION <<<<<
** kernel === End of Compilation 1 ===
>>>>> LOOP TRANSFORMATION SECTION <<<<<
<snip>
>>>>> OBJECT SECTION <<<<<

 GPR's set/used: ssus ssss ssss ssss ssss ssss ssss ssss
 FPR's set/used: ssss ssss ssss ssss ssss ssss ssss ssss
 CCR's set/used: sss- ssss

 | 000000 PDEF kernel
 0| PROC .tk,gr3
 0| 000000 mfspr 7C0802A6 1 LFLR gr0=lr
 0| 000004 mfcr 7D800026 1 LFCR gr12=cr[24],2
 0| 000008 bl 4BFFFFF9 0 CALLNR _savef14,gr1,fp14-fp31,lr"
<snip>
 830| 006B28 b 4BFF94D8 0 CALLF _restf14
 | Tag Table
 | 006B2C 00000000 00012223 92130000 00006B2C 1F
 | Instruction count 6859
 | Straight-line exec time 8381
 | Constant Area
 | 000000 4B45524E 454C2020 00000000 49424D20 3F847AE1 47AE147B
 | 000018 40000000 3F800000 41DFFFFF FFC00000 59800004 49424D20
<snip>

87

Compilation Technology

SCINET Compiler Tutorial | Performance Programming | February 18, 2009 © 2009 IBM Corporation

Software Group

Object Listing Line

 781| 006238 lfd C9164280 1 LFL fp8=zz[](gr22,17024)

Source Line
Number

Offset from
Csect start

PowerPC
Instruction

Machine
Code

Approximate
Cycle Count
(Not accurate)

XIL
Opcode

XIL
Operands

88

Compilation Technology

SCINET Compiler Tutorial | Performance Programming | February 18, 2009 © 2009 IBM Corporation

Software Group

XIL Cheat Sheet
LFL Load Float Long BT Branch if true

STFL Store Float Long BF Branch if false

L4A Load Word Algebraic BCT Branch on count non-zero

ST4A Store Word BCF Branch on count zero

L1Z Load Byte and Zero LCTR Load Count Register

LFS Load Float Short CALL Procedure Call

STFS Store Float Short CALLN Procedure Call, no side effects

FMA Long Float Multiply-Add STFDU Store Float Double with
Update

FMS Long Float Multiply-Subtract CL.###: Compiler generated label

FMAS Single Float Multiply-Add

AI Add Immediate

C4 Compare Word

CFL Compare Float Long

CFS Compare Float Short

SRL4 Shift Right Logical

RN4_R Rotate and mask, with
record

89

Compilation Technology

SCINET Compiler Tutorial | Performance Programming | February 18, 2009 © 2009 IBM Corporation

Software Group

But how do I find the loop?

 Look for a line number corresponding to an array store or call.
vi: /123|/

 Look forward for the BCT.
vi: /BCT /

 Then look backward for target label.
vi: ?CL.1234

 The compiler normally keeps the loop contiguous so all the code between
the label and the BCT is the loop. It might be useful to slice that part out.

 Loops are often unrolled and pipelined.
 Unroll "residue" usually precedes main loop. It will also be a BCT loop.
 Pipelining introduces "prologue" and "epilogue" code before and after main

loop. Look for the BCF instruction to find the end of a prologue.
 Need to browse around sometimes to find the "real" loop.
 In complex cases (eg. outer unrolling, fusion, etc), it is best to get an

annotated tprof listing and go to the code offsets where most of the ticks
land.

90

Compilation Technology

SCINET Compiler Tutorial | Performance Programming | February 18, 2009 © 2009 IBM Corporation

Software Group

Transformation Report (-qreport)
 258| IF ((n > 0)) THEN
 @CSE10 = MOD(int(n), 2)
 IF ((@CSE10 > 0)) THEN
 259| q = (z(1) * x(1))
 IF (.NOT.(int(n) >= 2)) GOTO lab_672
 ENDIF
 258| @PSRV0 = 0.0000000000000000E+000
 @CIV28 = int(0)
 @ICM.n0 = n
 @ICM.q1 = q
 @CSE11 = ((int(@ICM.n0) - @CSE10) + 4294967295)
 @ICM5 = @CSE11
 @ICM6 = (@CSE11 / 2 + 1)
 Id=3 DO @CIV28 = @CIV28, @ICM6-1
 259| @ICM.q1 = (@ICM.q1 + z((int(MOD(int(@ICM.n0), 2)) + (&
 & @CIV28 * 2 + 1))) * x((int(MOD(int(@ICM.n0), 2)) + (&
 & @CIV28 * 2 + 1))))
 @PSRV0 = (@PSRV0 + z((int(MOD(int(@ICM.n0), 2)) + (@CIV28 &
 & * 2 + 2))) * x((int(MOD(int(@ICM.n0), 2)) + (@CIV28 * 2 + &
 & 2))))
 ENDDO
 q = @ICM.q1
 q = (q + @PSRV0)
 lab_672
 ENDIF

 DO 3 K=1,N
3 Q = Q + Z(K)*X(K)

91

Compilation Technology

SCINET Compiler Tutorial | Performance Programming | February 18, 2009 © 2009 IBM Corporation

Software Group

Transformation Report (-qreport)

Source Source Loop Id Action / Information
File Line
---------- ---------- ---------- --
 0 258 3 Inner loop has been unrolled 2 time(s).
 0 275 5 Inner loop has been unrolled 4 time(s).
 0 337 10 Loop interchanging applied to loop nest.
 0 460 17 The loops on lines 460, 469, and 478 have been fused.
 0 661 Vectorization applied to statement.
 0 663 Vectorization applied to statement.
 0 679 Loop has been completely unrolled because its
 iteration count is less than 32.
 0 737 69 Loop interchanging applied to loop nest.
 0 737 69 Outer loop has been unrolled 4 time(s).
 0 738 Loop has been completely unrolled because its
 iteration count is less than 32.

