
IBM XL Unified Parallel C for AIX, V11.0 (Technology
Preview)

IBM XL Unified Parallel C User’s Guide
Version 11.0

���

IBM XL Unified Parallel C for AIX, V11.0 (Technology
Preview)

IBM XL Unified Parallel C User’s Guide
Version 11.0

���

Note
Before using this information and the product it supports, read the information in “Notices” on page 97.

© Copyright International Business Machines Corporation 2010.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Chapter 1. Parallel programming and
Unified Parallel C. 1
Parallel programming 1
Partitioned global address space programming model 1
Unified Parallel C introduction 2

Chapter 2. Unified Parallel C
programming model 3
Distributed shared memory programming 3
Data affinity and data distribution 3
Memory consistency 5
Synchronization mechanism 6

Chapter 3. Using the XL Unified Parallel
C compiler 9
Compiler options 9

New compiler options 9
Modified compiler options 11
Unsupported compiler options 12

Compiler commands 13
Invoking the compiler 13

Compiling and running an example program . . . 15

Chapter 4. Unified Parallel C language 17
Predefined identifiers 17
Unary operators 17

The address operator & 17
The sizeof operator 18
The upc_blocksizeof operator 18
The upc_elemsizeof operator 19
The upc_localsizeof operator. 19

Data and pointers 19
Shared and private data 20
Blocking of shared arrays. 20
Shared and private pointers 22
Pointer-to-shared arithmetic 26
Cast and assignment expressions 32

Declarations 39
Type qualifiers 39
Declarators 41

Statements and blocks 42
Synchronization statements 42
Iteration statements. 46

Predefined macros and directives 47
Unified Parallel C directives 47
Predefined macros 48

Chapter 5. Unified Parallel C library
functions. 49
Utility functions 49

Program termination 49
Dynamic memory allocation 50
Pointer-to-shared manipulation 56
Serialization 62
Memory transfer. 70

Collective functions. 75
Synchronization options 75
Relocalization functions 76
Computational functions 83

Chapter 6. Compiler optimization . . . 89
Shared object access optimizations 89

Shared object access privatization 89
Shared object access coalescing 90
Shared object remote updating 91
Array idiom recognition 92

Parallel loop optimizations 93
Loop reshaping 93
Loop versioning 95

Notices 97
Trademarks and service marks 99

Index 101

© Copyright IBM Corp. 2010 iii

iv IBM XL Unified Parallel C for AIX, V11.0 (Technology Preview): IBM XL Unified Parallel C User’s Guide

Chapter 1. Parallel programming and Unified Parallel C

Unified Parallel C is a parallel programming language that follows the partitioned
global address space (PGAS) programming model. To support parallel
programming, Unified Parallel C adds parallelism to the concepts and features of
the C language. The following sections give a general description of parallel
programming, of the PGAS programming model, and an introduction to the
Unified Parallel C programming language.

Parallel programming
Parallel programming is a computer programming method that uses simultaneous
execution of instructions to achieve better performance than serial programming.
You can often obtain faster results by dividing a large task into independent
subtasks that can be performed concurrently. This programming method is often
used to perform large and complex tasks efficiently.

Based on the underlying memory architectures, the parallel programming models
can be classified as follows:

The shared memory programming model
Multiple threads or processes work concurrently, and share the same
memory resources. The entire shared memory space can be directly
accessed by any thread or process.

The distributed memory programming model
This programming model consists of multiple independent processing
nodes with local memory modules. Each process executing the program
has direct access to its local portion of the memory. A process that requires
access to memory located on a different node can do so by issuing a
communication call to the process running on that remote node.

The distributed shared memory programming model
The global memory space is divided into shared memory and private
memory spaces. Each thread or process can directly access the entire
shared memory space in addition to its own private memory.

Partitioned global address space programming model

The partitioned global address (PGAS) programming model is an explicitly parallel
programming model that divides the global shared address space into a number of
logical partitions. Similar to the shared memory programming model, each thread
can address the entire shared memory space. In addition, a thread has a logical
association with the portion of the global shared address space that is physically
located on the computational node where the thread is running.

The PGAS programming model is designed to combine the advantages of the
shared memory programming model and the message passing programming
model. In the message passing programming model, each task has direct access to
only its local memory. To access share data, tasks communicate with each other by
sending and receiving messages. Unified Parallel C introduces the concept affinity
which refers to the physical association between shared memory and a particular
thread. The PGAS programming model facilitates data locality exploitation for

© Copyright IBM Corp. 2010 1

performance improvement like in the message passing programming model. In
addition, the PGAS programming model uses one-sided communication to reduce
the cost of inter-thread communication.

Related reference

“Data affinity and data distribution” on page 3

Unified Parallel C introduction
Unified Parallel C is an explicitly parallel extension of C based on the PGAS
programming model. It preserves the efficiency of the C language and supports
effective programming on various computer architectures. By using Unified
Parallel C, high performance scientific applications have access to the underlying
hardware architecture and can efficiently minimize the time required to transfer
shared data between threads.

Unified Parallel C has the following features:
v Explicitly parallel execution model. The execution model used by Unified

Parallel C is called Single Program Multiple Data (SPMD). All threads in a
Unified Parallel C program execute the same program concurrently.
Synchronization between threads is explicitly controlled by the user.

v Separate shared and private address spaces. Unified Parallel C threads can
access their private memory space and the entire global shared space. The global
shared memory space is partitioned and each thread has a logical association
with its local portion of shared memory.

v Synchronization primitives. Unified Parallel C makes no implicit assumptions
about the interaction between threads. Therefore, it is the user’s responsibility to
control thread interaction explicitly with the synchronization primitives: barriers,
locks, and fences.

v Memory consistency. Unified Parallel C supports two memory consistency
models: strict and relaxed. Strict shared data accesses are implicitly
synchronized while relaxed shared memory accesses are not. By default, every
shared data access follows the relaxed memory consistency model.

The IBM® XL Unified Parallel C compiler is a conforming implementation of the
latest XL Unified Parallel C language specification (version 1.2), supporting IBM
System p® systems running the AIX®, or Linux® operating system.

In addition to extensive syntactic and semantics checks, the XL Unified Parallel C
compiler incorporates the following advanced optimizations that are developed
and tailored to reduce the communication cost of Unified Parallel C programs:
v Shared-object access privatization
v Shared-object access coalescing
v upc_forall loop optimizations
v Remote shared-object updates
v Unified Parallel C parallel loop optimizations

2 IBM XL Unified Parallel C for AIX, V11.0 (Technology Preview): IBM XL Unified Parallel C User’s Guide

Chapter 2. Unified Parallel C programming model

This section provides a general overview of the distributed shared memory
programming model used by Unified Parallel C.

Distributed shared memory programming
In the distributed shared memory programming model, the global address space is
divided into shared and private memory spaces. The shared memory space is
logically partitioned, and each partition has affinity to a particular thread. In
addition to the local portion of the shared memory, each thread also maintains its
own private memory space.

The difference between the shared memory space and the private memory space is
that, each thread can access any part of the global shared memory space, but it can
only access its own private memory space.

As illustrated in Figure 1, the shared variable x can be accessed by any thread,
whereas the private variable y can only be accessed by thread 0. Although the
variable x can be accessed from any thread, thread 0 can read or store a value in it
much more efficiently than any other thread (x has affinity to thread 0). It is
important to design your parallel algorithm in a way that minimizes accesses to
shared data by threads that have no affinity to it.

Data affinity and data distribution
The following section describes the concept of data affinity to a thread, and
introduces how data distribution works in Unified Parallel C.

Data affinity

Data affinity refers to the logical association between a portion of shared data and
a given thread. In Figure 2 on page 4, each partition of shared memory space
(partition i) has affinity to a particular thread (thread i). A well written Unified
Parallel C program attempts to minimize communication between threads. An
effective strategy for reducing unnecessary communication is to choose a data
layout that maximizes accesses to shared data done by the thread with affinity to
the data.

x

y

Thread 0 Thread 1
Shared
space

... Thread n-1 Thread n

Private
space

...

...

Figure 1. Unified Parallel C memory model

© Copyright IBM Corp. 2010 3

Data distribution

In the distributed shared memory programming model, data is distributed across
multiple threads based on how it is declared. Unified Parallel C introduces the
keyword shared as a type qualifier for declaring shared data, which is allocated in
shared memory space. Declaration statements without the keyword shared declares
private data, which is allocated in the private memory space of each thread.

When a private object is declared, Unified Parallel C allocates memory for it in the
private memory space of each thread. For example, the declaration int y at file
scope causes the allocation of the memory required to hold variable y in the
private memory space of each thread. Each thread has its own private ″copy″ of
the variable, and can only read or write its thread-local instance of y.

When a shared object is declared, Unified Parallel C allocates memory for it in
shared memory space. For example, the declaration shared int z causes variable z
to be allocated in the partition of shared memory space associated with thread 0.
Although variable z has affinity to thread 0, it can be referenced and modified by
all threads.

By default, a shared array is allocated in a round robin fashion one element at a
time. For example, suppose that a program runs on 2 threads and contains the
following shared array declaration:
shared int A[10];

Elements A[0], A[2], A[4], A[6], A[8] are allocated with affinity to thread 0, while
array elements A[1], A[3], A[5], A[7], A[9] are allocated with affinity to thread 1.

A shared array can be allocated in blocks of consecutive elements by using a
layout qualifier. The layout qualifier specifies the number of consecutive array
elements to be allocated with affinity to the same thread. For example, suppose
that a program runs on 2 threads and contains the following shared array
declaration:
shared [2] int a[10];

This declaration has a layout qualifier which causes blocks of 2 consecutive
elements to be allocated in a round robin fashion. Array elements a[0], a[1], a[4],
a[5], a[8], a[9] are allocated with affinity to thread 0; array elements a[2], a[3],
a[6], a[7] are allocated with affinity to thread 1.

Thread 0 Thread 1

Global
shared
space

... Thread n-1 Thread n

...

Partition 0 Partition 1 ... Partition n-1 Partition n

Figure 2. Data affinity

4 IBM XL Unified Parallel C for AIX, V11.0 (Technology Preview): IBM XL Unified Parallel C User’s Guide

Related reference
v Layout qualifiers
v “Blocking of shared arrays” on page 20
v “Shared and private data” on page 20

Memory consistency
In a multithread program, accesses to shared data issued by one thread might
appear to other threads in a different order. For example, thread 0 might attempt
to read a shared variable while another thread is writing a new value into it.
Concurrent accesses to the same memory location might result in thread 0 reading
the old value, a partially updated value, or the new value stored by the other
thread.

Memory consistency modes define the order in which the results of write
operations can be observed by read operations. By using the appropriate memory
consistency mode, the user can decide when an update made to shared data by a
thread is visible to other threads. Unified Parallel C provides the following two
memory consistency modes:

strict In the strict mode, any change made to the shared data is immediately
visible to other threads, and any operation on shared data begins only
when the previous ones are complete. The compiler cannot change the
sequence of independent shared access operations. Note that using the
strict mode might increase the latency of program execution.

relaxed
In the relaxed mode, threads can access shared data at any time, regardless
of the changes made to it by other threads. An optimizing compiler is free
to reorder the sequences of independent shared access operations.

The memory consistency mode can be set in the following program contexts:
v To set the strict or relaxed mode for the program scope, use the #include

<upc_strict.h> or #include <upc_relaxed.h> directive.
v To set the strict or relaxed mode for a block scope, use the #pragma upc

strict or #pragma upc relaxed directive.
v To set the strict or relaxed mode for a variable, use the reference type qualifier

strict or relaxed.

Note: By default, shared variables follow the relaxed memory consistency
semantics.

When a program contains conflicting memory consistency modes, the compiler
uses the following precedence orders to determine the memory consistency mode
that takes effect:
1. The mode set for a variable using strict or relaxed overrides the mode set for

a block scope using #pragma upc strict or #pragma upc relaxed.
2. The mode set for a block scope using #pragma upc strict or #pragma upc

relaxed overrides the mode set for the program scope using #include
<upc_strict.h> or #include <upc_relaxed.h>.

3. The mode set for the program scope using #include <upc_strict.h> or
#include <upc_relaxed.h> overrides the default memory consistency mode.

Chapter 2. Unified Parallel C programming model 5

Synchronization mechanism
To manage thread interaction, Unified Parallel C provides three types of
synchronization primitives: barriers, locks, and fences.

Barriers

A barrier is used to synchronize the executing threads at a given program point. It
ensures that all threads reach a given program point before any of them proceeds
further. Unified Parallel C has two types of barriers: the blocking barrier and the
nonblocking barrier.

Figure 3 demonstrates the usage of the blocking barrier. Thread x and thread y are
executed concurrently. Suppose that the barrier statement upc_barrier is at
program point a, when thread x reaches program point a, it must stop and wait
until thread y and other threads reach program point a. No thread can proceed
further in the execution of the program until all threads reach the barrier.

Figure 4 on page 7 demonstrates the usage of the nonblocking barrier. The
nonblocking barrier, also referred to as the split-phase barrier, consists of the
upc_notify and upc_wait statements. Thread x executes the upc_notify statement
at program point a and notifies all other threads that it has reached program point
a. Then thread x proceeds further, and stops when it executes the upc_wait
statement at program point b. Thread x proceeds further from program point b
only when thread y and other threads reach program point a and execute the
upc_notify statement to report their presence.

From program point a to program point b, thread x can perform local
computations that do not require synchronization with other threads. This has the
effect of overlapping communication with local computation, partially hiding the
latency of the communication.

a

Thread x Thread y

Figure 3. The blocking barrier

6 IBM XL Unified Parallel C for AIX, V11.0 (Technology Preview): IBM XL Unified Parallel C User’s Guide

Locks

A lock ensures that shared data is accessed by only one thread at a time. It can be
dynamically allocated and used to coordinate accesses to the critical part of the
program.

To allocate locks, Unified Parallel C provides the following two functions:

upc_global_lock_alloc
This function allocates a lock dynamically. It is to be called by one thread.
If the function is called by multiple threads, each calling thread gets a
different allocation.

upc_all_lock_alloc
This function is a collective function that allocates the same lock to each
thread.

To use locks, Unified Parallel C provides the following functions:

upc_lock
This function sets the state of a lock as locked. If the lock is already in a
locked state, the calling thread has to wait until the lock is unlocked by the
thread that locked it. If the lock is in an unlocked state, the calling thread
locks it.

upc_lock_attempt
If the lock is in a locked state, this function returns 0; if the lock is in an
unlocked state, the calling thread locks it and the function returns 1.

upc_unlock
The locking thread can use this function to release the lock it had
previously acquired.

To free a previously allocated lock, Unified Parallel C provides the following
function:

upc_lock_free
This function is used to release the memory allocated for a lock.

Fences

A fence can be used to synchronize shared memory accesses locally. upc_fence
ensures that the execution of any shared access issued after the fence begins only

a

b

Thread x Thread y

Figure 4. The nonblocking barrier

Chapter 2. Unified Parallel C programming model 7

after all shared accesses issued before the fence are complete.

Related reference
v “Blocking barriers” on page 42
v “Nonblocking barriers” on page 43
v “Fences” on page 45
v “Serialization” on page 62

8 IBM XL Unified Parallel C for AIX, V11.0 (Technology Preview): IBM XL Unified Parallel C User’s Guide

Chapter 3. Using the XL Unified Parallel C compiler

The following sections provide information about using the XL Unified Parallel C
compiler.

Compiler options
The XL Unified Parallel C compiler supports a subset of the XL C compiler options
and adds some new Unified Parallel C specific options. It also modifies some
existing XL C options.

The following sections list the XL Unified Parallel C compiler options that are
different from the XL C compiler options. For the compiler options that are
common between the two compilers, consult the XL C Compiler Reference.

Note: The XL Unified Parallel C compiler does not support any C++ compiler
options.

New compiler options
This section describes the new option that the XL Unified Parallel C compiler
introduces.

Table 1. New compiler options

Option name Description

-qupc Specifies the number of static threads or the
number of nodes in a cluster for a Unified
Parallel C program.

-qupc
Category

Optimization and tuning

Pragma equivalent

None

Purpose

Specifies the number of static threads or the number of nodes in the cluster used
for the execution of the Unified Parallel C program.

Syntax

�� -q upc = threads = number
dnodes

��

Defaults

Not applicable

© Copyright IBM Corp. 2010 9

Parameters

threads
Specifies the number of static THREADS to be used in the execution of the
Unified Parallel C program.

dnodes
Specifies the number of nodes in a cluster that are used for the execution of the
Unified Parallel C program.

number
Represents the number of static threads or the number of nodes. It is an
integer literal in the range of 1 and 65535.

Usage

The options -qupc=threads and -qupc=dnodes are used to specify the number of
threads and nodes for the execution of a Unified Parallel C program at compile
time. Specifying the two options assists the compiler with the locality analysis that
is required to enable some optimizations. If you do not specify -qupc=threads or
-qupc=dnodes when you compile a Unified Parallel C program, the compiler
assumes that the program runs in the dynamic environment.

The Parallel Operating Environment (POE) command-line options or environment
variables can be used to set the number of threads and nodes. For more
information, consult the POE documentation.

If you specify -qupc=dnodes=M without specifying -qupc=threads, the compiler
assumes M threads and M nodes for the generated program.

If you specify both -qupc=threads=N and -qupc=dnodes=M, ensure that N ≥ M
and N must be a multiple of M (that is N % M = 0).

Predefined macros

None

Examples

To compile a hello1.upc program and set the generated program to use 4 static
threads and run on 4 nodes in a cluster, enter the following command:

xlupc -qupc=threads=4 -qupc=dnodes=4 hello1.upc

In this example, the generated program runs 1 thread per node. The program must
be run on 4 nodes.

To compile a hello2.upc program and set the generated program to use 8 static
threads and run on 4 nodes in a cluster, enter the following command:

xlupc -qupc=theads=8 -qupc=dnodes=4 hello2.upc

In this example, the generated program runs 2 threads per node. The program
must be run on 4 nodes.

10 IBM XL Unified Parallel C for AIX, V11.0 (Technology Preview): IBM XL Unified Parallel C User’s Guide

Modified compiler options
This section describes the XL Unified Parallel C compiler options that are used
differently from the same XL C compiler options.

Table 2. Modified compiler options

Option name Description
Changes in XL Unified
Parallel C compiler

-qalias Indicates whether a program
contains certain categories of
aliasing or does not conform
to C standard aliasing rules.

Supports only the following
suboptions:

v ansi

v noansi

The default suboption is
ansi.

-qalign Specifies the alignment of
data objects in storage, which
avoids performance
problems with misaligned
data.

The following suboptions are
not supported:

v mac68k

v twobyte

-qarch Specifies the processor
architecture for which the
code (instructions) should be
generated.

Supports only the suboption,
pwr7

-qignprag Instructs the compiler to
ignore certain pragma
statements.

The following suboptions are
not supported:

v ibm

v omp

-qkeyword Controls whether the
specified name is treated as a
keyword or as an identifier
whenever it appears in your
program source.

The following suboptions are
not supported:

v inline

v restrict

-qlanglvl Determines whether source
code and compiler options
should be checked for
conformance to a specific
language standard, or
superset of a standard.

Supports only the following
suboptions:

v stdc99

v extc99

The default suboption is
extc99.

-qlistfmt Creates a report to assist
with finding optimization
opportunities.

The following suboptions are
not supported:

v pdf

v nopdf

-O, -qoptimize Specifies whether to optimize
code during compilation and,
if so, at which level.

The following optimization
levels are not supported:

v -O4

v -O5

-qpath Determines substitute path
names for XL UPC
executables such as the
compiler, assembler, linker,
and preprocessor.

The following suboptions are
not supported:

v I

v L

Chapter 3. Using the XL Unified Parallel C compiler 11

Table 2. Modified compiler options (continued)

Option name Description
Changes in XL Unified
Parallel C compiler

-qsourcetype Instructs the compiler to
treat all recognized source
files as a specified source
type, regardless of the actual
file name suffix.

The following suboptions are
not supported:

v assembler

v assembler-with-cpp

Adds the new suboption,
upc.

