
Compilation Technology

 Februrary 18, 2009 |  SCINET Compiler Tutorial © 2009 IBM Corporation

Software Group

Performance Programming 
with IBM pSeries Compilers 
and Libraries

Roch Archambault (archie@ca.ibm.com)

mailto:archie@ca.ibm.com


2

Compilation Technology

SCINET Compiler Tutorial  |  Performance Programming  |  February 18, 2009 © 2009 IBM Corporation

Software Group

Agenda

 Quick overview of compilers, libraries and tools
 Getting started

Installation, invocation
 Common compiler controls

Language levels, environment, checking
 Optimization controls

Optimization levels, target machine, profile feedback, link-time optimization
 Directives and pragmas
 The MASS Library

Content, usage, performance and accuracy
 Shared memory parallelism

Options, directives, environment
 Performance programming

What can my compiler do for me?

What can I do for my compiler?
 VMX exploitation
 Programming for POWER6
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Overview of Compilers, 
Libraries and Tools
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Roadmap of XL Compiler Releases

Dev Line

2007 2008 2009

All information subject to change without notice

V11.1 & V13.1 LNX 

V9.0 & V11.1 BG/P

V9.0 & V11.1 BG/L

SLES 10

SLES 9

 V9.0 for CELL

V11.1 & V13.1 AIX 

SLES 10 SLES 11

V11.1 for CELL

V10.1 & V12.1 AIX 

V10.1 & V12.1 LNX 

V10.1 for CELL

2010
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The System p Compiler Products: Previous Versions

 All POWER4, POWER5, POWER5+ and PPC970 enabled

XL C/C++ Enterprise Edition V8.0 for AIX

XL Fortran Enterprise Edition V10.1 for AIX

XL C/C++ Advanced Edition V8.0 for Linux (SLES 9 & RHEL4)

XL Fortran Advanced Edition V10.1 for Linux (SLES 9 & RHEL4)

XL C/C++ Advanced Edition V8.0.1 for Linux (SLES 10 & RHEL4)

XL Fortran Advanced Edition V10.1.1 for Linux (SLES 10 & RHEL4)

XL C/C++ Enterprise Edition for AIX, V9.0 (POWER6 enabled)

XL Fortran Enterprise Edition for AIX, V11.1  (POWER6 enabled)

XL C/C++ Advanced Edition for Linux, V9.0 (POWER6 enabled)

XL Fortran Advanced Edition for Linux, V11.1 (POWER6 enabled)
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The System p Compiler Products: Latest Versions

 All POWER4, POWER5, POWER5+ and PPC970 enabled
XL C/C++ Enterprise Edition for AIX, V10.1 (July 2008)

XL Fortran Enterprise Edition for AIX, V12.1 (July 2008)

XL C/C++ Advanced Edition for Linux, V10.1 (September 2008)

XL Fortran Advanced Edition for Linux, V12.1 (September 2008)

 Blue Gene (BG/L and BG/P) enabled
XL C/C++ Advanced Edition for BG/L, V9.0

XL Fortran Advanced Edition for BG/L, V11.1 

XL C/C++ Advanced Edition for BG/P, V9.0  

XL Fortran Advanced Edition for BG/P, V11.1

 Cell/B.E. cross compiler products:
XL C/C++ for Multicore Acceleration for Linux on System p, V9.0

XL C/C++ for Multicore Acceleration for Linux on x86 Systems, V9.0

XL Fortran for Multicore Acceleration for Linux on System p, V11.1
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The System p Compiler Products: Latest Versions

 Technology Preview currently available from alphaWorks

XL UPC language support on AIX and Linux

        Download: http://www.alphaworks.ibm.com/tech/upccompiler

XL C/C++ for Transactional Memory for AIX

Download: http://www.alphaworks.ibm.com/tech/xlcstm
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The System p Compiler Products: Future Versions

 Cell/B.E. cross compilers: 
XL C/C++ for Multicore Acceleration for Linux on System p, V10.1 (4Q2008)

XL C/C++ for Multicore Acceleration for Linux on x86 Systems, V10.1 (4Q2008)

 POWER7 support 
XL C/C++ Enterprise Edition for AIX, V11.1 (approx. 2010)

XL Fortran Enterprise Edition for AIX, V13.1 (approx 2010)

XL C/C++ Advanced Edition for Linux, V11.1 (approx 2010)

XL Fortran Advanced Edition for Linux, V13.1 (approx 2010)

All information subject to change without notice
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Common Fortran, C and C++ Features

 Linux (SLES and RHEL) and AIX, 32 and 64 bit
 Debug support

Debuggers on AIX:

Total View (TotalView Technologies), DDT (Allinea), IBM Debugger and DBX

Debuggers on Linux:

TotalView, DDT and GDB 
 Full support for debugging of OpenMP programs (TotalView)
 Snapshot directive for debugging optimized code
 Portfolio of optimizing transformations

Instruction path length reduction

Whole program analysis

Loop optimization for parallelism, locality and instruction scheduling

Use profile directed feedback (PDF) in most optimizations

 Tuned performance on POWER3, POWER4, POWER5, PPC970, PPC440, 
POWER6  and CELL systems

 Optimized OpenMP 



10

Compilation Technology

SCINET Compiler Tutorial  |  Performance Programming  |  February 18, 2009 © 2009 IBM Corporation

Software Group

TPOTPO

IPA IPA 
ObjectsObjects

Other Other 
ObjectsObjects

System System 
LinkerLinker

Optimized Optimized 
ObjectsObjects

EXE

DLL
PartitionsPartitions

TOBEYTOBEY

C FEC FE C++ FEC++ FE FORTRAN FORTRAN 
FEFECompile Step

Optimization

LibrariesLibraries

PDF infoPDF info

Link Step
Optimization
  O4 and O5

Wcode+

Wcode

Wcode+

Instrumented
runs

Wcode
Wcode

Wcode

Wcode

IBM XL Compiler Architecture 

  noopt and O2
  O3, O4 and O5
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XL Fortran Roadmap:  Strategic Priorities

 Superior Customer Service
Continue to work closely with key ISVs and customers in scientific and technical 

computing industries

 Compliance to Language Standards and Industry Specifications
OpenMP API V2.5

Fortran 77, 90 and 95 standards

Fortran 2003 Standard

 Exploitation of Hardware
Committed to maximum performance on POWER4, PPC970, POWER5, 

POWER6, PPC440, PPC450, CELL and successors

Continue to work very closely with processor design teams
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XL Fortran Version 12.1 for AIX/Linux – Summer/Fall 2008

New features since XL Fortran Version 10.1:
Continued rollout of Fortran 2003

Compliant to OpenMP V2.5

Perform subset of loop transformations at –O3 optimization level

Tuned BLAS  routines (DGEMM and DGEMV) are included in compiler runtime 
(libxlopt)

Recognize matrix multiply and replace with call to DGEMM

Runtime check for availability of ESSL

Support for auto-simdization and VMX intrinsics (and data types) on AIX

Inline MASS library functions (math functions)

Asdasd
Partial support for OpenMP V3.0

Fine grain control for –qstrict option

Improved compile/link time

More Interprocedural data reorganization optimizations
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XL C/C++ Roadmap:  Strategic Priorities

 Superior Customer Service
 Compliance to Language Standards and Industry Specifications

ANSI / ISO C and C++ Standards

OpenMP API V3.0

 Exploitation of Hardware
Committed to maximum performance on POWER4, PPC970, POWER5, PPC440, 

POWER6, PPC450, CELL and successors

Continue to work very closely with processor design teams

 Exploitation of OS and Middleware
Synergies with operating system and middleware ISVs (performance, specialized 

function)

Committed to AIX Linux affinity strategy and to Linux on pSeries

 Reduced Emphasis on Proprietary Tooling
Affinity with GNU toolchain



14

Compilation Technology

SCINET Compiler Tutorial  |  Performance Programming  |  February 18, 2009 © 2009 IBM Corporation

Software Group

XL C/C++ Version 10.1 for AIX/Linux – Summer/Fall 2008

New features since XL C/C++ Version 8.0:
Exploit “restrict” keyword in C 1999

Partial compliance to C++ TR1 libraries and Boost 1.34.0 

Support for -qtemplatedepth which allows the user to control number of 
recursive template instantiations allowed by the compiler.

Exploit DFP and VMX on Power6.

Improved inline assembler support

Full support for OpenMP V3.0

Fine grain control for –qstrict option

Improved compile/link time

More Interprocedural data reorganization optimizations
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MASS (Math Acceleration SubSystem)

 Fast elementary functions 
 Scalar and vector forms
 Tradeoff between accuracy and performance different than libm or 

compiler generated code
Accuracy differences small and usually tolerable 

Vector function results does not depend on vector length

 Exceptions not always reported correctly
Some exceptions masked, some spuriously reported

 MASS functions assume round to nearest mode
 More later on performance and accuracy
 Included with XL Fortran V9.1 and XL C/C++ V7.0 compilers and 

subsequent releases
 More info: http://www.ibm.com/software/awdtools/mass/
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ESSL (Engineering & Scientific Subroutine Library)

 Over 400 high-performance subroutines specifically tuned for 
pSeries and POWER4

 Parallel ESSL has over 100 high-performance subroutines designed 
for SP systems up to 512 nodes

 BLAS, ScaLAPACK and PBLAS compatibility
 Linear Algebraic Equations, Eigensystem Analysis, Fourier 

Transforms, Random Numbers
 More info:

http://www.ibm.com/servers/eserver/pseries/library/sp_books/essl.html
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Getting Started
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Compiler commands

 The command used to invoke the compiler implies a predefined set 
of compiler options

 These can be controlled using the configuration file (default 
is /etc/xlf.cfg but you can write your own)

 Examples:
xlf –c a.f -g

Compiles F77 source in a.f and generates debugging information

xlf90 –c –O2 b.f –qsuffix=f=f90 c.f90

Compiles F90 source in b.f and c.f90 with optimization level 2

xlf95_r -c d.f –qsmp 

Compiles F95 source in d.f for SMP (compiler and libraries assume 
threaded code)
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Example Configuration File Stanza

xlf95:    use        = DEFLT
          libraries  = -lxlf90,-lxlopt,-lxlf,-lxlomp_ser,-lm,-lc
          proflibs   = -L/lib/profiled,-L/usr/lib/profiled
          options    = -qfree=f90

Compiler
command

Components
to use

Libraries 
to link

Libraries 
to link when
profiling

Extra compile
options
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Installation of Multiple Compiler Versions

 Installation of multiple compiler versions is supported
 The vacppndi and xlfndi scripts shipped with VisualAge C++ 6.0 and 

XL Fortran 8.1 and all subsequent releases allow the installation of 
a given compiler release or update into a non-default directory 

 The configuration file can be used to direct compilation to a specific 
version of the compiler

Example:  xlf_v8r1 –c foo.f

May direct compilation to use components in a non-default 
directory

 Care must be taken when multiple runtimes are installed on the 
same machine (details on next slide)
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Coexistence of Multiple Compiler Runtimes

 Backward compatibility
C, C++ and Fortran runtimes support backward compatibility.  

