
Parallel Environment for AIX and Linux

Operation and Use

Version 5 Release 1

SC23-6667-00

���

Parallel Environment for AIX and Linux

Operation and Use

Version 5 Release 1

SC23-6667-00

���

Note

Before using this information and the product it supports, read the information in “Notices” on page 245.

First Edition (November 2008)

This edition applies to version 5, release 1, modification 0 of IBM Parallel Environment for AIX (product number

5765-PEA) and version 5, release 1, modification 0 of IBM Parallel Environment for Linux (product number

5765-PEL), and to all subsequent releases and modifications until otherwise indicated in new editions.

IBM welcomes your comments. A form for readers’ comments may be provided at the back of this publication, or

you can send your comments to the following address:

 International Business Machines Corporation

 Department 58HA, Mail Station P181

 2455 South Road

 Poughkeepsie, NY 12601-5400

 United States of America

 FAX (United States & Canada): 1+845+432-9405

 FAX (Other Countries):

 Your International Access Code +1+845+432-9405

 IBMLink™ (United States customers only): IBMUSM10(MHVRCFS)

 Internet e-mail: mhvrcfs@us.ibm.com

If you want a reply, be sure to include your name, address, and telephone or FAX number.

Make sure to include the following in your comment or note:

v Title and order number of this publication

v Page number or topic related to your comment

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any

way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1993, 2008.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Tables . vii

About this information . ix

Who should read this information . ix

How this information is organized . x

Overview of contents . x

Conventions and terminology used in this information . x

Abbreviated names . xi

Prerequisite and related information . xi

How to send your comments . xii

National language support (NLS) . xii

Functional restrictions for PE 5.1 . xiii

Summary of changes . xiii

Changes for PE 5.1 . xiii

Chapter 1. Introduction . 1

PE Version 5 Release 1 migration information . 4

PE for AIX 5.1 migration information . 4

PE for Linux 5.1 migration information . 8

Chapter 2. Executing parallel programs . 11

Executing parallel programs using POE . 11

Step 1: Compile the program . 12

Step 2: Copy files to individual nodes . 15

Step 3: Set up the execution environment . 15

Step 4: Invoke the executable . 34

Controlling program execution . 42

Specifying develop mode . 42

Making POE wait for processor nodes . 43

Making POE ignore arguments . 44

POE argument limits . 45

Managing standard input, output, and error . 45

Determining which nodes will participate in parallel file I/O 52

POE user authorization . 53

Checkpointing and restarting programs (PE for AIX only) 54

Managing task affinity on large SMP nodes . 57

Running POE from a shell script (PE for AIX only) . 62

Using POE with MALLOCDEBUG (PE for AIX only) . 62

Using POE with AIX large pages (PE for AIX only) . 62

Chapter 3. Managing POE jobs . 65

Multi-task core file . 65

Support for performance improvements . 67

Using MP_BUFFER_MEM . 67

Improving performance with MP_CSS_INTERRUPT . 70

Stopping a POE job . 71

Cancelling and killing a POE job . 72

Detecting remote node failures . 72

Submitting a batch POE job using TWS LoadLeveler . 72

PE for AIX example of submitting a batch POE job using TWS LoadLeveler 73

PE for Linux example of submitting a batch POE job using TWS LoadLeveler 75

Submitting an interactive POE job using a TWS LoadLeveler command file 76

Generating an output TWS LoadLeveler job command file 77

Parallel file copy utilities . 78

© Copyright IBM Corp. 1993, 2008 iii

Considerations for using the High Performance Switch interconnect 78

Scenario 1: Explicitly allocating nodes with TWS LoadLeveler 79

Scenario 2: Implicitly allocating nodes with TWS LoadLeveler 80

Scenario 3: Implicitly allocating nodes with TWS LoadLeveler (mixing dedicated and shared adapters) 82

Considerations for failover and recovery with PE . 83

Considerations for data striping, with PE . 86

Specifying the format of core files or suppressing core file generation (PE for AIX only) 90

Generating standard AIX core files (PE for AIX only) . 90

Generating core files for sigterm (PE for AIX only) . 91

Writing core file information to standard error (PE for AIX only) 91

Generating lightweight core files (PE for AIX only) . 91

Managing large memory parallel jobs (PE for AIX only) . 93

Running programs under the C shell (PE for AIX only) . 93

Using RDMA . 94

Using RDMA with the IBM High Performance Switch (PE for AIX only) 94

Using RDMA with the InfiniBand interconnect . 95

Improving application scalability performance (PE for AIX only) 97

POE priority adjustment coscheduler . 97

AIX Dispatcher tuning (PE for AIX only) . 101

Starting a User Space POE job, using the InfiniBand interconnect, without LoadLeveler (PE for AIX only) . . . 101

Step 1: Compile and install the NRT API sample programs (PE for AIX only) 102

Step 2: Construct input data files (PE for AIX only) . 102

Step 3: Load the network tables on each node (PE for AIX only) 106

Step 4: Run the parallel job under POE (PE for AIX only) 107

Step 5: Unload the network tables (PE for AIX only) . 108

Displaying adapter device status information (PE for AIX only) 108

Chapter 4. Debugging parallel programs using DISH and the PDB debugger 111

Using the Distributed Interactive Shell . 111

Before you begin using DISH . 112

Using the DISH console . 115

Using the PDB debugger . 117

Using PDB in launch mode . 118

Using PDB in attach mode . 118

Diagnosing problems with PDB . 118

Example: Debugging a program with PDB . 119

Chapter 5. Profiling programs with the prof and gprof commands 123

Profiling AIX programs with the prof and gprof commands 123

Profiling Linux programs with the gprof command . 125

Chapter 6. Parallel Environment commands 129

cpuset_query . 130

dish . 132

Subcommands of the dish command . 137

group subcommand (of the dish command) . 137

help subcommand (of the dish command) . 137

interrupt subcommand (of the dish command) . 138

kquit subcommand (of the dish command) . 138

leave subcommand (of the dish command) . 139

on subcommand (of the dish command) . 139

exit subcommand (of the dish command) . 139

send subcommand (of the dish command) . 139

toggle subcommand (of the dish command) . 139

match subcommand (of the dish command) . 140

disha . 141

mcp . 143

mcpgath . 145

mcpscat . 149

mpamddir . 152

iv IBM PE for AIX and Linux V5 R1: Operation and Use

mpcc . 153

mpcc_r . 156

mpCC . 158

mpCC_r . 161

mpfort . 163

mpiexec . 166

mpxlf_r . 167

mpxlf90_r . 170

mpxlf95_r . 173

mpxlf2003_r . 176

pdb . 179

perpms . 182

poe . 183

poeckpt . 207

poekill . 209

poerestart . 210

rset_query . 212

Chapter 7. POE Environment variables and command line flags 215

MP_BUFFER_MEM details . 239

MP_CC_BUF_MEM details . 240

Appendix. Accessibility features for Parallel Environment 243

Accessibility features . 243

IBM and accessibility . 243

Notices . 245

Trademarks . 247

Glossary . 249

Index . 255

Contents v

vi IBM PE for AIX and Linux V5 R1: Operation and Use

Tables

 1. Typographic conventions . x

 2. Specifying the default message catalog with the NLSPATH environment variable xii

 3. Location of PE message catalogs . xiii

 4. Compiling a PE for AIX program . 13

 5. Compiling a PE for Linux program . 13

 6. Execution setup summary for User Space (for a clustered server with LoadLeveler) 18

 7. Execution setup summary for IP (for a clustered server with LoadLeveler) 19

 8. Execution environment setup summary (for an IBM Power Systems network cluster or a mixed system,

whose additional nodes are not part of the LoadLeveler cluster) 19

 9. Node allocation summary . 20

10. Example of setting the MP_PROCS environment variable or -procs command line flag 21

11. Adapter/CPU default settings . 25

12. Adapter/CPU use under LoadLeveler . 26

13. Example of setting the MP_SAVEHOSTFILE environment variable or -savehostfile command line flag 26

14. When to set the MP_HOSTFILE environment variable 27

15. Example of setting the MP_HOSTFILE environment variable or -hostfile command line flag when using a

nondefault host list file . 27

16. Setting the MP_HOSTFILE environment variable or -hostfile command line flag when requesting nonspecific

node allocation without a host list file . 28

17. Example of setting the MP_RESD environment variable or -resd command line flag 29

18. How the value of MP_RESD is interpreted . 29

19. Example of setting the MP_EUILIB environment variable or -euilib command line flag 30

20. Example of setting the MP_EUILIBPATH environment variable or -euilibpath command line flag 30

21. When to set the MP_EUIDEVICE environment variable 31

22. Settings for MP_EUIDEVICE . 31

23. Example of setting the MP_EUIDEVICE environment variable or -euidevice command line flag 31

24. When to set the MP_DEVTYPE environment variable 32

25. Example of setting the MP_DEVTYPE environment variable or -devtype command line flag 32

26. When to set the MP_MSG_API environment variable 32

27. When to set the MP_RMPOOL environment variable . 33

28. Example of setting the MP_RMPOOL environment variable or -rmpool command line flag 33

29. LoadLeveler node allocation . 34

30. Example of setting the MP_PGMMODEL environment variable or -pgmmodel command line flag 35

31. Example of setting the MP_CMDFILE environment variable or -cmdfile command line flag 38

32. Example of setting the MP_NEWJOB environment variable or -newjob command line flag 39

33. Example of specifying a POE commands file from which the Partition Manager should read job steps 41

34. Example of setting the MP_EUIDEVELOP environment variable or -euidevelop command line flag 43

35. Example of setting the MP_RETRY and MP_RETRYCOUNT environment variables or -retry and -retrycount

command line flags . 43

36. Example of specifying multiple input mode with the MP_STDINMODE environment variable or -stdinmode

command line flag . 46

37. Example of specifying single input mode with the MP_STDINMODE environment variable or -stdinmode

command line flag . 46

38. Example of specifying unordered output mode with the MP_STDOUTMODE environment variable or

-stdoutmode command line flag . 48

39. Example of specifying ordered output mode with the MP_STDOUTMODE environment variable or

-stdoutmode command line flag . 49

40. Example of specifying single output mode with the MP_STDOUTMODE environment variable or

-stdoutmode command line flag . 49

41. Example of setting the MP_LABELIO environment variable or -labelio command line flag 50

42. MP_INFOLEVEL values and associated levels of message reporting 51

43. Example of setting MP_INFOLEVEL to verbose . 51

44. Example of setting the MP_PMDLOG environment variable or -pmdlog command line flag 52

45. Example of setting the MP_IONODEFILE environment variable or -ionodefile command line flag 53

46. Example of setting the MP_LLFILE environment variable or -llfile command line flag 76

© Copyright IBM Corp. 1993, 2008 vii

47. Example of setting the MP_SAVE_LLFILE environment variable or -save_llfile command line flag 78

48. Failover and recovery operations . 85

49. MP_COREFILE_FORMAT settings . 90

50. Example of writing core file information to standard error by setting the MP_COREFILE_FORMAT

environment variable or -corefile_format command line flag 91

51. Example of specifying lightweight core files by setting the MP_COREFILE_FORMAT environment variable

or -corefile_format command line flag . 92

52. Profiling a parallel program, compared to profiling a serial program 124

53. Profiling a parallel program . 126

54. POE environment variables and command line flags for partition manager control 216

55. POE environment variables and command line flags for job specification 221

56. POE environment variables and command line flags for I/O control 223

57. POE environment variables and command line flags for diagnostic information 225

58. POE environment variables and command line flags for Message Passing Interface (MPI) 226

59. POE environment variables and command line flags for core file generation 234

60. Other POE environment variables and command line flags 235

viii IBM PE for AIX and Linux V5 R1: Operation and Use

About this information

This information describes the IBM® Parallel Environment (PE) program product

and its Parallel Operating Environment (POE). It shows how to use POE’s facilities

to compile, execute, and analyze parallel programs.

This information concentrates on the command line tasks associated with POE, as

opposed to the writing of parallel programs. For this reason, you should use this

information in conjunction with IBM Parallel Environment: MPI Subroutine Reference

and IBM Parallel Environment: MPI Programming Guide.

For complete information on installing the PE software and setting up users, see

IBM Parallel Environment: Installation.

This information supports the following program products:

v IBM Parallel Environment for AIX® (5765-PEA), Version 5 Release 1 Modification

0

v IBM Parallel Environment for Linux® (5765-PEL) Version 5 Release 1

Modification 0

To make this information easier to read, the name IBM Parallel Environment has

been abbreviated to PE for AIX, PE for Linux, or more generally, PE throughout.

For AIX users:

The PE for AIX information assumes that one of the following is already installed:

v AIX Version 5.3 Technology Level 5300-09 (AIX V5.3 TL 5300-09)

v AIX Version 6.1 (or later), either standalone or connected by way of an Ethernet

LAN supporting IP.

For information on installing AIX® see the AIX Installation Guide and Reference.

Note: AIX Version 5.3 Technology Level 5300-09 (or AIX V5.3 TL 5300-09) identifies

the specific AIX 5.3 maintenance level that is required to run PE 5.1.0. The

name AIX 5.3 is used in more general discussions.

For Linux users:

The PE for Linux information assumes that one of the following Linux

distributions is already installed:

v SUSE LINUX Enterprise Server (SLES) 10

v Red Hat Enterprise Linux 5, Update 2

Who should read this information

This information is designed primarily for end users and application developers. It

is also intended for those who run parallel programs, and some of the information

covered should interest system administrators. Readers should have knowledge of

the AIX or Linux operating system. Where necessary, background information

relating to these areas is provided. More commonly, you are referred to the

appropriate documentation.

© Copyright IBM Corp. 1993, 2008 ix

How this information is organized

Overview of contents

This information is organized as follows:

v Introduction is a quick overview of the PE program product. It describes the

various PE components, and how you might use each in developing a parallel

application program.

v Executing parallel programs describes how to compile and execute parallel

programs using the Parallel Operating Environment (POE).

v Managing POE jobs includes information on allocating nodes with Tivoli®

Workload Scheduler LoadLeveler® (LoadLeveler), and the environment variables

to use when running your applications.

v Using the Distributed Interactive Shell (DISH) describes DISH, an interactive tool

that can be used as a control center to multiple distributed copies of a client, and

can be configured into a distributed shell, a parallel debugger, or some other

interactive program.

v Parallel Environment commands contains the manual pages for the PE commands

discussed throughout this information.

v POE environment variables and command line flags describes the environment

variables you can set to influence the execution of parallel programs and the

operation of PE tools. This appendix also describes the command line flags

associated with each of the environment variables. When invoking a parallel

program, you can use these flags to override the value of an environment

variable.

v Profiling programs with the gprof command provides a brief explanation of how to

profile a serial or parallel program using the gprof command.

v Dish commands contains the manual pages for DISH-related commands and

subcommands.

Conventions and terminology used in this information

Note that in this information, LoadLeveler is also referred to as Tivoli® Workload

Scheduler LoadLeveler and TWS LoadLeveler.

This information uses the following typographic conventions:

 Table 1. Typographic conventions

Convention Usage

bold Bold words or characters represent system elements that you must

use literally, such as: command names, file names, flag names, path

names, PE component names (poe, for example), and subroutines.

constant width Examples and information that the system displays appear in

constant-width typeface.

italic Italicized words or characters represent variable values that you

must supply.

Italics are also used for book titles, for the first use of a glossary

term, and for general emphasis in text.

[item] Used to indicate optional items.

<Key> Used to indicate keys you press.

x IBM PE for AIX and Linux V5 R1: Operation and Use

Table 1. Typographic conventions (continued)

Convention Usage

\ The continuation character is used in coding examples in this

information for formatting purposes.

In addition to the highlighting conventions, this information uses the following

conventions when describing how to perform tasks.

User actions appear in uppercase boldface type. For example, if the action is to

enter the tool command, this information presents the instruction as:

ENTER

tool

Abbreviated names

Some of the abbreviated names used in this information follow.

AIX Advanced Interactive Executive

CSM Clusters Systems Management

CSS communication subsystem

CTSEC cluster-based security

dsh distributed shell

GUI graphical user interface

HDF Hierarchical Data Format

IP Internet Protocol

LAPI Low-level Application Programming Interface

MPI Message Passing Interface

PE IBM Parallel Environment for AIX or IBM Parallel Environment for

Linux

PE MPI IBM’s implementation of the MPI standard for PE

PE MPI-IO IBM’s implementation of MPI I/O for PE

POE parallel operating environment

RSCT Reliable Scalable Cluster Technology

rsh remote shell

STDERR standard error

STDIN standard input

STDOUT standard output

System x™ IBM System x

Prerequisite and related information

The Parallel Environment library consists of:

v IBM Parallel Environment: Installation, SC23-6666

v IBM Parallel Environment: Operation and Use, SC23-6667

v IBM Parallel Environment: Messages, SC23-6669

About this information xi

v IBM Parallel Environment: MPI Programming Guide, SC23-6670

v IBM Parallel Environment: MPI Subroutine Reference, SC23-6671

To access the most recent Parallel Environment documentation in PDF and HTML

format, refer to the IBM Clusters Information Center, on the Web.

Both the current Parallel Environment books and earlier versions of the library are

also available in PDF format from the IBM Publications Center on the Web.

It is easiest to locate a book in the IBM Publications Center by supplying the

book’s publication number. The publication number for each of the Parallel

Environment books is listed after the book title in the preceding list.

How to send your comments

Your feedback is important in helping to provide the most accurate and

high-quality information. If you have comments about this information or other PE

documentation:

v Send your comments by e-mail to: mhvrcfs@us.ibm.com

Be sure to include the name of the book, the part number of the book, the

version of PE, and, if applicable, the specific location of the text you are

commenting on (for example, a page number or table number).

v Fill out one of the forms at the back of this book and return it by mail, by fax, or

by giving it to an IBM representative.

National language support (NLS)

For national language support (NLS), all PE components and tools display

messages that are located in externalized message catalogs. English versions of the

message catalogs are shipped with the PE licensed program, but your site may be

using its own translated message catalogs. The PE components use the

environment variable NLSPATH to find the appropriate message catalog.

NLSPATH specifies a list of directories to search for message catalogs. The

directories are searched, in the order listed, to locate the message catalog. In

resolving the path to the message catalog, NLSPATH is affected by the values of

the environment variables LC_MESSAGES and LANG. If you get an error saying

that a message catalog is not found and you want the default message catalog, do

the following.

 Table 2. Specifying the default message catalog with the NLSPATH environment variable

If you are using PE for AIX: If you are using PE for Linux:

ENTER

export NLSPATH=/usr/lib/nls/msg/
%L/%N

 export LANG=C

ENTER

export NLSPATH=/usr/share/locale/
%L/%N

 export LANG=en_US

The PE message catalogs are in English, and are located in the following

directories.

xii IBM PE for AIX and Linux V5 R1: Operation and Use

http://publib.boulder.ibm.com/infocenter/clresctr/vxrx/index.jsp
http://www.elink.ibmlink.ibm.com/publications/servlet/pbi.wss

Table 3. Location of PE message catalogs

If you are using PE for AIX: If you are using PE for Linux:

 /usr/lib/nls/msg/C

 /usr/lib/nls/msg/En_US

 /usr/lib/nls/msg/en_US

 /usr/share/locale/C

 /usr/share/locale/En_US

 /usr/share/locale/en_US

 /usr/share/locale/en_US.UTF-8

If your site is using its own translations of the message catalogs, consult your

system administrator for the appropriate value of NLSPATH or LANG.

PE for AIX users can refer to AIX: General Programming Concepts: Writing and

Debugging Programs for more information on NLS and message catalogs.

Functional restrictions for PE 5.1

Functional restrictions for PE for AIX 5.1:

v Because PE Version 5 Release 1 exploits the barrier synchronization register

(BSR), any user attempting a read-modify-write operation on MPI library

allocated storage could inadvertantly affect the memory that is mapped to the

BSR register. Any such access will lead to unpredictable results.

v PE Version 5.1 requires LAPI Version 2.4.6 for AIX 5.3, and LAPI 3.1.2 for AIX

6.1. Earlier versions of LAPI are not supported.

Functional restrictions for PE for Linux 5.1:

Although many of the following functions, are currently available with Parallel

Environment for AIX, they are not supported by Parallel Environment for Linux

5.1:

v Checkpoint and restart

v Lightweight core files

v Use of large memory pages

v PE does not support User Space jobs on IBM System x™ hardware.

v User Space jobs with Red Hat Enterprise Linux, when running on IBM Power

Systems servers.

v The High Performance Computing Toolkit (HPC Toolkit) is not supported on

IBM System x hardware.

Summary of changes

Changes for PE 5.1

This release of IBM Parallel Environment contains a number of functional

enhancements.

The PE for AIX 5.1 enhancements are:

v For improved performance of on-node barrier synchronization, support for the

IBM Power (POWER6) server barrier synchronization register (BSR) has been

added. Note that you must be running 64-bit programs over the AIX 6.1

operating system, on IBM Power (POWER6) servers to utilize the BSR support.

Note also that the MPI library will not use the BSR if checkpointing is enabled

About this information xiii

with the AIX environment variable CHECKPOINT. For more information, see

IBM Parallel Environment: MPI Programming Guide.

v The default value of the MP_PRIORITY_LOG environment variable has

changed from yes to no, so that the log file is produced only when it is needed.

v Beginning with PE 5.1, support for the PE Benchmarker has been removed. This

includes the Performance Collection Tool (PCT), the Performance Visualization

Tool (PVT), and the Unified Trace Environment (UTE) utilities uteconvert,

utemerge, utestats, traceTOslog2.so, and slogmerge.

v To replace the performance analysis function of the PE Benchmarker, PE

introduces the IBM High Performance Computing (HPC) Toolkit. The IBM HPC

Toolkit is an integrated software environment that addresses the performance

analysis, tuning, and debugging of sequential and parallel scientific applications.

It consists of a collection of tools that optimize the application by monitoring its

performance on the processor, memory, and network. The IBM HPC Toolkit is

appropriate for users with varying degrees of parallel programming experience.

For more information, see IBM Parallel Environment: Operation and Use.

v Beginning with PE 5.1, the pdbx debugger function has been removed. Instead,

AIX users can now use the PDB debugger, previously available only with PE for

Linux.

v With Version 5.1, PE introduces additional type checking for Fortran 90 codes.

PE now includes a Fortran 90 module that provides type checking for MPI

programs at compile time. This allows programmers to find and resolve errors at

a much earlier stage.

v PE 5.1 enhances performance by providing a separate buffer for collective

communication early arrival messages. Similar to MP_BUFFER_MEM for

point-to-point communications, a new environment variable,

MP_CC_BUF_MEM, allows users to control the amount of memory PE MPI

allows for the buffering of early arrival message data for collective

communications.

Note: In PE 5.1, the early arrival buffer that is controlled by MP_CC_BUF_MEM

is used by MPI_Bcast only. Early arrival messages in other collective

communication operations continue to use the early arrival buffer for

point-to-point communication that is controlled by MP_BUFFER_MEM.

v PE 5.1 is compliant with the revisions listed in the Annex B Change-Log of the

MPI 2.1 standard.

The PE for Linux 5.1 enhancements are:

v The Parallel Operating Environment (POE) priority adjustment coscheduler,

previously available only for AIX users, is now supported by PE for Linux.

v With Version 5.1, PE introduces additional type checking for Fortran 90 codes.

PE now includes a Fortran 90 module that provides type checking for MPI

programs at compile time. This allows programmers to find and resolve errors at

a much earlier stage.

v PE 5.1 introduces the IBM High Performance Computing (HPC) Toolkit. The

IBM HPC Toolkit is an integrated software environment that addresses the

performance analysis, tuning, and debugging of sequential and parallel scientific

applications. It consists of a collection of tools that optimize the application by

monitoring its performance on the processor, memory, and network. The IBM

HPC Toolkit is appropriate for users with varying degrees of parallel

programming experience. For more information, see IBM Parallel Environment:

Operation and Use.

xiv IBM PE for AIX and Linux V5 R1: Operation and Use

v Beginning with PE 5.1, PDB is now available with both PE for Linux and PE for

AIX.

v PE 5.1 enhances performance by providing a separate buffer for collective

communication early arrival messages. Similar to MP_BUFFER_MEM for

point-to-point communications, a new environment variable,

MP_CC_BUF_MEM, allows users to control the amount of memory PE MPI

allows for the buffering of early arrival message data for collective

communications.

Note: In PE 5.1, the early arrival buffer that is controlled by MP_CC_BUF_MEM

is used by MPI_Bcast only. Early arrival messages in other collective

communication operations continue to use the early arrival buffer for

point-to-point communication that is controlled by MP_BUFFER_MEM.

v PE 5.1 is compliant with the revisions listed in the Annex B Change-Log of the

MPI 2.1 standard.

About this information xv

xvi IBM PE for AIX and Linux V5 R1: Operation and Use

Chapter 1. Introduction

The IBM Parallel Environment program product (PE) is an environment designed

for developing and executing parallel Fortran, C, or C++ programs. PE consists of

components and tools for developing, executing, debugging, profiling, and tuning

parallel programs.

PE is a distributed memory message passing system. You can use PE to execute

parallel programs on a variety of hardware, using the AIX or Linux operating

system. For more information about the hardware and software that is supported

with PE, refer to IBM Parallel Environment: Installation.

The processors of your system are called processor nodes. If you are using a

Symmetric Multiprocessor (SMP) system, it is important to know that, although an

SMP node has more than one processing unit, it is still considered, and referred to

as, a processor node.

A parallel program executes as a number of individual, but related, parallel tasks on

a number of your system’s processor nodes. These parallel tasks taken together are

sometimes referred to as a parallel job. The group of parallel tasks is called a

partition. The processor nodes are connected on the same network, so the parallel

tasks of your partition can communicate to exchange data or synchronize

execution:

v Your system may have an optional high performance switch for communication.

The switch increases the speed of communication between nodes. It supports a

high volume of message passing with increased bandwidth and low latency.

v Your system may use the InfiniBand host channel adapter for improved I/O

performance. PE only supports the InfiniBand host channel adapter on specific

hardware. For more information, refer to IBM Parallel Environment: Installation.

v Your system administrator can divide its nodes into separate pools. A

LoadLeveler system pool is a subset of processor nodes and is given an

identifying pool name or number.

Note: The term high performance switch is used generically to refer to either the

IBM High Performance Switch or the InfiniBand host channel adapters and

switches, running on IBM clusters.

PE supports the two basic parallel programming models – SPMD and MPMD. In

the SPMD (Single Program Multiple Data) model, the same program is running as

each parallel task of your partition. The tasks, however, work on different sets of

data. In the MPMD (Multiple Program Multiple Data) model, each task may be

running a different program. A typical example of this is the master/worker

MPMD program. In a master/worker program, one task – the master – coordinates

the execution of all the others – the workers.

Note: While the remainder of this introduction describes each of the PE

components and tools in relation to a specific phase of an application’s life

cycle, this does not imply that they are limited to one phase. They are

ordered this way for descriptive purposes only; you will find many of the

tools useful across an application’s entire life cycle.

© Copyright IBM Corp. 1993, 2008 1

The application developer begins by creating a parallel program’s source code. The

application developer might create this program from scratch or could modify an

existing serial program. In either case, the developer places calls to Message

Passing Interface (MPI) or Low-level Application Programming Interface (LAPI)

routines so that it can run as a number of parallel tasks. This is known as

parallelizing the application. MPI provides message passing capabilities for the

current version of PE Version 4.

Note: Throughout this information, when referring to anything not specific for

MPI, the term message passing will be used. For example:

message passing program

message passing routine

message passing call

The message passing calls enable the parallel tasks of your partition to

communicate data and coordinate their execution. The message passing routines, in

turn, call the communication subsystem library routines which handle

communication among the processor nodes. There are two separate

implementations of the communication subsystem library – the Internet Protocol

(IP) Communication Subsystem and the User Space (US) Communication

Subsystem. While the message passing application interface remains the same, the

communication subsystem libraries use different protocols for communication

among processor nodes. The IP communication subsystem uses Internet Protocol,

while the User Space communication subsystem is designed to exploit the high

performance switch (for AIX) or the direct (kernel bypass) access to a high

performance communication adapter (for Linux). The communication subsystem

library implementations are dynamically loaded when you invoke the program.

For more information on the message passing subroutine calls, refer to IBM Parallel

Environment: MPI Subroutine Reference and IBM Parallel Environment: Introduction.

In addition to message passing communication, the Parallel Environment supports

a separate communication protocol known as the Low-level Application

Programming Interface (LAPI). LAPI differs from MPI in that it is based on an

active message style mechanism that provides a one-sided communications model.

That is, the application at one process initiates an operation, and the completion of

that operation does not require any other process to take an application-level

complementary action.

LAPI is used as a common transport protocol for MPI, for both IP and User Space.

For AIX, LAPI is part of Reliable Scalable Cluster Technology (RSCT), but is also

shipped on the PE product CD (in the rsct.lapi.rte file set). For Linux, LAPI is

shipped with PE for Linux in the following RPMs:

v 32-bit base IP

v 64-bit IP

v 32-bit US

v 64-bit US

Refer to the IBM RSCT: LAPI Programming Guide for more information.

After writing the parallel program, the application developer then begins a cycle of

modification and testing. The application developer now compiles and runs his

program from his home node using the Parallel Operating Environment (POE).

The home node can be any workstation on the LAN that has PE installed. POE is

an execution environment designed to hide, or at least smooth, the differences

between serial and parallel execution.

2 IBM PE for AIX and Linux V5 R1: Operation and Use

To assist with node allocation for job management, Tivoli Workload Scheduler

(TWS) LoadLeveler (LoadLeveler) provides resource management function. AIX

users can run parallel programs on a cluster of processor nodes running

LoadLeveler or a clustered server that uses LoadLeveler. LoadLeveler not only

provides node allocation for jobs using the User Space communication subsystem,

but also provides management for other clustered nodes, or for nodes being used

for jobs other than User Space. LoadLeveler can also be used for POE batch jobs.

See Tivoli Workload Scheduler LoadLeveler: Using and Administering for more

information on this job management system.

In general, with POE, you invoke a parallel program from your home node and

run its parallel tasks on a number of remote nodes. As much as possible, the

remote nodes should be managed to ensure that when they are running the tasks

of your parallel program, none of them are being used for other activities. When

you invoke a program on your home node, POE starts your Partition Manager

which allocates the nodes of your partition and initializes the local environment.

Depending on your hardware and configuration, the Partition Manager uses a host

list file, LoadLeveler, or both a host list file and LoadLeveler to allocate nodes. A

host list file contains an explicit list of node requests, while LoadLeveler can

allocate nodes from one or more system pools implicitly based on their availability.

POE provides an option to enable you to specify whether your program will use

MPI, LAPI, or both. Using this option, POE ensures that each API initializes

properly and informs LoadLeveler which APIs are used so each node is set up

completely.

For Single Program Multiple Data (SPMD) applications the Partition Manager

executes the same program on all nodes. For Multiple Program Multiple Data

(MPMD) applications, the Partition Manager prompts you for the name of the

program to load as each task. The Partition Manager also connects standard I/O to

each remote node so the parallel tasks can communicate with the home node.

Although you are running tasks on remote nodes, POE allows you to continue

using the standard UNIX®, AIX, or Linux execution techniques with which you are

already familiar. For example, you can redirect input and output, pipe the output

of programs, or use shell tools. POE includes:

v A number of parallel compiler scripts. These are shell scripts that call the C,

C++, or Fortran compilers while also linking in an interface library to enable

communication between your home node and the parallel tasks running on the

remote nodes. You dynamically link in a communication subsystem

implementation when you invoke the executable.

v A number of POE Environment Variables you can use to set up your execution

environment. These are environment variables you can set to influence the

operation of POE. These environment variables control such things as how

processor nodes are allocated, what programming model you are using, and

how standard I/O between the home node and the parallel tasks should be

handled. Most of the POE environment variables also have associated command

line flags that enable you to temporarily override the environment variable value

when invoking POE and your parallel program.

For debugging parallel programs with PE, you can use PDB, in conjunction with

DISH (Distributed Interactive Shell), POE, and GDB (for Linux) or dbx (for AIX).

Note that there are two versions of GDB (the GNU Project debugger; GDB is for

debugging 32-bit programs and GDB64 is for 64-bit programs.

Chapter 1. Introduction 3

For more information about GNU’s GDB, refer to the GNU Project Debugger Web

site (http://www.gnu.org/software/gdb/).

After the parallel program has been debugged, you will want to tune the program

for optimal performance. If you are running PE for Linux, you can use the Linux

gprof command to do this. If you are using AIX, the parallel profiling capability of

PE can help you analyze the program. The parallel profiling capability enables you

to use the AIX Xprofiler graphical user interface, as well as the AIX prof and gprof

commands on parallel programs.

Note: After the parallel program is tuned to your satisfaction, you might prefer to

execute it using a job management system such as IBM LoadLeveler. If you

do use a job management system, consult its documentation for information

on its use.

PE Version 5 Release 1 migration information

If you are migrating from an earlier release of PE, you should be aware of some

differences that you need to consider before installing and using PE Version 5

Release 1.

For information on PE for AIX migration, see “PE for AIX 5.1 migration

information.” For specific information on PE for Linux migration, see “PE for

Linux 5.1 migration information” on page 8.

PE for AIX 5.1 migration information

To find out which release of PE you currently have installed, use the following

command:

lslpp -ha ppe.poe

IBM Power (POWER6™) server support

PE Version 5 Release 1 provides support for IBM Power servers. The

Power server installation may be either a standalone server, or a cluster of

servers connected by an Ethernet LAN, running over IP.

 Note that the IBM XL C/C++ Enterprise Edition for AIX compiler

(formerly known as the VisualAge® C/C++ for AIX compiler), Version

8.0.0.12 (5724-M12) is required for Power server support.

AIX compatibility

 PE Version 5 Release 1 commands and applications are compatible with

AIX Version 5.3 and AIX Version 6.1, or later only, and not with earlier

versions of AIX. AIX 6.1 is supported on standalone servers, running in IP

mode only.

MPI library support

 PE Version 5 Release 1 provides support for its threaded version of the

MPI library only. An archive (libmpi.a) containing symbols resolving

references made by non-threaded executables is also shipped to support

binary compatibility. These merely map to the corresponding threaded

library symbols.

Existing applications built as non-threaded applications will run as single

threaded applications in the PE Version 5 Release 1 environment. Users

and application developers should understand the implications of their

4 IBM PE for AIX and Linux V5 R1: Operation and Use

http://www.gnu.org/software/gdb/
http://www.gnu.org/software/gdb/

programs running as threaded applications, as described in the IBM Parallel

Environment for AIX: MPI Programming Guide.

LAPI support

 LAPI is shipped on the PE CD, so you no longer need to obtain it from

RSCT. There are three LAPI filesets shipped with PE Version 5 Release 1;

rsct.lapi.rte, rsct.lapi.samp, and rsct.lapi.bsr. Refer to IBM Parallel

Environment: Installation and the IBM RSCT: LAPI Programming Guide for

more information on installing the LAPI filesets.

Additionally, MPI uses LAPI as a common transport protocol. If you are

using the LAPI API to develop a message passing application, you may

find useful information in the IBM RSCT: LAPI Programming Guide.

Binary compatibility

 Binary compatibility is supported for existing applications that have been

dynamically linked or created with the non-threaded compiler scripts from

previous versions of POE. There is no support for statically bound

executables.

Existing 32-bit applications that use striping may encounter memory usage

conflicts and may need to be recompiled or use different run-time options

in order to properly execute. See “Considerations for data striping, with

PE” on page 86 for more information. 64-bit applications are not affected.

Obsolete POE environment variables and command line flags

 The following environment variables and command line flags are obsolete:

v MP_UTE (used on PE compiler scripts only)

v MP_BYTECOUNT (used on PE compiler scripts only)

It is recommended that these variables and command line flags be

removed from scripts and commands used to run POE applications.

Obsolete compiler script options

 The following compiler script options should no longer be included in

Makefiles:

v -d7

v -lvtd and lvtd_r

Note: If you are using Fortran and are making changes to your

configuration files, it is important to ensure that those files do not

contain references to obsolete flags, such as the ones listed above,

or to stanzas that contain obsolete flags.

User Space applications with MP_EUIDEVICE/-euidevice (PE for AIX)

Existing User Space applications that set MP_EUIDEVICE/-euidevice to

sn_single or css0 on systems using multiple adapters and multiple networks

will not benefit from the performance improvements provided by using the

sn_all or csss value. In this case, you may want to change the

MP_EUIDEVICE/-euidevice settings for such applications. Also note that

css1 can no longer be specified as a value for MP_EUIDEVICE or

-euidevice. See “Step 3f: Set the MP_EUIDEVICE environment variable” on

page 30 for more information.

Shared memory default changed

The use of shared memory for message passing between tasks running on

the same node has been changed so that all invocations of POE will utilize

Chapter 1. Introduction 5

shared memory as the default. For 64-bit applications, this includes using

the shared memory enhanced collective communications algorithms. To

run without using shared memory, change the value of the

MP_SHARED_MEMORY environment variable or -shared_memory

command line flag to no.

PSSP and the SP™ Switch are no longer supported

Beginning with PE 4.3, PSSP (Parallel System Support Programs) is no

longer supported. Support for the SP Switch ended with the release of 4.2.

Task and memory affinity with LoadLeveler

Users that specify the MP_TASK_AFFINITY or -task_affinity POE options

should be aware that with LoadLeveler 3.3.1 or later versions, LoadLeveler

now handles scheduling affinity. As a result, memory and task affinity

must be enabled in the LoadLeveler configuration file (using the

RSET_SUPPORT keyword). In addition, MP_TASK_AFFINITY settings

are ignored with batch jobs, and jobs requiring memory affinity must

specify the appropriate LoadLeveler job control keywords to run with

memory affinity. For more information, see “Managing task affinity on

large SMP nodes” on page 57.

Some 32-bit applications that ran correctly before could fail with ″out of

memory″ error

Some simple ways to work around this problem are suggested.

 You might need to ensure that your system administrator has not

established an entry in /etc/security/limits that might constrain memory

allocations. It is suggested that the default stanza allow for unlimited

resources, where practical.

Beginning with PE Version 5 Release 1, a new Early Arrival buffer for

collective communications messages has been added. The new Early

Arrival buffer is managed by the MP_CC_BUF_MEM environment

variable. The default size of this new buffer is 4 MB, with an upper bound

of 36 MB. A separate Early Arrival buffer for point-to-point messages still

exists, and is managed by the MP_BUFFER_MEM environment variable

(default value is now 64 MB). This is important to note because, by default,

a 32-bit application might have a limited amount of memory available for

this buffer. Applications may need to be compiled with -bmaxdata option

to set aside more heap space.

The default size of the point-to-point Early Arrival buffer has been

changed from 2.8 MB to 64 MB for 32-bit IP applications. The 2.8 MB used

in previous releases can lead to performance problems when the job has

more than a few tasks. A side effect of the new default could cause your

application to fail due to insufficient memory.

By default, a 32-bit application can malloc approximately 200 MB before

malloc fails. In previous releases, an IP application needed to allocate

enough memory for the application itself, plus the 64 MB that was

required for the point-to-point Early Arrival buffer. If the total amount of

required memory was less than about 200 MB, the application ran

correctly. However, now that a second Early Arrival buffer requires at least

4 MB of memory, IP applications that previously ran correctly might now

fail due to insufficient memory. Also note that LAPI allocates 32 MB for

sn_single and 64 MB for sn_all, so if you use sn_all, there is an additional

32 MB, which also counts against the 200 MB limit. In either of these

circumstances, you may receive an out of memory error. In that case, you

can recompile your application with the -bmaxdata option to set aside

6 IBM PE for AIX and Linux V5 R1: Operation and Use

additional heap space, or use the MP_BUFFER_MEM environment

variable (or -buffer_mem command line flag) to specify a size for the Early

Arrival buffer that is smaller than the default of 64 MB. For more

information about controlling the size of the point-to-point Early Arrival

buffer, see “Using MP_BUFFER_MEM” on page 67. For more information

about controlling the size of the new Early Arrival buffer for collective

communication operations, see “MP_CC_BUF_MEM details” on page 240.

PE Benchmarker function has been removed

Beginning with PE Version 5 Release 1, support for the PE Benchmarker

has been removed. This includes the Performance Collection Tool (PCT),

the Performance Visualization Tool (PVT), and the Unified Trace

Environment (UTE) utilities uteconvert, utemerge, utestats,

traceTOslog2.so, and slogmerge.

PE debugging support

Beginning with PE Version 5 Release 1, the pdbx debugger function has

been removed. Instead, AIX users can now use the PDB debugger,

previously available only with PE for Linux.

Fortran 90 module support for type-checking at compile time

With Version 5 Release 1, PE introduces support for Fortran 90 modules. PE

now includes a Fortran 90 module that provides type checking for MPI

programs at compile time. This allows programmers to find and resolve

errors at a much earlier stage.

 In order to take advantage of the new compile time module, all Fortran 90

MPI programs must be:

v Modified to contain the following line:

USE MPI

v Recompiled with XLF Version 12.1 or later. Note that if you have an

existing Fortran MPI program that is running without errors, there is no

need to recompile it. Since the program is already running correctly,

compiling it with the Fortran 90 module would provide no benefit.

Note that Fortran 90 modules can only be used with the IBM Power

Systems servers supported by PE.

POE LIBPATH default setting changed

POE will now use the value of the MP_EUILIBPATH environment

variable, if it is specified, to automatically set the value of the LIBPATH

environment variable. POE will no longer include the value of the

MP_EUILIB setting in the LIBPATH value

MP_PRIORITY_LOG default setting changed

The default value of the MP_PRIORITY_LOG environment variable has

been changed from yes to no. As a result, when the PE priority adjustment

function is used, a priority adjustment coscheduler diagnostic log file is not

created by default. You must now explicitly set MP_PRIORITY_LOG or

-priority_log to yes in order for a diagnostic log to be produced. See “POE

priority adjustment coscheduler” on page 97 for additional details.

New MP_SHMCC_EXCLUDE_LIST environment variable

A new environment variable, MP_SHMCC_EXCLUDE_LIST, is available

for specifying the collective communication routines in which the MPI

level shared memory optimization should be disabled. See Chapter 7, “POE

Environment variables and command line flags,” on page 215 for more

information about MP_SHMCC_EXCLUDE_LIST.

Chapter 1. Introduction 7

AIX and Linux interoperability

PE does not support interoperability between nodes running AIX and

Linux versions of PE. Parallel jobs cannot be mixed between AIX and

Linux PE nodes.

PE for Linux 5.1 migration information

To find out which release of PE you currently have installed, use the following

command:

perpms -h -a ppe.poe

Linux compatibility and coexistence

Version 5 Release 1 for Linux commands and applications are compatible

with the supported distributions and levels of Linux, but not with earlier

versions of Linux. Refer to IBM Parallel Environment: Installation for more

information about the hardware and software levels that PE for Linux

supports.

 All nodes in a parallel job must run the same versions of PE, LoadLeveler,

and LAPI at the same maintenance levels. It is recommended that you

install and use PE Version 5 Release 1, LoadLeveler 3.5, and LAPI 2.4.6 (if

using AIX 5.3) or LAPI 3.1.2 (if using AIX 6.1) at their latest support levels

to provide the latest function.

Note: Mixing different node architectures (such as POWER5™, System x,

x86, and Intel®) or different Linux distributions in a parallel job is

not supported.

LAPI support

 LAPI is shipped directly with PE as a set of RPMs which you install using

the standard installation procedure.

Additionally, MPI uses LAPI as a common transport protocol. If you are

using the LAPI API to develop a message passing application, you might

find useful information in the IBM RSCT: LAPI Programming Guide.

Binary compatibility

 Binary compatibility is supported for existing applications that have been

dynamically linked or created with the non-threaded compiler scripts from

previous versions of POE. There is no support for statically bound

executables.

Existing 32-bit applications that use striping might encounter memory

usage conflicts and might need to be recompiled or use different run-time

options in order to properly execute. See “Considerations for data striping,

with PE” on page 86 for more information. 64-bit applications are not

affected.

Some 32-bit applications that ran correctly before could fail with ″out of

memory″ error

Some simple ways to work around this problem are suggested.

 You might need to ensure that your system administrator has not

established an entry in /etc/security/limits that might constrain memory

allocations. It is suggested that the default stanza allow for unlimited

resources, where practical.

Beginning with PE Version 5 Release 1, a new Early Arrival buffer for

collective communications messages has been added. The new Early

8 IBM PE for AIX and Linux V5 R1: Operation and Use

Arrival buffer is managed by the MP_CC_BUF_MEM environment

variable. The default size of this new buffer is 4 MB, with an upper bound

of 36 MB. A separate Early Arrival buffer for point-to-point messages still

exists, and is managed by the MP_BUFFER_MEM environment variable

(default value is now 64 MB). This is important to note because, by default,

a 32-bit application might have a limited amount of memory available for

this buffer. Applications might need to be compiled with -bmaxdata option

to set aside more heap space.

Note: If you are using PE for AIX, note that 32-bit programs compiled for

use with POE are limited to eight (8) data segments. The -bmaxdata

option cannot specify more than 0x80000000. The actual amount

available might be less, depending on whether shared memory or

user space striping is being used by MPI or LAPI. See

“Considerations for data striping, with PE” on page 86 for more

information.

The default size of the point-to-point Early Arrival buffer has been

changed from 2.8 MB to 64 MB for 32-bit IP applications. The 2.8 MB used

in previous releases can lead to performance problems when the job has

more than a few tasks. A side effect of the new default could cause your

application to fail due to insufficient memory.

By default, a 32-bit application can malloc approximately 200 MB before

malloc fails. In previous releases, an IP application needed to allocate

enough memory for the application itself, plus the 64 MB that was

required for the point-to-point Early Arrival buffer. If the total amount of

required memory was less than about 200 MB, the application ran

correctly. However, now that a second Early Arrival buffer requires at least

4 MB of memory, IP applications that previously ran correctly might now

fail due to insufficient memory.

Also note that LAPI allocates 32 MB for sn_single and 64 MB for sn_all, so

if you use sn_all, there is an additional 32 MB, which also counts against

the 200 MB limit.

In either of these circumstances, you might receive an out of memory error.

In that case, you can recompile your application with the -bmaxdata option

to set aside additional heap space, or use the MP_BUFFER_MEM

environment variable (or -buffer_mem command line flag) to specify a size

for the Early Arrival buffer that is smaller than the default of 64 MB.

For more information about controlling the size of the point-to-point Early

Arrival buffer, see “Using MP_BUFFER_MEM” on page 67. For more

information about controlling the size of the new Early Arrival buffer for

collective communication operations, see “MP_CC_BUF_MEM details” on

page 240.

Fortran 90 module support for finding errors at compile time

With Version 5 Release 1, PE introduces support for Fortran 90 modules. PE

now includes a Fortran 90 module that provides type checking for MPI

programs at compile time. This allows programmers to find and resolve

errors at a much earlier stage.

 In order to take advantage of the new module, all Fortran 90 MPI

programs must be:

v Modified to contain the following line:

USE MPI

Chapter 1. Introduction 9

v Recompiled with XLF Version 12.1 or later. Note that if you have an

existing Fortran MPI program that is running without errors, there is no

need to recompile it. Since the program is already running correctly,

compiling it with the Fortran 90 module would provide no benefit.

New MP_SHMCC_EXCLUDE_LIST environment variable

A new environment variable, MP_SHMCC_EXCLUDE_LIST, is available

for specifying the collective communication routines in which the MPI

level shared memory optimization should be disabled. See Chapter 7, “POE

Environment variables and command line flags,” on page 215 for more

information about MP_SHMCC_EXCLUDE_LIST.

AIX and Linux interoperability

PE does not support interoperability between nodes running AIX and

Linux versions of PE. Parallel jobs cannot be mixed between AIX and

Linux PE nodes.

10 IBM PE for AIX and Linux V5 R1: Operation and Use

Chapter 2. Executing parallel programs

POE is a simple and friendly environment designed to ease the transition from

serial to parallel application development and execution. POE lets you develop and

run parallel programs using many of the same methods and mechanisms as you

would for serial jobs.

POE allows you to continue to use the standard UNIX, AIX, or Linux application

development and execution techniques with which you are already familiar. For

example, you can redirect input and output, pipe the output of programs into

more or grep, write shell scripts to invoke parallel programs, and use shell tools

such as history. You do all these in just the same way you would for serial

programs. So while the concepts and approach to writing parallel programs must

necessarily be different, POE makes your working environment as familiar as

possible.

You can compile and execute your parallel C, C++, or Fortran programs on the

supported hardware, as described in IBM Parallel Environment: Installation.

Executing parallel programs using POE

The first step in the life cycle of an application is actually writing the program.

These instructions assume that you have already written your parallel C, C++, or

Fortran program and, instead, describe the next step; compiling and executing it.

For information on writing parallel programs, refer to IBM Parallel Environment:

MPI Subroutine Reference, IBM Parallel Environment: MPI Programming Guide, IBM

Cluster Systems Management: Command and Technical Reference, and the IBM RSCT:

LAPI Programming Guide.

Note: If you are using POE for the first time, check that you have authorized

access. See IBM Parallel Environment: Installation for information on setting

up users.

In order to execute an MPI or LAPI parallel program, you need to:

1. Compile and link the program using shell scripts or make files which call the

C, C++, or Fortran compilers while linking in the Partition Manager interface

and message passing subroutines.

2. Copy your executable to the individual nodes in your partition if it is not

accessible to the remote nodes.

3. Set up your execution environment. This includes setting the number of tasks,

and determining the method of node allocation.

4. Load and execute the parallel program on the processor nodes of your

partition. You can:

v load a copy of the same executable on all nodes of your partition. This is the

normal procedure for SPMD programs.

v individually load the nodes of your partition with separate executables. This

is the normal procedure for MPMD programs.

v load and execute a series of SPMD or MPMD programs, in job step fashion,

on all nodes of your partition.

© Copyright IBM Corp. 1993, 2008 11

Step 1: Compile the program

As with a serial application, you must compile a parallel C, C++, or Fortran

program before you can run it. Instead of using the usual programming commands

such as cc (for AIX or Linux), and xlC, xlf, cc_r, xlC_r, or xlf_r (for AIX), you use

commands that not only compile your program, but also link in the Partition

Manager and message passing interface libraries. When you later invoke the

program, the subroutines in these libraries enable the home node Partition

Manager to communicate with the parallel tasks, and the tasks with each other.

PE for AIX parallel programs can also utilize functions to checkpoint and later

restart a program. For more information on checkpointing refer to “Checkpointing

and restarting programs (PE for AIX only)” on page 54.

For each of the supported compilers – C, C++, Fortran, Fortran 90, Fortran 95 (PE

for AIX only), and Fortran 2003 (PE for AIX only), POE provides separate

commands to compile and link application programs with the parallel libraries,

allowing the program to run in parallel. To compile a program for use with POE,

you use the compilers below. These commands generate thread-aware code by

linking in the threaded version of MPI, including the threaded POE utility library.

PE for AIX compilers:

v mpcc_r (C compiler)

v mpCC_r (C++ compiler)

v mpxlf_r (Fortran compiler)

v mpxlf90_r (Fortran 90 compiler)

v mpxlf95_r (Fortran 95 compiler)

v mpxlf2003_r (Fortran 2003 compiler)

PE for Linux compilers:

v mpcc (C compiler)

v mpCC (C++ compiler)

v mpfort (Fortran compiler)

Note: IBM XL Fortran 90 support on PE for Linux is limited to XLF Version 9.1.0-1

or later, on the IBM Power Systems hardware that is currently supported by

PE, with the IBM C Set++ compiler suite installed.