-qstrict_induction Prevents the compiler from
performing induction (loop
counter) variable
optimizations.

The default suboption is:

v -qstrict_induction

v -qnostrict_induction when
-O3 is in effect

-t Applies the prefix specified
by the -B option to the
designated components.

The following suboptions are
not supported:

v I

v L

-qtune Tunes instruction selection,
scheduling, and other
architecture-dependent
performance enhancements
to run best on a specific
hardware architecture.

Supports only the following
suboptions:

v pwr7

v auto

v balanced

Unsupported compiler options
This section describes the XL C compiler options that the XL Unified Parallel C
compiler does not support.
v -q32, -q64
v -qaltivec
v -qcompact
v -qcpluscmt
v -qdatalocal
v -qdataimported
v -qdigraph
v -qdirectstorage
v -qdollar
v -qdpcl
v -e
v -f
v -qfdpr
v -qfunctrace
v -qgenproto
v -qhot
v -qipa
v -qlibmpi
v -qmacpstr
v -O4

12 IBM XL Unified Parallel C for AIX, V11.0 (Technology Preview): IBM XL Unified Parallel C User’s Guide

v -O5
v -qoptdebug
v -qpascal
v -qpdf1, -qpdf2
v -qprolocal, -qprocimported, -qprocunknown
v -qproto
v -Q
v -qshowpdf
v -qsmallstack
v -qsmp
v -qspeculateabsolutes
v -qstatsym
v -qtabsize
v -qtrigraph
v -qupconv
v -qwarn64
v -qweakexp
v -qweaksymbol
v -qvecnvol

Compiler commands
This section provides information about invoking the XL Unified Parallel C
compiler and setting the target execution environment for the program.

Invoking the compiler
This section provides information about invoking the XL Unified Parallel C
compiler and compiling programs for different execution environments.

Invocation command

To compile a Unified Parallel C program, use the xlupc command to invoke the
compiler. By default, a .c file is compiled as a Unified Parallel C program unless
the option -qsourcetype=c is specified.

Note: If you want to mix .c files with .upc files in your application, .c files can be
compiled and linked with xlupc.

Execution environments

The execution environment of a Unified Parallel C program can be static or
dynamic. In the static environment, the number of threads for the target program
is known at compile time. In the dynamic execution environment, neither the
number of threads nor the number of nodes is known at compile time.

To set the number of threads for a program in the static environment, you can use
the -qupc=threads option. For example, to compile the test.upc program that will
run with 4 threads, enter the following command:

xlupc -o test1 -qupc=threads=4 test.upc

Chapter 3. Using the XL Unified Parallel C compiler 13

To set the number of threads for a program in the dynamic environment, you can
use the following command:

export UPC_NTHREADS=N

Where N is the number of threads that the program will run with. The environment
variable UPC_NTHREADS can be used to specify the number of threads that a
Unified Parallel C program will run with in both the static and dynamic
environments.

Note: If the number of threads for a program was specified at compile time, it is
not allowed to attempt to run the compiled program with a different number of
threads.

To set the number of nodes for a program in the static environment, you can use
the compiler option -qupc=dnodes=M, where M is the number of nodes that the
program will run on. To compile the test.upc program that will run with N
threads on M nodes, enter the following command:

xlupc -qupc=threads=N -qupc=dnodes=M test.upc

Where N ≥ M and N must be a multiple of M (that is N % M = 0).

The executable program must be run on the same number of nodes as specified by
the -qupc=dnodes option when compiling the program. To run the executable
program, you must use the IBM Parallel Operating Environment (POE). For
example, to run the executable program, a.out, enter the following command:

a.out -procs 3 -msg_api LAPI -hostfile hosts

Where:

-procs Specifies the number of processes.

-msg_api
Indicates to POE which message passing API is being used by the parallel
job.

-hostfile
Specifies a host file that contains the names or the IP address of the hosts
used.

For example, to specify 3 nodes, you can create the host file hosts listing the IP
addresses of the 3 nodes in the cluster as follows:
1.2.3.4
1.2.3.5
1.2.3.6

Another example is given here to demonstrate how to specify the number of nodes
in the dynamic environment.

xlupc test.upc

export UPC_NTHREADS=8

a.out -procs 4 -msg_api LAPI -hostfile hosts

Note: For more information about using POE, consult its documentation.

14 IBM XL Unified Parallel C for AIX, V11.0 (Technology Preview): IBM XL Unified Parallel C User’s Guide

Compiling and running an example program
This section provides a simple Unified Parallel C program, the commands to
compile and execute the program, and the program result.

In the following example (hello.upc), each thread prints a message to standard
output:
include <upc.h>
include <stdio.h>

void main()
{

printf("Hello world! (THREAD %d of %d THREADS)\n", MYTHREAD, THREADS);
return 0;

}

Use the following command to compile the program in the static environment
targeting 4 threads:

xlupc -o hello -qupc=threads=4 hello.upc

The compiler compiles the code and generates an executable file, hello. To run the
executable program, you can use the following command:

poe ./hello -hostfile hosts -procs 1 -msg_api lapi

Where -procs specifies the number of processes to use. The program prints to
standard output a message on each thread, for example:

Hello world! (THREAD 3 of 4 THREADS)
Hello world! (THREAD 1 of 4 THREADS)
Hello world! (THREAD 0 of 4 THREADS)
Hello world! (THREAD 2 of 4 THREADS)

Related reference
v “Predefined identifiers” on page 17
v Execution environments

Chapter 3. Using the XL Unified Parallel C compiler 15

16 IBM XL Unified Parallel C for AIX, V11.0 (Technology Preview): IBM XL Unified Parallel C User’s Guide

Chapter 4. Unified Parallel C language

This chapter describes the semantics and syntax of the Unified Parallel C parallel
programming language.

Predefined identifiers
This section provides information about the predefined identifiers that the XL
Unified Parallel C compiler defines: THREADS, MYTHREAD, and UPC_MAX_BLOCK_SIZE.

THREADS
Indicates the number of threads that are used in the current program
execution. THREADS is an expression with value of type int, and has the
same value on every thread. It is an integer constant in the static
environment.

MYTHREAD
Represents the index of the thread that is currently being executed. The
value is an integer ranging from 0 to THREADS-1.

UPC_MAX_BLOCK_SIZE
Indicates the maximum block size allowed by the compilation environment
for shared data. The value is a predefined integer constant.

Unary operators
Unified Parallel C extends the C operators by adding the following unary
operators:
v The address operator &
v The sizeof operator
v The upc_blocksizeof operator
v The upc_elemsizeof operator
v The upc_localsizeof operator

The address operator &

The address operator & returns a pointer to its operand. When the operand of the
operator & is a shared object of Type T, the result has type shared [] T *. For
instance:
typdef struct t
{

int a;
} myt;

shared myt st; /*declares a shared scalar structure object st which is located in
the shared space of Thread 0

*/

shared[] int *p;

p=&st.a // &st.a has the type shared[] int *

In the example code, the pointer-to-shared p is initialized with the address to the
shared structure member st.a.

© Copyright IBM Corp. 2010 17

The sizeof operator

The sizeof operator returns the size, in bytes, of the operand. The operand can be
either an expression or the parenthesized name of a type. You can apply the sizeof
operator to shared data and shared types.

The sizeof operator syntax

�� sizeof unary-expression
(type name)

��

When the sizeof operator is applied to a shared array with a definite block size in
the dynamic environment, the operator returns a nonconstant integer value. All
constraints on the C sizeof operator also apply to this operator in Unified Parallel
C.

Example
shared int a;
shared [5] int b[5*THREADS];
int c;

sizeof(a); /* The return value is sizeof(int). The return value might be different
depending on the 32bit mode or the 64bit mode

*/

sizeof(b); // The return value is 5*THREADS*sizeof(int).
sizeof(c); // Like in the C language, the operator returns sizeof(int).

The upc_blocksizeof operator

The upc_blocksizeof operator returns the block size of an operand, which is the
value specified in the layout qualifier of a type declaration. The return value is an
integer of type size_t.

If no layout qualifier is specified, the operator returns the default block size 1. If
the operand of upc_blocksizeof has an indefinite block size, the operator returns 0.

The upc_blocksizeof operator syntax

�� upc_blocksizeof unary-expression
(type name)

��

The upc_blocksizeof operator applies only to shared-qualified expressions or
types. If the operand is an expression, that expression is not evaluated. All
constraints on the sizeof operator described in C also apply to this operator.

Example
shared [] int a[5]; // upc_blocksizeof(a)=0
shared [5] int b[5]; // upc_blocksizeof(b)=5
shared int c; // upc_blocksizeof(c)=1
upc_blocksizeof(shared[3] int) = 3;

Related reference

“Type qualifiers” on page 39.

18 IBM XL Unified Parallel C for AIX, V11.0 (Technology Preview): IBM XL Unified Parallel C User’s Guide

The upc_elemsizeof operator

The upc_elemsizeof operator returns the size, in bytes, of the highest-level
(leftmost) type that is not an array. For nonarray objects, upc_elemsizeof returns
the same value as sizeof. This rule also applies to the array defined by typedef.

The upc_elemsizeof operator syntax

�� upc_elemsizeof unary-expression
(type name)

��

The upc_elemsizeof operator only applies to shared-qualified expressions or types,
and it returns an integer constant of type size_t. All constraints on the sizeof
operator described in C also apply to this operator.

Example
typedef shared [] char type;
type a[10]; // upc_elemsizeof(a)=sizeof(char)
shared [3] int b[20]; // upc_elemsizeof(b)=sizeof(int)
shared [3] char c[9]; // upc_elemsizeof(c)=sizeof(char)
shared int d; // upc_elemsizeof(d)=sizeof(int)

The upc_localsizeof operator

The upc_localsizeof operator returns the size of the local portion of a shared
object or a shared-qualified type. The return value is an integer constant of type
size_t. All threads receive the same return value, which is the maximum size of
the portion that can be allocated with affinity to each thread.

The upc_localsizeof operator syntax

�� upc_localsizeof unary-expression
(type name)

��

The upc_localsizeof operator only applies to shared-qualified types or
expressions. All constraints on the sizeof operator described in C also apply to
this operator.

Example

Assume that there are 3 THREADS:
shared [] int a[10]; // upc_localsizeof(a)=10*sizeof(int)
shared [3] int b[10]; // upc_localsizeof(b)=4*sizeof(int)
shared [3] int c[9]; // upc_localsizeof(c)=3*sizeof(int)
shared int d[10]; // upc_localsizeof(d)=4*sizeof(int)

Data and pointers
This section provides information about shared data declarations and pointers to
shared data in Unified Parallel C.

Chapter 4. Unified Parallel C language 19

Shared and private data

Unified Parallel C has two types of data, shared data and private data. Shared data
is declared with the shared type qualifier, and is allocated in the shared memory
space. Private data is declared without the shared type qualifier. One instance of
the private data is allocated in the private memory space of each thread. Private
data can be accessed only by the thread to which it has affinity.

Example

This example shows the data layout for different declarations. The following code
declares three identifiers of different types. Assuming four threads, these data
objects are allocated as shown in Figure 5.
int a; // private scalar variable
shared int b; // shared scalar variable
shared int c[10]; // shared array

Figure 5 shows that a thread-local instance of the scalar variable a is allocated in
the private memory space of each thread. The shared scalar variable b is allocated
in the shared memory space of thread 0. The array elements of the shared array c
are allocated in the shared memory space in a round robin manner across all
threads.

Blocking of shared arrays

By default, shared array elements are allocated in the shared memory space across
all threads in a round robin fashion. However, you can change the default way of
distributing shared array elements by declaring the shared array with a layout
qualifier.

The layout qualifier instructs the compiler to allocate the specified number of
consecutive array elements in the shared memory space of the same thread. By
using the layout qualifier, you can optimize the distribution of a shared array and
minimize the number of shared remote accesses that your parallel computation
performs. If there is no layout qualifier, the default value is 1.

The affinity that an array element has to a particular thread is determined by the
thread number and the block size. For example, in the shared array declared as
follows:

Thread 2Thread 1Thread 0 Thread 3

c[2]
c[6]

c[1]
c[5]
c[9]

c[0]
c[4]
c[8]

c[3]
c[7]

Shared
space

Private
space

b

a a a a

Figure 5. Memory allocation and data affinity

20 IBM XL Unified Parallel C for AIX, V11.0 (Technology Preview): IBM XL Unified Parallel C User’s Guide

shared [block_size] A [number-of-elements]

element i of array A has affinity to thread (i/block_size)%THREADS.

Examples

Example 1: A program declares the shared array shared[3] int a[14] and is run
by 3 threads. The data layout of the shared array a is shown in Figure 6.

In Figure 6, every three contiguous array elements are grouped as a block and are
allocated in a block-cyclic manner across all threads. Each block of elements has
affinity to a particular thread.

Example 2: A program declares the following shared array and is run by 3 threads:
typedef int m[3];
shared [2] m a[5];

The block size always applies to the underlying scalar type, regardless of whether
there are any typedefs involved. The underlying scalar type is the leftmost
nonarray type. The array is blocked as if it were declared as follows:
shared [2] int a[5][3];

The data layout of the shared array a is shown in Figure 7.

Thread 2Thread 1Thread 0

a[6]
a[7]
a[8]

a[3]
a[4]
a[5]
a[12]
a[13]

a[0]
a[1]
a[2]
a[9]
a[10]
a[11]

Figure 6. data layout of one-dimensional array

Thread 2Thread 1Thread 0

a[1][1]
a[1][2]

a[3][1]
a[3][2]

a[0][2]
a[1][0]

a[2][2]
a[3][0]

a[4][2]

a[0][0]
a[0][1]

a[2][0]
a[2][1]

a[4][0]
a[4][1]

Figure 7. Data layout of two-dimensional array

Chapter 4. Unified Parallel C language 21

Shared and private pointers

Unified Parallel C allows the declaration of four types of pointers. The four types
of pointers allow for the fact that the pointer variable, the data pointed to, or both
might be shared-qualified.Table 3 illustrates the four types of pointers as shown in
Figure 8

Table 3. Unified Parallel C pointer types

Where the pointer
resides Where the pointer points Pointer type

private private Private-to-private pointer

private shared Private-to-shared pointer

shared private Shared-to-private pointer

shared shared Shared-to-shared pointer

Private-to-private pointer

The following statement declares a private-to-private pointer p1:
int *p1;

p1 is a private pointer that points to private data. Unified Parallel C allocates
memory for an instance of p1 in the private memory space of each thread. This
pointer can be used to access data in the private memory space of a thread.

Example

The following example demonstrates the usage of the private-to-private pointer.
Figure 9 on page 23 illustrates where p1 is located and where it points.
#include <upc.h> // assume 2 threads

int a=-1;

void main()
{

int *p1;

if(MYTHREAD == 1)
{

// p1 points to the dynamically allocated private space.
p1=malloc(1*sizeof(int));
*p1=1;

}

p1 p2 p1 p2 p1 p2

p4 p3

Thread 0
Shared
space

Private
space

Thread n...

Figure 8. The memory view of the four types of Unified Parallel C pointers

22 IBM XL Unified Parallel C for AIX, V11.0 (Technology Preview): IBM XL Unified Parallel C User’s Guide

else
{

// p1 points to the variable a.
p1=&a;

}
printf("Th=%d,*p1=%d\n",MYTHREAD,*p1);

}

The output of this program is as follows:
Th=0,*p1=-1
Th=1,*p1=1

Private-to-shared pointer

The following statement declares a private-to-shared pointer p2:
shared int *p2;

p2 is private pointer that points to shared data. Each thread has an independent
and private instance of p2. This type of pointer can be used to access shared data.
Unified Parallel C allocates memory for an instance of p2 in the private memory
space of each thread.

Example

The following example demonstrates the usage of the private-to-shared pointer.
Figure 10 on page 24 illustrates where p2 is located and where it points.
#include <upc.h> // assume 2 threads

shared int a=0;

void main()
{

shared int *p2; // p2 is a private pointer to shared

// THread 1 initializes variable a
if(MYTHREAD == 1)

a=-1;
upc_barrier;

// each pointer p2 points to the shared space where shared variable a stays
p2=&a;

// every thread dereferences p2, and value should be the same for each thread
printf("Th=%d,*p2=%d\n",MYTHREAD,*p2);

}

Private
space

Thread 0 Thread 1

a=-1

p1

Dynamically
allocated space

p1

Figure 9. The memory view of the private-to-private pointer p1

Chapter 4. Unified Parallel C language 23

The output of this program is as follows:
Th=1,*p2=-1
Th=0,*p2=-1

Shared-to-private pointer

The following statement declares a shared-to-private pointer p3:
int * shared p3;

p3 is a shared pointer that points to private data. Any thread can dereference this
pointer. However, the value obtained is well-defined only for the thread that
initialized the pointer, or for threads co-located on the same node.

Example

The following example demonstrates the usage of the shared-to-private pointer.
Figure 11 on page 25 illustrates where p3 is located and where it points.
include <upc.h> // assume 2 threads

int *shared p3;

void main()
{

int a=MYTHREAD+99;

if(MYTHREAD == 1)
{

// assign the address of thread 1's variable a to p3.
p3=&a;

}

upc_barrier;

printf("Th=%d,*p3=%d\n",MYTHREAD,*p3);
}

Thread 0 Thread 1

a=-1

p2 p2

Shared
space

Private
space

Figure 10. The memory view of the private-to-shared pointer p2

24 IBM XL Unified Parallel C for AIX, V11.0 (Technology Preview): IBM XL Unified Parallel C User’s Guide

The output of this program is as follows:
Th=1,*p3=100 // defined behaviour
Th=0,*p3=99 // undefined behaviour

Shared-to-shared pointer

The following statement declares a shared-to-shared pointer p4:
shared int *shared p4;

p4 is a shared pointer that points to shared data. Memory for the pointer p4 is
allocated on thread 0.

Example

The following example demonstrates the usage of the shared-to-shared pointer.
Figure 12 on page 26 illustrates where p4 is located and where it points.
include <upc.h> // assume 2 threads

shared int *shared p4[THREADS]; // declare a shared pointer array
shared int a[THREADS]; // declare a shared array

void main()
{

a[MYTHREAD]=MYTHREAD+99;

if(MYTHREAD == 0)
p4[MYTHREAD]=&a[1];

else
p4[MYTHREAD]=&a[0];

upc_barrier;

printf("Th=%d,*p4[%d]=%d\n",MYTHREAD,MYTHREAD,*p4[MYTHREAD]);
}

p3

Thread 0 Thread 1

a=1+99a=0+99

Shared
space

Private
space

Figure 11. The memory view of the shared-to-private pointer p3

Chapter 4. Unified Parallel C language 25

The output of this program is as follows:
Th=1,*p4[1]=99
Th=0,*p4[0]=100

Related reference

“upc_threadof” on page 61

Pointer-to-shared arithmetic
A pointer-to-shared is a pointer that points to shared data. Unlike a C pointer, a
pointer-to-shared tracks the following information:
v The thread that the pointer-to-shared currently points to
v The offset that is used to calculate the phase within that thread

When incremented, a pointer-to-shared with an indefinite block size behaves
similarly to a C pointer. After the increment, the thread of the pointer remains
unchanged, and the phase of the pointer is always 0.