Executables generated by an earlier release of a compiler will work with a later 
version of the run-time environment.  

 Concurrent installation
Multiple versions of a compiler and runtime environment can be installed on the 

same machine

Full support in xlfndi and vacppndi scripts is now available
 Limited support for coexistence

LIBPATH must be used to ensure that a compatible runtime version is used with a 
given executable

Only one runtime version can be used in a given process.

Renaming a compiler library is not allowed.

Take care in statically linking compiler libraries or in the use of dlopen or load . 

Details in the compiler FAQ 
http://www.ibm.com/software/awdtools/fortran/xlfortran/support/

     http://www.ibm.com/software/awdtools/xlcpp/support/
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Common Compiler 
Controls
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Controlling Language Level:  Fortran

 Compiler invocations for standard compliant compilations
xlf or f77:  Fortran 77

xlf90:  Fortran 90

xlf95:  Fortran 95

xlf2003:  Fortran 2003

 Finer control through -qlanglvl, -qxlf77 and –qxlf90 options
Slight tweaks to I/O behaviour

Intrinsic function behaviour

-qlanglvl can be used for additional diagnostics

 Non-standard language variations
-qautodbl to promote real types

-qintsize and -qrealsize to set default integer and real size

-qport for various extensions from other vendors

New!
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Controlling Language Level:  C/C++

 Compiler invocations for standard compliant compilations
cc:  “traditional” K&R C

xlc or c89:  ANSI89 standard C

xlC:  ANSI98 standard C++

c99:  ANSI99 standard C

gxlc:  “gcc-like” command line 

gxlC: “g++-like” command line

 Finer control through -qlanglvl
strict conformance checking

lots of C++ language variations

gcc compatibility control

 Non-standard language variations
-qansialias, -qchars, -qcpluscmt, -qdollar, -qkeepinlines, -qkeyword, -qrtti
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Common Environment Variables

 TMPDIR
Redirect temporary disk storage used by the compiler

 OBJECT_MODE
OBJECT_MODE=32 or OBJECT_MODE=64 supported

 LANG
Specifies language to use for messages

 NLSPATH
Specified search path for messages – useful in non-default installations

 XLFRTEOPTS
Tweak Fortran runtime behaviour

 XLSMPOPTS
Tweak SMP runtime behaviour
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Program Checking

 -qcheck
In Fortran, does bounds checking on array references, array sections and 

character substrings

In C/C++, checks for NULL pointers, for divide by zero and for array 
indices out of bounds

 -qextchk, -btypchk
Generates type hash codes so that the AIX linker can check type 

consistency across files (also done by -qipa)

 -qinitauto
Generates extra code to initialize stack storage

Can be done bytewise or wordwise
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Program Behaviour Options (-qstrict)

 -q[no]strict
Default is -qstrict with -qnoopt and -O2, -qnostrict with -O3, -O4, -O5

-qnostrict allows the compiler to reorder floating point calculations and 
potentially excepting instructions

Use -qstrict when your computation legitimately involves NaN, INF or 
denormalized values

Use -qstrict when exact compatibility is required with another IEEE 
compliant system

Note that -qstrict disables many potent optimizations so use it only when 
necessary and consider applying it at a file or even function level to 
limit the negative impact
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Program Behaviour Options (Aliasing)

 -qalias (Fortran)
Specified as -qalias=[no]std:[no]aryovrlp:others

Allows the compiler to assume that certain variables do not refer to 
overlapping storage

std (default) refers to the rule about storage association of reference 
parameters with each other and globals

aryovrlp (default) defines whether there are any assignments between 
storage-associated arrays - try -qalias=noaryovrlp for better 
performance your Fortran 90 code has no storage associated 
assignments
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Program Behaviour Options (Aliasing)

 -qalias (C, C++)
Similar to Fortran option of the same name but focussed on overlap of 

storage accessed using pointers

Specified as -qalias=subopt where subopt is one of:

[no]ansi:  Enable ANSI standard type-based alias rules (ansi is default 
when using "xlc", noansi is default when using "cc")

[no]typeptr:  Assume pointers to different types never point to the same or 
overlapping storage - use if your pointer usage follows strict type rules

[no]allptrs:  Assume that different pointer variables always point to non-
overlapping storage - use only in selected situations where pointers 
never overlap

[no]addrtaken:  Assume that external variables do not have their address 
taken outside the source file being compiled
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Why the big fuss about aliasing?

 The precision of compiler analyses is gated in large part by the 
apparent effects of direct or indirect memory writes and the apparent 
presence of direct or indirect memory reads.

 Memory can be referenced directly through a named symbol, 
indirectly through a pointer or reference parameter, or indirectly 
through a function call.

 Many apparent references to memory are false and these constitute 
barriers to compiler analysis.

 The compiler does analysis of possible aliases at all optimization 
levels but analysis of these apparent references is best when using -
qipa since it can see through most calls.

 Options such as -qalias and directives such as disjoint, isolated_call, 
CNCALL, PERMUTATION and INDEPENDENT can have pervasive 
effect since they fundamentally improve the precision of compiler 
analysis. 
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Floating Point Control (-qfloat)

 Precise control over the handling of floating point calculations
 Defaults are almost IEEE 754 compliant
 Specified as -qfloat=subopt where subopt is one of:

[no]fold:  enable compile time evaluation of floating point calculations - 
may want to disable for handling of certain exceptions (eg. overflow, 
inexact)

[no]maf:  enable generation of multiple-add type instructions - may want to 
disable for exact compatibility with other machines but this will come at 
a high price in performance

[no]rrm:  specifies that rounding mode may not be round-to-nearest 
(default is norrm) or may change across calls

[no]rsqrt:  allow computation of a divide by square root to be replaced by a 
multiply of the reciprocal square root
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Floating Point Control (-qfloat)

 New –qfloat suboptions added in XL Fortran V11.1 and XL C/C++ V9.0

[no]fenv:           asserts that FPSCR may be accessed (default is nofenv)

[no]hscmplx      better performance for complex divide/abs (defaults is nohscmplx)

[no]single         does not generate single precision float operations (default is single)

[no]rngchk        does not generate range check for software divide (default is rngchk)

New!

 -qxlf90=nosignedzero now the default when –qnostrict 
improves max/min performance by generating fsel instruction instead     
of branch sequenceNew!
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Floating Point Trapping (-qflttrap)

 Enables software checking of IEEE floating point exceptions
 Usually more efficient than hardware checking since checks can be 

executed less frequently
 Specified as -qflttrap=imprecise | enable | ieee_exceptions

-qflttrap=imprecise: check for error conditions at procedure entry/exit, 
otherwise check after any potentially excepting instruction

-qflttrap=enable: enables generation of checking code, also enables 
exceptions in hardware

-qflttrap=overflow:underflow:zerodivide:inexact:  check given conditions

 In the event of an error, SIGTRAP is raised
As a convenience the -qsigtrap option will install a default handler which 

dumps a stack trace at the point of error (Fortran only)
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Optimization Controls
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Optimization Levels

-O2 -O3 -O4 -O5-qnoopt

Fast compile

Full debug support

More extensive optimization

Some precision tradeoffs

Low level optimization

Partial debug support

Interprocedural optimization

Loop optimization

Automatic machine tuning

-O3 -qipa=level=1 –qarch=auto

-O3 –qipa=level=2 –qarch=auto
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Example:  Matrix Multiply

DO I = 1, N1
  DO J = 1, N3
    DO K = 1, N2
      C(I,J) = C(I,J) + A(K,I) * B(J,K)
    END DO
  END DO
END DO
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Matrix Multiply inner loop code with -qnoopt

__L1:
   lwz    r3,160(SP)
   lwz    r9,STATIC_BSS
   lwz    r4,24(r9)
   subfi  r5,r4,-8
   lwz    r11,40(r9)
   mullw  r6,r4,r11
   lwz    r4,36(r9)
   rlwinm r4,r4,3,0,28
   add    r7,r5,r6
   add    r7,r4,r7
   lfdx   fp1,r3,r7
   lwz    r7,152(SP)
   lwz    r12,0(r9)
   subfi  r10,r12,-8
   lwz    r8,44(r9)
   mullw  r12,r12,r8
   add    r10,r10,r12
   add    r10,r4,r10
   lfdx   fp2,r7,r10

     lwz    r7,156(SP)
   lwz    r10,12(r9)
   subfi  r9,r10,-8
   mullw  r10,r10,r11
   rlwinm r8,r8,3,0,28
   add    r9,r9,r10
   add    r8,r8,r9
   lfdx   fp3,r7,r8
   fmadd  fp1,fp2,fp3,fp1
   add    r5,r5,r6
   add    r4,r4,r5
   stfdx  fp1,r3,r4
   lwz    r4,STATIC_BSS  
   lwz    r3,44(r4)
   addi   r3,1(r3)
   stw    r3,44(r4)
   lwz    r3,112(SP)
   addic. r3,r3,-1
   stw    r3,112(SP)
   bgt    __L1

38 instructions, 31.4 cycles per iteration
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Matrix Multiply inner loop code with -qnoopt

__L1:
   lwz    r3,160(SP)
   lwz    r9,STATIC_BSS
   lwz    r4,24(r9)
   subfi  r5,r4,-8
   lwz    r11,40(r9)
   mullw  r6,r4,r11
   lwz    r4,36(r9)
   rlwinm r4,r4,3,0,28
   add    r7,r5,r6
   add    r7,r4,r7
   lfdx   fp1,r3,r7
   lwz    r7,152(SP)
   lwz    r12,0(r9)
   subfi  r10,r12,-8
   lwz    r8,44(r9)
   mullw  r12,r12,r8
   add    r10,r10,r12
   add    r10,r4,r10
   lfdx   fp2,r7,r10

     lwz    r7,156(SP)
   lwz    r10,12(r9)
   subfi  r9,r10,-8
   mullw  r10,r10,r11
   rlwinm r8,r8,3,0,28
   add    r9,r9,r10
   add    r8,r8,r9
   lfdx   fp3,r7,r8
   fmadd  fp1,fp2,fp3,fp1
   add    r5,r5,r6
   add    r4,r4,r5
   stfdx  fp1,r3,r4
   lwz    r4,STATIC_BSS  
   lwz    r3,44(r4)
   addi   r3,1(r3)
   stw    r3,44(r4)
   lwz    r3,112(SP)
   addic. r3,r3,-1
   stw    r3,112(SP)
   bgt    __L1

necessary instructions
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Matrix Multiply inner loop code with -qnoopt