92

Compilation Technology

SCINET Compiler Tutorial | Performance Programming | February 18, 2009 © 2009 IBM Corporation

Software Group

The MASS Library

93

Compilation Technology

SCINET Compiler Tutorial | Performance Programming | February 18, 2009 © 2009 IBM Corporation

Software Group

MASS Enhancements

 Mathematical Acceleration SubSystem is a library of highly
tuned, machine specific, mathematical functions available for
download from IBM

Contains both scalar and vector versions of many (mostly trig.) functions

Trades off very limited accuracy for greater speed

The compiler tries to automatically vectorize scalar math functions and
generate calls to the MASS vector routines in libxlopt

Failing that, it tries to inline the scalar MASS routines (new for XLF V11.1)

Failing that, it generates calls to the scalar routines instead of those in
libm

New!

94

Compilation Technology

SCINET Compiler Tutorial | Performance Programming | February 18, 2009 © 2009 IBM Corporation

Software Group

MASS example

subroutine mass_example (a,b)
 real a(100), b(100)
 integer i

 do i = 1, 100
 a(i) = sin(b(i))
 enddo;
end subroutine mass_example

 SUBROUTINE mass_example (a, b)
 @NumElements0 = int(100)
 CALL __vssin_P6 (a, b, &@NumElements0)
 RETURN
 END SUBROUTINE mass_example

 -O3 –qhot –qarch=pwr6

Aliasing prevents vectorization:

void c_example(float *a, float *b)
{
 for (int i=0; i < 100; i++)
 {
 a[i] = sin(b[i]);
 b[i] = (float) i;
 }
}

void c_example(float *a, float *b)
{
 @CIV0 = 0;
 do {
 a[@CIV0] = __xl_sin(b[@CIV0]);
 b[@CIV0] = (float) @CIV0;
 @CIV0 = @CIV0 + 1;
 } while ((unsigned) @CIV0 < 100u);
 return;
}

95

Compilation Technology

SCINET Compiler Tutorial | Performance Programming | February 18, 2009 © 2009 IBM Corporation

Software Group

What functions are in the MASS Library?

 MASS Scalar Library (libmass.a)
Double precision only

exp, log, sin, cos, sincos, cosisin, tan, atan2, pow

 MASS Vector Library (libmassv.a)
Single and double precision

rec, div, sqrt, rsqrt, exp, log, sin, cos, sincos, cosisin, tan, atan2, dnint, dint

 POWER4 MASS Vector Library (libmassvp4.a)
Single and double precision

rec, div, sqrt, rsqrt, exp, log, tan, acos, asin (MASS 3.2)

 New Power6 tuned library with 60+ routines (libmassvp6.a)
single and double precision versions of:

 sin(), cos(), log(), exp(), acos(), sincos() etc..

 More info: http://www.ibm.com/software/awdtools/mass/

New!

96

Compilation Technology

SCINET Compiler Tutorial | Performance Programming | February 18, 2009 © 2009 IBM Corporation

Software Group

MASS Function Performance (Double precision)
MASS Speedup

Double Precision
POWER4 Measurements

1.00

10.00

100.00

re
c div sq

rt
rs

qr
t

ex
p log sin co

s ta
n

sin
h

co
sh

ta
nh

at
an

2
po

w

Function

S
p

ee
d

u
p

 o
ve

r
d

ef
au

lt

Scalar MASS

Vector MASS

POWER4 MASSV

97

Compilation Technology

SCINET Compiler Tutorial | Performance Programming | February 18, 2009 © 2009 IBM Corporation

Software Group

MASS Function Accuracy (Double precision)

MASS Accuracy
Double Precision

0

0.5

1

1.5

2

2.5

3

3.5

re
c div sq

rt
rs

qr
t

ex
p log sin co

s
ta

n
sin

h
co

sh
ta

nh
at

an
2

po
w

Function

M
ax

 E
rr

o
r

(U
L

P
s)

Default

Scalar MASS

Vector MASS

POWER4 MASSV

98

Compilation Technology

SCINET Compiler Tutorial | Performance Programming | February 18, 2009 © 2009 IBM Corporation

Software Group

Shared Memory
Parallelism

99

Compilation Technology

SCINET Compiler Tutorial | Performance Programming | February 18, 2009 © 2009 IBM Corporation

Software Group

Compiling Code for SMP

 Use the reentrant compiler invocations ending in “_r” such as xlf90_r
or xlC_r

 The –qsmp option is used to activate parallel code generation and
optimization

 Specify –qsmp=omp to compile OpenMP code
-qsmp=omp:noopt will disable most optimizations to allow for full

debugging of OpenMP programs

Controls are also available to change default scheduling, allow nested
parallelism or safe recursive locking

 Specify –qsmp=auto to request automatic loop parallelization
 Detect a thread's stack going beyond its limit (XL Fortran V11.1 and

XL C/C++ V9.0). Implemented with –qsmp=stackcheck.New!