The POE compiler scripts create dynamically bound executables, referencing the

appropriate MPI, LAPI, and threaded libraries, some of which are dynamically

loaded. As a result, it is not possible to create statically bound executables. Note

that PE for AIX no longer supports the use of statically bound application

programs.

In previous releases of PE for AIX, there were two versions of these commands, for

non-threaded and threaded programs. Only the threaded version of MPI is

supported. Legacy POE scripts, such as mpcc, mpCC, and mpxlf, are now

symbolic links to mpcc_r, mpCC_r, and mpxlf_r.

The compiler commands are actually shell scripts that call the appropriate

compiler. You can use any of the cc_r, xlC_r, or xlf_r flags on these commands. We

suggest you allow the scripts to provide appropriate include paths for the PE MPI

include files rather than provide them explicitly.

12 IBM PE for AIX and Linux V5 R1: Operation and Use

Table 4 and Table 5 show the command to enter to compile a program, depending

on the language in which it is written and the operating system you are using. For

more information on these commands, see Chapter 6, “Parallel Environment

commands,” on page 129.

 Table 4. Compiling a PE for AIX program

To compile: ENTER

a C program mpcc_r program.c -o program

a C++ program (that does not use the IBM PE

MPI class structure)

mpCC_r program.C -o program

a C++ program (that uses the IBM PE MPI

class structure)

mpCC_r -cpp -o program program.C

a Fortran program mpxlf_r program.f -o program

a Fortran 90 program mpxlf90_r program.f -o program

a Fortran 95 program mpxlf95_r program.f -o program

a Fortran 2003 program mpxlf2003_r program.f -o program

 Table 5. Compiling a PE for Linux program

To compile: ENTER

a C program mpcc program.c -o program

a C++ program (that does not use the IBM PE

MPI class structure)

mpCC program.C -o program

a C++ program (that uses the IBM PE MPI

class structure)

mpCC -cpp -o program program.C

a Fortran program mpfort program.f -o program

PE Fortran 90 module for type-checking at compile time

The IBM MPI implementation includes hundreds of functions, several of which

have arguments that do not conform to any particular data type. In the past,

because there was no type-checking mechanism available at compile time, these

arguments could potentially be used with any of the available Fortran data types.

Without type-checking, an MPI function that did not call the correct number of

arguments compiled with no errors, but often crashed later due to a segmentation

fault.

However, starting with Fortran 90, the Fortran standard introduced support for

modules. A Fortran 90 module is a type of program unit that can provide

instructions for declaring and defining interfaces. By using a module to define the

interface, a programmer can enforce the data types that a function can accept. PE

now provides a Fortran 90 module for type-checking at compile time (mpi.mod)

that can be called by a Fortran 90 MPI program. When using the module, any

unsolicited MPI function call that does not conform to the interface definition

generates an error when the program is compiled.

To use the PE Fortran 90 type-checking module, do the following.

For new programs:

v Include the USE MPI statement to the application source code.

v Compile the program with XLF Version 12.1 or later.

Chapter 2. Executing parallel programs 13

For existing programs:

v Modify the application source code to include the USE MPI statement.

v Recompile the program with XL Fortran compiler (XLF) Version 12.1 or later.

Note that if you have an existing Fortran MPI program that is running without

errors, there is no need to recompile it. Since the program is already running

correctly, compiling it with the Fortran 90 module would provide no benefit.

The PE Fortran 90 type-checking module is only supported by PE on IBM Power

Systems servers running the supported levels of AIX and Linux. XL Fortran 90

Version 12.1 or later must be installed.

Notes on compiling:

1. Be sure to specify the -g flag when compiling a program for use with the

debugger. The -g flag is a standard compiler flag that produces an object file

with symbol table references. These symbol table references are needed by the

debugger.

For more information about using the -g option, AIX users should refer to its

use on the cc command as described in IBM AIX Commands Reference. Linux

users should refer to the documentation for the compiler they are using.

2. If you are using PE for AIX, note that 32-bit programs compiled for use with

POE are limited to eight (8) data segments. The -bmaxdata option cannot

specify more than 0x80000000. The actual amount available might be less,

depending on whether shared memory or user space striping is being used by

MPI and/or LAPI. See “Considerations for data striping, with PE” on page 86

for more information.

3. The POE compiler scripts will evaluate a dollar sign ($) in a file name as if it

were a shell variable, which might not produce the desired result in resolving

the file name to be compiled. If your program file names contain the dollar

sign, you will need to prevent the compiler scripts from evaluating it as a shell

variable.

For example, if your file name is $foo.f, you need to invoke the compiler script

as shown below.

For PE for AIX:

mpxlf_r "\\\$foo.f"

mpxlf_r "*foo.f"

For PE for Linux:

mpfort "\\\$foo.f"

or

mpfort "*foo.f"

4. With PE for AIX, POE compile scripts utilize the -binitfini binder option. As a

result, POE programs have a priority default of zero. If other user applications

are using the initfini binder option, they should only specify a priority in the

range of 1 to 2,147,483,647.

5. Beginning with PE 5.1, a new Early Arrival buffer for collective

communications messages has been added. The default size of this new buffer

is 4 MB, but the MP_CC_BUF_MEM environment variable allows users to

specify a maximum value of 128 MB. A separate Early Arrival buffer for

point-to-point messages still exists, and is managed by the MP_BUFFER_MEM

environment variable (default value is 64 MB). This is important to note

because, by default, a 32-bit application might have a limited amount of

memory available for this buffer. Applications might need to be compiled with

14 IBM PE for AIX and Linux V5 R1: Operation and Use

-bmaxdata option to set aside more heap space. For more information, see “PE

Version 5 Release 1 migration information” on page 4.

Step 2: Copy files to individual nodes

Note: You only need to perform this step if your executable, your data files, and

(if you plan to use a debugger) your source code files are not in a

commonly accessed, shared, or parallel file system.

If the program you are running is in a shared file system, the Partition Manager

loads a copy of your executable in each processor node in your partition when you

invoke a program. If your executable is in a private file system, however, you must

copy it to the nodes in your partition. If you plan to use a debugger, you must

copy your source files to all nodes as well.

You can copy your executable to each node with the mcp command. mcp uses the

message passing facilities of the Parallel Environment to copy a file from a file

system on the home node to a remote node file system. For example, assume that

your executable program is on a mounted file system (/u/edgar/somedir/
myexecutable), and you want to make a private copy in /tmp on each node in

host.list.

ENTER

mcp /u/edgar/somedir/myexecutable /tmp/myexecutable -procs n

For more information on the mcp command, refer to “mcp” on page 143.

Note: If you load your executable from a mounted file system, you may

experience an initial delay while the program is being initialized on all

nodes. You may experience this delay even after the program begins

executing, because individual pages of the program are brought in on

demand. This is particularly apparent during initialization of a parallel

program; since individual nodes are synchronized, there are simultaneous

demands on the network file transfer system. You can minimize this delay

by copying the executable to a local file system on each node, using the mcp

message passing file copy program.

Step 3: Set up the execution environment

This step contains the following sections:

v “Step 3a: Set the MP_PROCS environment variable” on page 21

v “Step 3b: Create a host list file” on page 22

v “Step 3c: Set the MP_HOSTFILE environment variable” on page 27

v “Step 3d: Set the MP_RESD environment variable” on page 28

v “Step 3e: Set the MP_EUILIB environment variable” on page 29

v “Step 3f: Set the MP_EUIDEVICE environment variable” on page 30

v “Step 3g: Set the MP_DEVTYPE environment variable” on page 32

v “Step 3h: Set the MP_MSG_API environment variable” on page 32

v “Step 3i: Set the MP_RMPOOL environment variable” on page 33

Before invoking your program, you need to set up your execution environment.

The POE environment variables are summarized in Chapter 7, “POE Environment

Chapter 2. Executing parallel programs 15

variables and command line flags,” on page 215. Any of these environment

variables can be set at this time to later influence the execution of parallel

programs.

This step covers the environment variables that are most important to successfully

invoke a parallel program. When you invoke a parallel program, your home node

Partition Manager checks these environment variables to determine:

v the number of tasks in your program as specified by the MP_PROCS

environment variable.

v how to allocate processor nodes for these tasks. There are two basic methods of

node allocation – specific and nonspecific.

For specific node allocation, the Partition Manager reads an explicit list of nodes

contained in a host list file you create. If you do not have LoadLeveler, or if you

are using nodes that are not part of the LoadLeveler cluster, you must use this

method of node allocation.

For nonspecific node allocation, you give the Partition Manager the name or

number of a LoadLeveler pool. A pool name or number may also be provided in

a host list file. The Partition Manager then connects to LoadLeveler, which

allocates nodes from the specified pool(s) for you. For more information on

LoadLeveler and LoadLeveler pools, refer to the scenarios for allocating nodes

with LoadLeveler in “Considerations for using the High Performance Switch

interconnect” on page 78.

The architectural limits for Parallel Environment Version 5.1 are as follows.

v 16 K tasks

v 1500 nodes

v 128 tasks per node for shared memory communications.

Supported limits for Parallel Environment Version 5.1 for a particular platform can

be obtained by going to the appropriate Sales Manual (http://www.ibm.com/
common/ssi/index.wss) and entering the desired product number). The

architectural limits represent a ceiling. Support for larger task counts on any

particular platform may be available by special bid. Contact your IBM

representative.

Note: The IBM High Performance Switch, when running over User Space, is

limited to 64 tasks per adapter (128 tasks per node with two adapters per

network).

There are six separate environment variables that, collectively, determine how

nodes are allocated by the Partition Manager. The following description of these

environment variables assumes that you are not submitting a job using a

LoadLeveler job command file as described in “Submitting an interactive POE job

using a TWS LoadLeveler command file” on page 76. If you do intend to use a

LoadLeveler job command file, be aware that, in order to avoid conflicting

allocation specifications made via POE environment variables/command line flags,

LoadLeveler job command file statements, and POE host list file entries, certain

settings will be ignored or will cause errors. The following information, therefore,

assumes that you are not using a LoadLeveler job command file. Also keep in

mind that, while the following environment variables are the only ones you must

set to allocate nodes, there are many other environment variables you can set.

These are summarized in Chapter 7, “POE Environment variables and command

line flags,” on page 215, and control such things as standard I/O handling and

message passing information. The environment variables for node allocation are:

16 IBM PE for AIX and Linux V5 R1: Operation and Use

http://www-01.ibm.com/common/ssi/index.wss

MP_HOSTFILE

which specifies the name of a host list file to use for node allocation. If set

to an empty string (“ ”) or to the word “NULL”, this environment variable

specifies that no host list file should be used. If MP_HOSTFILE is not set,

POE looks for a file host.list in the current directory. You need to create a

host list file if you want specific node allocation.

MP_RESD

which specifies whether or not the Partition Manager should connect to

LoadLeveler to allocate nodes.

Note: When running POE from a workstation that is external to the

LoadLeveler cluster, the LoadL.so file set (AIX) or

LoadL-so-Linux_identifer.rpm (Linux) must be installed on the

external node (see Tivoli Workload Scheduler LoadLeveler: Using and

Administering and IBM Parallel Environment: Installation for more

information).

MP_EUILIB

which specifies the communication subsystem implementation to use –

either the IP communication subsystem implementation or the User Space

(US) communication subsystem implementation. The IP communication

subsystem uses Internet Protocol for communication among processor

nodes, while the User Space communication subsystem lets you drive a

clustered server’s high-speed interconnect switch (AIX) or a high

performance communication adapter (Linux) directly from your parallel

tasks, without going through the kernel or operating system. For User

Space communication on a clustered server system, you must have the

high-speed interconnect switch feature.

MP_EUIDEVICE

which specifies the adapter set or the adapter device name or network

type, configured in LoadLeveler, that you want to use for communication

among processor nodes. The Partition Manager checks this if you are using

the communication subsystem implementation with LoadLeveler. If

MP_RESD=no, the value of MP_EUIDEVICE is ignored. For User Space,

the value css0 (AIX only) or sn_single (AIX and Linux) specifies that

windows are requested on one common network. The value csss (AIX) or

sn_all (AIX or Linux) specifies that windows are requested from each

network in the system. The number of windows being requested depends

on the value of the MP_INSTANCES environment variable (the default is

one). In the case of csss and sn_all, the number of windows being

requested also depends on the number of networks in the system.

MP_DEVTYPE

which specifies the device type class; InfiniBand. To specify InfiniBand

support, set MP_DEVTYPE to ib. There is no default value.

Note: For AIX, InfiniBand is only supported on the IBM BladeCenter® JS21

Express server and the IBM POWER5 server. For Linux, InfiniBand

is not supported on the IBM System x servers or the IBM

BladeCenter JS20 Express or IBM BladeCenter JS21 Express servers.

MP_RMPOOL

which specifies the name or number of a LoadLeveler pool. The Partition

Manager only checks this if you are using LoadLeveler without a host list

file. You can use the llstatus command to return information about

Chapter 2. Executing parallel programs 17

LoadLeveler pools. To use llstatus on a workstation that is external to the

LoadLeveler system, the following must be installed on the external node:

v For AIX, the LoadL.so fileset

v For Linux, LoadL-so-linux_identifier.rpm

For more information, see Tivoli Workload Scheduler LoadLeveler: Using and

Administering and IBM Parallel Environment: Installation.

The remainder of this step consists of sub-steps describing how to set each of these

environment variables, and how to create a host list file. Depending on the

hardware and message passing library you are using, and the method of node

allocation you want, some of the sub-steps that follow may not apply to you. For

this reason, pay close attention to the task variant tables at the beginning of many

of the sub-steps. They will tell you whether or not you need to perform the

sub-step.

For further clarification, the following tables summarize the procedure for

determining how nodes are allocated. The tables describe the possible methods of

node allocation available to you, to what each environment variable must be set,

and whether or not you need to create a host list file.

As already stated, these instructions assume that you are not using a LoadLeveler

job command file and, therefore, the MP_LLFILE environment variable (or its

associated command line flag -llfile) is not set. To allocate nodes using a

LoadLeveler job command file, refer to “Submitting an interactive POE job using a

TWS LoadLeveler command file” on page 76 or the manual Tivoli Workload

Scheduler LoadLeveler: Using and Administering.

To make the procedure of setting up the execution environment easier and less

prone to error, you may eventually wish to create a shell script which automates

some of the environment variable settings. To allocate the nodes of a clustered

server that uses LoadLeveler, see Table 6 and Table 7 on page 19. If you are using a

network cluster (or, for AIX users, a mixed system) and want to allocate some

nodes that are not part of the LoadLeveler cluster, see Table 8 on page 19.

If you want to use the User Space communication subsystem library for

communication among parallel tasks, and...

 Table 6. Execution setup summary for User Space (for a clustered server with LoadLeveler)

You want specific node allocation:

You want nonspecific node allocation from a single

LoadLeveler pool:

A host list file is required. A host list file is not required. If used, however, all entries

must specify the same LoadLeveler pool.

MP_HOSTFILE should be set to the name of your host

list file. If not set, the host list file is assumed to be

host.list in the current directory.

A host list file is not required. If none is used,

MP_HOSTFILE should be set to an empty string (″″) or

the word ″NULL″.

MP_RESD should be set to yes. If set to an empty string

(″″), or if not set, the Partition Manager assumes the value

of MP_RESD is yes.

MP_RESD should be set to yes. If set to an empty string

(″″), or if not set, the Partition Manager assumes the value

of MP_RESD is yes.

MP_EUILIB should be set to us. The values of

MP_EUILIB are case-sensitive.

MP_EUILIB should be set to us. The values of

MP_EUILIB are case-sensitive.

MP_EUIDEVICE should be set to:

v For AIX users: sn_all, sn_single, csss, css0

v For Linux users: sn_all, sn_single

MP_EUIDEVICE should be set to:

v For AIX users: sn_all, sn_single, csss, css0

v For Linux users: sn_all, sn_single

18 IBM PE for AIX and Linux V5 R1: Operation and Use

Table 6. Execution setup summary for User Space (for a clustered server with LoadLeveler) (continued)

You want specific node allocation:

You want nonspecific node allocation from a single

LoadLeveler pool:

MP_RMPOOL is ignored because you are using a host

list file.

if you are not using a host list file, MP_RMPOOL should

be set to the name or number of a LoadLeveler pool. If

you are using a host list file, MP_RMPOOL is ignored;

you must specify the pool in the host list file.

If you want to use the IP communication subsystem library for communication

among parallel tasks, and...

 Table 7. Execution setup summary for IP (for a clustered server with LoadLeveler)

You want specific node allocation:

You want nonspecific node allocation from a single

LoadLeveler pool:

A host list file is required. A host list file is not required. If used, however, all

entries must specify the same LoadLeveler pool.

MP_HOSTFILE Should be set to the name of your host

list file. If not set, the host list file is assumed to be

host.list in the current directory.

No host list file is required. If none is used,

MP_HOSTFILE should be set to an empty string (″″) or

the word ″NULL″.

MP_RESD should be set to yes. If set to an empty string

(″″), or if not set, the Partition Manager assumes the value

of MP_RESD is no.

MP_RESD should be set to yes. If set to an empty string

(″″), or if not set, the Partition Manager assumes the value

of MP_RESD is yes.

MP_EUILIB should be set to ip. The values of

MP_EUILIB are case-sensitive.

MP_EUILIB should be set to ip. The values of

MP_EUILIB are case-sensitive.

MP_EUIDEVICE should specify the adapter type. MP_EUIDEVICE should specify the adapter type.

MP_RMPOOL is ignored because you are using a host

list file.

if you are not using a host list file, MP_RMPOOL should

be set to the name or number of a LoadLeveler pool. If

you are using a host list file, MP_RMPOOL is ignored;

you must specify the pool in the host list file.

Note: This preceding table assumes that the MP_LLFILE environment variable is

not set, and the -llfile flag is not used. If the MP_LLFILE environment

variable (or its associated command line flag) is used, indicating that a

LoadLeveler job command file should participate in node allocation, be

aware that some of the environment variables shown in this table will be

ignored. The reason they will be ignored is to avoid conflicting allocation

specifications made via POE environment variables/command line flags,

POE host list file entries, and LoadLeveler job command file statements. For

more information on the POE environment variables that will be ignored

when a LoadLeveler job command file is used, refer to “Submitting an

interactive POE job using a TWS LoadLeveler command file” on page 76.

Table 8 summarizes the execution environment setup for an IBM Power Systems

cluster or a mixed system, whose additional nodes are not part of the LoadLeveler

cluster. In this scenario, a host list file must be used.

 Table 8. Execution environment setup summary (for an IBM Power Systems network cluster or a mixed system, whose

additional nodes are not part of the LoadLeveler cluster)

This environment variable... is set as follows

MP_HOSTFILE should be set to the name of a host list file. If not defined,

the host list file is assumed to be host.list in the current

directory.

Chapter 2. Executing parallel programs 19

Table 8. Execution environment setup summary (for an IBM Power Systems network cluster or a mixed system, whose

additional nodes are not part of the LoadLeveler cluster) (continued)

This environment variable... is set as follows

MP_RESD should be set to no.

MP_EUILIB should be set to ip.

MP_RMPOOL is not used because you are using a host list file.

Table 9 shows how nodes are allocated depending on the value of the environment

variables discussed in this step. It is provided here for additional illustration. Refer

to it in situations when the environment variables are set in patterns other than

those suggested in Table 6 on page 18, Table 7 on page 19, and Table 8 on page 19.

When reading Table 9, be aware that, if a LoadLeveler job command file is

specified (using the MP_LLFILE environment variable or the -llfile flag), the value

of MP_RESD will be yes.

 Table 9. Node allocation summary

If Then

The value of

MP_EUILIB is:

The value of

MP_RESD is:

Your Host List file

contains a list of:

The allocation

mode will be:

The

communication

subsystem library

implementation

used will be:

The message

passing address

used will be:

ip - nodes Node_List IP Nodes

pools LL_List IP MP_EUIDEVICE

NULL LL IP MP_EUIDEVICE

yes nodes LL_List IP MP_EUIDEVICE

pools LL_List IP MP_EUIDEVICE

NULL LL IP MP_EUIDEVICE

no nodes Node_List IP Nodes

pools Error - -

NULL Error - -

us - nodes LL_List US N/A

pools LL_List US N/A

NULL LL US N/A

yes nodes LL_List US N/A

pools LL_List US N/A

NULL LL US N/A

no nodes Node_List IP

Nodes

- -

pools Error - -

NULL Error - -

20 IBM PE for AIX and Linux V5 R1: Operation and Use

Table 9. Node allocation summary (continued)

If Then

- - nodes Node_List IP Nodes

pools LL_List IP MP_EUIDEVICE

NULL LL IP MP_EUIDEVICE

yes nodes LL_List IP MP_EUIDEVICE

pools LL_List IP MP_EUIDEVICE

NULL LL IP MP_EUIDEVICE

no nodes Node_List IP Nodes

pools Error - -

NULL Error - -

Table notes:

Node_List

means that the host list file is used to create the partition.

LL_List

means that the host list file is used to create the partition, but the nodes

are requested from LoadLeveler.

LL means that the partition is created by requesting nodes in MP_RMPOOL

from LoadLeveler.

Nodes indicates that the external IP address of the processor node is used for

communication.

MP_EUIDEVICE

indicates that the IP adapter address indicated by MP_EUIDEVICE is used

for communication.

Step 3a: Set the MP_PROCS environment variable

Before you execute a program, you need to set the size of the partition. To do this,

use the MP_PROCS environment variable or its associated command line flag

-procs, as shown in Table 10.

For example, say you want to specify the number of task processes as 6. You could:

 Table 10. Example of setting the MP_PROCS environment variable or -procs command line flag

Set the MP_PROCS environment variable: Use the -procs flag when invoking the program:

ENTER

export MP_PROCS=6

ENTER

poe program -procs 6

If you do not set MP_PROCS, the default number of task processes is 1 unless you

have set the MP_RMPOOL environment variable (or -rmpool command line flag)

for nonspecific node allocation from a single LoadLeveler pool, and have set both

the MP_NODES and MP_TASKS_PER_NODE environment variables (or their

associated command line flags) to further specify how LoadLeveler should allocate

nodes within the pool. In such cases, if MP_PROCS is not set, the parallel job will

consist of MP_TASKS_PER_NODE multiplied by MP_NODES tasks. See “Step 3i:

Set the MP_RMPOOL environment variable” on page 33 for more details.

Chapter 2. Executing parallel programs 21

Step 3b: Create a host list file

A host list file specifies the processor nodes on which the individual tasks of your

program should run. When you invoke a parallel program, your Partition Manager

checks to see if you have specified a host list file. If you have, it reads the file to

allocate processor nodes.

You need to create a host list file if you are not using LoadLeveler to allocate

nodes.

The procedure for creating a host list file differs, depending on whether you are

using LoadLeveler. If you are not using LoadLeveler, see “Creating a host list file

to allocate nodes of a cluster without LoadLeveler.” If you are using LoadLeveler,

see “Creating a host list file to allocate nodes with LoadLeveler” on page 23.

Creating a host list file to allocate nodes of a cluster without LoadLeveler:

If you are not using LoadLeveler to allocate nodes, you must create a host list file,

which simply lists a series of host names – one per line. These must be the names

of remote nodes accessible from the home node. If you plan to use the IP

communication subsystem with the InfiniBand interconnect, the InfiniBand adapter

host names should be specified as host list file entries. Each line specifies where

one task is to be run so when SMP nodes are to run multiple tasks, the same node

name can appear more than once. Lines beginning with an exclamation point (!) or

asterisk (*) are comments. The Partition Manager ignores blank lines and

comments. The host list file can list more names than are required by the number

of program tasks. The additional names are ignored.

To understand how the Partition Manager uses a host list file to determine the

nodes on which your program should run, consider the following example host list

file:

! Host list file for allocating 6 tasks

* An asterisk may also be used to indicate a comment

host1_name

host2_name

host3_name

host4_name

host5_name

host6_name

The Partition Manager ignores the first two lines because they are comments, and

the third line because it is blank. It then allocates host1_name to run task 0,

host2_name to run task 1, host3_name to run task 2, and so on. If any of the

processor nodes listed in the host list file are unavailable when you invoke your

program, the Partition Manager returns a message stating this and does not run

your program.

You can also have multiple tasks of a program share the same node by simply

listing the same node multiple times in your host list file. For example, say your

host list file contains the following:

host1_name

host2_name

22 IBM PE for AIX and Linux V5 R1: Operation and Use

host3_name

host1_name

host2_name

host3_name

Tasks 0 and 3 will run on host1_name, tasks 1 and 4 will run on host2_name, and

tasks 2 and 5 will run on host3_name.

Creating a host list file to allocate nodes with LoadLeveler:

If you are using LoadLeveler to allocate nodes, you can use a host list file for

either:

v nonspecific node allocation from one system pool only.

v specific node allocation.

In either case, the host list file can contain a number of records – one per line. For

specific node allocation, each record indicates a processor node. For nonspecific

node allocation you can have one system pool only. Your host list file cannot

contain a mixture of node and pool requests, so you must use one method or the

other. The host list file can contain more records than required by the number of

program tasks. The additional records are ignored.

For specific node allocation:

Each record is either a host name or IP adapter address of a specific processor

node of the system. If you are using a mixed system and want to allocate nodes

that are not part of the LoadLeveler cluster, you must request them by host name.

Lines beginning with an exclamation point (!) or asterisk (*) are comments. The

Partition Manager ignores blank lines and comments.

To understand how the Partition Manager uses a host list file to determine the

system nodes on which your program should run, consider the following

representation of a host list file.

! Host list file for allocating 6 tasks

host1_name

host2_name

host3_name

9.117.8.53

9.117.8.53

9.117.8.53

The Partition Manager ignores the first line because it is a comment, and the

second because it is blank. It then allocates host1_name to run task 0, host2_name to

run task 1, host3_name to run task 2, and so on. The last three nodes are requested

by adapter IP address using dot decimal notation.

Note: If any of the processor nodes listed in the host list file are unavailable when

you invoke your program, the Partition Manager returns a message stating

this and does not run your program.

For nonspecific node allocation from a LoadLeveler pool:

After installation of a LoadLeveler cluster, your system administrator divides its

processor nodes into a number of pools. With LoadLeveler, each pool has an

identifying pool name or number. Using LoadLeveler for nonspecific node

Chapter 2. Executing parallel programs 23

allocation, you need to supply the appropriate pool name or number. When

specifying pools in a host list file, each entry must be for the same pool.

If you require information about LoadLeveler pools, use the command llstatus. To

use llstatus on a workstation that is external to the LoadLeveler cluster, the

following must be installed on the external node:

v For AIX users: LoadL.so fileset

v For Linux users: LoadL-so-linux_identifer.rpm

See Tivoli Workload Scheduler LoadLeveler: Using and Administering for more

information.

ENTER

llstatus -l (lower case L)

 LoadLeveler lists status information including the pools in the LoadLeveler

cluster.

For more information on the llstatus command and LoadLeveler pools, see Tivoli

Workload Scheduler LoadLeveler: Using and Administering.

When specifying LoadLeveler pools in a host list file, each entry must refer to the

same pool (by name or number), and should be preceded by an at symbol (@).

Lines beginning with an exclamation point (!) and asterisk (*) are comments. The

Partition Manager ignores blank lines and comments.

To understand how the Partition Manager uses a host list file for nonspecific node

allocation, consider the following example host list file:

! Host list file for allocating 3 tasks with LoadLeveler

@6

@6

@6

The Partition Manager ignores the first line because it is a comment, and the

second line because it is blank. The at (@) symbols tell the Partition Manager that

these are pool requests. It connects to LoadLeveler to request three nodes from

pool 6.

Note: If there are insufficient nodes available in a requested pool when you invoke

your program, the Partition Manager returns a message stating this, and

does not run your program.

Specifying how a node’s resources are used:

When requesting nodes using LoadLeveler specific node allocation, you can

optionally request how each node’s resources – its adapters and CPU – should be

used. You can specify:

v Whether the node’s adapter is to be dedicated or shared.

If the node’s adapter is to be dedicated, and if using:

– A single adapter, then only a single program task can use it for the same

protocol.

– Striping or multiple adapters, then any window that is allocated on an

adapter will prevent other tasks from using windows on the same adapter.
If the node’s adapter is to be shared, a number of tasks of different jobs on that

node can use it. (see Table 11 on page 25).

24 IBM PE for AIX and Linux V5 R1: Operation and Use

v Whether the node’s CPU usage should be unique or multiple. If unique, only your

program’s tasks can use the CPU. If multiple, your program may share the node

with other users.

If dedicated, using a single adapter, only a single program task can use it for the

same protocol. If dedicated, using multiple adapters, or if using striping, any

window that is allocated on an adapter will prevent other tasks from using

windows on the same adapter.

When using LoadLeveler for nonspecific node allocation, any usage specification in

the host list file will be ignored. Instead, you can request how nodes are used with

the MP_CPU_USE and/or MP_ADAPTER_USE environment variables (or their

associated command line options) or you can specify this information in a

LoadLeveler Job Command File.

Using the environment variables MP_ADAPTER_USE and MP_CPU_USE, or the

associated command line options (-adapter_use and -cpu_use) to make either or

both of these specifications will affect the resource usage for each node allocated

from the pool specified using MP_RMPOOL or -rmpool. For example, if you

wanted nodes from pool 5, and you wanted your program to have exclusive use of

both the adapter and CPU, the following command line could be used:

 poe [program] -rmpool 5 -adapter_use[dedicated]

-cpu_use[unique] [more_poe_options]

Associated environment variables (MP_RMPOOL, MP_ADAPTER_USE,

MP_CPU_USE) could also be used to specify any or all of the options in this

example.

Note: You can also use a LoadLeveler job command file to specify how a node’s

resources are used. If you use a LoadLeveler job command file, the

MP_RMPOOL, MP_ADAPTER_USE, and MP_CPU_USE environment

variables will be validated but ignored. For more information about

LoadLeveler job command files, see Tivoli Workload Scheduler LoadLeveler:

Using and Administering.

Table 11 and Table 12 on page 26 illustrate how node resources are used. Table 11

shows the default settings for adapter and CPU use, while Table 12 on page 26

outlines how the two separate specifications determine how the allocated node’s

resources are used.

 Table 11. Adapter/CPU default settings

Dedicated/shared adapter Adapter CPU

If host list file contains nonspecific

pool requests:

Dedicated Unique

If host list file requests specific

nodes:

Shared (for User Space jobs, adapter

is dedicated)

Multiple

If host list file is not used: Dedicated (for IP jobs, adapter is

shared)

Unique (for IP jobs, CPU is multiple)

Chapter 2. Executing parallel programs 25

Table 12. Adapter/CPU use under LoadLeveler

Adapter use If the Node’s CPU is “Unique”: If the Node’s CPU is “Multiple”:

If the adapter use is “Dedicated”: Intended for production runs of high

performance applications. Only the

tasks of that parallel job use the

adapter and CPU.

The adapter you specified with

MP_EUIDEVICE is dedicated to the

tasks of your parallel job. However,

you and other users still have access

to the CPU through another adapter.

Also, if you are using striping (AIX

only) or multiple adapters (AIX or

Linux), any window that is allocated

on an adapter will prevent other tasks

from using windows on that same

adapter.

If the adapter use is “Shared”: Only your program tasks have access

to the node’s CPU, but other

program’s tasks can share the adapter.

Both the adapter and CPU can be

used by a number of your program’s

tasks and other users.

Note:

1. When using LoadLeveler, the User Space communication subsystem

library does not require dedicated use of the IBM High Performance

Switch on the node. Adapter use will be defaulted, as in Table 11 on

page 25, but shared usage may be specified.

2. Adapter/CPU usage specification is only enforced for jobs using

LoadLeveler for node allocation.

Generating an output host list file:

When running parallel programs using LoadLeveler, you can generate an output

host list file of the nodes that LoadLeveler allocated. When you have LoadLeveler

perform nonspecific node allocation, this enables you to learn which nodes were

allocated. This information is vital if you want to perform some postmortem

analysis or file cleanup on those nodes, or if you want to rerun the program using

the same nodes. To generate a host list file, set the MP_SAVEHOSTFILE

environment variable to a file name. You can specify this using a relative or full

path name. As with most POE environment variables, you can temporarily

override the value of MP_SAVEHOSTFILE using its associated command line flag

-savehostfile. Table 13 describes how to set the MP_SAVEHOSTFILE environment

variable and the -savehostfile command line flag.

For example, to save LoadLeveler’s node allocation into a file called

/u/hinkle/myhosts, you could:

 Table 13. Example of setting the MP_SAVEHOSTFILE environment variable or -savehostfile command line flag

Set the MP_SAVEHOSTFILE environment variable: Use the -savehostfile flag when invoking the program:

ENTER

export MP_SAVEHOSTFILE=/u/hinkle/myhosts

ENTER

poe program -savehostfile /u/hinkle/myhosts

Each record in the output host list file will be the original nonspecific pool request.

Following each record will be comments indicating the specific node that was

allocated. The specific node is identified by:

v host name

v external IP address

26 IBM PE for AIX and Linux V5 R1: Operation and Use

v adapter IP address (which may be the same as the external IP address)

For example, say the input host list file contains the following records:

@mypool

@mypool

@mypool

The following is a representation of the output host list file.

host1_name

! 9.117.11.47 9.117.8.53

!@mypool

host1_name

! 9.117.11.47 9.117.8.53

!@mypool

host1_name

! 9.117.11.47 9.117.8.53

!@mypool

Note: The name of your output host list file can be the same as your input host

list file. If a file of the same name already exists, it is overwritten by the

output host list file.

Step 3c: Set the MP_HOSTFILE environment variable

Use Table 14 to determine if you need to set the MP_HOSTFILE environment

variable.

 Table 14. When to set the MP_HOSTFILE environment variable

You need to set the MP_HOSTFILE environment

variable if:

You do not need to set the MP_HOSTFILE environment

variable if:

v you are using a host list file other than the default

./host.list

v you are requesting nonspecific node allocation without

a host list file.

If your host list file is the default ./host.list

The default host list file used by the Partition Manager to allocate nodes is called

host.list and is located in your current directory. You can specify a file other than

host.list by setting the MP_HOSTFILE environment variable to the name of a host

list file, or by using either the -hostfile or -hfile flag when invoking the program,

as shown in Table 15. In either case, you can specify the file using its relative or

full path name.

For example, say you want to use the host list file myhosts located in the directory

/u/hinkle. You could:

 Table 15. Example of setting the MP_HOSTFILE environment variable or -hostfile command line flag when using a

nondefault host list file

Set the MP_HOSTFILE environment variable: Use the -hostfile flag when invoking the program:

ENTER

export MP_HOSTFILE=/u/hinkle/myhosts

ENTER

poe program -hostfile /u/hinkle/myhosts

 or poe program -hfile /u/hinkle/myhosts

Chapter 2. Executing parallel programs 27

If you are using LoadLeveler for nonspecific node allocation from a single pool

specified by MP_RMPOOL, and a host list file exists in the current directory, you

must set MP_HOSTFILE to an empty string or to the word NULL, as shown in

Table 16. Otherwise the Partition Manager uses the host list file. You can either:

 Table 16. Setting the MP_HOSTFILE environment variable or -hostfile command line flag when requesting nonspecific

node allocation without a host list file

Set the MP_HOSTFILE environment variable: Use the -hostfile flag when invoking the program:

ENTER

export MP_HOSTFILE=

 or

 export MP_HOSTFILE=″″

 or

 export MP_HOSTFILE=NULL

ENTER

poe program -hostfile ″″

 or poe program -hostfile NULL

Step 3d: Set the MP_RESD environment variable

To indicate whether or not LoadLeveler should be used to allocate nodes, you set

the MP_RESD environment variable to yes or no. As specified in “Step 3: Set up

the execution environment” on page 15, MP_RESD controls whether or not the

Partition Manager connects to LoadLeveler to allocate processor nodes.

If you are allocating nodes that are not part of a LoadLeveler cluster, MP_RESD

should be set to no. If MP_RESD is set to yes, only nodes within the LoadLeveler

cluster can be allocated.

If you are using PE for AIX and you are allocating nodes of an IBM Power Systems

network cluster, you do not have LoadLeveler and therefore should set MP_RESD

to no. If you are using a mixed system, you may set MP_RESD to yes. However,

LoadLeveler only has knowledge of nodes that are part of the LoadLeveler cluster.

If the additional IBM Power Systems processors are not part of the LoadLeveler

cluster, you must also use a host list file to allocate them, and cannot set

MP_RESD to yes in that case.

If you are using PE for Linux and you are not using LoadLeveler, you should set

MP_RESD to no (or allow it to default to no). However, LoadLeveler only has

knowledge of nodes that are part of the LoadLeveler cluster. If nodes are not part

of the LoadLeveler cluster, you must also use a host list file to allocate them, and

cannot set MP_RESD to yes in that case.

As with most POE environment variables, you can temporarily override the value

of MP_RESD using its associated command line flag -resd. Table 17 on page 29

describes how to set the MP_RESD environment variable and the -resd command

line flag.

For example, to specify that you want the Partition Manager to connect

LoadLeveler to allocate nodes, you could:

28 IBM PE for AIX and Linux V5 R1: Operation and Use

Table 17. Example of setting the MP_RESD environment variable or -resd command line flag

Set the MP_RESD environment variable: Use the -resd flag when invoking the program:

ENTER

export MP_RESD=yes

ENTER

poe program -resd yes

You can also set MP_RESD to an empty string. If set to an empty string, or if not

set, the default value of MP_RESD is interpreted as yes or no depending on the

context. Specifically, the value of MP_RESD will be determined by the value of

MP_EUILIB and whether or not you are using a host list file. Table 18 shows how

the context determines the value of MP_RESD.

 Table 18. How the value of MP_RESD is interpreted

MP_EUILIB setting and you are using a host list file: and you are not using a host list file:

If MP_EUILIB is set to ip, an empty

string, the word ″NULL″, or if not

set:

MP_RESD is interpreted as no by

default, unless:

v the host list file includes pool

requests, or

v the MP_LLFILE environment

variable is set (or the -llfile

command line flag is used).

MP_RESD is interpreted as yes by

default.

If MP_EUILIB is set to us: MP_RESD is interpreted as yes by

default.

MP_RESD is interpreted as yes by

default.

Note: When running POE from a workstation that is external to the LoadLeveler

cluster, the LoadL.so file set (AIX) or LoadL-so-Linux_identifer.rpm (Linux)

must be installed on the external node (see Tivoli Workload Scheduler

LoadLeveler: Using and Administering and IBM Parallel Environment: Installation

for more information).

Step 3e: Set the MP_EUILIB environment variable

During execution, the tasks of your program can communicate via calls to message

passing routines. The message passing routines in turn call communication

subsystem routines which enable the processor nodes to exchange the message

data. Before you invoke your program, you need to decide which communication

subsystem implementation you wish to use – the Internet Protocol (IP)

communication subsystem or the User Space communication subsystem.

v The IP communication subsystem implementation uses the Internet Protocol

for communication among processor nodes. You must use the IP communication

subsystem if you are using Linux and you do not have a high performance

interconnect for which PE provides a User Space protocol.

v The User Space communication subsystem implementation uses the User

Space protocol in conjunction with a high performance communication adapter.

It allows you to drive the communication adapter directly from your parallel

tasks rather than via the kernel. You can only use User Space communication

when running on a system for which PE supports a User Space protocol.

The MP_EUILIB environment variable, or its associated command line flag -euilib,

is used to indicate which communication subsystem implementation you are using.

POE needs to know which communication subsystem implementation to

dynamically link in as part of your executable when you invoke it. If you want the

IP communication subsystem, MP_EUILIB or -euilib should specify ip. If you

Chapter 2. Executing parallel programs 29

want the User Space communication subsystem, MP_EUILIB or -euilib should

specify us. In either case, the specification is case-sensitive. Table 19 describes how

to set the MP_EUILIB environment variable and the -euilib command line flag.

For example, say you want to dynamically link in the communication subsystem at

execution time. You could:

 Table 19. Example of setting the MP_EUILIB environment variable or -euilib command line flag

Set the MP_EUILIB environment variable: Use the -euilib flag when invoking the program:

ENTER

export MP_EUILIB=ip or us

ENTER

poe program -euilib ip or us

Note:

For AIX users, when you invoke a parallel program, your Partition Manager

looks to the directory /usr/lpp/ppe.poe/lib for the message passing interface

and the communication subsystem implementation. If you are running on

an IBM Power Systems network cluster, this is the actual location of the

message passing interface library. Consult your system administrator for the

actual location of the message passing library if necessary.

For Linux users, when you invoke a 32-bit parallel program, your Partition

Manager looks to the directory /opt/ibmhpc/ppe.poe/lib/libmpi for the

message passing interface and the communication subsystem

implementation. When you invoke a 64-bit parallel program, your Partition

Manager looks to the directory /opt/ibmhpc/ppe.poe/lib/libmpi64 for the

message passing interface and the communication subsystem

implementation. Libraries in these two directories are also individually

linked into either /usr/lib or /usr/lib64.

You can make POE look to a directory other than /usr/lpp/ppe.poe/lib (AIX)

or /opt/ibmhpc/ppe.poe/lib/libmpi (Linux) by setting the MP_EUILIBPATH

environment variable or its associated command line flag -euilibpath. This

is useful when you get an emergency fix (eFix) library and want to try it out

before installing it. Copy the eFix library into a directory and set

MP_EUILIBPATH to point to it. Table 20 describes how to set the

MP_EUILIBPATH environment variable and the -euilibpath command line

flag.

For example, say the communication subsystem library implementations

were moved to /usr/altlib. To instruct the Partition Manager to look there,

you could:

 Table 20. Example of setting the MP_EUILIBPATH environment variable or -euilibpath command line flag

Set the MP_EUILIBPATH environment variable: Use the -euilibpath flag when invoking the program:

ENTER

export MP_EUILIBPATH=/usr/altlib

ENTER

poe program -euilibpath /usr/altlib

Step 3f: Set the MP_EUIDEVICE environment variable

Use Table 21 on page 31 to determine if you need to set the MP_EUIDEVICE

environment variable.

30 IBM PE for AIX and Linux V5 R1: Operation and Use

Table 21. When to set the MP_EUIDEVICE environment variable

You need to set the MP_EUIDEVICE environment

variable if:

You do not need to set the MP_EUIDEVICE

environment variable if:

you have set the MP_EUILIB environment variable to ip,

and are using LoadLeveler for node allocation.

you have set the MP_EUILIB environment variable to us.

The Partition Manager assumes that MP_EUIDEVICE is

sn_all. When MP_EUIDEVICE is not set, POE uses sn_all

for both AIX and Linux.

If you are using LoadLeveler, you can specify which adapter to use for message

passing for IP using one of the adapter device names or network types configured

by LoadLeveler. For User Space (using the IBM High Performance Switch only),

you can specify sn_single (one window per task) or sn_all (multiple windows per

tasks).

The MP_EUIDEVICE environment variable and its associated command line flag

-euidevice are used to select an alternate adapter set for communication among

processor nodes. If neither MP_EUIDEVICE device nor the -euidevice flag is set

for IP, the communication subsystem library uses the external IP address of each

remote node. Table 22 shows the possible, case-sensitive, settings for

MP_EUIDEVICE.

 Table 22. Settings for MP_EUIDEVICE

Setting the MP_EUIDEVICE environment variable to: Selects:

Adapter device name An adapter device name or network type configured by

LoadLeveler.

sn_single Specify one User Space window per task.

sn_all Specify multiple windows per task.

Table 23 describes how to set the MP_EUIDEVICE environment variable and the

-euidevice command line flag.

For example, to specify the IBM High Performance Switch, you could:

 Table 23. Example of setting the MP_EUIDEVICE environment variable or -euidevice command line flag

Set the MP_EUIDEVICE environment variable: Use the -euidevice flag when invoking the program:

ENTER

export MP_EUIDEVICE=sn_single

ENTER

poe program -euidevice sn_single

Note:

1. If you do not set the MP_EUIDEVICE environment variable, the default

is the adapter set used as the external network address for IP, and for

User Space the default is sn_all.

2. If using LoadLeveler for node allocation, the adapters must be

configured in LoadLeveler. See Tivoli Workload Scheduler LoadLeveler:

Using and Administering for more information.

3. With PE for AIX, existing User Space applications that set

MP_EUIDEVICE/-euidevice to sn_single on systems using multiple

adapters and multiple networks will not benefit from the performance

improvements provided by using the sn_all value. In this case, you may

want to change the MP_EUIDEVICE/-euidevice settings for such

Chapter 2. Executing parallel programs 31

applications. Note that User Space applications can set

MP_EUIDEVICE/-euidevice to sn_single on systems with multiple

adapters and a single network.

4. With PE for Linux, if MP_EUILIB is set or defaulted to ip, you should

not set MP_EUIDEVICE or -euidevice to sn_all. This is because failover

and recovery are not supported on Linux with InfiniBand interconnects

when using the IP communications subsystem.

Step 3g: Set the MP_DEVTYPE environment variable

Use Table 24 to determine if you need to set the MP_DEVTYPE environment

variable.

 Table 24. When to set the MP_DEVTYPE environment variable

You need to set the MP_DEVTYPE environment

variable if:

You do not need to set the MP_DEVTYPE environment

variable if:

you want to use the InfiniBand interconnect. you do not want to use the InfiniBand interconnect or

you have set the MP_EUILIB environment variable to us.

Note: At this time, InfiniBand is the only device type that may be specified with

the MP_DEVTYPE environment variable.

To use the InfiniBand interconnect, set the MP_DEVTYPE environment variable to

ib, as shown in Table 25. Note that the specification is case-sensitive. For example,

say you want to use the InfiniBand interconnect. You could:

 Table 25. Example of setting the MP_DEVTYPE environment variable or -devtype command line flag

Set the MP_DEVTYPE environment variable: Use the -devtype flag when invoking the program:

ENTER

export MP_DEVTYPE=ib

ENTER

poe program -devtype ib

If MP_EUILIB is set or defaulted to IP when running on the InfiniBand

interconnect, the MP_DEVTYPE value must be set to ib. Otherwise POE uses the

host IP address based on the host list file entries, which could be either an IP

address or the InfiniBand adapter address, resulting in less than optimum

performance.

Step 3h: Set the MP_MSG_API environment variable

The MP_MSG_API environment variable, or its associated command line option,

is used to indicate to POE which message passing API is being used by a parallel

job. Use Table 26 to determine if you need to set the MP_MSG_API environment

variable.

 Table 26. When to set the MP_MSG_API environment variable

You need to set the MP_MSG_API environment

variable if:

You do not need to set the MP_MSG_API environment

variable if:

A parallel job is using LAPI alone or in conjunction with

MPI.

A parallel job is using MPI only.

32 IBM PE for AIX and Linux V5 R1: Operation and Use

Step 3i: Set the MP_RMPOOL environment variable

Use Table 27 to determine if you need to set the MP_RMPOOL environment

variable.

 Table 27. When to set the MP_RMPOOL environment variable

You need to set the MP_RMPOOL environment variable

if:

You do not need to set the MP_RMPOOL environment

variable if:

You are allocating nodes using LoadLeveler and want

nonspecific node allocation from a single pool.

You are allocating nodes using a host list file.

After installation of a LoadLeveler cluster, your system administrator divides its

processor nodes into a number of pools. Each pool has an identifying pool name or

number. When using LoadLeveler, and you want nonspecific node allocation from

a single pool, you need to set the MP_RMPOOL environment variable to the name

or number of that pool. If the value of the MP_RMPOOL environment variable is

numeric, that pool number must be configured in LoadLeveler. If the value of

MP_RMPOOL contains any nonnumeric characters, that pool name must be

configured as a feature in LoadLeveler.

If you need information about available LoadLeveler pools, use the command

llstatus. To use llstatus on a workstation that is external to the LoadLeveler cluster,

the following must be installed on the external node:

v For AIX: LoadL.so fileset

v For Linux: LoadL-so-linux_identifer.rpm

See Tivoli Workload Scheduler LoadLeveler: Using and Administering and IBM Parallel

Environment: Installation for more information.

ENTER

llstatus -l (lower case L)

 LoadLeveler lists information about all LoadLeveler pools and/or features.

For more information on the llstatus command and on LoadLeveler pools, refer to

Tivoli Workload Scheduler LoadLeveler: Using and Administering.

As with most POE environment variables, you can temporarily override the value

of MP_RMPOOL using its associated command line flag -rmpool. Table 28

describes how to set the MP_RMPOOL environment variable and the -rmpool

command line flag.

For example, to specify pool 6 you could:

 Table 28. Example of setting the MP_RMPOOL environment variable or -rmpool command line flag

Set the MP_RMPOOL environment variable: Use the -rmpool flag when invoking the program:

ENTER

export MP_RMPOOL=6

ENTER

poe program -rmpool 6

For additional control over how LoadLeveler allocates nodes within the pool

specified by MP_RMPOOL or -rmpool, you can use the MP_NODES or

MP_TASKS_PER_NODE environment variables or their associated command line

options, as shown in Table 29 on page 34.

Chapter 2. Executing parallel programs 33

v The MP_NODES and MP_TASKS_PER_NODE settings are ignored unless

MP_RMPOOL is set and no host file is used. A restarted job may actually use

these previously ignored settings if MP_RMPOOL is used when restarting. See

the poerestart man page in Chapter 6, “Parallel Environment commands,” on

page 129 for more information.

v MP_NODES or -nodes specifies the number of physical nodes on which to run

the parallel tasks. You may use it alone or in conjunction with -tasks_per_node

and/or -procs, as described in Table 29, below.

v MP_TASKS_PER_NODE or -tasks_per_node specifies the number of tasks to be

run on each of the physical nodes. You may use it in conjunction with -nodes

and/or -procs, as described in Table 29, but may not use it alone.

 Table 29. LoadLeveler node allocation

MP_PROCS

set? MP_TASKS_PER_NODE set?

MP_NODES

set? Conditions and Results

Yes Yes Yes MP_TASKS_PER_NODE multiplied by

MP_NODES must equal MP_PROCS, otherwise

an error occurs.

Yes Yes No MP_TASKS_PER_NODE must divide evenly

into MP_PROCS, otherwise an error occurs.

Yes No Yes Tasks 0..m-1 are allocated to the first node, tasks

m..2m-1 are allocated to the second node, and

so on, where m is MP_PROCS/MP_NODES

rounded up.

Yes No No The parallel job will run with the indicated

number of MP_PROCS (p) on p nodes.

No Yes Yes The parallel job will consist of

MP_TASKS_PER_NODE multiplied by

MP_NODES tasks.

No Yes No An error occurs. MP_NODES or MP_PROCS

must be specified with

MP_TASKS_PER_NODE.

No No Yes One parallel task will be run on each of n

nodes.

No No No One parallel task will be run on one node.

Note: The examples in Table 29, use the environment variable setting to illustrate

each of the three options. The associated command line options may also be

used.

Step 4: Invoke the executable

Note:

In order to perform this step, you need to have a user account on, and be

able to remotely login to, each of the processor nodes. In addition, each user

account must be properly authorized based on the security methods

configured by the system administrator. Refer to “POE user authorization”

on page 53 for specific details.