__L1:
   lwz    r3,160(SP)
   lwz    r9,STATIC_BSS
   lwz    r4,24(r9)
   subfi  r5,r4,-8
   lwz    r11,40(r9)
   mullw  r6,r4,r11
   lwz    r4,36(r9)
   rlwinm r4,r4,3,0,28
   add    r7,r5,r6
   add    r7,r4,r7
   lfdx   fp1,r3,r7
   lwz    r7,152(SP)
   lwz    r12,0(r9)
   subfi  r10,r12,-8
   lwz    r8,44(r9)
   mullw  r12,r12,r8
   add    r10,r10,r12
   add    r10,r4,r10
   lfdx   fp2,r7,r10

     lwz    r7,156(SP)
   lwz    r10,12(r9)
   subfi  r9,r10,-8
   mullw  r10,r10,r11
   rlwinm r8,r8,3,0,28
   add    r9,r9,r10
   add    r8,r8,r9
   lfdx   fp3,r7,r8
   fmadd  fp1,fp2,fp3,fp1
   add    r5,r5,r6
   add    r4,r4,r5
   stfdx  fp1,r3,r4
   lwz    r4,STATIC_BSS  
   lwz    r3,44(r4)
   addi   r3,1(r3)
   stw    r3,44(r4)
   lwz    r3,112(SP)
   addic. r3,r3,-1
   stw    r3,112(SP)
   bgt    __L1

necessary instructions loop control
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Matrix Multiply inner loop code with -qnoopt

__L1:
   lwz    r3,160(SP)
   lwz    r9,STATIC_BSS
   lwz    r4,24(r9)
   subfi  r5,r4,-8
   lwz    r11,40(r9)
   mullw  r6,r4,r11
   lwz    r4,36(r9)
   rlwinm r4,r4,3,0,28
   add    r7,r5,r6
   add    r7,r4,r7
   lfdx   fp1,r3,r7
   lwz    r7,152(SP)
   lwz    r12,0(r9)
   subfi  r10,r12,-8
   lwz    r8,44(r9)
   mullw  r12,r12,r8
   add    r10,r10,r12
   add    r10,r4,r10
   lfdx   fp2,r7,r10

     lwz    r7,156(SP)
   lwz    r10,12(r9)
   subfi  r9,r10,-8
   mullw  r10,r10,r11
   rlwinm r8,r8,3,0,28
   add    r9,r9,r10
   add    r8,r8,r9
   lfdx   fp3,r7,r8
   fmadd  fp1,fp2,fp3,fp1
   add    r5,r5,r6
   add    r4,r4,r5
   stfdx  fp1,r3,r4
   lwz    r4,STATIC_BSS  
   lwz    r3,44(r4)
   addi   r3,1(r3)
   stw    r3,44(r4)
   lwz    r3,112(SP)
   addic. r3,r3,-1
   stw    r3,112(SP)
   bgt    __L1

necessary instructions loop control addressing code
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Optimization Level –O2 (same as –O)

 Comprehensive low-level optimization
Global assignment of user variables to registers

Strength reduction and effective usage of addressing modes

Elimination of unused or redundant code

Movement of invariant code out of loops

Scheduling of instructions for the target machine

Some loop unrolling and pipelining
 Partial support for debugging

Externals and parameter registers visible at procedure boundaries

Snapshot pragma/directive creates additional program points for storage 
visibility

-qkeepparm option forces parameters to memory on entry so that they can 
be visible in a stack trace
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Matrix Multiply Inner Loop with –O2

   lfdux  fp0,r12,r8
__L1:
   lfdux  fp1,r31,r7
   lfdu   fp2,8(r30)
   fmadd  fp0,fp1,fp2,fp0
   bdnz   __L1
   stfd   fp0,0(r12)

load/store of "C" 
moved out of loop

strength reduction
update-form loads

hardware assisted
loop control

3 instructions, 3.1 cycles per iteration
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Matrix Multiply Inner Loop with –O2 –qtune=pwr4

      lfdux   fp2,r31,r7
   lfdu    fp1,8(r30)
   bdz     __L2
__L1:
   fmadd   fp0,fp2,fp1,fp0
   lfdux   fp2,r31,r7
   lfdu    fp1,8(r30)
   bdnz    __L1
__L2:
   fmadd   fp0,fp2,fp1,fp0

pipelined
execution
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Optimization Level –O3

 More extensive optimization
Deeper inner loop unrolling

Loop nest optimizations such as unroll-and-jam and interchange (-qhot subset)

Better loop scheduling

Additional optimizations allowed by -qnostrict

Widened optimization scope (typically whole procedure)

No implicit memory usage limits (-qmaxmem=-1)

 Some precision tradeoffs
Reordering of floating point computations

Reordering or elimination of possible exceptions (eg. divide by zero, overflow)

New!
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Matrix Multiply inner loop code with -O3 -qtune=pwr4

__L1:
   fmadd  fp6,fp12,fp13,fp6
   lfdux  fp12,r12,r7
   lfd    fp13,8(r11)
   fmadd  fp7,fp8,fp9,fp7
   lfdux  fp8,r12,r7
   lfd    fp9,16(r11)
   lfdux  fp10,r12,r7
   lfd    fp11,24(r11)
   fmadd  fp1,fp12,fp13,fp1
   lfdux  fp12,r12,r7
   lfd    fp13,32(r11)
   fmadd  fp0,fp8,fp9,fp0
   lfdux  fp8,r12,r7
   lfd    fp9,40(r11)
   fmadd  fp2,fp10,fp11,fp2
   lfdux  fp10,r12,r7
   lfd    fp11,48(r11)
   fmadd  fp4,fp12,fp13,fp4
   lfdux  fp12,r12,r7
   lfd    fp13,56(r11)
   fmadd  fp3,fp8,fp9,fp3
   lfdux  fp8,r12,r7
   lfdu   fp9,64(r11)
   fmadd  fp5,fp10,fp11,fp5
   bdnz   __L1

unrolled by 8

dot product accumulated in
8 interleaved parts (fp0-fp7)
(combined after loop)

3 instructions, 1.6 cycles per iteration
2 loads and 1 fmadd per iteration
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Tips for getting the most out of –O2 and –O3

 If possible, test and debug your code without optimization before using -O2
 Ensure that your code is standard-compliant.  Optimizers are the ultimate 

conformance test!
 In Fortran code, ensure that subroutine parameters comply with aliasing 

rules
 In C code, ensure that pointer use follows type restrictions (generic pointers 

should be char* or void*)
 Ensure all shared variables and pointers to same are marked volatile
 Compile as much of your code as possible with -O2.  
 If you encounter problems with -O2, consider using -qalias=noansi or 

-qalias=nostd rather than turning off optimization.
 Next, use -O3 on as much code as possible.  
 If you encounter problems or performance degradations, consider using –

qstrict, -qcompact, or -qnohot along with -O3 where necessary.
 If you still have problems with -O3, switch to -O2 for a subset of 

files/subroutines but consider using -qmaxmem=-1 and/or -qnostrict.

New!
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High Order Transformations (-qhot)

 Supported for all languages
 Specified as -qhot[=[no]vector | arraypad[=n] | [no]simd]
 Optimized handling of F90 array language constructs (elimination of 

temporaries, fusion of statements)
 High level transformation (eg. interchange, fusion, unrolling) of loop nests to 

optimize:
memory locality (reduce cache/TLB misses)

usage of hardware prefetch

loop computation balance (typically ld/st vs. float)
 Optionally transforms loops to exploit MASS vector library (eg. reciprocal, 

sqrt, trig) - may result in slightly different rounding
 Optionally introduces array padding under user control - potentially unsafe if 

not applied uniformly
 Optionally transforms loops to exploit VMX unit when –qarch=ppc970 or        

–qarch=pwr6New!
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Matrix multiply inner loop code with -O3 -qhot -qtune=pwr4
__L1:
   fmadd   fp1,fp4,fp2,fp1
   fmadd   fp0,fp3,fp5,fp0
   lfdux   fp2,r29,r9
   lfdu    fp4,32(r30)
   fmadd   fp10,fp7,fp28,fp10
   fmadd   fp7,fp9,fp7,fp8
   lfdux   fp26,r27,r9
   lfd     fp25,8(r29)
   fmadd   fp31,fp30,fp27,fp31
   fmadd   fp6,fp11,fp30,fp6
   lfd     fp5,8(r27)
   lfd     fp8,16(r28)
   fmadd   fp30,fp4,fp28,fp29
   fmadd   fp12,fp13,fp11,fp12
   lfd     fp3,8(r30)
   lfd     fp11,8(r28)
   fmadd   fp1,fp4,fp9,fp1
   fmadd   fp0,fp13,fp27,fp0
   lfd     fp4,16(r30)
   lfd     fp13,24(r30)
   fmadd   fp10,fp8,fp25,fp10
   fmadd   fp8,fp2,fp8,fp7
   lfdux   fp9,r29,r9
   lfdu    fp7,32(r28)
   fmadd   fp31,fp11,fp5,fp31
   fmadd   fp6,fp26,fp11,fp6
   lfdux   fp11,r27,r9
   lfd     fp28,8(r29)
   fmadd   fp12,fp3,fp26,fp12
   fmadd   fp29,fp4,fp25,fp30
   lfd     fp30,-8(r28)
   lfd     fp27,8(r27)
   bdnz    __L1

unroll-and-jam 2x2
inner unroll by 4
interchange "i" and "j" loops

2 instructions, 1.0 cycles per 
iteration
balanced: 1 load and 1 fmadd 
per iteration
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With XLF V9.1 (-O3 -qhot –qarch=pwr4)

__L1:  
   fmadd      fp15=fp10,fp6,fp3
   fmadd      fp9=fp9,fp5,fp3
   lfd            fp10=@TILEA0(gr27,-6168)
   addi         gr27=gr27,16
   fmadd      fp11=fp11,fp8,fp3
   fmadd      fp16=fp12,fp7,fp3
   lfd            fp24=a[](gr26,-23992)
   lfd            fp23=a[](gr26,-15992)
   fmadd      fp31=fp31,fp6,fp4
   fmadd      fp3=fp13,fp5,fp4
   lfd            fp22=a[](gr26,-7992)
   lfd            fp21=a[](gr26,8)
   fmadd      fp30=fp30,fp8,fp4
   fmadd      fp29=fp29,fp7,fp4
   lfd            fp12=@TILEA0(gr27,-4120)
   fmadd      fp17=fp27,fp6,fp19
   fmadd      fp28=fp28,fp5,fp19
   fmadd      fp25=fp25,fp8,fp19
   fmadd      fp4=fp26,fp7,fp19
   lfd            fp27=@TILEA0(gr27,-2056)
   fmadd      fp18=fp2,fp10,fp24
   fmadd      fp1=fp1,fp10,fp23
   fmadd      fp0=fp0,fp10,fp21
   fmadd      fp20=fp20,fp10,fp22
   lfd            fp2=@TILEA0(gr27,8)
   addi         gr26=gr26,16
   fmadd      fp9=fp9,fp24,fp12
   fmadd      fp10=fp15,fp23,fp12

  lfd            fp19=@TILEA0(gr27,-6176)
   fmadd      fp11=fp11,fp21,fp12
   lfd            fp5=a[](gr26,-24000)
   lfd            fp6=a[](gr26,-16000)
   fmadd      fp12=fp16,fp22,fp12
   fmadd      fp13=fp3,fp24,fp27
   fmadd      fp31=fp31,fp23,fp27
   lfd            fp7=a[](gr26,-8000)
   lfd            fp8=a[](gr26,0)
   fmadd      fp30=fp30,fp21,fp27
   fmadd      fp29=fp29,fp22,fp27
   lfd            fp3=@TILEA0(gr27,-4112)
   fmadd      fp28=fp28,fp24,fp2
   fmadd      fp27=fp17,fp23,fp2
   fmadd      fp25=fp25,fp21,fp2
   fmadd      fp26=fp4,fp22,fp2
   lfd            fp4=@TILEA0(gr27,-2048)
   fmadd      fp1=fp1,fp19,fp6
   fmadd      fp2=fp18,fp19,fp5
   fmadd      fp0=fp0,fp19,fp8
   fmadd      fp20=fp20,fp19,fp7
   lfd            fp19=@TILEA0(gr27,16)
   bndz        __L1

Unroll-and-Jam 4x4

Inner unroll by 2

Interchange “i” and “j” loops

Tile “i” and “j” loops

Transpose blocks of b array

32 iterations in 20 cycles
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Matmul Idiom Recognition

 In V8/10.1, we shipped some matmul functions in libxlopt
Users could insert explicit calls to these routines in their code

The libxlopt versions would automatically call the equivalent ESSL 
functions if ESSL was installed on the system.