When incremented, a pointer-to-shared with a definite block size advances
according to array element order. After the increment, both the thread and phase of
the pointer might change. The following example describes the pointer arithmetic:
include <upc.h> // assume 3 THREADS

#define B 3
#define N 20

shared [B] int arr[N];
shared [B] int *p, *p1;

void main()
{

int i;
upc_forall(i=0;i<N;i++;&arr[i])
{

arr[i]=i;
}
upc_barrier;
p=&arr[0]; // p point to arr[0]
p1=p+5; // p1 will point to arr[5] after executing the statement

printf("1-Th=%d,*p=%d,Phaseof(p)=%d,Threadof(p)=%d\n",MYTHREAD,*p,upc_phaseof(p),
upc_threadof(p));

printf("2-Th=%d,*p1=%d,Phaseof(p1)=%d,Threadof(p1)=%d\n",MYTHREAD,*p1,upc_phaseof(p1),

Thread 0 Thread 1

a[0]=0+99

p4[0]

a[1]=1+99

p4[1]

Shared
space

Figure 12. The memory view of the shared-to-shared pointer p4

26 IBM XL Unified Parallel C for AIX, V11.0 (Technology Preview): IBM XL Unified Parallel C User’s Guide

upc_threadof(p1));

upc_threadof(p1));
}

The output of the program is as follows:
1-Th=1,*p=0,Phaseof(p)=0,Threadof(p)=0
2-Th=1,*p1=5,Phaseof(p1)=2,Threadof(p1)=1
1-Th=0,*p=0,Phaseof(p)=0,Threadof(p)=0
1-Th=2,*p=0,Phaseof(p)=0,Threadof(p)=0
2-Th=0,*p1=5,Phaseof(p1)=2,Threadof(p1)=1
2-Th=2,*p1=5,Phaseof(p1)=2,Threadof(p1)=1

After the assignment p1=p+i, the following equations must be true in any Unified
Parallel C implementation. In each case, the div indicates integer division rounding
towards negative infinity and the mod operator returns the nonnegative remainder:
upc_phaseof(p1) == (upc_phaseof(p) + i) mod B
upc_threadof(p1) == (upc_threadof(p)+ (upc_phaseof(p) + i) div B) mod THREADS

Comparison between two pointers-to-shared is meaningful only when the two
pointers point to the same array.

Subtraction between two pointers-to-shared is meaningful only when there exists
an integer x that satisfies both the following conditions:
pts1 + x == pts2
upc_phaseof (pts1 + x) == upc_phaseof (pts2)

pts1 and pts2 are two pointers-to shared. The result of (pts2-pts1) equals to x,
and in this case, the subtraction is meaningful.

Note: Binary operations (comparison, subtraction) between pointers-to-shared and
pointers-to-private are meaningless, because these two different types of pointers
have types that are not compatible.

Examples

Example 1, Example 2 and Example 3 illustrate various pointer arithmetic
operations on pointers-to-shared having definite block size.

Example 1
include <upc.h> // assume 3 threads

define N 8

shared[2] int a[N];
shared[2] int *p1,*p2;

void main()
{

int i=0;
upc_forall(i=0;i<N;i++;i)

a[i]=i;
upc_barrier;

p1=&a[1];
p2=p1+MYTHREAD; //note:p2-p1 must be equal to MYTHREAD
printf("Th:%d,*p1=%d,*p2=%d\n",MYTHREAD,*p1,*p2);

}

Chapter 4. Unified Parallel C language 27

Figure 13 demonstrates where the pointers in this program point.

The output of this program is as follows:
Th:0,*p1=1,*p2=1,p2-p1=0
Th:2,*p1=1,*p2=3,p2-p1=2
Th:1,*p1=1,*p2=2,p2-p1=1

Example 2
include <upc.h> // assume 3 threads

define N 8

shared[2] int a[N];
shared[2] int *p1,*p2;

void main()
{

int i=0;
upc_forall(i=0;i<N;i++;i)

a[i]=i;
upc_barrier;

p1=a+1+MYTHREAD;
p2=p1+MYTHREAD;
printf("Th:%d,*p1=%d,*p2=%d\n",MYTHREAD,*p1,*p2);

}

Figure 14 on page 29 demonstrates where the pointers in this program point.

p2

p1 p1

p2

a[0] a[2]

a[1]

a[6]

a[7]

a[3]

a[4]

a[5]

p1

Thread 0 Thread 1 Thread 2

Shared
space

Private
space

p2

Figure 13. The memory view of pointers in Example 1

28 IBM XL Unified Parallel C for AIX, V11.0 (Technology Preview): IBM XL Unified Parallel C User’s Guide

The output of this program is as follows:
Th:1,*p1=2,*p2=3
Th:2,*p1=3,*p2=5
Th:0,*p1=1,*p2=1

Example 3
include <upc.h> // assume 3 threads

define N 8

shared[2] int a[N];
shared[2] int *p1,*shared p2;

void main()
{

int i=0;
upc_forall(i=0;i<N;i++;i)

a[i]=i;
upc_barrier;

p1=&a[1];
p2=&a[5];

upc_barrier;

p1++;
if(MYTHREAD == 0)

p2--;

upc_barrier;
printf("Th:%d,*p1=%d,*p2=%d\n",MYTHREAD,*p1,*p2);
printf("phase(p1)=%d,threadof(p1)=%d\n",upc_phaseof(p1),upc_threadof(p1));
printf("phase(p2)=%d,threadof(p2)=%d\n",upc_phaseof(p2),upc_threadof(p2));

}

Figure 15 on page 30 demonstrates where the pointers in this program point.

p2 p2

p1 p1

a[0]
a[1]

a[6]
a[7]

a[2]
a[3]

p2

p1

Thread 0 Thread 1 Thread 2

Shared
space

Private
space

a[4]
a[5]

Figure 14. The memory view of pointers in Example 2

Chapter 4. Unified Parallel C language 29

The output of this program is as follows:
Th:1,*p1=2,*p2=4
Th:2,*p1=2,*p2=4
phase(p1)=0,threadof(p1)=1
phase(p1)=0,threadof(p1)=1
phase(p2)=0,threadof(p2)=2
phase(p2)=0,threadof(p2)=2
Th:0,*p1=2,*p2=4
phase(p1)=0,threadof(p1)=1
phase(p2)=0,threadof(p2)=2

Example 4 and Example 5 show how pointers-to-shared with an indefinite block
size are incremented.

Example 4
include <upc.h> // assume 3 threads

define N 8

shared[] int a[N];
shared[] int *p1,*shared p2;

void main()
{

int i=0;
upc_forall(i=0;i<N;i++;i)

a[i]=i;
upc_barrier;

p1=&a[1];
if(MYTHREAD == THREADS -1)

p2=p1+5;

upc_barrier;

printf("Th:%d,*p1=%d,*p2=%d\n",MYTHREAD,*p1,*p2);
printf("phaseof(p2)=%d,threadof(p2)=%d\n",upc_phaseof(p2),upc_threadof(p2));

}

p1 p1

Thread 0 Thread 1 Thread 2

a[0] a[2] a[4]

a[6]

a[1] a[3] a[5]

a[7]

Shared
space

Private
space

p2

p1

Figure 15. The memory view of pointers in Example 3

30 IBM XL Unified Parallel C for AIX, V11.0 (Technology Preview): IBM XL Unified Parallel C User’s Guide

Figure 16 demonstrates where the pointers in this program point.

The output of this program is as follows:
Th:2,*p1=1,*p2=6
Th:1,*p1=1,*p2=6
phaseof(p2)=0,threadof(p2)=0
Th:0,*p1=1,*p2=6
phaseof(p2)=0,threadof(p2)=0
phaseof(p2)=0,threadof(p2)=0

Example 5
include <upc.h> // assume 3 threads

define N 8

shared[] int *shared p1;
shared[] int *p2;

void main()
{

int i=0;
if(MYTHREAD == 1)

p1=upc_alloc(N*sizeof(int));
upc_barrier;
upc_forall(i=0;i<N;i++;i)

p1[i]=i;
upc_barrier;

p2=p1+MYTHREAD;

upc_barrier;

printf("Th:%d,*p1=%d,*p2=%d\n",MYTHREAD,*p1,*p2);
printf("phaseof(p2)=%d,threadof(p2)=%d\n",upc_phaseof(p2),upc_threadof(p2));

}

Figure 17 on page 32 demonstrates where the pointers in this program point.

p1

Thread 0 Thread 1 Thread 2

Shared
space

Private
space

p2

p1

a[0] a[2]a[1]

a[3] a[5]a[4]

a[6] a[7]

p1

Figure 16. The memory view of pointers in Example 4

Chapter 4. Unified Parallel C language 31

The output of this program is as follows:
Th:1,*p1=0,*p2=1
phaseof(p2)=0,threadof(p2)=1
Th:2,*p1=0,*p2=2
phaseof(p2)=0,threadof(p2)=1
Th:0,*p1=0,*p2=0
phaseof(p2)=0,threadof(p2)=1

Related reference

“upc_phaseof” on page 59

Cast and assignment expressions
Casting between pointers in Unified Parallel C can be classified into the following
categories:
v Cast of a pointer-to-shared to a pointer-to-shared
v Cast of a pointer-to-shared to a pointer-to-private
v Cast of a pointer-to-private to a pointer-to-shared
v Cast of a pointer-to-private to a pointer-to-private

Cast of a pointer-to-shared to a pointer-to-shared

If you cast between two pointers-to-shared that have different type sizes or block
sizes, the phase of the resulting pointer is zero.

The following example demonstrates the casting between two pointers-to-shared
with different block sizes.
include <upc.h> // assume 4 threads

define FAILURE 166
define SUCCESS 155

define BLKSIZE 3

p2p2

Thread 0 Thread 1 Thread 2

Shared
space

Private
space

p1

p2

a[0] a[2]a[1]

a[3] a[5]a[4]

a[6] a[7]

Dynamically
allocated
array

Figure 17. The memory view of pointers in Example 5

32 IBM XL Unified Parallel C for AIX, V11.0 (Technology Preview): IBM XL Unified Parallel C User’s Guide

define ARRSIZE 60

define verify(result,expect) \
{ if ((result)!=(expect)) \

{ \printf("Error: fail at line %d: mythread=%d, result= %d, expect= %d\n",
__LINE__, MYTHREAD, result,expect); \

upc_global_exit(FAILURE); \
} \

}

shared int *p1,arr2[ARRSIZE];
shared[BLKSIZE] int *p2,arr1[ARRSIZE];

int main()
{

int i;
/* initialize array */
upc_forall(i=0;i<ARRSIZE;i++;i)
{

arr1[i]=i;
arr2[i]=-i;

}

upc_barrier;

/* test 1 */
/* cast a pointer-to-shared with block size 3 to a pointer-to-shared with block

size 1
*/

/*p1 is a pointer-to-shared with block size 1, and arr1 is a shared array with
block size 3. When p1 is assigned with the address of arr1[5], it involves
a cast from a pointer-to-shared with block size 3 to a pointer-to-shared with
block size 1 as follows:

p1=(shared int *)&arr1[5];

To find out which element p1 will point to after the cast, you can take the
following steps:

1 Re-layout pointer p1.
2 Locate the same position (which has the same thread and offset

with arr1[5]).
3 Check the phase of that location under block size 1 data layout.

If the phase of that position is 0, p1 will point to the same position
where arr1[5] stays. If the phase of that position is not 0, p1 will
point to the location with phase 0 within the same block. (When two
pointers-to-shared with different block size are cast, the resulting
pointer will always have a 0 phase.)

*/
/* T0 T1 T2 T3

0 3 6 9 // arr1 is a shared array with block size 3
1 4 7 10
2 5 8 11 // arr1[5]: thread=1, phase=2, value=5
12 15 18 21
13 16 19 22
14 17 20 23
....

0 1 2 3 // p1 points to a shared array with block size 1
4 5 6 7
8 9 10 11 /*After assignment, p1 still points to the

arr1[5], as position 9 in the data layout
of block size 1 has the same offset, the
same thread with arr1[5], and has a zero
phase.

Chapter 4. Unified Parallel C language 33

*/
12 13 14 15
16 17 18 19
20 21 22 23
....

*/
p1=(shared int *)&arr1[5];

verify(upc_phaseof(p1),0); // Phase of p1 must be zero after the cast

verify(upc_threadof(p1),upc_threadof(&arr1[5])); // keep the same thread

verify(*p1,5); // p1 still points to arr1[5]

verify(*(p1-2),10); /* Move backward 2 elements based on the data layout of block
size 1, and p1 will point to arr1[10].

*/
verify(*(p1+2),11); /* Move forward 2 elements based on the data layout of block

size 1, and p1 will point to arr1[11].
*/

/* test 2 */
//cast a pointer-to-shared with block size 1 to a pointer-to-shared with block size 3
/* T0 T1 T2 T3

0 1 2 3 // arr2 is a shared array with block size 1
4 5 6 7 // arr2[5]:thread=1, phase=0
8 9 10 11
12 13 14 15
16 17 18 19
20 21 22 23
. . .

0 3 6 9 // p2 points to a shared array with block size 3
1 4 7 10 /* after assignment, p2 will point to position 3

(arr2[1]) in order to keep the same thread,
same offset with arr2[5] and ensure phase is
also zero.

*/
2 5 8 11
12 15 18 21
13 16 19 22
14 17 20 23
. . .

*/

p2=(shared[BLKSIZE] int *)&arr2[5];

verify(*p2,-1); // p2 will point to arr2[1]

verify(upc_phaseof(p2),0); // phase has been reset to 0

verify(upc_threadof(p2),upc_threadof(&arr2[5])); // keep the same thread

/*Move forward according to new data layout with block size 3,
and it will point to arr2[5]

*/
verify(*(++p2),-5);

verify(*(p2-2),-8); // Then move backward 2 elements, and it will point to arr2[8].
return SUCCESS;

}

Another example is given to demonstrate the casting between a pointer-to-shared
with a definite block size and another pointer-to-shared with an indefinite block
size.

34 IBM XL Unified Parallel C for AIX, V11.0 (Technology Preview): IBM XL Unified Parallel C User’s Guide

include <upc.h>

define BLKSIZE 3
define ARRSIZE 60
define FAILURE 166
define SUCCESS 155

define verify(result,expect) \
{ if ((result)!=(expect)) \

{ \
printf("Error: fail at line %d: mythread=%d, result= %d, expect= %d\n",

__LINE__, MYTHREAD, result,expect); \
upc_global_exit(FAILURE); \

} \
}

shared[] int *p1,arr2[ARRSIZE];
shared[BLKSIZE] int *p2,arr1[ARRSIZE];

int main()
{

int i;

/* initialize array */
upc_forall(i=0;i<ARRSIZE;i++;i)
{

arr1[i]=i;
arr2[i]=-i;

}

upc_barrier;

/* T0 T1 T2 T3
0 3 6 9 // arr1 is a shared array with block size 3.
1 4 7 10
2 5 8 11 // arr1[5]: thread=1, offset=2*sizeof(int), phase=2
12 15 18 21
13 16 19 22
14 17 20 23
...

p1 points to a shared array with indefinite block size. The thread is
determined by the assignment which sets p1, so p1 will have the same
thread as arr1[5]. The phase for a pointer-to-shared array with an
indefinite block size is always zero, there is no need to reset phase.
p1 will point to arr1[5].

0
1
2
3
4
5
.
.
.

*/

/* test 1 */
/* cast a pointer-to-shared array with block size 3 to a pointer-to-shared with

an indefinite block size
*/
p1=(shared[] int *)&arr1[5];

verify(upc_phaseof(p1),0); //Phase is reset to zero.

verify(upc_threadof(p1),upc_threadof(&arr1[5])); // Remain the same thread.

Chapter 4. Unified Parallel C language 35

verify(*p1,5);

p1++; // Move forward 1 position, and it will point to arr1[15].

verify(upc_phaseof(p1),0);

verify(upc_threadof(p1),1); // Thread should remain same thread with arr1[5]

verify(*p1,15);

verify(*(p1-3),3); // Move backward 3 positions, and it will point to arr1[3].

/* test 2 */
/* Cast a pointer-to-shared with an indefinite block size to a pointer-to-shared with

block size 3.
*/

/* T0 T1 T2 T3
0
1
2
3
4
5 // arr2[5]: thread=0, offset=5*sizeof(int), phase=0
6
7
8
9
10
11
12
13
14
15
.
.
.

0 3 6 9
1 4 7 10
2 5 8 11
12 15 18 21
13 16 19 22
14 17 20 23 /*Position 14 has the same offset,same thread with

arr2[5],but phase of position 14 is not zero, after
reset phase, p2 will point to position 12 (arr2[3]).

*/

24 27 30 33
25 28 31 34
26 29 32 35
. . .

*/

p2=(shared[BLKSIZE] int *)&arr2[5];
verify(upc_phaseof(p2),0); // phase is reset to 0
verify(upc_threadof(p2),0); // thread remains same with arr2[5]
verify(*p2,-3); // p2 will point to arr2[3]

/*Move back THREADS positions. There are no elements that have affinity to T1,
T2, T3. p2 will point to arr2[2].

*/
p2 -=10; // Move backward 10 positions from arr2[12] to arr2[2]

36 IBM XL Unified Parallel C for AIX, V11.0 (Technology Preview): IBM XL Unified Parallel C User’s Guide

verify(upc_phaseof(p2),2);
verify(upc_threadof(p2),0);
verify(*p2,-2);
return SUCCESS;

}

However, if either the source or the destination pointer type is the generic
pointer-to-shared, shared void *, the phase value is preserved in the resulting
pointer. For example:
include <upc.h>

shared void *p1;
shared[3] int arr[10],*p2;

int main()
{

p2=&arr[2];
p1=&arr[2]; // p1 has zero phase
p2=p1; // phase of p2 is preserverd

printf("Th:%d,upc_phaseof(p1)=%d,upc_phaseof(p2)=%d\n",MYTHREAD,upc_phaseof(p1),

upc_phaseof(p2));

return 0;
}

The output is as follows:
Th:0,upc_phaseof(p1)=0,upc_phaseof(p2)=2
Th:1,upc_phaseof(p1)=0,upc_phaseof(p2)=2

If you cast a generic pointer-to-shared to a nongeneric pointer-to-shared, there are
two situations:
v For the nongeneric pointer-to-shared type with an indefinite block size or block

size 1, the result is a pointer with phase 0. For example:
#include <upc.h> // assume 2 threads

shared void *p1;
shared[] int arr1[10],*p2;
shared int arr2[10],*p3;

int main()
{

p2=arr1; // p2 has phase 0
p3=arr2; // p3 has phase 0
p2=p1; // generic pointer p1 is cast to non-generic pointer p2
p3=p1; // generic pointer p1 is cast to non-generic pointer p3
printf("Th:%d,upc_phaseof(p2)=%d,upc_phaseof(p3)=%d\n",MYTHREAD,
upc_phaseof(p2),upc_phaseof(p3));
return 0;

}

The output is as follows:
Th:0,upc_phaseof(p2)=0,upc_phaseof(p3)=0
Th:1,upc_phaseof(p1)=0,upc_phaseof(p2)=0

v For the nongeneric pointer-to-shared type with a definite block size that is
greater than one, the result is undefined if the phase value of the source pointer
is beyond the range of the possible phases of the destination pointer type.

Chapter 4. Unified Parallel C language 37

Cast of a pointer-to-shared to a pointer-to-private

If you cast a pointer-to-shared to a pointer-to-private, there are the following
situations:
v If a pointer-to-shared is cast to a C pointer and the pointer-to-shared does not

have affinity to the current thread, the result is undefined.
v If a null pointer-to-shared is cast to a pointer-to-private, the result is null pointer.

For example:
shared int *p1=NULL;
int *p2;
p2=(int *)p1; // p2 will be a null pointer

v It is legal to cast a pointer-to-shared to a C pointer only when the
pointer-to-shared has affinity to the current thread. For example:
include <upc.h> // assume 2 threads

shared int *p1;
int *p2;
shared int arr[8]={0,1,2,3,4,5,6,7};

int main()
{

p1=&arr[3];
p2=(int *)p1;

//dereferencing p1 under MYTHREAD will access arr[3]
printf("Th: %d,*p1=%d\n",MYTHREAD,*p1);

//dereferencing p2 under upc_threadof(p1) will access arr[3]
if(MYTHREAD == upc_threadof(p1))

printf("Th: %d,*p2=%d\n",MYTHREAD,*p2);
return 0;

}

The output is as follows:
Th: 0,*p1=3
Th: 1,*p1=3
Th: 1,*p2=3

Cast of a pointer-to-private to a pointer-to-shared

A pointer-to-private cannot be cast to a pointer-to-shared. The exception is made
only when the constant expression 0 is cast. In this case, the result is a null
pointer-to-shared type. For example:
include <upc.h>

int i;
shared int *p1;
int *p2=0;

void main ()
{

p1=0; // legal
p1=p2; // illegal, compiler will report error
p1=&i; // illegal, compiler will report error

}

38 IBM XL Unified Parallel C for AIX, V11.0 (Technology Preview): IBM XL Unified Parallel C User’s Guide

Cast of a pointer-to-private to a pointer-to-private

A pointer-to-private in Unified Parallel C is equivalent to a normal pointer in C.
All semantic rules applicable to pointer casts in C are also applicable to a
pointer-to-private.