100

Compilation Technology

SCINET Compiler Tutorial | Performance Programming | February 18, 2009 © 2009 IBM Corporation

Software Group

OpenMP vs. Automatic Parallelization

 OpenMP and automatic parallelization are currently not allowed to
be done together

 OpenMP is recommended for those who are able to expend the
effort of annotating their code for parallelism

More flexible than automatic parallelization

Portable

 Automatic parallelization is recommended as a means of doing
some parallelization without code changes

 Automatic parallelization along with -qreport can be helpful for
identifiying parallel loop opportunities for an OpenMP programmer

 -qsmp=threshold=n to specify the amount of work required in a loop
before the compiler considers it for automatic parallelizationNew!

101

Compilation Technology

SCINET Compiler Tutorial | Performance Programming | February 18, 2009 © 2009 IBM Corporation

Software Group

Running SMP Code
 Ensure the stack size is large enough

Use of array language may increase stack size unexpectedly

export XLSMPOPTS=STACK=nn

Consider using the -qsmallstack option to allocate less on the stack
 Set SPINS and YIELDS to 0 if using the machine or node in a dedicated

manner
export XLSMPOPTS=SPINS=0:YIELDS=0

 By default, the runtime will use all available processors.
Do not set the PARTHDS or OMP_NUM_THREADS variables unless you wish to

use fewer than the number of available processors
 One can bind SMP threads to processor threads using startproc and stride

For example, export XLSMPOPTS=startproc=0:stride=2

Binds SMP thread 0 to processor thread 0 and SMP thread 1 to processor thread
2…

 The number of SMP threads used by MATMUL and RANDOM_NUMBER
can be controlled.

For example, export XLSMPOPTS=intrinthds=2

Will allow only 2 SMP threads to be used by these intrinsics

102

Compilation Technology

SCINET Compiler Tutorial | Performance Programming | February 18, 2009 © 2009 IBM Corporation

Software Group

Performance Programming

103

Compilation Technology

SCINET Compiler Tutorial | Performance Programming | February 18, 2009 © 2009 IBM Corporation

Software Group

What can my compiler do for me?

 Code generation and register allocation
Redundancy and store elimination

Register allocation

 Instruction scheduling
Global and local reordering

Loop pipelining

 Program restructuring
Inlining and specialization

Partitioning

 Loop restructuring
Fusion and fission

Unrolling

Vectorization and Parallelization

104

Compilation Technology

SCINET Compiler Tutorial | Performance Programming | February 18, 2009 © 2009 IBM Corporation

Software Group

Redundancy Elimination

for (i=0;i<n;i++)
 for (j=0;j<m;j++)
 a[i][j] = b[j][i];

pa_b = a;
pb_b = b;
for (i=0;i<n;i++) {
 pa = pa_b + a_colsz;
 pb = pb_b + i*datasz;
 for (j=0;j<m;j++) {
 *pa++ = *pb;
 pb = pb + b_colsz;
 }
}

Key points:
•Relies on good alias information
•Depends largely on original
expression ordering

105

Compilation Technology

SCINET Compiler Tutorial | Performance Programming | February 18, 2009 © 2009 IBM Corporation

Software Group

Register Allocation

X=
 =X
Y=
 =X
 =Y
Z=
 =Y
 =Z

fp0=
 =fp0
fp1=
 =fp0
 =fp1
fp0=
 =fp1
 =fp0

Key points:
•Relies on good alias information
•Speed and quality of allocation
degrade with size of function

106

Compilation Technology

SCINET Compiler Tutorial | Performance Programming | February 18, 2009 © 2009 IBM Corporation

Software Group

Instruction Scheduling
DO I=1,N,2
 A(I)=A(I)+P*B(I)+Q*C(I)
 A(I+1)=A(I+1)+P*B(I+1)+Q*C(I+1)
END DO

lfd fp0,A(I)
lfd fp1,B(I)
fma fp0,fp0,fp30,fp1
lfd fp2,C(I)
fma fp0,fp0,fp31,fp2
stfd fp0,A(I)
lfd fp3,A(I+1)
lfd fp4,B(I+1)
fma fp3,fp3,fp30,fp4
lfd fp5,C(I+1)
fma fp3,fp3,fp31,fp5
stfd fp3,A(I+1)

lfd fp0,A(I)
lfd fp1,B(I)
lfd fp3,A(I+1)
lfd fp4,B(I+1)
fma fp0,fp0,fp30,fp1
fma fp3,fp3,fp30,fp4
lfd fp2=C(I)
lfd fp5=C(I+1)
fma fp0,fp0,fp31,fp2
fma fp3,fp3,fp31,fp5
stfd fp0,A(I)
stfd fp3,A(I+1)

Key points:
•Relies on good alias information
•Limited in scope
•Less effective across branches

107

Compilation Technology

SCINET Compiler Tutorial | Performance Programming | February 18, 2009 © 2009 IBM Corporation

Software Group

Loop Pipelining
DO I=1,N,4
 A(I)=A(I)+P*B(I)+Q*C(I)
 A(I+1)=A(I+1)+P*B(I+1)+Q*C(I+1)
 A(I+2)=A(I+2)+P*B(I+2)+Q*C(I+2)
 A(I+3)=A(I+3)+P*B(I+3)+Q*C(I+3)
END DO