 In V9/11.1, the compiler recognizes some limited loop nest patterns 
as matrix multiplies and automatically generates calls to matmul 
functions in libxlopt or ESSL.

sgemm, dgemm

 The loop nest can be interchanged in any order, example next slide

New!
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Matmul Idiom Recognition (cont.)

 subroutine foo(M,N,L,A,B,C,D)
  
    ...
    do i=1,M
      do j=1,N
        do k=1,L
           C(i,j) = C(i,j) + A(i,k)*B(k,j)
       end do
      end do
    end do

    do i=1,M
      do k=1,L
       do j=1,N
          D(i,j) = D(i,j) + A(i,k)*B(k,j)
       end do
      end do
    end do

    return
    end

.foo: 
        mfspr   r0,LR
        stfd    fp31,-8(SP)
        stfd    fp30,-16(SP)
        st      r31,-20(SP)
        ....
        lfs     fp31,0(r11)
        stfd    fp31,136(SP)
        stfd    fp31,144(SP)
        bl      .dgemm{PR}
        ....
        st      r26,68(SP)
        st      r0,72(SP)
        l       r9,172(SP)
        bl      .dgemm{PR}
        oril    r0,r0,0x0000
        l       r12,248(SP)
        lfd     fp31,232(SP)
        ...
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Tips for getting the most out of -qhot

 Try using -qhot along with -O2 or -O3 for all of your code.  It is designed to 
have neutral effect when no opportunities exist.

 If you encounter unacceptably long compile times (this can happen with 
complex loop nests) or if your performance degrades with the use of -qhot, 
try using -qhot=novector, or -qstrict or -qcompact along with -qhot.

 If necessary, deactivate -qhot selectively, allowing it to improve some of your 
code.

 Read the transformation report generated using –qreport. If your hot loops 
are not transformed as you expect, try using assertive directives such as 
INDEPENDENT or CNCALL or prescriptive directives such as UNROLL or 
PREFETCH.

 When –qarch=ppc970, the default with –qhot is to perform SIMD-
vectorization. You can specify –qhot=nosimd to disable SIMD-vectorization

 New with Fortran V10.1 and C/C++ V8.0:
 support –qhot=level=x where x is 0 or 1. Default is –qhot=level=1 when –qhot is 

specified.

-qhot=level=0 is the default when –O3 is specified.
New!
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Link-time Optimization (-qipa)

 Supported for all languages
 Can be specified on the compile step only or on both compile and 

link steps ("whole program" mode)
 Whole program mode expands the scope of optimization to an entire 

program unit (executable or shared object)
 Specified as -qipa[=level=n | inline= | fine tuning] 

level=0: Program partitioning and simple interprocedural optimization

level=1: Inlining and global data mapping

level=2: Global alias analysis, specialization, interprocedural data flow

inline=: Precise user control of inlining 

fine tuning: Specify library code behaviour, tune program partitioning, read 
commands from a file
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Tips for getting the most out of -qipa

 When specifying optimization options in a makefile, remember to 
use the compiler driver (cc, xlf, etc) to link and repeat all options on 
the link step:

LD = xlf

OPT = -O3 -qipa

FFLAGS=...$(OPT)...

LDFLAGS=...$(OPT)...

 -qipa works when building executables or shared objects but always 
compile 'main' and exported functions with -qipa.

 It is not necessary to compile everything with -qipa but try to apply it 
to as much of your program as possible.
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More -qipa tips

 When compiling and linking separately, use -qipa=noobject on the 
compile step for faster compilation.

 Ensure there is enough space in /tmp (at least 200MB) or use the 
TMPDIR variable to specify a different directory.

 The "level" suboption is a throttle.  Try varying the "level" suboption 
if link time is too long.  -qipa=level=0 can be very beneficial for little 
cost.

 Look at the generated code.  If too few or too many functions are 
inlined, consider using -qipa=[no]inline
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Target Machines

 -qarch
Specifies the target machine or machine family on which the generated program is 

expected to run successfully

-qarch=ppc targets any PowerPC (default with XLF V11.1)

-qarch=pwr4 targets POWER4 specifically

-qarch=auto targets the same type of machine as the compiling machine
 -qtune

Specifies the target machine on which the generated code should run best

Orthogonal to –qarch setting but some combinations not allowed

-qtune=pwr4 tunes generated code for POWER4 machines

-qtune=auto tunes generated code to run well on machines similar to the compiling 
machine

-qtune=balanced tunes generated code to run well on POWER5 and POWER6

(Default with XLF V11.1)New!
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Getting the most out of target machine options

 Try to specify with -qarch the smallest family of machines possible 
that will be expected to run your code correctly.

-qarch=ppc is better if you don't need to run on Power or Power2 but this 
will inhibit generation of sqrt or fsel, for example

-qarch=ppcgr is a bit better, since it allows generation of fsel but still no 
sqrt

To get sqrt, you will need -qarch=pwr3.  This will also generate correct 
code for Power 4.

 Try to specify with -qtune the machine where performance should be 
best.  

If you are not sure, try -qtune=balanced.  This will generate code that 
should generally run well on most machines.
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The –O4 and –O5 Options

 Optimization levels 4 and 5 automatically activate several other 
optimization options as a package

 Optimization level 4 (-O4) includes:
-O3

-qhot

-qipa

-qarch=auto

-qtune=auto

-qcache=auto

 Optimization level 5 (-O5) includes everything from -O4 plus:
-qipa=level=2
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Profile Feedback

 Profile directed feedback (PDF) is a two-stage compilation process that allows 
the user to provide additional detail about typical program behaviour to the 
compiler.

Compile with 
-qpdf1

Source
code Instrumented

executable

Compile with 
-qpdf2

Profile 
data

Sample
runs

Optimized
executable
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Profile Directed Feedback:  Details
 Stage 1 is a regular compilation (using an arbitrary set of optimization options) with 

the -qpdf1 option added.
the resulting object code is instrumented for the collection of program control flow and 

other data
 The executable or shared object created by stage 1 can be run in a number of 

different scenarios for an arbitrary amount of time
 Stage 2 is a recompilation (only relinking is necessary with Fortran 8.1.1 or C/C++ 

6.0) using exactly the same options except -qpdf2 is used instead of -qpdf1.
the compiler consumes previously collected data for the purpose of path-biased 

optimization

code layout, scheduling, register allocation

inlining decisions, partially invariant code motion, switch code generation, loop 
optimizations

 PDF should be used mainly on code which has rarely executed conditional error 
handling or instrumentation

 PDF usually has a neutral effect in the absence of firm profile information (ie. when 
sample data is inconclusive)

 However, always use characteristic data for profiling.  If sufficient data is 
unavailable, do not use PDF.

 The –qshowpdf options and showpdf tool can be used to view the PDF information 
accumulated from the –qpdf1 run. 
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Miscellaneous Performance Options

 -qcompact: specified as -q[no]compact
Prefers final code size reduction over execution time performance when a 

choice is necessary

Can be useful as a way to constrain -O3 optimization

 -qinline: specified as -qinline[+names | -names] or -qnoinline
Controls inlining of named functions - usable at compile time and/or link 

time

Synonymous with -qipa=inline and -Q

 -qunroll: specified as -q[no]unroll
Independently controls loop unrolling (implicitly activated under -O2 and -

O3)
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Miscellaneous Performance Options

 -qinlglue: specified as -q[no]inlglue
Inline calls to "glue" code used in calls through function pointers (including 

virtual) and calls to functions which are dynamically bound

Pointer glue is inlined by default for -qtune=pwr4
 -qtbtable

Controls the generation of traceback table information:

-qtbtable=none inhibits generation of tables - no stack unwinding is 
possible

-qtbtable=small generates tables which allow stack unwinding but omit 
name and parameter information - useful for optimized C++

This is the default setting when using optimization

-qtbtable=full generates full tables including name and parameter 
information - useful for debugging
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Miscellaneous Performance Options

 -q[no]eh (C++ only)
Asserts that no throw is reachable from compiled code - can improve 

execution time and reduce footprint in the absence of C++ exception 
handling

 -q[no]unwind 
Asserts that the stack will not be unwound in such a way that register 

values must be accurately restored at call points

Usually true in C and Fortran and allows the compiler to be more 
aggressive in register save/restore 

Usage of -qipa can set this option automatically in many situations
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Miscellaneous Performance Options

 -qlargepage 
Hint to the compiler that the heap and static data will be allocated from 

large pages at execution time (controlled by linker option -blpdata)

Compiler will divert large data from the stack to the heap

Compiler may also bias optimization of heap or static data references

 -qsmallstack 
Tells the compiler to compact stack storage (may increase heap usage)
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Directives and Pragmas
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Summary of Directives and Pragmas

 OpenMP 
 Legacy SMP directives and pragmas

Most of these are superceded by OpenMP - use OpenMP

 Assertive directives (Fortran)
 Assertive pragmas (C)
 Embedded Options
 Prescriptive directives (Fortran)
 Prescriptive pragmas (C)
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Overview of OpenMP (Fortran)

 Specified as directives (eg. !$OMP ...)
 PARALLEL / END PARALLEL

Parallel region - SPMD-style execution

Optional data scoping (private/shared), reductions, num_threads

 DO / END DO
Work sharing DO - share execution of iterations among threads

Optional scheduling specification (STATIC, GUIDED, etc)

 SECTIONS / SECTION / END SECTIONS
Share execution of a fixed number of code blocks among threads

 WORKSHARE / END WORKSHARE
Share execution of array assignments, WHERE or FORALL
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Overview of OpenMP (continued)

 SINGLE, MASTER
Execute block with a single thread

 CRITICAL, ATOMIC, ORDERED
Mutual exclusion

 FLUSH, BARRIER
Low level synchronization

 THREADPRIVATE
Thread local copies of externals

 Runtime
get/set num threads, low level synchronization, nested parallelism
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Assertive Directives (Fortran)

 ASSERT ( ITERCNT(n) | [NO]DEPS )
Same as options of the same name but applicable to a single loop - much more 

useful
 INDEPENDENT

Asserts that the following loop has no loop carried dependences - enables locality 
and parallel transformations

 CNCALL
Asserts that the calls in the following loop do not cause loop carried dependences

 PERMUTATION ( names )
Asserts that elements of the named arrays take on distinct values on each iteration 

of the following loop

Useful for gather/scatter codes
 EXPECTED_VALUE (param, value)

to specify a value that a parameter passed in a function call is most likely to take at 
run time. The compiler can use this information to perform certain optimizations, 
such as function cloning and inlining. (XL Fortran V11.)