Declarations
Unified Parallel C extends the C language to support shared data declaration.

Type qualifiers
Unified Parallel C provides the following type qualifiers:
v The Shared type qualifier
v The reference type qualifier
v The layout qualifier

Shared type qualifiers

A shared type qualifier is used to declare data in the shared memory space.

The shared type qualifier syntax

�� shared
layout qualifier

type identifier ; ��

For example:
shared int i; // shared scalar variable
shared [10] int a[10*THREADS]; // shared array
shared int* p; // private pointer-to-shared
shared int* shared p; // shared pointer-to-shared

A shared type qualifier can be used wherever a type qualifier can be applied.
However, it cannot be used in the specifier-qualifier-list of a structure declaration
unless the shared type qualifier qualifies the type pointed to by a pointer. For
example:
struct S1
{

shared int *p1; // fine
int *shared p2; // error
shared int *shared p3; // error
shared int a; // error
shared int b[10]; // error

};

The shared type qualifier cannot be used to declare variables at local scope unless
the declaration is static qualified. In addition, the shared type qualifier cannot be
used to declare function arguments.

Reference type qualifiers

Unified Parallel C provides the following reference type qualifiers:

relaxed
The relaxed reference type specifies the access as relaxed.

strict The strict reference type specifies the access as strict.

Chapter 4. Unified Parallel C language 39

With no reference type qualifier, the reference type is determined by the Unified
Parallel C directives.

The reference type qualifier cannot appear in a qualifier list unless the list also has
a shared type qualifier. Shared accesses must be either relaxed or strict. The
declaration specifiers cannot include both relaxed and strict at the same time,
either directly or by one or more typedefs. For example:
shared relaxed int a; // correct
relaxed int b; // incorrect
shared relaxed strict int c; // incorrect

typedef relaxed shared int rsi;
rsi rsi_array[5*THREADS]; // correct
rsi strict rsi_array[3*THREADS]; // incorrect

Layout qualifiers

A layout qualifier specifies the number of consecutive array elements to be
allocated in the shared memory space of the same thread.

The layout qualifier syntax

�� [
constant-expression
*

] ��

Different block sizes are set depending on the way that the layout qualifier is
specified:
v If the optional constant expression is 0 or not specified in the square brackets [],

it indicates an indefinite block size where all elements have affinity to the same
thread.

v If there is no layout qualifier, the block size is 1 by default.
v If the layout qualifier has the form [*], the shared object is distributed as if it

had a block size of (sizeof(array) / upc_elemsizeof(array) + THREADS - 1)
/ THREADS.

The layout qualifier is one of the factors that determines whether two qualifier
types are compatible. However, generic pointers-to-shared are always treated as if
they had a compatible block size in order to be assignment compatible. A generic
pointer-to-shared has type shared void *. For example:
shared [2] int *p1;
shared [3] int *p2;
shared void *p3;

p1=p2; // illegal
p1=(shared[2] int *)p2; // legal
p3=p1; // legal
p2=p3; // legal

The layout qualifier [*] cannot be used in the declaration specifiers of a pointer
type. In addition, a layout qualifier cannot be used in the type qualifiers for the
referenced type in a pointer to void type. For example:
shared[*] int *p1; // not allowed
shared[2] void *p2; // not allowed

40 IBM XL Unified Parallel C for AIX, V11.0 (Technology Preview): IBM XL Unified Parallel C User’s Guide

Related reference
v Declarators
v Unified Parallel C directives

Declarators
The syntax and semantics of declarators in C also apply to declarators in Unified
Parallel C.

Note: All shared objects that are designated by nonarray static declarators have
affinity to thread 0.

Restrictions

Type qualifier list cannot specify more than one layout qualifier, either directly or
indirectly by one or more typedefs. For example:
typedef shared[3][5] int T; // wrong
T a[20]; // wrong
shared[3][5] int b[20]; // wrong

Type qualifier list cannot include both strict and relaxed at the same time, either
directly or indirectly by one or more typedefs. For example:
typedef strict shared int T;
relaxed T a; // wrong
strict shared relaxed int b; // wrong

The shared type qualifier cannot specify the following two kinds of data objects:
v Objects with automatic storage duration
v Elements of an array object with automatic storage duration

For example:
shared int func(shared int arg) /* wrong, function return type and function

parameter cannot be shared type
*/

{
shared int x; // wrong
shared int y[10]; // wrong
static shared int z; // correct
shared int *shared p1; // shared pointer can not be automatic variable
shared int *p2; // correct
return x;

}

Array declarators

Shared array elements are allocated by blocks of elements across threads. The block
size is determined by the layout qualifier.

For a shared array x, the ith element has affinity to the thread (floor (i/block
size) mod THREADS), and upc_phaseof(&x) is 0.

For any shared array with a definite block size in the dynamic environment, the
THREADS expression must be applied only once in one dimension of the array
declarator. The THREADS expression must be either used alone, or used when it is
multiplied by an integer constant expression. For example:
shared int x[THREADS][THREADS]; /* wrong, you can only apply the THREADS expression

once in one dimension of the array declarator
*/

Chapter 4. Unified Parallel C language 41

shared int y[THREADS][4]; // correct
shared int z[THREADS*5][4]; // correct
shared int x [10+THREADS]; // not allowed in the dynamic environment
shared [] int x [THREADS]; // not allowed in the dynamic environment
shared int x [10]; // not allowed in the dynamic environment

Related reference
v “upc_phaseof” on page 59
v “Predefined identifiers” on page 17

Statements and blocks
This section contains information about synchronization statements and iteration
statements.

Synchronization statements
This section describes the Unified Parallel C synchronization statements which
include blocking barriers, nonblocking barriers, and fences.

A barrier statement can be used to ensure that all threads reach the same program
execution point before any of them proceeds further in the execution of the
program. Typically, a barrier statement is used to ensure that modifications of a
shared object done by any thread are visible to all threads after the barrier.

Unified Parallel C provides the following synchronization statements:
v Blocking barriers
v Nonblocking barriers
v Fences

Blocking barriers

The blocking barrier is invoked by calling upc_barrier. The reason that it is called
the blocking barrier is because all threads are blocked at the point where
upc_barrier is invoked. After reaching a barrier, a thread can proceed further in
the program execution only after all other threads have executed the barrier.

The blocking barrier statement syntax

�� upc_barrier
expression

; ��

upc_barrier expression has the same effect as the following compound statement:
{

upc_notify barrier_value;
upc_wait barrier_value;

}

Where barrier_value is the result of evaluating expression. If no expression is
present, barrier_value can be omitted in the compound statement.

All expressions in blocking barrier statements must be of type int.

Example

This example demonstrates the usage of the blocking barrier.

42 IBM XL Unified Parallel C for AIX, V11.0 (Technology Preview): IBM XL Unified Parallel C User’s Guide

include <upc.h> // assume 4 threads
include <stdio.h>

shared int a;

int main()
{

if(MYTHREAD == 0)
a=-1;

/*threads are blocked until all threads reach the barrier and execute the
upc_barrier statement

*/
upc_barrier;

// all threads must see the updated value of a
printf("Th=%d,a=%d\n",MYTHREAD,a);

return 0;
}

This program produces the output as follows:
/*The sequence of output is not guaranteed.*/
Th=0,a=-1
Th=3,a=-1
Th=2,a=-1
Th=1,a=-1

In this example, you must insert a upc_barrier before printing the value of the
shared variable a. The barrier guarantees that all threads print the same value of a.

Nonblocking barriers

The nonblocking barrier, also called the split-phase barrier, consists of upc_notify
and upc_wait. The reason that it is called the nonblocking barrier is because
threads are not blocked at upc_notify. The thread that calls upc_notify can
continue to do other local work between upc_notify and upc_wait. The thread is
blocked only when it executes upc_wait. After all threads execute upc_notify, the
thread that is blocked can continue its execution.

Each thread must execute upc_notify and upc_wait statements alternately,
beginning from the upc_notify and ending at the upc_wait statement. For a given
thread, after the execution of a upc_notify statement, the next collective operation
to perform must be a upc_wait statement. A synchronization phase contains the
executions of all statements from the completion of one upc_wait to the start of the
next upc_wait.

The notify statement syntax

�� upc_notify
expression

; ��

The wait statement syntax

�� upc_wait
expression

; ��

Chapter 4. Unified Parallel C language 43

After executing the upc_wait statement, the thread does not enter the next
synchronization phase until all threads have completed the upc_notify statement
in the current synchronization phase.

A upc_notify or a upc_wait statement can have an optional expression. A upc_wait
statement interrupts the execution of the program if the expression is different
from the expression of the upc_notify statement executed by any thread in the
current synchronization phase. The behavior after such an interruption is
undefined. When either one of the upc_wait and upc_notify statements is missing
this expression, the two statements are still considered to have the same
expression. For example:
upc_notify 1;
//do some work
upc_wait 1; // legal

upc_notify 1;
//do some work
upc_wait 2; // illegal, mismatched expression

upc_notify 1;
//do some work
upc_wait; // legal, considered as upc_wait 1;

All expressions in nonblocking barrier statements must be of type int.

Example

The following example demonstrates the usage of the nonblocking barrier.
include <upc.h> // assume 4 threads
include <stdio.h>

define ARRSIZE 10

shared int a;
int b=0;

int main()
{

int i;

if(MYTHREAD == 0)
a=-1;

upc_notify; /* The thread executing the upc_notify statement will
notify other threads that it reaches this program
point.

*/

b +=MYTHREAD; /*threads are not blocked and can continue to do other
computation

*/

upc_wait ; // wait until all threads have called upc_notify

printf("Th=%d,a=%d,b=%d\n",MYTHREAD,a,b); /* all threads must see the
updated value of a and
their own copy of b

*/

return 0;
}

This program produces the output as follows:

44 IBM XL Unified Parallel C for AIX, V11.0 (Technology Preview): IBM XL Unified Parallel C User’s Guide

//The sequence of the output is not guaranteed
Th=3,a=-1,b=3
Th=0,a=-1,b=0
Th=1,a=-1,b=1
Th=2,a=-1,b=2

Unlike upc_barrier, upc_notify does not block the execution of a program. By
using a nonblocking barrier, you can insert or schedule independent computation
to overlap the latency of the synchronization operation.

Related reference

Barriers

Fences

The upc_fence statement ensures that all shared accesses issued by the calling
thread before the fence are completed. Unlike upc_barrier which synchronizes
shared accesses for all threads, upc_fence synchronizes shared accesses only for the
calling thread.

The fence statement syntax

�� upc_fence ; ��

upc_fence imposes an order between shared accesses. It is a noncollective
operation that is much faster than upc_barrier.

Example
include <upc.h>

define SUCCESS 155
define FAILURE 166
define GENRANDOMTHREADNUM (random()%THREADS)

define verify(result,expect) \
{ if ((result)!=(expect)) \

{ \
printf("Error: fail at line %d: mythread=%d, result= %d, expect= %d\n",
__LINE__, MYTHREAD, result,expect); \
upc_global_exit(FAILURE); \

} \
}

shared int A[THREADS];

int main()
{

int i=0;

// change the sequence of thread execution
if(MYTHREAD == GENRANDOMTHREADNUM)

for(i=0;i<10000;i++);
A[MYTHREAD]=MYTHREAD;

/*upc_fence here must guarantee that all shared accesses are propagated to
memory for the issuing thread

*/
upc_fence;

verify(A[MYTHREAD],MYTHREAD);

Chapter 4. Unified Parallel C language 45

// change shared data value when issuing thread is thread 0
if(MYTHREAD == 0)

A[MYTHREAD]=99;

/*Having executed the above statements, thread 0 should see the updated shared
value in the memory after it executes the following upc_fence

*/
upc_fence;

if(MYTHREAD == 0)
verify(A[MYTHREAD],99);

return SUCCESS;
}

Iteration statements
This section provides information about the syntax and usage of the work sharing
construct upc_forall.

The upc_forall syntax

�� upc_forall �

� (; ;)
; expression expression

expression expression continue
declaration expression

�

� statement ��

The upc_forall statement is used to distribute tasks among multiple threads. It is
similar to the for statement except that the upc_forall statement has an optional
fourth expression (affinity). The affinity expression, if present, is used to determine
which thread executes a given loop iteration.

Each thread evaluates the first three expressions of the upc_forall statement
following the semantics of the corresponding expressions of the for statement in
the C language. In addition, each thread evaluates the affinity expression at every
loop iteration.

The affinity expression determines which thread to execute a given loop iteration
according to the following rules:
v If affinity is an integer expression, MYTHREAD executes each iteration of the

loop body only if MYTHREAD == affinity % THREADS.
v If affinity is an expression of pointer-to-shared type, MYTHREAD executes each

iteration of the loop body only if MYTHREAD == upc_threadof(affinity).
v If affinity is continue or unspecified, each thread executes the loop body of the

upc_forall statement.

A upc_forall loop can be nested inside one or more upc_forall loops, either
directly or indirectly through a function call. In a nested upc_forall statement, the
controlling upc_forall statement is the outermost upc_forall statement with an
affinity expression that is not continue. Except for the controlling upc_forall
statement, all upc_forall statements behave as if their affinity expressions were
continue.

The result is undefined if any of the following situations is true:

46 IBM XL Unified Parallel C for AIX, V11.0 (Technology Preview): IBM XL Unified Parallel C User’s Guide

v Any thread stops or performs a collective operation within the dynamic scope of
the upc_forall statement.

v Any thread stops the upc_forall statement by using the break, goto, return
statements, or the longjmp function.

v Any thread enters the body of the upc_forall statement by using the goto
statement.

v The execution of a loop iteration affects the execution of another loop iteration
by another thread

Example

This example demonstrates how the upc_forall loop is used to update three
components of the position, velocity, and acceleration of each particle in parallel.
include <upc.h>

define NPARTS 1000*THREADS
define BF NPARTS/THREADS
define POSITION 10

typedef struct t
{

double p[POSITION];
double v[POSITION];
double a[POSITION];
double f[POSITION];

} particle_t;

shared[BF] particle_t PARTS[NPARTS]; // lattice of NPART particles

void update_particle_position()
{

int i,j;
double rmass=5.0,dt=1.0;
/*parallel computation: compute new particles position, velocity, acceleration

(on each dimension), given the current particles position, velocity,
acceleration and the force acting on them.

*/
upc_forall(i = 0; i < NPARTS; i++; &PARTS[i])
{

for(j=0;j<POSITION;j++)
{

PARTS[i].p[j] += PARTS[i].v[j]*dt + 0.5*dt*dt*PARTS[i].a[j];
PARTS[i].v[j] += 0.5*dt*(PARTS[i].f[j]*rmass + PARTS[i].a[j]);
PARTS[i].a[j] = PARTS[i].f[j]*rmass;

}
}

}

Predefined macros and directives
This section describes the macros predefined and the directives supported by the
XL Unified Parallel C compiler.
v Unified Parallel C directives
v “Predefined macros” on page 48

Unified Parallel C directives
Unified Parallel C supports the following directives:

#pragma upc strict
Controls the memory consistency model followed by the program. It

Chapter 4. Unified Parallel C language 47

informs the compiler that shared accesses follow the strict memory
model. The directive can be overridden by declaring a shared variable
using the relaxed declaration qualifier.

#pragma upc relaxed
Controls the memory consistency model followed by the program. It
informs the compiler that shared accesses follow the relaxed memory
model. The directive can be overridden by declaring a shared variable
using the strict declaration qualifier.

No macro substitution takes place if the preprocessing token upc follows the
directive immediately.

The directives can be used either outside external declarations, or before all
statements and explicit declarations that are inside a compound statement. The
directives have different scopes in the following situations:
v When the directives are used outside external declarations, the scope of the

directives applies until the appearance of the same directive or the end of the
translation unit.

v When the directives are used inside a compound statement, the scope of the
directives applies until the end of the compound statement. At the end of the
compound statement, the state of the directive is restored to the state preceding
the compound statement.

Note: If the directives are used in any other context, the behavior is undefined.

Predefined macros
The XL Unified Parallel C compiler predefines the following macros:

UPC
The integer constant 1 that represents a conforming implementation.

_UPC_VERSION_
The integer constant 200505L.

UPC_MAX_BLOCK_SIZE
The integer constant that represents the maximum permissible value in a
layout qualifier for shared data.

The conditional implementation-defined macros are listed as follows:

_UPC_DYNAMIC_THREADS_
The integer constant 1 in the dynamic THREADS environment. Otherwise,
it is undefined.

_UPC_STATIC_THREADS_
The integer constant 1 in the static THREADS environment. Otherwise, it is
undefined.

48 IBM XL Unified Parallel C for AIX, V11.0 (Technology Preview): IBM XL Unified Parallel C User’s Guide

Chapter 5. Unified Parallel C library functions

The following sections provide information about the syntax and descriptions of
the Unified Parallel C library functions.

Unified Parallel C provides the following standard header files:
v upc_strict.h

v upc_relaxed.h

v upc_collective.h

v upc.h

The inclusion of upc_strict.h or upc_relaxed.h has the effect of setting the default
memory consistency mode for the entire compilation unit.

Utility functions
The Unified Parallel C utility functions are declared in header file upc.h. Include
upc.h whenever using a Unified Parallel C utility function.

The Unified Parallel C utility functions can be classified into the following
categories:
v Program termination
v Dynamic memory allocation
v Pointer-to-shared manipulation
v Serialization
v Memory transfer

Program termination

Unified Parallel C provides the following program termination function:

upc_global_exit

upc_global_exit
Frees all storages, flushes all I/O, and ends program execution for all active
threads.

Prototype

void upc_global_exit(int status);

Parameters

status
Represents the exit status code.

Example
//do some work
..
..
upc_global_exit(130); /*first thread which invokes this function will terminate

© Copyright IBM Corp. 2010 49

program execution for all active threads
*/

printf("Error: no thread should reach here\n");

Dynamic memory allocation
This section describes the dynamic memory allocation functions in Unified Parallel
C

To dynamically allocate shared memory, Unified Parallel C provides functions that
are collective or noncollective, global or local. These functions are described as
follows:
v collective: The function is called by all threads, and each calling thread receieves

the same return value.
v noncollective: The function is called by one thread. If the function is called by

different threads, each calling thread receives different return values.
v global: The function allocates shared memory across all threads.
v local: The function allocates shared memory with affinity to the calling thread.

The following memory allocation utilities are available in Unified Parallel C to
dynamically allocate shared memory:
v upc_all_alloc
v upc_global_alloc
v upc_alloc
v upc_free

upc_all_alloc
A collective function used to allocate shared memory distributed on all threads.

Prototype

shared void *upc_all_alloc(size_t nblocks, size_t nbytes);

Parameters

nblocks
Represents the number of the memory blocks.

nbytes
Represents the block size measured in bytes.

Return value

Returns the same generic pointer-to-shared on all threads. The return value is a
null pointer-to-shared, when:
v nblocks*nbytes is 0.
v The required memory fails to be allocated.

For example:
typedef float T;
shared T *p;

p=(shared T *)upc_all_alloc(THREADS,0*sizeof(T));// p == NULL
p=(shared T *)upc_all_alloc(0,1*sizeof(T)); // p == NULL
p=(shared T *)upc_all_alloc(0,0*sizeof(T)); // p == NULL

50 IBM XL Unified Parallel C for AIX, V11.0 (Technology Preview): IBM XL Unified Parallel C User’s Guide

Usage

upc_all_alloc is a collective function with single-valued parameters that allocates
shared memory equivalent to the following declaration:
shared [nbytes] char[nblocks * nbytes];

Note: The dynamic lifetime of an allocated object begins when a thread receives a
pointer to the shared memory allocated, and ends when any thread deallocates the
object.