A1=A(1) A2=A(2) A3=A(3) A3=A(4)
B1=B(1) B2=B(2) B3=B(3) B4=B(4)
C1=C(1) C2=C(2) C3=C(3) C4=C(4)
DO I=4,N,4
 A(I-4)=A1+P*B1+Q*C1
 A1=A(I) B1=B(I) C1=C(I)
 A(I-3)=A2+P*B2+Q*C2
 A2=A(I+1) B2=B(I+1) C2=C(I+1)
 A(I-2)=A3+P*B3+Q*C3
 A3=A(I+2) B3=B(I+2) C3=C(I+2)
 A(I-1)=A4+P*B4+Q*C4
 A4=A(I+3) B4=B(I+3) C4=C(I+3)
END DO
A(I)=A1+P*B1+Q*C1
A(I+1)=A2+P*B2+Q*C2
A(I+2)=A3+P*B3+Q*C3
A(I+3)=A4+P*B4+Q*C4

Key points:
•Relies on good alias information
•Limited in scope to small loops
with no branches
•Effectiveness depends on
unrolling to sufficient depth

108

Compilation Technology

SCINET Compiler Tutorial | Performance Programming | February 18, 2009 © 2009 IBM Corporation

Software Group

Function Inlining

SUBROUTINE C(X,Y)
CALL B(Y*2,X)
END
SUBROUTINE B(P,Q)
CALL A(Q,P*3)
END
SUBROUTINE A(R,S)
R = R * S
END
PROGRAM FOO
CALL C(F,4.0)
END

F=F*24.0

Key points:
•Caller and callee size limits
important parameters
•Calls considered in order of
expected frequency (better with
PDF)
•Inlining can be harmful due to
growing code beyond other
optimizations’ effective limits

109

Compilation Technology

SCINET Compiler Tutorial | Performance Programming | February 18, 2009 © 2009 IBM Corporation

Software Group

Function Specialization

int f(x) {
 z=x*4.0
 return fsqrt(z);}
print(f(x),z);
y=f(x/7.0)
print(z);
... never use y ...

double f(x) {
 z=x*4.0
 return fsqrt(z);}
double f0(x) {
 z=x*4.0;
 return 0.0;}
print(f(x),z);
y=f0(x/7.0)
print(z);

Key points:
•Active only with –O5
•Not effective at
recognizing aliasing
specializations

110

Compilation Technology

SCINET Compiler Tutorial | Performance Programming | February 18, 2009 © 2009 IBM Corporation

Software Group

Program Partitioning

A B

D

E

C

F

G

10

100
20

30

60

250

80

10

A B

D

E

C

F

G

10

100
20

30

60

250

80

10

Key points:
•Depends heavily on call
count info (use PDF)
•Adjust partition size to
trade effectiveness for
increased link time

111

Compilation Technology

SCINET Compiler Tutorial | Performance Programming | February 18, 2009 © 2009 IBM Corporation

Software Group

Loop Fusion

DO I=1,N
 A(I)=F(B(I))
END DO
Q =
DO J=2,N
 C(I)=A(I-1)+ Q*B(I)
END DO

Q =
A(1)=F(B(1))
DO I=2,N
 A(I)=F(B(I))
 C(I)=A(I-1)+Q*B(I)
END DO

Key points:
•Limited by dependence
and alias information
•Exploit reuse
•Requires countable
loops (more on this later)

112

Compilation Technology

SCINET Compiler Tutorial | Performance Programming | February 18, 2009 © 2009 IBM Corporation

Software Group

Loop Fission

DO I=1,N
 A(I)=A(I)+P1*B1(I)+P2*B2(I)+P3*B3(I)+P4*B4(I)+
 P5*B5(I)+P6*B6(I)+P7*B7(I)+P8*B8(I)+
 P9*B9(I)
END DO

DO I=1,N
 A(I)=A(I)+P1*B1(I)+P2*B2(I)+P3*B3(I)+P4*B4(I)
END DO
DO I=1,N
 A(I)=A(I)+P5*B5(I)+P6*B6(I)+P7*B7(I)+P8*B8(I)+
 P9*B9(I)
END DO

Key points:
•Limited by dependence
and alias information
•Requires countable loops
•Reduce number of streams

113

Compilation Technology

SCINET Compiler Tutorial | Performance Programming | February 18, 2009 © 2009 IBM Corporation

Software Group

Loop Unrolling

DO I=1,N
 S = S + A(I)*B(I)
END DO

DO I=1,N,4
 S1 = S1 + A(I)*B(I)
 S2 = S2 + A(I+1)*B(I+1)
 S3 = S3 + A(I+2)*B(I+2)
 S4 = S4 + A(I+3)*B(I+3)
END DO
S = S1+S2+S3+S4

Key points:
•Unroll factor selection is a
balance between
scheduling and register
allocation
•Requires countable loops

114

Compilation Technology

SCINET Compiler Tutorial | Performance Programming | February 18, 2009 © 2009 IBM Corporation

Software Group

Loop Vectorization

DO I=1,N
 S = B(I) / SQRT(C(I))
 A(I) = LOG(S)*C(I)
END DO

CALL VRSQRT(A,C,N)
DO I = 1,N
 A(I) = B(I)*A(I)
END DO
CALL VLOG(A,A,N)
DO I = 1,N
 A(I) = A(I)*C(I)
END DO

Key points:
•Vectorization requires
fission
•Vectorization is a balance
between vector speedup
and memory locality

115

Compilation Technology

SCINET Compiler Tutorial | Performance Programming | February 18, 2009 © 2009 IBM Corporation

Software Group

Loop Parallelization

DO I=1,N
 DO J=2,M-1
 A(I,J) = A(I,J-1)*SQRT(A(I,J+1))
 END DO
END DO

CALL _xlsmpDo (FOO@OL@1,1,N)
...
SUBROUTINE FOO@OL@1(LB,UB)
DO I=LB,UB
 DO J=2,M-1
 A(I,J) = A(I,J-1)*SQRT(A(I,J+1))
 END DO
END DO
END

Key points:
•Limited by dependence
and alias information
•Loop selection imperfect
due to lack of knowledge
about bounds

116

Compilation Technology

SCINET Compiler Tutorial | Performance Programming | February 18, 2009 © 2009 IBM Corporation

Software Group

What can I do for my compiler?