New!
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Assertive Pragmas (C)

 isolated_call (function_list) 
asserts that calls to the named functions do not have side effects

 disjoint (variable_list) 
asserts that none of the named variables (or pointer dereferences) share 

overlapping areas of storage

 independent_loop 
equivalent to INDEPENDENT

 independent_calls 
equivalent to CNCALL
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Assertive Pragmas (C)

 permutation
equivalent to PERMUTATION

 iterations 
equivalent to ASSERT(ITERCNT)

 execution_frequency (very_low) 
asserts that the control path containing the pragma will be infrequently 

executed

 leaves (function_list) 
asserts that calls to the named functions will not return (eg. exit)
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Prescriptive Directives (Fortran)

 PREFETCH
PREFETCH_BY_LOAD (variable_list):  issue dummy loads to cause the 

given variables to be prefetched into cache - useful on Power 
machines or to activate Power 3 hardware prefetch

PREFETCH_FOR_LOAD (variable_list):  issue a dcbt instruction for each 
of the given variables.

PREFETCH_FOR_STORE (variable_list):  issue a dcbtst instruction for 
each of the given variables.

 CACHE_ZERO
Inserts a dcbz (data cache block zero) instruction with the given address

Useful when storing to contiguous storage (avoids the L2 store miss 
entirely)
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Prescriptive Directives (Fortran)

 UNROLL
Specified as [NO]UNROLL [(n)]

Used to activate/deactivate compiler unrolling for the following loop.

Can be used to give a specific unroll factor.

Works for all loops (not just innermost).

 PREFETCH_BY_STREAM_FORWARD / BACKWARD
Emit a dcbt encoded as a hardware stream startup 

Use LIGHT_SYNC after a block of these

 LIGHT_SYNC
Emit a lwsync instruction

 NOSIMD
Specifies that the following loop should not be SIMD-vectorized (PPC970)

 NOVECTOR
Specifies that the following loop should not be vectorized
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Prescriptive Directives (Fortran)

 SUBSCRIPTORDER
Reorder the dimensions of an array

 COLLAPSE
Reduce an entire array dimension to 1 element

 DO SERIAL
Specify that the following loop must not be parallelized

 SNAPSHOT
Set a legal breakpoint location with variable visibility

 UNROLL_AND_FUSE
    Used to activate unroll-and-jam for outer loops

 STREAM_UNROLL
    Used to activate innerloop unrolling for streams
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Prescriptive Directives 

 BLOCK_LOOP directive – Stripmining example

 tilesize=compute_tile_size(M)
!IBM* BLOCK_LOOP(tilesize, myloop)
      do i=1, N
!IBM* LOOPID(myloop)
         do j=1, M
              ....
         end do
      end do

      tilesize=compute_tile_size(M)
      do jj=1, M, tilesize
         do i=1, N
            do j=jj, min(jj+tilesize, M)
                 ...
            end do
         end do
      end do
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Prescriptive Directives

 BLOCK_LOOP directive – Loop Interchange example

       do i=1,N
         do j=1,N
!IBM* BLOCK_LOOP(1, myloop1)
            do k=1, M
!IBM* LOOPID(myloop1)
               do l=1, M
                 ...
               end do
            end do
         end do
      end do 

      do i=1, N
         do j=1, N
            do ll=1, M
               do k=1, M
                     l=ll
                     ...
               end do
            end do
         end do
      end do 
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Prefetch Directives for POWER5 (XLF V9.1 & XL C/C++ V7.0)

 Power 5 supports enhanced variants of the Data Cache Block Touch (dcbt) to provide 
additional control of the prefetch hardware.  

 Software will be able to specify the hardware stream which should be used. the direction 
and length of the prefetch, and whether the data is transient.

 Support provided by new compiler directives in XLF V9.1:
PROTECTED_UNLIMITED_STREAM_SET_GO_FORWARD(prefetch_variable, stream_id)

PROTECTED_UNLIMITED_STREAM_SET_GO_BACKWARD(prefetch_variable, stream_id)

PROTECTED_STREAM_SET_FORWARD(prefetch_variable, stream_id)

PROTECTED_STREAM_SET_BACKWARD(prefetch_variable, stream_id)

PROTECTED_STREAM_COUNT(unit_count, stream_id)

PROTECTED_STREAM_GO

PROTECTED_STREAM_STOP(stream_id)

PROTECTED_STREAM_STOP_ALL

EIEIO
 Similar support provided by new intrinsics functions in XL C/C++ V7.0
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Prefetch Directives for POWER5 (XLF V9.1 & XL C/C++ V7.0)

Example 1:  for short streams ( less than 1024 cache lines),  
__protected_stream_set/count/go can be used as follows:

  double a[N], b[N], c[N];

  /* the size of stream a is N*sizeof(double).  If the stream size is less than 
1024 cache lines, then __protected_stream_set/count/go can be used */
  __protected_stream_set(FORWARD,  a[0], 1);
   __protected_stream_count(N*sizeof(double)/CacheLineSize, 1);
  __protected_stream_set(FORWARD,  b[0], 2);
   __protected_stream_count(n*sizeof(double)/CacheLineSize, 2);
   __eieio();
  __protected_stream_go();    
  for (i=0; i< N; i++) {
      c[i] = a[i]*b[i];
  }     
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Prefetch Directives for POWER5 (XLF V9.1 & XL C/C++ V7.0)

Example 2:  for long streams (equal and greater than 1024 cache lines), 
__protected_unlimited_stream_set_go/__protected_stream_stop can be used.

__protected_unlimited_stream_set_go(FORWARD, a[0], 1);
__protected_unlimited_stream_set_go(FORWARD, b[0], 2);
__protected_unlimited_stream_set_go(FORWARD, c[0], 3);
__protected_unlimited_stream_set_go(FORWARD, d[0], 4);
for (i=0; i<n; i++) {
   ...= a[i];
   ...= b[i];
   ...= c[i];
   ...= d[i];
}
__protected_stream_stop(1);
__protected_stream_stop(2);
__protected_stream_stop(3);
__protected_stream_stop(4);
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Performance With New Prefetch Directives On POWER5

 do k=1,m                                            
       lcount = nopt2                                     
       do j=ndim2,1,-1                                    
!!IBM  PROTECTED_STREAM_SET_FORWARD(x(1,j),0)             
!!IBM  PROTECTED_STREAM_COUNT(lcount,0)                   
!!IBM  PROTECTED_STREAM_SET_FORWARD(a(1,j),1)             
!!IBM  PROTECTED_STREAM_COUNT(lcount,1)                   
!!IBM  PROTECTED_STREAM_SET_FORWARD(b(1,j),2)             
!!IBM  PROTECTED_STREAM_COUNT(lcount,2)                   
!!IBM  PROTECTED_STREAM_SET_FORWARD(c(1,j),3)             
!!IBM  PROTECTED_STREAM_COUNT(lcount,3)                   
!!IBM  EIEIO                                              
!!IBM  PROTECTED_STREAM_GO                                
        do i=1,n                                          
         x(i,j)= x(i,j)+a(i,j)*b(i,j) + c(i,j)            
        enddo                                             
       enddo                                              
       call dummy(x,n)                                    
      enddo 
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Software Divide Intrinsics for POWER5 (XLF V9.1 & XL C/C++ V7.0)

 Provide alternative to hardware floating point divide instructions.

 Single precision and double precision supported :

SWDIV(X,Y)    
where X and Y must be same type (real*4 or real*8)
result is X / Y
no argument value restrictions

SWDIV_NOCHK(X,Y)

       same as above except argument values cannot be                     infinity 
or denormalized. Denominator (Y) cannot be zero.

 Similar instrinsics are available in C/C++
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Software Divide Intrinsics for POWER5 (XLF V9.1 & XL C/C++ V7.0)

 Must specify –qarch=pwr5 to use these intrinsics

 Compiler will automatically expand double precision divides found in loops. 
The profitability analysis is done as part of modulo scheduling.

                 

All information subject to change without notice
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NI Mode: An Alternate Method Of Using Faster Divides on Power5

subroutine sub(x,y,z,n,m)
      implicit none
      include "common.inc"
      real*8 x(*),y(*),z(*)
      include "ind_vars.inc"
      integer*4, parameter :: NI=29
      intrinsic setfsb0, setfsb1
      call setfsb1(NI)
      do j=1,m
       do i=1,n
        x(i)=z(i)/y(i)
       enddo
       call dummy(x,y,n)
      enddo
      call setfsb0(NI)
      return
      end

Set NI mode

Reset NI mode

27 cycles instead of 33 cycles
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How to Read a Compiler 
Listing
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Compile Listing Format
Section Description
Header Compiler version, source file, 

date/time

Options Compiler option settings
Activated by -qlistopt

Source Listing of source code and inline 
messages
Activated by -qsource

Transformation Report Report of transformations done 
by -qsmp or -qhot
Activated by -qreport

Attribute and Cross-reference Report of symbol declarations, 
attributes and references
Activated by -qattr or -qxref

Object Listing of generated object code 
and meta-data
Activated by -qlist

File Table Listing of files used in the 
compilation
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Object Listing (-qlist)
XL Fortran for AIX Version 08.01.0000.0002 --- kernel.f 11/05/02 22:20:25
 
>>>>> OPTIONS SECTION <<<<<
<snip>
>>>>> SOURCE SECTION <<<<<
** kernel   === End of Compilation 1 ===
>>>>> LOOP TRANSFORMATION SECTION <<<<<
<snip>
>>>>> OBJECT SECTION <<<<<

 GPR's set/used:   ssus ssss ssss ssss  ssss ssss ssss ssss
 FPR's set/used:   ssss ssss ssss ssss  ssss ssss ssss ssss
 CCR's set/used:   sss- ssss

     | 000000                           PDEF     kernel
    0|                                  PROC     .tk,gr3
    0| 000000 mfspr    7C0802A6   1     LFLR     gr0=lr
    0| 000004 mfcr     7D800026   1     LFCR     gr12=cr[24],2
    0| 000008 bl       4BFFFFF9   0     CALLNR   _savef14,gr1,fp14-fp31,lr"
<snip>
  830| 006B28 b        4BFF94D8   0     CALLF    _restf14
     |               Tag Table
     | 006B2C        00000000 00012223 92130000 00006B2C 1F
     |               Instruction count         6859
     |               Straight-line exec time   8381
     |               Constant Area
     | 000000        4B45524E 454C2020 00000000 49424D20 3F847AE1 47AE147B
     | 000018        40000000 3F800000 41DFFFFF FFC00000 59800004 49424D20
<snip>
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Object Listing Line

  781| 006238 lfd      C9164280   1     LFL      fp8=zz[](gr22,17024)

Source Line
Number

Offset from
Csect start

PowerPC
Instruction

Machine
Code

Approximate
Cycle Count
(Not accurate)

XIL
Opcode

XIL
Operands
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XIL Cheat Sheet
LFL Load Float Long BT Branch if true

STFL Store Float Long BF Branch if false

L4A Load Word Algebraic BCT Branch on count non-zero

ST4A Store Word BCF Branch on count zero

L1Z Load Byte and Zero LCTR Load Count Register

LFS Load Float Short CALL Procedure Call

STFS Store Float Short CALLN Procedure Call, no side effects

FMA Long Float Multiply-Add STFDU Store Float Double with 
Update

FMS Long Float Multiply-Subtract CL.###: Compiler generated label

FMAS Single Float Multiply-Add

AI Add Immediate

C4 Compare Word

CFL Compare Float Long

CFS Compare Float Short

SRL4 Shift Right Logical

RN4_R Rotate and mask, with 
record
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But how do I find the loop?