Example
include <upc.h>

define FAILURE 166
define SUCCESS 155

define verify(result,expect) \
{ if ((result)!=(expect)) \

{ \
printf("Error: fail at line %d: mythread=%d, result= %d, expect= %d\n",
__LINE__, MYTHREAD, result,expect); \
upc_global_exit(FAILURE); \

} \
}

define BLKS 10
define BLKSIZE 2
typedef struct t
{

int *pi;
} st;

typedef st T;
shared[BLKSIZE] T *pt;

int main()
{

int i=0;

//pt points to the dynamically allocated shared memory
pt=(shared[BLKSIZE] T *)upc_all_alloc(BLKS,BLKSIZE*sizeof(T));
if(pt != NULL)
{

//initialize shared data
upc_forall(i=0;i<BLKS*BLKSIZE;i++;pt+i)
{

//allocate private space when MYTHREAD == upc_threadof(pt+i)
(pt+i)->pi=malloc(1*sizeof(int));
*((pt+i)->pi)=i;

}
upc_barrier;

// verify results
for(i=0;i<BLKS*BLKSIZE;i++)
{

if(MYTHREAD == upc_threadof(&pt[i]))

// it makes sense to dereference pi when MYTHREAD == upc_threadof(&pt[i])
verify(*(pt[i].pi),i);

}
upc_barrier;

// free allocated space
for(i=0;i<BLKS*BLKSIZE;i++)

Chapter 5. Unified Parallel C library functions 51

if(MYTHREAD == upc_threadof(&pt[i]))
free(pt[i].pi);

if(MYTHREAD == 0)
upc_free(pt);

}
return 0;

}

upc_alloc
Allocates shared memory space with affinity to the calling thread.

Prototype

shared void *upc_alloc(size_t nbytes);

Parameters

nbytes
Represents the size of the allocated shared space measured in bytes.

Return value

The return value is a generic pointer-to-shared. It is a null pointer-to-shared, when:
v nbytes is 0.
v The required memory fails to be allocated.

Usage

It is a noncollective function. The upc_alloc function is similar to the malloc()
function. One of the differences between these two functions is that upc_alloc
returns a pointer-to-shared value.

Example
include <upc.h>

define FAILURE 166
define SUCCESS 155

define verify(result,expect) \
{ if ((result)!=(expect)) \

{ \
printf("Error: fail at line %d: mythread=%d, result= %d, expect= %d\n", __LINE__,
MYTHREAD, result,expect); \
upc_global_exit(FAILURE); \

} \
}

define BLKS 10
define BLKSIZE 0
typedef struct t
{

int *pi;
} st;

typedef st T;
shared[BLKSIZE] T *shared pt; // declare a shared pointer-to-shared

int main()
{

int i=0;
if(MYTHREAD == THREADS-1)
/*There is only one instance of pt which is located in thread 0's space, and it

52 IBM XL Unified Parallel C for AIX, V11.0 (Technology Preview): IBM XL Unified Parallel C User’s Guide

points to dynamically allocated memory space. Shared space is located in
THREADS-1's space

*/
pt=(shared[BLKSIZE] T *shared)upc_alloc(BLKS*sizeof(T));

upc_barrier;

if(pt != NULL)
{

// initialize shared data
upc_forall(i=0;i<BLKS;i++;pt+i)
{

// note:malloc only happens in THREADS-1's private space
(pt+i)->pi=malloc(1*sizeof(int));
*((pt+i)->pi)=i;

}
upc_barrier;

// verify results
for(i=0;i<BLKS;i++)
{

if(MYTHREAD == THREADS-1)
verify(*(pt[i].pi),i); /*it makes sense to dereference pi for

THREADS -1, but dereferecing pi for
other threads produces undefined results

*/
}

upc_barrier;

// free allocated space
for(i=0;i<BLKS;i++)
{

if(MYTHREAD == THREADS-1)
free(pt[i].pi);

}

if(MYTHREAD == 0)
upc_free(pt);

}

return 0;
}

upc_free
Releases dynamically allocated shared memory space.

Prototype

void upc_free(shared void *ptr);

Parameters

ptr Points to the dynamically allocated shared memory space to be freed.

Usage

If ptr is a null pointer, the function performs no action. Otherwise, the behavior is
undefined unless both the following two conditions are true:
v The argument matches a pointer previously returned by the upc_alloc,

upc_global_alloc, or upc_all_alloc function.
v The memory pointed to by ptr has not been deallocated yet by any thread.

Chapter 5. Unified Parallel C library functions 53

Example
include <upc.h>

define SUCCESS 155
define FAILURE 166
define LOOPCOUNT 10
define ARR_SIZE 100

typedef struct a
{

char a[ARR_SIZE];
} my_a;

typedef struct b
{

my_a ma[ARR_SIZE];
} my_b;

shared my_b *p;

int main()
{

int i=0,j=0,k=0;

/*we do muliptle allocations and deallocation to make sure that we
successfully free the space

*/

// program allocated and there is no memory leak
upc_forall(i=0;i<LOOPCOUNT;i++;)
{

upc_forall(j=0;j<LOOPCOUNT;j++;)
{

upc_forall(k=0;k<LOOPCOUNT;k++;)
{

upc_barrier;

// allocate a chunk of shared memory across threads
p=(shared my_b *)upc_all_alloc(ARR_SIZE,1*sizeof(my_b));
upc_barrier;

// free shared space by one of threads
if(p != NULL)
{

if(MYTHREAD == 0)
upc_free(p);

}

upc_barrier;

// allocate another chunk of memory which has affinity to MYTHREAD
p=(shared my_b *)upc_alloc(ARR_SIZE*sizeof(my_b));

// every thread frees its allocated shared space
if(p != NULL)

upc_free(p);

upc_barrier;

// every thread allocates a chunk of shared space across threads
p=(shared my_b *)upc_global_alloc(ARR_SIZE,1*sizeof(my_b));

// every thread frees its allocated shared space
if(p != NULL)

upc_free(p);

upc_barrier;

54 IBM XL Unified Parallel C for AIX, V11.0 (Technology Preview): IBM XL Unified Parallel C User’s Guide

}
}

}

return SUCCESS;

}

upc_global_alloc
A noncollective function used to allocate shared memory distributed on all threads.

Prototype

shared void *upc_global_alloc(size_t nblocks, size_t nbytes);

Parameters

nblocks
Represents the number of the memory blocks.

nbytes
Represents the block size measured in bytes.

Return value

The return value is a generic pointer-to-shared. It is a null pointer-to-shared, when
either of the following situations is true:
v nblocks*nbytes is 0.
v The required memory fails to be allocated.

Usage

upc_global_alloc allocates shared memory equivalent to the following declaration:
shared [nbytes] char[nblocks * nbytes];

Both upc_global_alloc and upc_all_alloc allocate shared memory space across all
threads, but upc_global_alloc is a noncollective function. If upc_global_alloc is
called by multiple threads, each calling thread receives different allocations.

Example
include <upc.h>

define FAILURE 166
define SUCCESS 155

define verify(result,expect) \
{ if ((result)!=(expect)) \

{ \
printf("Error: fail at line %d: mythread=%d, result= %d, expect= %d\n",
__LINE__, MYTHREAD, result,expect); \
upc_global_exit(FAILURE); \

} \
}

define BLKS 20
define BLKSIZE 4
typedef struct t
{

int a;
shared int *pi; // a pointer to shared memember

Chapter 5. Unified Parallel C library functions 55

} st;

typedef st T;
shared[BLKSIZE] T *shared pt; // declared a shared pointer-to-shared

int main()
{

int i=0;

if(MYTHREAD == THREADS-1)
{

// pt points to dynamically allocated shared memory
pt=(shared[BLKSIZE] T *shared)upc_global_alloc(BLKS,BLKSIZE*sizeof(T));

}
upc_barrier;

if(pt != NULL)
{

// initialize shared data
upc_forall(i=0;i<BLKS*BLKSIZE;i++;pt+i)
{

pt[i].a=-i;
/*pi points to dynamically allocated shared space which is located

in the calling thread's space and is visible to all threads
*/
(pt+i)->pi=(shared int *)upc_alloc(1*sizeof(int));
*((pt+i)->pi)=i;

}
upc_barrier;

// verify results
for(i=0;i<BLKS*BLKSIZE;i++)
{

verify(pt[i].a,-i);
verify(*(pt[i].pi),i);

}
upc_barrier;

// free allocated space
for(i=0;i<BLKS*BLKSIZE;i++)
{

if(MYTHREAD == upc_threadof(pt+i))
{

upc_free(pt[i].pi);
}

}

upc_barrier;

if(MYTHREAD == 0)
upc_free(pt);

}

return 0;
}

Pointer-to-shared manipulation

Unified Parallel C provides the following functions to manipulate
pointers-to-shared:
v upc_addrfield
v upc_affinitysize
v upc_phaseof
v upc_resetphase

56 IBM XL Unified Parallel C for AIX, V11.0 (Technology Preview): IBM XL Unified Parallel C User’s Guide

v upc_threadof

upc_addrfield
Returns an implementation-defined value representing the local address of the
object pointed to by the argument.

Prototype

size_t upc_addrfield(shared void *ptr);

Parameters

ptr Points to the shared object whose local address is to be obtained.

Example
include <upc.h>

define SUCCESS 155
define FAILURE 166
define BLKSIZE THREADS // assume THREADS = 4
define ARRSIZE 10*THREADS

define verify(result,expect) \
{ if ((result)!=(expect)) \

{ \
printf("Error: fail at line %d: mythread=%d, result= %d, expect= %d\n",

__LINE__, MYTHREAD, result,expect); \
upc_global_exit(FAILURE); \

} \
}

typedef struct t
{

int a;
} myt;

typedef myt T;

shared[BLKSIZE] T *S1,*S2; /* declare 2 pointers pointing to shared memory
S1 and S2

*/

shared[BLKSIZE] T arr[ARRSIZE]; // declare a shared array with block size THREADS
T *P1,*P2; // declared 2 private pointers

int main()
{

int i=0;

//initialize the shared array
upc_forall(i=0;i<ARRSIZE;i++;&arr[i])
{

arr[i].a=MYTHREAD;
}
upc_barrier;

/* S1 and S2 point to two distinct elements of the same shared array object which
has affinity to thread 1

*/
S1=&arr[0+THREADS];
S2=&arr[3+THREADS];

//assignment is legal when S1 and S2 have affinity to the same thread
if(MYTHREAD == upc_threadof(S1) && MYTHREAD == upc_threadof(S2))
{

Chapter 5. Unified Parallel C library functions 57

P1=(T*)S1;
P2=(T*)S2;

}

upc_barrier;

//verify results
if(MYTHREAD == upc_threadof(S1) && MYTHREAD == upc_threadof(S2))
{

/*program should pass following check according to UPC spec1.2 6.4.2,
upc_addrfield function returns implementation-defined local address
pointed to by the pointer-to-shared argument

*/
verify(upc_addrfield(S2) - upc_addrfield(S1), (P2 -P1)*sizeof(T));
verify(P1->a,upc_threadof(&arr[0+THREADS]));
verify(P2->a,upc_threadof(&arr[3+THREADS]));
verify(S1->a,upc_threadof(&arr[0+THREADS]));
verify(S2->a,upc_threadof(&arr[3+THREADS]));

}

return SUCCESS;

}

upc_affinitysize
Returns the size of the local portion of the data in a shared object with affinity to a
given thread.

Prototype

size_t upc_affinitysize(size_t totalsize, size_t nbytes, size_t threadid);

Parameters

totalsize
Represents the total size of the shared memory allocation measured in bytes.

nbytes
Represents the block size measured in bytes.

threadid
Represents the thread whose affinity size is to be evaluated. It is an integer
value that ranges from 0 to THREADS-1.

Usage

For a dynamically allocated shared object, the totalsize argument must be
nbytes*nblocks, where nblocks and nbytes are exactly the arguments of
upc_global_alloc or upc_all_alloc when the memory space for the shared object
is allocated.

For a statically allocated shared object declared as:
shared [b] t d[s];

The totalsize argument must be s * sizeof (t), and the nbytes argument must
be b * sizeof (t).

Note: If the block size is indefinite, nbytes must be 0.

58 IBM XL Unified Parallel C for AIX, V11.0 (Technology Preview): IBM XL Unified Parallel C User’s Guide

Example
include <upc.h> // assume 3 threads

define SIZE sizeof(int)
define GETBLKSIZE(X) \
((sizeof((X)) / upc_elemsizeof((X)) + THREADS - 1) / THREADS)

shared int arr1[10];
shared [2] int arr2[10];
shared [] int arr3[10];
shared [*] int arr4[10];

int main(void)
{

upc_affinitysize(sizeof(arr1),1*sizeof(int),MYTHREAD);
// Th0:4*SIZE, Th1:3*SIZE, Th2:3*SIZE

upc_affinitysize(sizeof(arr2),2*sizeof(int),MYTHREAD);
// Th0:4*SIZE, Th1:4*SIZE, Th2: 2*SIZE

upc_affinitysize(sizeof(arr3),0*sizeof(int),MYTHREAD);
// Th0:10*SIZE, Th1:0,Th2: 0

upc_affinitysize(sizeof(arr4),GETBLKSIZE(arr4)*sizeof(int),MYTHREAD);
// Th0:4*SIZE, Th1:4*SIZE, Th2: 2*SIZE

// dynamically allocated shared space with totalsize 10*SIZE, block size 2
upc_affinitysize(10*sizeof(int),2*sizeof(int),MYTHREAD);
// Th0:4*SIZE, Th1:4*SIZE, Th2: 2*SIZE

}

upc_phaseof
Returns the position within a block of the shared object pointed to by the
argument.

Prototype

size_t upc_phaseof(shared void *ptr);

Parameters

ptr Points to the shared object whose phase is to be evaluated.

Return value

If ptr is a null pointer-to-shared, the return value is 0.

Example
// assume 3 threads
shared int arr1[10]; // phase=0 for all elements

shared[3] int arr2[10]; // phase=0 for arr2[0],arr2[3],arr2[6],arr2[9].
// phase=1 for arr2[1],arr2[4],arr2[7]
// phase=2 for arr2[2],arr2[5],arr2[8]

shared[] int arr3[10]; // phase=0 for all elements

shared[*] int arr4[10]; // phase=0 for arr4[0],arr4[4],arr4[8]
// phase=1 for arr4[1],arr4[5],arr4[9]
// phase=2 for arr4[2],arr4[6]
// phase=3 for arr4[3],arr4[7]

shared int *ptr=NULL; // upc_phaseof(ptr)=0

Chapter 5. Unified Parallel C library functions 59

upc_resetphase
Returns a copy of the given pointer with its phase set to zero.

Prototype

shared void *upc_resetphase(shared void *ptr);

Parameters

ptr The input pointer to be copied.

Example
include <upc.h>
include <stdio.h>

define SUCCESS 155
define FAILURE 166
define BLKSIZE1 5
define BLKSIZE2 10
define ARRSIZE 100

define verify(result,expect) \
{ if ((result)!=(expect)) \

{ \
printf("Error: fail at line %d: mythread=%d, result= %d, expect= %d\n",

__LINE__, MYTHREAD, result,expect); \
upc_global_exit(FAILURE); \

} \
}
typedef struct t
{

// structure contains pointer-to-shared member
shared[BLKSIZE2] int *pi;

} myt;

// declare a shared structure array with block size BLKSIZE1
shared[BLKSIZE1] myt arrt[ARRSIZE];

// declare a shared integer array with block size BLKSIZE2
shared[BLKSIZE2] int arri[ARRSIZE];

// declared a pointer array pointing to shared data with block size BLKSIZE1
shared[BLKSIZE1] myt *p1[ARRSIZE];

// declare a pointer array pointing to shared data with block size BLKSIZE2
shared[BLKSIZE2] int *p2[ARRSIZE];

int main()
{

int i,j,k;

//initialize the shared array
upc_forall(i=0;i<ARRSIZE;i++;&arrt[i])

arrt[i].pi=arri;
upc_barrier;

//invoke upc_resetphase
for(i=0;i<ARRSIZE;i++)

for(j=0;j<ARRSIZE;j++)
{

p1[i]=upc_resetphase(arrt+i);
p2[j]=upc_resetphase((arrt+i)->pi+j);

}

upc_barrier;

60 IBM XL Unified Parallel C for AIX, V11.0 (Technology Preview): IBM XL Unified Parallel C User’s Guide

/* The upc_resetphase function returns pointer to shared which
is identical to its input except it has zero phase

*/
for(i=0;i<ARRSIZE;i++)
{

// phase becomes zero
verify(upc_phaseof(p1[i]),0);
verify(upc_phaseof(p2[i]),0);
// remain the same thread number
verify(upc_threadof(p1[i]),upc_threadof(&arrt[i]));
for(j=0;j<ARRSIZE;j++)
{

// remain the same thread number
verify(upc_threadof(p2[j]),upc_threadof(&(arrt[i].pi[j])));

}
}
// make sure that the phase value of the original shared array remains the same
for(i=0;i<ARRSIZE/BLKSIZE1;i++)

for(j=0;j<BLKSIZE1;j++)
verify(upc_phaseof(arrt+j+i*BLKSIZE1),j);

for(k=0;k<ARRSIZE;k++)
for(i=0;i<ARRSIZE/BLKSIZE2;i++)

for(j=0;j<BLKSIZE2;j++)
verify(upc_phaseof(arrt[i].pi+j+i*BLKSIZE2),j);

return SUCCESS;

}

upc_threadof
Returns the index of the thread that has affinity to the shared object pointed to by
the argument.

Prototype

size_t upc_threadof(shared void *ptr);

Parameters

ptr Points to the shared data that has affinity to any single thread.

Return value

If ptr is a null pointer-to-shared, the thread index to which ptr has affinity is 0.

Example
include <upc.h>

define ARR_SIZE 10
define SUCCESS 155
define FAILURE 166

define verify(result,expect) \
{ if ((result)!=(expect)) \

{ \
printf("Error: fail at line %d: mythread=%d, result= %l, expect= %l\n",
__LINE__, MYTHREAD, result,expect); \
upc_global_exit(FAILURE); \

} \
}

shared int su[10][10];

Chapter 5. Unified Parallel C library functions 61

shared int *shared sp;
shared int *p;

int main()
{

int i=0,j=0,k=0;
upc_forall(i=0;i<ARR_SIZE;i++;)
{

upc_forall(j=0;j<ARR_SIZE;j++;&su[i][j])
su[i][j]=upc_threadof(&su[i][j]);

}

upc_barrier;

for(i=0;i<ARR_SIZE;i++)
{

for(j=0;j<ARR_SIZE;j++)
{

verify(su[i][j],upc_threadof(&su[i][j]));
}

}
if(MYTHREAD == 0)

sp=(shared int *)upc_global_alloc(THREADS,1*sizeof(shared int));

upc_barrier;
if(sp != NULL)
{

verify(upc_threadof(&sp[MYTHREAD]),MYTHREAD);
if(MYTHREAD == 0)

upc_free(sp);
}
return SUCCESS;

}

Serialization
Unified Parallel C provides the following utility functions which can be used to
serialize access to a critical section of the program:
v upc_all_lock_alloc
v upc_global_lock_alloc
v upc_lock
v upc_lock_attempt
v upc_unlock
v upc_lock_free

upc_lock_t type

upc_lock_t is the Unified Parallel C lock type, which is an opaque data type. An
opaque type is a data type whose size, layout, or both are defined by
implementation. Objects of the type upc_lock_t have two states: locked or
unlocked.

If two pointers point to the same lock object, the two pointers are equal. If you
apply upc_phaseof(), upc_threadof(), or upc_addrfield() to the pointers pointing
to an object of upc_lock_t type, the result is undefined.

upc_all_lock_alloc
Dynamically allocates shared space for a lock object. The allocated lock is
initialized to an unlocked state.

62 IBM XL Unified Parallel C for AIX, V11.0 (Technology Preview): IBM XL Unified Parallel C User’s Guide

Prototype

upc_lock_t *upc_all_lock_alloc(void);

Return value

Returns a pointer to the dynamically allocated lock object.