The poe command enables you to load and execute programs on remote nodes.

You can use it to:

34 IBM PE for AIX and Linux V5 R1: Operation and Use

v load and execute an SPMD program onto all nodes of your partition. For more

information, see “Invoking an SPMD program” on page 36.

v individually load the nodes of your partition. This capability is intended for

MPMD programs. For more information, see “Invoking an MPMD program” on

page 36.

v load and execute a series of SPMD or MPMD programs, in individual job steps,

on the same partition. For more information, see “Loading a series of programs

as job steps” on page 38.

v run nonparallel programs on remote nodes. For more information, see “Invoking

a nonparallel program on remote nodes” on page 41.

When you invoke poe, the Partition Manager allocates processor nodes for each

task and initializes the local environment. It then loads your program, and

reproduces your local environment, on each processor node. The Partition Manager

also passes the option list to each remote node. If your program is in a shared file

system, the Partition Manager loads a copy of it on each node. If your program is

in a private file system, you will have already manually copied your executable to

the nodes as described in “Step 2: Copy files to individual nodes” on page 15.

When you are using the message passing interface, the appropriate communication

subsystem library implementation (IP or US) is automatically loaded at this time.

Since the Partition Manager attempts to reproduce your local environment on each

remote node, your current directory is important. When you invoke poe, the

Partition Manager will, immediately before running your executable, issue the cd

command to your current working directory on each remote node. If you are in a

local directory that does not exist on remote nodes, you will get an error as the

Partition Manager attempts to change to that directory on remote nodes. Typically,

this will happen when you invoke poe from a directory under /tmp. We suggest

that you invoke poe from a file system that is mounted across the system. If it is

important that the current directory be under /tmp, make sure that directory exists

on all the remote nodes. If you are an AIX user and are running in the C shell, see

“Running programs under the C shell (PE for AIX only)” on page 93.

Note: The Parallel Environment opens several file descriptors before passing

control to the user. The Parallel Environment will not assign specific file

descriptors other than standard in, standard out, and standard error.

Before using the poe command, you can first specify which programming model

you are using by setting the MP_PGMMODEL environment variable to either

spmd or mpmd. As with most POE environment variables, you can temporarily

override the value of MP_PGMMODEL using its associated command line flag

-pgmmodel. Table 30 describes how to set the MP_PGMMODEL environment

variable and the -pgmmodel command line flag.

For example, if you want to run an MPMD program, you could:

 Table 30. Example of setting the MP_PGMMODEL environment variable or -pgmmodel command line flag

Set the MP_PGMMODEL environment variable: Use the -pgmmodel flag when invoking the program:

ENTER

export MP_PGMMODEL=mpmd

ENTER

poe program -pgmmodel mpmd

If you do not set the MP_PGMMODEL environment variable or -pgmmodel flag,

the default programming model is SPMD.

Chapter 2. Executing parallel programs 35

Note: If you load your executable from a mounted file system, you may

experience an initial delay while the program is being initialized on all

nodes. You may experience this delay even after the program begins

executing, because individual pages of the program are brought in on

demand. This is particularly apparent during initialization of a parallel

application; since individual nodes are synchronized, there are simultaneous

demands on the network file transfer system. You can minimize this delay

by copying the executable to a local file system on each node, using the mcp

command.

Invoking an SPMD program

If you have an SPMD program, you want to load the same executable for each task

on all nodes of your partition. To do this, follow the poe command with the

program name and any options. The options can be program options or any of the

POE command line flags shown in Chapter 7, “POE Environment variables and

command line flags,” on page 215. You can also invoke an SPMD program by

entering the program name and any options:

ENTER

poe program [options]

 or

program [options]

You can also enter poe without a program name:

ENTER

poe [options]

 Once your partition is established, a prompt appears.

ENTER

the name of the program you want to load. You can follow the program

name with any program options or a subset of the POE flags.

Note: For National Language Support, POE displays messages located in an

externalized message catalog. POE checks the LANG and NLSPATH

environment variables, and if either is not set, it will set up the following

defaults.

For AIX:

v LANG=C

v NLSPATH=/usr/lib/nls/msg/%L/%N

For Linux:

v LANG=en_US

v NLSPATH=/usr/share/locale/%L/%N

Invoking an MPMD program

Note: You must set the MP_PGMMODEL environment variable or -pgmmodel

flag to invoke an MPMD program.

With an SPMD application, the name of the same executable is sent to, and runs as

each task on all of the processor nodes of your partition. If you are invoking an

36 IBM PE for AIX and Linux V5 R1: Operation and Use

MPMD application, you are dealing with more than one program and need to

individually specify the executable to be run for each task of your partition.

For example, say you have two programs – master and workers – designed to run

together and communicate via calls to message passing subroutines. The program

master is designed to run as one task, perhaps task zero. The workers program is

designed to run as separate tasks on any number of other nodes, and each task

knows it is to take direction from task zero. The master program will coordinate

and synchronize the execution of all the worker tasks. Neither program can run

without the other.

You can establish a partition and load each node individually using:

v standard input (from the keyboard or redirected)

v a POE commands file

Loading nodes individually from standard input:

To establish a partition and load each node individually using STDIN:

ENTER

poe [options]

 The Partition Manager allocates the processor nodes of your partition.

Once your partition is established, a prompt containing both the logical

task identifier 0 and the actual host name to which it maps, appears.

ENTER

the name of the program you want to load on task 0. You can follow the

program name with any program options or a subset of the POE flags.

 A prompt for the next task number in the partition displays.

ENTER

the name of the program you want to load as each task, as you are

prompted.

 When you have specified the program to run as the last task of your

partition, the message “Partition loaded...” displays and execution begins.

For additional illustration, the following shows the command prompts that would

appear, as well as the program names you would enter, to load the example master

and workers programs. This example assumes that the MP_PROCS environment

variable is set to 5, and that you wish to run 2 worker tasks per node, and the

master on a node by itself. Your host list file would list host1_name once, but

host2_name and host3_name twice each.

% poe

0:host1_name> master [options]

1:host2_name> workers [options]

2:host2_name> workers [options]

3:host3_name> workers [options]

4:host3_name> workers [options]

Partition loaded...

Chapter 2. Executing parallel programs 37

Note: You can use the following POE command line flags on individual program

names, but not those that are used to set up the partition.

v -infolevel or -ilevel

Loading nodes individually using a POE commands file:

The MP_CMDFILE environment variable, and its associated command line flag

-cmdfile, let you specify the name of a POE commands file. You can use such a file

when individually loading a partition – thus freeing STDIN. The POE commands

file simply lists the individual programs you want to load and run on the nodes of

your partition. The programs are loaded in task order. For example, say you have a

typical master/workers MPMD program that you want to run as 5 tasks. Your

POE commands file would contain:

master [options]

workers [options]

workers [options]

workers [options]

workers [options]

Once you have created a POE commands file, you can specify it using a relative or

full path name on the MP_CMDFILE environment variable or -cmdfile flag.

Table 31 describes how to set the MP_CMDFILE environment variable and the

-cmdfile command line flag.

For example, if your POE commands file is /u/hinkle/mpmdprog, you could:

 Table 31. Example of setting the MP_CMDFILE environment variable or -cmdfile command line flag

Set the MP_CMDFILE environment variable: Use the -cmdfile flag on the poe command:

ENTER

export MP_CMDFILE=/u/hinkle/mpmdprog

ENTER

poe -cmdfile /u/hinkle/mpmdprog

Once you have set the MP_CMDFILE environment variable to the name of the

POE commands file, you can individually load the nodes of your partition. To do

this:

ENTER

poe [options]

 The Partition Manager allocates the processor nodes of your partition. The

programs listed in your POE commands file are run on the nodes of your

partition.

Loading a series of programs as job steps

By default, the Partition Manager releases your partition when your program

completes its run. However, you can set the environment variable MP_NEWJOB,

or its associated command line flag -newjob, to specify that the Partition Manager

should maintain your partition for multiple job steps. Table 32 on page 39 describes

how to set the MP_SAVEHOSTFILE environment variable and the -savehostfile

command line flag.

38 IBM PE for AIX and Linux V5 R1: Operation and Use

For example, say you have three separate SPMD programs. The first one sets up a

particular computation by adding some files to /tmp on each of the processor

nodes on the partition. The second program does the actual computation. The third

program does some postmortem analysis and file cleanup. These three parallel

programs must run as job steps on the same processor nodes in order to work

correctly. While specific node allocation using a host list file might work, the

requested nodes might not be available when you invoke each program. The better

solution is to instruct the Partition Manager to maintain your partition after

execution of each program completes. You can then read multiple job steps from:

v standard input

v a POE commands file using the MP_CMDFILE environment variable.

In either case, you must first specify that you want the Partition Manager to

maintain your partition for multiple job steps. To do this, you could:

 Table 32. Example of setting the MP_NEWJOB environment variable or -newjob command line flag

Set the MP_NEWJOB environment variable: Use the -newjob flag on the poe command:

ENTER

export MP_NEWJOB=yes

ENTER

poe -newjob yes

Note:

1. poe is its own shell. Whether successive steps run after a step completes

is a function of the exit code, as described in IBM Parallel Environment:

MPI Programming Guide

Reading job steps from standard input:

Say you want to run three SPMD programs – setup, computation, and cleanup – as

job steps on the same partition. Assuming STDIN is keyboard entry,

MP_PGMMODEL is set to spmd, and MP_NEWJOB is set to yes, you would:

ENTER

poe [poe-options]

 The Partition Manager allocates the processor nodes of your partition, and

the following prompt displays:

0031-503 Enter program name (or quit):

ENTER

setup [program-options]

 The program setup executes on all nodes of your partition. When execution

completes, the following prompt displays:

0031-503 Enter program name (or quit):

ENTER

computation [program-options]

 The program computation executes on all nodes of your partition. When

execution completes, the following prompt displays:

0031-503 Enter program name (or quit):

ENTER

cleanup [program-options]

 The program cleanup executes on all nodes of your partition. When

execution completes, the following prompt displays:

Chapter 2. Executing parallel programs 39

0031-503 Enter program name (or quit):

ENTER

quit

 or

 <Ctrl-d>

 The Partition Manager releases the nodes of your partition.

Note:

1. You can also run a series of MPMD programs in job step fashion from

STDIN. If MP_PGMMODEL is set to mpmd, the Partition Manager will,

after each step completes, prompt you to individually reload the

partition as described in “Loading nodes individually from standard

input” on page 37.

2. When MP_NEWJOB is yes, the Partition Manager, by default, looks to

STDIN for job steps. However, if the environment variable

MP_CMDFILE is set to the name of a POE commands file as described

in “Reading job steps from a POE commands file,” the Partition Manger

will look to the commands file instead. To ensure that job steps are read

from STDIN, check that the MP_CMDFILE environment variable is

unspecified.

Multi-step STDIN for newjob mode:

POE’s STDIN processing model allows redirected STDIN to be passed to all steps

of a newjob sequence, when the redirection is from a file. If redirection is from a

pipe, POE does not distribute the input to each step, only to the first step.

Reading job steps from a POE commands file:

The MP_CMDFILE environment variable, and its associated command line flag

-cmdfile, lets you specify the name of a POE commands file. If MP_NEWJOB is

yes, you can have the Partition Manager read job steps from a POE commands file.

The commands file in this case simply lists the programs you want to run as job

steps. For example, say you want to run the three SPMD programs setup,

computation, and cleanup as job steps on the same partition. Your POE commands

file would contain the following three lines:

setup [program-options]

computation [program-options]

cleanup [program-options]

Program-options represent the actual values you need to specify.

If you are loading a series of MPMD programs, the POE commands file is also

responsible for individually loading the partition. For example, say you had three

master/worker MPMD job steps that you wanted to run as 4 tasks on the same

partition. The following is a representation of what your POE commands file

would contain. Options represent the actual values you need to specify.

master1 [options]

workers1 [options]

40 IBM PE for AIX and Linux V5 R1: Operation and Use

workers1 [options]

workers1 [options]

master2 [options]

workers2 [options]

workers2 [options]

workers2 [options]

master3 [options]

workers3 [options]

workers3 [options]

workers3 [options]

While you could also redirect STDIN to read job steps from a file, a POE

commands file gives you more flexibility by not tying up STDIN. You can specify a

POE commands file using its relative or full path name.

Table 33 provides an example of specifying a POE commands file. Say your POE

commands file is called /u/hinkle/jobsteps. To specify that the Partition Manager

should read job steps from this file rather than STDIN, you could:

 Table 33. Example of specifying a POE commands file from which the Partition Manager should read job steps

Set the MP_CMDFILE environment variable: Use the -cmdfile flag on the poe command:

ENTER

export MP_CMDFILE=/u/hinkle/jobsteps

ENTER

poe -cmdfile /u/hinkle/jobsteps

Once MP_NEWJOB is set to yes, and MP_CMDFILE is set to the name of your

POE commands file, you would:

ENTER

poe [poe-options]

 The Partition Manager allocates the processor nodes of your partition, and

reads job steps from your POE commands file. The Partition Manager does

not release your partition until it reaches the end of your commands file.

Invoking a nonparallel program on remote nodes

You can also use POE to run nonparallel programs on the remote nodes of your

partition. Any executable (binary file, shell script, UNIX, AIX, or Linux utility) is

suitable, and it does not need to have been compiled with mpcc_r, mpCC_r, or

mpxlf_r (AIX) or mpcc, mpCC, or mpfort (Linux). For example, if you wanted to

check the process status (using the AIX or Linux command ps) for all remote

nodes in your partition, you would:

ENTER

poe ps

 The process status for each remote node is written to standard out

(STDOUT) at your home node. How STDOUT from all the remote nodes is

handled at your home node depends on the output mode. See “Managing

standard output (STDOUT)” on page 48 for more information.

Chapter 2. Executing parallel programs 41

Controlling program execution

There are a number of additional POE environment variables for monitoring and

controlling program execution.

v MP_EUIDEVELOP environment variable to specify that you want to run your

program in message passing develop mode. In this mode, more detailed

checking of your program is performed.

v MP_RETRY environment variable to make POE wait for processor nodes to

become available.

v MP_RETRYCOUNT environment variable to specify the number of times the

Partition Manager should request nodes before returning.

v MP_NOARGLIST and MP_FENCE environment variable to make POE ignore

arguments.

v MP_STDINMODE environment variable to manage standard input.

v MP_STDOUTMODE environment variable to manage standard output.

v MP_LABELIO environment variable to label message output with task

identifiers.

v MP_INFOLEVEL environment variable to specify the level of messages you

want reported to standard error.

v MP_PMDLOG environment variable to generate a diagnostic log on remote

nodes.

v MP_IONODEFILE environment variable to specify an I/O node file that

indicates which nodes should participate in parallel I/O.

v MP_CKPTFILE (PE for AIX only) environment variable to define the base name

of the checkpoint file when checkpointing a program. See “Checkpointing and

restarting programs (PE for AIX only)” on page 54 for more information.

v MP_CKPTDIR (PE for AIX only) environment variable to define the directory

where the checkpoint file will reside when checkpointing a program. See

“Checkpointing and restarting programs (PE for AIX only)” on page 54 for more

information.

v MP_TASK_AFFINITY environment variable to attach each task of a parallel job

to one of the system resource sets (rsets for AIX or CPU sets for Linux), at the

Multi-chip Module (MCM), core, or CPU level. See “Managing task affinity on

large SMP nodes” on page 57 for more information.

For a complete listing of all POE environment variables, see Chapter 7, “POE

Environment variables and command line flags,” on page 215.

Specifying develop mode

You can run programs in one of two modes – develop mode or run mode. In develop

mode, intended for developing applications, the message passing interface

performs more detailed checking during execution. Because of the additional

checking it performs, develop mode can significantly slow program performance.

In run mode, intended for completed applications, only minimal checking is done.

While run mode is the default, you can use the MP_EUIDEVELOP environment

variable to specify message passing develop mode.

As with most POE environment variables, MP_EUIDEVELOP has an associated

command line flag -euidevelop. Table 34 on page 43 describes how to set the

MP_EUIDEVELOP environment variable and the -euidevelop command line flag.

42 IBM PE for AIX and Linux V5 R1: Operation and Use

For example, to specify MPI develop mode, you could:

 Table 34. Example of setting the MP_EUIDEVELOP environment variable or -euidevelop command line flag

Set the MP_EUIDEVELOP environment variable: Use the -euidevelop flag when invoking the program:

ENTER

export MP_EUIDEVELOP=yes

ENTER

poe program -euidevelop yes

You could also specify debug develop mode by setting MP_EUIDEVELOP to deb.

To later go back to run mode, set MP_EUIDEVELOP to no.

To further limit parameter checking, set MP_EUIDEVELOP to min, for minimum.

Programs with errors may fail in unpredictable ways.

Making POE wait for processor nodes

If you are using Loadleveler, and there are not enough available nodes to run your

program, the Partition Manager, by default, returns immediately with an error.

Your program does not run. Using the MP_RETRY and MP_RETRYCOUNT

environment variables, however, you can instruct the Partition Manager to repeat

the node request a set number of times at set intervals. Each time the Partition

Manager repeats the node request, it displays the following message:

Retry allocation press control-C to terminate

The MP_RETRY environment variable, and its associated command line flag -retry,

specifies the interval (in seconds) to wait before repeating the node request. The

MP_RETRYCOUNT environment variable, and its associated command line flag

-retrycount, specifies the number of times the Partition Manager should make the

request before returning. Table 35 describes how to set the MP_RETRY and

MP_RETRYCOUNT environment variables and the -retry and -retrycount

command line flags.

For example, if you wanted to retry the node request five times at five minute (300

second) intervals, you could:

 Table 35. Example of setting the MP_RETRY and MP_RETRYCOUNT environment variables or -retry and -retrycount

command line flags

Set the MP_RETRY and MP_RETRYCOUNT

environment variables:

Use the -retry and -retrycount flags when invoking the

program:

ENTER

export MP_RETRY=300

 export MP_RETRYCOUNT=5

ENTER

poe program -retry 300 -retrycount 5

Note: If the MP_RETRYCOUNT environment variable or the -retrycount

command line flag is used, the MP_RETRY environment variable or the

-retry command line flag must be set to at least one second.

If MP_RETRY or -retry is set to the character string wait, instead of a number, no

retries are attempted by POE, and the job remains enqueued in LoadLeveler until

LoadLeveler either schedules or cancels the job. wait is not case sensitive.

Chapter 2. Executing parallel programs 43

Making POE ignore arguments

When you invoke a parallel executable, you can specify an argument list consisting

of a number of program options and POE command line flags. The argument list is

parsed by POE – the POE command line flags are removed and the remainder of

the list is passed on to the program. If any of your program arguments are

identical to POE command line flags, however, this can cause problems. For

example, say you have a program that takes the argument -retry. You invoke the

program with the -retry option, but it does not execute correctly. This is because

there is also a POE command line flag -retry. POE parses the argument list and so

the -retry option is never passed on to your program. There are two ways to

correct this sort of problem. You can:

v make POE ignore the entire argument list using the MP_NOARGLIST

environment variable.

v make POE ignore a portion of the argument list using the MP_FENCE

environment variable.

Making POE ignore the entire argument list

When you invoke a parallel executable, POE, by default, parses the argument list

and removes all POE command line flags before passing the rest of the list on to

the program. Using the environment variable MP_NOARGLIST, you can prevent

POE from parsing the argument list. To do this:

ENTER

export MP_NOARGLIST=yes

When the MP_NOARGLIST environment variable is set to yes, POE does not

examine the argument list at all. It simply passes the entire list on to the program.

For this reason, you can not use any POE command line flags, but must use the

POE environment variables exclusively. While most POE environment variables

have associated command line flags, MP_NOARGLIST, for obvious reasons, does

not. To specify that POE should again examine argument lists, either set

MP_NOARGLIST to no, or unset it.

ENTER

export MP_NOARGLIST=no

 or

 unset MP_NOARGLIST

Making POE ignore a portion of the argument list

When you invoke a parallel executable, POE, by default, parses the entire

argument list and removes all POE command line flags before passing the rest of

the list on to the program. You can use a fence, however, to prevent POE from

parsing the remainder of the argument list. A fence is simply a character string you

define using the MP_FENCE environment variable. Once defined, you can use the

fence to separate those arguments you want parsed by POE from those you do not.

For example, say you have a program that takes the argument -retry. Because there

is also a POE command line flag -retry, you need to put this argument after a

fence. To do this, you could:

ENTER

export MP_FENCE=Q

 poe program -procs 26 -infolevel 2 Q -retry RGB

44 IBM PE for AIX and Linux V5 R1: Operation and Use

While this example defines Q as the fence, keep in mind that the fence can be any

character string. Any arguments placed after the fence are passed by POE,

unexamined, to the program. While most POE environment variables have

associated command line flags, MP_FENCE does not.

POE argument limits

The maximum length for POE program arguments is 24,576 bytes. This is a fixed

limit and cannot be changed. If this limit is exceeded, an error message will be

displayed and POE will terminate. The length of the remote program arguments

that can be passed on POE’s command line is 24,576 bytes minus the number of

bytes that are used for POE arguments.

Managing standard input, output, and error

POE lets you control standard input (STDIN), standard output (STDOUT), and

standard error (STDERR) in several ways. You can continue using the traditional

I/O manipulation techniques such as redirection and piping, and can also:

v determine whether a single task or all parallel tasks should receive data from

STDIN.

v determine whether a single task or all parallel tasks should write to STDOUT. If

all tasks are writing to STDOUT, you can further define whether or not the

messages are ordered by task id.

v specify the level of messages that will be reported to STDERR during program

execution.

v specify that messages to STDOUT and STDERR should be labeled by task id.

Managing standard input (STDIN)

STDIN is the primary source of data going into a command. Usually, STDIN refers

to keyboard input. If you use redirection or piping, however, STDIN could refer to

a file or the output from another command. How you manage STDIN for a parallel

application depends on whether or not its parallel tasks require the same input

data. Using the environment variable MP_STDINMODE or the command line flag

-stdinmode, you can specify that:

v all tasks should receive the same input data from STDIN. This is multiple input

mode.

v STDIN should be sent to a single task of your partition. This is single input mode.

v no task should receive input data from STDIN.

Multiple input mode:

Setting MP_STDINMODE to all indicates that all tasks should receive the same

input data from STDIN. The home node Partition Manager sends STDIN to each

task as it is read.

Table 36 on page 46 describes how to specify multiple input mode with the

MP_STDINMODE environment variable and the -stdinmode command line flag.

To specify multiple input mode, so all tasks receive the same input data from

STDIN, you could:

Chapter 2. Executing parallel programs 45

Table 36. Example of specifying multiple input mode with the MP_STDINMODE environment variable or -stdinmode

command line flag

Set the MP_STDINMODE environment variable: Use the -stdinmode flag when invoking the program:

ENTER

export MP_STDINMODE=all

ENTER

poe program -stdinmode all

Note: If you do not set the MP_STDINMODE environment variable or use the

-stdinmode command line flag, multiple input mode is the default.

Single input mode:

There are times when you only want a single task to read from STDIN. To do this,

you set MP_STDINMODE to the appropriate task id. For example, say you have

an MPMD application consisting of two programs – master and workers. The

program master is designed to run as a single task on one processor node. The

workers program is designed to run as separate tasks on any number of other

nodes. The master program handles all I/O, so only its task needs to read STDIN.

Table 37 describes how to specify multiple input mode with the

MP_STDINMODE environment variable and the -stdinmode command line flag.

If master is running as task 0, you need to specify that only task 0 should receive

STDIN. To do this, you could:

 Table 37. Example of specifying single input mode with the MP_STDINMODE environment variable or -stdinmode

command line flag

Set the MP_STDINMODE environment variable: Use the -stdinmode flag when invoking the program:

ENTER

export MP_STDINMODE=0

ENTER

poe program -stdinmode 0

Using MP_HOLD_STDIN (PE for AIX only):

Note: Earlier versions of Parallel Environment for AIX required the use of the

MP_HOLD_STDIN environment variable in certain cases when redirected

STDIN was used. The Parallel Environment components have now been

modified to control the STDIN flow internally, so the use of this

environment variable is no longer required, and will have no effect on

STDIN handling.

Using redirected STDIN:

Note: Wherever the following description refers to a POE environment variable

(starting with MP_), the use of the associated command line option

produces the same effect.

A POE process can use its STDIN in two ways. First, if the program name is not

supplied on the command line and no command file (MP_CMDFILE) is specified,

POE uses STDIN to resolve the names of the programs to be run as the remote

tasks. Second, any remaining STDIN is then distributed to the remote tasks as

indicated by the MP_STDINMODE setting. In this dual STDIN model, redirected

STDIN can then pose two problems:

46 IBM PE for AIX and Linux V5 R1: Operation and Use

1. If using job steps (MP_NEWJOB=yes), the remaining STDIN is always

consumed by the remote tasks during the first job step.

2. If POE attempts program name resolution on the redirected STDIN, program

behavior can vary when using job steps, depending on the type of redirection

used and the size of the redirected STDIN.

The first problem is addressed in POE by performing a rewind of STDIN between

job steps (only if STDIN is redirected from a file, for reasons beyond the scope of

these instructions). The second problem is addressed by providing an additional

setting for MP_STDINMODE of none, which tells POE to only use STDIN for

program name resolution. As far as STDIN is concerned, none ever gets delivered

to the remote tasks. This provides an additional method of reliably specifying the

program name to POE, by redirecting STDIN from a file or pipe, or by using the

shell’s here-document syntax in conjunction with the none setting. If

MP_STDINMODE is not set to none when POE attempts program name

resolution on redirected STDIN, program behavior is undefined.

The following scenarios describe in more detail the effects of using (or not using)

an MP_STDINMODE of none when redirecting (or not redirecting) STDIN, as

shown in the example:

 Is STDIN Redirected?

 Yes No

 Yes A B

Is MP_STDINMODE set to none?

 No C D

Scenario A: POE will use the redirected STDIN for program name resolution, only

if no program name is supplied on the command line (MP_CMDFILE is ignored

when MP_STDINMODE=none). No STDIN is distributed to the remote tasks. No

rewind of STDIN is performed when MP_STDINMODE=none.

Scenario B: POE will use the keyboard STDIN for program name resolution, only

if no program name is supplied on the command line (MP_CMDFILE is ignored

when MP_STDINMODE=none). No STDIN is distributed to the remote tasks. No

rewind of STDIN is performed when MP_STDINMODE=none (also, STDIN is not

from a file).

Scenario C: POE will use the redirected STDIN for program name resolution, if

required, and will distribute remaining STDIN to the remote tasks. If STDIN is

intended to be used for program name resolution, program behavior is undefined in

this case, since POE was not informed of this by setting STDINMODE to none

(see Problem 2 above). If STDIN is redirected from a file, POE will rewind STDIN

between each job step. For large amounts of redirected STDIN (more than 4k

bytes), programs should consider bypassing the home node POE binary as

described in the Standard I/O requires special attention section in IBM Parallel

Environment: MPI Programming Guide.

Scenario D: POE will use the keyboard STDIN for program name resolution, if

required. Any remaining STDIN is distributed to the remote tasks. No rewind of

STDIN is performed since STDIN is not from a file.

Chapter 2. Executing parallel programs 47

Managing standard output (STDOUT)

STDOUT is where the data coming from the command will eventually go. Usually,

STDOUT refers to the display. If you use redirection or piping, however, STDOUT

could refer to a file or another command. How you manage STDOUT for a parallel

application depends on whether you want output data from one task or all tasks.

If all tasks are writing to STDOUT, you can also specify whether or not output is

ordered by task id. Using the environment variable MP_STDOUTMODE, you can

specify that:

v all tasks should write output data to STDOUT asynchronously. This is unordered

output mode.

v output data from each parallel task should be written to its own buffer, and later

all buffers should be flushed, in task order, to STDOUT. This is ordered output

mode.

v a single task of your partition should write to STDOUT. This is single output

mode.

Unordered output mode:

Setting MP_STDOUTMODE to unordered specifies that all tasks should write

output data to STDOUT asynchronously.

Table 38 describes how to specify unordered output mode by setting the

MP_STDOUTMODE environment variable and the -stdoutmode command line

flag.

To specify unordered output mode, you could:

 Table 38. Example of specifying unordered output mode with the MP_STDOUTMODE environment variable or

-stdoutmode command line flag

Set the MP_STDOUTMODE environment variable: Use the -stdoutmode flag when invoking the program:

ENTER

export MP_STDOUTMODE=unordered

ENTER

poe program -stdoutmode unordered

Note:

1. If you do not set the MP_STDOUTMODE environment variable or use

the -stdoutmode command line flag, unordered output mode is the

default.

2. If you are using unordered output mode, you will probably want the

messages labeled by task id. Otherwise it will be difficult to know which

task sent which message. See “Labeling message output” on page 50 for

more information.

3. You can also specify unordered output mode from your program by

calling the MP_STDOUTMODE or mpc_stdoutmode Parallel Utility

Function. Refer to IBM Parallel Environment: MPI Subroutine Reference for

more information.

4. Although the environment variable and Parallel Utility Function above

are both described as MP_STDOUTMODE, they are each used

independently for their specific purposes.

Ordered output mode:

48 IBM PE for AIX and Linux V5 R1: Operation and Use

Setting MP_STDOUTMODE to ordered specifies ordered output mode. In this

mode, each task writes output data to its own buffer. Later, all the task buffers are

flushed, in order of task id, to STDOUT. The buffers are flushed when:

v any one of the individual task buffers fills

v execution of the program completes.

v all tasks explicitly flush the buffers by calling the MP_FLUSH or mpc_flush

Parallel Utility Function.

v tasks change output mode using calls to Parallel Utility Functions. For more

information on Parallel Utility Functions, refer to IBM Parallel Environment: MPI

Subroutine Reference

Table 39 describes how to specify ordered output mode by setting the

MP_STDOUTMODE environment variable and the -stdoutmode command line

flag.

To specify ordered output mode, you could:

 Table 39. Example of specifying ordered output mode with the MP_STDOUTMODE environment variable or

-stdoutmode command line flag

Set the MP_STDOUTMODE environment variable: Use the -stdoutmode flag when invoking the program:

ENTER

export MP_STDOUTMODE=ordered

ENTER

poe program -stdoutmode ordered

Note: You can also specify ordered output mode from your program by calling the

MP_STDOUTMODE or mpc_stdoutmode Parallel Utility Function. Refer to

IBM Parallel Environment: MPI Subroutine Reference for more information.

Single output mode:

You can specify that only one task should write its output data to STDOUT. To do

this, you set MP_STDOUTMODE to the appropriate task id. For example, say you

have an SPMD application in which all the parallel tasks are sending the exact

same output messages. For easier readability, you would prefer output from only

one task – task 0.

Table 40 describes how to single output mode by setting the MP_STDOUTMODE

environment variable and the -stdoutmode command line flag.

To specify this, you could:

 Table 40. Example of specifying single output mode with the MP_STDOUTMODE environment variable or -stdoutmode

command line flag

Set the MP_STDOUTMODE environment variable: Use the -stdoutmode flag when invoking the program:

ENTER

export MP_STDOUTMODE=0

ENTER

poe program -stdoutmode 0

Note: You can also specify single output mode from your program by calling the

MP_STDOUTMODE or mpc_stdoutmode Parallel Utility Function. Refer to

IBM Parallel Environment: MPI Subroutine Reference for more information.

Chapter 2. Executing parallel programs 49

Labeling message output

You can set the environment variable MP_LABELIO, or use the -labelio flag when

invoking a program, so that output from the parallel tasks of your program are

labeled by task id. While not necessary when output is being generated in single

mode, this ability can be useful in ordered and unordered modes. For example, say

the output mode is unordered. You are executing a program and receiving

asynchronous output messages from all the tasks. This output is not labeled, so

you do not know which task has sent which message. It would be clearer if the

unordered output was labeled. For example:

 7: Hello World

 0: Hello World

 3: Hello World

 23: Hello World

 14: Hello World

 9: Hello World

Table 41 describes how to set the MP_LABELIO environment variable and the

-labelio command line flag.

To have the messages labeled with the appropriate task id, you could:

 Table 41. Example of setting the MP_LABELIO environment variable or -labelio command line flag

Set the MP_LABELIO environment variable: Use the -labelio flag when invoking the program:

ENTER

export MP_LABELIO=yes

ENTER

poe program -labelio yes

To no longer have message output labeled, set the MP_LABELIO environment

variable to no.

Setting the message reporting level for standard error (STDERR)

You can set the environment variable MP_INFOLEVEL to specify the level of

messages you want from POE. You can set the value of MP_INFOLEVEL to one of

the integers shown in the following table. The integers 0, 1, and 2 give you

different levels of informational, warning, and error messages. The integers 3

through 6 indicate debug levels that provide additional debugging and diagnostic

information. Should you require help from the IBM Support Center in resolving a

PE-related problem, you will probably be asked to run with one of the debug

levels. As with most POE environment variables, you can override

MP_INFOLEVEL when you invoke a program. This is done using either the

-infolevel or -ilevel flag followed by the appropriate integer.

When MP_INFOLEVEL is set to 0, the STDERR output may contain null

characters under conditions where warning or informational messages would be

displayed under higher levels.

Table 42 on page 51 shows the valid values for MP_INFOLEVEL and the level of

message reporting provided by each.

50 IBM PE for AIX and Linux V5 R1: Operation and Use

Table 42. MP_INFOLEVEL values and associated levels of message reporting

This integer:

Indicates this

level of message

reporting: In other words:

0 Error Only error messages from POE are written to STDERR.

1 Normal Warning and error messages from POE are written to STDERR. This level of

message reporting is the default.

2 Verbose Informational, warning, and error messages from POE are written to

STDERR.

3 Debug Level 1 Informational, warning, and error messages from POE are written to

STDERR. Also written is some high-level debugging and diagnostic

information.

4 Debug Level 2 Informational, warning, and error messages from POE are written to

STDERR. Also written is some high- and low-level debugging and

diagnostic information.

5 Debug Level 3 Debug level 2 messages plus some additional loop detail.

6 Debug Level 4 Debug level 3 messages plus other informational error messages for the

greatest amount of diagnostic information.

As an example, say you want the POE message level set to verbose. Table 43 shows

the two ways to do this. You could:

 Table 43. Example of setting MP_INFOLEVEL to verbose

Set the MP_INFOLEVEL environment variable: Use the -infolevel flag when invoking the program:

ENTER

export MP_INFOLEVEL=2

ENTER

poe program -infolevel 2

 or poe program -ilevel 2

As with most POE command line flags, the -infolevel or -ilevel flag temporarily

override their associated environment variable.

Generating a diagnostic log on remote nodes

Using the MP_PMDLOG environment variable, you can also specify that

diagnostic messages should be logged to a file in /tmp on each of the remote nodes

of your partition. If you do not wish to store the log file in /tmp, you can use the

MP_PMDLOG_DIR environment variable to specify a different directory.

The log file is named mplog.jobid.n where jobid is a unique job identifier. The jobid

will be the same for all remote nodes. Should you require help from the IBM

Support Center in resolving a PE-related problem, you will probably be asked to

generate these diagnostic logs.

The ability to generate diagnostic logs on each node is particularly useful for

isolating the cause of abnormal termination, especially when the connection

between the remote node and the home node Partition Manager has been broken.

As with most POE environment variables, you can temporarily override the value

of MP_PMDLOG using its associated command line flag -pmdlog.

Table 44 on page 52 describes how to set the MP_PMDLOG environment variable

and the -pmdlog command line flag.

Chapter 2. Executing parallel programs 51

For example, to generate a pmd log file, you could:

 Table 44. Example of setting the MP_PMDLOG environment variable or -pmdlog command line flag

Set the MP_PMDLOG environment variable: Use the -pmdlog flag when invoking the program:

ENTER

export MP_PMDLOG=yes

ENTER

poe program -pmdlog yes

Note: By default, MP_PMDLOG is set to no. No diagnostic logs are generated.

You should not run MP_PMDLOG routinely, because this greatly impacts

performance and fills up your file system space.

Determining which nodes will participate in parallel file I/O

MPI has a number of subroutines that enable your application program to perform

efficient parallel input-output operations. These subroutines (collectively referred to

as MPI-IO) allow efficient file I/O on a data structure which is distributed across

several tasks for computation, but organized in a unified way in a single

underlying file. MPI-IO presupposes a single parallel file system underlying all the

tasks in the parallel job; PE’s implementation of it is intended for use with the IBM

General Parallel File System™ (GPFS™).

If your application program uses MPI-IO subroutines, all tasks in your MPI job

will, by default, participate in parallel I/O. You can, however, specify that only

tasks on a subset of the nodes in your job should handle parallel I/O. You might

want to do this to ensure that all I/O operations are performed on the same node.

To specify the nodes that should participate in parallel I/O, you:

v create an I/O node file (a text file that lists the nodes that should handle parallel

I/O) and

v set the MP_IONODEFILE environment variable to the name of the I/O node

file. As with most POE environment variables, MP_IONODEFILE has an

associated command line flag -ionodefile.

For example, say your job will be run with the following host list file dictating the

nodes on which your program should run.

host1_name

host2_name

host3_name

host4_name

host5_name

host6_name

Say, however, that you want parallel I/O handled by only two of these nodes —

host5_name and host6_name. To specify this, you would create an I/O node file that

lists just the two host names.

host5_name

host6_name

One situation in which MP_IONODEFILE becomes useful is when running on a

cluster of workstations which will not have a true parallel file system across

multiple machines. By selecting one workstation to do the actual I/O, you can

reliably use JFS, NFS, and AFS® files with MPI-IO across multiple machines. (The

file systems currently used, like NFS and AFS, to make a set of files available to

multiple workstations are not parallel file systems in the way that GPFS is.) With

respect to MPI-IO, a cluster without GPFS should use an I/O node file.

52 IBM PE for AIX and Linux V5 R1: Operation and Use

There should be no comments or blank lines in the I/O node file, there should be

only one node name per line. Node names may be in any form recognizable to

name service on the machine. Names which are not recognizable or which appear

more that once yield advisory messages. Names which are valid but which do not

represent nodes in the job are ignored. If MP_IONODEFILE is used and no node

listed in the file is involved in the job, the job will abort. MP_IONODEFILE is

most useful when used in conjunction with a host list file.

To indicate that the Partition Manager should use a particular I/O node file to

determine which nodes handle parallel I/O, you must set the MP_IONODEFILE

environment variable (or use the -ionodefile command line flag to specify) the

name of the file. Table 45 describes how to set the MP_IONODEFILE environment

variable and the -iodnodefile command line flag. You can specify the file using its

relative or full path name.

For example, say you have created an I/O node file ionodes in the directory

/u/dlecker. You could:

 Table 45. Example of setting the MP_IONODEFILE environment variable or -ionodefile command line flag

Set the MP_IONODEFILE environment variable: Use the -ionodefile flag when invoking the program:

ENTER

export MP_IONODEFILE=/u/dlecker/ionodes

ENTER

poe program -ionodefile /u/dlecker/ionodes

POE user authorization

Under AIX, PE uses an enhanced set of security methods based on Cluster Security

Services in RSCT. You can also use AIX-based user authorization.

Under Linux, PE supports a limited set of user authorization mechanisms. POE

uses a configuration option for the system administrator to define the security

mechanism which, on Linux, is limited to the compatibility method. When you set

up a node, you must ensure that the user ID of each of the other nodes is

authorized to access that node or remote link from the initiating home node, as

explained in “Linux user authorization (PE for Linux only)” on page 54.

Cluster based security (PE for AIX only)

With Cluster Based Security, the system administrator needs to ensure that UNIX

Host Based authentication is enabled and properly configured on all nodes. Refer

to the IBM Parallel Environment: Installation and the IBM RSCT: Technical Reference

for what this entails.

From a user’s point of view, users will be required to have the proper entries in the

/etc/hosts.equiv or .rhosts files, in order to ensure proper access to each node, as

described in “AIX user authorization (PE for AIX only).”

AIX user authorization (PE for AIX only)

With AIX-based authentication, you are required to have an .rhosts file set up in

your home directory on each of the remote processor nodes. Alternatively, your

user id on the home node can be authorized in the /etc/host.equiv file on each

remote node. For information on the TCP/IP .rhosts file format, see IBM AIX

Version 5 Files Reference.

Chapter 2. Executing parallel programs 53

Linux user authorization (PE for Linux only)

POE requires users to have remote execution authority in the system. Users must

be authorized to system nodes via the /etc/hosts.equiv or .rhosts entries, as

described in IBM Parallel Environment: Installation.

You are required to set up an .rhosts file in the home directory on each of the

remote processor nodes. Alternatively, your user ID on the home node can be

authorized in the /etc/hosts.equiv file on each remote node.

Checkpointing and restarting programs (PE for AIX only)

POE provides enhanced capabilities to checkpoint and later restart the entire set of

programs that make up a parallel application, including the checkpoint and restart

of POE itself. A number of previous restrictions for checkpointing have been

removed as well.

Checkpointing programs (PE for AIX only)

Checkpointing is a method of periodically saving the state of job so that, if for

some reason the job does not complete, it can be restarted from the saved state. At

checkpoint time, checkpoint files are created on the executing machines. The

checkpoint file of POE contains all information required to restart the job from the

checkpoint files of the parallel applications.

Earlier versions of Parallel Environment’s checkpoint/restart capability were based

on user level checkpointing, with significant limitations. You can now checkpoint

both batch and interactive jobs using LoadLeveler or PE in a system-initiated mode

(external to the task) or in a user-initiated mode (internal to the task).

With system-initiated checkpointing, you can use the PE poeckpt command to

checkpoint a non-LoadLeveler POE job. The applications are checkpointed at the

point in their processing they happen to be when the checkpoint is issued.

Checkpoint files are written for each task of the parallel application and for the

POE executable itself. The locations of these files are controlled by the setting of

the MP_CKPTFILE and MP_CKPTDIR environment variables. LoadLeveler also

provides the llckpt command for checkpointing jobs being run under LoadLeveler

(for more information, see Tivoli Workload Scheduler LoadLeveler: Using and

Administering).

For a user-initiated checkpointing, the application may specify whether all tasks

must issue the checkpoint request before the checkpoint occurs, or that one task of

the application may cause the checkpoint of all tasks (and POE) to occur. The

former is called a complete user-initiated checkpoint, and the latter is called a

partial user-initiated checkpoint. In a complete user-initiated checkpoint, each task

executes the application up to the point of the mpc_init_ckpt function call. In a

partial user-initiated checkpoint, only one task executes the application up to the

point of the mpc_init_ckpt call, and the remaining tasks are checkpointed at

whatever point in their processing they happen to be when the checkpoint occurs,

as in a system-initiated checkpoint.

In either system-initiated or user-initiated mode, mpc_set_ckpt_callbacks and

mpc_unset_ckpt_callbacks calls can be made from within your parallel program.

The IBM Parallel Environment: MPI Programming Guide. contains the specific

information on these functions.

54 IBM PE for AIX and Linux V5 R1: Operation and Use

Using the settings of the MP_CKPTDIR and MP_CKPTFILE POE environment

variables, the checkpoint data files are saved during the checkpointing phase, and

the job is restarted by reading data from the checkpoint files during the restart

phase. The MP_CHECKDIR and MP_CHECKFILE environment variables from

previous releases are no longer used by POE.

When a checkpoint is taken, a set of checkpoint files is generated which consists of

a POE checkpoint file and checkpoint files from each task of the parallel

application. Each parallel task is checkpointed separately, and any processes

created by a parallel task make up a checkpoint/restart group. The task checkpoint

file contains information for all processes in the checkpoint/restart group. The

checkpoint directory name is derived from the MP_CKPTFILE value (if it contains

a full path name), the MP_CKPTDIR value, or the initial working directory. Tasks

that change directories internally will not impact the place where the checkpoint

file is written.

Note: When running a parallel program under LoadLeveler, the MP_CKPTDIR

and MP_CKPTFILE environment variables are set by LoadLeveler. If the

value for the checkpoint file name or directory is specified in the job

command file, those values will override the current settings.

When the checkpointing files are created, tags are added to the names to

differentiate between earlier versions of the files.

Restarting programs (PE for AIX only)

The PE poerestart command can be used to restart any interactive checkpointed

jobs. POE is restarted first and it uses the saved information from its checkpoint

file to identify the task checkpoint files to also restart. You can restart the

application on the same set or different set of nodes, but the number of tasks and

the task geometry must remain the same. When the restart function restarts a

program, it retrieves the program state and data information from the checkpoint

file. Note also that the restart function restores file pointers to the points at which

the checkpoint occurred, but it does not restore the file content.

Checkpointing limitations (PE for AIX only)

When checkpointing a program, there are a few limitations of which you should be

aware. You can find a complete list of the limitations in the IBM Parallel

Environment: MPI Programming Guide. For example, when POE is invoked, the

CHECKPOINT environment variable must be set to yes for POE and any of the

parallel tasks to be checkpointable. LAPI programs can also be checkpointed if

they meet the limitations.

Managing checkpoint files (PE for AIX only)

The ability to checkpoint or restart programs is controlled by the definition and

availability of the checkpoint files, as specified by the MP_CKPTFILE environment

variable.

The checkpoint files may be defined on the local file system (JFS) of the node on

which the instance of the program is running, or they may be defined in a shared

file system (such as NFS, AFS, DFS™, GPFS, etc.). When the files are in a local file

system, then in order to perform process migration, the checkpoint files will have

to be moved to the new system on which the process is to be restarted. If the old

system crashed and is unavailable, it may not be possible to restart the program. It

Chapter 2. Executing parallel programs 55

may be necessary, therefore, to use some kind of file management to avoid such a

problem. If migration is not desired, it is sufficient to place checkpoint files in the

local JFS file system.

The program checkpoint files can be large, and numerous. There is the potential

need for significant amounts of available disk space to maintain the files. If

possible, you should avoid using NFS, AFS, or DFS to manage checkpoint files.

The nature of these systems is such that it takes a very long time to write and read

large files. Instead, use GPFS or JFS.

If a local JFS file system is used, the checkpoint file must be written to each remote

task’s local file system during checkpointing. Consequently, during a restart, each

remote task’s local file system must be able to access the checkpoint file, from the

previously checkpointed program, from the directory where the checkpoint file was

written when the checkpoint occurred. This is of special concern when opting to

restart a program on a different set of nodes from which it was checkpointed. The

local checkpoint file may need to be relocated to any new nodes. For these reasons,

it is suggested that GPFS be the file system best suited for checkpoint and restart

file management.

A checkpoint/restart scenario (PE for AIX only)

A user’s parallel application has been running on two nodes for six hours when

the user is informed that the nodes must be taken down for service in an hour. The

user expects the application to run for three more hours, and does not want to

have to restart the application from the beginning on different nodes. The user set

the CHECKPOINT environment variable to yes before issuing the POE command,

so that the operating system would allow the checkpoint to occur. Furthermore, the

user set the MP_CKPTDIR environment variable to a GPFS directory, /gpfs, so

that the checkpoint files would be accessible from other nodes. The user also set

the MP_CKPTFILE environment variable to the name of the application, 9hourjob,

so it can be easily identified later.

After setting the MP_CKPTDIR and MP_CKPTFILE environment variables, the

user obtains the process identifier of the POE process. Then, the user issues the

poeckpt command, along with the -k option so that the tasks will be terminated

once the checkpoints are successfully completed. The checkpoints of the parallel

tasks are taken first, and then the checkpoint of POE occurs. The poeckpt

command reports the following:

poeckpt: Checkpoint of POE process 12345 has succeeded.

poeckpt: The /gpfs/9hourjob.0 checkpoint file has been created.

The filename indicated in the output, /gpfs/9hourjob, is the checkpoint file of the

POE process which will be used later when the parallel application is restarted.

The .0 suffix is a tag used to allow one set of previously successful checkpoint files

to be saved (a subsequent checkpoint on this program, although unlikely in this

scenario, would use tag 1).

To determine the behavior of the checkpoint function, the user issues:

ls /gpfs/9hour*

and sees the following output:

/gpfs/9hourjob.0 /gpfs/9hourjob.0.0 /gpfs/9hourjob.1.0

The additional files besides the one reported by the output are the checkpoint files

from each of the tasks that made up the parallel application. The last 0 in the task

56 IBM PE for AIX and Linux V5 R1: Operation and Use

checkpoint files represents the checkpoint tag as described previously. The digit

before the tag is the task number within the parallel application.

The user finds two other nodes that can be used to restart the parallel job and sets

up a host.list, containing these two host names, in the directory from which the

user will run the poerestart command. The user issues:

poerestart /gpfs/9hourjob.0

The restarted POE from this checkpoint file remembers the names of the task

checkpoint files to restart from, tells the Partition Manager Daemon on each node

to restart each parallel task from their respective checkpoint file, and the parallel

application is running again. The job completes in three hours, and produces the

same results as it would have had it run for nine hours on the original nodes.

Managing task affinity on large SMP nodes

Large SMP nodes are organized around components called Multi-chip Modules

(MCM). An MCM contains several processors, I/O buses, and memory. While a

processor in an MCM can access the I/O bus and memory in another MCM,

demanding applications may see improved performance if the processor, the

memory it uses, and the I/O adapter it connects to, are all in the same MCM.

PE provides the environment variable MP_TASK_AFFINITY to control the

placement of the tasks of a parallel job so that the task will not be migrated

between MCM’s during its execution.

Note: For AIX V5.3 TL 5300-05, it is recommended that the system administrator

configure the computing node to use memory affinity with various

combinations of the memplace_* options of the vmo command.

PE allows you to manage task affinity for two different types of jobs:

v Stand-alone POE jobs that do not interact with LoadLeveler to establish affinity

In this case, POE uses the values provided with the MP_TASK_AFFINITY

environment variable and the pm_set_affinity routine to manage affinity. In the

stand-alone scenario, either LoadLeveler is not installed, or it is installed but has

not been configured for affinity.

v Interactive POE jobs that work in conjunction with LoadLeveler to establish

affinity

In this case, POE uses the values that are provided with the

MP_TASK_AFFINITY environment variable and converts them to the

corresponding LoadLeveler JCF keyword values, and then passes them to

LoadLeveler.

In this scenario, POE relies on LoadLeveler to handle scheduling affinity, based

on the LoadLeveler job control file keywords that POE sets up when the job is

submitted. Memory and task affinity must be enabled in the LoadLeveler

configuration file (using the RSET_SUPPORT keyword). Also, for jobs that are

run with processor or core affinity, the LoadLeveler configuration and

administration files must be configured as shown below:

For the LoadLeveler configuration file, consumable CPUs must be configured.

For example:

SCHEDULE_BY_RESOURCES = ConsumableCpus

rset_support = rset_msm_affinity

Chapter 2. Executing parallel programs 57

For the LoadLeveler administration file, ConsumableCpus(all) should be

defined for the resources keyword in the machine stanzas. One way of doing

this is to specify resources = ConsumableCpus(all) in the default machine

stanza, which would be inherited by all machines. For example:

default: type = machine

resources = ConsumableCpus(all)

For more information about LoadLeveler configuration, refer to IBM Tivoli

Workload Scheduler LoadLeveler: Using and Administering.

Note: In order to use LoadLeveler in conjunction with POE for scheduling

affinity, LoadLeveler 3.3.1 or later (for AIX) or LoadLeveler Version 3.4.3

(for Linux) must be installed.