 Look for a line number corresponding to an array store or call.
vi:  /123|/

 Look forward for the BCT.
vi: /BCT  /

 Then look backward for target label.
vi: ?CL.1234

 The compiler normally keeps the loop contiguous so all the code between 
the label and the BCT is the loop.  It might be useful to slice that part out.

 Loops are often unrolled and pipelined.
 Unroll "residue" usually precedes main loop.  It will also be a BCT loop.
 Pipelining introduces "prologue" and "epilogue" code before and after main 

loop.  Look for the BCF instruction to find the end of a prologue.
 Need to browse around sometimes to find the "real" loop.
 In complex cases (eg. outer unrolling, fusion, etc), it is best to get an 

annotated tprof listing and go to the code offsets where most of the ticks 
land.
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Transformation Report (-qreport)
   258|           IF ((n > 0)) THEN
                    @CSE10 = MOD(int(n), 2)
                    IF ((@CSE10 > 0)) THEN
   259|               q = (z(1) * x(1))
                      IF (.NOT.(int(n) >= 2)) GOTO lab_672
                    ENDIF
   258|             @PSRV0 =  0.0000000000000000E+000
                    @CIV28 = int(0)
                    @ICM.n0 = n
                    @ICM.q1 = q
                    @CSE11 = ((int(@ICM.n0) - @CSE10) + 4294967295)
                    @ICM5 = @CSE11
                    @ICM6 = (@CSE11 / 2 + 1)
       Id=3         DO @CIV28 = @CIV28, @ICM6-1
   259|               @ICM.q1 = (@ICM.q1 + z((int(MOD(int(@ICM.n0), 2)) + (&
                &       @CIV28 * 2 + 1))) * x((int(MOD(int(@ICM.n0), 2)) + (&
                &       @CIV28 * 2 + 1))))
                      @PSRV0 = (@PSRV0 + z((int(MOD(int(@ICM.n0), 2)) + (@CIV28 &
                &       * 2 + 2))) * x((int(MOD(int(@ICM.n0), 2)) + (@CIV28 * 2 + &
                &       2))))
                    ENDDO
                    q = @ICM.q1
                    q = (q + @PSRV0)
                    lab_672
                  ENDIF

    DO 3 K=1,N
3  Q = Q + Z(K)*X(K)
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Transformation Report (-qreport)

Source        Source        Loop Id       Action / Information                                      
File          Line                                                                                  
----------    ----------    ----------    ----------------------------------------------------------
         0           258             3    Inner loop has been unrolled 2 time(s).
         0           275             5    Inner loop has been unrolled 4 time(s).
         0           337            10    Loop interchanging applied to loop nest.
         0           460            17    The loops on lines 460, 469, and 478 have been fused.
         0           661                  Vectorization applied to statement.
         0           663                  Vectorization applied to statement.
         0           679                  Loop has been completely unrolled because its 
                                          iteration count is less than 32.
         0           737            69    Loop interchanging applied to loop nest.
         0           737            69    Outer loop has been unrolled 4 time(s).
         0           738                  Loop has been completely unrolled because its 
                                          iteration count is less than 32.
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The MASS Library
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MASS Enhancements

 Mathematical Acceleration SubSystem is a library of highly 
tuned, machine specific, mathematical functions available for 
download from IBM

Contains both scalar and vector versions of many (mostly trig.) functions

Trades off very limited accuracy for greater speed

The compiler tries to automatically vectorize scalar math functions and 
generate calls to the MASS vector routines in libxlopt

Failing that, it tries to inline the scalar MASS routines (new for XLF V11.1)

Failing that, it generates calls to the scalar routines instead of those in 
libm

New!
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MASS example

subroutine mass_example (a,b)
    real     a(100), b(100)
    integer             i

    do i = 1, 100
        a(i) = sin(b(i))
    enddo;
end subroutine mass_example

  SUBROUTINE mass_example (a, b)
    @NumElements0 = int(100)
      CALL __vssin_P6 (a, b, &@NumElements0)
    RETURN
  END SUBROUTINE mass_example

 -O3 –qhot –qarch=pwr6

Aliasing prevents vectorization:

void c_example(float *a, float *b) 
{
     for (int i=0; i < 100; i++) 
     {
         a[i] = sin(b[i]);
         b[i] = (float) i;
     }
}

void c_example(float *a, float *b)
{
    @CIV0 = 0;
    do {
       a[@CIV0] = __xl_sin(b[@CIV0]);
       b[@CIV0] = (float) @CIV0;
       @CIV0 = @CIV0 + 1;
    } while ((unsigned) @CIV0 < 100u);
    return;
}
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What functions are in the MASS Library?

 MASS Scalar Library (libmass.a)
Double precision only

exp, log, sin, cos, sincos, cosisin, tan, atan2, pow

 MASS Vector Library (libmassv.a)
Single and double precision

rec, div, sqrt, rsqrt, exp, log, sin, cos, sincos, cosisin, tan, atan2, dnint, dint

 POWER4 MASS Vector Library (libmassvp4.a)
Single and double precision

rec, div, sqrt, rsqrt, exp, log, tan, acos, asin (MASS 3.2)

 New Power6 tuned library with 60+ routines (libmassvp6.a)
single and double precision versions of:

 sin(), cos(), log(), exp(), acos(), sincos() etc..

 More info: http://www.ibm.com/software/awdtools/mass/

New!
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MASS Function Performance (Double precision)
MASS Speedup

Double Precision
POWER4 Measurements
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MASS Function Accuracy (Double precision)

MASS Accuracy
Double Precision
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Shared Memory
Parallelism
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Compiling Code for SMP

 Use the reentrant compiler invocations ending in “_r” such as xlf90_r 
or xlC_r

 The –qsmp option is used to activate parallel code generation and 
optimization

 Specify –qsmp=omp to compile OpenMP code
-qsmp=omp:noopt will disable most optimizations to allow for full 

debugging of OpenMP programs

Controls are also available to change default scheduling, allow nested 
parallelism or safe recursive locking

 Specify –qsmp=auto to request automatic loop parallelization
 Detect a thread's stack going beyond its limit (XL Fortran V11.1 and 

XL C/C++ V9.0). Implemented with –qsmp=stackcheck.New!
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OpenMP vs. Automatic Parallelization

 OpenMP and automatic parallelization are currently not allowed to 
be done together

 OpenMP is recommended for those who are able to expend the 
effort of annotating their code for parallelism

More flexible than automatic parallelization

Portable

 Automatic parallelization is recommended as a means of doing 
some parallelization without code changes

 Automatic parallelization along with -qreport can be helpful for 
identifiying parallel loop opportunities for an OpenMP programmer

 -qsmp=threshold=n to specify the amount of work required in a loop 
before the compiler considers it for automatic parallelizationNew!
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Running SMP Code
 Ensure the stack size is large enough

Use of array language may increase stack size unexpectedly

export XLSMPOPTS=STACK=nn

Consider using the -qsmallstack option to allocate less on the stack 
 Set SPINS and YIELDS to 0 if using the machine or node in a dedicated 

manner
export XLSMPOPTS=SPINS=0:YIELDS=0

 By default, the runtime will use all available processors.
Do not set the PARTHDS or OMP_NUM_THREADS variables unless you wish to 

use fewer than the number of available processors
 One can bind SMP threads to processor threads using startproc and stride

For example, export XLSMPOPTS=startproc=0:stride=2 

Binds SMP thread 0 to processor thread 0 and SMP thread 1 to processor thread 
2…

 The number of SMP threads used by MATMUL and RANDOM_NUMBER 
can be controlled.

For example, export XLSMPOPTS=intrinthds=2 

Will allow only 2 SMP threads to be used by these intrinsics
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Performance Programming
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What can my compiler do for me?

 Code generation and register allocation
Redundancy and store elimination

Register allocation

 Instruction scheduling
Global and local reordering

Loop pipelining

 Program restructuring
Inlining and specialization

Partitioning

 Loop restructuring
Fusion and fission

Unrolling

Vectorization and Parallelization



104

Compilation Technology

SCINET Compiler Tutorial  |  Performance Programming  |  February 18, 2009 © 2009 IBM Corporation

Software Group

Redundancy Elimination

for (i=0;i<n;i++) 
  for (j=0;j<m;j++)
    a[i][j] = b[j][i];

pa_b = a;
pb_b = b;
for (i=0;i<n;i++) {
  pa = pa_b + a_colsz;
  pb = pb_b + i*datasz;
  for (j=0;j<m;j++) {
    *pa++ = *pb;
    pb = pb + b_colsz;
  }
}

Key points:
•Relies on good alias information
•Depends largely on original 
expression ordering
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Register Allocation

X=
 =X
Y=
 =X
 =Y
Z=
 =Y
 =Z

fp0=
   =fp0
fp1=
   =fp0
   =fp1
fp0=
   =fp1
   =fp0

Key points:
•Relies on good alias information
•Speed and quality of allocation 
degrade with size of function
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Instruction Scheduling
DO I=1,N,2
  A(I)=A(I)+P*B(I)+Q*C(I)
  A(I+1)=A(I+1)+P*B(I+1)+Q*C(I+1)
END DO

lfd fp0,A(I)
lfd fp1,B(I)
fma fp0,fp0,fp30,fp1
lfd fp2,C(I)
fma fp0,fp0,fp31,fp2
stfd fp0,A(I)
lfd fp3,A(I+1)
lfd fp4,B(I+1)
fma fp3,fp3,fp30,fp4
lfd fp5,C(I+1)
fma fp3,fp3,fp31,fp5
stfd fp3,A(I+1)

lfd fp0,A(I)
lfd fp1,B(I)
lfd fp3,A(I+1)
lfd fp4,B(I+1)
fma fp0,fp0,fp30,fp1
fma fp3,fp3,fp30,fp4
lfd fp2=C(I)
lfd fp5=C(I+1)
fma fp0,fp0,fp31,fp2
fma fp3,fp3,fp31,fp5
stfd fp0,A(I)
stfd fp3,A(I+1)

Key points:
•Relies on good alias information
•Limited in scope
•Less effective across branches
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Loop Pipelining
DO I=1,N,4
  A(I)=A(I)+P*B(I)+Q*C(I)
  A(I+1)=A(I+1)+P*B(I+1)+Q*C(I+1)
  A(I+2)=A(I+2)+P*B(I+2)+Q*C(I+2)
  A(I+3)=A(I+3)+P*B(I+3)+Q*C(I+3)
END DO