Usage

upc_all_lock_alloc is a collective function used to allocate a shared lock. Each
thread receives the same pointer value.

Example
include <upc.h>

define FAILURE 166
define SUCCESS 155

define verify(result,expect) \
{ if ((result)!=(expect)) \

{ \
printf("Error: fail at line %d: mythread=%d, result= %d, expect= %d\n",
__LINE__, MYTHREAD, result,expect); \
upc_global_exit(FAILURE); \

} \
}

define ARRSIZE 10*THREADS
typedef struct t
{

int a;
} my_t;

shared my_t st[ARRSIZE];
upc_lock_t *lock;

int main()
{

int i;

lock=(upc_lock_t *)upc_all_lock_alloc();
if(lock != NULL)
{

upc_lock(lock);
for(i=0;i<ARRSIZE;i++)

(st[i].a)++;
upc_unlock(lock);

upc_barrier; // make sure that all threads finish increment

for(i=0;i<ARRSIZE;i++)
verify(st[i].a,THREADS);

if(MYTHREAD == 0)
upc_lock_free(lock);

}

return SUCCESS;
}

Chapter 5. Unified Parallel C library functions 63

upc_global_lock_alloc
Dynamically allocates shared space for a lock object. The allocated lock is
initialized to an unlocked state.

Prototype

upc_lock_t *upc_global_lock_alloc(void);

Return value

Returns a pointer to the dynamically allocated lock object.

Usage

upc_global_lock_alloc is a noncollective function used to allocate a shared lock.
Each thread receives a pointer to a different lock.

Example
include <upc.h>

define FAILURE 166
define SUCCESS 155
define N 100000
shared int A[N];
shared int sum=0;

upc_lock_t *shared lock;
int main()
{

int i,rc=SUCCESS;

// intialize shared data
upc_forall(i=0;i<N;i++;&A[i])

A[i]=1;

if(MYTHREAD == 0)
lock=upc_global_lock_alloc(); //create a lock

upc_barrier;

if(lock != NULL)
{

upc_forall(i=0;i<N;i++;&A[i])
{

upc_lock(lock);
sum +=A[i];
upc_unlock(lock);

}
upc_barrier;

// verify results
if(MYTHREAD == 0)
{

if(sum != N)
{

printf("Th:%d,%d\n",MYTHREAD,sum);
rc=FAILURE;

}
}
upc_barrier

// free space
if(MYTHREAD == 0)

64 IBM XL Unified Parallel C for AIX, V11.0 (Technology Preview): IBM XL Unified Parallel C User’s Guide

upc_free(lock);
}
return rc;

}

upc_lock
Sets the state of the lock object pointed to by the argument to the locked state.

Prototype

void upc_lock(upc_lock_t *ptr);

Parameters

ptr Is a pointer that points to a lock object of type upc_lock_t.

Usage

If the lock pointed to by ptr is in unlocked state, a call to this function by a single
thread sets the state of the lock to locked.

If the lock is already in locked state, then the calling thread waits for some other
thread to set the state of the lock to unlocked before proceeding.

If the lock is already set as locked by the calling thread itself, the result is
undefined.

Example
include <upc.h>
include "stdio.h"

define SUCCESS 155
define FAILURE 166
define COUNT 10000

define verify(result,expect) \
{ if ((result)!=(expect)) \

{ \
printf("Error: fail at line %d: mythread=%d, result= %l, expect= %l\n",

__LINE__, MYTHREAD, result,expect); \
upc_global_exit(FAILURE); \

} \
}

shared long sum=0;

/*declare a private pointer-to-shared that points to a shared opaque datatype
upc_lock_t

*/
upc_lock_t *lock;

int main()
{

int i;

/* every thread's lock pointer points to the same dynamically allocated
shared space

*/
lock=upc_all_lock_alloc();

if(lock != NULL)
{

for(i=0;i<COUNT;i++)

Chapter 5. Unified Parallel C library functions 65

{
/* upc_lock ensures that the thread which successfully retrives the lock

and sets the lock state to locked has the priviledge to execute the
sum += i; statement while other threads have to wait until this thread
releases the lock by calling the upc_unlock function. It avoids race
condition when multiple threads try to read and write the same shared
variable at the same time

*/
upc_lock(lock);
sum +=i;

// upc_unlock sets the state of the lock pointed to by lock to unlocked
upc_unlock(lock);

}
upc_barrier;

// verify results
verify(sum,(COUNT-1)*COUNT/2*THREADS);

upc_barrier;

/*deallocate the shared space associated with the dynamically allocated
upc_lock_t pointed to by lock

*/
if(MYTHREAD == 0)

upc_lock_free(lock);
}

return SUCCESS;

}

upc_lock_attempt
Attempts to set the state of the lock object pointed to by the argument to the locked
state.

Prototype

int upc_lock_attempt(upc_lock_t *ptr);

Parameters

ptr Is a pointer that points to a lock object of type upc_lock_t.

Return value

The return value is 1 if the function succeeds in setting the state of the lock to
locked. Otherwise, the return value is 0.

Usage

If the lock is in unlocked state, the thread which calls upc_lock_attempt sets the
state of the lock to locked, and the function returns 1.

If the lock is already in locked state, the function returns 0.

If the lock has already been set to locked by the calling thread, the result is
undefined.

66 IBM XL Unified Parallel C for AIX, V11.0 (Technology Preview): IBM XL Unified Parallel C User’s Guide

Example
include <upc.h>

define FAILURE 166
define SUCCESS 155

shared int sum=0;
upc_lock_t *lock;

int main()
{

int i,rc=SUCCESS;

lock=upc_all_lock_alloc(); // dynamically allocate lock

if(lock != NULL)
{

while(upc_lock_attempt(lock) == 0) {}; /* only proceed when thread
successfully retrieves lock

*/
sum += MYTHREAD;
upc_unlock(lock);

upc_barrier;

// verify result
if(MYTHREAD == 0)

if(sum != (THREADS-1)*THREADS/2)
{

printf("Th: %d,result: %d, expect: %d\n",MYTHREAD,sum, (THREADS-1)
*THREADS/2);
rc=FAILURE;

}

// free space
if(MYTHREAD == 0)

upc_lock_free(lock);
}

return rc;
}

upc_unlock
Sets the state of the lock object pointed to by the argument to the unlocked state.

Prototype

void upc_unlock(upc_lock_t *ptr);

Parameters

ptr Is a pointer that points to a lock object of type upc_lock_t.

Usage

The result is undefined when either of the following situations is true:
v The lock is already in an unlocked state.
v The calling thread is not the locking thread.

Example
include <upc.h>
include <stdio.h>

Chapter 5. Unified Parallel C library functions 67

define SUCCESS 155
define FAILURE 166
define COUNT 1000

/*declare a shared pointer-to-shared which points to a shared opaque datatype
upc_lock_t

*/
upc_lock_t *shared lock;

int main()
{

int i,j;

// pointer lock points to the dynamically allocated shared space
if(MYTHREAD == THREADS -1)

lock=upc_global_lock_alloc();

upc_barrier;
// if the allocation is successful
if(lock != NULL)
{

for(i=0;i<COUNT;i++)
{

for(j=0;j<COUNT;j++)
{

// verify if thread can successfully retrive and release lock
upc_lock(lock);
/*upc_unlock sets the state of the lock pointed to by lock to

unlocked
*/
upc_unlock(lock);

}
}
upc_barrier;

/*deallocate the shared space associated with the dynamically allocated
upc_lock_t pointed to by lock

*/
if(MYTHREAD == 0)

upc_lock_free(lock);
}

return SUCCESS;

}

upc_lock_free
Deallocates the dynamically allocated lock object pointed to by the argument.

Prototype

void upc_lock_free(upc_lock_t *ptr);

Parameters

ptr Is a pointer that points to a lock object of type upc_lock_t.

Usage

upc_lock_free deallocates the memory pointed to by the argument, regardless of
whether the lock pointed to by the argument is in the locked or unlocked state.

68 IBM XL Unified Parallel C for AIX, V11.0 (Technology Preview): IBM XL Unified Parallel C User’s Guide

If ptr is a null shared pointer, the function performs no action. Calling
upc_lock_free has undefined effects when either of the following conditions is
true:
v The argument of this function does not match a pointer that was previously

returned by upc_global_lock_alloc or upc_all_lock_alloc.
v The dynamically allocated memory for upc_lock_t lock object has already been

deallocated by any thread that called upc_lock_free.

Note: After the allocated memory for upc_lock_t lock object is freed, a subsequent
invocation of a locking functions with ptr as argument has undefined behavior.

Example
include <upc.h>
include <stdio.h>

define SUCCESS 155
define FAILURE 166
define COUNT 10000

// declare a pointer array which points to shared data type upc_lock_t
upc_lock_t *shared lock[COUNT];

int main()
{

int i,j;

/* make sure all shared upc_lock_t object allocated can be successfully
deallocated by invoking the upc_lock_free function

*/
for(i=0;i<COUNT;i++)
{

upc_barrier 1;

// lock[i] points to the dynamically allocated shared space
lock[i]=upc_all_lock_alloc();

upc_barrier 2;

upc_lock(lock[i]);

// read and write the shared data here with lock guarded

upc_unlock(lock[i]);

upc_barrier 3;

/*deallocate the shared space associated with the dynamically allocated
upc_lock_t pointed to by lock[i]

*/
if(lock[i] != NULL)

if(MYTHREAD == 0)
upc_lock_free(lock[i]);

upc_barrier 4;

// one of the threads allocates the share space
if(MYTHREAD == THREADS -1)

lock[i]=upc_global_lock_alloc();

upc_barrier 5;

upc_lock(lock[i]);

// read and write the shared data here with lock guarded

Chapter 5. Unified Parallel C library functions 69

upc_unlock(lock[i]);

upc_barrier 6;

/*deallocate the shared space associated with the dynamically allocated
upc_lock_t pointed to by lock[i]

*/
if(lock[i] != NULL)

if(MYTHREAD == 0)
upc_lock_free(lock[i]);

}

return SUCCESS;
}

Memory transfer

Unified Parallel C provides the following functions to copy data to and from
shared memory:
v upc_memcpy
v upc_memget
v upc_memput
v upc_memset

upc_memcpy
Copies data between shared objects.

Prototype

void upc_memcpy(shared void * restrict dst, shared const void * restrict src,
size_t n);

Parameters

dst Points to the shared object to which the data is to be copied.

src Points to the shared object from which the data is copied.

n Represents the size of the data in bytes to be copied.

Usage

upc_memcpy copies n bytes from a shared object having affinity with a thread to a
shared object having affinity with the same or another thread. The effect is
equivalent to copying the entire content from one shared array with the type
shared [] char[n] to another shared array with the type shared [] char[n].

Example
include <upc.h>

define FAILURE 166
define SUCCESS 155
define ARRSIZE 20

define verify(result,expect) \
{ if ((result)!=(expect)) \

{ \
printf("Error: fail at line %d: mythread=%d, result= %d, expect= %d\n",

70 IBM XL Unified Parallel C for AIX, V11.0 (Technology Preview): IBM XL Unified Parallel C User’s Guide

__LINE__, MYTHREAD, result,expect); \
upc_global_exit(FAILURE); \

} \
}

typedef struct t
{

int a;
} myt;

shared[] myt src[ARRSIZE];
shared[] myt *shared dst;

int main()
{

int i;

// dst points to dynamically allocated shared memory space
if(MYTHREAD == THREADS -1)

dst=(shared[] myt *shared)upc_alloc(ARRSIZE*sizeof(myt));

// initialize src
upc_forall(i=0;i<ARRSIZE;i++;&src[i])

src[i].a=i;
upc_barrier;

// copy shared data from src to dst if(MYTHREAD == THREADS -1)
upc_memcpy(dst,src,ARRSIZE*sizeof(myt));
upc_barrier;
for(i=0;i<ARRSIZE;i++)

verify(dst[i].a,i);

upc_barrier;

if(MYTHREAD == 0)
upc_free(dst);

return SUCCESS;
}

upc_memget
Copies data from a shared object with affinity to any single thread to a private
object on the calling thread.

Prototype

void upc_memget(void * restrict dst, shared const void * restrict src, size_t n);

Parameters

dst Points to the private object to which the data is to be copied.

src Points to the memory space from which the data is copied.

n Represents the size of the data in bytes to be copied.

Usage

upc_memget copies n bytes from a shared object that has affinity to a single thread
to a private object on the calling thread. The effect is equivalent to copying the
entire content from a shared array with the type shared [] char[n] to a private
array with the type char[n].

Chapter 5. Unified Parallel C library functions 71

Example
include <upc.h>

define FAILURE 166
define SUCCESS 155
define ARRSIZE 20

define verify(result,expect) \
{ if ((result)!=(expect)) \

{ \
printf("Error: fail at line %d: mythread=%d, result= %d, expect= %d\n",
__LINE__, MYTHREAD, result,expect); \
upc_global_exit(FAILURE); \

} \
}

typedef struct t
{

int a;
shared int *p; // a pointer to shared member

}myt;

shared[] myt *shared src;
myt dst[ARRSIZE];

int main()
{

int i;

/*src points to dynamically allocated shared memory space which has affinity
to THREADS-1

*/
if(MYTHREAD == THREADS -1)
{

src=(shared[] myt *shared)upc_alloc(ARRSIZE*sizeof(myt));
for(i=0;i<ARRSIZE;i++)
{

src[i].a=-i;
//structure member p points to dynamically allocated shared space
src[i].p=(shared[] int *shared)upc_alloc(1*sizeof(int));
*(src[i].p)=i;

}
}

upc_barrier;

// copy data from src to dst
upc_memget(dst,src,ARRSIZE*sizeof(myt));

upc_barrier;

for(i=0;i<ARRSIZE;i++)
{

verify(dst[i].a,-i);
verify(*(dst[i].p),i);

}

if(MYTHREAD == 0)
{

for(i=0;i<ARRSIZE;i++)
upc_free(src[i].p);

upc_free(src);
}
return SUCCESS;

}

72 IBM XL Unified Parallel C for AIX, V11.0 (Technology Preview): IBM XL Unified Parallel C User’s Guide

upc_memput
Copies data from a private object on the calling thread to a shared object that has
affinity to any single thread.

Prototype

void upc_memput(shared void * restrict dst, const void * restrict src, size_t n);

Parameter

dst Points to the shared object to which the data is to be copied.

src Points to the memory space from which the data is copied.

n Represents the size of the data in bytes to be copied.

Usage

upc_memput copies n bytes from a private object on the calling thread to a shared
object that has affinity to any single thread. The effect is equivalent to copying the
entire content from a private array with type char[n] to a shared array with the
type shared [] char[n].

Example
include <upc.h>

define FAILURE 166
define SUCCESS 155
define ARRSIZE 20

define verify(result,expect) \
{ if ((result)!=(expect)) \

{ \
printf("Error: fail at line %d: mythread=%d, result= %d, expect= %d\n",
__LINE__, MYTHREAD, result,expect); \
upc_global_exit(FAILURE); \

} \
}

typedef struct t
{

int a;
int *p; // p points to private data

} myt;

shared[] myt *dst;
myt *src;

int main()
{

int i;

// every src pointer points to dynamically allocated private memory space
src=malloc(ARRSIZE*sizeof(myt));
for(i=0;i<ARRSIZE;i++)
{

src[i].a=-i;
// structure member p points to dynamically allocated private memory space
src[i].p=malloc(1*sizeof(int));
*(src[i].p)=i+MYTHREAD;

}

/* every dst pointer points to its own dynamically allocated shared space which
has affinity to MYTHREAD

Chapter 5. Unified Parallel C library functions 73

*/
dst=(shared[] myt *)upc_alloc(ARRSIZE*sizeof(myt));

// copy data from src to dst
upc_memput(dst,src,ARRSIZE*sizeof(myt));

for(i=0;i<ARRSIZE;i++)
{

verify(dst[i].a,-i);
verify(*(dst[i].p),i+MYTHREAD);

}

// free allocated space
for(i=0;i<ARRSIZE;i++)

free(src[i].p);
free(src);
upc_free(dst);
return SUCCESS;

}

upc_memset
Copies a given value, which is converted to an unsigned char, to a shared object
with affinity to any single thread.

Prototype

void upc_memset(shared void *dst, int c, size_t n);

Parameters

dst Points to the shared object to which the value c is to be copied.

c A parameter of type int that is converted to an unsigned char to initialize the
shared object.

n Represents the size of the data in bytes to be set with the value c.

Usage

upc_memset sets the value c to the n bytes of shared memory. The effect is
equivalent to setting the value c to the entire content of a shared array with the
type shared [] char[n].

Example
include <upc.h>

define FAILURE 166
define SUCCESS 155
define ARRSIZE 40

define verify(result,expect) \
{ if ((result)!=(expect)) \

{ \
printf("Error: fail at line %d: mythread=%d, result= %d, expect= %d\n",
__LINE__,MYTHREAD,result,expect); \
upc_global_exit(FAILURE); \

} \
}

shared[] int *shared dst;

int main()
{

74 IBM XL Unified Parallel C for AIX, V11.0 (Technology Preview): IBM XL Unified Parallel C User’s Guide

int i;
char result[ARRSIZE*sizeof(int)];

if(MYTHREAD == THREADS -1)
dst=(shared[] int *)upc_alloc(ARRSIZE*sizeof(int));

upc_barrier;

if(dst != NULL)
{

upc_memset(dst,0x12,ARRSIZE*sizeof(int));
for(i=0;i<ARRSIZE;i++)

upc_memget(result+i*sizeof(int),dst+i,sizeof(int));

for(i=0;i<ARRSIZE*sizeof(int);i++)
verify(result[i],0x12);

upc_barrier;

if(MYTHREAD == 0)
upc_free(dst);

}

return SUCCESS;
}

Collective functions
The Unified Parallel C collective functions are declared in header file
upc_collective.h. Include upc_collective.h whenever using a Unified Parallel C
collective utility function.

Collective functions in Unified Parallel C can be classified as relocalization
functions and computational functions. Collective functions cannot be called
between the upc_notify statement and the corresponding upc_wait statement.

Synchronization options

The memory semantics of collective Unified Parallel C library functions control the
way in which data is synchronized.

The integer type upc_flag_t, which is defined in the header file upc.h, controls
data synchronization semantics of certain collective Unified Parallel C library
functions. A function argument of type upc_flag_t has a value yielded by applying
the operator bitwise inclusive OR (|) to the two operands, UPC_IN_XSYNC and
UPC_OUT_YSYNC. That is, the function argument of type upc_flag_t has the value
(UPC_IN_XSYNC | UPC_OUT_YSYNC), where the variables X and Y can be specified
with NO, MY, or All.

Each of the six flags UPC_{IN,OUT}_{NO,MY,ALL}SYNC are macros that expand to
integer constant expressions. The expressions are defined such that bitwise ORs of
all combinations of the macros result in distinct positive values less than 64.

Suppose that the function argument of type upc_flag_t has the value
(UPC_IN_XSYNC | UPC_OUT_YSYNC).

UPC_IN_XSYNC
Specifies one of the following synchronization mechanisms for input data:
v If X is NO, the function can begin to read, or write data when the first

thread enters the collective function call. The function does not perform
data synchronization.

Chapter 5. Unified Parallel C library functions 75

v If X is MY, the function can begin to read or write data when the thread
that has affinity to the data calls the collective function. The function
must perform data synchronization for all threads except for the current
thread.

v If X is ALL, the function can begin to read or write data only after all
threads have called the collective function. The function must
synchronize all data. With UPC_IN_ALLSYNC, the function ensures that all
threads read the same value of the input data after all threads have
called the function.

UPC_OUT_YSYNC
Specifies one of the following synchronization mechanisms for output data:
v If Y is NO, the function can read, or write data until the last thread

returns from the collective function call. The function does not perform
data synchronization.

v If Y is MY, the function can return in a thread only after all reading and
writing operations on the data with affinity to the thread are finished. It
indicates that after a thread returns from the function call, the thread
does not read any earlier values of the output data with affinity to that
thread. With UPC_OUT_MYSYNC, the function ensures that, after a thread
returns from the function call, the thread reads the latest value of the
output data with affinity to that thread.

v If Y is All, the function call can return only after the reading and
writing operations on data are finished. The function must synchronize
all data. With UPC_OUT_ALLSYNC, the function ensures that the thread
reads the latest value of the output data after a thread returns from the
function call.