POE specifies the affinity options as LoadLeveler preferences, not requirements,

meaning that if the affinity option cannot be satisfied, the job may still run. If

you want a different set of LoadLeveler scheduling affinity options, you must

use your own LoadLeveler JCF file, and not specify POE’s

MP_TASK_AFFINITY option, which will result in POE setting up the

LoadLeveler JCF options as described above.

PE, in conjunction with LoadLeveler, provides affinity support for OpenMP

applications. For more information, see “OpenMP task affinity support” on page

61.

Parallel Environment provides the environment variable MP_TASK_AFFINITY to

control the placement of tasks in a parallel job so that the task will not be migrated

between MCMs during its execution. The possible MP_TASK_AFFINITY values

are as follows:

v MCM – Specifies that the tasks are allocated in a round-robin fashion among the

MCMs attached to the job by WLM. By default, the tasks are allocated to all the

MCMs in the node.

When run under LoadLeveler, POE sets the LoadLeveler

MCM_AFFINITY_OPTIONS and RSET keywords to allow LoadLeveler to

handle scheduling affinity, as follows:

– Sets the MCM_AFFINITY_OPTIONS keyword to MCM_MEM_PREF,

MCM_SNI_NONE, and MCM_DISTRIBUTE

– Sets the RSET keyword to RSET_MCM_AFFINITY.
v SNI – Specifies that the tasks are allocated to the MCM in common, with the

first adapter assigned to the task by LoadLeveler. This value applies only to

User Space MPI jobs. SNI should not be specified for IP jobs.

When run under LoadLeveler, POE sets the LoadLeveler

MCM_AFFINITY_OPTIONS and RSET keywords to allow LoadLeveler to

handle scheduling affinity, as follows:

– Sets the MCM_AFFINITY_OPTIONS keyword to MCM_SNI_PREF and

MCM_DISTRIBUTE

– Sets the RSET keyword to RSET_MCM_AFFINITY.

When using an InfiniBand adapter for stand-alone POE jobs (run without

LoadLeveler), only InfiniBand adapters with valid ibm,associativity vectors are

supported. Also note that with Linux, only InfiniBand adapters are supported.

v CORE – Specifies that each MPI task runs on a single physical processor core. If

simultaneous multithreading (SMT) is disabled, this may be one CPU. If SMT is

enabled, it may be two CPUs.

58 IBM PE for AIX and Linux V5 R1: Operation and Use

When an interactive POE job is run under LoadLeveler, POE sets the

LoadLeveler RSET and task_affinity keywords to allow LoadLeveler to handle

scheduling affinity, as follows:

– Sets the RSET keyword to RSET_MCM_AFFINITY

– Sets the MCM_AFFINITY_OPTIONS keyword to MCM_MEM_PREF,

MCM_SNI_NONE, and MCM_ACCUMULATE.

– Sets the task_affinity keyword to @task_affinity=core(1).
v CPU – Specifies that each MPI task runs on a single logical CPU.

When an interactive POE job is run under LoadLeveler, POE sets the

LoadLeveler RSET and task_affinity keywords to allow LoadLeveler to handle

scheduling affinity, as follows:

– Sets the RSET keyword to RSET_MCM_AFFINITY

– Sets the MCM_AFFINITY_OPTIONS keyword to MCM_MEM_PREF,

MCM_SNI_NONE, and MCM_ACCUMULATE.

– Sets the task_affinity keyword to @task_affinity=cpu(1).
v CORE:n – Specifies the number of processor cores to which the threads of an

MPI task are constrained (one thread per core), where n is an integer between 1

and 99999. When you specify the value for n, you must precede it with a colon

(:n).

Specifying CORE:n signifies the use of OpenMP support, which requires XL

Fortran Version 11 PTF1 (or later) or XL C/C++ Version 9.0 (or later). This

option applies only to OpenMP jobs that are run interactively with LoadLeveler,

using the AIX operating system, and requires LoadLeveler 3.4.3, or later (when

an interactive POE job is run under LoadLeveler). For more information, see

“OpenMP task affinity support” on page 61.

When an interactive POE job is run under LoadLeveler, POE sets the

LoadLeveler RSET, task_affinity, and parallel_threads keywords to allow

LoadLeveler to handle scheduling affinity, as follows:

– Sets the RSET keyword to RSET_MCM_AFFINITY

– Sets the task_affinity keyword to @task_affinity=core(n)

– Sets the parallel_threads keyword to @parallel_threads=n.

– Sets the OMP_NUM_THREADS and XLSMPOPTS environment variables, as

appropriate. See “OpenMP task affinity support” on page 61 for more

information.
v CPU:n – Specifies the number of logical CPUs to which the threads of an MPI

task are constrained (one thread per CPU), where n is an integer between 1 and

99999. When you specify the value for n, you must precede it with a colon (:n).

Specifying CPU:n signifies the use of OpenMP support, which requires XL

Fortran Version 11 PTF1 (or later) or XL C/C++ Version 9.0 (or later). This

option applies only to OpenMP jobs that are run interactively with LoadLeveler,

using the AIX operating system, and requires LoadLeveler 3.4.3, or later (when

an interactive POE job is run under LoadLeveler). For more information, see

“OpenMP task affinity support” on page 61.

When an interactive POE job is run under LoadLeveler, POE sets the

LoadLeveler RSET, task_affinity, and parallel_threads keywords to allow

LoadLeveler to handle scheduling affinity, as follows:

– Sets the RSET keyword to RSET_MCM_AFFINITY

– Sets the task_affinity keyword to @task_affinity=cpu(n)

– Sets the parallel_threads keyword to @parallel_threads=n.

Chapter 2. Executing parallel programs 59

– Sets the OMP_NUM_THREADS and XLSMPOPTS environment variables, as

appropriate. See “OpenMP task affinity support” on page 61 for more

information.
v mcm-list – Specifies that the tasks are assigned on a round-robin basis to this

set, within the constraint of an inherited rset, if any. mcm-list specifies a set of

system level (LPAR) logical MCMs to which tasks can be attached. Assignments

to MCMs that are outside the constraint set are attempted, but will fail. If a

single MCM number is specified as the list, all tasks are assigned to that MCM.

This option is only valid when running without LoadLeveler, or with

LoadLeveler Version 3.2 (or earlier), which does not support scheduling affinity.

v -1 – Specifies that no affinity request will be made (disables task affinity).

Note that the MP_TASK_AFFINITY settings cannot be used for batch POE jobs

that are run with LoadLeveler (if values are specified, they are ignored). Instead, if

a batch job requires memory affinity, the LoadLeveler RSET and

MCM_AFFINITY_OPTIONS keywords need to be specified in the LoadLeveler

job command file. Refer to IBM Tivoli Workload Scheduler LoadLeveler: Using and

Administering for more information.

IMPORTANT NOTE:

The stand-alone POE task affinity function relies on the pm_set_affinity program, which is

a set-user-on-execution (setuid) binary file. The pm_set_affinity program is shipped in

/usr/lpp/ppe.poe/bin (for AIX) or /opt/ibmhpc/ppe.poe/bin (for Linux), and is owned by

the root system user (-r-sr-xr-x root:system | root:root). pm_set_affinity allows system

administrators to temporarily grant non-root users the ability to modify the priority of the

jobs that are executed by POE. However, it is important to note that disabling the set bit (s

bit) on this program prevents general users from being able to modify the CPU or adapter

affinity of jobs. Note that this limitation only applies if you have invoked the POE task

affinity function using the MP_TASK_AFFINITY environment variable or the

-task_affinity command line flag, and POE is running without LoadLeveler.

If you invoke the task affinity function with MP_TASK_AFFINITY or -task_affinity, you

will only see output that indicates an affinity error occurred if you set the -infolevel

command line flag to at least 4, and also set MP_PMDLOG to yes. So, in this case, when

running without LoadLeveler, your output would look similar to this:

D1: <L4>: pm_set_affinity failed, MP_PHYSICAL_MCM value: -1

example pmdlog output:

pm_set_affinity rc = 0xffffffff

The adverse effects on the POE task affinity function of running the AIX fpm command are

limited only to the user’s ability to set MCM or adapter affinity; otherwise, the job should

continue to run.

Smaller SMP nodes may be organized around Dual Chip Modules (DCMs). From

POE’s viewpoint, a DCM is equivalent to an MCM, and

MP_TASK_AFFINITY=MCM will round-robin tasks among DCMs. Multithreaded

applications may need to be aware that a DCM has only 1 or 2 processor cores,

while MCMs have up to 8 processor cores.

The rset_query (for AIX) or cpuset_query (for Linux) commands can also be used

to verify that memory affinity assignments are being performed correctly.

60 IBM PE for AIX and Linux V5 R1: Operation and Use

The output of the rset_query and cpuset_query commands shows the number of

available processors, memory pools, memory, and processors in resource sets, on a

per-MCM or per-DCM basis. These commands take no options or parameters. Each

of these commands needs to be invoked under POE as a parallel job so that it

displays the MCM assignments POE is using when running. It is also possible to

invoke either of these commands as part of a multiple step POE job, where

rset_query or cpuset_query is run as the first step prior to running the application

code in a subsequent step. Using MP_LABELIO=yes and

MP_STDOUTMODE=ordered may help you interpret the output more easily.

OpenMP task affinity support

PE, in conjunction with LoadLeveler, provides affinity support for OpenMP

applications. LoadLeveler provides the parallel_threads keyword to handle

requests made, through the OpenMP XLSMPOPTS environment variable, for the

binding of individual threads. POE copies the user’s environment and uses the

values set for the OMP_NUM_THREADS environment variable or the parthds

suboption of XLSMPOPTS to determine the setting of the LoadLeveler

parallel_threads JCF keyword. Note that OMP_NUM_THREADS takes

precedence over XLSMPOPTS parthds.

With interactive POE jobs that use LoadLeveler for managing affinity, POE checks

to see if values were provided for the MP_TASK_AFFINITY CORE:n or CPU:n

options and sets the same value for the parallel_threads keyword. This same value

also needs to be provided with the OMP_NUM_THREADS or XLSMPOPTS

parthds variables. Because of the precedence that exists between these values, POE

handles them as follows:

v If OMP_NUM_THREADS is not set, POE checks XLSMPOPTS parthds. If

neither have been set, POE checks the MP_TASK_AFFINITY CORE:n and

CPU:n values. If CORE:n or CPU:n have been set, POE uses that value for

OMP_NUM_THREADS and the LoadLeveler parallel_threads keyword.

v If OMP_NUM_THREADS is set, POE compares that value to the value specified

by MP_TASK_AFFINITY CORE:n or CPU:n. If the two values are different,

POE issues an informational message and uses the value specified for

OMP_NUM_THREADS as the value for the LoadLeveler parallel_threads

keyword (MP_TASK_AFFINITY CORE:n and CPU:n are ignored).

v If neither the OMP_NUM_THREADS nor XLSMPOPTS parthds variables have

been set, POE uses the setting for MP_TASK_AFFINITY CORE:n or CPU:n for

both OMP_NUM_THREADS and XLSMPOPTS parthds. Note that this may

result in poor performance because it may lead to oversubscription of processors

when the task count is greater than one on any node.

Note: If the number of threads will be changed over the course of an OpenMP

program’s execution, the use of MP_TASK_AFFINITY is not recommended.

In this case, you should perform your own thread binding within the

application.

With batch POE jobs, LoadLeveler uses the value specified for

OMP_NUM_THREADS as the value for parallel_threads. The

MP_TASK_AFFINITY environment variable settings are ignored for batch

requests.

For OpenMP support, the XL Fortran V11 runtime library, at the PTF1 level, or XL

C/C++ Version 9.0 (or later) is required.

Chapter 2. Executing parallel programs 61

Running POE from a shell script (PE for AIX only)

Due to an AIX limitation, if the program being run by POE is a shell script AND

there are more than 5 tasks being run per node, then the script must be run under

ksh93 by using:

#!/bin/ksh93

on the first line of the script.

Using POE with MALLOCDEBUG (PE for AIX only)

Submitting a POE job that uses MALLOCDEBUG with an align:n option of other

than 8 may result in undefined behavior. To allow a POE parallel program to run

with an align:n option other than 8, you will need to create a script file.

For example, say the POE program is named myprog. You could create the

following script file:

MALLOCTYPE=debug

MALLOCDEBUG=align:0

myprog myprog_options

Once you had created the script file, you could then run the script file using the

poe command. For example, if the script file were named myprog.sh you would

enter:

poe myprog.sh <poe_options> <myprog_options>

Instead of:

poe myprog <poe_options> <myprog_options>

Using POE with AIX large pages (PE for AIX only)

Memory requests in applications that use large pages in mandatory mode may fail

unless there are a minimum of 16 large pages (16M each) available for each

parallel task that makes a memory request. If any task requests >256M, an

additional 16 large pages must be available for each task, for each additional 256M

requested. In addition, unless the following workaround is used, an additional 16

large pages must be available for the POE process as well.

To avoid having the POE process use mandatory large pages, do not set the

LDR_CNTRL environment variable to LARGE_PAGE_DATA=M before invoking

POE. The value of this environment variable, (M in this case) is case sensitive.

Instead, use POE to invoke a script that first exports the environment variable, and

then invokes the parallel program.

POE provides the MP_TLP_REQUIRED environment variable and -tlp_required

command line flag to ensure that running jobs have been compiled with large

pages. The options are:

warn POE issues a warning message for any job that was not compiled with

large pages, and the job will continue to run.

kill POE detects and kills any job that was not compiled with large pages.

none POE takes no action (this is the default).

62 IBM PE for AIX and Linux V5 R1: Operation and Use

Using MP_TLP_REQUIRED may help avoid system failures due to a lack of

paging space, where large memory applications are executed without being

compiled to use large pages.

Chapter 2. Executing parallel programs 63

64 IBM PE for AIX and Linux V5 R1: Operation and Use

Chapter 3. Managing POE jobs

There are a number of tasks you need to understand that are related to managing

POE jobs. These tasks include how to allocate nodes, saving core files, improving

parallel job performance, stopping and cancelling a job, detecting remote node

failures, and so on.

Multi-task core file

With the MP_COREDIR environment variable, you can create a separate directory

to save a core file for each task. The corresponding command line option is

-coredir. Creating this type of directory is useful when you are running a parallel

job on one node (AIX) or using a shared file system (Linux), and your job dumps a

core file.

By checking this directory, you can see which task dumped the file. When setting

MP_COREDIR, you specify the first attribute of the directory name. The second

attribute is the task id. If you do not specify a directory, the default is coredir. The

subdirectory containing each task’s core file is named coredir.taskid.

You can also disable the creation of a new subdirectory to save a core file, by

specifying -coredir or MP_COREDIR with a value of none. When disabled, core

files will be written to /tmp instead of your current directory.

Disabling the creation of a new subdirectory may be necessary in situations where

programs are abnormally terminating due to memory allocation failures, (for

example, a malloc() call is the result of the original core file). In these cases, setting

-coredir or MP_COREDIR to none may prevent a situation where POE could hang

as a result of a memory allocation problem while it is attempting to create a new

subdirectory to hold the core file.

The following examples show what happens when you set the environment

variable.

PE for AIX examples:

Example 1:

MP_COREDIR=my_parallel_cores

MP_PROCS=2

run generates corefiles

Corefiles will be located at:

/current directory/my_parallel_cores.0/core

/current directory/my_parallel_cores.1/core

© Copyright IBM Corp. 1993, 2008 65

Example 2:

MP_COREDIR not specified

MP_PROCS=2

run generates corefiles

Corefiles will be located at:

/current directory/coredir.0/core

/current directory/coredir.1/core

Example 3:

MP_COREDIR=none

MP_PROCS=2

run generates corefiles

Corefiles will be located at:

/tmp/core

PE for Linux examples:

Example 1:

MP_COREDIR=my_parallel_cores

MP_PROCS=2

run generates corefiles

Corefiles will be located at:

/current directory/my_parallel_cores.0/core.23456.0

/current directory/my_parallel_cores.1/core.23457.1

Example 2:

MP_COREDIR not specified

66 IBM PE for AIX and Linux V5 R1: Operation and Use

MP_PROCS=2

run generates corefiles

Corefiles will be located at:

/current directory/coredir.0/core.23456.0

/current directory/coredir.1/core.23457.1

Example 3:

MP_COREDIR=none

MP_PROCS=2

run generates corefiles

Corefiles will be located at:

/tmp/core.23457.1

Note: If the tasks that you run produce the same process or task numbers as

previous tasks, only the last core file, with that process ID and task ID

combination, are saved. Previous files may be overwritten.

Support for performance improvements

Parallel job performance can be greatly affected by the AIX or Linux operating

system’s network settings and by the values that you assign to a set of

environment variables that are recognized by POE and by various libraries of the

protocol stack.

See IBM Parallel Environment: Installation for information on how to tune the AIX or

Linux operating system and network devices for better parallel job performance.

See the IBM Parallel Environment: MPI Programming Guide for information on how

various environment variables affect the performance of a parallel job.

The following sections discuss how to use the MP_BUFFER_MEM and

MP_CSS_INTERRUPT environment variables.

Using MP_BUFFER_MEM

The MP_BUFFER_MEM environment variable specifies the size of the Early

Arrival (EA) buffer that is used by the communication subsystem to buffer eagerly

sent point-to-point messages that arrive before there is a matching receive posted.

This value can also be specified with the -buffer_mem command line flag. The

command line flag overrides a value set with the environment variable.

Chapter 3. Managing POE jobs 67

A separate Early Arrival buffer exists for eagerly sent collective communications

messages. The size of this buffer can be specified with the MP_CC_BUF_MEM

environment variable. For more information, see “MP_CC_BUF_MEM details” on

page 240.

The total amount of point-to-point Early Arrival buffer space allocated by a task is

controlled by MP_BUFFER_MEM. If a single value is given, it is important for

good performance that the amount of memory specified by MP_BUFFER_MEM be

sufficient to hold a reasonable number of unmatched messages of size up to the

eager_limit from every possible sender. If necessary, PE may reduce the

eager_limit to achieve this. The memory is preallocated and preformatted for

efficiency. Default values are usually sufficient for jobs up to 512 tasks.

If two values (M1,M2) are given for MP_BUFFER_MEM, the first value specifies

the amount of preformatted memory (and presumably is an estimate of the actual

memory requirement for Early Arrival messages); the second value is used as the

maximum requirement for Early Arrival buffering. PE ensures that this memory

requirement is not exceeded under any circumstances by limiting the number of

outstanding eager_limit messages from any sender.

This environment variable has two forms, as follows:

MP_BUFFER_MEM=pre_allocated_size

MP_BUFFER_MEM=pre_allocated_size,maximum_size

With AIX, the first form is compatible with prior releases and is still suitable for

most applications. The second provides flexibility that may be useful for some

applications, in particular at large task counts.

Examples:

export MP_BUFFER_MEM=32M

export MP_BUFFER_MEM=32M,128M

export MP_BUFFER_MEM=0,128M

export MP_BUFFER_MEM=,128M

The pre_allocated_size argument is used to specify the size of the buffer to be

preallocated and reserved for use by the MPI library. This space is allocated during

initialization. If you omit this argument, or if you do not specify the

MP_BUFFER_MEM variable at all, the MPI library assigns a default value of 64

MB for both User Space and IP applications. The maximum allowable value is 256

MB.

For the pre_allocated_size argument, you may specify a positive number or zero,

or provide the comma but omit the value. If the positive number is greater than

the minimum size that is needed by MPI for correct operation and no greater than

256MB, a buffer of this size will be preallocated. An omitted value tells the Parallel

Environment implementation of MPI to use the default preallocated EA buffer size.

A zero tells the Parallel Environment implementation of MPI to use the minimum

workable EA preallocation. You must specify the value in bytes, and you may use

K (kilobytes), M (megabytes), or G (gigabytes) as part of the specification.

The maximum_size argument is used to specify the maximum size to which the

EA buffer can temporarily grow when the preallocated portion of the early arrival

buffer has been filled. If the behavior of your application is such that the extra

68 IBM PE for AIX and Linux V5 R1: Operation and Use

space really must be used, it will be borrowed from the heap as needed. In that

case, it can be regarded as an ongoing contention for memory between the MPI

library and the application. Therefore, if your application actually uses more than

the preallocated space, you should consider raising the preallocation to cover it.

That is, if you can afford to have the extra memory used for early arrivals, then it

probably makes sense to preallocate it. If you cannot spare the extra memory, it

may be better to remove the maximum_size value and let MPI constrain eager

messages to stay within the memory you can afford to preallocate. See the

description of MP_STATISTICS in “poe” on page 183.

You may specify a positive number or omit the comma and specification. You must

specify the value in bytes, and you may use K (kilobytes), M (megabytes), or G

(gigabytes) as part of the specification. Note also that for 64-bit applications, the

maximum buffer size may exceed 4 gigabytes.

Important: You can use the -buffer_mem command line flag to specify the

pre_allocated_size and maximum_size values or pre_allocated_size alone.

However, note that the two values you specify must be separated by a comma,

and blanks are not allowed unless you surround the values with quotes. The

following examples show correct use of the -buffer_mem:

poe -buffer_mem 32M

poe -buffer_mem 32M,64M

poe -buffer_mem ’32M, 64M’

poe -buffer_mem ,64M

To preallocate the entire EA buffer, specify MP_BUFFER_MEM and provide a

single value. The value you provide will be assigned to both the

pre_allocated_size and maximum_size arguments. The maximum allowable value

is 256 MB.

The default value for MP_BUFFER_MEM is 64 MB for both User Space and IP

applications.

If you are using PE for AIX and you will be checkpointing a program, be aware

that the amount of space needed for the checkpoint files will include the entire

preallocated buffer, even if only parts of it are in use. The extent to which the heap

has been allocated also affects the size of the checkpoint files.

Important: Setting the MP_BUFFER_MEM maximum to a value greater than the

preallocated size implies that you are either able to commit enough heap memory

to early arrivals to cover the difference, or that you are confident that the

maximum demand will not occur and you have sufficient memory for the actual

peak. If the malloc() fails due to unexpected peaks in EA buffer demand and

insufficient memory in the system, the job is terminated. For most well-structured

MPI applications, you will see only modest demand for early arrival space, even

when you set a high upper bound.

Note that the MPI library adds 64K to all of the values you specify, which it uses

for internal management of the Early Arrival buffer.

Chapter 3. Managing POE jobs 69

Improving performance with MP_CSS_INTERRUPT

The MP_CSS_INTERRUPT environment variable may take the value of either yes

or no. By default it is set to no. In certain applications, setting this value to yes

will provide improved performance.

The following briefly summarizes some general application characteristics that

could potentially benefit from setting MP_CSS_INTERRUPT=yes.

Applications that have the following characteristics may see performance

improvements from setting the POE environment variable MP_CSS_INTERRUPT

to yes:

v Applications that have non-synchronized sets of send or receive pairs. In other

words, the send from node0 is issued at a different point in time with respect to

the matching receive in node1.

v Applications that do not issue waits for nonblocking send or receive operations

immediately after the send or receive, but rather do some computation prior to

issuing the waits.

In all of the previous cases, the application is taking advantage of the

asynchronous nature of the nonblocking communication subroutines. This

essentially means that the calls to the nonblocking send or receive routines do not

actually ensure the transmission of data from one node to the next, but only post

the send or receive and then return immediately back to the user application for

continued processing. However, since the User Space protocol executes within the

user’s process, it must regain control from the application to advance asynchronous

requests for communication.

The communication subsystem can regain control from the application in any one

of three different methods:

1. Any subsequent calls to the communication subsystem to post send or receive,

or to wait on messages.

2. A timer pop occurring periodically to allow the communication subsystem to

do recovery for transmission errors and to make progress on pending

nonblocking communications.

3. If the value of MP_CSS_INTERRUPT is set to yes, the communication

subsystem device driver will notify the user application when data is received

or buffer space is available to transmit data.

Method 1 and Method 2 are always enabled. Method 3 is controlled by the POE

environment variable MP_CSS_INTERRUPT, and is enabled when this variable is

set to yes.

For applications that post nonblocking sends or receives, and turn to computation

for a period before posting the wait, any communication that is to happen while

the application is computing must occur through the second or third of these three

methods. If MP_CSS_INTERRUPT is not enabled, only the timer pop method is

available to advance communication and time pops are far enough apart so they

make very slow progress. The goal in overlapping communication and

computation is to hide latency by doing useful computation while the data moves.

In the ideal case, the data will have been transferred by the time the computation

finishes, and the deferred wait can return immediately.

70 IBM PE for AIX and Linux V5 R1: Operation and Use

For example, consider the following application template, where two tasks execute

the same code:

 LOOP

 MPI_ISEND (A, ..,partner,.., send_req)

 MPI_IRECV (B, ..,partner,.., recv_req)

 MPI_WAIT (recv_req, )

 COMPUTE LOOP1 /* uses data in B */

 MPI_WAIT (send_req, )

 COMPUTE LOOP2 (modifies A)

END LOOP

In this example, data B is guaranteed to be received by the return from the wait for

recv_req and it is likely the return from the wait call will be delayed while the

data is actually flowing in. Data B can then be safely used in the COMPUTE

LOOP1. Data A is not guaranteed to be fully sent until the wait for send_req

returns, but this is acceptable for the task in COMPUTE LOOP1 because it can

compute with data B.

In this simple example, it is likely that one task will receive data B during the wait

for recv_req and enter COMPUTE LOOP1 before the send of data A has finished.

When this happens, the rest of the work to send data A will need to progress while

the task is computing. This is important for two reasons:

v A task that finishes its receive and goes on to COMPUTE LOOP1 before also

finishing the send will stall its partner in its receive while waiting for that send

to finish. The stalling of the task in its receive is directly related to the

noncontinuous flow of communication from the task that turned to computing.

With MP_CSS_INTERRUPT=yes, each time the communication is ready to

make more progress on the send, the communication subsystem device driver

interrupts the computation just long enough to advance the communication.

Therefore, data flow from the task that is computing to the partner that is stalled

is maintained and that stalled task also gets to move on to computation.

v By the time COMPUTE LOOP1 is done, it is likely that data A has all been sent

and the return from the wait can be prompt.

The reason this example is simple is that it involves a race condition that makes it

likely one task will move on to computation while the other is still waiting for a

communication that the computing task is no longer concerned with.

MP_CSS_INTERRUPT makes sure that communication makes reasonable progress

but it will be slower than if the send had also been waited. Because the outer loop

makes both tasks move in lock step, any delay that the race-winning task causes its

partner, by leaving it stuck in a receive wait while the partner computes, will later

delay that winner when it needs to postpone its next iteration until the delayed

task catches up.

Stopping a POE job

You can stop (suspend) an interactive POE job by pressing <Ctrl-z> or by sending

POE a SIGTSTP signal. POE stops, and sends a SIGSTOP signal to all the remote

tasks, which stops them.

To resume the parallel job, issue the fg or bg command to POE. A SIGCONT signal

will be sent to all the remote tasks to resume them.

Chapter 3. Managing POE jobs 71

Cancelling and killing a POE job

You can cancel a POE job by pressing <Ctrl-c> or <Ctrl-\>. This sends POE a

SIGINT or SIGQUIT signal respectively. POE terminates all the remote tasks and

exits.

If POE on the home node is killed or terminated before the remote nodes are shut

down, direct communication with the parallel job will be lost. In this situation, use

the poekill script as a POE command, or individually via rsh, to terminate the

partition. poekill kills all instantiations of the program name on a remote node by

sending it a SIGTERM signal. See the description of the poekill command in

Chapter 6, “Parallel Environment commands,” on page 129, and the poekill script

in /usr/lpp/ppe.poe/bin (for AIX) or /opt/ibmhpc/ppe.poe/bin (for Linux).

Note: Do not kill the pmds using the poekill command. Doing so will prevent

your remote processes from completing normally.

Detecting remote node failures

POE and the Partition Manager use a pulse detection mechanism to periodically

check each remote node to ensure that it is actively communicating with the home

node.

You specify the time interval (or pulse interval), of these checks with the -pulse flag

or the MP_PULSE environment variable. During an execution of a POE job, POE

and the Partition Manager daemons check at the interval you specify that each

node is running. When a node failure is detected, POE terminates the job on all

remaining nodes and issues an error message.

The default pulse interval is 600 seconds (10 minutes). You can increase or decrease

this value with the -pulse flag or the MP_PULSE environment variable. To

completely disable the pulse function, specify an interval value of 0 (zero). If you

are using PE for AIX, note that for the PE debugging facility, MP_PULSE is

disabled.

If you are using PE for Linux and you plan to debug parallel applications under

POE, disable the POE pulse mechanism by setting the MP_PULSE environment

variable or the -pulse command line flag to zero.

Submitting a batch POE job using TWS LoadLeveler

To submit a batch POE job using LoadLeveler, you need to build a LoadLeveler job

file.

The LoadLeveler job file specifies:

v The number of nodes to be allocated

v Any POE options, passed via environment variables using LoadLeveler’s

environment keyword, or passed as command line options using LoadLeveler’s

argument keyword.

v The path to your POE executable (usually /usr/bin/poe).

v Adapter specifications using the network keyword.

The following POE environment variables, or associated command line options, are

validated, but not used, for batch jobs submitted using LoadLeveler.

72 IBM PE for AIX and Linux V5 R1: Operation and Use

v MP_ADAPTER_USE

v MP_CPU_USE

v MP_DEVTYPE

v MP_EUIDEVICE

v MP_EUILIB

v MP_HOSTFILE

v MP_INSTANCES

v MP_MSG_API (except for programs that use LAPI and also use the LoadLeveler

requirements keyword to specify Adapter=″hps_user″)

v MP_NODES

v MP_PROCS

v MP_RDMA_COUNT (PE for AIX only)

v MP_RESD

v MP_RETRY

v MP_RETRYCOUNT

v MP_RMPOOL

v MP_SAVEHOSTFILE

v MP_TASK_AFFINITY

v MP_TASKS_PER_NODE

v MP_USE_BULK_XFER

For examples, see “PE for AIX example of submitting a batch POE job using TWS

LoadLeveler” and “PE for Linux example of submitting a batch POE job using

TWS LoadLeveler” on page 75.

PE for AIX example of submitting a batch POE job using TWS

LoadLeveler

To run myprog on five nodes, using a Token ring adapter for IP message passing,

with the message level set to the info threshold, you could use the following

LoadLeveler job file. The arguments myarg1 and myarg2 are to be passed to

myprog.

#!/bin/ksh

@ input = myjob.in

@ output = myjob.out

@ error = myjob.error

@ environment = COPY_ALL; \

 MP_INFO_LEVEL=2

@ executable = /usr/bin/poe

@ arguments = myprog myarg1 myarg2

@ min_processors = 5

Chapter 3. Managing POE jobs 73

@ requirements = (Adapter == "tokenring")

@ job_type = parallel

To run myprog on 12 nodes from pool 2, using the User Space message passing

interface with the message threshold set to attention, you could use the following

LoadLeveler job file. See the documentation provided with the LoadLeveler

program product for more information.

#!/bin/ksh

@ input = myusjob.in

@ output = myusjob.out

@ error = myusjob.error

@ environment = COPY_ALL;

@ executable = /usr/bin/poe

@ arguments = myprog -infolevel 1

@ min_processors = 12

@ requirements = (Pool == 2) && (Adapter == "hps_user")

@ job_type = parallel

@ checkpoint = no

Note:

1. The first token of the arguments string in the LoadLeveler job file must be

the name of the program to be run under POE, unless:

v You use the MP_CMDFILE environment variable or the -cmdfile

command line option

v The file you specify with the keyword input contains the name(s) of

the programs to be run under POE.
2. When setting the environment string, make sure that no white space

characters follow the backslash, and that there is a space between the

semicolon and backslash.

3. When LoadLeveler allocates nodes for parallel execution, POE and task 0

will be executed on the same node.

4. When LoadLeveler detects a condition that should terminate the parallel

job, a SIGTERM will be sent to POE. POE will then send the SIGTERM

to each parallel task in the partition. If this signal is caught or ignored by

a parallel task, LoadLeveler will ultimately terminate the task.

5. Programs that call the usrinfo function with the getinfo parameter, or

programs that use the getinfo function, are not guaranteed to receive

correct information about the owner of the current process.

6. Programs that use LAPI and also the LoadLeveler requirements keyword

to specify Adapter=″hps_user″, must set the MP_MSG_API environment

variable or associated command line option accordingly.

7. If the value of the MP_EUILIB, MP_EUIDEVICE, or MP_MSG_API

environment variable that is passed as an argument to POE differs from

74 IBM PE for AIX and Linux V5 R1: Operation and Use

the specification in the network statement of the job command file, the

network specification will be used, and an attention message will be

printed.

For more information, refer to Tivoli Workload Scheduler LoadLeveler: Using and

Administering.

PE for Linux example of submitting a batch POE job using

TWS LoadLeveler

To run an MPI program (myprogram) using an Ethernet adapter (eth0) for IP

message passing, with the message level set to the info threshold, you could use

the following LoadLeveler job command file. The arguments myarg1 and myarg2

are passed to myprogram and the output and error files are created with names

that include the process ID.

#!/bin/ksh

#@ job_type = parallel

#@ environment = COPY_ALL; \

MP_INFOLEVEL=2

#@ node_usage = shared

#@ network.mpi = eth0,shared,ip

#@ class = Parallel

#@ node = 2

#@ tasks_per_node = 2

#@ queue

#@ executable = /usr/bin/poe

#@ arguments = myprogram myarg1 myarg2

#@ error = /u/test/mpi_batch.$(Process).err

#@ output = /u/test/mpi_batch.$(Process).out

#@ wall_clock_limit = 00:05:00, 00:04:15

To run all 16 tasks of a LAPI program (hw_r_lapi) on the c132f1rp01 node, using

User Space and a single network’s windows, you could use the following

LoadLeveler job command file. The output and error files are created with names

that include the process ID.

#!/bin/ksh

#@ job_type=parallel

#@ environment = COPY_ALL; \

MP_PROCS=16

#@ requirements = (Machine == ″c132f1rp01″)

#@ executable = /usr/bin/poe

#@ arguments = hw_r_lapi -labelio yes -procs 4

#@ error = /u/voe3/lapi_batch.$(Process).err

#@ output = /u/voe3/lapi_batch.$(Process).out

#@ wall_clock_limit = 00:05:00, 00:04:15

@ network.lapi = sn_single,shared,us

@ queue

For more information, refer to Tivoli Workload Scheduler LoadLeveler: Using and

Administering.

Chapter 3. Managing POE jobs 75

Submitting an interactive POE job using a TWS LoadLeveler command

file

POE users may specify a LoadLeveler job command file to be used for an

interactive job.

Using a LoadLeveler job command file provides the capability to:

v Exploit new or existing LoadLeveler functionality that is not available using

POE options. This includes specification of:

– task geometry

– blocking factor

– machine order

– consumable resources

– memory requirements

– disk space requirements

– machine architecture

For more information on the LoadLeveler functionality you can exploit, refer to

For more information, see Tivoli Workload Scheduler LoadLeveler: Using and

Administering

v Run parallel jobs without specifying a host file or pool, thereby causing

LoadLeveler to select nodes for the parallel job from any in its cluster.

v Specify that a job should run from more than 1 pool.

You can use a LoadLeveler job command file with or without a host list file. If you

have created a LoadLeveler job command file for node allocation (either

independently or in conjunction with a host list file), you need to set the

MP_LLFILE environment variable (or use the -llfile flag when invoking the

program) to specify the file. You can specify the LoadLeveler job command file

using its relative or full path name.

Table 46 describes how to set the MP_LLFILE environment variable and the -llfile

command line flag.

For example, say the LoadLeveler job command file is named file.cmd and is

located in the directory /u/dlecker. You could:

 Table 46. Example of setting the MP_LLFILE environment variable or -llfile command line flag

Set the MP_LLFILE environment variable: Use the -llfile flag when invoking the program:

ENTER

export MP_LLFILE=/u/dlecker/file.cmd

ENTER

poe program -llfile /u/dlecker/file.cmd

When the MP_LLFILE environment variable, or the -llfile command line option is

used, the following POE node/adapter specifications are ignored.

v MP_ADAPTER_USE

v MP_CPU_USE

v MP_DEVTYPE

v MP_EUIDEVICE

v MP_EUILIB

v MP_INSTANCES

v MP_MSG_API

76 IBM PE for AIX and Linux V5 R1: Operation and Use

v MP_NODES

v MP_PROCS (when a host list file is not used.)

v MP_RDMA_COUNT (PE for AIX only)

v MP_RESD

v MP_RMPOOL

v MP_TASK_AFFINITY

v MP_TASKS_PER_NODE

v MP_USE_BULK_XFER

Note also that if the LoadLeveler job command file contains the #@environment

keyword, none of the environment variable settings within that string will have an

effect on the POE or remote task environments.

When using this option, the following restrictions apply.

v Cannot be used for batch POE jobs.

v The host list file cannot contain pool requests.

v The MP_PROCS environment variable or the -procs command line flag must be

used if a host list file is used, otherwise only 1 parallel task will be run on the

first host listed in the host list file.

v Certain LoadLeveler keywords are not allowed in the LoadLeveler job command

file when it is being used for an interactive POE job. For more information, see

Tivoli Workload Scheduler LoadLeveler: Using and Administering for a listing of these

keywords.

Generating an output TWS LoadLeveler job command file

When using LoadLeveler for submitting an interactive job, you can, provided you

are not already using a LoadLeveler job command file, generate an output

LoadLeveler job command file. This output LoadLeveler job command file contains

the LoadLeveler settings that result from the environment variables and/or

command line options for the current invocation of POE. If you are unfamiliar

with LoadLeveler and its job command files, this provides an easy starting point

for creating LoadLeveler job command files. Once you create an output

LoadLeveler job command file, you can then, for subsequent submissions, modify

it to contain additional LoadLeveler specifications (such as new LoadLeveler

functionality available only through using a LoadLeveler job command file).

Be aware that you cannot generate a LoadLeveler job command file if you are

already using one; in other words, if the MP_LLFILE environment variable or the

-llfile command line flag is used. You also cannot generate an output LoadLeveler

job command file if you are submitting a batch job.

To generate a LoadLeveler job command file, you can use the MP_SAVE_LLFILE

environment variable to specify the name that the output LoadLeveler job

command file should be saved as. You can specify the output LoadLeveler job

command file name using a relative or full path name. As with most POE

environment variables, you can temporarily override the value of

MP_SAVE_LLFILE using its associated command line flag -save_llfile. Table 47 on

page 78 describes how to set the MP_SAVE_LLFILE environment variable and the

-save_llfile command line flag.

For example, to save the output LoadLeveler job command file as file.cmd in the

directory /u/wlobb, you could:

Chapter 3. Managing POE jobs 77

Table 47. Example of setting the MP_SAVE_LLFILE environment variable or -save_llfile command line flag

Set the MP_SAVE_LLFILE environment variable: Use the -save_llfile flag when invoking the program:

ENTER

export MP_SAVE_LLFILE=/u/wlobb/file.cmd

ENTER

poe program -save_llfile /u/wlobb/file.cmd

Parallel file copy utilities

During the course of developing and running parallel applications on numerous

nodes, the potential need exists to efficiently copy data and files to and from a

number of places.

POE provides three utilities for this reason:

1. mcp - to copy a single file from the home node to a number of remote nodes.

This was discussed briefly in “Step 2: Copy files to individual nodes” on page

15.

2. mcpscat - to copy a number of files from task 0 and scatter them in sequence to

all tasks, in a round-robin order.

3. mcpgath - to copy (or gather) a number of files from all tasks back to task 0.

mcp is for copying the same file to all tasks. The input file must reside on task 0.

You can copy it to a new name on the other tasks, or to a directory. It accepts the

source file name and a destination file name or directory, in addition to any POE

command line argument, as input parameters.

mcpscat is intended for distributing a number of files in sequence to a series of

tasks, one at a time. It will use a round-robin ordering to send the files in a one to

one correspondence to the tasks. If the number of files exceeds the number of

tasks, the remaining files are sent in another round through the tasks.

mcpgath is for when you need to copy a number of files from each of the tasks

back to a single location, task 0. The files must exist on each task. You can

optionally specify to have the task number appended to the file name when it is

copied.

Both mcpscat and mcpgath accept the source file names and a destination

directory, in addition to any POE command line argument, as input parameters.

You can specify multiple file names, a directory name (where all files in that

directory, not including subdirectories, are copied), or use wildcards to expand into

a list of files as the source. Wildcards should be enclosed in double quotes,

otherwise they will be expanded locally, which may not produce the intended file

name resolution.

These utilities are actually message passing applications provided with POE. Their

syntax is described in Chapter 6, “Parallel Environment commands,” on page 129.

Considerations for using the High Performance Switch interconnect

The High Performance Switch supports dedicated User Space (US) and IP sessions,

running concurrently on a single node. Users of IP communication programs that

are not using LoadLeveler may treat these adapters like any other IP-supporting

adapter.

78 IBM PE for AIX and Linux V5 R1: Operation and Use

IP message passing programs may or may not use LoadLeveler to allocate nodes,

but User Space message passing programs must use LoadLeveler to allocate nodes.

When using LoadLeveler, nodes may be requested by name or number from one

system pool only. When specifying node pools, the following rules apply:

v All the nodes in a pool should support the same combination of IP and User

Space protocols. In other words, all the nodes should be able to run:

– the IP protocol

or

– the User Space protocol

or

– the IP and User Space protocols concurrently.
v In order to run the IP protocol, the IP switch addresses must be configured and

started. For more information regarding these protocols and LoadLeveler, see

Tivoli Workload Scheduler LoadLeveler: Using and Administering for more

information.

v By default, pool requests for the User Space message passing protocol also

request exclusive use of the node(s). As long as a node was allocated through a

pool request (and not through a specific node request), LoadLeveler will not

allocate concurrent IP message passing programs on the node. You can override

this default so that the node can be used for both IP and User Space programs

by specifying multiple CPU usage.

v By default, requests for the IP message passing protocol also request multiple

use of the node; LoadLeveler can allocate both IP and User Space message

passing programs on this node. You can override this default so that the node is

designated for exclusive use by specifying unique CPU usage.

v When running a batch parallel program under LoadLeveler, the adapter and

CPU are allocated as specified by the network keyword in the LoadLeveler Job

Command File, which can also include the specifications for multiple adapters

and striping. See Tivoli Workload Scheduler LoadLeveler: Using and Administering for

more information.

v To use the InfiniBand interconnect, it is recommended that you specify a

configured adapter name with MP_EUIDEVICE, and set the MP_DEVTYPE

environment variable to ib.

Note: InfiniBand is not supported on the System x platform.

Scenario 1: Explicitly allocating nodes with TWS LoadLeveler

PE for Linux users: Since the InfiniBand interconnect is the only User Space switch

type that is supported with PE for Linux, this example assumes you have set the

MP_DEVTYPE environment variable to ib, or specified the -devtype flag as

-devtype ib.

A POE user, Paul, wishes to run a User Space job 1 in nodes A, B, C, and D. He

doesn’t mind sharing the node with other jobs, as long as they are not also

running in US. To do this, he specifies MP_EUIDEVICE=sn_single

MP_EUILIB=us, MP_PROCS=4, MP_CPU_USE=multiple, and

MP_ADAPTER_USE=dedicated. In his host file, he also specifies:

node_A

node_B

node_C

node_D

Chapter 3. Managing POE jobs 79

The POE Partition Manager (PM) sees that this is a User Space job, and asks

LoadLeveler for dedicated use of the adapter on nodes A, B, C, and D and shared

use of the CPU on those nodes. LoadLeveler then allocates the nodes to the job,

recording that the sn_single/US session on A, B, C, and D has been reserved for

dedicated use by this job, but that the node may also be shared by other users.

While job 1 is running, another POE user, Dan, wants to run another User Space

job, job 2, on nodes B and C, and is willing to share the nodes with other users. He

specifies MP_EUIDEVICE=sn_single, MP_EUILIB=us, and MP_PROCS=2,

MP_CPU_USE=multiple, and MP_ADAPTER_USE=dedicated. In his host file, he

also specifies:

node_B

node_C

The PM, as before, asks LoadLeveler for dedicated use of the adapter on nodes B

and C. LoadLeveler determines that this adapter has already been reserved for

dedicated use on nodes B and C, and does not allocate the nodes again to job 2.

The allocation fails, and POE job 2 cannot run.

While job 1 is running, a second POE user, John, wishes to run IP/switch job 3 on

nodes A, B, C, and D, but doesn’t mind sharing the node and the High

Performance Switch with other users. He specifies MP_EUIDEVICE=sn_single ,

MP_EUILIB=ip, MP_PROCS=4, MP_CPU_USE=multiple, and

MP_ADAPTER_USE=shared. In his host file, he also specifies;

node_A

node_B

node_C

node_D

The POE PM asks LoadLeveler, as requested by John, for shared use of the adapter

and CPU on nodes A, B, C, and D. LoadLeveler determines that job 1 permitted

other jobs to run on those nodes as long as they did not use the sn_single/US

session on them. The allocation succeeds, and POE IP/switch job 3 runs

concurrently with POE User Space job 1 on A, B, C, and D.

The scenario above, illustrates a situation in which users do not mind sharing

nodes with other users’ jobs. If a user wants his POE job to have dedicated access

to nodes or the adapter, he would indicate that in the environment by setting

MP_CPU_USE=unique instead of multiple. If job 1 had done that, then job 3

would not have been allocated to those nodes and, therefore, would not have been

able to run.

Scenario 2: Implicitly allocating nodes with TWS LoadLeveler

PE for Linux users: Since the InfiniBand interconnect is the only User Space switch

type that is supported with PE for Linux, this example assumes you have set the

MP_DEVTYPE environment variable to ib, or specified the -devtype flag as

-devtype ib.

In this scenario, all nodes have both sn_single/US and sn_single/ip sessions

configured, and are assigned to pool 2.

In this example, we have eight nodes; A, B, C, D, E, F, G, H.

80 IBM PE for AIX and Linux V5 R1: Operation and Use

Job 1: Job1 is interactive, and requests 4 nodes for User Space using

MP_RMPOOL.

MP_PROCS=4

MP_RMPOOL=2

MP_EUILIB=us

LoadLeveler allocates nodes A, B, C, and D for dedicated adapter (forced for US)

and dedicated CPU (default for MP_RMPOOL).

Job 2: Job 2 is interactive, and requests six nodes for User Space using host.list.

MP_PROCS=6

MP_HOSTFILE=./host.list

MP_EUILIB=us

MP_CPU_USE=multiple

MP_ADAPTER_USE=shared

host.list

 @2

POE forces the adapter request to be dedicated, even though the user specified

shared. Multiple (shared CPU) is supported, but in this case LoadLeveler doesn’t

have six nodes, either for CPU or for adapter, so the job fails.

Job 3: Job 3 is interactive and requests six nodes for IP using MP_RMPOOL.

MP_PROCS=6

MP_RMPOOL=2

MP_EUILIB=ip

The defaults are shared adapter and shared CPU, but LoadLeveler only has four

nodes available for CPU use, so the job fails.

Job 4: Job 4 is interactive and requests three nodes for IP using MP_RMPOOL.

MP_PROCS=3

MP_RMPOOL=2

MP_EUILIB=ip

The defaults are shared adapter and shared CPU. LoadLeveler allocates nodes E, F,

and G.

Job 5: Job 5 is interactive and requests two nodes for IP using MP_RMPOOL.

MP_PROCS=2

MP_RMPOOL=2

MP_EUILIB=ip

Chapter 3. Managing POE jobs 81

The defaults are shared adapter and shared CPU. LoadLeveler allocates two nodes

from the list E, F, G, H (the others are assigned as dedicated to job 1).

Scenario 3: Implicitly allocating nodes with TWS LoadLeveler

(mixing dedicated and shared adapters)

PE for Linux users: Since the InfiniBand interconnect is the only User Space switch

type that is supported with PE for Linux, this example assumes you have set the

MP_DEVTYPE environment variable to ib, or specified the -devtype flag as

-devtype ib.

In this scenario, all nodes have both sn_single/US and sn_single/ip sessions

configured, and are assigned to pool 2.

In this example, we have eight nodes; A, B, C, D, E, F, G, H

Job 1: Job 1 is interactive and requests four nodes for User Space using host.list.

MP_PROCS=4

MP_HOSTFILE=./host.list

MP_EUILIB=us

MP_CPU_USE=multiple

MP_ADAPTER_USE=dedicated

host.list

 @2

LoadLeveler allocates nodes A, B, C, and D for dedicated adapter (forced for US),

and shared CPU.

Job 2: Job 2 is interactive and requests six nodes for User Space using host.list.

MP_PROCS=6

MP_HOSTFILE=./host.list

MP_EUILIB=us

MP_CPU_USE=multiple

MP_ADAPTER_USE=shared

host.list

 @2

POE forces the adapter request to be dedicated, even though the user has specified

shared. Multiple (shared CPU) is supported, but in this case, LoadLeveler doesn’t

have six nodes for the adapter request, so the job fails.

Job 3: Job 3 is interactive and requests six nodes for IP using MP_RMPOOL.

MP_PROCS=6

MP_HOSTFILE=NULL

MP_EUILIB=ip

MP_RMPOOL=2

82 IBM PE for AIX and Linux V5 R1: Operation and Use

The defaults are shared adapter and shared CPU. LoadLeveler allocates six nodes

for IP from the pool.

Job 4: Job 4 is interactive and requests three nodes for IP using MP_RMPOOL.

MP_PROCS=3

MP_HOSTFILE=NULL

MP_EUILIB=ip

MP_RMPOOL=2

The defaults are shared adapter and shared CPU. LoadLeveler allocates three

nodes from the pool.

Considerations for failover and recovery with PE

LAPI provides facilities for higher availability and recovery from link and adapter

failures. LAPI can quickly determine when an adapter no longer has the ability to

communicate, and as a result will fail over and recover all communication on an

alternate path. Note, however, that failover and recovery are only supported with

running over the User Space protocol, and when running jobs across multiple

networks.

These instructions are LAPI-oriented, but are included here to provide information

you may find valuable. If you are interested in more specific details about failover

and recovery operations, refer to RSCT: LAPI Programming Guide.

Failover and recovery

LAPI’s failover and recovery function consists of two elements:

1. Monitoring and receiving notification about the communication status of the

IBM High Performance Switch (HPS) adapters (AIX) or InfiniBand adapters

(AIX or Linux).

2. The use of multiple adapters for redundancy, to enable failover. This element

depends on LoadLeveler, with corresponding POE functions that serve as a

wrapper to convey requests to LoadLeveler.

Failover and recovery cannot be provided for a job if either of these elements is

absent.

Requesting the use of multiple adapters

You can use POE environment variables or LoadLeveler job control file (JCF)

keywords to request the use of multiple adapters.

Using POE environment variables to request the use of multiple adapters:

If your job is to survive an adapter failure, there must be some redundancy. As a

result, each task of the job needs to be allocated communication instances across at

least two different IBM High Performance Switch (HPS) adapters or InfiniBand

adapters. An instance is an entity that is required for communication over an

adapter device. In the user space (US) communication mode, which is specified by

setting MP_EUILIB to us, an instance corresponds to an adapter window. On the

other hand, note that in the IP communication mode, which is specified by setting

MP_EUILIB to ip, an instance corresponds to the IP address of a given adapter to

be used for communication.