A1=A(1) A2=A(2) A3=A(3) A3=A(4)
B1=B(1) B2=B(2) B3=B(3) B4=B(4)
C1=C(1) C2=C(2) C3=C(3) C4=C(4)
DO I=4,N,4
  A(I-4)=A1+P*B1+Q*C1
  A1=A(I) B1=B(I) C1=C(I)
  A(I-3)=A2+P*B2+Q*C2
  A2=A(I+1) B2=B(I+1) C2=C(I+1)
  A(I-2)=A3+P*B3+Q*C3
  A3=A(I+2) B3=B(I+2) C3=C(I+2)
  A(I-1)=A4+P*B4+Q*C4
  A4=A(I+3) B4=B(I+3) C4=C(I+3)
END DO
A(I)=A1+P*B1+Q*C1
A(I+1)=A2+P*B2+Q*C2
A(I+2)=A3+P*B3+Q*C3
A(I+3)=A4+P*B4+Q*C4

Key points:
•Relies on good alias information
•Limited in scope to small loops 
with no branches
•Effectiveness depends on 
unrolling to sufficient depth
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Function Inlining

SUBROUTINE C(X,Y)
CALL B(Y*2,X)
END 
SUBROUTINE B(P,Q)
CALL A(Q,P*3)
END
SUBROUTINE A(R,S)
R = R * S 
END
PROGRAM FOO
CALL C(F,4.0)
END

F=F*24.0

Key points:
•Caller and callee size limits 
important parameters
•Calls considered in order of 
expected frequency (better with 
PDF)
•Inlining can be harmful due to 
growing code beyond other 
optimizations’ effective limits
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Function Specialization

int f(x) {
  z=x*4.0
  return fsqrt(z);}
print(f(x),z);
y=f(x/7.0)
print(z);
... never use y ...

double f(x) {
  z=x*4.0
  return fsqrt(z);}
double f0(x) {
  z=x*4.0;
  return 0.0;}
print(f(x),z);
y=f0(x/7.0)
print(z);

Key points:
•Active only with –O5
•Not effective at 
recognizing aliasing 
specializations
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Program Partitioning
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Key points:
•Depends heavily on call 
count info (use PDF)
•Adjust partition size to 
trade effectiveness for 
increased link time
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Loop Fusion

DO I=1,N
  A(I)=F(B(I))
END DO
Q = 
DO J=2,N
  C(I)=A(I-1)+ Q*B(I)
END DO

Q = 
A(1)=F(B(1))
DO I=2,N
  A(I)=F(B(I))
  C(I)=A(I-1)+Q*B(I)
END DO

Key points:
•Limited by dependence 
and alias information
•Exploit reuse
•Requires countable 
loops (more on this later)
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Loop Fission

DO I=1,N
  A(I)=A(I)+P1*B1(I)+P2*B2(I)+P3*B3(I)+P4*B4(I)+
            P5*B5(I)+P6*B6(I)+P7*B7(I)+P8*B8(I)+
            P9*B9(I)
END DO

DO I=1,N
  A(I)=A(I)+P1*B1(I)+P2*B2(I)+P3*B3(I)+P4*B4(I)
END DO
DO I=1,N
  A(I)=A(I)+P5*B5(I)+P6*B6(I)+P7*B7(I)+P8*B8(I)+
            P9*B9(I)
END DO

Key points:
•Limited by dependence 
and alias information
•Requires countable loops
•Reduce number of streams
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Loop Unrolling

DO I=1,N
  S = S + A(I)*B(I)
END DO

DO I=1,N,4
  S1 = S1 + A(I)*B(I)
  S2 = S2 + A(I+1)*B(I+1)
  S3 = S3 + A(I+2)*B(I+2)
  S4 = S4 + A(I+3)*B(I+3)
END DO
S = S1+S2+S3+S4

Key points:
•Unroll factor selection is a 
balance between 
scheduling and register 
allocation 
•Requires countable loops
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Loop Vectorization

DO I=1,N
  S = B(I) / SQRT(C(I))
  A(I) = LOG(S)*C(I)
END DO

CALL VRSQRT(A,C,N)
DO I = 1,N
  A(I) = B(I)*A(I)
END DO
CALL VLOG(A,A,N)
DO I = 1,N
  A(I) = A(I)*C(I)
END DO

Key points:
•Vectorization requires 
fission 
•Vectorization is a balance 
between vector speedup 
and memory locality
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Loop Parallelization

DO I=1,N
  DO J=2,M-1
    A(I,J) = A(I,J-1)*SQRT(A(I,J+1))
  END DO
END DO

CALL _xlsmpDo (FOO@OL@1,1,N)
...
SUBROUTINE FOO@OL@1(LB,UB)
DO I=LB,UB
  DO J=2,M-1
    A(I,J) = A(I,J-1)*SQRT(A(I,J+1))
  END DO
END DO
END

Key points:
•Limited by dependence 
and alias information
•Loop selection imperfect 
due to lack of knowledge 
about bounds
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What can I do for my compiler?

 Simplify memory accesses
Use of externals and pointers

Array indexing

 Simplify loop structures
Countable loops

Perfect nesting

Branches in loops

 Simplify program structure
When to inline

When to use function pointers
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Use of externals

 The optimizer scope is often a single function
External variables might have their address taken in some other function 

and so might be used or modified by certain pointer dereferences

External variables might be used of modified by a call to some other 
function

 Use scalar replacement to manually allocate external variables to 
registers (ie. automatic variables that do not have their address 
taken).

 Increase optimizer scope
Use modules in Fortran

Group related functions in the same file and make as many static as 
possible in C/C++
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Array indexing

 Many optimizations attempt to disambiguate array references by an 
analysis of index expressions

 Simplify index calculations
Keep calculations as a linear function of the loop variables where possible

Avoid unnecessary use of shift operators, modulus or divide

Use language facilities for indexing where possible (rather than manually 
indexing off a pointer for example)

 Simplfy loop bound expressions
Store bounds to temporaries and use the temporaries in the loop

Avoid unnecessary use of shift operators, modulus or divide

Avoid unnecessary use of MAX/MIN
 Use a single name for each array to avoid aliasing ambiguities 
 Consider using the INDEPENDENT directive
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Use of pointers

 Pointers can be confusing for the compiler because dereferencing 
them may imply a use or definition of any other variable which has 
had its address taken

 Obey the strictest language rules available as a matter of practice
Type-based language rules for pointers are very useful in refining the alias 

sets of dereferences

Use TARGET only when necessary in Fortran

Enhances portability 
 Take the address of a variable only when necessary
 Reference parameters

Parameters passed by address in C, C++ or Fortran effectively have their 
address taken

Exploit Fortran parameter aliasing rules by encapsulating operations on 
disjoint sections of the same array
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Countable loops

 Most loop optimizations in the compiler work only on countable loops
A countable loop has a single entry point, a single exit point and an 

iteration count which can be determined before the loop begins

 Use counted DO loop or canonical for statement for as many loops 
as possible – these are usually countable

 Use register index variables and bounds
Simulate a register using an automatic whose address is not taken

Avoids aliasing ambiguity 

 Branches in/out of loops
Never branch into a loop

Isolate exit conditions into their own search loop where possible
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Perfect nesting

 Many loop optimizations, including outer unroll-and-jam and 
interchange require perfect loop nesting 

A loop is perfectly nested in another if there is no other code executed in 
the containing loop

 Split loops where possible to create perfect nests
 Definitions of register variables are allowed so no need to avoid 

them
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Branches in Loops

 Branches in loops decrease the effectiveness of loop fission, 
vectorization, unrolling and pipelining

DO I=1,N
  IF (C>0.0) THEN
    A(I)=A(I)+B(I)
  ELSE
    A(I)=A(I)+C*B(I)
  END IF
END DO

IF (C>0.0) THEN
  DO I=1,N
    A(I)=A(I)+B(I)
  END DO
ELSE
  DO I=1,N
    A(I)=A(I)+C*B(I)
  END DO
END IF

DO I=1,N
  IF (I<5) THEN
    A(I)=A(I)+B(I)
  ELSE
    A(I)=A(I)-B(I)
  END IF
END DO

DO I=1,4
  A(I)=A(I)+B(I)
END DO
DO I=5,N
  A(I)=A(I)-B(I)
END DO

DO I=1,N
  IF (C(I)>0.0) THEN
    A(I)=A(I)/B(I)
END DO

NT=1
DO I=1,N
  IF (C(I)>0.0) THEN
    IX(NT) = I
    NT=NT+1
  END IF
END DO
DO II=1,NT-1
  IT=IX(II)
  A(IT)=A(IT)/B(IT)
END DO
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When to inline

 Inlining is a difficult decision for the compiler to make on its own
 C/C++ have inline keywords to help identify functions which should 

be inlined
 -qipa has inline and noinline options (which can be used with regular 

expressions and a side file) to guide inlining decisions
 Profile directed feedback is very effective at identifying the best 

inlining candidates
 Manually inline a function only when you absolutely need to do it for 

performance 
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Function pointer use

 Function pointers in C or C++ are very confusing to the compiler 
because the destination of a call through pointer is not known in 
general

 C++ virtual methods are equivalent to function pointers in this 
respect

 For a small number of pointer targets, consider using a switch with 
direct calls in the cases instead

 If there are a large number of possible targets but a small number of 
probable targets, create a switch with the common values and 
include the pointer call in the default clause

 If most pointer targets are in the same shared object or executable 
as the caller, consider creating local “stubs” for the targets which are 
outside
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VMX Exploitation
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VMX Exploitation

 User directed
Vector data types and routines available for C, C++ and Fortran

Programmer manually re-writes program, carefully adhering to the 
alignment constraints

 Automatic SIMD Vectorization (SIMDization)
The compiler automatically identifies parallel operations in the scalar code 
and generates SIMD versions of them.

The compiler performs all analysis and transformations necessary 

to fulfill alignment constraints.

Programmer assistance may improve generated code
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Required Options for VMX Code Generation

 For programs with VMX intrinsics:
C/C++:   -qaltivec -qarch=pwr6

Fortran:  -qarch=pwr6 

 Automatic SIMD vectorization:
Optimization level -O3 -qhot or higher and -qarch=pwr6

 -q[no]enablevmx - Compiler is allowed to generate VMX instructions
AIX defaults to  -qnoenablevmx  (must be explicitly turned on by user)

Linux defaults to -qenablevmx 
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User Directed VMX 

 Data types:
C/C++:  vector float,  vector int,   vector unsigned char

Fortran:  vector(real(4)),  vector (integer),  vector(unsigned(1))

 VMX intrinsics 
vec_add(), vec_sub(),  vec_ld(), vec_st(), etc.

The Fortran VMX intrinsic names are the same as those of C/C++ 

 Symbolic debug (gdb, dbx) support at no-opt.