Note: Passing the following corresponding arguments has the same effect:

Arguments Equivalent arguments

UPC_IN_XSYNC UPC_IN_XSYNC | UPC_OUT_ALLSYNC

UPC_OUT_ySYNC UPC_IN_ALLSYNC | UPC_OUT_ySYNC

0 UPC_IN_ALLSYNC | UPC_OUT_ALLSYNC

Relocalization functions

Unified Parallel C provides the following functions to move data to and from
regions of memory space:
v upc_all_broadcast
v upc_all_scatter
v upc_all_gather
v upc_all_gather_all
v upc_all_exchange
v upc_all_permute

upc_all_broadcast
Copies a block of shared memory with affinity to a single thread to a block of
shared memory on each thread.

76 IBM XL Unified Parallel C for AIX, V11.0 (Technology Preview): IBM XL Unified Parallel C User’s Guide

Prototype

void upc_all_broadcast(shared void * restrict dst, shared const void * restrict
src, size_t nbytes, upc_flag_t flags);

Parameters

dst Points to the destination memory which the block of shared memory is copied
to. This pointer points to a shared object that has affinity to thread 0.

src Points to the block of shared memory to be copied.

nbytes
Represents the block size measured in bytes.

flags
Controls the data synchronization semantics.

Usage

upc_all_broadcast copies nbytes-byte block of memory that has affinity to a single
thread to a block of shared memory on each thread. nbytes must be greater than 0.

The effect is equivalent to copying the entire content of a shared array with the
type shared [] char[nbytes] to another shared array with the type shared
[nbytes] char[nbytes*THREADS].

Example
include <upc.h>
include <upc_collective.h>

define NELEMS 4
define FAILURE 166
define SUCCESS 155

shared[] int A[NELEMS]; // src pointer
shared[NELEMS] int B[NELEMS*THREADS]; // dst pointer

int main()
{

int i=0;
// initialize A
upc_forall(i=0;i<NELEMS; i++; A+i)

A[i]=i;

upc_all_broadcast(B,A,sizeof(int)*NELEMS,UPC_IN_ALLSYNC|UPC_OUT_NOSYNC);

upc_barrier;

// verify results
for(i=0;i<NELEMS; i++)
{

if(B[MYTHREAD*NELEMS+i] !=i)
{

printf("Error: thread %d,B[%d]=%d,expect: %d\n",MYTHREAD,i,B[MYTHREAD*
NELEMS+i],i);
upc_global_exit(FAILURE); /*terminate all threads and force to exit

program
*/

}
}
return SUCCESS;

}

Chapter 5. Unified Parallel C library functions 77

upc_all_scatter
Copies the ith block of an area of shared memory that has affinity to a single
thread to a block of shared memory that has affinity to the ith thread.

Prototype

void upc_all_scatter(shared void * restrict dst, shared const void * restrict src,
size_t nbytes, upc_flag_t flags);

Parameters

dst Points to the destination memory to which the block of shared memory is
copied. This pointer points to a shared object that has affinity to thread 0.

src Points to the source memory from which the block of shared memory is
copied. This pointer points to a block of shared memory from which a block of
memory is copied.

nbytes
Represents the block size measured in bytes.

flags
Controls the data synchronization semantics.

Usage

The function treats:
v The pointer src as if it pointed to a shared memory area with the type shared

[] char[nbytes*THREADS].
v The pointer dst as if it pointed to a shared memory area with the type shared

[nbytes] char[nbytes*THREADS].

For each thread i, upc_all_scatter copies the ith nbytes-byte block pointed to by
src to the nbytes-byte block pointed to by dst that has affinity to thread i. nbytes
must be greater than 0.

Example
include <upc.h>
include <upc_collective.h>

define NELEMS 10
define FAILURE 166
define SUCCESS 155

shared[] int *shared A; // src pointer
shared[NELEMS] int B[NELEMS*THREADS]; // dst pointer

int main()
{

int i=0;

// dynamically allocate shared memory with affinity to thread THREADS-1
if(MYTHREAD == THREADS -1)

A=(shared[] int *)upc_alloc(THREADS*NELEMS*sizeof(int));
upc_barrier;

// initialize A
upc_forall(i=0;i<NELEMS*THREADS;i++;A+i)

A[i]=i;

upc_all_scatter(B,A,sizeof(int)*NELEMS,UPC_IN_ALLSYNC|UPC_OUT_ALLSYNC);

78 IBM XL Unified Parallel C for AIX, V11.0 (Technology Preview): IBM XL Unified Parallel C User’s Guide

// verify results
for(i=0;i<NELEMS*THREADS;i++)

if(B[i] != i)
{

printf("Error: thread=%d,B[%d]=%d,expect=%d\n",MYTHREAD,i,B[i],i);
upc_global_exit(FAILURE); /*terminate all threads and force to exit

program
*/

}

return SUCCESS;
}

upc_all_gather
Copies a block of shared memory that has affinity to the ith thread to the ith block
of a shared memory area that has affinity to a single thread.

Prototype

void upc_all_gather(shared void * restrict dst, shared const void * restrict src,
size_t nbytes, upc_flag_t flags);

Parameters

dst Points to a block of shared memory to which a block of memory is copied.

src Points to the source memory from which the block of shared memory is
copied. This pointer points to a shared object that has affinity to thread 0.

nbytes
Represents the block size measured in bytes.

flags
Controls the data synchronization semantics.

Usage

The function treats:
v The pointer src as if it pointed to a nbytes-byte block on each thread, and it had

the type shared[nbytes] char[nbytes*THREADS].
v The pointer dst as if it pointed to the shared memory area with the type shared

[] char[nbytes * THREADS].

nbytes must be greater than 0. For each thread i, the function has the same effect
as copying the nbytes-byte block that has affinity to thread i pointed to by src to
the ith nbytes-byte block pointed to by dst.

Example
include <upc.h>
include <upc_collective.h>

define NELEMS 10
define FAILURE 166
define SUCCESS 155

shared[NELEMS] int A[NELEMS*THREADS]; // src pointer
shared[] int B[NELEMS*THREADS]; // dst pointer

int main()
{

Chapter 5. Unified Parallel C library functions 79

int i=0;
// initialize A
upc_forall(i=0;i<NELEMS*THREADS; i++; A+i)

A[i]=i;

upc_all_gather(B,A,sizeof(int)*NELEMS,UPC_IN_ALLSYNC|UPC_OUT_NOSYNC);

upc_barrier;

// verify results
for(i=0;i<NELEMS*THREADS;i++)

if(B[i] != i)
{

printf("Error: thread=%d,B[%d]=%d,expect=%d\n",MYTHREAD,i,B[i],i);
upc_global_exit(FAILURE); /*terminate all threads and force to exit

program
*/

}

return SUCCESS;
}

upc_all_gather_all
Copies a block of memory from one shared memory area that has affinity to the ith
thread to the ith block of a shared memory area on each thread.

Prototype

void upc_all_gather_all(shared void * restrict dst, shared const void * restrict
src, size_t nbytes, upc_flag_t flags);

Parameters

dst Points to the destination memory to which the block of shared memory is
copied. This pointer points to a shared object that has affinity to thread 0.

src Points to the source memory from which the block of shared memory is
copied. This pointer points to a shared object that has affinity to thread 0.

nbytes
Represents the block size measured in bytes.

flags
Controls the data synchronization semantics.

Usage

nbytes must be greater than 0. The function treats:
v The pointer src as if it pointed to the nbytes-byte shared memory area on each

thread, and had the type shared[nbytes] char[nbytes*THREADS].
v The pointer dst as if it pointed to a shared memory area with the type

shared[nbytes*THREADS] char[nbytes*THREADS*THREADS].

upc_all_gather_all has the same effect as copying the ith nbytes-byte block
pointed to by src to the ith nbytes-byte block that is pointed to by dst on each
thread.

Example
include <upc.h>
include <upc_collective.h>

80 IBM XL Unified Parallel C for AIX, V11.0 (Technology Preview): IBM XL Unified Parallel C User’s Guide

define NELEMS 10
define FAILURE 166
define SUCCESS 155

shared[NELEMS] int A[NELEMS*THREADS];
shared[NELEMS*THREADS] int B[THREADS][NELEMS*THREADS];

int main()
{

int i=0;
// initialize A
upc_forall(i=0;i<NELEMS*THREADS;i++;A+i)

A[i]=i;

upc_barrier; /*need to synchronize data before invoking the collective
function

*/

upc_all_gather_all(B,A,sizeof(int)*NELEMS,UPC_IN_NOSYNC|UPC_OUT_NOSYNC);

upc_barrier; /*need to synchronize data to make sure the copy operation is
done for all threads

*/

// verify results
for(i=0;i<NELEMS*THREADS;i++)

if(B[MYTHREAD][i] != i)
{

printf("Error: thread=%d,B[%d][%d]=%d,expect=%d\n",MYTHREAD,MYTHREAD,i,
B[MYTHREAD][i],i);
upc_global_exit(FAILURE); //terminate all threads and force to exit program

}
return SUCCESS;

}

upc_all_exchange
Copies the ith block of memory from a shared memory area that has affinity to
thread j to the jth block of a shared memory area that has affinity to thread i.

Prototype

void upc_all_exchange(shared void * restrict dst, shared const void * restrict
src, size_t nbytes, upc_flag_t flags);

Parameters

dst Points to the destination memory which the block of shared memory is copied
to. This pointer points to a shared object that has affinity to thread 0.

src Points to the source memory from which the block of shared memory is
copied. This pointer points to a shared object that has affinity to thread 0.

nbytes
Represents the block size measured in bytes.

flags
Controls the data synchronization semantics.

Usage

The function treats the pointers src and dst as if each of them pointed to a
nbytes*THREADS-byte shared memory area on each thread, and each had the type
shared[nbytes*THREADS] char[nbytes*THREADS*THREADS].

Chapter 5. Unified Parallel C library functions 81

For thread i and thread j, upc_all_exchange is equivalent to copying the ith
nbytes-byte block that has affinity to thread j pointed to by src to the jth
nbytes-byte block that has affinity to thread i pointed to by dst. nbytes must be
greater than 0.

Example
include <upc.h>
include <upc_collective.h>

define NELEMS 3
define FAILURE 166
define SUCCESS 155

shared[NELEMS*THREADS] int A[THREADS][NELEMS*THREADS];
shared[NELEMS*THREADS] int B[THREADS][NELEMS*THREADS];

int main()
{

int i=0,j=0;

// initialize A
for(i=0;i<NELEMS*THREADS;i++)
A[MYTHREAD][i]=1;
upc_barrier;

upc_all_exchange(B,A,sizeof(int)*NELEMS,UPC_IN_NOSYNC|UPC_OUT_NOSYNC);
upc_barrier;

// verify results
for(i=0;i<NELEMS*THREADS;i++)
{

if(B[MYTHREAD][i] != 1)
{

printf("Error: thread=%d,result=%d,expect=%d\n",MYTHREAD,B[MYTHREAD][i],1);
upc_global_exit(FAILURE);

}
}

return SUCCESS;
}

upc_all_permute
Copies a block of memory from a shared memory area that has affinity to the ith
thread to a block of shared memory that has affinity to thread perm[i].

Prototype

void upc_all_permute(shared void * restrict dst, shared const void * restrict
src, shared const int * restrict perm, size_t nbytes, upc_flag_t flags);

Parameter

dst Points to the destination memory to which the block of shared memory is
copied. This pointer points to a shared object that has affinity to thread 0.

src Points to the source memory from which the block of shared memory is
copied. This pointer points to a shared object that has affinity to thread 0.

perm
Points to a shared object that has affinity to thread 0.

nbytes
Represents the block size measured in bytes.

82 IBM XL Unified Parallel C for AIX, V11.0 (Technology Preview): IBM XL Unified Parallel C User’s Guide

flags
Controls the data synchronization.

Usage

nbytes must be greater than 0. THREADS distinct values, such as 0,1,...,
THREADS-1, must be included in perm[0..THREADS-1].

The function treats the pointers src and dst as if each of them pointed to a
nbytes-byte shared memory area on each thread, and each had the type
shared[nbytes] char[nbytes*THREADS].

The function has the same effect as copying the nbytes-byte block that has affinity
to thread i pointed to by src to the nbytes-byte block that has affinity to the thread
perm[i] pointed to by dst.

Example
include <upc.h>
include <upc_collective.h>

define NELEMS 10
define FAILURE 166
define SUCCESS 155

shared[NELEMS] int A[NELEMS*THREADS]; //src pointer
shared[NELEMS] int B[NELEMS*THREADS]; //dst pointer
shared int P[THREADS];
shared[] int *myB;

int main()
{

int i=0,j=0;
// initialize P
P[MYTHREAD]=THREADS-1-MYTHREAD;
// initialize A
upc_forall(i=0;i<NELEMS*THREADS;i++;A+i)

A[i]=i;
upc_barrier;
upc_all_permute(B,A,P,sizeof(int)*NELEMS,UPC_IN_NOSYNC|UPC_OUT_NOSYNC);

upc_barrier;

// myB points to the first element of the array for corresponding threads
myB=(shared[] int *)&B[MYTHREAD*NELEMS];

// verify results
for(i=0;i<NELEMS;i++)

if(myB[i] != (THREADS-1-MYTHREAD)*NELEMS+i)
{

printf("Error: thread:%d, myB[%d]=%d,expect=%d\n",MYTHREAD,i,myB[i],
(THREADS-1-MYTHREAD)*NELEMS+i);
upc_global_exit(FAILURE);

}

return SUCCESS;
}

Computational functions

A variable of type upc_op_t can be specified with the values in Table 4 on page 84.
The computational operations that are represented by variables of the type
upc_op_t or by user-provided operators, are assumed to be associative.

Chapter 5. Unified Parallel C library functions 83

All operations represented by a variable of type upc_op_t, excluding the operation
provided by the value UPC_NONCOMM_FUNC, are assumed to be communicative. For a
reduction or a prefix reduction using operators other than UPC_NONCOMM_FUNC, if the
result of the operation depends on the order of the operands, the result is
undefined.

Table 4. Values and Corresponding Operations

Values Corresponding operations

UPC_ADD Addition.

UPC_MULT Multiplication.

UPC_AND Bitwise AND for integer and character variables. Results
are undefined for floating point numbers.

UPC_OR Bitwise OR for integer and character variables. Results
are undefined for floating point numbers.

UPC_XOR Bitwise XOR for integer and character variables. Results
are undefined for floating point numbers.

UPC_LOGAND Logical AND for all variable types.

UPC_LOGOR Logical OR for all variable types.

UPC_MIN For all data types, find the minimum value.

UPC_MAX For all data types, find the maximum value.

UPC_FUNC Use the specified commutative function func to operate
on the data in the src array at each step.

UPC_NONCOMM_FUNC Use the specified non-commutative function func to
operate on the data in the src array at each step.

Unified Parallel C provides the following functions to perform computational
operations on data:
v upc_all_reduce, upc_all_prefix_reduce

upc_all_reduce, upc_all_prefix_reduce
Performs a user-specified operation on all the elements, and returns the value
produced with the computational operation to a single thread.

Prototype

void upc_all_reduceT(shared void * restrict dst, shared const void * restrict
src, upc_op_t op, size_t nelems, size_t blk_size, TYPE(*func)(TYPE, TYPE),
upc_flag_t flags);

void upc_all_prefix_reduceT(shared void * restrict dst, shared const void *
restrict src, upc_op_t op, size_t nelems, size_t blk_size, TYPE(*func)(TYPE,
TYPE), upc_flag_t flags);

Parameters

dst Points to a shared array that stores the elements produced by the
computational operation.

src Points to a shared array that stores the elements to be manipulated.

op Specifies the operation to be performed on all elements.

nelems
Represents the number of the elements in each shared array.

84 IBM XL Unified Parallel C for AIX, V11.0 (Technology Preview): IBM XL Unified Parallel C User’s Guide

blk_size
Represents the size of the block measured in bytes.

func
Points to a function that is used to perform user-defined operations on all
elements.

flags
Controls the data synchronization semantics.

Usage

The function prototypes have different variants depending upon different values of
T. The following table shows the correspondences between T and TYPE.

Table 5. T and TYPE Correspondences

T Type

C signed char

UC unsigned char

S signed short

US unsigned short

I signed int

UI unsigned short

L signed long

UL unsigned long

F float

D double

LD long double

The ⊕ operator represents the operation performed on all the elements. It is
specified by the parameter op.

After the upc_all_reduceT function returns, the value of the TYPE shared object
pointed to by dst is src[0]⊕src[1] ⊕• • •⊕ src[nelems-1].

After the upc_all_prefix_reduceT function returns, the value of the TYPE shared
object pointed to by dst[i] is src[0]⊕src[1] ⊕• • •⊕ src[i] for 0≤i≤nelems-1.

Based on the different values of blk_size passed to the function, the src pointer is
treated in the following two ways:
v If blk_size is greater than 0, the function treats src pointer as if it pointed to a

shared memory area with the type shared [blk_size] TYPE [nelems].
v If blk_size is 0, the function treats src pointer as if it pointed to a shared

memory area with the type shared [] TYPE[nelems].

The phase of the pointer src is followed in referencing array elements. The
upc_all_reduceT function treats the pointer dst as if it had the type shared TYPE *.
For the upc_all_prefix_reduceT function, the affinity and phase of the pointer src
must match those of the pointer dst.

Chapter 5. Unified Parallel C library functions 85

Examples

Example 1 demonstrates the usage of upc_all_reduceT. Example 2 demonstrates
the usage of upc_all_prefix_reduceT.