Chapter 3. Managing POE jobs 83

Depending on the number of networks in the system and the number of adapters

each node has on each of the networks, you can request the allocation of multiple

instances for your job tasks by using a combination of the POE environment

variables MP_EUIDEVICE and MP_INSTANCES. The distribution of these

requested instances among the various an IBM Power Systems HPS adapters or

InfiniBand networks on the nodes is done by LoadLeveler. Depending on the

resources available on each of the adapters and whether the job is using user space

or IP, LoadLeveler tries to allocate these instances on different adapters.

To request the use of multiple instances on a system where all nodes have adapters

on each of the n networks in the system, you can set MP_EUIDEVICE to the value

sn_all. This setting translates to a request for the default number of instances (1)

from adapters on each of the networks in the system, and a request for a total of n

instances for each of the job tasks. You do not have to set the MP_INSTANCES

environment variable. If MP_EUIDEVICE is set to sn_all and you do set the

MP_INSTANCES variable to a value m (where m is a number from 1 through the

value of the case-insensitive string max), this translates to a request of m instances

from each of the networks in the system for each job task. For user space, this

corresponds to a request for (m * n) different windows for each job task. For users

running over IP, this corresponds to a request for the same number of IBM Power

Systems HPS or InfiniBand IP devices.

You must take the following considerations into account while defining the

number of instances to use and the value specified for MP_EUIDEVICE:

v If m is greater than the number of adapters a node has on one of the networks,

multiple windows will be allocated from some of the adapters. For users

running over IP, the same adapter device will be allocated multiple times.

v LoadLeveler translates the value max as a request to allocate the number of

instances (as specified by the max_protocol_instances variable) that are defined for

this job class in the LoadLeveler LoadL_admin file. See Tivoli Workload Scheduler

LoadLeveler: Using and Administering for more information. If you request more

instances than the value of max_protocol_instances, LoadLeveler allocates a

number of instances that is equal to the value of max_protocol_instances. To have

your job use all adapters on the system across all the networks, you can have

the administrator set max_protocol_instances for your job class to the number of

adapters each node has on each network (assuming that each node has the same

number of adapters on each network), and then run your job with

MP_EUIDEVICE set to sn_all and MP_INSTANCES set to max.

v On a system where every node is connected to more than one common network,

setting MP_EUIDEVICE to sn_all is sufficient to allocate instances from distinct

adapters for all job tasks. You do not need to set MP_INSTANCES. This is

because an adapter is connected to exactly one network, this is a request for

instances from each network, and if the request is satisfied, at least two distinct

adapters have been allocated for each of the job tasks. In the case of user space,

if all windows on the adapters of one or more networks are all used up, the job

will not be scheduled until windows are available on adapters of each network.

To request the use of multiple instances on a system where all nodes are connected

to a single IBM Power Systems HPS adapter or InfiniBand adapter, or where nodes

are connected to multiple networks, but you want your tasks to use adapters that

are connected to only one of those networks, you can set MP_EUIDEVICE to

sn_single and MP_INSTANCES to m, where m is a number from 1 through the

value of the (case-insensitive) string max. This translates to a request for m

instances on one network only; not, as in the previous case, on each of the n

networks in the system. With such a request, if MP_EUILIB is set to us,

84 IBM PE for AIX and Linux V5 R1: Operation and Use

LoadLeveler may not allocate the multiple windows from distinct adapters if

window resources on some of the adapters are consumed by previously-scheduled

jobs. In this scenario, LoadLeveler may allocate the multiple windows from a

single adapter and one or more of the job tasks will be without a redundant

adapter to which they can fail over in the case of a communication problem. As a

result, to guarantee that multiple adapters are allocated to the job, and to satisfy

the basic requirements for LAPI’s failover and recovery function, you must do the

following:

1. Have the nodes in the system connect to multiple IBM Power Systems HPS

adapters or InfiniBand adapters.

2. Set MP_EUIDEVICE to sn_all.

POE posts an attention message stating that failover and recovery operations may

not be possible for the job if multiple instances are requested, but one or more job

tasks are allocated instances that are all from the same adapter. Table 48 shows the

interaction among the values of MP_INSTANCES, MP_EUIDEVICE, and

MP_EUILIB, in terms of the total instances that are allocated to every task of the

job, and whether use of the failover and recovery function is possible as a result.

 Table 48. Failover and recovery operations

MP_EUIDEVICE=

Instances allocated per task with

MP_EUILIB=us

Instances allocated per task with

MP_EUILIB=ip

MP_INSTANCES is

not set

MP_INSTANCES=m MP_INSTANCES is

not set

MP_INSTANCES=m

sn_single 1

no failover

m

For AIX users:

failover may not be

possible.

For Linux users: Not

supported

1

For AIX users: No

failover

For Linux users: Not

supported

m

For AIX users:

Failover is possible if

num_adapters per

network > 1

For Linux users: Not

supported

sn_all num_networks

failover is possible if

num_networks > 1

m * num_networks

failover is possible if

num_networks > 1

num_networks

For AIX users:

Failover is possible if

num_networks > 1

For Linux users: Not

supported

m * num_networks

For AIX users:

Failover is possible if

num_networks > 1

For Linux users: Not

supported

Using TWS LoadLeveler JCF keywords to request the use of multiple adapters:

The use of the LoadLeveler job class attribute max_protocol_instances is described in

“Using POE environment variables to request the use of multiple adapters” on

page 83. Although more than eight instances are allowed using a combination of

the max_protocol_instances setting and the MP_INSTANCES environment variable,

LAPI ignores all window allocations beyond the first eight, because LAPI supports

a maximum of eight adapters per operating system instance and the best

performance can be obtained with one window on each of them. Using multiple

windows on a given adapter provides no performance advantage.

For more information about the max_protocol_instances attribute, and for the syntax

to specify the request for multiple instances on a single network or on all networks

Chapter 3. Managing POE jobs 85

in the system using a LoadLeveler job control file (JCF), see Tivoli Workload

Scheduler LoadLeveler: Using and Administering.

Failover and recovery restrictions

v Requesting the use of multiple instances for tasks of the job is for

failover/recovery and load balancing among multiple networks only. No

performance gain in terms of individual task bandwidth should be expected due

to the use of multiple instances.

v Failover and recovery are only supported on snX or InfiniBand adapters.

Failover and recovery are not supported for standalone (non-POE) LAPI.

v With PE for AIX, when a job with a failed adapter is preempted, LoadLeveler

may not be able to continue with the job if it cannot reload the switch table on

the failed adapter. Any adapter failure that causes switch tables to be unloaded

will not be recovered during the job run.

Considerations for data striping, with PE

PE MPI depends on LAPI as a lower level protocol and the support for striping is

entirely within the LAPI layer. In most cases, the layering of PE MPI on LAPI is

transparent to the MPI user. Striping is the distribution of message data across

multiple communication adapters in order to increase bandwidth. By using

striping in conjunction with the bulk transfer transport mechanism, applications

can experience gains in communication bandwidth performance. Applications that

do not use the bulk transfer communication mode typically cannot benefit from

striping over multiple adapters.

In this case, although the striping implementation is within LAPI, it has

implications that affect PE MPI users. These instructions are LAPI-oriented, but are

included here to provide information you may find valuable. If you are interested

in more specific details about striping, refer to Reliable Scalable Cluster Technology:

LAPI Programming Guide.

Data striping

When running parallel jobs on processors with IBM High Performance Switches

(striping is not supported for InfiniBand interconnects), it is possible to stripe data

through multiple adapter windows. This is supported for both IP and User Space

protocols.

If the system has more than one switch network, the resource manager allocates

adapter windows from multiple adapters. A switch network is the circuit of

adapters that connect to the same IBM High Performance Switch. One window is

assigned to an adapter, with one adapter each selected from a different switch

network.

If the system has only one switch network, the adapter windows are most likely

allocated from different adapters, provided that there are sufficient windows

available on each adapter. If there are not enough windows available on one of the

adapters, the adapter windows may all be allocated from a single adapter.

LAPI manages communication among multiple adapter windows. Using resources

that LoadLeveler allocates, LAPI opens multiple user space windows for

communication. Every task of the job opens the same number of user space

windows, and a particular window on a task can only communicate with the

corresponding window on other tasks. These windows form a set of ″virtual

networks″, in which each ″virtual network″ consists of a window from each task

that can communicate with the corresponding windows from the other tasks. The

86 IBM PE for AIX and Linux V5 R1: Operation and Use

distribution of data among the various windows on a task is referred to as striping,

which has the potential to improve communication bandwidth performance for

LAPI clients.

To enable striping in user space mode, use environment variable settings that

result in the allocation of multiple instances. For a multi-network system, this can

be done by setting MP_EUIDEVICE to sn_all. On a single-network system with

multiple adapters per operating system image, this can be done by setting

MP_EUIDEVICE to sn_single and setting MP_INSTANCES to a value that is

greater than 1.

For example, on a node with two adapter links, in a configuration where each link

is part of a separate network, the result is a window on each of the two networks,

which are independent paths from one node to others. For IP communication and

for messages that use the user space FIFO mechanism (in which LAPI creates

packets and copies them to the user space FIFOs for transmission), striping

provides no performance improvement. Therefore, LAPI does not perform striping

for short messages, noncontiguous messages, and all communication in which bulk

transfer is disabled through environment variable settings.

For large contiguous messages that use bulk transfer, striping provides a vast

improvement in communication performance. Bandwidth scaling is nearly linear

with the number of adapters (up to a limit of 8) for sufficiently-large messages.

This improvement in communication bandwidth stems from: 1) the low overhead

needed to initiate the remote direct memory access (RDMA) operations used to

facilitate the bulk transfer, 2) the major proportion of RDMA work being done by

the adapters, and 3) high levels of concurrency in the RDMA operations for

various parts of the contiguous messages that are being transferred by RDMA by

each of the adapters.

To activate striping or failover for an interactive parallel job, you must set the

MP_EUIDEVICE and MP_INSTANCES environment variables as follows:

v For instances from multiple networks:

MP_EUIDEVICE=sn_all — Guarantees that the adapters assigned will be from

different networks.

v For instances from a single network:

MP_EUIDEVICE=sn_single and MP_INSTANCES=n (where n is greater than 1

and less than max_protocol_instances) — Improved striping performance using

RDMA can only be seen if windows are allocated from multiple adapters on the

single network. Such an allocation may not be possible if there is only one

adapter on the network or if there are multiple adapters, but there are available

resources on only one of the adapters.

To activate striping for a parallel job submitted to the LoadLeveler batch system,

the network statement of the LoadLeveler command file must be coded

accordingly.

v Use this network statement for a LAPI User Space job that uses IBM High

Performance Switches on multiple networks:

#@ network.lapi = sn_all,shared,us

v Use this network statement for an MPI and LAPI User Space job that uses IBM

High Performance Switches on multiple networks and shares adapter windows:

#@ network.mpi_lapi = sn_all,shared,us

The value of MP_INSTANCES ranges from 1 to the maximum value specified by

max_protocol_instances, as defined in the LoadLeveler LoadL_admin file. The

Chapter 3. Managing POE jobs 87

default value of max_protocol_instances is 1. See Tivoli Workload Scheduler LoadLeveler:

Using and Administering for more information.

Communication and memory considerations

Depending on the mode of communication, when multiple IBM Power Systems

High Performance Switch (HPS) adapters are used for data striping or for failover

and recovery, additional memory or address space resources are used for data

structures that are associated with each communication instance. In 32-bit

applications, these additional requirements have implications that you must

consider before deciding whether to use striping or failover and recovery and the

extent to which you will use these functions.

IP communication (PE for AIX only): When multiple IBM Power Systems High

Performance Switch (HPS) instances are used for IP communication, LAPI allocates

these data structures from the user heap. Some 32-bit applications may therefore

need to be recompiled to use additional data segments for their heap by using the

-bmaxdata compilation flag and requesting a larger number of segments. The

default amount of data that can be allocated for 64-bit programs is practically

unlimited, so no changes are needed. Alternatively, you can modify the 32-bit

executable using the ldedit command or by setting the LDR_CNTRL environment

variable to MAXDATA. Base the increase to -bmaxdata on what is needed rather

than setting it to the maximum allowed (0x80000000). Using more segments than

required may make certain shared memory features unusable, which can result in

poor performance. Also, applications that require the eight allowed segments for

their own user data (thus leaving no space for LAPI to allocate structures) must

use a single IP instance only (MP_EUIDEVICE=sn_single).

For more information about ldedit, see IBM AIX Commands Reference. For more

information about LDR_CNTRL, see IBM AIX Performance Management Guide.

US communication (PE for AIX only): When multiple IBM Power Systems High

Performance Switch (HPS) instances are used for User Space communication, you

need to consider the following segment usage information when deciding whether

to use striping or failover and recovery. The communication subsystem uses

segment registers for several different purposes. The AIX memory model for 32-bit

applications uses five segment registers. In a 32-bit executable, there are only 16

segment registers available. In a 64-bit executable, the number of segment registers

is essentially unbounded. Because segment registers are abundant in 64-bit job

runs, this discussion is important only for 32-bit job runs.

By default, the amount of memory that is available for application data structures

(the heap) in a 32-bit job run is somewhat less than 256MB. You can use the

compilation flag -bmaxdata:0x80000000 to allocate 2GB of heap, but this requires

eight segment registers. Smaller -bmaxdata values use fewer segment registers, but

these values limit the size of application data structures. If you try to use every

available feature of the communication subsystem and allow 2GB for heap, there

will not be enough registers, and your application will lose some performance or

perhaps not be able to start.

The segment usage between the IBM High Performance Switch and the InfiniBand

interconnect is very different, as shown below.

The IBM High Performance Switch (HPS) communication subsystem uses segments

as follows:

v One User Space instance (window): 2

v Each additional instance: 1

88 IBM PE for AIX and Linux V5 R1: Operation and Use

v Switch clock: 1

v Shared memory: 1

v Shared memory cross-memory attach: 1

The InfiniBand interconnect uses segments as follows:

v One for the command page mapping: 1

v One for Reliable Connected Queue Pairs when RDMA is used: 1

v A transient segment used during setup: 1

v Shared memory: 1

v Shared memory cross-memory attach: 1

Using MPI and LAPI together with separate windows consumes segments beyond

the minimum. Using striping also consumes extra windows. Access to the switch

clock for the MPI_WTIME_IS_GLOBAL attribute requires a segment register for

the High Performance Switch adapter. Turning on MP_SHARED_MEMORY

requires one segment register for basic functions and a second segment register to

exploit cross-memory attach, to accelerate large messages between tasks on the

same node. If your application requires a large heap, you may need to forgo some

communication subsystem options. For most applications, you can set

MP_CLOCK_SOURCE=AIX and free one register. If MPI and LAPI calls are used

in the application, make sure MP_MSG_API is set to MPI_LAPI rather than

MPI,LAPI. Because shared memory uses one pair of registers per protocol, using

MPI_LAPI rather than MPI,LAPI is especially important when combining shared

memory and user space. If you do not need to use the striping and failover

functions, make sure that MP_EUIDEVICE is set to sn_single and that

MP_INSTANCES is not set (in which case, it defaults to 1) or is set to 1 explicitly.

For 32-bit executables that are compiled to use small pages, the segment registers

that are reserved by AIX and by -bmaxdata are claimed first. The initialization of

user space comes second. If there are not enough registers left, your job will not

start. The initialization of shared memory comes last. If there are no registers left,

the job will still run, but without shared memory. If there is only one register left,

shared memory will be enabled, but the optimization to speed large messages with

cross-memory attach will not be used. If there are no registers left, shared memory

will be bypassed and on-node communication will go through the network.

For 32-bit executables that use large pages, dynamic segment allocation (DSA) is

turned on automatically, so any -bmaxdata segments requested are not reserved

first for the user heap, but are instead allocated in the order of usage. Thus, if the

program allocates memory corresponding to the total size of the requested

-bmaxdata segments before MPI_Init or LAPI_Init is called, the behavior would

be similar to the small page behavior that is described in the previous paragraph.

However, if MPI_Init or LAPI_Init is called before the memory allocation,

segments that were intended for use for the program heap may be first obtained

and reserved for windows and for communication library features such as shared

memory. In this case, the program will be left with fewer segments to grow the

heap than -bmaxdata had requested. The program is likely to start by claiming all

the segments required for the initialization of the communication subsystem, but

will terminate later in the job run on a malloc failure as its data structure

allocations grow to fill the space that the specified -bmaxdata value was expected

to provide.

Chapter 3. Managing POE jobs 89

For information about how to use large pages, see IBM AIX Performance

Management Guide. For information about DSA, see IBM AIX General Programming

Concepts: Writing and Debugging Programs.

Specifying the format of core files or suppressing core file generation

(PE for AIX only)

Using the MP_COREFILE_FORMAT environment variable (or its associated

command line flag -corefile_format), you can determine the format of core files

generated when processes terminate abnormally — you can specify either

traditional AIX core files or lightweight core files that conform to the Parallel Tool

Consortium’s Standardized Lightweight Corefile Format (LCF).

Table 49 describes how setting the MP_COREFILE_FORMAT environment variable

or the -corefile_format command line flag determines the format of the core files

that are generated.

 Table 49. MP_COREFILE_FORMAT settings

If the MP_COREFILE_FORMAT

environment variable or

-corefile_format flag:

Then: For more information, see:

is not set/used standard AIX core files will be

generated when processes terminate

abnormally.

“Generating standard AIX core files

(PE for AIX only)”

specifies the string ″STDERR″ the core file information will be

output to standard error when

processes terminate abnormally.

“Writing core file information to

standard error (PE for AIX only)” on

page 91

specifies any other string lightweight core files will be

generated when processes terminate

abnormally.

“Generating lightweight core files (PE

for AIX only)” on page 91

Note: Although the AIX operating system provides its own lightweight core file

subroutine and environment variable (LIGHTWEIGHT_CORE), be aware

that it is intended for serial programs only. When using the AIX

LIGHTWEIGHT_CORE environment variable with parallel programs

compiled with the POE compiler scripts, the resulting output is

unpredictable. For this reason, you should use the POE lightweight core file

flags and environment variables for parallel programs.

Generating standard AIX core files (PE for AIX only)

By default, POE processes that terminate abnormally generate standard AIX core

files. Since this is the default behavior, you will not typically need to explicitly

specify that standard AIX core files should be generated. If, however, the

MP_COREFILE_FORMAT environment variable has previously been set, you will

need to unset it in order to once again get the default behavior. To unset the

MP_COREFILE_FORMAT environment variable, you would

ENTER

unset MP_COREFILE_FORMAT

90 IBM PE for AIX and Linux V5 R1: Operation and Use

Generating core files for sigterm (PE for AIX only)

POE automatically generates core files for those signals that result in core files,

with the exception of SIGTERM. This is because the SIGTERM signal can also be

issued as the result of an explicit request to terminate via an MPI_Abort() call, in

which case, it may not be beneficial to have a core file created.

POE provides an option, via the MP_COREFILE_SIGTERM environment variable

(and the corresponding -corefile_sigterm command line flag), to allow the creation

of a core file for SIGTERM, when MP_COREFILE_SIGTERM or -corefile_sigterm

is set to yes. The default is no.

Writing core file information to standard error (PE for AIX

only)

As described in “Generating standard AIX core files (PE for AIX only)” on page 90,

POE processes that terminate abnormally will, by default, generate standard AIX

core files. If you prefer, you can instruct POE to write the stack trace or lightweight

core file information to standard error instead. To do this, set the

MP_COREFILE_FORMAT environment variable to the string STDERR (in

uppercase). As with most POE environment variables, you can temporarily

override the value of MP_COREFILE_FORMAT using its associated command line

flag — corefile_format. Table 50 describes how to set the

MP_COREFILE_FORMAT environment variable and the -corefile_format

command line flag to write core file information to standard error.

For example, to specify that lightweight core file information should be written to

standard error, you could:

 Table 50. Example of writing core file information to standard error by setting the MP_COREFILE_FORMAT

environment variable or -corefile_format command line flag

Set the MP_COREFILE_FORMAT environment variable: Use the -corefile_format flag when invoking the

program:

ENTER

export MP_COREFILE_FORMAT=STDERR

ENTER

poe program -corefile_format STDERR

Generating lightweight core files (PE for AIX only)

By default, POE processes that terminate abnormally generate standard AIX core

files. Often, however, traditional AIX core files are insufficient for debugging your

program. This is because traditional AIX core files provide information that is too

low-level for you to get a general picture of the overall status of your program. In

addition, traditional AIX core files tend to be large and so can consume too much,

if not all, available disk space. In being written out, theses core files can take up an

unacceptable amount of CPU time and network bandwidth. These problems are

especially acute in a large-scale parallel-processing environment, when the

problems can be multiplied by hundreds or thousands of processes.

To address these problems with traditional core files, the Parallel Tools Consortium

(a collaborative body of parallel-programming researchers, developers, and users

from governmental, industrial, and academic sectors) has developed a core file

format called the Standardized Lightweight Corefile Format (LCF). As its name

implies, a lightweight core file does not have the often unnecessary low-level detail

Chapter 3. Managing POE jobs 91

found in a traditional core file; instead a lightweight core file contains thread stack

traces (listings of function calls that led to the error). Because of its smaller size, a

lightweight core file can be generated without consuming as much disk space,

CPU time, and network bandwidth as a traditional AIX core file. In addition, the

LCF format can be a more useful aid in debugging threaded programs.

Using the MP_COREFILE_FORMAT environment variable (or its associated

command line flag -corefile_format), you can specify that POE should generate

lightweight core files instead of standard AIX core files. To do this, simply specify

the lightweight core file name. Table 51 describes how to set the

MP_COREFILE_FORMAT environment variable and the -corefile_format

command line flag to specify that POE should generate lightweight core files.

For example, to specify the lightweight core file name light_core, you could:

 Table 51. Example of specifying lightweight core files by setting the MP_COREFILE_FORMAT environment variable or

-corefile_format command line flag

Set the MP_COREFILE_FORMAT environment variable: Use the -corefile_format flag when invoking the

program:

ENTER

export MP_COREFILE_FORMAT=light_core

ENTER

poe program -corefile_format light_core

One lightweight core file (in this example, named light_core) for each process will

be saved in a separate subdirectory.

By default, these subdirectories will be prefixed by the string coredir and suffixed

by the task id (as in coredir.0, coredir.1, and so on). You can specify a prefix other

than the default coredir by setting the MP_COREDIR environment variable or

-coredir flag as described in “Multi-task core file” on page 65.

Note: By setting -coredir or MP_COREDIR to none you can bypass saving

lightweight core files in a new subdirectory, and have them saved in /tmp

instead.

In addition to developing the LCF standard, the Parallel Tools Consortium has also

created command line and graphical user interface tools (not distributed by IBM)

that you can use to analyze lightweight core files. To use these tools, you will first

want to merge the separate lightweight core files into a single file — with each

separate lightweight core file’s information appended, one after another, into the

single lightweight core file. To merge the separate lightweight core files into a

single file, you could, for example, use the mcpgath command (as described in

“mcpgath” on page 145) or you could create and use your own script.

Note: The lightweight core file stack traces, and, by extension, the lightweight core

file browsers, will be able to show source code line numbers only if your

program is compiled with the -g option. Otherwise, locations will be shown

by relative address within the module. The -g flag is a standard compiler

flag that produces an object file with symbol table references. For more

information on the -g option, refer to its use on the cc command as

described in IBM AIX Version 5: Commands Reference

92 IBM PE for AIX and Linux V5 R1: Operation and Use

Managing large memory parallel jobs (PE for AIX only)

If you submit a job that requires a large amount of paging space, but did not

compile it to use large pages, the result can be node instability or even system

failure. To avoid these conditions, you can use the MP_TLP_REQUIRED

environment variable (or -tlp_required command line flag) to appropriately

respond to jobs that were not compiled for large pages.

When you set MP_TLP_REQUIRED to warn, POE detects and issues a warning

message for any job that was not compiled for large pages. Setting

MP_TLP_REQUIRED to kill causes POE to detect and kill any job that was not

compiled for large pages. For more information, see Chapter 7, “POE Environment

variables and command line flags,” on page 215.

Running programs under the C shell (PE for AIX only)

During normal configuration, the Automount Daemon (amd) is used to mount

user directories. amd’s maps use the symbolic file system links, rather than the

physical file system links. While the Korn shell keeps track of file system changes,

so that a directory is always available, this mapping does not take place in the C

shell. This is because the C shell only maintains the physical file system links.

As a result, users that run POE from a C shell may find that their current directory

(for example /a/moms/fileserver/sis), is not known to amd, and POE fails with

message 0031-214 (unable to change directory).

By default, POE uses the Korn shell pwd command to obtain the name of the

current directory. This works for C shell users if the current directory is either:

v The home directory

v Not mounted by amd.

If neither of the above are true (for example, if the user’s current directory is a

subdirectory of the home directory), then POE provides another mechanism to

determine the correct amd name; the MP_REMOTEDIR environment variable.

POE recognizes the MP_REMOTEDIR environment variable as the name of a

command or Korn shell script that echoes a fully-qualified file name.

MP_REMOTEDIR is run from the current directory from which POE is started.

If you do not set MP_REMOTEDIR, the command defaults to pwd, and is run as

ksh -c pwd. POE sends the output of this command to the remote nodes and uses

it as the current directory name.

You can set MP_REMOTEDIR to some other value and then export it. For

example, if you set MP_REMOTEDIR=″echo /tmp″, the current directory on the

remote nodes becomes /tmp on that node, regardless of what it is on the home

node.

The script mpamddir is also provided in /usr/lpp/ppe.poe/bin, and the setting

MP_REMOTEDIR=mpamddir will run it. This script determines whether or not

the current directory is a mounted file system. If it is, the script searches the amd

maps for this directory, and constructs a name for the directory that is known to

amd. You can modify this script or create additional ones that apply to your

installation.

Chapter 3. Managing POE jobs 93

Note: Programs that depend upon the name of the current directory for correct

operation may not function properly with an alternate directory name. In

this case, you should carefully evaluate how to provide an appropriate name

for the current directory on the home nodes.

If you are executing from a subdirectory of your home directory, and your home

directory is a mounted file system, it may be sufficient to replace the C shell name

of the mounted file system with the contents of $HOME. One approach would be:

export MP_REMOTEDIR=pwd.csh

or for C shell users:

setenv MP_REMOTEDIR pwd.csh

where the file pwd.csh is:

#!/bin/csh -fe

save the current working directory name

set oldpwd = `pwd`

get the name of the home directory

cd $HOME

set hmpwd = `pwd`

replace the home directory prefix with the contents of $HOME

set sed_home = `echo $HOME | sed ’s/\//\\\//g’`

set sed_hmpwd = `echo $hmpwd | sed ’s/\//\\\//g’`

set newpwd = `echo $oldpwd | sed "s/$sed_hmpwd/$sed_home/"`

echo the result to be used by amd

echo $newpwd

Using RDMA

Remote Direct Memory Access (RDMA) is a mechanism that allows large

contiguous messages to be transferred while reducing the message transfer

overhead. PE support for RDMA differs, depending on the operating system you

are using. PE for AIX supports RDMA on both the IBM High Performance Switch

and the InfiniBand interconnect, while PE for Linux supports RDMA on the

InfiniBand interconnect only.

Using RDMA with the IBM High Performance Switch (PE for

AIX only)

To use RDMA with the IBM High Performance Switch, MP_USE_BULK_XFER

must be set to YES. The default is NO. Bulk data transfer is possible only using

RDMA. If necessary, MP_USE_BULK_XFER can be overridden with the command

line option, -use_bulk_xfer.

94 IBM PE for AIX and Linux V5 R1: Operation and Use

MP_RDMA_COUNT is used to specify the number of user RDMA context (rCxt)

blocks (for adapter resources). This number represents the total number of rCxt

blocks required by the application program, by determining the number of remote

handles the program will require, divided by 128 and adding 2.

MP_RDMA_COUNT supports the specification of multiple values when multiple

protocols are involved. The format can be one of the following:

v MP_RDMA_COUNT=m for a single protocol

v MP_RDMA_COUNT=m,n for multiple protocols. Only for when

MP_MSG_API=mpi.lapi – the values are positional, m is for MPI, n for LAPI.

Note that the MP_RDMA_COUNT/–rdma_count option signifies the number of

rCxt blocks the user has requested for the job, and LoadLeveler determines the

actual number of rCxt blocks that will be allocated for the job. POE will use the

value of MP_RDMA_COUNT to specify the number of rCxt blocks requested on

the LoadLeveler MPI and/or LAPI network information when the job is submitted.

The number of rCxt blocks will be the same for every window of the same

protocol.

Applications that set MP_USE_BULK_XFER imply that RDMA will be used with a

single rCxt block (or an extra, if MP_RDMA_COUNT is set), per window. For

striping and failover, the same number of rCxt blocks are assigned to each

window.

The MP_RDMA_COUNT specification only has meaning for LAPI applications.

When MP_RDMA_COUNT is specified for MPI applications (either when

MP_MSG_API is explicitly set or defaults to mpi), POE will issue a warning

message that the MP_RDMA_COUNT specification is unnecessary.

The use of the MP_RDMA_COUNT specification requires LoadLeveler 3.3.1 or

later.

Using RDMA with the InfiniBand interconnect

PE supports RDMA over the InfiniBand interconnect with either the AIX or Linux

operating system. In order to support RDMA over Infiniband, PE requires the use

of Reliable Connected Queue Pairs (RC QPs) to establish adapter resources, and

LoadLeveler manages those resources on behalf of the application. POE interacts

with LoadLeveler to determine the resources allocated, and then passes that

information to MPI and LAPI. To learn more about InfiniBand and Reliable

Connected Queue Pairs, you may find the InfiniBand Trade Association Web site

(http://www.infinibandta.org/specs/) helpful.

LAPI creates the RC QPs for a given pair of tasks, based on the values you provide

using various environment variables. The RC QPs that LAPI creates may be used

for RDMA communication between that pair of tasks for all future contiguous

messages that are larger than the RDMA threshold (which you determine using the

MP_BULK_MIN_MSG_SIZE environment variable). You can also specify a

maximum number of RC QPs that can be created for a task by setting the

MP_RC_MAX_QP environment variable (the default is no maximum). Limiting the

number of RC QPs per task allows you to reserve memory that can be used for

computation. The RC QPs exist until the job is terminated, checkpointed, or

preempted.

The environment variables used by LAPI to create the RC QPs are described

below.

Chapter 3. Managing POE jobs 95

http://www.infinibandta.org/specs/

MP_RC_MAX_QP

Specifies the maximum number of RC QPs that can be created. The

allowable value is any positive integer. The default is 2147483647 (which is

unlimited). Note that the purpose of MP_RC_MAX_QP is to limit the

amount of memory that is consumed by RC QPs. It is suggested that you

only set this variable if you suspect that your application is performing

poorly due to lack of memory.

MP_RC_USE_LMC

Determines whether LMC (Lid Mask Control) is enabled. Enabling the use

of LMC can improve performance, because a single port can support

multiple RC paths. The default value is no (only one RC connected path is

supported). Setting MP_RC_USE_LMC to yes causes multiple RC paths to

be supported, which may improve performance.

LoadLeveler also needs to be aware that a POE job is using bulk transfer (RDMA).

LoadLeveler determines this by the value of the LoadLeveler bulkxfer keyword,

which can be explicitly set to yes (#@ bulkxfer=yes) in a LoadLeveler JCF file, or

by setting the POE MP_USE_BULK_XFER environment variable.

The administrator must perform the following tasks to enable the use of RDMA:

v Set the SCHEDULE_BY_RESOURCES = RDMA keyword, in the LoadLeveler

configuration file. SCHEDULE_BY_RESOURCES specifies the consumable

resources that are considered by the LoadLeveler schedulers. For more

information, see IBM LoadLeveler: Using and Administering.

Note that you can confirm which nodes have been enabled by using the

LoadLeveler command llstatus -R. In the following example output for the

llstatus -R command, the f4rp02 node is not enabled for RDMA:

a [f4rp02]kgoin>llstatus -R

Machine Consumable Resource(Available, Total)

---------------------- ---

f3rp01.ppd.pok.ibm.com RDMA(4,4)+<

f3rp02.ppd.pok.ibm.com

f4rp03.ppd.pok.ibm.com suiteshare(16,16) RDMA(4,4)+<

f4rp04.ppd.pok.ibm.com RDMA(4,4)+<

Resources with "+" appended to their names have the Total value reported from

Startd.

Resources with "<" appended to their names were created automatically.

a [f4rp02]kgoin>

After the administrator has enabled RDMA, users must perform the following

tasks:

v Verify that MP_DEVTYPE is set to ib.

v Request the use of bulk transfer by doing one of the following:

If you are an interactive user, set the MP_USE_BULK_XFER environment

variable to yes:

MP_USE_BULK_XFER=yes

The default setting for MP_USE_BULK_XFER is no.

If you are a batch JCF user, specify:

#@ bulkxfer = true

v Set the minimum message length for bulk transfer with the

MP_BULK_MIN_MSG_SIZE environment variable. Contiguous messages with

data lengths greater than or equal to the value you specify for this environment

96 IBM PE for AIX and Linux V5 R1: Operation and Use

variable use the bulk transfer path. Messages that are noncontiguous or have

data lengths that are smaller than the value you specify for this environment

variable use the Unreliable Datagram (UD) packet mode method of transfer.

v Set the MP_RC_MAX_QP and MP_RC_USE_LMC environment variables, as

appropriate for your installation.

Improving application scalability performance (PE for AIX only)

There are certain highly-tuned, fine-grained MPI parallel applications that may

benefit from using special tuning and dispatching capabilities provided by AIX and

Parallel Environment, particularly in system and application environments where

scalability and performance are important concerns.

Two features that are available for such applications are:

v POE priority adjustment coscheduler

v AIX Dispatcher tuner

Interaction is required on the part of the system administrator to assess the overall

need and options available through these features, and to make them available for

general users. With high-computing performance environments, there are certain

issues to be considered, based on a variety of factors, some of which may require

selecting kernel options that require a system reboot or using workload balancing

to dedicated processors for offloading critical system activity.

Users may wish to consult with their system administrator about allowing certain

options to be made available to them for their needs. Such options and factors

should be carefully weighed and evaluated when using these capabilities.

POE priority adjustment coscheduler

Certain applications can benefit from enhanced dispatching priority (coscheduling)

during execution. POE provides a service for periodically adjusting the dispatch

priority of a user’s task between set boundaries, giving the tasks improved

execution priority.

The PE coscheduler works by alternately, and synchronously, raising and lowering

the dispatch priority of the tasks in an MPI job. The objective is for all the tasks to

have the same priority across all processors, and to force other system activity into

periodic and aligned time slots during which the MPI tasks do not actively

compete for CPU resources.

When the MP_PRIORITY environment variable is specified, POE attempts to use

the coscheduler to adjust the priority of the tasks, based on the values specified

and the constraints defined by the system administrator. The value of the

MP_PRIORITY environment variable can be specified in one of two forms:

v A job class, which defines the priority adjustment values

v A list of priority adjustment values, which must fall within predefined limits.

The system administrator needs to define the available constraints and values by

defining entries in the /etc/poe.priority file. Refer to IBM Parallel Environment:

Installation for specific information on defining entries in the /etc/poe.priority file.

When you specify a job class as a value for MP_PRIORITY, the specified class

must exist in the /etc/poe.priority file on each node. POE looks in /etc/poe.priority

Chapter 3. Managing POE jobs 97

and finds the entry that corresponds to that class, and then uses it to determine the

priority adjustment values to be used. The class entry defines the following

parameters:

v User name. The user name can also be in the form of an asterisk (wildcard).

v Class name. When a wildcard is used, the class can be used to define a

minimum or maximum class threshold.

v High priority (more favored).

v Low priority (less favored).

v Percentage of time to run at high priority.

v Duration of adjustment cycle.

When you specify a list of values for MP_PRIORITY, you must specify the string

as a colon-separated list in the following format:

hipriority:lopriority:percentage:period

When the value of the MP_PRIORITY environment variable is specified as a list of

values, it is evaluated against the maximum and minimum settings in the

/etc/poe.priority file. The values will only take effect under the following

conditions:

v When a maximum setting is specified in the file, and each value in the

environment variable is less than or equal to the corresponding value in the file.

v When a minimum setting is specified in the file, and each value in the

environment variable is greater than or equal to the corresponding value in the

file.

Refer to IBM Parallel Environment: Installation for specific and additional details on

the format and meaning of these values.

Note: If your cluster does not have a global time source (for example, an HPS

switch), software synchronization of the node clocks (for example, NTP) is

required. Otherwise, the high-priority and low-priority windows might not

be sufficiently aligned, causing the coscheduler to be ineffective.

When using the coscheduler with AIX, you should also consider the following:

v The normal dispatch priority is 60. If both high and low priority are set to

values less than 60, a compute-bound job will prevent other users from being

dispatched. The dispatch preference goes to the lower number.

v The high priority value must be equal to or greater than 12. If the value is

between 12 and 20, the job competes with system processes for cycles, and might

disrupt normal system activity.

v If the high priority value is less than 30, keystroke capture will be inhibited

during the high priority portion of the dispatch cycle.

v If high priority is less than 16, the job will not be subject to the scheduler during

the high priority portion of the cycle.

v The low priority value must be less than or equal to 254.

v If the high priority value is less than (more favored than) the priority of the IBM

High Performance Switch fault-service daemon, and if the low priority portion

of the adjustment cycle is less than two seconds, then switch fault recovery will

be unsuccessful, and the node will be disconnected from the switch.

v The coscheduling facility allows programs using the User Space library to

maximize their effectiveness in interchanging data. The process might also be

used for programs using IP, either over the switch or over another supported

98 IBM PE for AIX and Linux V5 R1: Operation and Use

device. However, if the high priority phase of the user’s program is more

favored than the network processes (typically priorities 36-39), the required IP

message passing traffic might be blocked and cause the program to hang.

v Consult the include file /usr/include/sys/pri.h for definitions of the priorities

used for normal AIX functions.

v Each node might have a different /etc/poe.priority file that defines the

scheduling parameters for tasks running on that node.

v The primary performance enhancement is achieved when the user’s application

can run with minimal interference from the standard AIX daemons running on

each node. This is achieved when the user’s application is scheduled with a

fixed priority that is more favored than the daemon’s, which typically run with

a priority setting of 60.

v More favored priority values are numerically smaller than less favored priority

values

When using the coscheduler with Linux, you should also consider the following:

v Consult your Linux distribution’s scheduling and priority man pages for the

recommended values to use with the sched_setscheduler function call.

v The default scheduling policy used by the Linux coscheduler is SCHED_RR.

v The POSIX standard values for scheduling priority are 0 to 99. Processes with

numerically higher priority values are scheduled before processes with

numerically lower priority values. However, this might vary, depending on your

Linux distribution. Also, the actual priority values cannot exceed the

system-defined values.

v The typical process priority is 0, with a default policy of SCHED_OTHER. This

includes user processes and system daemons, which might vary, depending on

your Linux distribution and system configuration.

Chapter 3. Managing POE jobs 99

IMPORTANT NOTE:

The coscheduler relies on pmadjpri, which is a set-user-on-execution (setuid) binary file,

and is owned by the root system user. This allows system administrators to temporarily

grant non-root users the ability to modify the priority of the jobs that are executed by POE.

For AIX users, however, it is important to note that the AIX fpm security command, when

run by a system administrator, disables setuid programs, including pmadjpri. As a result,

when the fpm command has been run, dynamic priority adjustment of jobs is not possible.

Note that this limitation only applies when POE is running under LoadLeveler.

In interactive mode (POE is not running under LoadLeveler): Because the POE Partition

Manager Daemon (PMD) runs as root, and the pmadjpri program is executed by the PMD,

pmadjpri will have the necessary authority to adjust priorities normally.

In non-interactive mode (POE is running under LoadLeveler): Because, under

LoadLeveler, the POE Partition Manager Daemon (PMD) does not run as root, the

pmadjpri program fails when calling setuid(0). End users only see output if

MP_PRIORITY_LOG is set to yes.

The following is an example log file:

 --

Starting pmadjpri at Fri Mar 16 15:56:22 2007

MP_PRIORITY_NTP set to no, NTP will be stopped (if running).

pmadjpri: setuid(0) failed! errno = 1

For AIX users, the coscheduler is designed to work with a globally synchronized

external clock, such as the switch clock registers on the IBM High Performance

Switch. When the coscheduler is started on a node, it looks for the existence of the

switch clock. If one is found, the coscheduler turns off the Network Time Protocol

(NTP) daemon, if it is running, and synchronizes the AIX clock seconds with the

switch clock seconds. The intent is to globally synchronize the AIX time slices

applied to the parallel job. When the job terminates, the NTP daemon is restarted,

if it had been turned off. The use of the NTP daemon might be controlled with the

MP_PRIORITY_NTP environment variable and -priority_ntp command line flag.

Status and error messages generated during the priority adjustment process are

written to the file /tmp/pmadjpri.jobid.log (this might also be controlled by the

POE MP_PRIORITY_LOG environment variable and -priority_log command line

flag). If you wish to store the file in a location other than /tmp, you can specify a

different directory with the MP_PRIORITY_LOG_DIR environment variable. Also,

if you wish to give the file a name other than pmadjpri.jobid.log, you can do so

with the MP_PRIORITY_LOG_NAME environment variable. See Chapter 7, “POE

Environment variables and command line flags,” on page 215 for more information

about these environment variables.

Note that ownership of the log file is transferred from root to the user that is

executing the parallel application.

Also note that any error or diagnostic information from POE’s invocation of the

priority adjustment function will be recorded in the partition manager log

(controlled by the POE MP_PMDLOG environment variable and -pmdlog

command line flag.)

100 IBM PE for AIX and Linux V5 R1: Operation and Use

AIX Dispatcher tuning (PE for AIX only)

The coscheduler can be used in conjunction with the AIX Dispatcher functions to

optimize the process dispatch and interrupt management in the kernel, to allow

fine-grained parallel applications to achieve better performance.

The AIX schedo command offers the following options that may be of interest:

v big_tick_size, to unstagger (real-time kernel only) and reduce the number of

physical timer interrupts per second. Increasing the big_tick_size increases the

interval between activations of the dispatcher, and can reduce the amount of

overhead for dispatching.

v force_grq, to assign all processes that are not part of the PE/MPI job to the

global run queue. This allows all non-MPI activity to compete equally for

available CPU resources. Without setting this option, non-MPI processes may

queue up for resources on a busy processor, when another processor is idle.

The use of such tunables are only fully effective if the AIX kernel is running with

the Real Time option, requiring a system reboot. This is required to produce the

interrupts necessary for the coscheduler to modify the priorities, and no longer

stagger the interrupts.

Once the big_tick_size option is changed, interrupts can no longer be staggered

until the system is rebooted, even if big_tick_size is reset. In addition, if the

real-time kernel is enabled without any change to big_tick_size, the interrupts will

remain staggered.

Also, using the force_grq option could degrade system performance when a

system is not dedicated to running a parallel job.

The system administrator must enable or disabled these options as well as perform

the necessary system reboot.

For additional details on enabling the coscheduler and AIX dispatcher, see IBM

Parallel Environment: Installation.

Starting a User Space POE job, using the InfiniBand interconnect,

without LoadLeveler (PE for AIX only)

You can use the Network Resource Table (NRT) sample programs (nrt_api) to load

network tables and start a POE application without using LoadLeveler, or any

other resource management tool. These sample programs provide a simple

example of how POE-MPI or POE-LAPI User Space jobs can be started without

LoadLeveler. Note that the sample programs are only intended for use with the

InfiniBand interconnect on AIX.

The NRT sample programs use the Network Resource Table APIs, which are

documented in Reliable Scalable Cluster Technology: NRT API Programming Guide.

Warning: Be very careful when running the sample code. The system administrator

should carefully monitor the use of these programs, particularly nrt_api, which

may be used to load and unload network tables. It is suggested that you use these

programs on a set of nodes that have been set aside for testing purposes only.

Chapter 3. Managing POE jobs 101

RESTRICTIONS:

These sample programs are samples only; they are simple programs that are intended to

illustrate the ways in which it is possible to take advantage of RSCT’s NRT APIs for

alternative resource managers. These sample programs should not be used as they are in a

production environment. They serve only as a guide for customers to develop and test

their own programs that utilize the NRT APIs.

The samples represent one way of utilizing the NRT APIs to load the network tables

and run a parallel job, but may not be the best way to do so in all cases.

These samples should not be viewed as intended programming interfaces. Therefore, users

cannot expect continued or ongoing support for the sample programs. These samples may

be changed or discontinued at any time in the future.

nrt_api includes the following files:

/usr/lpp/ppe.poe/samples/nrt/README.nrt

An information readme file

/usr/lpp/ppe.poe/samples/nrt/nrt_api.c

A program for loading and unloading the network tables

/usr/lpp/ppe.poe/samples/nrt/nrt_run

A script for starting a POE application

/usr/lpp/ppe.poe/samples/nrt/makefile

A makefile for building the nrt_api program

Step 1: Compile and install the NRT API sample programs (PE

for AIX only)

The system administrator must compile the NRT API sample programs and make

them available for general use. The sample code, which is located in the

/usr/lpp/ppe.poe/samples/nrt directory, includes a C program, a makefile, a shell

script, and a readme file. For more information on compiling and installing the

sample programs, see IBM Parallel Environment: Installation.

Step 2: Construct input data files (PE for AIX only)

The sample programs depend on an input data file that contains node and

window information for loading and unloading the network tables. This file

should reflect the information that is to be used when running the POE

application. It represents a global view of the network table and window data that

is required on each node and, in some cases, more than one copy of the input data

file may be required (such as when loading windows for multiple adapters or

ports). The input data file must be placed in the directory from which you run the

nrt_api command (in “Step 3: Load the network tables on each node (PE for AIX

only)” on page 106).

Note that the format of the input data file is different, depending on whether it is

to be used for loading or unloading the tables. As a result, the same input data file

cannot be used for both loading and unloading the tables. See “Step 2a: Construct

an input data file for loading (PE for AIX only)” on page 103 and “Step 2b:

Construct an input data file for unloading (PE for AIX only)” on page 105.

102 IBM PE for AIX and Linux V5 R1: Operation and Use

Step 2a: Construct an input data file for loading (PE for AIX only)

You specify the input data file when you run the nrt_api command (in “Step 3:

Load the network tables on each node (PE for AIX only)” on page 106). The

contents of the data input file provide a simple description of the network you

wish to load, including the:

v Number of tasks in the job

v Adapter device name

v Window number

v LID

v Port number

v Network ID

The nrt_api program expects the input data file to be named nrt_data (but you if

you wish to use another name, you can modify the sample nrt_api.c code).

The format of the nrt_data file for loading network tables is shown below. Note

that each field must be separated by one or more spaces.

The format of line 1 is:

number_of_tasks job_key adapter_string network_id

where:

v number_of_tasks is the number of tasks in the job.

v job_key is the integer job key value. This value is supplied to the NRT_JOB_KEY

environment variable in “Step 4: Run the parallel job under POE (PE for AIX

only)” on page 107.

v adapter_string is the InfiniBand adapter device name character string. This value

is supplied to the NRT_WINDOW_DATA environment variable in “Step 4: Run

the parallel job under POE (PE for AIX only)” on page 107.

v network_id is the 64-bit network ID.

The format of line 2, through the end of the file, is as follows. Note that all of the

following values must be entered for each task on a separate line, and the order of

tasks must be sequential, starting with task 0.

node_number window_number LID_number port_number

where:

v node_number is the integer node number assigned by Reliable Scalable Cluster

Technology (RSCT) to the node on which the task will run.

v window_number is the integer window number to be assigned for this task.

v LID_number is the integer LID.

v port_number is the integer InfiniBand port number for the window that is used.

Note: The node number, LID, window number, and port number can be

determined by using nrt_api -s to query the adapter resources. Also in

loading the network table data, the samples define a constant LMC value of

zero. If a different value is desired, the samples must be modified to account

Chapter 3. Managing POE jobs 103

for different LMC values. This may require you to modify the samples to

allow for an LMC value as an additional input parameter when loading the

network table data.

An example of a data input file is as follows. For this example:

v The job contains three tasks and runs on three different nodes.

v The job key is 5.

v The network ID is 18338657682652659712.

v Task 0 runs on machine c10n01 with a node number of 1, adapter iba1, on

window 100. The adapter iba1 on c10n01 has LID 7 and has a single port (port

ID 1).

v Task 1 runs on machine c10n02 with a node number of 2, adapter iba0, on

window 101. The adapter iba0 on c10n02 has LID 11 and has a single port (port

ID 1).

v Task 2 runs on machine c10n03 with a node number of 3, adapter iba1, on

window 102. The adapter iba1 on c10n03 has LID 14 and has a single port (port

ID 1).

On the c10n01 machine, the contents of the nrt_data file would be as follows:

 3 5 iba1 18338657682652659712

 0 100 7 1

 1 101 11 1

 2 102 14 1

On the c10n02 machine, the contents of the nrt_data file would be as follows:

 3 5 iba0 18338657682652659712

 0 100 7 1

 1 101 11 1

 2 102 14 1

On the c10n03 machine, the contents of the nrt_data file would be as follows:

 3 5 iba1 18338657682652659712

 0 100 7 1

 1 101 11 1

 2 102 14 1

In the example above, note that the files on each node are almost identical except

for the first line. The InfiniBand adapter name is different on the second node.

Note also that the tasks must be on the same network in order for the job to

successfully run.

Example of loading multiple windows on multiple nodes

The following example illustrates the situation in which multiple windows must be

loaded on multiple nodes. In this case, more than one input data file is required

and more than one network table must be loaded, on each node.

In this example, the following is expected:

v The job contains 4 tasks, and each node runs 2 tasks. The system uses a single

adapter.

v The job key is 6.

104 IBM PE for AIX and Linux V5 R1: Operation and Use

v The network ID is 18338657682652659712.

v Tasks 0 and 1 run on node z18n01. The adapter is iba0, and has a LID of 7. Each

task requires 2 windows:

– Task 0 uses windows 110 and 114.

– Task 1 uses windows 111 and 115.
v Tasks 2 and 3 run on node z18n02. The adapter is iba0, and has a LID of 11.

Each task requires 2 windows:

– Task 2 uses windows 112 and 117.

– Task 3 uses windows 113 and 116.

The first data file contains the following:

4 6 iba0 18338657682652659712

1 110 7 1

1 111 7 1

2 112 11 1

2 113 11 1

The second data file contains:

4 6 iba0 18338657682652659712

1 114 7 1

1 115 7 1

2 116 11 1

2 117 11 1

On each node, you must perform two nrt_api –l operations to load the two

network tables. This loads the multiple windows on each node, so that each task

runs with more than one window. The information in “Step 4: Run the parallel job

under POE (PE for AIX only)” on page 107 shows how the job needs to be run

after loading multiple windows.

Step 2b: Construct an input data file for unloading (PE for AIX

only)

When you unload the network and window information you are required to use a

node name instead of a node number. After setting up the input data, you can

follow the instructions in “Step 5: Unload the network tables (PE for AIX only)” on

page 108.

The nrt_api program expects the input data file to be named nrt_data (but you if

you wish to use another name, you can modify the sample nrt_api.c code).

The format of the nrt_data file for unloading network tables is shown below. Note

that each field must be separated by one or more spaces.