 Simplify memory accesses
Use of externals and pointers

Array indexing

 Simplify loop structures
Countable loops

Perfect nesting

Branches in loops

 Simplify program structure
When to inline

When to use function pointers

117

Compilation Technology

SCINET Compiler Tutorial | Performance Programming | February 18, 2009 © 2009 IBM Corporation

Software Group

Use of externals

 The optimizer scope is often a single function
External variables might have their address taken in some other function

and so might be used or modified by certain pointer dereferences

External variables might be used of modified by a call to some other
function

 Use scalar replacement to manually allocate external variables to
registers (ie. automatic variables that do not have their address
taken).

 Increase optimizer scope
Use modules in Fortran

Group related functions in the same file and make as many static as
possible in C/C++

118

Compilation Technology

SCINET Compiler Tutorial | Performance Programming | February 18, 2009 © 2009 IBM Corporation

Software Group

Array indexing

 Many optimizations attempt to disambiguate array references by an
analysis of index expressions

 Simplify index calculations
Keep calculations as a linear function of the loop variables where possible

Avoid unnecessary use of shift operators, modulus or divide

Use language facilities for indexing where possible (rather than manually
indexing off a pointer for example)

 Simplfy loop bound expressions
Store bounds to temporaries and use the temporaries in the loop

Avoid unnecessary use of shift operators, modulus or divide

Avoid unnecessary use of MAX/MIN
 Use a single name for each array to avoid aliasing ambiguities
 Consider using the INDEPENDENT directive

119

Compilation Technology

SCINET Compiler Tutorial | Performance Programming | February 18, 2009 © 2009 IBM Corporation

Software Group

Use of pointers

 Pointers can be confusing for the compiler because dereferencing
them may imply a use or definition of any other variable which has
had its address taken

 Obey the strictest language rules available as a matter of practice
Type-based language rules for pointers are very useful in refining the alias

sets of dereferences

Use TARGET only when necessary in Fortran

Enhances portability
 Take the address of a variable only when necessary
 Reference parameters

Parameters passed by address in C, C++ or Fortran effectively have their
address taken

Exploit Fortran parameter aliasing rules by encapsulating operations on
disjoint sections of the same array

120

Compilation Technology

SCINET Compiler Tutorial | Performance Programming | February 18, 2009 © 2009 IBM Corporation

Software Group

Countable loops

 Most loop optimizations in the compiler work only on countable loops
A countable loop has a single entry point, a single exit point and an

iteration count which can be determined before the loop begins

 Use counted DO loop or canonical for statement for as many loops
as possible – these are usually countable

 Use register index variables and bounds
Simulate a register using an automatic whose address is not taken

Avoids aliasing ambiguity

 Branches in/out of loops
Never branch into a loop

Isolate exit conditions into their own search loop where possible

121

Compilation Technology

SCINET Compiler Tutorial | Performance Programming | February 18, 2009 © 2009 IBM Corporation

Software Group

Perfect nesting

 Many loop optimizations, including outer unroll-and-jam and
interchange require perfect loop nesting

A loop is perfectly nested in another if there is no other code executed in
the containing loop

 Split loops where possible to create perfect nests
 Definitions of register variables are allowed so no need to avoid

them

122

Compilation Technology

SCINET Compiler Tutorial | Performance Programming | February 18, 2009 © 2009 IBM Corporation

Software Group

Branches in Loops

 Branches in loops decrease the effectiveness of loop fission,
vectorization, unrolling and pipelining

DO I=1,N
 IF (C>0.0) THEN
 A(I)=A(I)+B(I)
 ELSE
 A(I)=A(I)+C*B(I)
 END IF
END DO

IF (C>0.0) THEN
 DO I=1,N
 A(I)=A(I)+B(I)
 END DO
ELSE
 DO I=1,N
 A(I)=A(I)+C*B(I)
 END DO
END IF

DO I=1,N
 IF (I<5) THEN
 A(I)=A(I)+B(I)
 ELSE
 A(I)=A(I)-B(I)
 END IF
END DO

DO I=1,4
 A(I)=A(I)+B(I)
END DO
DO I=5,N
 A(I)=A(I)-B(I)
END DO

DO I=1,N
 IF (C(I)>0.0) THEN
 A(I)=A(I)/B(I)
END DO

NT=1
DO I=1,N
 IF (C(I)>0.0) THEN
 IX(NT) = I
 NT=NT+1
 END IF
END DO
DO II=1,NT-1
 IT=IX(II)
 A(IT)=A(IT)/B(IT)
END DO

123

Compilation Technology

SCINET Compiler Tutorial | Performance Programming | February 18, 2009 © 2009 IBM Corporation

Software Group

When to inline

 Inlining is a difficult decision for the compiler to make on its own
 C/C++ have inline keywords to help identify functions which should

be inlined
 -qipa has inline and noinline options (which can be used with regular

expressions and a side file) to guide inlining decisions
 Profile directed feedback is very effective at identifying the best

inlining candidates
 Manually inline a function only when you absolutely need to do it for

performance

124

Compilation Technology

SCINET Compiler Tutorial | Performance Programming | February 18, 2009 © 2009 IBM Corporation