Example 1
include <upc.h>
include <upc_collective.h>

define SUCCESS 155
define FAILURE 166
define BLKSIZE1 5
define BLKSIZE2 0
define N 100

define verify(result,expect) \
{ if ((result)!=(expect)) \

{ \
printf("Error: fail at line %d: mythread=%d, result= %d, expect= %d\n",

__LINE__, MYTHREAD, result,expect); \
upc_global_exit(FAILURE); \

} \
}

typedef int T; //TYPE is an integer

shared[BLKSIZE1] T srcA[N];
shared[BLKSIZE2] T srcB[N];
shared T *dst;
shared T result;

int main()
{

int i,j;

// initialize the shared arrays
upc_forall(i=0;i<N;i++;&srcA[i])

srcA[i]=i;

upc_forall(i=0;i<N;i++;&srcB[i])
srcB[i]=-i;

upc_barrier;

// initialize the dst pointer
dst=&result;

/* the value of the TYPE shared object referenced by dst is srcA[0] + srcA[1]
+ srcA[N-1] where 0<= i <=N-1, + is the operator specified by the variable
op e.g. UPC_ADD

*/
upc_all_reduceI(dst,srcA,UPC_ADD,N,BLKSIZE1,NULL,UPC_IN_NOSYNC |
UPC_OUT_NOSYNC);

upc_barrier;

// verify results
verify(*dst,(N - 1)*N/2);

verify(result,(N - 1)*N/2);

upc_barrier;

/* the value of the TYPE shared object referenced by dst is
srcB[0] + srcB[1] + srcB[N-1] where 0<= i <=N-1, + is
the operator specified by the variable op e.g. UPC_ADD

*/

86 IBM XL Unified Parallel C for AIX, V11.0 (Technology Preview): IBM XL Unified Parallel C User’s Guide

upc_all_reduceI(dst,srcB,UPC_ADD,N,BLKSIZE2,NULL,UPC_IN_NOSYNC |
UPC_OUT_NOSYNC);

upc_barrier;

//verify results
verify(*dst,-1*(N - 1)*N/2);

verify(result,-1*(N - 1)*N/2);

return SUCCESS;

}

Example 2
include <upc.h>
include <upc_collective.h>

define SUCCESS 155
define FAILURE 166
define BLKSIZE1 5
define BLKSIZE2 0
define N 100

define verify(result,expect) \
{ if ((result)!=(expect)) \

{ \
printf("Error: fail at line %d: mythread=%d, result= %l, expect= %l\n",

__LINE__, MYTHREAD, result,expect); \
upc_global_exit(FAILURE); \

} \
}

typedef long T; // TYPE is a long

shared[BLKSIZE1] T srcA[N];
shared[BLKSIZE2] T srcB[N];
shared[BLKSIZE1] T dstA[N];
shared[BLKSIZE2] T dstB[N];

int main()
{

int i;

// initialize srcA & srcB
upc_forall(i=0;i<N;i++;&srcA[i])

srcA[i]=i;

upc_forall(i=0;i<N;i++;&srcB[i])
srcB[i]=-i;

upc_barrier;

/* function requires upc_threadof(srcA) == upc_threadof(dstA) &&
upc_phaseof(srcA) == upc_phaseof(dstA), the value of the TYPE
shared object referenced by dstA[i] is the srcA[0] + srcA[1] +
... + srcA[i], 0<= i <=N-1, + is the operator specified
by the variable op e.g. UPC_ADD

*/
upc_all_prefix_reduceL(dstA,srcA,UPC_ADD,N,BLKSIZE1,NULL,UPC_IN_NOSYNC |
UPC_OUT_NOSYNC);

upc_barrier;

// verify results
for(i=0;i<N;i++)

verify(dstA[i],i*(i+1)/2);

Chapter 5. Unified Parallel C library functions 87

/* function requires upc_threadof(srcB) == upc_threadof(dstB) &&
upc_phaseof(srcB) == upc_phaseof(dstB), the value of the TYPE
shared object referenced by dstB[i] is the srcB[0] + srcB[1] +
... + srcB[i], 0<= i <=N-1, + is the operator specified
by the variable op e.g. UPC_ADD

*/
upc_all_prefix_reduceL(dstB,srcB,UPC_ADD,N,BLKSIZE2,NULL,UPC_IN_ALLSYNC |
UPC_OUT_ALLSYNC);

// verify results
for(i=0;i<N;i++)

verify(dstB[i],-i*(i+1)/2);

return SUCCESS;

}

88 IBM XL Unified Parallel C for AIX, V11.0 (Technology Preview): IBM XL Unified Parallel C User’s Guide

Chapter 6. Compiler optimization

The XL Unified Parallel C compiler offers a comprehensive set of performance
enhancing optimizations which you can take advantage of to develop high
performance parallel applications.

The compiler uses a runtime system (RTS) that is designed for scalability in a large
parallel computing environment. The RTS exposes an application programming
interface (API) to the compiler, and the compiler calls the API functions in the RTS
for efficient manipulation of shared data.

In the partitioned global address space (PGAS) programming model, a thread can
access a shared object either locally or remotely. A local access is an access to a
shared object allocated in the address partition mapped to the accessing thread. A
remote access is an access to a shared object allocated in an address partition
mapped to a different thread than the accessing thread.

Access to remote shared memory might require network communication between
the accessing thread and the thread that has affinity to the shared object. In
contrast, a shared local access does not require any network transfer. To improve
application performance, the compiler can often bypass RTS calls for local shared
accesses and address the shared local memory directly.

To optimize remote shared memory accesses, the compiler can (under certain
circumstances) coalesce together remote accesses that requires communication to
the same remote thread.

Shared object access optimizations
This topic and the following subtopics describe the optimizations that the compiler
can perform on shared object accesses.

In a Unified Parallel C application, shared objects are distributed into different
threads. For example, elements of a shared array are distributed among threads of
the application based on the layout qualifier used on the shared array declaration.

When a thread reads from or writes to an element of a shared array, the access it
performs might be a shared local access or a shared remote access. In the absence
of optimizations, the compiler generates calls to the RTS API to read the value of a
shared array element or to assign a new value to it. Calling the RTS API to read or
write a local shared object value impacts application performance significantly. In
the case of a remote shared access, the processing time of a runtime call is
compounded by the necessary network communication latency.

The shared object access optimizations have the objective of eliminating
unnecessary runtime calls for local shared accesses, and reduce the network
communication time required to perform remote shared accesses.

Shared object access privatization
This optimization technique has the goal of eliminating unnecessary runtime calls
to access local shared objects.

© Copyright IBM Corp. 2010 89

Typically, the compiler translates accesses to shared objects by generating
appropriate runtime function calls. Any call to the runtime system requires some
processing time. When the underlying memory of the shared object is in the local
address space of the accessing thread, the thread can access the object without
issuing a runtime system call. The compiler achieves this by converting the
references to the shared object to traditional C references, thus bypassing the
runtime function calls.

Take the following code as an example:
shared [N/THREADS] int A[N], B[N], C[N];

void foo()
{

int i;
upc_forall(i=0; i<N; ++i; &A[i])
{

A[i] = B[i] + C[i];
}

}

In this example, the thread that executes the i’th loop iteration is the thread that
has affinity with the array element A[i]. The B and C arrays have the same
blocking factor as A; therefore, all the shared accesses performed in the loop body
are local to the issuing thread. The compiler can privatize all the 3 shared array
accesses and it does not need to generate runtime calls for translating these
accesses.

Data-parallel applications tend to spend most of the computation time in loops.
Loop iterations and shared data are typically distributed into multiple threads.
When the shared object access privatization optimization is enabled, each thread
can access its local shared data directly without calling any runtime function.

Note: When the compiler cannot prove that an access to a shared object is local
(the compiler cannot prove that the accessing thread has affinity to the shared
object), it must assume that the access is remote and call the appropriate runtime
function to access the object.

Shared object access coalescing
This optimization technique is designed to replace multiple shared remote accesses
to elements of a shared array having affinity to the same thread with a single
remote access.

The compiler typically translates a remote shared access into a call to the
appropriate runtime function. For example, reading from or writing to multiple
shared array elements that have affinity to a remote thread causes the compiler to
generate a runtime call for each of the array elements read or modified. The
compiler can combine multiple remote accesses into a single access when it can
prove that the shared array elements satisfy the following conditions:
v The shared array elements have affinity to the same thread.
v The distance or stride between consecutive shared array elements accesses is

constant.

When multiple remote accesses are combined, the compiler issues a single call to
the runtime, thus reducing the number of the communication messages between
the accessing thread and the owner thread.

Take the following code as an example:

90 IBM XL Unified Parallel C for AIX, V11.0 (Technology Preview): IBM XL Unified Parallel C User’s Guide

define ARRAY_SIZE 100
define BF (ARRAY_SIZE/THREADS)

shared [BF] int A[ARRAY_SIZE];
shared [BF] int B[ARRAY_SIZE];

void loop()
{

int i;
upc_forall(i=0; i<ARRAY_SIZE-BF; i++; &A[i])
{

A[i] = B[i+BF];
}

}

If the example is compiled in a static environment targeting 2 execution threads
running on 2 distinct nodes, then the access B[i+BF] is executed by thread 0 for all
loop iterations. Elements B[50] through B[99] have affinity to thread 1 located on a
remote node.

In this example, the compiler attempts to coalesce the accesses to B[i+BF] together
instead of generating a call to dereference individually each of the 50 remote
shared array elements.

Shared object remote updating
This optimization technique is designed to replace an update operation to a remote
memory object with a specialized runtime call having reduced communication
requirements.

When one thread updates a shared object that has affinity to a thread running on a
remote node, the two threads perform the following operations:
1. The accessing thread makes a request to the owner thread to retrieve the value

of the object and the owner thread responds with the requested value.
2. The accessing thread locally update the value received from the owner thread.
3. The accessing thread sends the new value to the owner thread.

This communication pattern requires 2 calls between the accessing thread and the
owner thread. Communication calls impact the performance of an application, and
the impact can be significant when the communication is carried over a network.

To mitigate such impact, the compiler can perform the following operations:
1. Recognize the update operation.
2. Generate a special runtime call to instruct the remote thread that owns the

array element to perform the update locally.

This optimization results into the execution of a single communication call from
the accessing thread to the owner thread, with the update instructions encoded in
the call. The update of the shared object is performed by the remote thread, and
the number of communication calls is therefore reduced from 2 to 1.

Consider the following example:
shared int histogram[N];
extern int my_poll();

int main()
{

upc_forall(int i=0; i<N; i++; i)
{

Chapter 6. Compiler optimization 91

histogram[i] = 0;
}

upc_barrier;

for(int i=0; i<K; i++)
{

histogram[my_poll()] += 1;
}

}

In this example, we assume that the call to my_poll() produces a pseudo-random
number ranging from 0 to N-1. Therefore the shared access to
histogram[my_poll()] might be remote to the accessing thread, and in that case its
value is updated remotely from another thread. When the shared object remote
updating optimization is enabled, the number of communication calls required by
this program is reduced in half.

Array idiom recognition
This optimization technique is designed to replace commonly user shared array
access patterns with the appropriate Unified Parallel C string handling functions.

Unified Parallel C programs often include statements that manipulate the values of
local and shared arrays. Consider the following code as an example:
shared [BF] int a[N];
int b[N];

int main ()
{

int i;
if (MYTHREAD==0)
{

for (i=0; i<N; i++)
a[i]=b[i];

}
}

In this example, the statement a[i]=b[i] copies a local array to a shared array.
Each loop iteration copies one array element at a time. A naive translation of this
code results in fine-grained communication for each array element copy. To reduce
the number of communication calls, the compiler can perform the following steps:
1. Identify commonly used array manipulation statements (patterns).
2. Classify the operations based on the access pattern.
3. Transform the identified array pattern into a call to one of the Unified Parallel

C string handling function calls (upc_memset, upc_memget, upc_memput, or
upc_memcpy).

When the array idiom recognition optimization is enabled, the compiler transforms
the loop in the preceding example as follows:
...
for (i=0; i<N; i+=BF)
{

upc_memput(&a[i], &b[i], BF*sizeof(b[i]));
}
...

Note: The array idiom recognition optimization only considers relaxed shared
accesses.

92 IBM XL Unified Parallel C for AIX, V11.0 (Technology Preview): IBM XL Unified Parallel C User’s Guide

Parallel loop optimizations
This section describes the optimizations that the compiler performs on the
upc_forall loop.

The upc_forall loop is extensively used in XL Unified Parallel C applications to
distribute work across threads, and thus the performance of the loop can
significantly affect the performance of an application.

To improve the runtime performance of the upc_forall loop, the compiler uses the
following optimization techniques:
v Create multiple versions of the loop in preparation for locality analysis.
v Remove the affinity branch statement by reshaping the iteration space of the

loop.

Loop reshaping
This compiler optimization has the objective of removing the overhead of the
affinity branch from a upc_forall loop body.

The compiler typically transforms a upc_forall loop into a for loop. To respect the
upc_forall semantics, the compiler can naively translate the affinity expression
into a branch controlling the execution of the for loop. The branch ensures that
only the correct loop iterations are executed by a given thread.

The following two examples illustrate two possible naive transformations of a
upc_forall loop.

Example 1: Transforming a upc_forall loop that has the integer affinity:
shared double a[N], b[N], c[N];

void foo_1 ()
{

int i;
upc_forall (i=0; i<N; i++, i)

a[i]=b[i]+c[i];
}

The upc_forall loop example 1 can be transformed into the following for loop
containing an if conditional statement based on the integer affinity expression:
shared double a[N], b[N], c[N];

void foo_1 ()
{

int i;

for (i=0; i<N; i++)
{

if ((i%THREADS)==MYTHREAD)
a[i]=b[i]+c[i];

}
}

Example 2: Transforming a upc_forall loop that has the address affinity:
shared double a[N], b[N], c[N];

void foo_2 ()
{

Chapter 6. Compiler optimization 93

int i;
upc_forall (i=0; i<N; i++, &a[i])

a[i]=b[i]+c[i];
}

The upc_forall loop example 2 can be transformed into the following for loop
containing an if conditional statement based on the address affinity expression:
shared double a[N], b[N], c[N];

void foo_2 ()
{

int i;
for (i=0; i<N; i++)
{

if (upc_threadof(&a[i])==MYTHREAD)
a[i]=b[i]+c[i];

}
}

In these examples, the compiler inserts a branch statement into the loop body. Note
that the branch must be evaluated (by every thread) in each loop iteration and
therefore it severely impacts the scalability of the loop and the performance of the
program.

To address this issue, the XL Unified Parallel C compiler optimizes the upc_forall
loop without inserting the branch statement. The following subtopics provide
details about the loop reshaping optimization.

Reshaping loops with integer affinity
Describes the technique used to optimize a upc_forall loop with integer affinity.

To optimize a upc_forall loop with an integer affinity expression, the compiler
changes the lower bound of the loop to MYTHREAD and the increment of the loop to
THREADS.

Consider the upc_forall loop in the following example:
shared double a[N], b[N], c[N];

void foo ()
{

int i;
upc_forall (i=0; i<N; i++; i)

a[i]=b[i]+c[i];
}

When the loop reshaping optimization is enabled, the compiler transforms the loop
in the example as follows:
shared double a[N], b[N], c[N];

void foo ()
{

int i;
for (i=MYTHREAD; i<N; i+=THREADS)

a[i]=b[i]+c[i];
}

Reshaping loops with address affinity
Describes the technique used to optimize a upc_forall loop with address affinity.

94 IBM XL Unified Parallel C for AIX, V11.0 (Technology Preview): IBM XL Unified Parallel C User’s Guide

To optimize a upc_forall loop with an address affinity expression, the compiler
translates the upc_forall loop into two nested loops-the outer loop iterates over
blocks of array elements with affinity to the same thread and the inner loop
iterates through each element in a block.

Consider the following code as an example:
shared [2] int a[N], b[N], c[N];
int i;

upc_forall (i=0; i<N; i++; &a[i])
{

a[i]=b[i]+c[i];
}

When the loop reshaping optimization is enabled, the compiler translates the
preceding code as follows:
shared [2] int a[N], b[N], c[N];
int i, j;

for (i=MYTHREAD*2; i<N; i+=THREADS*2)
{

for (j=i; j<i+2; j++)
{

a[j]=b[i]+c[i];
}

}

The absence of the affinity branch allows the loop to be executed efficiently and to
scale up to large number of threads.

Note: If the compiler cannot determine how to optimize a upc_forall loop, it must
insert a branch statement into the loop body based on the affinity test.

Loop versioning
This optimization has the objective of facilitating further analysis of a upc_forall
loop containing indirect shared memory accesses.

Locality analysis is an important optimization technique. It helps the compiler
identify opportunities for shared object privatization and coalescing.

To prepare a upc_forall loop containing indirect shared references (through a
pointer-to-shared) for locality analysis, the compiler performs the following steps:
1. Creates two control flow paths, the true path and the false path.
2. Computes the expression that, when evaluates to true, leads the program

control branch into the true path. The condition the compiler generates
guarantees that all the shared accesses through a pointer-to-shared in the true
path have known locality, that is, the pointer-to-shared points to the first array
element in a block, and the pointer is loop invariant.

3. Creates two copies of the original loop and place each copy of the loop in one
of the two control paths.

This transformation allows the compiler to perform locality analysis on the indirect
accesses to shared objects through a pointer-to-shared in the true path.

Consider the following example:

Chapter 6. Compiler optimization 95

...
void foo(shared [BF] int *p1, shared [BF] int *p2)
{

int i;
upc_forall (i=0; i<N; ++i; &p1[i])

p1[i]=p2[i+1];
}

When the loop versioning optimization is enabled, the compiler transforms the
code in this example as follows:
...
void foo(shared [BF] int *p1, shared [BF] int *p2)
{

int i;
_Bool ver_p1=(upc_phaseof(p1)==0)?1:0;
_Bool ver_p2=(upc_phaseof(p2)==0)?1:0;
if (ver_p1 && ver_p2)
{

// true path
upc_forall (i=0; i<N; i++; &p1[i])

p1[i]=p2[i+1];
}
else
{

// false path
upc_forall (i=0; i<N; i++; &p1[i])

p1[i]=p2[i+1];
}

}

In the transformed code, p1 and p2 are considered for locality analysis in the true
path, whereas they are not considered for the analysis in the false path.

The loop versioning transformation helps the compiler prepare the indirect
accesses to a shared object in the upc_forall loop for locality analysis, and can
consequently contribute to an improvement in application performance.

Note: In this particular example, note that in the false path, p1 has the exact same
index as the affinity expression and the compiler can still prove that it is always
local, so the compiler can always privatize p1.

96 IBM XL Unified Parallel C for AIX, V11.0 (Technology Preview): IBM XL Unified Parallel C User’s Guide

Notices

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION ″AS IS″ WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 2010 97

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

Lab Director
IBM Canada Ltd. Laboratory
8200 Warden Avenue
Markham, Ontario L6G 1C7
Canada

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM for the purposes of developing, using, marketing, or distributing application
programs conforming to IBM’s application programming interfaces.

98 IBM XL Unified Parallel C for AIX, V11.0 (Technology Preview): IBM XL Unified Parallel C User’s Guide

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs. © Copyright IBM Corp. 1998, 2010. All rights reserved.

Trademarks and service marks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at “Copyright and
trademark information” at http://www.ibm.com/legal/copytrade.shtml.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Notices 99

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

100 IBM XL Unified Parallel C for AIX, V11.0 (Technology Preview): IBM XL Unified Parallel C User’s Guide

Index

Special characters
-qupc compiler option 9

9, 11

C
compiler options

-qupc 9

© Copyright IBM Corp. 2010 101

102 IBM XL Unified Parallel C for AIX, V11.0 (Technology Preview): IBM XL Unified Parallel C User’s Guide

����

Printed in USA

	Contents
	Chapter 1. Parallel programming and Unified Parallel C
	Parallel programming
	Partitioned global address space programming model
	Unified Parallel C introduction

	Chapter 2. Unified Parallel C programming model
	Distributed shared memory programming
	Data affinity and data distribution
	Memory consistency
	Synchronization mechanism

	Chapter 3. Using the XL Unified Parallel C compiler
	Compiler options
	New compiler options
	-qupc

	Modified compiler options
	Unsupported compiler options

	Compiler commands
	Invoking the compiler

	Compiling and running an example program

	Chapter 4. Unified Parallel C language
	Predefined identifiers
	Unary operators
	The address operator &
	The sizeof operator
	The upc_blocksizeof operator
	The upc_elemsizeof operator
	The upc_localsizeof operator

	Data and pointers
	Shared and private data
	Blocking of shared arrays
	Shared and private pointers
	Pointer-to-shared arithmetic
	Cast and assignment expressions

	Declarations
	Type qualifiers
	Declarators

	Statements and blocks
	Synchronization statements
	Blocking barriers
	Nonblocking barriers
	Fences

	Iteration statements

	Predefined macros and directives
	Unified Parallel C directives
	Predefined macros

	Chapter 5. Unified Parallel C library functions
	Utility functions
	Program termination
	upc_global_exit

	Dynamic memory allocation
	upc_all_alloc
	upc_alloc
	upc_free
	upc_global_alloc

	Pointer-to-shared manipulation
	upc_addrfield
	upc_affinitysize
	upc_phaseof
	upc_resetphase
	upc_threadof

	Serialization
	upc_all_lock_alloc
	upc_global_lock_alloc
	upc_lock
	upc_lock_attempt
	upc_unlock
	upc_lock_free

	Memory transfer
	upc_memcpy
	upc_memget
	upc_memput
	upc_memset

	Collective functions
	Synchronization options
	Relocalization functions
	upc_all_broadcast
	upc_all_scatter
	upc_all_gather
	upc_all_gather_all
	upc_all_exchange
	upc_all_permute

	Computational functions
	upc_all_reduce, upc_all_prefix_reduce

	Chapter 6. Compiler optimization
	Shared object access optimizations
	Shared object access privatization
	Shared object access coalescing
	Shared object remote updating
	Array idiom recognition

	Parallel loop optimizations
	Loop reshaping
	Reshaping loops with integer affinity
	Reshaping loops with address affinity

	Loop versioning

	Notices
	Trademarks and service marks

	Index
	Special characters
	C