The format of line 1 is:

number_of_tasks job_key adapter_string network_id

where:

v number_of_tasks is the integer job key value. This value is supplied to the

NRT_JOB_KEY environment variable in “Step 4: Run the parallel job under POE

(PE for AIX only)” on page 107.

Chapter 3. Managing POE jobs 105

v job_key is the integer job key value. This value is supplied to the NRT_JOB_KEY

environment variable in “Step 4: Run the parallel job under POE (PE for AIX

only)” on page 107.

v adapter_string is the InfiniBand adapter device name character string. This value

is supplied to the NRT_WINDOW_DATA environment variable in “Step 4: Run

the parallel job under POE (PE for AIX only)” on page 107.

v network_id is the 64-bit network ID.

The format of line 2, through the end of the file, is as follows. Note that all of the

following values must be entered for each task on a separate line, and the order of

tasks must be sequential, starting with task 0.

node_name window_number LID_number

where:

v node_name is a character string node name, for the node on which the windows

were previously loaded.

v window_number is the integer window number to be assigned for this task.

v LID_number is the integer LID.

Note that while the port number is required for loading the tables, it should not be

specified when unloading the tables. Also because you must specify a node

number when loading the tables and a node name when unloading the tables, the

same nrt_data input file cannot be used for both operations.

Note: The node number, LID, window number, and port number can be

determined by using nrt_api -s to query the adapter resources.

Step 3: Load the network tables on each node (PE for AIX

only)

To load the network tables one each node, run the nrt_api command with the -l

option. The syntax of the nrt_api command is as follows:

nrt_api [l] [u] [-s device] [-h]

where:

-l Specifies to load the network resource table on this node.

-u Specifies to unload the network resource table on this node.

-s Displays the network resource table data for the specified adapter device

on this node. For more information, see “Displaying adapter device status

information (PE for AIX only)” on page 108.

-h Displays usage information.

The nrt_api program uses the data provided in the nrt_data file along with the

nrt_load_table_rdma function to load the network table on the node on which it

will be run. Descriptions of the return codes from nrt_load_table_rdma are

displayed. Refer to the header file (/usr/include/nrt.h) for more information on the

return codes. The nrt_load_table_rdma and nrt_load_window functions are

available from the Network Table API library (libnrt.a).

106 IBM PE for AIX and Linux V5 R1: Operation and Use

Although the example in “Step 2a: Construct an input data file for loading (PE for

AIX only)” on page 103 shows how to set up the nrt_data file when using unique

nodes for each task, you may wish to run multiple tasks on the same node.

Multiple tasks that run on the same node are called common tasks. For common

tasks, there are additional considerations, in particular, the two following cases:

Case A: All common tasks share the same adapter

In this case, you only need to load the network table once (one call to

nrt_api -l). It is important to ensure that each task is assigned a unique

window on the adapter, and that all assigned windows are available.

Case B: Multiple adapters will be used

In this case, you must issue one call to nrt_api -l for each adapter you use.

It is important to ensure that each task is assigned a unique window on

the adapter, and that all assigned windows are available.

Perhaps a simpler way to explain the cases above is to say that one nrt_data file

and one nrt_api load are required for each adapter that is used in the system.

Step 4: Run the parallel job under POE (PE for AIX only)

To run the parallel job under POE, use the nrt_run script, as follows:

poe nrt_run myprog poe_and_prog_options

where myprog is the name of the parallel program. The use of a host list file is

required when running a parallel job, and its entries must correspond to the nodes

on which the network data has been loaded.

The nrt_run script sets the MP_MPI_NETWORK and MP_LAPI_NETWORK

environment variables for each task and then invokes the parallel program

(myprog). The following environment variables must be set before you invoke POE:

MP_RESD

Set to no.

MP_DEVTYPE

Set to ib. Required for selecting InfiniBand interconnect.

MP_MSG_API

Set to mpi or lapi. mpi_lapi and mpi,lapi are not supported by these

samples, as written.

NRT_JOB_KEY

Set to the key used in the nrt_data file to load the tables.

NRT_WINDOW_COUNT

Set to the number of instances used by each task. In the example shown in

“Step 3: Load the network tables on each node (PE for AIX only)” on page

106, the value for NRT_WINDOW_COUNT would be 1.

NRT_WINDOW_DATA

The value you provide should contain the window/adapter data for each

task, in the following format:

 In the three-task example shown in “Step 2a: Construct an input data file

for loading (PE for AIX only)” on page 103, NRT_WINDOW_DATA would

be set as follows:

NRT_WINDOW_DATA=window,adapter_name:window,adapter_name:window,adapter_name

Chapter 3. Managing POE jobs 107

NRT_WINDOW_DATA=100,iba1:101,iba0:102,iba1

To further illustrate the example of multiple windows in “Step 3: Load the network

tables on each node (PE for AIX only)” on page 106, NRT_WINDOW_COUNT

would be set to 2 and NRT_WINDOW_DATA would be set to:

Note that this would require two invocations of nrt_api -l on each node after the

window information had been obtained on each of those nodes.

Step 5: Unload the network tables (PE for AIX only)

To unload the network tables (as root), run the nrt_api -u command on each node,

with the nrt_data file present. This unloads only the windows that were loaded by

the previous call to nrt_api -l.

An nrt_data file that is used as input has a slightly different format, in that a node

name is required while the port number used in loading the table is not required.

Because of this, it is suggested that you use different nrt_data input files for

loading and unloading the tables. See “Step 2b: Construct an input data file for

unloading (PE for AIX only)” on page 105 for more information on creating an

nrt_data file for unloading.

Note: After you load the network tables and set up the environment variables, you

can run any number of jobs. You only need to unload the tables after you

have completed running all of the jobs.

The samples use the nrt_unload_window() function to unload the windows. In

some cases, it might be safer to use the nrt_clean_window() function in order to

guarantee that all running tasks are terminated while the windows are released.

Refer to Reliable Scalable Cluster Technology: NRT API Programming Guide for more

information on the differences and capabilities of the nrt_unload_window() and

nrt_clean_window() functions.

Displaying adapter device status information (PE for AIX only)

The nrt_api.c program allows you to display the window information and the

status of adapter devices that are on the node from which the nrt_api command is

run. You do this with the nrt_api -s command. The -s flag requires a device name

string. For example:

nrt_api -s iba0

The output of nrt_api -s is displayed to STDOUT. It is recommended that you

redirect the output from the STDOUT pipe into a file or other command for later

use. The resulting output displays the node, window, port ID, LID, network ID,

window IDs, and states for all available windows for the specified device.

The following is an example of the output produced by nrt_api -s:

NRT_WINDOW_DATA=110,iba0:114,iba0:111,iba0:115,iba0:112,iba0:116,iba1:113,iba0:117,iba1

108 IBM PE for AIX and Linux V5 R1: Operation and Use

The nrt_api -s command allows you to determine the available windows, which is

helpful when you are constructing the nrt_data input file to be used for loading

and unloading the network table resources.

NRT version is 420

Getting status for device iba0

node number: 1

number of ports: 1

port id 0 is 1, lid: 25, lmc: 0, network id: 18338657682652659712

Number of windows reporting status: 128

window ID: 0, user uid: 0, loader pid: 0, bulk transfer 0 -- state: NRT_WIN_AVAILABLE

window ID: 1, user uid: 0, loader pid: 0, bulk transfer 0 -- state: NRT_WIN_AVAILABLE

window ID: 2, user uid: 0, loader pid: 0, bulk transfer 0 -- state: NRT_WIN_AVAILABLE

window ID: 3, user uid: 0, loader pid: 0, bulk transfer 0 -- state: NRT_WIN_AVAILABLE

window ID: 4, user uid: 0, loader pid: 0, bulk transfer 0 -- state: NRT_WIN_AVAILABLE

...

...

window ID: 125, user uid: 0, loader pid: 0, bulk transfer 0 -- state: NRT_WIN_AVAILABLE

window ID: 126, user uid: 0, loader pid: 0, bulk transfer 0 -- state: NRT_WIN_AVAILABLE

window ID: 127, user uid: 0, loader pid: 0, bulk transfer 0 -- state: NRT_WIN_AVAILABLE

Chapter 3. Managing POE jobs 109

110 IBM PE for AIX and Linux V5 R1: Operation and Use

Chapter 4. Debugging parallel programs using DISH and the

PDB debugger

PDB is PE’s command line debugger for parallel programs. It works together with

the Distributed Interactive Shell (DISH), a tool for launching and managing

distributed processes interactively, as well as GDB, the GNU project debugger (for

Linux) and dbx, a UNIX-based debugger (for AIX).

All of the commands you use with PDB are either DISH commands, for process

management, or GDB or dbx commands, for serial debugging. PDB simply

configures DISH to manage distributed GDB or dbx instances, and then hands

control over to DISH.

Using the Distributed Interactive Shell

Distributed Interactive Shell (DISH) is an interactive tool that serves as a control

center to multiple distributed copies of a client. DISH can be configured into a

distributed shell, a parallel debugger, or some other interactive program,

depending on the client you choose to use.

For example, Korn Shell (ksh) can be launched on different nodes and then

controlled by DISH. As a result, a command such as ls can be broadcast to all

shells and then executed in parallel to produce the file listing. DISH then gathers

the shell output and presents you with the results.

A DISH session is composed of one or more DISH consoles and one or more DISH

agents. There are three types of DISH agents, which are organized into a tree

structure. They are:

Root agent

Relays commands from all connected DISH consoles to the remote agents

and reports client output from the remote agents back to the consoles.

There is only one root agent per DISH session.

Middle agent

Reports client output to DISH through the root agent. The middle agent is

a child of the root agent that resides on the same remote host as the client.

Leaf agent

Reports client output to DISH through the middle and root agents. The leaf

agent is a child of the root or middle agent, and resides on the same

remote host as the client. The leaf agent is responsible for launching the

client instances.

By default, DISH launches the root agent from the host on which DISH is running.

The middle agents are launched either by parent middle agents or the root agent.

The leaf agents are launched by the root and middle agents, or by a job launcher

such as POE.

Note that after initial startup, there is only one DISH console in a session.

However, you can add up to 64 consoles after the session is started.

© Copyright IBM Corp. 1993, 2008 111

The DISH agents connect to DISH through INET sockets, and are able to spawn

multiple client instances or additional DISH agents through UNIX pipes. The

location of the DISH console is not important, as long as it is accessible to the

DISH agents.

At runtime, the root agent reads two required files, which you create; an instance

file and a configuration file. The instance file tells DISH the hosts on which the

clients (and, therefore, the leaf agents) will run. The configuration file controls the

behavior of DISH by defining session-wide variables, and also provides

information about the clients to DISH. The configuration file configures the leaf

agents for different types of clients, which allows DISH to act as either a

distributed shell or a debugger.

The dish and disha commands are used for setting up DISH and for controlling its

behavior. The dish command also includes various subcommands for managing

activities on the clients.

Figure 1 provides an overview of the DISH environment.

Before you begin using DISH

Before using DISH, there are several tasks you need to perform including creating

an instance file, creating a configuration file, and testing the clients to make sure

they can be supported by DISH.

Creating an instance file

When you set up a DISH session, you need to create an instance file to, at a

minimum, specify the hosts on which the client instances will run. The instance file

defines instance-specific information only, unlike the configuration file, which

defines session-wide variables.

DISH Agent DISH Agent

Client

Instance File

Config File

UNIX Domain Socket

Connection (0600)

DISH Agent DISH Agent

Socket Connection

DISH Console … DISH Console

Client Client Client

Client Client

Socket Connection

Pipe Connection

DISH Agent

Root Agent

Middle Agent

Leaf Agent

Figure 1. Overview of the DISH environment

112 IBM PE for AIX and Linux V5 R1: Operation and Use

Note: If you are using the PDB debugger, you do not need to create the instance

file. It is created by PDB dynamically using the POE host list file.

The format of the instance file is similar to a plaintext database, where fields are

defined, followed by records consisting of the values for those fields. The first line

of the instance file should contain fields for which you will be providing values

(host and pid, in the example below). The values should be entered below the

corresponding fields, line-by-line.

As an example, if you wanted to launch DISH with a debugger, you would include

the process IDs that are required by DISH in order to attach to a running job. Here

is what that instance file might look like:

host pid

#########################

wcsvr03.rd.acme.com 20396

wcsvr04.rd.acme.com 20379

wcsvr03.rd.acme.com 20397

wcsvr04.rd.acme.com 20380

Note that field names in the instance file are case-sensitive.

At a minimum, you must specify a host in the instance file for every DISH session.

Also note that you can place the host variable anywhere in the list of fields. Clients

may require other information to be defined in the instance file, but the variable

names you add must not conflict with variable names that are already understood

by DISH.

host is a reserved variable, which means that it is recognized by DISH, but must

be defined by you. It is also the only field that DISH understands. You may add

other non-DISH variables, but they are only understood when you specify them

using variable substitution. For more information see “Using variable substitution”

on page 114.

Note that id, child_pid and client_pid are predefined, instance-specific variables

that are also understood by DISH, so you cannot add fields of these names to the

instance file. These variables are set implicitly by DISH at run time.

The location of the instance file is specified with the -I flag of the disha command.

For more information about the disha command, see “disha” on page 141.

Creating a configuration file

In addition to the instance file, DISH also requires a runtime configuration file to

provide information about the client and control the behavior of DISH. It allows

DISH to support different client programs without knowing what functions they

are performing. Unlike the instance file, which defines information about specific

client instances, the configuration file defines session-wide variables.

Note: If you are using the PDB debugger, you do not need to create the

configuration file. It is created by PDB.

In the configuration file, you define a list of variables followed by their values

(variable = value). For example:

client = /usr/bin/gdb -quiet %exe %pid

client_prompt = (gdb)

interrupt_command = kill -TRAP %pid

Chapter 4. Debugging parallel programs using DISH and the PDB debugger 113

Both the variables and their values are case-sensitive.

You may add non-DISH variables to the configuration file that are required by the

client, but you must specify them using variable substitution. For more

information, see “Using variable substitution.”

DISH recognizes the following variables:

v client - defines the command line to launch the client.

v client_prompt - defines the prompt of the client. The prompt must not change

during a DISH session.

v interrupt_command - defines the command sequence to be used to interrupt a

running client process. When a running client process is successfully interrupted,

the prompt should appear again. This command sequence is issued against each

client in the current group.

v key_enter - for convenience, key_enter defines the command to execute when

the <Enter> key has been pressed on an empty line.

The location of the configuration file is specified with the -c flag of the disha

command. For more information about the disha command, see “disha” on page

141.

Using variable substitution

Clients may require other information to be defined in the instance and

configuration files in order to function properly. For example, when a debugger is

started, it may require the location of a target program, or it may need to know a

process ID to which it should attach. But since DISH knows nothing about the

functions of the clients, and only recognizes its own specific fields, you must

define all non-DISH variables in the instance file (for instance-specific values) or

configuration file (for session-wide values). Note that you may also define

non-DISH, session-wide variables by issuing the disha -g command from the DISH

console.

After the non-DISH values have been defined, you can specify them later using

variable substitution. When you specify a value with variable substitution, the

value to be substituted is prefixed by a % (percent sign). The value that is used as

a substitution is defined in either the instance file or the configuration file.

The following example shows the client variable in the configuration file. In this

example, GDB (GNU debugger) is the client. The -quiet flag suppresses the GDB

prolog. The rest of the line asks DISH to substitute %exe with the value of the exe

variable and %pid with the value of the pid variable.

client = /usr/bin/gdb -quiet %exe %pid

The exe variable is session-wide for SIMD parallel programs, but can also be

instance-specific for MIMD parallel programs. The pid variable is instance-specific.

Note that you can also use variable substitution with commands you issue from

the DISH console. For example, you could issue the following command:

attach %pid

from the DISH console to cause the GDB or dbx debugger to attach to running

processes. %pid would be substituted by the value defined for pid in the instance

114 IBM PE for AIX and Linux V5 R1: Operation and Use

file before the command is passed to the GDB or dbx instances. For more

information about DISH subcommands, such as attach, see “Subcommands of the

dish command” on page 137.

Ensuring the clients are accessible to DISH

After creating the instance and configuration files, you should test the clients to

make sure they can be supported by DISH. A quick way to do this is to launch

them remotely using rsh or ssh. If the client’s prompt appears, it should work with

DISH.

Using the DISH console

As stated earlier, DISH serves as a control center to multiple copies of a client.

DISH agents relay commands from the DISH consoles to the client processes, and

then report output from the clients back to DISH. The DISH console provides the

command line from which you can issue the dish and disha commands, and also

dish subcommands, to perform tasks such as:

v Specify the remote shell you want to use for launching clients (disha -r)

v Specify whether leaf agents should be launched automatically when DISH is

started (disha -n)

v Define session-wide variables (dish -d)

v Specify an instance file or configuration file other than the default (disha -t and

disha -c)

v Specify a port number to override the default (disha -p)

For more information, see “dish” on page 132 and “disha” on page 141.

The dish command also includes the following subcommands, which offer

additional control over a session:

v group - for defining groups of clients

v on - for designating a particular group of clients as the current group

v interrupt - for interrupting execution of the clients that belong to the current

group

v leave - for causing the current group to leave the interrupt state

v kquit - for killing all running clients and quitting dish

v help - for getting help information on any of the dish subcommands, or on

predefined dish topics.

v exit - for quitting the DISH console.

v send - for sending secondary prompt messages to the current group

v toggle - for setting PDB’s runtime attributes, such as multiple-console broadcast,

console message color, and internal message flush.

v match - for applying regular expression filter rules to last command output

For more information on the dish subcommands see “Subcommands of the dish

command” on page 137.

For information about client commands, refer to the client’s documentation. To

indicate that a command is a client command, you can prefix it with a colon (:).

For example, issuing :help bypasses DISH and outputs the client’s help instead.

Client commands are generally broadcast to all members in the current group. A

help command with a client command or topic that is not preceded by a colon (:)

is sent to only one client.

Chapter 4. Debugging parallel programs using DISH and the PDB debugger 115

Setting up the DISH agents

In order to establish a connection to the DISH console, each root, middle, and leaf

agent must know the host on which the DISH console is running, and must have

an agent ID. To specify the location of the DISH console and the agent ID, you use

the disha command. The agent ID must be either an integer or the name of an

environment variable that specifies the agent ID at run time. Each agent must have

a unique agent ID.

Environment variables can also be used to the specify agent IDs. For example, if

you are using POE to launch the DISH agents, you can use the MP_CHILD

environment variable to specify the agent IDs.

For more information about the disha command, see “disha” on page 141.

Launching DISH agents

By default, DISH launches the root agent from the host on which DISH is

running. The middle agents are launched either by parent middle agents or the

root agent. The leaf agents are launched by parent agents, or by a job launcher

such as POE.

By default, rsh (Remote Shell) is used for launching agents, but if you want to use

a different method, you can use the -r flag with the disha command. For example,

if you wanted to use ssh (Secure Shell) instead of rsh, you would specify disha -r

ssh.

Note that if you have a large number of client sessions, you could experience

serious bottlenecks when they are launched. To avoid situations such as this, DISH

uses a tree algorithm to cause agents to launch other agents. The root agent

generates a tree structure from the instance file and the fanout factor. The fanout

factor can be specified with the -f option of the disha command. The root agent

uses rsh or ssh to launch the next level child agents, and the child agents connect

back to the root agent after startup. In turn, the child agents then launch their own

child agents.

In addition to DISH, you can also use other job launching mechanisms, for

example, POE, to launch DISH agents. Before you do this, you must first tell DISH

not to launch leaf agents. You do this with the disha -n flag. Next, you need to tell

the DISH agents where DISH is running and also supply them with an agent ID

for connection. In general, a task ID is available from the job launcher, which can

be used as the agent ID.

Understanding the DISH states

At any time, DISH can be in one of three states, in terms of its readiness for input.

It is important to be aware of the state, because it indicates what the clients are

doing and what commands can be run at that moment. The DISH states are as

follows:

v Ready state

– All clients in the current group have prompted for input.

– DISH also prompts for input (in other words, by showing (all)).

– Client commands are available. DISH commands, except those for interrupt

state only, are also available.
v Execution state

– At least one client in the current group has not prompted for input.

116 IBM PE for AIX and Linux V5 R1: Operation and Use

– DISH does not prompt for input, but shows client output, if any.

– No commands are available, but you can press <Ctrl-C> or send a SIGINT to

DISH to get into interrupt state.
v Interrupt state

– At least one client in the current group has not prompted for input but you

pressed <Ctrl-C> or sent a SIGINT.

– DISH prompts for input and indicates interrupt state (in other words, by

showing (all:int)). Client output is not displayed.

– All DISH commands are available but not client commands. Refer to the

interrupt and leave commands, which are available only in interrupt state.

Example: Setting up ksh with DISH

In this example, the user created an instance file with the following contents:

client = ksh -i

client_prompt = $

interrupt_command = kill -INT %child_pid

info = echo hostname:pwd

The user also created a configuration file with the following contents:

host

c121xs03

c121xs04

After setting up the instance and configuration files, the user issued the dish

command, which produced the following output:

(all) cd /tmp

(all) %info

0 | c121xs03.ppd.pok.ibm.com:/tmp

1 | c121xs04.ppd.pok.ibm.com:/tmp

(all) ls > ~/tmplist.%id

(all) on 0

(0) ls -l ~/tmplist*

0 | -rw-r--r-- 1 user user 293 Aug 25 15:19 /u/user/tmplist.0

0 | -rw-r--r-- 1 user user 145 Aug 25 15:19 /u/user/tmplist.1

(0) on all

(all) vmstat 1 3

0 | procs -----------memory---------- ---swap-- -----io---- --system-- ----cpu----

0 | r b swpd free buff cache si so bi bo in cs us sy id wa

0 | 2 0 0 530356 69564 304056 0 0 0 5 17 20 2 4 94 0

1 | procs -----------memory---------- ---swap-- -----io---- --system-- ----cpu----

1 | r b swpd free buff cache si so bi bo in cs us sy id wa

1 | 1 0 0 498456 71868 331132 0 0 0 5 16 18 2 4 94 0

0 | 0 0 0 530356 69564 304056 0 0 0 0 1011 89 0 0 100 0

1 | 0 0 0 498456 71868 331132 0 0 0 0 1009 27 0 0 100 0

0 | 0 0 0 530356 69564 304056 0 0 0 0 1007 24 0 0 100 0

1 | 0 0 0 498456 71868 331132 0 0 0 0 1005 34 0 0 100 0

(all) exit

CONSOLE: 2800-801 Connection terminated.

Using the PDB debugger

Debugging with PDB is similar to using multiple GDB or dbx instances to debug

multiple processes simultaneously. PDB adds convenience by providing a control

center for managing processes (DISH). PDB allows you to debug programs in two

different modes; launch mode and attach mode.

Chapter 4. Debugging parallel programs using DISH and the PDB debugger 117

Note that PDB creates the instance file and configuration file dynamically, using

the POE host list file. So, although you must create the instance and configuration

files when plugging in a shell as a client, you do not need to do so when the client

is the PDB debugger.

Before you can use PDB, you first need to compile the program you want to

debug. You also need to be able to use POE to launch a parallel job with the

compiled program.

Using PDB in launch mode

In launch mode, PDB launches the job and starts interactive debugging from the

beginning of the program. To use PDB in launch mode, precede the executable in

your usual launch script with pdb on the command line. For example:

pdb program arguments

In launch mode, PDB establishes one connection to each task, and each of these

connections consumes one file descriptor. On a Linux system, the number of tasks

may exceed the number of file descriptors that a process can open. In this

situation, you need to edit the /etc/security/limits.conf file to increase the hard

limit for the maximum number of file descriptors that can be used per process. For

example, root can add the following line for user1:

user1 hard nofile 2048

After the hard limit in /etc/security/limits.conf is increased, user1 needs to issue

ulimit -n hard_limit before running PDB to set the current limit to the same value

as the hard limit.

Using PDB in attach mode

In attach mode, PDB attaches to a program that is already in progress. To use PDB

to attach to a running job, use the -a flag of the pdb command, followed by the

process ID of the POE job, and then any client or DISH options you wish to

specify. For example:

pdb -a 885947 --dish -i 3 --gdb -d source_dir

Note that the you must issue this command from the node on which the POE

process is running.

Diagnosing problems with PDB

When diagnosing problems with PDB, look at GDB or dbx first. For example, if

you see some unexpected behavior while running PDB, you could issue one of the

following commands to see if the same behavior exists under rsh:

rsh host gdb options program

Or

rsh host dbx options program

To obtain more information from PDB, use the dish -i info_level option.

The following are known issues with PDB:

edit command hangs

118 IBM PE for AIX and Linux V5 R1: Operation and Use

v Reason - GDB and dbx launch an external editor to edit source files,

which sometimes causes PDB to hang.

v Solution - Do not use the edit command. In the event that a user enters

the edit command, do one of the following:

– If you are using GDB, press <Ctrl-c> to enter the interrupt state, and

then type the command interrupt.

– If you are using dbx, press <Ctrl-c> to enter the interrupt state, and

then enter the command send :q twice.

Spurious SIG32 stops the job

v Reason - pthread_cancel() calls a program that generates SIG32 when

the program is being debugged by GDB.

v Solution - Use the GDB command handle SIG32 nostop. This command

can be put into .gdbinit to avoid retyping it for each session.

POE shows: ″ERROR: 0031-652 Error reading STDIN″

v Reason - PDB uses POE to launch DISH agents, and POE is started in

the background without STDIN.

v Solution - Ignore this error.

PDB cannot pass an option to GDB, dbx, or POE if there is a space in the

option

v Reason - Spaces are treated as word delimitors by the shell script with

which PDB is written.

v Solution - Do not use spaces in options.

PDB does not support dbx -r

v Reason - Although dbx -r will run a program, when the program ends,

dbx will not be launched as the debugger.

v Solution - Do not use dbx -r on AIX.

PDB cannot rerun a job

v Reason - LAPI and POE cannot support rerunning a job in the same

context.

v Solution - Rerun the job by exiting, and then reentering PDB.

Example: Debugging a program with PDB

In the following example, the user has already set up the execution environment

with the same arguments he would use with the poe command. Next, he starts

PDB in launch mode, specifying the program he wants to debug. In this example,

the program to debug runs on Linux and is a bandwidth testcase for MPI, called

mpi_bw. The launch command looks like this:

pdb mpi_bw

After issuing the command above, the following output is displayed:

PDB -- Parallel Debugger for IBM Parallel Environment

At the prompt, enter any GDB command. Be aware, the tasks

are not yet running. Use debugger’s run command to start them.

Enter ’help’ for more usage.

(all) break main

0 | Using host libthread_db library "/lib/tls/libthread_db.so.1".

0 | Breakpoint 1 at 0x80497dd: file bw.c, line 291.

1 | Using host libthread_db library "/lib/tls/libthread_db.so.1".

1 | Breakpoint 1 at 0x80497dd: file bw.c, line 291.

Chapter 4. Debugging parallel programs using DISH and the PDB debugger 119

2 | Using host libthread_db library "/lib/tls/libthread_db.so.1".

2 | Breakpoint 1 at 0x80497dd: file bw.c, line 291.

3 | Using host libthread_db library "/lib/tls/libthread_db.so.1".

3 | Breakpoint 1 at 0x80497dd: file bw.c, line 291.

(all) run

0 | Starting program: /u/user/PDB_DEMO/mpi_bw -i 1000 -p

0 | [Thread debugging using libthread_db enabled]

0 | [New Thread 1077082144 (LWP 22912)]

0 | [New Thread 1079184304 (LWP 22918)]

0 | [Switching to Thread 1077082144 (LWP 22912)]

0 |

0 | Breakpoint 1, main (argc=4, argv=0xbff82ad4) at bw.c:291

0 | 291 int num_iter = 10000;

1 | Starting program: /u/user/PDB_DEMO/mpi_bw -i 1000 -p

1 | [Thread debugging using libthread_db enabled]

1 | [New Thread 1077082144 (LWP 25909)]

1 | [New Thread 1079184304 (LWP 25914)]

1 | [Switching to Thread 1077082144 (LWP 25909)]

1 |

1 | Breakpoint 1, main (argc=4, argv=0xbfec7884) at bw.c:291

1 | 291 int num_iter = 10000;

2 | Starting program: /u/user/PDB_DEMO/mpi_bw -i 1000 -p

2 | [Thread debugging using libthread_db enabled]

2 | [New Thread 1077082144 (LWP 22913)]

2 | [New Thread 1079184304 (LWP 22919)]

2 | [Switching to Thread 1077082144 (LWP 22913)]

2 |

2 | Breakpoint 1, main (argc=4, argv=0xbfe4a9e4) at bw.c:291

2 | 291 int num_iter = 10000;

3 | Starting program: /u/user/PDB_DEMO/mpi_bw -i 1000 -p

3 | [Thread debugging using libthread_db enabled]

3 | [New Thread 1077082144 (LWP 25908)]

3 | [New Thread 1079184304 (LWP 25915)]

3 | [Switching to Thread 1077082144 (LWP 25908)]

3 |

3 | Breakpoint 1, main (argc=4, argv=0xbff47714) at bw.c:291

3 | 291 int num_iter = 10000;

(all) print num_iter

0 | $1 = 11127968

1 | $1 = 5565600

2 | $1 = 11127968

3 | $1 = 5565600

(all) next

0 | 292 int mode_begin = PINGPONG, mode_end = BI_STREAMING;

1 | 292 int mode_begin = PINGPONG, mode_end = BI_STREAMING;

2 | 292 int mode_begin = PINGPONG, mode_end = BI_STREAMING;

3 | 292 int mode_begin = PINGPONG, mode_end = BI_STREAMING;

(all) print num_iter

0 | $2 = 10000

1 | $2 = 10000

2 | $2 = 10000

3 | $2 = 10000

(all) group even=0 2

even: 0 2

(all) group odd=1 3

odd: 1 3

(all) on even

(even) continue

0 | Continuing.

2 | Continuing.

(even:int) <-- Control-C pressed

(even:int) interrupt

0 | [New Thread 1196522416 (LWP 22921)]

0 | [New Thread 1198623664 (LWP 22923)]

0 | [New Thread 1209482160 (LWP 22925)]

0 | [New Thread 1211583408 (LWP 22926)]

0 |

120 IBM PE for AIX and Linux V5 R1: Operation and Use

0 | Program received signal SIGTRAP, Trace/breakpoint trap.

0 | 0x00a877a2 in _dl_sysinfo_int80 () from /lib/ld-linux.so.2

2 | [New Thread 1196522416 (LWP 22920)]

2 | [New Thread 1198623664 (LWP 22922)]

2 | [New Thread 1209482160 (LWP 22924)]

2 | [New Thread 1211583408 (LWP 22927)]

2 |

2 | Program received signal SIGTRAP, Trace/breakpoint trap.

2 | 0x00a877a2 in _dl_sysinfo_int80 () from /lib/ld-linux.so.2

(even) where

0 | #0 0x00a877a2 in _dl_sysinfo_int80 () from /lib/ld-linux.so.2

0 | #1 0x00b65a41 in ___newselect_nocancel () from /lib/tls/libc.so.6

0 | #2 0x4019f29c in pm_cntl_pipe_select () from /usr/lib/libpoe.so

0 | #3 0x401a0aaa in _udp_info () from /usr/lib/libpoe.so

0 | #4 0x44d66f7f in _get_all_tasks_poe_info () from /usr/lib/liblapiudp.so

0 | #5 0x44d672c9 in _process_empty_ip_addr () from /usr/lib/liblapiudp.so

0 | #6 0x44d683c2 in udp_writepkt () from /usr/lib/liblapiudp.so

0 | #7 0x401d2232 in _send_ready_pkt () from /usr/lib/liblapi.so

0 | #8 0x401d2d79 in _process_epoch_item () from /usr/lib/liblapi.so

0 | #9 0x401d3b31 in _send_processing () from /usr/lib/liblapi.so

0 | #10 0x401c7ef3 in _lapi_dispatcher () from /usr/lib/liblapi.so

0 | #11 0x401c3cbd in _Am_xfer () from /usr/lib/liblapi.so

0 | #12 0x401c4349 in _Dgsp_xfer () from /usr/lib/liblapi.so

0 | #13 0x401c6e88 in PLAPI_Xfer () from /usr/lib/liblapi.so

0 | #14 0x4013b6d0 in mpci_send () from /usr/lib/libmpi_ibm.so

0 | #15 0x4007fb4c in bcast_tree_b () from /usr/lib/libmpi_ibm.so

0 | #16 0x40081e78 in _mpi_bcast () from /usr/lib/libmpi_ibm.so

0 | #17 0x4005e07d in _make_comm () from /usr/lib/libmpi_ibm.so

0 | #18 0x400c0400 in _mpi_init () from /usr/lib/libmpi_ibm.so

0 | #19 0x40121e4c in _css_init () from /usr/lib/libmpi_ibm.so

0 | #20 0x4012294e in _mp_init_msg_passing () from /usr/lib/libmpi_ibm.so

0 | #21 0x400ce8b7 in PMPI_Init () from /usr/lib/libmpi_ibm.so

0 | #22 0x080498bb in main (argc=4, argv=0xbff82ad4) at bw.c:313

2 | #0 0x00a877a2 in _dl_sysinfo_int80 () from /lib/ld-linux.so.2

2 | #1 0x00b65a41 in ___newselect_nocancel () from /lib/tls/libc.so.6

2 | #2 0x4019f29c in pm_cntl_pipe_select () from /usr/lib/libpoe.so

2 | #3 0x401a0aaa in _udp_info () from /usr/lib/libpoe.so

2 | #4 0x44d66f7f in _get_all_tasks_poe_info () from /usr/lib/liblapiudp.so

2 | #5 0x44d672c9 in _process_empty_ip_addr () from /usr/lib/liblapiudp.so

2 | #6 0x44d683c2 in udp_writepkt () from /usr/lib/liblapiudp.so

2 | #7 0x401d2232 in _send_ready_pkt () from /usr/lib/liblapi.so

2 | #8 0x401d2d79 in _process_epoch_item () from /usr/lib/liblapi.so

2 | #9 0x401d3b31 in _send_processing () from /usr/lib/liblapi.so

2 | #10 0x401c7ef3 in _lapi_dispatcher () from /usr/lib/liblapi.so

2 | #11 0x401c3cbd in _Am_xfer () from /usr/lib/liblapi.so

2 | #12 0x401c4349 in _Dgsp_xfer () from /usr/lib/liblapi.so

2 | #13 0x401c6e88 in PLAPI_Xfer () from /usr/lib/liblapi.so

2 | #14 0x4013b6d0 in mpci_send () from /usr/lib/libmpi_ibm.so

2 | #15 0x4007fb4c in bcast_tree_b () from /usr/lib/libmpi_ibm.so

2 | #16 0x40081e78 in _mpi_bcast () from /usr/lib/libmpi_ibm.so

2 | #17 0x4005e07d in _make_comm () from /usr/lib/libmpi_ibm.so

2 | #18 0x400c0400 in _mpi_init () from /usr/lib/libmpi_ibm.so

2 | #19 0x40121e4c in _css_init () from /usr/lib/libmpi_ibm.so

2 | #20 0x4012294e in _mp_init_msg_passing () from /usr/lib/libmpi_ibm.so

2 | #21 0x400ce8b7 in PMPI_Init () from /usr/lib/libmpi_ibm.so

2 | #22 0x080498bb in main (argc=4, argv=0xbfe4a9e4) at bw.c:313

(even) on all

(all) continue

0 | Continuing.

1 | Continuing.

2 | Continuing.

3 | Continuing.

0 |

0 | ------ MPI Ping-pong Bandwidth ------

0 | 1000 x 128 bytes 73.28 us 1.75 MB/s

0 | 1000 x 256 bytes 71.86 us 3.56 MB/s

0 | 1000 x 384 bytes 68.60 us 5.60 MB/s

Chapter 4. Debugging parallel programs using DISH and the PDB debugger 121

0 | 1000 x 512 bytes 79.34 us 6.45 MB/s

(all:int) <-- Control-C pressed

0 | 1000 x 640 bytes 99.96 us 6.40 MB/s

(all:int) leave

0 | 1000 x 768 bytes 134.01 us 5.73 MB/s

0 | 1000 x 896 bytes 132.25 us 6.78 MB/s

0 | 1000 x 1024 bytes 127.32 us 8.04 MB/s

(all:int) <-- Control-C pressed

(all:int) interrupt

0 |

0 | Program received signal SIGTRAP, Trace/breakpoint trap.

0 | 0x00a877a2 in _dl_sysinfo_int80 () from /lib/ld-linux.so.2

1 | [New Thread 1196522416 (LWP 25916)]

1 | [New Thread 1198623664 (LWP 25918)]

1 | [New Thread 1209482160 (LWP 25920)]

1 | [New Thread 1211583408 (LWP 25923)]

1 |

1 | Program received signal SIGTRAP, Trace/breakpoint trap.

1 | 0x005397a2 in _dl_sysinfo_int80 () from /lib/ld-linux.so.2

2 |

2 | Program received signal SIGTRAP, Trace/breakpoint trap.

2 | 0x00a877a2 in _dl_sysinfo_int80 () from /lib/ld-linux.so.2

3 | [New Thread 1196522416 (LWP 25917)]

3 | [New Thread 1198623664 (LWP 25919)]

3 | [New Thread 1209482160 (LWP 25921)]

3 | [New Thread 1211583408 (LWP 25922)]

3 |

3 | Program received signal SIGTRAP, Trace/breakpoint trap.

3 | 0x005397a2 in _dl_sysinfo_int80 () from /lib/ld-linux.so.2

(all) quit

CONSOLE: 2800-801 Connection terminated.

122 IBM PE for AIX and Linux V5 R1: Operation and Use

Chapter 5. Profiling programs with the prof and gprof

commands

You can use the prof (AIX only) and gprof (AIX and Linux) commands to profile

your parallel applications.

The difference between profiling serial and parallel applications with prof and

gprof is that serial applications can be run to generate a single profile data file,

while a parallel application can be run to produce many.

Profiling AIX programs with the prof and gprof commands

To profile an AIX program, you request parallel profiling by setting the compile

flag to -p or -pg as you would with serial compilation. The parallel profiling

capability of PE creates a monitor output file for each task.

AIX V5.3 TL 5300-05 (and later) allows the profiling output files to have a

user-specified name, depending on the setting of PROF and GPROF environment

variables (the PROF and GPROF environment variables were not supported in

AIX 5.2). With AIX V5.3 TL 5300-05 or later, there is additional profiling support

for threads and options that affect the type of profiling data that is collected, in

addition to other factors that also affect how the profiling output files will be

named.

The files are created in the current directory and are named based on the settings

of the PROF and GPROF environment variables, as described below. In all cases

taskid is a number between 0 and one less than the number of tasks.

v When neither PROF nor GPROF are set, the default file names are

mon.taskid.out or gmon.taskid.out, respectively.

v When an alternative file name is specified with PROF, the parallel profiling

output file names are filename.taskid.out.

v When GPROF is specified, the resulting output file names are a factor of the

keywords specified in the GPROF environment variable, as documented by the

AIX V5.3 TL 5300-05 (or later) gprof command, where the resulting file name

will have the taskid value appended in the filename prefix string (as defined by

the GPROF filename: keyword). For example, the following combinations of file

names are possible, based on the GPROF settings, for parallel profiling output

files:

– For multi file-type: prefix-processname-pid.taskid.out

– For multithread file-type: prefix-processname-pid-Pthreadthreaded.taskid.out

The prefix default is gmon. You can define your own prefix by using the

filename parameter of the GPROF environment variable. Note that the position

where the taskid is appended in the file name has changed for parallel profiling

output files, beginning with AIX V5.3 TL 5300-05.

In addition, with the added capabilities of the AIX V5.3 TL 5300-05, or later,

GPROF environment variable, a program compiled with -pg potentially produces

multiple output files in both the serial and parallel cases, if profile:thread is

specified as part of GPROF. Furthermore, thread profiling capability is only

available with profiling output files that are created with AIX V5.3 TL 5300-05, or

later. It is strongly suggested that you review the information on the PROF and

© Copyright IBM Corp. 1993, 2008 123

GPROF environment variables, and the prof and gprof commands in AIX

Commands Reference and AIX General Programming Concepts: Writing and Debugging

Programs.

Following the traditional method of profiling using the AIX operating system, you

compile a serial application and run it to produce a single profile data file that you

can then process using either the prof or gprof commands. With a parallel

application, you compile and run it to produce a profile data file for each parallel

task. You can then process one, some, or all the data files produced using either

the prof or gprof commands.

Table 52 describes how to profile parallel programs. For comparison, the steps

involved in profiling a serial program are shown in the left-hand column of the

table.

 Table 52. Profiling a parallel program, compared to profiling a serial program

To Profile a Serial Program: To Profile a Parallel Program:

Step 1: Compile the application

source code using the cc

command with either the -p or

-pg flag.

Step 1: Compile the application source code using the command mpcc_r (for C

programs), mpCC_r (for C++ programs), or mpxlf_r (for Fortran programs) as

described in IBM Parallel Environment: Operation and Use. You should use one of

the standard profiling compiler options – either -p or -pg – on the compiler

command. For more information on the compiler options -p and -pg, refer to

their use on the cc command as described in AIX Commands Reference and AIX

General Programming Concepts: Writing and Debugging Programs.

Step 2: Run the executable

program to produce a profile data

file. The file name is based on the

setting of the PROF keyword, in

which mon.out is the default file

name.

The file name produced is based

on the options that are specified

in the GPROF keyword, with

gmon as the default prefix.

Step 2: Before you run the parallel program, set the environment variable

MP_EUILIBPATH=/usr/lpp/ppe.poe/lib/profiled:/usr/lib/profiled:/lib/profiled :

/usr/lpp/ppe.poe/lib. If your message passing library is not in

/usr/lpp/ppe.poe/lib, substitute your message passing library path. Run the

parallel program. When the program ends, it generates a profile data file for each

parallel task.

The output file for source code that is compiled with the -p option is based on

the PROF keyword setting plus the taskid. In this case, mon.taskid.out is the

default.

The file name produced is based on the options that are specified in the GPROF

keyword, with gmon as the default prefix and the taskid appended. In this case,

gmon.taskid.out is the default.

Note: The current directory must be writable from all remote nodes. Otherwise,

the profile data files will have to be manually moved to the home node for

analysis with prof and gprof. You can also use the mcpgath command to move

the files. See IBM Parallel Environment: Operation and Use for more about mcpgath.

124 IBM PE for AIX and Linux V5 R1: Operation and Use

Table 52. Profiling a parallel program, compared to profiling a serial program (continued)

To Profile a Serial Program: To Profile a Parallel Program:

Step 3: Use either the prof or the

gprof command to process the

profile data file. The profile data

files are based on the PROF and

GPROF environment variable

settings.

Step 3: Use either the prof or gprof command to process the profile data files.

The file names are based on the PROF and GPROF environment variable settings.

Note that the position in the file name in which taskid is appended has changed

for parallel profiling output files on AIX V5.3 TL 5300-05.

You can process one, some, or all of the data files created during the run. You

must specify the name(s) of the profile data file(s) to read, however, because the

prof and gprof commands read mon.out or gmon.out by default. On the prof

command, use the -m flag to specify the name(s) of the profile data file(s) it

should read. For example, to specify the profile data file for task 0 with the prof

command:

Assuming the default case, ENTER

prof -m mon.0.out

You can also specify that the prof command should take profile data from some

or all of the profile data files produced. For example, to specify three different

profile data files – the ones associated with tasks 0, 1, and 2 – on the prof

command:

ENTER

prof -m mon.0.out mon.1 .out mon.2.out

On the gprof command, you simply specify the name(s) of the profile data file(s)

it should read on the command line. You must also specify the name of the

program on the gprof command, but no option flag is needed. For example, to

specify the profile data file for task 0 with the gprof command:

Assuming the default case, ENTER

gprof program gmon.0.out

As with the prof command, you can also specify that the gprof command should

take profile data from some or all of the profile data files produced. For example,

to specify three different profile data files – the ones associated with tasks 0, 1,

and 2 – on the gprof command:

ENTER

gprof program gmon.0.out gmon.1.out gmon.2.out

The parallel utility, mp_profile(), may also be used to selectively profile portions

of a program. To start profiling, call mp_profile(1). To suspend profiling, call

mp_profile(0). The final profile data set will contain counts and CPU times for the

program lines that are delimited by the start and stop calls. In C, the calls are

mpc_profile(1), and mpc_profile(0). By default, profiling is active at the start of

the user’s executable.

Note: Like the sequential version of prof/gprof, if more than one profile file is

specified, the parallel version of the prof/gprof command output shows the

sum of the profile information in the given profile files. There is no

statistical analysis contacted across the multiple profile files.

Profiling Linux programs with the gprof command

To profile a Linux program, you request parallel profiling by setting the compile

flag to -pg as you would with serial compilation. The parallel profiling capability

of PE creates a monitor output file for each task.

Chapter 5. Profiling programs with the prof and gprof commands 125

The files are created in the current directory, and are identified by the name

gmon.out.taskid, where taskid is a number between 0 and one less than the number

of tasks.

Following the traditional method of profiling, you compile a serial application and

run it to produce a single profile data file that you can then process using the

gprof command. With a parallel application, you compile and run it to produce a

profile data file for each parallel task. You can then process one, some, or all the

data files produced using the gprof command. Table 53 describes how to profile

parallel programs. For comparison, the steps involved in profiling a serial program

are shown in the left-hand column of the table.

 Table 53. Profiling a parallel program

To Profile a Serial Program: To Profile a Parallel Program:

Step 1: Compile the application

source code using the cc

command with the -pg flag.

Step 1: Compile the application source code using the command mpcc (for C

programs), mpCC (for C++ programs), or mpfort (for Fortran programs) as

described in IBM Parallel Environment: Operation and Use. You should use the

standard profiling compiler option, -pg, on the compiler command. For more

information on the -pg flag, refer to its use on the man page for the compiler you

are using.

Step 2: Run the executable

program to produce a profile data

file. The data file that is produced

is named gmon.out.

Step 2: Before you run the parallel program, set the environment variable

MP_EUILIBPATH=/opt/ibmhpc/ppe.poe/lib/profiled:/usr/lib/profiled:/lib/
profiled : /opt/ibmhpc/ppe.poe/lib. If your message passing library is not in

/opt/ibmhpc/ppe.poe/lib, substitute your message passing library path. Run the

parallel program. When the program ends, it generates a profile data file for each

parallel task. The system gives unique names to the data files by appending each

task’s identifying number to gmon.out.

The data files that are produced take the form:

 gmon.out.taskid

Note: The current directory must be writable from all remote nodes. Otherwise,

the profile data files will have to be manually moved to the home node for

analysis with gprof. You can also use the mcpgath command to move the files.

See IBM Parallel Environment: Operation and Use for more about mcpgath.

Step 3: Use the gprof command to

process the gmon.out profile data

file.

Step 3: Use the gprof command to process the gmon.out profile data files. You can

process one, some, or all of the data files created during the run. The gprof

command reads gmon.out by default.

On the gprof command, you simply specify the name(s) of the profile data file(s)

it should read on the command line. You must also specify the name of the

program on the gprof command. For example, to specify the profile data file for

task 0 with the gprof command:

ENTER

gprof program gmon.out.0

You can also specify that the gprof command should take profile data from some

or all of the profile data files produced. For example, to specify three different

profile data files – the ones associated with tasks 0, 1, and 2 – on the gprof

command:

ENTER

gprof program gmon.out.0 gmon.out.1 gmon.out.2

The parallel utility, mp_profile(), may also be used to selectively profile portions

of a program. To start profiling, call mp_profile(1). To suspend profiling, call

mp_profile(0). The final profile data set will contain counts and CPU times for the

126 IBM PE for AIX and Linux V5 R1: Operation and Use

program lines that are delimited by the start and stop calls. In C, the calls are

mpc_profile(1), and mpc_profile(0). By default, profiling is active at the start of

the user’s executable.

Note: Like the sequential version of gprof, if more than one profile file is specified,

the parallel version of the gprof command output shows the sum of the

profile information in the given profile files. There is no statistical analysis

contacted across the multiple profile files.

Chapter 5. Profiling programs with the prof and gprof commands 127

128 IBM PE for AIX and Linux V5 R1: Operation and Use

Chapter 6. Parallel Environment commands

PE includes manual pages for all of its user commands.

Each manual page is organized into the sections listed below. The sections always

appear in the same order, but some appear in all manual pages while others are

optional.

SYNOPSIS

Includes a diagram that summarizes the command syntax, and provides a

brief synopsis of its use and function.

FLAGS

Lists and describes any required and optional flags for the command.

DESCRIPTION

Describes the command more fully than the NAME and SYNOPSIS

sections.

ENVIRONMENT VARIABLES

Lists and describes any applicable environment variables.

EXAMPLES

Provides examples of ways in which the command is typically used.

FILES

Lists and describes any files related to the command.

RELATED INFORMATION

Lists commands, functions, file formats, and special files that are employed

by the command, that have a purpose related to the command, or that are

otherwise of interest within the context of the command.

© Copyright IBM Corp. 1993, 2008 129

cpuset_query

Can be used to verify that memory affinity assignments are performed. This

command applies to PE for Linux only.

SYNOPSIS

cpuset_query [pid]

FLAGS

pid

Optionally, cpuset_query can be used to display the memory affinity

assignments of a process that is already running, if the command is run

outside of poe and the pid is specified as input.

DESCRIPTION

cpuset_query is used to verify that memory affinity assignments are performed, as

an extension of the POE and LoadLeveler scheduling affinity functions. For more

information, see “Managing task affinity on large SMP nodes” on page 57.

The output of cpuset_query is written to STDOUT.

EXAMPLES

1. To verify that memory affinity assignments have been performed, use the

cpuset_query command. For example:

 poe cpuset_query -task_affinity MCM -procs 4 -pmdlog yes -pmdlog_dir /tmp/user1

You will see output similar to this:

Total number of MCMs found = 7

------number of cpus per MCM = 2

Total number of CPUs found = 14

cpuset for process 17355 (1 = in the set, 0 = not included)

cpu0 = 0

cpu1 = 0

cpu2 = 1

cpu3 = 1

cpu4 = 0

cpu5 = 0

cpu6 = 0

cpu7 = 0

cpu8 = 0

cpu9 = 0

cpu10 = 0

cpu11 = 0

cpu12 = 0

cpu13 = 0

cpu14 = 0

Total number of MCMs found = 7

------number of cpus per MCM = 2

Total number of CPUs found = 14

cpuset for process 17354 (1 = in the set, 0 = not included)

cpu0 = 1

cpu1 = 1

cpu2 = 0

cpu3 = 0

cpu4 = 0

cpu5 = 0

130 IBM PE for AIX and Linux V5 R1: Operation and Use

cpu6 = 0

cpu7 = 0

cpu8 = 0

cpu9 = 0

cpu10 = 0

cpu11 = 0

cpu12 = 0

cpu13 = 0

cpu14 = 0

Total number of MCMs found = 7

------number of cpus per MCM = 2

Total number of CPUs found = 14

cpuset for process 3554 (1 = in the set, 0 = not included)

cpu0 = 1

cpu1 = 1

cpu2 = 0

cpu3 = 0

cpu4 = 0

cpu5 = 0

cpu6 = 0

cpu7 = 0

cpu8 = 0

cpu9 = 0

cpu10 = 0

cpu11 = 0

cpu12 = 0

cpu13 = 0

cpu14 = 0

Total number of MCMs found = 7

------number of cpus per MCM = 2

Total number of CPUs found = 14

cpuset for process 3555 (1 = in the set, 0 = not included)

cpu0 = 0

cpu1 = 0

cpu2 = 1

cpu3 = 1

cpu4 = 0

cpu5 = 0

cpu6 = 0

cpu7 = 0

cpu8 = 0

cpu9 = 0

cpu10 = 0

cpu11 = 0

cpu12 = 0

cpu13 = 0

cpu14 = 0

Chapter 6. Parallel Environment commands 131

dish

Invokes the Distributed Interactive Shell (dish).