 Fully optimized at -O2 and above with suite of classical optimizations 
such as dead code removal, loop invariant code motion, software 
pipelining and Power6  instruction scheduling
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Example: Fortran VMX Intrinsics

subroutine xlf_madd (a,b,c,x)
     vector(real(4))     a(100), b(100), c(100)
     vector(real(4))     x(100)
     integer             i

     do i = 1, 100
        x(i) = vec_madd(a(i), b(i), c(i))
     enddo;
end subroutine xlf_madd

          CL.5:
VLQ     vr0=a[](gr4,gr7,0)
VLQ     vr1=b[](gr5,gr7,0)
VLQ     vr2=c[](gr6,gr7,0)
VMADDFP vr0=vr0-vr2,nj
VSTQ    x[](gr3,gr7,0)=vr0
AI      gr7=gr7,16
BCT     ctr=CL.5,,100,0

Compile options:

   xlf -O2  -qarch=pwr6 -qlist -c

Additionally, compiling on AIX requires -qenablevmx
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Successful Simdization

for (i=0; i<256; i++)

  a[i] = 

loop level

   a[i+0] =

   a[i+1] =

   a[i+2] =

   a[i+3] = 

basic-block level

for (i=0; i<8; i++)
  a[i] = 

entire short loop

GENERIC

VMX SPE

multiple targets

load b[i]

load a[i] unpack

add

store

load a[i+4]unpack

add

store

SHORT

INT 2INT 1

data size conversion

b0 b1 b2 b3 b4 b5 b6 b7 b8 b9

16-byte boundaries

vload b[1]

b0 b1 b2 b3

vload b[5]

b4 b5 b6 b7

vpermute

b1 b2 b3 b4

...b1

b1

b1

alignment constraints

b0b1b2b3

c0c1c2c3

b0+
c0  

b1+
c1  

b2+
c2  

b3+
c3  

b0 b2b3b4b5b6b7b8b9b10

c0c1 c3c4c5c6c7c8c9c10c2

b1

+

R1

R2

R3

Extract Parallelism Satisfy Constraints

b0 b1 b2 b3 b4 b5 b6 b7 b8 b9

non stride-one
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Coding choices that impact simdization

 How loops are organized 
Loop must be countable, preferably with literal trip count
Only innermost loops are candidates for simdization, except when 
nested loops have a short literal iteration count

Loops with control flow are harder to simdize. Compiler tries to remove 
control flow, but not always successful

 How data is accessed and laid out in memory
Data accesses should preferably be stride-one 

Layout the data to maximize aligned accesses

Prefer use of arrays to pointer arithmetic

 Dependences inherent to the algorithm
Loops with inherent data dependences are not simdizable

Avoid pointers; pointer aliasing may impede transformations
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Assisting the compiler to perform auto-SIMD

 Loop structure
Inline function calls inside innermost loops

Automatically (-O5 more aggressive, use inline pragma/directives)

 Data alignment
Align data on 16-byte boundaries

 __attribute__((aligned(16))

Describe pointer alignment

 _alignx(16, pointer)

Can be placed anywhere in the code, preferably close to the loop

Use -O5 (enables inter-procedural alignment analysis)

 Pointer aliasing
Refine pointer aliasing                  #pragma disjoint(*p, *q) or restrict keyword

Use -O5 (enables interprocedural pointer analysis)
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AIX and -qvecnvol 

 Compiler does not use non-volatile VMX registers on AIX
-qvecnvol is default on AIX

-qnovecnvol forces the use of non-volatile registers, default on Linux

 May cause severe performance impact 
Can use -qnovecnvol on AIX if your code does not call legacy modules

 If legacy modules that do setjmp/longjmp/sigsetjmp/siglongjmp are 
linked with new VMX objects, it may produced incorrect results

 Example scenario:
new (VMX) module calls old (non-VMX) module

   old (non-VMX) module performs setjmp() [non-vol VMX not saved]

      calls another new (VMX) module [non-vol VMX state might be modified]

                if new module returns [ok, non-vol is restored by linkage convention]

                if new module longjmps to "old" jmpbuf [problem, non-vol VMX state not restored]

                calls old (VMX) module

                     if old (VMX) module longjmps [problem, non-vol VMX state not restored]
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Did we SIMDize the loop?

 The -qreport option produces a list of high level transformation 
performed by the compiler

Everything from unrolling, loop interchange, SIMD transformations, etc.

Also contains transformed “pseudo source”

 All  loops considered for SIMDization are reported
Successful candidates are reported

If SIMDization was not possible, the reasons that prevented it are also

provided

 Can be used to quickly identify opportunities for speedup
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Example – SIMD Problems Reported

1586-535 (I) Loop (loop index 1) at d.c <line 9> was not SIMD vectorized because the aliasing-induced dependence
prevents SIMD vectorization.
1586-536 (I) Loop (loop index 1) at d.c <line 9> was not SIMD vectorized because it contains memory references  with
non-vectorizable alignment.
1586-536 (I) Loop (loop index 1) at d.c <line 11> was not SIMD vectorized because it contains memory references
((char *)b + (4)*((@CIV0 + 1))) with non-vectorizable alignment.
1586-543 (I) <SIMD info> Total number of the innermost loops considered <"1">. Total  number of the innermost loops 
SIMD vectorized <"0">.

     5 |  long main()
          {
     9 |    @ICM.b0 = b;
            if (!1) goto lab_5;
            @CIV0 = 0;
            __prefetch_by_stream(1,((char *)@ICM.b0  + (0 - 128) + (4)*(@CIV0 + 2)))
            __iospace_lwsync()
    11 |    @ICM.c1 = c;
     9 |    do {   /* id=1 guarded */ /* ~4 */
              /* region = 8 */
              /* bump-normalized */
    11 |      @ICM.b0[@CIV0 + 1] = @ICM.b0[@CIV0 + 2] - @ICM.c1[@CIV0 - 1];
     9 |      @CIV0 = @CIV0 + 1;
            } while ((unsigned) @CIV0 < 1024u);    /* ~4 */
          lab_5:
            rstr = 0;
    14 |    return rstr;
          } /* function */

extern int *b, *c;

int main()
{
      for (int i=0; i<1024; ++i)   
           b[i+1] = b[i+2] - c[i-1];
}
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Example: Correcting SIMD Inhibitors
extern int * restrict b, * restrict c;

int main()
{
   /* __alignx(16, c);     Not strictly required since compiler   */
   /* __alignx(16, b);     inserts runtime alignment check       */

    for (int i=0; i<1024; ++i)
        b[i] = b[i] - c[i];
}

586-542 (I) Loop (loop index 1 with nest-level 0 and iteration count 1024) at d_good.c <line 9> 
was SIMD vectorized.
1586-542 (I) Loop (loop index 2 with nest-level 0 and iteration count 1024) at d_good.c <line 9> 
was SIMD vectorized.
1586-543 (I) <SIMD info> Total number of the innermost loops considered <"2">. Total number of the innermost loops 
SIMD vectorized <"2">.

     7 |  long main()
          {
            @ICM.b0 = b;
            @ICM.c1 = c;
     9 |    @ICMB = (0 - 128);
            @ICM4 = (long) @ICM.c1 & 15;
            @CSE2 = (long) @ICM.b0;

            . . .
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Other Examples of SIMD Messages 

 Loop was not SIMD vectorized because it contains operation which is not 
suitable for SIMD vectorization. 

 Loop was not SIMD vectorized because it contains function calls. 

 Loop was not SIMD vectorized because it is not profitable to vectorize.

 Loop was not SIMD vectorized because it contains control flow.

 Loop was not SIMD vectorized because it contains unsupported vector data 
types

 Loop was not SIMD vectorized because the floating point operation is not 
vectorizable under -qstrict.

 Loop was not SIMD vectorized because it contains volatile reference 
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Other SIMD Tuning

 Loop unrolling can interact with simdization
Manually-unrolled loops are more difficult to simdize

 Tell compiler not to simdize a loop if not profitable
#pragma nosimd (right before the innermost loop)

Useful when loop bounds are small and unknown at compile time
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Programming for POWER6
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Compiling for Power6

 New -qarch suboptions for Power6:
 -qarch=pwr6e          - Generate all P6 instructions

 -qarch=pwr6            - Generate all except for raw-mode only instructions

 Some P6 instructions are only available when the P6 is in “raw 
mode”

  mffgpr, mftgpr:  move between float and integer registers 

 Using -qarch=pwr6 will ensure that your binaries continue to run on 
upcoming processors, while -qarch=pwr6e may provide additional 
performance. 
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Power5 / Power6 differences (summary)

 Power6 executes instructions in order 

Helps to reach high clock rate, but more stalls
 Store Queue has to be managed to prevent load/store stalls

Careful arrangement of stores can get the bandwidth back in

some cases
 Power6 does not do store forwarding

High cost for store and reload
 Fixed point multiplies are done in the floating point unit

Extra cost can be mitigated by grouping them
 VMX and DFP unit available
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Power5 / Power6 differences (summary)

 Power6 executes instructions in order 

Helps to reach high clock rate, but more stalls
 Store Queue has to be managed to prevent load/store stalls

Careful arrangement of stores can get the bandwidth back in

some cases
 Power6 does not do store forwarding

High cost for store and reload
 Fixed point multiplies are done in the floating point unit

Extra cost can be mitigated by grouping them
 VMX and DFP unit available
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Balanced Tuning (-qtune=balanced)

 This is a new compiler tuning target 

 We try to balance the competing optimization priorities of Power5 
and Power6

Insert special group ending NOP when required, on P5 this acts just like a

regular NOP

Have “loads only” and “stores only” groups when possible

Group fixed point multiplies together in a sequence

 This is available in a recent PTF of XLC/C++ V8.0 and XLF V10.1 

 This tuning option becomes the default in XLC/C++ V9.0 and XLF 
V11.1
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Prefetch Enhancements for P6

 Exploit the 16 streams available on Power6 (only 8 on P4/P5)
 Support new store stream prefetch

Compiler automatically determines when prefetch insertion is profitable

and inserts calls to prefetch stores

 Exploit both L1 and L2 touch instructions 
Compiler automatically determines if data is more likely to be needed in 

L1

or L2 and inserts the prefetch required.

 

 Exploit prefetch depth control
Try to fetch further ahead

Tricky to get right, may compete with immediately needed lines in L1
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Decimal Floating Point (DFP) Support

 The XLC/C++ V9 compilers and  AIX 5.3 will support DFP.
Family of floating-point types where the fraction is decimal  

digits instead of binary bits.

 New C/C++ data types, printf() format specifiers, etc.
_Decimal32 (7 digits)   

_Decimal64 (16 digits)

_Decimal128 (34 digits)

 The V9 compilers on Linux will support DFP as a technical preview.
 Power6 supports DFP in hardware

Compiler supports DFP via hardware exploitation as well as with calls to

DFP software library. 

 Full IEEE / C / C++ compliance (eg, complete math library, some 
new IEEE features) will be provided later.
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DFP Support (cont.)

 New compile option -qdfp 
Enable DFP types, literals and functions. 

 -qfloat=[no]dfpemulate
Controls using hardware instructions or software emulation on PowerPCs. 

Default is to use hardware on Power6, software on other models.

 Examples:
xlc  foo.c  -qdfp  -qarch=pwr6      # uses hw instructions

xlc  bar.c  -qdfp  -qarch=pwr5     # uses sw emulation