Software Group

Function pointer use

 Function pointers in C or C++ are very confusing to the compiler
because the destination of a call through pointer is not known in
general

 C++ virtual methods are equivalent to function pointers in this
respect

 For a small number of pointer targets, consider using a switch with
direct calls in the cases instead

 If there are a large number of possible targets but a small number of
probable targets, create a switch with the common values and
include the pointer call in the default clause

 If most pointer targets are in the same shared object or executable
as the caller, consider creating local “stubs” for the targets which are
outside

125

Compilation Technology

SCINET Compiler Tutorial | Performance Programming | February 18, 2009 © 2009 IBM Corporation

Software Group

VMX Exploitation

126

Compilation Technology

SCINET Compiler Tutorial | Performance Programming | February 18, 2009 © 2009 IBM Corporation

Software Group

VMX Exploitation

 User directed
Vector data types and routines available for C, C++ and Fortran

Programmer manually re-writes program, carefully adhering to the
alignment constraints

 Automatic SIMD Vectorization (SIMDization)
The compiler automatically identifies parallel operations in the scalar code
and generates SIMD versions of them.

The compiler performs all analysis and transformations necessary

to fulfill alignment constraints.

Programmer assistance may improve generated code

127

Compilation Technology

SCINET Compiler Tutorial | Performance Programming | February 18, 2009 © 2009 IBM Corporation

Software Group

Required Options for VMX Code Generation

 For programs with VMX intrinsics:
C/C++: -qaltivec -qarch=pwr6

Fortran: -qarch=pwr6

 Automatic SIMD vectorization:
Optimization level -O3 -qhot or higher and -qarch=pwr6

 -q[no]enablevmx - Compiler is allowed to generate VMX instructions
AIX defaults to -qnoenablevmx (must be explicitly turned on by user)

Linux defaults to -qenablevmx

128

Compilation Technology

SCINET Compiler Tutorial | Performance Programming | February 18, 2009 © 2009 IBM Corporation

Software Group

User Directed VMX

 Data types:
C/C++: vector float, vector int, vector unsigned char

Fortran: vector(real(4)), vector (integer), vector(unsigned(1))

 VMX intrinsics
vec_add(), vec_sub(), vec_ld(), vec_st(), etc.

The Fortran VMX intrinsic names are the same as those of C/C++

 Symbolic debug (gdb, dbx) support at no-opt.

 Fully optimized at -O2 and above with suite of classical optimizations
such as dead code removal, loop invariant code motion, software
pipelining and Power6 instruction scheduling

129

Compilation Technology

SCINET Compiler Tutorial | Performance Programming | February 18, 2009 © 2009 IBM Corporation

Software Group

Example: Fortran VMX Intrinsics

subroutine xlf_madd (a,b,c,x)
 vector(real(4)) a(100), b(100), c(100)
 vector(real(4)) x(100)
 integer i

 do i = 1, 100
 x(i) = vec_madd(a(i), b(i), c(i))
 enddo;
end subroutine xlf_madd

 CL.5:
VLQ vr0=a[](gr4,gr7,0)
VLQ vr1=b[](gr5,gr7,0)
VLQ vr2=c[](gr6,gr7,0)
VMADDFP vr0=vr0-vr2,nj
VSTQ x[](gr3,gr7,0)=vr0
AI gr7=gr7,16
BCT ctr=CL.5,,100,0

Compile options:

 xlf -O2 -qarch=pwr6 -qlist -c

Additionally, compiling on AIX requires -qenablevmx

130

Compilation Technology

SCINET Compiler Tutorial | Performance Programming | February 18, 2009 © 2009 IBM Corporation

Software Group

Successful Simdization

for (i=0; i<256; i++)

 a[i] =

loop level

 a[i+0] =

 a[i+1] =

 a[i+2] =

 a[i+3] =

basic-block level

for (i=0; i<8; i++)
 a[i] =

entire short loop

GENERIC

VMX SPE

multiple targets

load b[i]

load a[i] unpack

add

store

load a[i+4]unpack

add

store

SHORT

INT 2INT 1

data size conversion

b0 b1 b2 b3 b4 b5 b6 b7 b8 b9

16-byte boundaries

vload b[1]

b0 b1 b2 b3

vload b[5]

b4 b5 b6 b7

vpermute

b1 b2 b3 b4

...b1

b1

b1

alignment constraints

b0b1b2b3

c0c1c2c3

b0+
c0

b1+
c1

b2+
c2

b3+
c3

b0 b2b3b4b5b6b7b8b9b10

c0c1 c3c4c5c6c7c8c9c10c2

b1

+

R1

R2

R3

Extract Parallelism Satisfy Constraints

b0 b1 b2 b3 b4 b5 b6 b7 b8 b9

non stride-one

131

Compilation Technology

SCINET Compiler Tutorial | Performance Programming | February 18, 2009 © 2009 IBM Corporation

Software Group

Coding choices that impact simdization

 How loops are organized
Loop must be countable, preferably with literal trip count
Only innermost loops are candidates for simdization, except when
nested loops have a short literal iteration count

Loops with control flow are harder to simdize. Compiler tries to remove
control flow, but not always successful

 How data is accessed and laid out in memory
Data accesses should preferably be stride-one