SYNOPSIS

dish session_number [-h]

[-i info_level]

The dish command invokes DISH (Distributed Interactive Shell), which serves as a

control center to multiple distributed copies of a client.

FLAGS

-h

Provides help information.

-i info_level

Specifies the level of message reporting. The default is 0. The following values

are valid:

0 Provides no additional information.

1 Provides information, independent of the number of agents and clients.

2 Provides information about connections.

3 Provides information about commands.

session_number

Specifies the existing DISH session to which the console should connect.

DESCRIPTION

The dish command invokes DISH (Distributed Interactive Shell), which serves as a

control center to multiple distributed copies of a client. Each of these copies is

referred to as an instance of the client. For example, Korn Shell can be launched on

different nodes and then controlled by DISH. As a result, a command such as ls

can be broadcast to all shells and executed in parallel to produce the file listing.

DISH then gathers the shell output and presents you with the results. DISH can be

configured into a distributed shell, a parallel debugger, or some other interactive

program, depending on the client you choose to use.

The DISH console communicates with DISH agents on each remote host. The DISH

agents relay commands from the DISH console to the client processes, and then

report output from the clients back to DISH. The DISH agents connect to DISH

through sockets, and are able to spawn multiple client instances. For more

information, see “disha” on page 141 and “Using the Distributed Interactive Shell”

on page 111.

By default, DISH launches the root agent from the host on which DISH is running.

The middle agents are launched either by parent middle agents or the root agent.

The leaf agents are launched by the root and middle agents, or by a job launcher

such as POE.

By default, rsh (Remote Shell) is used for launching agents, but if you want to use

a different method, you can use the -r flag with the disha command. For example,

if you wanted to use ssh (Secure Shell) instead of rsh, you would specify disha -r

ssh.

132 IBM PE for AIX and Linux V5 R1: Operation and Use

Note that if you have a large number of client sessions, you could experience

serious bottlenecks when they are launched. To avoid situations such as this, DISH

uses a tree algorithm to cause agents to launch other agents. The root agent

generates a tree structure from the instance file and the fanout factor. The fanout

factor can be specified with the -f option of the disha command. The root agent

uses rsh or ssh to launch the next level child agents, and the child agents connect

back to the root agent after startup. In turn, the child agents then launch their own

child agents.

In addition to DISH, you can also use other job launching mechanisms, for

example, POE, to launch DISH agents. Before you do this, you must first tell DISH

not to launch leaf agents. You do this with the disha -n flag. Next, you need to tell

the DISH agents where DISH is running and also supply them with an agent ID

for connection. In general, a task ID is available from the job launcher, which can

be used as the agent ID.

DISH allows you to manage clients collectively through the use of groups. The

dish command provides subcommands and options for gathering clients into

groups, and also for managing those groups. For example, if a user issues a client

command, that command can be broadcast to all members of the group. You can

create your own groups or you can use one of the predefined groups supplied

with DISH. For more information on using groups with DISH, see “group

subcommand (of the dish command)” on page 137.

With DISH, you can create groups of clients, and then use DISH to manage those

groups. For example, when a user issues a client command, that command can

then be broadcast to all members of the group. At any given time, you can have

multiple groups of clients. The group subcommand allows you to easily switch

DISH’s focus from one group of clients to another. DISH also includes predefined

groups. For more information about the group subcommand, see

INSTANCE FILE:

When you set up a DISH session, you must create an instance file to, at a

minimum, specify the hosts on which the client instances will run. The instance file

defines instance-specific information only. For example, if you wanted to launch

DISH with a debugger, you would include the process IDs that are required by

DISH in order to attach to a running job. Here is what that instance file might look

like:

host pid

#########################

wcsvr03.rd.acme.com 20396

wcsvr04.rd.acme.com 20379

wcsvr03.rd.acme.com 20397

wcsvr04.rd.acme.com 20380

The format of the instance file is similar to a plaintext database, where fields are

defined, followed by records consisting of the values for those fields. The first line

of the instance file should contain fields for which you will be providing values

(host and pid, in the example above). The values should be entered below the

corresponding fields, line-by-line. Note that the field names are case-sensitive.

For every DISH session, you must specify at least the host in the instance file. Also

note that you can place the host variable anywhere in the list of fields. More

variables can be defined in the instance file to provide other information required

by the client instances, and all variables can be referred through variable

substitution. For more information see “Using variable substitution” on page 114.

Chapter 6. Parallel Environment commands 133

The names you add to the instance file must not conflict with existing variable

names. For example, pid could also be called process_id or procID.

CONFIGURATION FILE:

In addition to the instance file, DISH also requires a run-time configuration file to

provide information about the client and control the behavior of DISH. It allows

DISH to support different client programs without knowing what functions they

are performing. Unlike the instance file, the configuration file defines session-wide

information, rather than information about specific client instances (every instance

sees the same value).

In the configuration file, you define a list of variables followed by their values

(variable = value). Both the variables and their values are case-sensitive.

DISH recognizes the following variables:

v client - defines the command line to launch the client.

v client_prompt - defines the prompt of the client. The prompt must not change

during a DISH session.

v interrupt_command - defines the command sequence to be used to interrupt a

running client process. When a running client process is successfully interrupted,

the prompt should appear again. This command sequence is issued against each

client in the current group.

v key_enter - for convenience, key_enter defines the command to execute when

the <Enter> key has been pressed on any empty line.

Clients may require other information to be defined in the instance and

configuration files in order to function properly. For example, when a debugger is

started, it may require the location of a target program, or it may need to know a

process ID to which it should attach. But DISH knows nothing about the functions

of the clients, and only recognizes its own specific fields. As a result, you need to

add any non-DISH variable values to the instance/configuration files, and then

specify those variables using variable substitution. The values that you define in

the instance/configuration file are used as the substitution values. With variable

substitution, the values to be substituted are prefixed by % (percent sign).

DISH recognizes two kinds of variables; instance-specific variables and

session-wide variables. An instance-specific variable has a set of values, one for

each instance. A session-wide variable has only one value, which is used for all

instances.

The following example shows the client variable in the configuration file. In this

example, GDB (GNU debugger) is the client. The -quiet flag suppresses the GDB

prolog. The rest of the line asks DISH to substitute %exe with the value of the exe

variable and %pid with the value of the pid variable.

client = gdb -quiet %exe %pid

The exe variable is session-wide for SIMD parallel programs, but can be

instance-specific for MIMD parallel programs also. The pid variable is

instance-specific.

VARIABLE SUBSTITUTION:

After you define non-DISH values in the instance and configuration files, variable

substitution can be used to define values when you enter commands. For example,

134 IBM PE for AIX and Linux V5 R1: Operation and Use

you could issue the attach %pid command to have GDB attach to running

processes. The variable %pid is substituted by the value you defined for pid in the

instance file before the attach command is passed to GDB.

To summarize, any variable that starts with a % will be substituted. Different client

instances get different substitutions if the variable is instance-specific.

Reserved variables are recognized by DISH but their values must be defined by you.

The values for predefined variables are predefined by DISH, which allows you to

reference them freely.

The reserved DISH variables are:

v host - is instance-specific. Contains the name of the host on which the client

runs.

v client - is session-wide. Defines the command line to launch the client.

v client_prompt - is session-wide. defines the prompt of the client.

v interrupt_command - is session-wide. Defines the command sequence to be

used to interrupt a running client process.

v key_enter - is session-wide. Defines the command to execute when the <Enter>

key has been pressed on any empty line.

The predefined DISH variables are:

v id - is instance-specific. The i-th instance in the instance file gets i minus 1 as its

id.

v client_pid - is instance-specific. Is the process ID of an instance.

v child_pid - is instance-specific. Contains the child process IDs of the instance.

Multiple process IDs are separated by spaces. child_pid is dynamic because

child processes may come and go during the life of an instance.

DISH STATES:

DISH can be in three different states, in terms of readiness for input. The states are:

v Ready state

– All clients in the current group have prompted for input.

– DISH also prompts for input (for example, by showing (all)).

– Client commands are available. DISH commands, except those for interrupt

state only, are also available.
v Execution state

– At least one client in the current group has not prompted for input.

– DISH does not prompt for input, but shows client output, if any.

– No commands are available, but you can press <Ctrl-C> or send a SIGINT to

DISH to get into interrupt state.
v Interrupt state

– At least one client in the current group has not prompted for input but you

pressed <Ctrl-C> or sent a SIGINT.

– DISH prompts for input and indicates interrupt state (for example, by

showing (all:int)). Client output is not displayed.

– All DISH commands are available but not client commands. Refer to the

interrupt and leave commands, which are available only in interrupt state.

Chapter 6. Parallel Environment commands 135

With DISH, there are two types of commands; DISH commands and client

commands. DISH commands provide the capability of managing clients in groups,

while client commands are implemented by the client. Any command that DISH

does not understand is passed to the clients. The availability of commands

depends on the state of DISH.

The dish command provides the following subcommands that are available for

controlling a session. They are:

v group - for defining groups of clients

v on - for designating a particular group of clients as the current group

v interrupt - for interrupting execution of the clients that belong to the current

group

v leave - for causing the current group to leave the interrupt state

v kquit - for killing all running clients and quitting dish

v help - for getting help information on any of the dish subcommands, or on

predefined dish topics.

v exit - for quitting the DISH console.

v send - for sending secondary prompt messages to the current group

v toggle - for setting toggle mode on and off.

v match - for applying filter rules to command output

For more information on the dish subcommands see “Subcommands of the dish

command” on page 137.

Refer to the client’s documentation for information about client commands. To

indicate that a command is a client command, you can prefix it with a colon (:).

For example, issuing :help will bypass DISH and output the client’s help instead.

Client commands are generally broadcast to all members in the current group. A

help command with a client command or topic that is not preceded by a colon (:)

is sent to only one client.

EXAMPLES

To configure DISH into a distributed shell, the configuration file would look

similar to this:

client = ksh -i

client_prompt = $ # change ’$’ to ’#’ for root

interrupt_command = kill -INT %child_pid

key_enter = echo `hostname`:`pwd`

See the pdb man page and the /usr/bin/pdb shell script for information about

building a parallel debugger on top of DISH.

RELATED INFORMATION

Commands: disha(1), pdb(1), poe(1), rsh(1), ssh(1)

136 IBM PE for AIX and Linux V5 R1: Operation and Use

Subcommands of the dish command

There are a number of subcommands that can be used with the dish command.

They are: group, help, interrupt, kquit, leave, and on.

When using dish subcommands, note the following:

v Commands that start with a colon (:) are passed directly to a client.

v dish subcommands can be abbreviated. For example, the group subcommand

can be entered as g, gr, gro, and so on.

group subcommand (of the dish command)

The group subcommand allows you to define a group of clients. It also lets you

add and delete clients from existing groups.

group

[name]

[name = clients]

[name + clients]

[name - clients]

In the synopsis above, name refers to the name of a group. clients refers to a list of

clients, separated by a space. You can also specify group names in the list of

clients. For example:

group a = 0:2 4

Results in a group that consists of clients 0, 1, 2, and 4.

group b = 3 a

Results in a group that consists of clients 0, 1, 2, 3, and 4.

group a + b 5:7

Results in a group that consists of clients 0, 1, 2, 3, 4, 5, 6, and 7.

group b - 0 4

Results in a group that consists of clients 1, 2, and 3.

DISH also provides the following predefined groups:

v all – all client instances

v 0, 1, 2, ..., number_of_clients -1 – individual client instances

v ready – all client instances that are ready for input

help subcommand (of the dish command)

The help subcommand provides help information about DISH topics or

commands.

help [command | topic]

To use the help subcommand, type help, followed by the name of the topic or the

name of a command. For example, if you wanted help information on the dish

group subcommand, you would enter the following:

help group

Chapter 6. Parallel Environment commands 137

Or if you wanted help information on DISH restrictions, you would enter the

following:

help restrictions

The help subcommand provides help on the following other dish subcommands:

v group

v on

v interrupt

v leave

v kquit

v toggle

v match

v send

v exit

The dish help subcommand provides help on the following topics:

v general - Provides basic information about dish.

v states - Provides information about the current state of DISH and DISH’s clients.

v restrictions - Lists the client commands and features you should avoid.

v editing - Provides information on command editing.

To get an overview of DISH commands and topics, issue the help subcommand

with no arguments.

interrupt subcommand (of the dish command)

The interrupt subcommand stops the execution of a client in the current group.

interrupt

By default, DISH sends a SIGINT to the running client process in order to stop it.

However, you can use the interrupt_command variable, of the configuration file, to

define a sequence of UNIX commands that should be used to stop clients instead.

When you set the interrupt_command variable, it applies to all clients in the

session.

Note that a group can be designated as the current group by using the dish on

subcommand.

kquit subcommand (of the dish command)

kquit kills all running client processes by sending a SIGKILL, and then quitting

DISH. kquit sends the SIGKILL to the clients’ child processes first, and then to the

clients themselves.

kquit

The kquit subcommand should only be used in cases where the client’s quit or

exit command does not work.

138 IBM PE for AIX and Linux V5 R1: Operation and Use

leave subcommand (of the dish command)

The leave subcommand is used to end the interrupt state for the current group.

leave

This command can only be used when the current group is in the interrupt state.

on subcommand (of the dish command)

The on subcommand is used to specify that a group should become the current

group.

on group

Client commands are broadcast to all the members of the current group.

exit subcommand (of the dish command)

exit quits the current DISH console.

exit

The exit subcommand is used to quit the DISH console. This applies only to the

current DISH console. If no other consoles are connected when exit is issued, the

entire debugging session ends.

send subcommand (of the dish command)

send sends secondary prompt messages to the group.

send message

The send subcommand is used to send secondary prompt messages to the current

group. This subcommand can be used only when the DISH console is in interrupt

state.

toggle subcommand (of the dish command)

toggle sets toggle mode on and off.

toggle [broadcast] [color name] [bcolor name] [interval second]

The toggle subcommand can be used when multiple consoles are attached to the

same debugging session, and the DISH console is in the running state. When the

toggle is enabled, one DISH console can display messages from all other connected

consoles.

toggle [broadcast]

Turns toggle mode on and off. When toggle mode is on, message output

from other consoles is displayed. The broadcast suboption is available in

normal state only.

toggle [color | bcolor name]

Sets the foreground color of messages. The default is green. The color

suboption is used to set the color of messages on the current console. The

bcolor suboption is used to set the color of messages from other consoles.

 name can be set to any of the following values:

v black

Chapter 6. Parallel Environment commands 139

v red

v green

v yellow

v darkblue

v purple

v blue

v white

v gray

Examples:

v toggle color blue

v toggle bcolor yellow

toggle [interval second]

Sets the message flush interval. The default is 5 seconds. second can be any

integer from 0 to 30.

 Example:

v toggle interval 3

match subcommand (of the dish command)

match filters client command output.

match ’regular_expression’

The match subcommand can be used to apply filter rules to client command

output using regular expressions. The regular expression must be surrounded by

quotation marks.

match Shows the last client command output.

match ’regular_expression’

Shows the lines that contain the specified regular expression in the last

client command.

match ’regular_expression’ | match ’regular_expression’ ...

Shows the lines that contain the specified regular expressions in the last

client command, in cascade style.

client_command match ’regular_expression’

Shows the lines, from the command output, that contain the specified

regular expression

client_command match ’regular_expression’ | match ’regular_expression’

Shows the lines, from the command output, that contain the specified

regular expressions, in cascade style. The match suboption is available in

normal state only.

Examples:

v match ’Hello’

v match ’Hello’ | match "World"

v list | match ’Hello’

v list | match ’Hello’ | match ’World’

140 IBM PE for AIX and Linux V5 R1: Operation and Use

disha

Invokes a remote DISH agent.

SYNOPSIS

disha [-e] [-h][-n]

[-a agent_id]

[-c config_file]

[-f fanout_factor]

[-g variable=value]

[-H server_host]

[-i info_level]

[-I instance_file]

[-k session_key]

[-p server_port]

[-r remote_shell]

[-s session_number]

[-t task_id]

The disha command invokes the remote agent for DISH.

FLAGS

-a agent_ID

Specifies the ID of the DISH agent.

 It must be either an integer or the name of an environment variable that

specifies the root, middle, or leaf agent ID at run time. A value of 0 indicates

that this is the root agent. Each agent must have a unique agent ID.

-c config_file

Specifies the location of the configuration file to be used for a DISH session.

The default location is your home directory (~/.dish).

-e Indicates that this agent is a leaf agent, and that it is launched by an external

job launcher.

-f fanout_factor

Specifies the fanout factor for launching DISH agents. The default value is

INT_MAX.

-h Provides help information.

-H server_host

Specifies the host on which the agent’s parent is running.

-i info_level

Specifies the level of message reporting. The default is 0. The following values

are valid:

0 Provides no additional information.

1 Provides information, independent of the number of agents and clients.

2 Provides information about connections.

3 Provides information about commands.

-I instance_file

Specifies the file that contains the list of hosts on which to run clients. The

Chapter 6. Parallel Environment commands 141

default location is your home directory (~/.dish). For more information about

the instance file, see “Creating an instance file” on page 112.

-k session_key

Specifies the session key for connection validation. The default is 1.

-p server_port

Specifies the port to which to the parent agent is listening for incoming

connections.

-r remote_shell

Specifies the remote shell to use for launching clients. The default is rsh.

-a session_number

Specifies the session number from this DISH session. The default is 1.

-t task_id

Specifies the ID of the client instance of a leaf DISH agent, if this agent has

been launched by an external job launcher.

DESCRIPTION

The disha command invokes a DISH remote agent. For more information on DISH

and the role of the DISH agent, see “Using the Distributed Interactive Shell” on

page 111.

RELATED INFORMATION

Commands: dish(1)

142 IBM PE for AIX and Linux V5 R1: Operation and Use

mcp

Allows you to propagate a copy of a file to multiple nodes.

SYNOPSIS

mcp infile [outfile] [POE options]

In the previous command synopsis, the infile is the name of the file to be copied.

You can copy to a new name by specifying an outfile. If you do not provide the

outfile name, the file will be placed in its current directory on each node. The

outfile can be either an explicit output file name or a directory name. When a

directory is specified, the file is copied with the same name to that directory.

DESCRIPTION

The mcp command allows you to propagate a copy of a file to multiple nodes. The

file must initially reside (or be NFS-mounted) on at least one node.

mcp is a POE program and, therefore, all POE options are available. You can set

POE options with either command line flags or environment variables. The

number of nodes to copy the file to (-procs), and the message passing protocol

used to copy the file (-euilib) are the POE options of most interest. The input file

must be readable from the node assigned to task 0.

Note: A POE job loads faster if a copy of the job resides on each node. For this

reason, it is suggested that you use mcp to copy your executable to a file

system such as /tmp, which resides on each node.

Return codes are:

129

incorrect usage

130

error opening input file

131

error opening to file on originating node

132

error writing data to to file on originating node

133

no room on remote node’s file system

134

error opening file on remote node

135

error writing data on remote node

136

error renaming temp file to file name

137

input file is empty

138

invalid block size

Chapter 6. Parallel Environment commands 143

139

error allocating storage

ENVIRONMENT VARIABLES

MP_BLKSIZE

Sets the block size used for copying the data. This can be a value between

1 and 8,000,000 (8 megabytes). The default is 100,000 (100K).

EXAMPLES

1. To copy a file from your current directory to the current directory for 16 tasks,

using the User Space protocol, enter:

mcp filename -procs 16 -euilib us

2. To copy a filename from your current directory to the /tmp directory for 16

tasks, using IP, enter:

mcp filename /tmp -procs 16 -euilib ip

3. To copy a file from your current directory to a different filename for 16 tasks,

enter:

mcp filename /tmp/newfilename -procs 16

RELATED INFORMATION

Commands: rcp(1)

144 IBM PE for AIX and Linux V5 R1: Operation and Use

mcpgath

Takes files from each task of tasks 0 to n-1 and copies them back in sequence to

task 0.

SYNOPSIS

mcpgath [-ai] source ... destination [POE options]

Source is one of the following:

v one or more existing file names - files will be copied with the same names to the

destination directory on task 0. Each file name specified must exist on all tasks

involved in the copy.

v a directory name - all files in that directory on each task are copied with the

same names to the destination directory on task 0.

v an expansion of file names, using wildcards - files are copied with the same

names to the destination directory. All wildcarded input strings must be

enclosed in double quotes.

Destination is an existing destination directory name to where the data will be

copied. The destination directory must be the last item specified before any POE

flags.

FLAGS

-a An optional flag that appends the task number to the end of the file name

when it is copied to task 0. This is for task identification purposes, to know

where the data came from. The -a and -i flags can be combined to check for

existing files appended with the task number.

-i An optional flag that checks for duplicate or existing files of the same name,

and does not replace any existing file found. Instead, issues an error message

and continues with the remaining files to be copied. The -a and -i flags can be

combined to check for existing files appended with the task number.

See Chapter 2, “Executing parallel programs,” on page 11 for information on POE

options.

DESCRIPTION

The mcpgath function determines the list of files to be gathered on each task. This

function also resolves the source file, destination directory, and path names with

any meta characters, wildcard expansions, and so on, to come up with valid file

names. Enclose wildcards in double quotes, otherwise they will be expanded

locally on the task from where the command is issued, which may not produce the

intended file name resolution.

mcpgath is a POE program and, therefore, all POE options are available. You can

set POE options with either command line flags or environment variables. The

number of nodes to copy the file to (-procs), and the message passing protocol

used to copy the file (-euilib) are the POE options of most interest.

Return codes are:

129

invalid number of arguments specified

Chapter 6. Parallel Environment commands 145

130

invalid option flag specified

131

unable to resolve input file name(s)

132

could not open input file for read

133

no room on destination node’s file system

134

error opening file output file

135

error creating output file

136

error writing to output file

137

MPI_Send of data failed

138

final MPI_Send failed

139

MPI_Recv failed

140

invalid block size

141

error allocating storage

142

total number of tasks must be greater than one

ENVIRONMENT VARIABLES

MP_BLKSIZE

Sets the block size used for copying the data. This can be a value between

1 and 8,000,000 (8 megabytes). The default is 100,000 (100K).

EXAMPLES

1. You can copy a single file from all tasks into the destination directory. For

example, enter:

mcpgath -a hello_world /tmp -procs 4

This will copy the file hello_world (assuming it is a file and not a directory)

from tasks 0 through 3 as to task 0:

From task 0: /tmp/hello_world.0

From task 1: /tmp/hello_world.1

From task 2: /tmp/hello_world.2

From task 3: /tmp/hello_world.3

2. You can specify any number of files as source files. The destination directory

must be the last item specified before any POE flags. For example:

146 IBM PE for AIX and Linux V5 R1: Operation and Use

mcpgath -a file1.a file2.a file3.a file4.a file5.a /tmp -procs 4

will take file1.a through file5.a from the local directory on each task and copy

them back to task 0. All files specified must exist on all tasks involved. The file

distribution will be as follows:

From Task 0: /tmp/file1.a.0

From Task 1: /tmp/file1.a.1

From Task 2: /tmp/file1.a.2

From Task 3: /tmp/file1.a.3

From Task 0: /tmp/file2.a.0

From Task 1: /tmp/file2.a.1

From Task 2: /tmp/file2.a.2

From Task 3: /tmp/file2.a.3

From Task 0: /tmp/file3.a.0

From Task 1: /tmp/file3.a.1

From Task 2: /tmp/file3.a.2

From Task 3: /tmp/file3.a.3

From Task 0: /tmp/file4.a.0

From Task 1: /tmp/file4.a.1

From Task 2: /tmp/file4.a.2

From Task 3: /tmp/file4.a.3

From Task 0: /tmp/file5.a.0

From Task 1: /tmp/file5.a.1

From Task 2: /tmp/file5.a.2

From Task 3: /tmp/file5.a.3

3. You can specify wildcard values to expand into a list of files to be gathered.

For this example, assume the following distribution of files before calling

mcpgath:

Task 0 contains file1.a and file2.a

Task 1 contains file1.a only

Task 2 contains file1.a, file2.a, and file3.a

Task 3 contains file4.a, file5.a, and file6.a

Enter:

mcpgath -a "file*.a" /tmp -procs 4

Chapter 6. Parallel Environment commands 147

This will pass the wildcard expansion to each task, which will resolve into the

list of locally existing files to be copied. This results in the following

distribution of files on task 0:

From Task 0: /tmp/file1.a.0

From Task 0: /tmp/file2.a.0

From Task 1: /tmp/file1.a.1

From Task 2: /tmp/file1.a.2

From Task 2: /tmp/file2.a.2

From Task 2: /tmp/file3.a.2

From Task 3: /tmp/file4.a.3

From Task 3: /tmp/file5.a.3

From Task 3: /tmp/file6.a.3

4. You can specify a directory name as the source, from which the files to be

gathered are found. For this example, assume the following distribution of files

before calling mcpgath:

Task 0 /test contains file1.a and file2.a

Task 1 /test contains file1.a only

Task 2 /test contains file1.a and file3.a

Task 3 /test contains file2.a, file4.a, and file5.a

Enter:

mcpgath -a /test /tmp -procs 4

This results in the following file distribution:

From Task 0: /tmp/file1.a.0

From Task 0: /tmp/file2.a.0

From Task 1: /tmp/file1.a.1

From Task 2: /tmp/file1.a.2

From Task 2: /tmp/file3.a.2

From Task 3: /tmp/file2.a.3

From Task 3: /tmp/file4.a.3

From Task 3: /tmp/file5.a.3

148 IBM PE for AIX and Linux V5 R1: Operation and Use

mcpscat

Takes a number of files from task 0 and scatters them in sequence to all tasks, in a

round-robin order.

SYNOPSIS

mcpscat [-f] [-i] source ...

destination

[POE options]

Source can be one of the following:

v a single file name - file is copied to all tasks

v a single file name that contains a list of file names (-f option)

v two or more file names - files will be distributed in a round-robin order to the

tasks

v an expansion of file names, using wildcards - files will be distributed in a

round-robin order to the tasks

v a directory name - all files in that directory are copied in a round-robin order to

the tasks.

Destination is an existing destination directory name to where the data will be

copied.

FLAGS

-f Is an optional flag that indicates that the first file contains the names of the

source files that are to be scattered. Each file name, in the file, must be

specified on a separate line. No wildcards are supported when this option is

used. Directory names are not supported in the file either. When this option is

used, the mcpscat parameters should consist of a single source file name (for

the list of files) and a destination directory. The files will then be scattered just

as if they had all been specified on the command line in the same order as

they are listed in the file.

-i Checks for duplicate or existing files of the same name, and does not replace

any existing file found. Instead, issues an error message and continues with the

remaining files to be copied. Without this flag, the default action is to replace

any existing files with the source file.

See Chapter 2, “Executing parallel programs,” on page 11 for information on POE

options.

DESCRIPTION

The mcpscat function determines the order in which to distribute the files, using a

round-robin method, according to the list of nodes and number of tasks. Files are

sent in a one-to-one correspondence to the nodes in the list of tasks. If the number

of files specified is greater than the number of nodes, the remaining files are sent

in another round through the list of nodes. Enclose wildcards in double quotes,

otherwise they will be expanded locally on the task from where the command is

issued, which may not produce the intended file name resolution.

mcpscat is a POE program and, therefore, all POE options are available. You can

set POE options with either command line flags or environment variables. The

Chapter 6. Parallel Environment commands 149

number of nodes to copy the file to (-procs), and the message passing protocol

used to copy the file (-euilib) are the POE options of most interest.

Return codes are:

129

invalid number of arguments specified

130

invalid option flag specified

131

unable to resolve input file name(s)

132

could not open input file for read

133

no room on destination node’s file system

134

error opening file output file

135

error creating output file

136

MPI_Send of data failed

137

final MPI_Send failed

138

MPI_Recv failed

139

failed opening temporary file

140

failed writing temporary file

141

error renaming temp file to filename

142

input file is empty (zero byte file size)

143

invalid block size

144

error allocating storage

145

number of tasks and files do not match

146

not enough memory for list of file names

ENVIRONMENT VARIABLES

MP_BLKSIZE

Sets the block size used for copying the data. This can be a value between

1 and 8,000,000 (8 megabytes). The default is 100,000 (100K).

150 IBM PE for AIX and Linux V5 R1: Operation and Use

EXAMPLES

1. You can copy a single file to all tasks into the destination directory. For

example, enter:

mcpscat filename /tmp -procs 4

This will take the file and distribute it to tasks 0 through 3 as /tmp/filename.

2. You can specify any number of files as source files. The destination directory

must be the last item specified before any POE flags. For example:

mcpscat file1.a file2.a file3.a file4.a file5.a /tmp -procs 4

will take file1.a through file5.a from the local directory and copy them in a

round-robin order to tasks 0 through 3 into /tmp. The file distribution will be as

follows:

Task 0: /tmp/file1.a

Task 1: /tmp/file2.a

Task 2: /tmp/file3.a

Task 3: /tmp/file4.a

Task 0: /tmp/file5.a

3. You can specify the source files to copy in a file. For example:

mcpscat -f file.list /tmp -procs 4

will produce the same results as the previous example if as file.list contains five

lines with the file names file1.a through file5.a in it.

4. You can specify wildcard values to expand into a list of files to be scattered.

Enter:

mcpscat "file*.a" /tmp -procs 4

Assuming Task 0 contains file1.a, file2.a, file3.a, file4.a, and file5.a in its home

directory, this will result in a similar distribution as in the previous example.

5. You can specify a directory name as the source, from which the files to be

scattered are found. Assuming /test contains myfile.a, myfile.b, myfile.c, myfile.d,

myfile.f, and myfile.g on Task 0, enter:

mcpscat /test /tmp -procs 4

This results in the following file distribution:

Task 0: /tmp/myfile.a

Task 1: /tmp/myfile.b

Task 2: /tmp/myfile.c

Task 3: /tmp/myfile.d

Task 0: /tmp/myfile.f

Task 1: /tmp/myfile.g

Chapter 6. Parallel Environment commands 151

mpamddir

Echoes an amd-mountable directory name.

SYNOPSIS

mpamddir

or, if you’re using the Parallel Environment:

export MP_REMOTEDIR=mpamddir

This script determines whether or not the current directory is a mounted file

system. If it is, it looks to see if it appears in the amd maps, and constructs a name

for the directory that is known to amd. You can modify this script, or create

additional ones that apply to your installation.

By default, POE uses the Korn shell pwd command to obtain the name of the

current directory to pass to the remote nodes for execution. This works for C shell

users if the current directory is:

v The home directory

v Not mounted by amd, the AutoMount Daemon.

If this is not the case, (for example, if the user’s current directory is a subdirectory

of the home directory), then you can supply your own script for providing the

name of the current directory on the remote nodes.

To use mpamddir as the script for providing the name, export the environment

variable MP_REMOTEDIR, and set it to mpamddir.

RELATED INFORMATION

Commands: ksh(1), poe(1), csh(1)

152 IBM PE for AIX and Linux V5 R1: Operation and Use

mpcc

Invokes a C compiler to compile C programs that use MPI. This command applies

to PE for Linux only.

SYNOPSIS

mpcc [cc_flags]... program.c

The mpcc shell script compiles C programs while linking in the Partition Manager,

the Message Passing Interface (MPI), and Low-level Applications Programming

Interface (LAPI).

You can specify a C compiler with the MP_COMPILER environment variable. If

the specified compiler is one of the C compilers supported by the IBM C Set++

vac.cmp package, or is the GNU GCC compiler, it is invoked using its default

install path. It is assumed that any other compiler is reachable via the user’s

regular search path.

If MP_COMPILER is not defined, the mpcc shell script first searches for the xlc_r

compiler of the IBM C Set++ vac.cmp package. If the IBM C Set++ vac.cmp

package is not installed, it looks for the GNU GCC compiler.

FLAGS

The mpcc shell script passes most flags directly to the compiler. Some flags are

interrupted by the mpcc shell script. These are:

-h prints a help message.

-v is passed to the compiler and causes a verbose output listing of the shell script.

-m32 | -q32

enables compiling of 32-bit applications (default). The q flag is used by the

IBM compiler and the m flag is used by the GNU GCC compiler. The mpcc

script accepts them interchangeably and passes the right flag to the right

compiler.

-m64 | -q64

enables compiling of 64-bit applications. The q flag is used by the IBM

compiler and the m flag is used by the GNU GCC compiler. The mpcc script

accepts them interchangeably and passes the right flag to the right compiler.

-compiler

specifies the name of the C compiler to use. The default value is xlc_r, if the

IBM C Set++ vac.cmp package is installed. If it is not installed, the default

value becomes gcc (the GNU GCC compiler).

 You can use the -compiler flag to specify a compiler other than xlc_r. For

example, you may want to use the GNU GCC compiler, even if the IBM C

Set++ vac.cmp package is installed. Or, you may want to specify one of the

other compilers that are contained in the IBM C Set++ vac.cmp package.

To specify a third-party compiler, you must either specify its full path or add

that compiler to a directory in your search path (for example, /usr/bin).

Other commonly used C compiler flags are:

Chapter 6. Parallel Environment commands 153

-g Produces an object file with symbol table references. This object file is needed

for debugging with the gdb debugger.

-o names the executable.

-l (lowercase L)

names additional libraries to be searched. Several libraries are automatically

included, and are listed below in the Context section of this manual page.

-I (uppercase i)

names directories for additional includes. The directory /opt/ibmhpc/ppe.poe/
include or the appropriate subdirectory is included automatically. Command

line or makefile hard-coding of include paths for PE header files should

normally be avoided. Such specifications take precedence over the directory

selected by the script and may cause incorrect code to be generated.

-pg

enables profiling with the gprof command. For more information, see the

information on profiling programs in IBM Parallel Environment: Operation and

Use.

DESCRIPTION

The mpcc shell script invokes a C compiler to compile C programs that use MPI.

In addition, the Partition Manager and data communication interfaces are

automatically linked in. The script creates an executable that dynamically binds

with the communication subsystem libraries.

You can specify a C compiler using the MP_COMPILER environment variable.

Most C compiler flags are passed directly from mpcc to the compiler. The

communication subsystem library implementation is dynamically linked when you

invoke the executable using the poe command.

ENVIRONMENT VARIABLES

MP_COMPILER

Specifies the name of the C compiler to use. The default value is xlc_r, if

the IBM C Set++ vac.cmp package is installed. If it is not installed, the

default value becomes gcc (the GNU GCC compiler).

 You can use MP_COMPILER to specify a compiler other than xlc_r. For

example, you may want to use the GNU GCC compiler, even if the IBM C

Set++ vac.cmp package is installed. Or, you may want to specify one of the

other compilers that are contained in the IBM C Set++ vac.cmp package.

To specify a third-party compiler, you must either specify its full path or

add that compiler to a directory in your search path (for example,

/usr/bin).

MP_PREFIX

Sets an alternate path to the default IBM PE library and include file path. If

not set or NULL, the default library path is /usr/lib, and the default

include file path is /opt/ibmhpc/ppe.poe/include. If this environment

variable is set, all library search paths provided by mpcc are prefixed by

$MP_PREFIX/lib, and all include file search paths are prefixed by

$MP_PREFIX/include.

OBJECT_MODE

Setting this variable to 64 causes the 64-bit libraries to be linked to the

154 IBM PE for AIX and Linux V5 R1: Operation and Use

executable, as if the -q64 option had been set. If you do not set

OBJECT_MODE, or if you set it to anything other than 64 , the 32-bit

libraries will be linked to the executable.

EXAMPLES

To compile a C program, enter:

mpcc program.c -o program

FILES

When you compile a program using mpcc, the following libraries are automatically

selected.

v Message Passing Interface, collective communication routines:

– /usr/lib/libmpi_ibm.so

– /usr/lib/libpoe.so

– /usr/lib64/libmpi_ibm.so

– /usr/lib64/libpoe.so

v IBM Low-Level Applications Programming Interface routines:

– /usr/lib/liblapi.so

– /usr/lib64/liblapi.so

RELATED INFORMATION

Commands: mpCC(1), mpfort(1)

Chapter 6. Parallel Environment commands 155

mpcc_r

Invokes a shell script to compile C programs that use MPI. This command applies

to PE for AIX only.

SYNOPSIS

mpcc_r [cc_flags]... program.c

The mpcc_r shell script compiles C programs while linking in the Partition

Manager, the Message Passing Interface (MPI), and (optionally) Low-level

Applications Programming Interface (LAPI).

FLAGS

Any of the compiler flags normally accepted by the xlc_r or cc_r command can

also be used on mpcc_r. For a complete listing of these flag options, refer to the

manual page for the compiler cc_r command. Typical options to mpcc_r include:

-v causes a “verbose” output listing of the shell script.

-g produces an object file with symbol table references.

-o names the executable.

-l (lowercase L)

names additional libraries to be searched. Several libraries are automatically

included, and are listed below in the CONTEXT section.

Note: Not all AIX libraries are thread safe. Verify that your intended use is

supported.

-I (uppercase i)

names directories for additional includes. The directory /usr/lpp/ppe.poe/include

or the appropriate subdirectory is included automatically. Command line or

makefile hard coding of include paths for PE header files should normally be

avoided. Such specifications will take precedence over the directory selected by

the script and may result in generating incorrect code.

-p

enables profiling with the prof command. For more information, see the

appendix on profiling programs in IBM Parallel Environment: Operation and Use

-pg

enables profiling with the xprofiler and gprof commands. For more

information, see the xprofiler information in AIX Performance Tools Guide and

Reference or AIX Performance Tools Guide and Reference and the information on

profiling programs with prof and gprof in IBM Parallel Environment: Operation

and Use.

-q64

enables compiling of 64-bit applications.

DESCRIPTION

The mpcc_r shell script invokes the xlc_r command. In addition, the Partition

Manager and data communication interfaces are automatically linked in. The script

creates an executable that dynamically binds with the communication subsystem

libraries.

156 IBM PE for AIX and Linux V5 R1: Operation and Use

Flags are passed by mpcc_r to the xlc_r command, so any of the xlc_r options can

be used on the mpcc_r shell script. The communication subsystem library

implementation is dynamically linked when you invoke the executable using the

poe command. The value specified by the MP_EUILIB environment variable or the

-euilib flag will then determine which communication subsystem library

implementation is dynamically linked.

ENVIRONMENT VARIABLES

MP_PREFIX

Sets an alternate path to the scripts library. If not set or NULL, the

standard path /usr/lpp/ppe.poe is used. If this environment variable is set,

then all libraries are prefixed by $MP_PREFIX/ppe.poe.

OBJECT_MODE

Setting this variable to 64 causes the 64–bit libraries to be linked to the

executable, as if the -q64 option had been set. If set to anything other than

64 or if not set, it will not affect how the executables are built.

EXAMPLES

To compile a C program, enter:

mpcc_r program.c -o program

FILES

When you compile a program using mpcc_r, the following libraries are

automatically selected:

v /usr/lpp/ppe.poe/lib/libmpi_r.a (Message Passing Interface, collective

communication routines)

v /usr/lpp/ppe.poe/lib/libppe_r.a (PE common routines)

v The following library is selected if it exists as a symbolic link to

/opt/rsct/lapi/lib/liblapi_r.a:

/usr/lib/liblapi_r.a

RELATED INFORMATION

Commands: mpCC_r(1), cc(1)

Chapter 6. Parallel Environment commands 157

mpCC

Invokes a C++ compiler to compile C++ programs that use MPI.

SYNOPSIS

mpCC [c++_flags]... program.C

The mpCC shell script compiles C++ programs while linking in the Partition

Manager, the Message Passing Interface (MPI), and Low-level Applications

Programming Interface (LAPI).

You can specify a C ++ compiler with the MP_COMPILER environment variable.

If the specified compiler is one of the C++ compilers supported by the IBM C

Set++ vacpp.cmp package or is the GNU g++ compiler, it is invoked using its

default install path. It is assumed that any other compiler is reachable via the

user’s regular search path.

If MP_COMPILER is not defined, the mpCC shell script first searches for the

xlC_r compiler of the IBM C Set++ vac.cmp package. If the IBM C Set++ vac.cmp

package is not installed, it looks for the GNU g++ compiler.

FLAGS

The mpCC shell script passes most flags directly to the compiler. Some flags are

interrupted by the mpCC shell script. These are:

-h prints a help message.

-v is passed to the compiler and causes a verbose output listing of the shell script.

-m32 | -q32

enables compiling of 32-bit applications (default). The q flag is used by the

IBM compiler and the m flag is used by the GNU g++ compiler. The mpCC

script accepts them interchangeably and passes the right flag to the right

compiler.

-m64 | -q64

enables compiling of 64-bit applications. The q flag is used by the IBM

compiler and the m flag is used by the GNU g++ compiler. The mpCC script

accepts them interchangeably and passes the right flag to the right compiler.

-compiler

specifies the name of the C compiler to use. The default value is xlc_r, if the

IBM C Set++ vac.cmp package is installed. If it is not installed, the default

value becomes gcc (the GNU GCC compiler).

 You can use the -compiler flag to specify a compiler other than xlc_r. For

example, you may want to use the GNU GCC compiler, even if the IBM C

Set++ vac.cmp package is installed. Or, you may want to specify one of the

other compilers that are contained in the IBM C Set++ vac.cmp package.

To specify a third-party compiler, you must either specify its full path or add

that compiler to a directory in your search path (for example, /usr/bin).

-g Produces an object file with symbol table references. This object file is needed

for debugging with the GNU GDB debugger.

-o names the executable.

158 IBM PE for AIX and Linux V5 R1: Operation and Use

-cpp

enables the use of full C++ bindings in MPI.

-l (lowercase L)

names additional libraries to be searched. Several libraries are automatically

included, and are listed below in the Context section of this manual page.

-I (uppercase i)

names directories for additional includes. The directory /opt/ibmhpc/ppe.poe/
include or the appropriate subdirectory is included automatically. Command

line or makefile hard-coding of include paths for PE header files should

normally be avoided. Such specifications will take precedence over the

directory selected by the script and may cause incorrect code to be generated.

-pg

enables profiling with the gprof command. For more information, see the

information on profiling programs in IBM Parallel Environment: Operation and

Use.

DESCRIPTION

The mpCC shell script invokes a C++ compiler to compile C++ programs that use

MPI. In addition, the Partition Manager and data communication interfaces are

automatically linked in. The script creates an executable that dynamically binds

with the communication subsystem libraries.

You can specify a C++ compiler with the MP_COMPILER environment variable.

Most C++ compiler flags are passed directly from mpCC to the compiler. The

communication subsystem library implementation is dynamically linked when you

invoke the executable using the poe command.

ENVIRONMENT VARIABLES

MP_COMPILER

Specify the name of the C++ compiler to use. The default value is xlC_r, if

the IBM C Set++ vac.cmp package is installed. If it is not installed, the

default value becomes g++ (the GNU g++ compiler).

 You can use MP_COMPILER to specify a compiler other than xlC_r. For

example, you may want to use the GNU g++ compiler, even if the IBM C

Set++ vac.cmp package is installed. Or, you may want to specify one of the

other compilers that are contained in the IBM C Set++ vac.cmp package.

To specify a third-party compiler, you must either specify its full path or

add that compiler to a directory in your search path (for example,

/usr/bin).

MP_PREFIX

Sets an alternate path to the default IBM PE library and include file path. If

not set or NULL, the default library path is /usr/lib, and the default

include file path is /opt/ibmhpc/ppe.poe/include. If this environment

variable is set, then all library search paths provided by mpCC are

prefixed by $MP_PREFIX/lib, and all include file search paths are prefixed

by $MP_PREFIX/include.

OBJECT_MODE

Setting this variable to 64 causes the 64-bit libraries to be linked to the

executable, as if the -q64 option had been set. If you do not set

Chapter 6. Parallel Environment commands 159

OBJECT_MODE, or if you set it to anything other than 64 , the 32-bit

libraries will be linked to the executable.

EXAMPLES

To compile a C++ program, enter:

mpCC program.C -o program

FILES

When you compile a program using mpCC, the following libraries are

automatically selected.

v Message passing interface, collective communication routines:

– /usr/lib/libmpi_ibm.so

– /usr/lib/libpoe.so

– /usr/lib64/libmpi_ibm.so

– /usr/lib64/libpoe.so

v IBM Low-Level Applications Programming Interface routines:

– /usr/lib/liblapi.so

– /usr/lib64/liblapi.so

RELATED INFORMATION

Commands: mpcc(1), mpfort(1)

160 IBM PE for AIX and Linux V5 R1: Operation and Use

mpCC_r

Invokes a shell script to compile C++ programs that use MPI. This command

applies to PE for AIX only.

SYNOPSIS

mpCC_r [xlC_flags]... program.C

The mpCC_r shell script compiles C++ programs while linking in the Partition

Manager, Message Passing Interface (MPI), and (optionally) Low-level Applications

Programming Interface (LAPI).

FLAGS

Any of the compiler flags normally accepted by the xlC_r command can also be

used on mpCC_r. For a complete listing of these flag options, refer to the manual

page for the xlC_r command. Typical options to mpCC_r include:

-v causes a “verbose” output listing of the shell script.

-g produces an object file with symbol table references.

-o names the executable.

-cpp

enables the use of full C++ bindings in MPI.

-l (lowercase L)

names additional libraries to be searched. Several libraries are automatically

included, and are listed below in the CONTEXT section.

Note: Not all AIX libraries are thread safe. Verify that your intended use is

supported.

-I (uppercase i)

names directories for additional includes. The directory /usr/lpp/ppe.poe/include

or the appropriate subdirectory is included automatically. Command line or

makefile hard coding of include paths for PE header files should normally be

avoided. Such specifications will take precedence over the directory selected by

the script and may result in generating incorrect code.

-p

enables profiling with the prof command. For more information, see IBM

Parallel Environment: Operation and Use.

-pg

enables profiling with the xprofiler and gprof commands. For more

information, see the xprofiler information in AIX Performance Tools Guide and

Reference and the information about profiling programs with prof and gprof in

IBM Parallel Environment: Operation and Use.

-q64

enables compiling of 64-bit applications.

Chapter 6. Parallel Environment commands 161

DESCRIPTION

The mpCC_r shell script invokes the xlC_r command. In addition, the Partition

Manager and data communication interfaces are automatically linked in. The script

creates an executable that dynamically binds with the communication subsystem

libraries.

Flags are passed by mpCC_r to the xlC_r command, so any of the xlC_r options

can be used on the mpCC_r shell script. The communication subsystem library

implementation is dynamically linked when you invoke the executable using the

poe command. The value specified by the MP_EUILIB environment variable or the

-euilib flag will then determine which communication subsystem library

implementation is dynamically linked.

ENVIRONMENT VARIABLES

MP_PREFIX

Sets an alternate path to the scripts library. If not set or NULL, the

standard path /usr/lpp/ppe.poe is used. If this environment variable is set,

then all libraries are prefixed by $MP_PREFIX/ppe.poe.

OBJECT_MODE

Setting this variable to 64 causes the 64–bit libraries to be linked to the

executable, as if the -q64 option had been set. If set to anything other than

64 or if not set, it will not affect how the executables are built.

EXAMPLES

To compile a C++ program, enter:

mpCC_r program.C -o program

FILES

When you compile a program using mpCC_r, the following libraries are

automatically selected:

v /usr/lpp/ppe.poe/lib/libmpi_r.a (Message passing interface, collective

communication routines)

v /usr/lpp/ppe.poe/lib/libppe_r.a (PE common routines)

v The following library is selected if it exists as a symbolic link to

/opt/rsct/lapi/lib/liblapi_r.a:

/usr/lib/liblapi_r.a

RELATED INFORMATION

Commands: mpcc_r(1), xlC(1)

162 IBM PE for AIX and Linux V5 R1: Operation and Use

mpfort

Invokes a Fortran compiler to compile Fortran programs that use MPI. This

command applies to PE for Linux only.

SYNOPSIS

mpfort [cc_flags]... program.F

The mpfort shell script compiles Fortran programs while linking in the Partition

Manager, the Message Passing Interface (MPI), and Low-level Applications

Programming Interface (LAPI).

You can specify a Fortran compiler with the MP_COMPILER environment

variable. If the specified compiler is one of the Fortran compilers supported by the

IBM C Set++ xlf.cmp package or is the GNU g77 compiler, it is invoked using its

default install path. It is assumed that any other compiler is reachable via the

user’s regular search path.

If MP_COMPILER is not defined, the mpfort shell script first searches for the xlf_r

compiler of the IBM C Set++ xlf.cmp package. If the IBM C Set++ xlf.cmp package

is not installed, it looks for the GNU g77 compiler.

Beginning with Version 5.1, PE supports Fortran 90 modules. PE now includes a

Fortran 90 module (mpi.mod) that provides type checking for MPI programs at

compile time. This allows programmers to find and resolve errors at a much earlier

stage.

To use the PE Fortran 90 type-checking module, do the following.

For new programs:

v Include the USE MPI statement to the application source code.

v Compile the program with XLF Version 12.1 or later.

For existing programs:

v Modify the application source code to include the USE MPI statement.

v Recompile the program with XL Fortran compiler (XLF) Version 12.1 or later.

Note that if you have an existing Fortran MPI program that is running without

errors, there is no need to recompile it. Since the program is already running

correctly, compiling it with the Fortran 90 module would provide no benefit.

Note: The mpi.mod module was compiled without the -qmixed compiler option.

As a result, routines that use the mpi.mod module must not be compiled

with this option.

Note: The USE MPI statement is supported only in conjunction with IBM’s XLF

compiler.

FLAGS

The mpfort shell script passes most flags directly to the compiler. Some flags are

interrupted by the mpfort shell script. These are:

-h prints a help message.

Chapter 6. Parallel Environment commands 163

-v is passed to the compiler and causes a verbose output listing of the shell script.

-m32 | -q32

enables compiling of 32-bit applications (default). The q flag is used by the

IBM compiler and the m flag is used by the GNU g77 compiler. The mpfort

script accepts them interchangeably and passes the right flag to the right

compiler.

-m64 | -q64

enables compiling of 64-bit applications. The q flag is used by the IBM

compiler and the m flag is used by the GNU g77 compiler. The mpfort script

accepts them interchangeably and passes the right flag to the right compiler.

-compiler

specifies the name of the C compiler to use. The default value is xlf_r, if the

IBM C Set++ xlf.cmp package is installed. If it is not installed, the default

value becomes gcc (the GNU GCC compiler).

 You can use the -compiler flag to specify a compiler other than xlf_r. For

example, you may want to use the GNU GCC compiler, even if the IBM C

Set++ xlf.cmp package is installed. Or, you may want to specify one of the

other compilers that are contained in the IBM C Set++ xlf.cmp package.

To specify a third-party compiler, you must either specify its full path or add

that compiler to a directory in your search path (for example, /usr/bin).