Layout the data to maximize aligned accesses

Prefer use of arrays to pointer arithmetic

 Dependences inherent to the algorithm
Loops with inherent data dependences are not simdizable

Avoid pointers; pointer aliasing may impede transformations

132

Compilation Technology

SCINET Compiler Tutorial | Performance Programming | February 18, 2009 © 2009 IBM Corporation

Software Group

Assisting the compiler to perform auto-SIMD

 Loop structure
Inline function calls inside innermost loops

Automatically (-O5 more aggressive, use inline pragma/directives)

 Data alignment
Align data on 16-byte boundaries

 __attribute__((aligned(16))

Describe pointer alignment

 _alignx(16, pointer)

Can be placed anywhere in the code, preferably close to the loop

Use -O5 (enables inter-procedural alignment analysis)

 Pointer aliasing
Refine pointer aliasing #pragma disjoint(*p, *q) or restrict keyword

Use -O5 (enables interprocedural pointer analysis)

133

Compilation Technology

SCINET Compiler Tutorial | Performance Programming | February 18, 2009 © 2009 IBM Corporation

Software Group

AIX and -qvecnvol

 Compiler does not use non-volatile VMX registers on AIX
-qvecnvol is default on AIX

-qnovecnvol forces the use of non-volatile registers, default on Linux

 May cause severe performance impact
Can use -qnovecnvol on AIX if your code does not call legacy modules

 If legacy modules that do setjmp/longjmp/sigsetjmp/siglongjmp are
linked with new VMX objects, it may produced incorrect results

 Example scenario:
new (VMX) module calls old (non-VMX) module

 old (non-VMX) module performs setjmp() [non-vol VMX not saved]

 calls another new (VMX) module [non-vol VMX state might be modified]

 if new module returns [ok, non-vol is restored by linkage convention]

 if new module longjmps to "old" jmpbuf [problem, non-vol VMX state not restored]

 calls old (VMX) module

 if old (VMX) module longjmps [problem, non-vol VMX state not restored]

134

Compilation Technology

SCINET Compiler Tutorial | Performance Programming | February 18, 2009 © 2009 IBM Corporation

Software Group

Did we SIMDize the loop?

 The -qreport option produces a list of high level transformation
performed by the compiler

Everything from unrolling, loop interchange, SIMD transformations, etc.

Also contains transformed “pseudo source”

 All loops considered for SIMDization are reported
Successful candidates are reported

If SIMDization was not possible, the reasons that prevented it are also

provided

 Can be used to quickly identify opportunities for speedup

135

Compilation Technology

SCINET Compiler Tutorial | Performance Programming | February 18, 2009 © 2009 IBM Corporation

Software Group

Example – SIMD Problems Reported

1586-535 (I) Loop (loop index 1) at d.c <line 9> was not SIMD vectorized because the aliasing-induced dependence
prevents SIMD vectorization.
1586-536 (I) Loop (loop index 1) at d.c <line 9> was not SIMD vectorized because it contains memory references with
non-vectorizable alignment.
1586-536 (I) Loop (loop index 1) at d.c <line 11> was not SIMD vectorized because it contains memory references
((char *)b + (4)*((@CIV0 + 1))) with non-vectorizable alignment.
1586-543 (I) <SIMD info> Total number of the innermost loops considered <"1">. Total number of the innermost loops
SIMD vectorized <"0">.

 5 | long main()
 {
 9 | @ICM.b0 = b;
 if (!1) goto lab_5;
 @CIV0 = 0;
 __prefetch_by_stream(1,((char *)@ICM.b0 + (0 - 128) + (4)*(@CIV0 + 2)))
 __iospace_lwsync()
 11 | @ICM.c1 = c;
 9 | do { /* id=1 guarded */ /* ~4 */
 /* region = 8 */
 /* bump-normalized */
 11 | @ICM.b0[@CIV0 + 1] = @ICM.b0[@CIV0 + 2] - @ICM.c1[@CIV0 - 1];
 9 | @CIV0 = @CIV0 + 1;
 } while ((unsigned) @CIV0 < 1024u); /* ~4 */
 lab_5:
 rstr = 0;
 14 | return rstr;
 } /* function */

extern int *b, *c;

int main()
{
 for (int i=0; i<1024; ++i)
 b[i+1] = b[i+2] - c[i-1];
}

136

Compilation Technology

SCINET Compiler Tutorial | Performance Programming | February 18, 2009 © 2009 IBM Corporation

Software Group

Example: Correcting SIMD Inhibitors
extern int * restrict b, * restrict c;

int main()
{
 /* __alignx(16, c); Not strictly required since compiler */
 /* __alignx(16, b); inserts runtime alignment check */

 for (int i=0; i<1024; ++i)
 b[i] = b[i] - c[i];
}

586-542 (I) Loop (loop index 1 with nest-level 0 and iteration count 1024) at d_good.c <line 9>
was SIMD vectorized.
1586-542 (I) Loop (loop index 2 with nest-level 0 and iteration count 1024) at d_good.c <line 9>
was SIMD vectorized.
1586-543 (I) <SIMD info> Total number of the innermost loops considered <"2">. Total number of the innermost loops
SIMD vectorized <"2">.

 7 | long main()
 {
 @ICM.b0 = b;
 @ICM.c1 = c;
 9 | @ICMB = (0 - 128);
 @ICM4 = (long) @ICM.c1 & 15;
 @CSE2 = (long) @ICM.b0;

 . . .

137

Compilation Technology

SCINET Compiler Tutorial | Performance Programming | February 18, 2009 © 2009 IBM Corporation

Software Group

Other Examples of SIMD Messages

 Loop was not SIMD vectorized because it contains operation which is not
suitable for SIMD vectorization.

 Loop was not SIMD vectorized because it contains function calls.

 Loop was not SIMD vectorized because it is not profitable to vectorize.

 Loop was not SIMD vectorized because it contains control flow.

 Loop was not SIMD vectorized because it contains unsupported vector data
types

 Loop was not SIMD vectorized because the floating point operation is not
vectorizable under -qstrict.

 Loop was not SIMD vectorized because it contains volatile reference

138

Compilation Technology

SCINET Compiler Tutorial | Performance Programming | February 18, 2009 © 2009 IBM Corporation

Software Group

Other SIMD Tuning

 Loop unrolling can interact with simdization
Manually-unrolled loops are more difficult to simdize

 Tell compiler not to simdize a loop if not profitable
#pragma nosimd (right before the innermost loop)

Useful when loop bounds are small and unknown at compile time

139

Compilation Technology

SCINET Compiler Tutorial | Performance Programming | February 18, 2009 © 2009 IBM Corporation

Software Group

Programming for POWER6

140

Compilation Technology

SCINET Compiler Tutorial | Performance Programming | February 18, 2009 © 2009 IBM Corporation

Software Group

Compiling for Power6

 New -qarch suboptions for Power6:
 -qarch=pwr6e - Generate all P6 instructions

 -qarch=pwr6 - Generate all except for raw-mode only instructions

 Some P6 instructions are only available when the P6 is in “raw
mode”

 mffgpr, mftgpr: move between float and integer registers

 Using -qarch=pwr6 will ensure that your binaries continue to run on
upcoming processors, while -qarch=pwr6e may provide additional
performance.

141

Compilation Technology

SCINET Compiler Tutorial | Performance Programming | February 18, 2009 © 2009 IBM Corporation

Software Group

Power5 / Power6 differences (summary)

 Power6 executes instructions in order

Helps to reach high clock rate, but more stalls
 Store Queue has to be managed to prevent load/store stalls

Careful arrangement of stores can get the bandwidth back in

some cases
 Power6 does not do store forwarding

High cost for store and reload
 Fixed point multiplies are done in the floating point unit

Extra cost can be mitigated by grouping them
 VMX and DFP unit available

142

Compilation Technology

SCINET Compiler Tutorial | Performance Programming | February 18, 2009 © 2009 IBM Corporation

Software Group

Power5 / Power6 differences (summary)

 Power6 executes instructions in order

Helps to reach high clock rate, but more stalls
 Store Queue has to be managed to prevent load/store stalls

Careful arrangement of stores can get the bandwidth back in

some cases
 Power6 does not do store forwarding

High cost for store and reload
 Fixed point multiplies are done in the floating point unit

Extra cost can be mitigated by grouping them
 VMX and DFP unit available

143

Compilation Technology

SCINET Compiler Tutorial | Performance Programming | February 18, 2009 © 2009 IBM Corporation

Software Group

Balanced Tuning (-qtune=balanced)

 This is a new compiler tuning target

 We try to balance the competing optimization priorities of Power5
and Power6

Insert special group ending NOP when required, on P5 this acts just like a

regular NOP

Have “loads only” and “stores only” groups when possible

Group fixed point multiplies together in a sequence

 This is available in a recent PTF of XLC/C++ V8.0 and XLF V10.1

 This tuning option becomes the default in XLC/C++ V9.0 and XLF
V11.1

144

Compilation Technology

SCINET Compiler Tutorial | Performance Programming | February 18, 2009 © 2009 IBM Corporation

Software Group

Prefetch Enhancements for P6

 Exploit the 16 streams available on Power6 (only 8 on P4/P5)
 Support new store stream prefetch

Compiler automatically determines when prefetch insertion is profitable

and inserts calls to prefetch stores

 Exploit both L1 and L2 touch instructions
Compiler automatically determines if data is more likely to be needed in

L1

or L2 and inserts the prefetch required.

 Exploit prefetch depth control
Try to fetch further ahead

Tricky to get right, may compete with immediately needed lines in L1

145

Compilation Technology

SCINET Compiler Tutorial | Performance Programming | February 18, 2009 © 2009 IBM Corporation

Software Group

Decimal Floating Point (DFP) Support

 The XLC/C++ V9 compilers and AIX 5.3 will support DFP.
Family of floating-point types where the fraction is decimal

digits instead of binary bits.

 New C/C++ data types, printf() format specifiers, etc.
_Decimal32 (7 digits)

_Decimal64 (16 digits)

_Decimal128 (34 digits)

 The V9 compilers on Linux will support DFP as a technical preview.
 Power6 supports DFP in hardware

Compiler supports DFP via hardware exploitation as well as with calls to

DFP software library.

 Full IEEE / C / C++ compliance (eg, complete math library, some
new IEEE features) will be provided later.

146

Compilation Technology

SCINET Compiler Tutorial | Performance Programming | February 18, 2009 © 2009 IBM Corporation

Software Group

DFP Support (cont.)

 New compile option -qdfp
Enable DFP types, literals and functions.

 -qfloat=[no]dfpemulate
Controls using hardware instructions or software emulation on PowerPCs.

Default is to use hardware on Power6, software on other models.

 Examples:
xlc foo.c -qdfp -qarch=pwr6 # uses hw instructions

xlc bar.c -qdfp -qarch=pwr5 # uses sw emulation