Other commonly used Fortran compiler flags are:

-g Produces an object file with symbol table references. This object file is needed

for debugging with the GNU GDB debugger.

-o names the executable.

-l (lowercase L)

names additional libraries to be searched. Several libraries are automatically

included, and are listed below in the Context section of this manual page.

-I (uppercase i)

names directories for additional includes. The directory /opt/ibmhpc/ppe.poe/
include or the appropriate subdirectory is included automatically. Command

line or makefile hard-coding of include paths for PE header files should

normally be avoided. Such specifications will take precedence over the

directory selected by the script and may cause incorrect code to be generated.

-pg

enables profiling with gprof command. For more information, see the

information on profiling programs in IBM Parallel Environment: Operation and

Use.

DESCRIPTION

The mpfort shell script invokes a Fortran compiler to compile Fortran programs

that use MPI. In addition, the Partition Manager and data communication

interfaces are automatically linked in. The script creates an executable that

dynamically binds with the communication subsystem libraries.

You can specify a Fortran compiler with the MP_COMPILER environment

variable.

Most Fortran compiler flags are passed directly from mpfort to the compiler. The

communication subsystem library implementation is dynamically linked when you

164 IBM PE for AIX and Linux V5 R1: Operation and Use

invoke the executable using the poe command.

ENVIRONMENT VARIABLES

MP_COMPILER

Specifies the name of the Fortran compiler to use. The default value is

xlf_r, if the IBM C Set++ xlf.cmp package is installed. If it is not installed,

the default value becomes g77 (the GNU G77 compiler).

 You can use MP_COMPILER to specify a compiler other than xlf_r. For

example, you may want to use the GNU G77 compiler, even if the IBM C

Set++ xlf.cmp package is installed. Or, you may want to specify one of the

other compilers that are contained in the IBM C Set++ xlf.cmp package.

To specify a third-party compiler, you must either specify its full path or

add that compiler to a directory in your search path (for example,

/usr/bin).

MP_PREFIX

Sets an alternate path to the default IBM PE library and include file path. It

not set or NULL, the default library path is /usr/lib, and the default

include file path is/opt/ibmhpc/ppe.poe/include. If this environment

variable is set, then all library search paths provided by mpfort are

prefixed by $MP_PREFIX/lib, and all include file search paths are prefixed

by $MP_PREFIX/include.

OBJECT_MODE

Setting this variable to 64 causes the 64-bit libraries to be linked to the

executable, as if the -q64 option had been set. If you do not set

OBJECT_MODE, or if you set it to anything other than 64 , the 32-bit

libraries will be linked to the executable.

EXAMPLES

To compile a Fortran program, enter:

mpfort program.c -o program

FILES

When you compile a program using mpfort, the following libraries are

automatically selected.

v Message passing interface, collective communication routines:

– /usr/lib/libmpi_ibm.so

– /usr/lib/libpoe.so

– /usr/lib64/libmpi_ibm.so

– /usr/lib64/libpoe.so

v IBM Low-Level Applications Programming Interface routines:

– /usr/lib/liblapi.so

– /usr/lib64/liblapi.so

RELATED INFORMATION

Commands: mpcc(1), mpCC(1)

Chapter 6. Parallel Environment commands 165

mpiexec

Invokes the Parallel Operating Environment (POE) for loading and executing

programs on remote processor nodes. This command invokes the poe command.

SYNOPSIS

mpiexec -n partition_size program

The mpiexec command is described in the MPI-2 standard as a portable way of

starting MPI jobs; it is provided here to conform with that standard. The mpiexec

command invokes poe to run the specified program. The mpiexec command

translates the -n flag to the -procs flag for the poe command. The mpiexec

command passes all other arguments unchanged to the poe command. Refer to the

poe command man page for additional details on its flags.

Note: Under PE for Linux, if another MPI package is installed on the node before

you install PE, mpiexec will not be linked to the /usr/bin directory. In this

case, the full path for accessing mpiexec is/opt/ibmhpc/ppe.poe/bin/
mpiexec.

FLAGS

In addition to the -n flag described below, all poe command flags are accepted,

and passed unchanged to the poe command.

If you are familiar with the description of the mpiexec command in the MPI-2

standard, please note that we have chosen to implement only the command syntax

required for compliance with that standard. The optional flags have not been

implemented, as our poe command, which is invoked by the mpiexec command,

offers sufficient functionality.

-n

Translated to the -procs flag and passed to the poe command. This determines

the number of program tasks. If not set, the default is 1.

EXAMPLES

To invoke an MPI program sample to run as five tasks:

 mpiexec -n 5 sample

RELATED INFORMATION

Commands: poe(1)

166 IBM PE for AIX and Linux V5 R1: Operation and Use

mpxlf_r

Invokes a shell script to compile Fortran programs which use MPI. This command

applies to PE for AIX only.

SYNOPSIS

mpxlf_r [xlf_flags]... program.f

The mpxlf_r shell script compiles Fortran programs while linking in the Partition

Manager, the Message Passing Interface (MPI), and (optionally) Low-level

Applications Programming Interface (LAPI).

FLAGS

Any of the compiler flags normally accepted by the xlf command can also be used

on mpxlf_r. For a complete listing of these flag options, refer to the manual page

for the xlf command. Typical options to mpxlf_r include:

-v causes a “verbose” output listing of the shell script.

-g produces an object file with symbol table references.

-o names the executable.

-l (lowercase L)

names additional libraries to be searched. Several libraries are automatically

included, and are listed below in the CONTEXT section.

Note: Not all AIX libraries are thread safe. Verify that your intended use is

supported.

-I (uppercase i)

names directories for additional includes. The directory /usr/lpp/ppe.poe/include

or the appropriate subdirectory is included automatically. Command line or

makefile hard coding of include paths for PE header files should normally be

avoided. Such specifications will take precedence over the directory selected by

the script and may result in generating incorrect code.

-p

enables profiling with the prof command. For more information, see IBM

Parallel Environment: Operation and Use.

-pg

enables profiling with the xprofiler and gprof commands. For more

information, see the xprofiler information in AIX Performance Tools Guide and

Reference and the information on profiling programs with prof and gprof in

IBM Parallel Environment: Operation and Use.

-q64

Causes code to compile to 64-bit objects. On AIX, the default is to compile to

32-bit objects. The OBJECT_MODE environment variable can be used to select

either a 32-bit or 64-bit default. –q64 supersedes any OBJECT_MODE setting.

-q32

Causes code to compile to 32-bit objects. On AIX, the default is to compile to

32-bit objects. –q32 is required only if the OBJECT_MODE environment

variable has been used to change the default. –q32 supersedes any

OBJECT_MODE setting.

Chapter 6. Parallel Environment commands 167

DESCRIPTION

The mpxlf_r shell script invokes the xlf command. In addition, the Partition

Manager and data communication interfaces are automatically linked in. The script

creates an executable that dynamically binds with the communication subsystem

libraries.

Flags are passed by mpxlf_r to the xlf command, so any of the xlf options can be

used on the mpxlf_r shell script. The communication subsystem library

implementation is dynamically linked when you invoke the executable using the

poe command. The value specified by the MP_EUILIB environment variable or the

-euilib flag will then determine which communication subsystem library

implementation is dynamically linked.

There are distinct 32-bit and 64-bit versions of mpif.h and mpi.mod, and the

Fortran compilation scripts provide the include path to select the correct version.

The script’s decision is based on the OBJECT_MODE environment variable setting

and the use of the –q32 or -q64 flags when the script was invoked. Alternate ways

of forcing 32-bit or 64-bit compilation may result in selecting the wrong include. A

user-specified include path provided through a makefile or compilation command

line flag will be searched before the script’s path. If any user-specified include path

provides an inappropriate copy of mpif.h, the script will not be able to override and

select the appropriate copy. Alterations made to xlf.cfg, in an effort to force 64-bit

compilation, are not recognized by the script.

ENVIRONMENT VARIABLES

MP_PREFIX

Sets an alternate path to the scripts library. If not set or NULL, the

standard path /usr/lpp/ppe.poe is used. If this environment variable is set,

then all libraries are prefixed by $MP_PREFIX/ppe.poe.

OBJECT_MODE

Setting this variable to 64 causes the 64–bit libraries to be linked to the

executable, as if the -q64 option had been set. Setting this variable to

anything other than 64, or not setting it has no effect on how the

executables are built.

EXAMPLES

To compile a Fortran program, enter:

mpxlf_r program.f -o program

FILES

When you compile a program using mpxlf_r, the following libraries are

automatically selected:

v /usr/lpp/ppe.poe/lib/libmpi_r.a (Message passing interface, collective

communication routines)

v /usr/lpp/ppe.poe/lib/libppe_r.a (PE common routines)

v The following library is selected if it exists as a symbolic link to

/opt/rsct/lapi/lib/liblapi_r.a:

/usr/lib/liblapi_r.a

168 IBM PE for AIX and Linux V5 R1: Operation and Use

RELATED INFORMATION

Commands: mpcc_r(1), xlf_r(1)

Chapter 6. Parallel Environment commands 169

mpxlf90_r

Invokes a shell script to compile Fortran 90 programs which use MPI. This

command applies to PE for AIX only.

SYNOPSIS

mpxlf90_r [xlf_flags]... program.f

The mpxlf90_r shell script compiles Fortran 90 programs while linking in the

Partition Manager, the Message Passing Interface (MPI), and (optionally) Low-level

Applications Programming Interface (LAPI).

Beginning with Version 5.1, PE supports Fortran 90 modules. PE now includes a

Fortran 90 module (mpi.mod) that provides type checking for MPI programs at

compile time. This allows programmers to find and resolve errors at a much earlier

stage.

To use the PE Fortran 90 type-checking module, do the following.

For new programs:

v Include the USE MPI statement to the application source code.

v Compile the program with XLF Version 12.1 or later.

For existing programs:

v Modify the application source code to include the USE MPI statement.

v Recompile the program with XL Fortran compiler (XLF) Version 12.1 or later.

Note that if you have an existing Fortran MPI program that is running without

errors, there is no need to recompile it. Since the program is already running

correctly, compiling it with the Fortran 90 module would provide no benefit.

Note: The mpi.mod module was compiled without the -qmixed compiler option.

As a result, routines that use the mpi.mod module must not be compiled

with this option.

Note: The USE MPI statement is supported only in conjunction with IBM’s XLF

compiler.

FLAGS

Any of the compiler flags normally accepted by the xlf command can also be used

on mpxlf90_r. For a complete listing of these flag options, refer to the manual page

for the xlf command. Typical options to mpxlf90_r include:

-v causes a “verbose” output listing of the shell script.

-g produces an object file with symbol table references.

-o names the executable.

-l (lowercase L)

names additional libraries to be searched. Several libraries are automatically

included, and are listed below in the CONTEXT section.

Note: Not all AIX libraries are thread safe. Verify that your intended use is

supported.

170 IBM PE for AIX and Linux V5 R1: Operation and Use

-I (uppercase i)

names directories for additional includes. The directory /usr/lpp/ppe.poe/include

or the appropriate subdirectory is included automatically. Command line or

makefile hard coding of include paths for PE header files should normally be

avoided. Such specifications will take precedence over the directory selected by

the script and may result in generating incorrect code.

-p

enables profiling with the prof command. For more information, see IBM

Parallel Environment: Operation and Use.

-pg

enables profiling with the xprofiler and gprof commands. For more

information, see the xprofiler information in AIX Performance Tools Guide and

Reference and the information on profiling programs with prof and gprof in

IBM Parallel Environment: Operation and Use.

-q64

Causes code to compile to 64-bit objects. On AIX, the default is to compile to

32-bit objects. The OBJECT_MODE environment variable can be used to select

either a 32-bit or 64-bit default. –q64 supersedes any OBJECT_MODE setting.

-q32

Causes code to compile to 32-bit objects. On AIX, the default is to compile to

32-bit objects. –q32 is required only if the OBJECT_MODE environment

variable has been used to change the default. –q32 supersedes any

OBJECT_MODE setting.

DESCRIPTION

The mpxlf90_r shell script invokes the xlf command. In addition, the Partition

Manager and data communication interfaces are automatically linked in. The script

creates an executable that dynamically binds with the communication subsystem

libraries.

Flags are passed by mpxlf90_r to the xlf command, so any of the xlf options can

be used on the mpxlf90_r shell script. The communication subsystem library

implementation is dynamically linked when you invoke the executable using the

poe command. The value specified by the MP_EUILIB environment variable or the

-euilib flag will then determine which communication subsystem library

implementation is dynamically linked.

There are distinct 32-bit and 64-bit versions of mpif.h and mpi.mod, and the

Fortran compilation scripts provide the include path to select the correct version.

The script’s decision is based on the OBJECT_MODE environment variable setting

and the use of the –q32 or -q64 flags when the script was invoked. Alternate ways

of forcing 32-bit or 64-bit compilation may result in selecting the wrong include. A

user specified include path provided through a makefile or compilation command

line flag will be searched before the script’s path. If any user-specified include path

provides an inappropriate copy of mpif.h, the script will not be able to override and

select the appropriate copy. Alterations made to xlf.cfg, in an effort to force 64-bit

compilation, are not recognized by the script.

ENVIRONMENT VARIABLES

MP_PREFIX

Sets an alternate path to the scripts library. If not set or NULL, the

Chapter 6. Parallel Environment commands 171

standard path /usr/lpp/ppe.poe is used. If this environment variable is set,

then all libraries are prefixed by $MP_PREFIX/ppe.poe.

OBJECT_MODE

Setting this variable to 64 causes the 64–bit libraries to be linked to the

executable, as if the -q64 option had been set. Setting this variable to

anything other than 64, or not setting it has no effect on how the

executables are built.

EXAMPLES

To compile a Fortran 90 program, enter:

mpxlf90_r program.f -o program

FILES

When you compile a program using mpxlf90_r, the following libraries are

automatically selected:

v /usr/lpp/ppe.poe/lib/libmpi_r.a (Message passing interface, collective

communication routines)

v /usr/lpp/ppe.poe/lib/libppe_r.a (PE common routines)

v The following library is selected if it exists as a symbolic link to

/opt/rsct/lapi/lib/liblapi_r.a:

/usr/lib/liblapi_r.a

RELATED INFORMATION

Commands: mpcc_r(1), xlf_r(1), mpxlf_r(1)

172 IBM PE for AIX and Linux V5 R1: Operation and Use

mpxlf95_r

Invokes a shell script to compile Fortran 95 programs which use MPI. This

command applies to PE for AIX only.

SYNOPSIS

mpxlf95_r [xlf_flags]... program.f

The mpxlf95_r shell script compiles Fortran 95 programs while linking in the

Partition Manager, the Message Passing Interface (MPI), and (optionally) Low-level

Applications Programming Interface (LAPI).

FLAGS

Any of the compiler flags normally accepted by the xlf95 command can also be

used on mpxlf95_r. For a complete listing of these flag options, refer to the manual

page for the xlf95 command. Typical options to mpxlf95_r include:

-v causes a “verbose” output listing of the shell script.

-g produces an object file with symbol table references.

-o names the executable.

-l (lowercase L)

names additional libraries to be searched. Several libraries are automatically

included, and are listed below in the CONTEXT section.

Note: Not all AIX libraries are thread safe. Verify that your intended use is

supported.

-I (uppercase i)

names directories for additional includes. The directory /usr/lpp/ppe.poe/include

or the appropriate subdirectory is included automatically. Command line or

makefile hard coding of include paths for PE header files should normally be

avoided. Such specifications will take precedence over the directory selected by

the script and may result in generating incorrect code.

-p

enables profiling with the prof command. For more information, see IBM

Parallel Environment: Operation and Use.

-pg

enables profiling with the xprofiler and gprof commands. For more

information, see the xprofiler information in AIX Performance Tools Guide and

Reference and the information on profiling programs with prof and gprof in

IBM Parallel Environment: Operation and Use.

-q64

Causes code to compile to 64-bit objects. On AIX, the default is to compile to

32-bit objects. The OBJECT_MODE environment variable can be used to select

either a 32-bit or 64-bit default. –q64 supersedes any OBJECT_MODE setting.

-q32

Causes code to compile to 32-bit objects. On AIX, the default is to compile to

32-bit objects. –q32 is required only if the OBJECT_MODE environment

variable has been used to change the default. –q32 supersedes any

OBJECT_MODE setting.

Chapter 6. Parallel Environment commands 173

DESCRIPTION

The mpxlf95_r shell script invokes the xlf95 command. In addition, the Partition

Manager and data communication interfaces are automatically linked in. The script

creates an executable that dynamically binds with the communication subsystem

libraries.

Flags are passed by mpxlf95_r to the xlf95 command, so any of the xlf95 options

can be used on the mpxlf95_r shell script. The communication subsystem library

implementation is dynamically linked when you invoke the executable using the

poe command. The value specified by the MP_EUILIB environment variable or the

-euilib flag will then determine which communication subsystem library

implementation is dynamically linked.

There are distinct 32-bit and 64-bit versions of mpif.h and mpi.mod, and the

Fortran compilation scripts provide the include path to select the correct version.

The script’s decision is based on the OBJECT_MODE environment variable setting

and the use of the –q32 or -q64 flags when the script was invoked. Alternate ways

of forcing 32-bit or 64-bit compilation may result in selecting the wrong include. A

user-specified include path provided through a makefile or compilation command

line flag will be searched before the script’s path. If any user-specified include path

provides an inappropriate copy of mpif.h, the script will not be able to override and

select the appropriate copy. Alterations made to xlf.cfg, in an effort to force 64-bit

compilation, are not recognized by the script.

ENVIRONMENT VARIABLES

MP_PREFIX

Sets an alternate path to the scripts library. If not set or NULL, the

standard path /usr/lpp/ppe.poe is used. If this environment variable is set,

then all libraries are prefixed by $MP_PREFIX/ppe.poe.

OBJECT_MODE

Setting this variable to 64 causes the 64–bit libraries to be linked to the

executable, as if the -q64 option had been set. Setting this variable to

anything other than 64, or not setting it has no effect on how the

executables are built.

EXAMPLES

To compile a Fortran 95 program, enter:

mpxlf95_r program.f -o program

FILES

When you compile a program using mpxlf95_r, the following libraries are

automatically selected:

v /usr/lpp/ppe.poe/lib/libmpi_r.a (Message passing interface, collective

communication routines)

v /usr/lpp/ppe.poe/lib/libppe_r.a (PE common routines)

v The following library is selected if it exists as a symbolic link to

/opt/rsct/lapi/lib/liblapi_r.a:

/usr/lib/liblapi_r.a

174 IBM PE for AIX and Linux V5 R1: Operation and Use

RELATED INFORMATION

Commands: mpcc_r(1), xlf95_r(1), mpxlf_r(1), mpxlf95(1)

Chapter 6. Parallel Environment commands 175

mpxlf2003_r

Invokes a shell script to compile Fortran 2003 programs which use MPI. This

command applies to PE for AIX only.

SYNOPSIS

mpxlf2003_r [xlf_flags]... program.f

The mpxlf2003_r shell script compiles Fortran 2003 programs while linking in the

Partition Manager, the Message Passing Interface (MPI), and (optionally) Low-level

Applications Programming Interface (LAPI).

FLAGS

Any of the compiler flags normally accepted by the xlf2003_r command can also

be used on mpxlf2003_r. For a complete listing of these flag options, refer to the

manual page for the xlf2003_r command. Typical options to mpxlf2003_r include:

-v causes a “verbose” output listing of the shell script.

-g produces an object file with symbol table references.

-o names the executable.

-l (lowercase L)

names additional libraries to be searched. Several libraries are automatically

included, and are listed below in the CONTEXT section.

Note: Not all AIX libraries are thread safe. Verify that your intended use is

supported.

-I (uppercase i)

names directories for additional includes. The directory /usr/lpp/ppe.poe/include

or the appropriate subdirectory is included automatically. Command line or

makefile hard coding of include paths for PE header files should normally be

avoided. Such specifications will take precedence over the directory selected by

the script and may result in generating incorrect code.

-p

enables profiling with the prof command. For more information, see the

information on profiling programs in IBM Parallel Environment: Operation and

Use.

-pg

enables profiling with the xprofiler and gprof commands. For more

information, see the xprofiler information in AIX Performance Tools Guide and

Reference or the information on profiling programs with prof and gprof in IBM

Parallel Environment: Operation and Use.

-q64

Causes code to compile to 64-bit objects. On AIX, the default is to compile to

32-bit objects. The OBJECT_MODE environment variable can be used to select

either a 32-bit or 64-bit default. –q64 supersedes any OBJECT_MODE setting.

-q32

Causes code to compile to 32-bit objects. On AIX, the default is to compile to

176 IBM PE for AIX and Linux V5 R1: Operation and Use

32-bit objects. –q32 is required only if the OBJECT_MODE environment

variable has been used to change the default. –q32 supersedes any

OBJECT_MODE setting.

DESCRIPTION

The mpxlf2003_r shell script invokes the xlf2003_r command. In addition, the

Partition Manager and data communication interfaces are automatically linked in.

The script creates an executable that dynamically binds with the communication

subsystem libraries.

Flags are passed by mpxlf2003_r to the xlf2003_r command, so any of the

xlf2003_r options can be used on the mpxlf2003_r shell script. The communication

subsystem library implementation is dynamically linked when you invoke the

executable using the poe command. The value specified by the MP_EUILIB

environment variable or the -euilib flag will then determine which communication

subsystem library implementation is dynamically linked.

There are distinct 32-bit and 64-bit versions of mpif.h and mpi.mod, and the

Fortran compilation scripts provide the include path to select the correct version.

The script’s decision is based on the OBJECT_MODE environment variable setting

and the use of the –q32 or -q64 flags when the script was invoked. Alternate ways

of forcing 32-bit or 64-bit compilation may result in selecting the wrong include. A

user-specified include path provided through a makefile or compilation command

line flag will be searched before the script’s path. If any user-specified include path

provides an inappropriate copy of mpif.h, the script will not be able to override and

select the appropriate copy. Alterations made to xlf.cfg, in an effort to force 64-bit

compilation, are not recognized by the script.

ENVIRONMENT VARIABLES

MP_PREFIX

Sets an alternate path to the scripts library. If not set or NULL, the

standard path /usr/lpp/ppe.poe is used. If this environment variable is set,

then all libraries are prefixed by $MP_PREFIX/ppe.poe.

OBJECT_MODE

Setting this variable to 64 causes the 64–bit libraries to be linked to the

executable, as if the -q64 option had been set. Setting this variable to

anything other than 64, or not setting it has no effect on how the

executables are built.

EXAMPLES

To compile a Fortran 2003 program, enter:

mpxlf2003_r program.f -o program

FILES

When you compile a program using mpxlf2003_r, the following libraries are

automatically selected:

v /usr/lpp/ppe.poe/lib/libmpi_r.a (Message passing interface, collective

communication routines)

v /usr/lpp/ppe.poe/lib/libppe_r.a (PE common routines)

Chapter 6. Parallel Environment commands 177

v The following library is selected if it exists as a symbolic link to

/opt/rsct/lapi/lib/liblapi_r.a:

/usr/lib/liblapi_r.a

RELATED INFORMATION

Commands: mpcc_r(1), xlf2003_r(1), mpxlf_r(1), mpxlf90_r(1), mpxlf95_r

178 IBM PE for AIX and Linux V5 R1: Operation and Use

pdb

Invokes the PDB parallel debugger.

SYNOPSIS

To invoke PDB in launch mode:

pdb executable_and_arguments

[--poe poe_options]

[--gdb gdb_options] (Linux only) or [--dbx dbx_options] (AIX only)

To invoke PDB in attach mode:

pdb -a [poe_process_id]

[--gdb gdb_options] (Linux only) or [--dbx dbx_options] (AIX only)

To get PDB help:

pdb [-h]

The pdb command launches PDB, the Parallel Environment’s command line

debugger for parallel programs.

FLAGS

executable_and_arguments

Specifies to launch the target executable and start debugging from the

beginning of the program. The arguments are to the executable, not to PDB.

--dbx dbx_options

Specifies the options to pass to dbx. Applies to AIX only.

-a [poe_process_id]

Specifies to attach to a running POE job. pdb -a must be issued from the node

on which the POE job was initiated. If the POE process ID is not specified,

PDB tries to find one and reports an error if multiple POE processes exist.

-h Provides help information.

--gdb gdb_options

Specifies the options to pass to GDB. Applies to Linux only.

--poe poe_options

Specifies the options to pass to POE.

DESCRIPTION

PDB is the Parallel Environment’s command line debugger for parallel programs. It

works together with DISH, a tool for launching and managing distributed

processes interactively, as well as GDB, the GNU project debugger and dbx, a

UNIX-based debugger.. All of the commands you use with PDB are either DISH

commands, for process management, or GDB or dbx commands, for serial

debugging. PDB simply configures DISH to manage distributed GDB or dbx

instances and then hands control over to DISH.

Debugging with PDB is similar to using multiple GDB or dbx instances to debug

multiple processes simultaneously. PDB adds convenience by providing a control

center for managing processes (DISH).

Chapter 6. Parallel Environment commands 179

Before you can use PDB, you first need to compile the program you want to

debug. You also need to be able to use POE to launch a parallel job with the

compiled program.

PDB allows you to debug programs in two different modes; launch mode and attach

mode. In launch mode, PDB launches the job and starts interactive debugging from

the beginning of the program. In attach mode, PDB attaches to a program that is

already in progress.

To use PDB in launch mode, precede the executable in your launch script with pdb

on the command line. For example:

pdb my_program

To attach to a running job, enter pdb -a from the node on which the POE process

is running.

When diagnosing problems, look at GDB or dbx first. For example, if you see some

unexpected behavior while running PDB, you could issue one of the following

commands to see if the same behavior exists under rsh:

rsh host gdb options program

Or

rsh host dbx options program

To obtain more information from PDB, use the dish -i info_level option.

The following are known issues with PDB:

edit command hangs

v Reason - GDB and dbx launch an external editor to edit source files,

which sometimes causes PDB to hang.

v Solution - Do not use the edit command. In the event that a user enters

the edit command, do one of the following:

– If you are using GDB, press <Ctrl-c> to enter the interrupt state, and

then type the command interrupt.

– If you are using dbx, press <Ctrl-c> to enter the interrupt state, and

then enter the command send :q twice.

Spurious SIG32 stops the job

v Reason - pthread_cancel() calls a program that generates SIG32 when

the program is being debugged by GDB.

v Solution - Use the GDB command handle SIG32 nostop. This command

can be put into .gdbinit to avoid typing it in for each session.

POE shows: ″ERROR: 0031-652 Error reading STDIN″

v Reason - PDB uses POE to launch DISH agents, and POE is started in

the background without STDIN.

v Solution - Ignore this error.

PDB cannot pass an option to GDB, dbx, or POE if there is a space in the

option

v Reason - Spaces are treated as word delimitors by the shell script with

which PDB is written.

v Solution - Do not use spaces in options.

180 IBM PE for AIX and Linux V5 R1: Operation and Use

ENVIRONMENT VARIABLES

In launch mode, PDB passes all POE environment variables to POE and to

individual tasks. Attach mode does not require POE environment variables to be

set.

EXAMPLES

1. To start PDB, set up the execution environment as you would for the POE

command, then enter the pdb command, followed by the program being

debugged:

pdb my_program

2. To pass DISH options, add them to the end of the command:

pdb my_program --dish -i 3

3. To pass GDB options, add them to the end of the command:

pdb my_program --dish -i 3 --gdb -d source_dir

4. To pass POE options, add them to the end of the command:

pdb my_program --dish -i 3 --gdb -d source_dir --poe -procs 2

FILES

The following temporary files are created during PDB execution.

/tmp/.pdb_config.pdb_process_id

DISH configuration file that tells DISH to launch GDB.

/tmp/.pdb_instances.pdb_process_id

DISH instance file that contains the hosts on which to launch GDB. For

attach mode, this file also contains the process IDs of the program to

debug.

RELATED INFORMATION

Commands: dish(1), disha(1), poe(1), gdb(1)

Chapter 6. Parallel Environment commands 181

perpms

Shows the RPMs that are installed with PE. This command applies to PE for

Linux only.

SYNOPSIS

perpms [-h] [-a]

FLAGS

-h

Causes the perpms man page to be printed to stdout.

-a Displays all installed RPMs of the IBM High Performance Computing Suite.

This includes all RPMs of the IBM Parallel Environment for Linux (PE),

LoadLeveler (LL), and Reliable Scalable Cluster Technology (RSCT).

DESCRIPTION

The perpms command returns a list of the RPMs that are currently installed with

PE. If you invoke perpms without any flags, only the PE and LAPI RPM

information is displayed. You can use the -a flag to also include the RPMs that are

installed with any of the other IBM High Performance Computing Suite products,

such as LoadLeveler and Reliable Scalable Cluster Technology (RSCT), that are

installed on your system.

EXAMPLES

1. To display the RPM levels of all IBM High Performance Computing Suite

products:

perpms -a

The output looks similar to this:

<<< Install IBM PE RPM(s) >>>

ppe_ppc_base_32bit_sles900-4.2.1.0-0607a

ppe_ppc_64bit_sles900-4.2.1.0-0607a

<<< Install IBM LAPI RPM(s) >>>

lapi_ppc_base_32bit_sles900-2.4.1.0-0607a

lapi_ppc_64bit_sles900-2.4.1.0-0607a

<<< Install IBM LoadL RPM(s) >>>

LoadL-full-lib-SLES9-PPC-3.3.2.0-0

LoadL-full-license-SLES9-PPC64-3.3.2.0-0

LoadL-full-SLES9-PPC64-3.3.2.0-0

<<< Install IBM RSCT RPMs >>>

rsct.core.cimrm-2.4.5.0-06045

rsct.basic-2.4.5.0-06045

rsct.64bit-2.4.5.0-0

rsct.core.utils-2.4.5.0-06045

rsct.core-2.4.5.0-06045

2. To display only the PE RPM levels:

perpms

The output looks similar to this:

ppe_ppc_base_32bit_sles900-4.2.1.0-0607a

ppe_ppc_64bit_sles900-4.2.1.0-0607a

lapi_ppc_base_32bit_sles900-2.4.1.0-0607a

lapi_ppc_64bit_sles900-2.4.1.0-0607a

182 IBM PE for AIX and Linux V5 R1: Operation and Use

poe

Invokes the Parallel Operating Environment (POE) for loading and executing

programs on remote processor nodes.

SYNOPSIS

poe [-h] [-v] [program] [program_options]...

[-adapter_use adapter_specifier]

[-buffer_mem {preallocated_buffer_size | ,maximum_buffer_size |

 preallocated_buffer_size,maximum_buffer_size}]

[-bulk_min_msg_size message_size]

[-cc_buf_mem {preallocated_buffer_size | ,maximum_buffer_size |

 preallocated_buffer_size,maximum_buffer_size}]

[-cc_scratch_buf {yes | no}]

[-clock_source {aix | switch}]

[-cmdfile commands_file]

[-coredir directory_prefix_string | none]

[-corefile_format { lightweight_corefile_name | STDERR }]

[-corefile_sigterm {yes | no}]

[-cpu_use cpu_specifier]

[-css_interrupt {yes | no}]

[-debug_notimeout non-null string of characters]

[-devtype {ib}][-eager_limit size_limit]

[-euidevelop {yes | no | deb | min | nor}]

[-euidevice device_specifier]

[-euilib {ip | us}]

[-euilibpath path_specifier]

[-hints_filtered {yes | no}]

[{-hostfile | -hfile} host_file_name]

[{-infolevel | -ilevel} message_level]

[-io_buffer_size buffer_size]

[-io_errlog {yes | no}]

[-ionodefile io_node_file_name]

[-instances number_of_instances]

[-labelio {yes | no}]

[-llfile loadleveler_job_command_file_name]

[-msg_api {MPI | LAPI | MPI_LAPI |MPI, LAPI | LAPI, MPI }]

[-msg_envelope_buf envelope_buffer_size]

[-newjob {yes | no}]

[-nodes number_of_nodes]

[-pgmmodel {spmd | mpmd}]

[-pmdlog {yes | no}]

[-pmdlog_dir directory_name][-polling_interval interval]

[-printenv {yes | no | script_name }]

[-procs partition_size]

[-profdir directory_name]

[-priority_log {yes | no}]

[-priority_log_dir directory_name]

[-priority_log_name log_file_name]

[-priority_ntp {yes | no}]

[-pulse interval]

[-rc_max_qp number_of_queue_pairs]

[-rc_use_lmc {yes | no}]

[-rdma_count {rCxt block value| MPI rCxt block value, LAPI rCxt block value}]

Chapter 6. Parallel Environment commands 183

[-resd {yes | no}]

[-retransmit_interval interval]

[-retry retry_interval|wait]

[-retrycount retry_count]

[-rexmit_buf_cnt number of buffers]

[-rexmit_buf_size buffer_size]

[-rmpool pool_ID]

[-savehostfile output_file_name]

[-save_llfile output_file_name]

[-shared_memory {yes | no}]

[-single_thread {no | yes}]

[-statistics {yes | no| print}]

[-stdinmode {all | none | task_ID}]

[-stdoutmode {unordered | ordered | task_ID}]

[-task_affinity {SNI | MCM | mcm_list}]

[-tasks_per_node number_of_tasks per node]

[-thread_stacksize stacksize]

[-tlp_required {none |warn | kill}]

[-udp_packet_size {packet_size}]

[-use_bulk_xfer {yes | no}]

[-wait_mode {nopoll |poll | sleep | yield}]

The poe command invokes the Parallel Operating Environment for loading and

executing programs on remote processor nodes. The operation of POE is influenced

by a number of POE environment variables. The flag options on this command are

each used to temporarily override one of these environment variables. User

program_options can be freely interspersed with the flag options. If no program is

specified, POE will either prompt you for programs to load, or, if the

MP_CMDFILE environment variable is set, will load the partition using the

specified commands file.

FLAGS

The -h flag, when used, must appear immediately after poe, and causes the poe

man page, if it exists, to be printed to stdout.

Under PE for Linux, the -v flag causes a verbose output listing (POE displays the

names of all the installed PE and LAPI RPMs). Also see the man page for the

perpms command.

The remaining flags that you can specify on this command are used to temporarily

override POE environment variables. For more information on valid values, and on

what a particular flag sets, refer to the description of its associated environment

variable in the ENVIRONMENT VARIABLES section. The following flags are

grouped by function.

The following Partition Manager control flags override the associated environment

variables.

-adapter_use

MP_ADAPTER_USE

-cpu_use

MP_CPU_USE

-devtype

MP_DEVTYPE

184 IBM PE for AIX and Linux V5 R1: Operation and Use

-euidevice

MP_EUIDEVICE

-euilib

MP_EUILIB

-euilibpath

MP_EUILIBPATH

-hostfile or -hfile

MP_HOSTFILE

-procs

MP_PROCS

-pulse

MP_PULSE

-rc_max_qp

MP_RC_MAX_QP

-rc_use_lmc

MP_RC_USE_LMC

-rdma_count

MP_RDMA_COUNT

-resd

MP_RESD

-retry

MP_RETRY

-retrycount

MP_RETRYCOUNT

-msg_api

MP_MSG_API

-rmpool

MP_RMPOOL

-nodes

MP_NODES

-tasks_per_node

MP_TASKS_PER_NODE

-savehostfile

MP_SAVEHOSTFILE

The following Job Specification flags override the associated environment variables.

-cmdfile

MP_CMDFILE

-instances

MP_INSTANCES

-llfile

MP_LLFILE

-newjob

MP_NEWJOB

Chapter 6. Parallel Environment commands 185

-pgmmodel

MP_PGMMODEL

-save_llfile

MP_SAVE_LLFILE

-task_affinity

MP_TASK_AFFINITY

The following I/O Control flags override the associated environment variables.

-labelio

MP_LABELIO

-stdinmode

MP_STDINMODE

-stdoutmode

MP_STDOUTMODE

The following generation of diagnostic information flags override the associated

environment variables.

-infolevel or -ilevel

MP_INFOLEVEL

-pmdlog

MP_PMDLOG

-pmdlog_dir

MP_PMDLOG_DIR

-profdir (PE for Linux only)

MP_PROFDIR (PE for Linux only)

-debug_notimeout

MP_DEBUG_NOTIMEOUT

The following Message Passing flags override the associated environment

variables.

-buffer_mem

MP_BUFFER_MEM

-cc_buf_mem

MP_CC_BUF_MEM

-cc_scratch_buf

MP_CC_SCRATCH_BUF

-clock_source

MP_CLOCK_SOURCE

-css_interrupt

MP_CSS_INTERRUPT

-eager_limit

MP_EAGER_LIMIT

-hints_filtered

MP_HINTS_FILTERED

-ionodefile

MP_IONODEFILE

186 IBM PE for AIX and Linux V5 R1: Operation and Use

-msg_envelope_buf

MP_MSG_ENVELOPE_BUF

-shared_memory

MP_SHARED_MEMORY

-udp_packet_size

MP_UDP_PACKET_SIZE

-thread_stacksize

MP_THREAD_STACKSIZE

-single_thread

MP_SINGLE_THREAD

-wait_mode

MP_WAIT_MODE

-polling_interval

MP_POLLING_INTERVAL

-retransmit_interval

MP_RETRANSMIT_INTERVAL

-statistics

MP_STATISTICS

-io_buffer_size

MP_IO_BUFFER_SIZE

-io_errlog

MP_IO_ERRLOG

-use_bulk_xfer

MP_USE_BULK_XFER

-bulk_min_msg_size

MP_BULK_MIN_MSG_SIZE

-rexmit_buf_size

MP_REXMIT_BUF_SIZE

-rexmit_buf_cnt

MP_REXMIT_BUF_CNT

The following core file generation flags override the associated environment

variables.

-coredir

MP_COREDIR

-corefile_format (PE for AIX only)

MP_COREFILE_FORMAT (PE for AIX only)

-corefile_sigterm (PE for AIX only)

MP_COREFILE_SIGTERM (PE for AIX only)

The following are miscellaneous flags:

-euidevelop

MP_EUIDEVELOP

-printenv

MP_PRINTENV

Chapter 6. Parallel Environment commands 187

-statistics

MP_STATISTICS

-priority_log

MP_PRIORITY_LOG

-priority_log_dir

MP_PRIORITY_LOG_DIR

-priority_log_name

MP_PRIORITY_LOG_NAME

-priority_ntp (PE for AIX only)

MP_PRIORITY_NTP (PE for AIX only)

-tlp_required (PE for AIX only)

MP_TLP_REQUIRED (PE for AIX only)

DESCRIPTION

The poe command invokes the Parallel Operating Environment for loading and

executing programs on remote nodes. You can enter it at your home node to:

v load and execute an SPMD program on all nodes of your partition.

v individually load the nodes of your partition with an MPMD job.

v load and execute a series of SPMD and MPMD programs, in individual job

steps, on the same partition.

v run nonparallel programs on remote nodes.

The operation of POE is influenced by a number of POE environment variables.

The flag options on this command are each used to temporarily override one of

these environment variables. User program_options can be freely interspersed with

the flag options, and additional_options not to be parsed by POE can be placed after

a fence_string defined by the MP_FENCE environment variable. If no program is

specified, POE will either prompt you for programs to load, or, if the

MP_CMDFILE environment variable is set, will load the partition using the

specified commands file.

The environment variables and flags that influence the operation of this command

fall into distinct categories of function. They are:

v Partition Manager control. The environment variables and flags in this category

determine the method of node allocation, message passing mechanism, and the

PULSE monitor function.

v Job specification. The environment variables and flags in this category

determine whether or not the Partition Manager should maintain the partition

for multiple job steps, whether commands should be read from a file or STDIN,

and how the partition should be loaded.

v I/O control. The environment variables and flags in this category determine how

I/O from the parallel tasks should be handled. These environment variables and

flags set the input and output modes, and determine whether or not output is

labeled by task id.

v Generation of diagnostic information. The environment variables and flags in

this category enable you to generate diagnostic information that may be required

by the IBM Support Center in resolving PE-related problems.

v Message Passing Interface. The environment variables and flags in this category

enable you to specify values for tuning message passing applications.

188 IBM PE for AIX and Linux V5 R1: Operation and Use

v Corefile generation. The environment variables and flags in this category

govern aspects of core file generation including the directory name into which

core files will be saved or, for AIX users, the core file format (standard AIX or

lightweight).

v Miscellaneous. The additional environment variables and flags in this category

enable additional error checking, and set a dispatch priority class for execution.

ENVIRONMENT VARIABLES

The environment variable descriptions in this section are grouped by function.

The following environment variables are associated with Partition Manager control.

MP_ADAPTER_USE

Determines how the node’s adapter should be used. The User Space

communication subsystem library does not require dedicated use of the

IBM High Performance Switch on the node. Adapter use will be defaulted,

as in “Step 3b: Create a host list file” on page 22, but shared usage may be

specified. Valid values are dedicated and shared. If not set, the default is

dedicated for User Space jobs, or shared for IP jobs. The value of this

environment variable can be overridden using the -adapter_use flag.

MP_CPU_USE

Determines how the node’s CPUs should be used. The User Space

communication subsystem library does not require unique CPU use on the

node. CPU use will be defaulted, as in “Step 3b: Create a host list file” on

page 22, but multiple use may be specified. Valid values are multiple and

unique. If not set, the default is unique for User Space jobs, or multiple for IP

jobs. The value of this environment variable can be overridden using the

-cpu_use flag.

MP_DEVTYPE

Specifies the device type class. Currently, the only valid value is ib

(InfiniBand). There is no default value (you must explicitly set

MP_DEVTYPE to ib if you want to use the InfiniBand interconnect).

MP_EUIDEVICE

Determines the adapter set to use for message passing.

 Under PE for AIX, valid values are en0 (for Ethernet), fi0 (for FDDI), tr0

(for token-ring), sn_single (to specify one User Space window per task),

sn_all (to specify multiple (striped) User Space windows per task), or a

string representing an adapter device name, as configured in LoadLeveler.

Under PE for Linux, valid values are a string representing an adapter

device name or network type, configured by LoadLeveler. You can also

specify sn_all (for one window per task) or sn_single (for multiple windows

per task).

MP_EUILIB

Determines the communication subsystem implementation to use for

communication either the IP communication subsystem or the User Space

communication subsystem. In order to use the User Space communication

subsystem, you must have a system configured with its IBM High

Performance Switch feature. Valid, case-sensitive, values are ip (for the IP

communication subsystem) or us (for the User Space communication

subsystem). The value of this environment variable can be overridden

using the -euilib flag.

Chapter 6. Parallel Environment commands 189

MP_EUILIBPATH

Determines the path to the message passing and communication subsystem

libraries. This only needs to be set if an alternate library path is desired.

Valid values are any path specifier. The value of this environment variable

can be overridden using the -euilibpath flag.

MP_HOSTFILE

Determines the name of a host list file for node allocation. Valid values are

any file specifier. If not set, the default is host.list in your current directory.

The value of this environment variable can be overridden using the

-hostfile or -hfile flags.

MP_PROCS

Determines the number of program tasks. Valid values are any number

from 1 to the maximum supported total task limit. If not set, the default is

1. The value of this environment variable can be overridden using the

-procs flag.

MP_PULSE

The interval (in seconds) at which POE checks the remote nodes to ensure

that they are communicating with the home node. The default interval is

600 seconds (10 minutes). To disable the pulse function, specify an interval

of 0 (zero) seconds. You can override the value of this environment

variable with the -pulse flag.

MP_RC_MAX_QP

Specifies the maximum number of Reliable Connected Queue Pairs (RC

QPs) that can be created. The allowable value is any positive integer. The

default is 2147483647 (which is unlimited). Note that the purpose of

MP_RC_MAX_QP is to limit the amount of memory that is consumed by

RC QPs. It is suggested that you only set this variable if you suspect that

your application is performing poorly due to lack of memory.

MP_RC_USE_LMC

Determines whether LMC (Lid Mask Control) is enabled. Enabling the use

of LMC can improve performance, because a single port can support

multiple Reliable Connected (RC) paths. The default value is no (only one

RC connected path is supported). Setting MP_RC_USE_LMC to yes causes

multiple RC paths to be supported, which may improve performance.

MP_ RDMA_COUNT

Note: MP_RDMA_COUNT applies to applications that use explicit LAPI

RDMA. It never applies for applications that use only MPI. For more

information, see Reliable Scalable Cluster Technology: LAPI

Programming Guide.
Specifies the number of user rCxt blocks. It supports the specification of

multiple values when multiple protocols are involved. The format can be

one of the following:

v MP_RDMA_COUNT=m for a single protocol

v MP_RDMA_COUNT=m,n for multiple protocols. Only for when

MP_MSG_API=mpi,lapi – the values are positional, m is for MPI, n for

LAPI.

Note that the MP_RDMA_COUNT/–rdma_count option signifies the

number of rCxt blocks the user has requested for the job, and it is up to

LoadLeveler to determine the actual number of rCxt blocks that will be

allocated for the job. POE uses the value of MP_RDMA_COUNT to

190 IBM PE for AIX and Linux V5 R1: Operation and Use

specify the number of rCxt blocks requested on the LoadLeveler MPI

and/or LAPI network information when the job is submitted.

 The MP_RDMA_COUNT specification only has meaning for LAPI

applications that use the LAPI utility operation LAPI_REMOTE_RCXT.

When MP_RDMA_COUNT is specified for MPI applications (either when

MP_MSG_API is explicitly set or defaults to mpi), POE issues a warning

message that the MP_RDMA_COUNT specification is unnecessary.

MP_REMOTEDIR (PE for AIX only)

Specifies the name of a script which echoes the name of the current

directory to be used on the remote nodes. By default, the current directory

is the current directory at the time that POE is run. You may need to

specify this if the AutoMount Daemon is used to mount user file systems,

and the user is not using the Korn shell.

 The script mpamddir is provided for mapping the C shell directory name

to an AutoMount Daemon name.

MP_RESD

Determines whether or not the Partition Manager should connect to

LoadLeveler to allocate nodes. Valid values are either yes or no, and there

is no default. The value of this environment variable can be overridden

using the -resd flag.

MP_RETRY

The period of time (in seconds) between processor node allocation retries

by POE if there are not enough processor nodes immediately available to

run a program. This is valid only if you are using LoadLeveler. If the (case

insensitive) character string wait is specified instead of a number, no retries

are attempted by POE, and the job remains enqueued in LoadLeveler until

LoadLeveler either schedules the job or cancels it.

MP_RETRYCOUNT

The number of times (at the interval set by MP_RETRY) that the partition

manager should attempt to allocate processor nodes. This value is ignored

if MP_RETRY is set to the character string wait.

MP_MSG_API

To indicate to POE which message-passing API is being used by the

parallel tasks. MPI indicates to use MPI protocol only. LAPI indicates to

use LAPI protocol only. MPI_LAPI indicates that both protocols are used,

sharing the same set of communication resources (windows, UDP ports).

MPI, LAPI indicates that both protocols are used, with dedicated resources

assigned to each of them. LAPI, MPI has a meaning identical to MPI,

LAPI.

MP_RMPOOL

Determines the name or number of the pool that should be used for

nonspecific node allocation. This environment variable/command line flag

only applies to LoadLeveler. Valid values are any identifying pool name or

number. There is no default. The value of this environment variable can be

overridden using the -rmpool flag.

MP_NODES

Specifies the number of physical nodes on which to run the parallel tasks.

It may be used alone or in conjunction with MP_TASKS_PER_NODE

and/or MP_PROCS, as described in “Step 3i: Set the MP_RMPOOL

environment variable” on page 33. The value of this environment variable

can be overridden using the -nodes flag.

Chapter 6. Parallel Environment commands 191

MP_TASKS_PER_NODE

Specifies the number of tasks to be run on each of the physical nodes. It

may be used in conjunction with MP_NODES and/or MP_PROCS, as

described in “Step 3i: Set the MP_RMPOOL environment variable” on page

33, but may not be used alone. The value of this environment variable can

be overridden using the -tasks_per_node flag.

MP_SAVEHOSTFILE

The name of an output host list file to be generated by the Partition

Manager. Valid values are any relative or full path name. The value of this

environment variable can be overridden using the -savehostfile flag.

MP_TIMEOUT

The length of time, in seconds, that POE waits before abandoning an

attempt to connect to the remote nodes. The default is 150.

MP_CKPTDIR (PE for AIX only)

Defines the directory where the checkpoint files will reside when

checkpointing a program. See “Checkpointing and restarting programs (PE

for AIX only)” on page 54 for more information.

MP_CKPTFILE (PE for AIX only)

Defines the base name of the checkpoint file when checkpointing a

program. See “Checkpointing and restarting programs (PE for AIX only)”

on page 54 for more information.

MP_CKPTDIR_PERTASK (PE for AIX only)

Specifies whether the checkpoint files of the parallel tasks should be

written to separate subdirectories under the directory that is specified by

MP_CKPTDIR. The default is no.

 The subdirectories must exist prior to invoking the parallel checkpoint.

Using separate subdirectories may provide better performance when using

a shared/parallel file system (for example, GPFS) for checkpointing from

more than 128 nodes, depending on the specifics of the file system,

checkpoint file size, and other factors. The subdirectory name used for

each task is its task number.

The following environment variables are associated with Job Specification.

MP_CMDFILE

Determines the name of a POE commands file used to load the nodes of

your partition. If set, POE will read the commands file rather than STDIN.

Valid values are any file specifier. The value of this environment variable

can be overridden using the -cmdfile flag.

MP_INSTANCES

The number of instances of User Space windows or IP addresses to be

assigned per task per protocol per network. This value is expressed as an

integer, or the string max. If the value specified exceeds the maximum

allowed number of instances, as determined by LoadLeveler, the true

maximum number determined is substituted.

MP_LLFILE

Determines the name of a LoadLeveler job command file for node

allocation. If you are performing specific node allocation, you can use a

LoadLeveler job command file in conjunction with a host list file. If you

do, the specific nodes listed in the host list file will be requested from

192 IBM PE for AIX and Linux V5 R1: Operation and Use

LoadLeveler. Valid values are any relative or full path name. The value of

this environment variable can be overridden using the -llfile environment

variable.

MP_NEWJOB

Determines whether or not the Partition Manager maintains your partition

for multiple job steps. Valid values are yes or no. If not set, the default is

no. The value of this environment variable can be overridden using the

-newjob flag.

MP_PGMMODEL

Determines the programming model you are using. Valid values are spmd

or mpmd. If not set, the default is spmd. The value of this environment

variable can be overridden using the -pgmmodel flag.

MP_SAVE_LLFILE

When using LoadLeveler for node allocation, the name of the output

LoadLeveler job command file to be generated by the Partition Manager.

The output LoadLeveler job command file will show the LoadLeveler

settings that result from the POE environment variables and/or command

line options for the current invocation of POE. If you use the

MP_SAVE_LLFILE environment variable for a batch job, or when the

MP_LLFILE environment variable is set (indicating that a LoadLeveler job

command file should participate in node allocation), POE will show a

warning and will not save the output job command file. Valid values are

any relative or full path name. The value of this environment variable can

be overridden using the -save_llfile flag.

MP_TASK_AFFINITY

Setting this environment variable causes the PMD to attach each task of a

parallel job to one of the system rsets (or AIX) or cpusets (for Linux) at the

MCM level. This constrains the task, and all its threads, to run within that

MCM. If the task has an inherited rset or cpuset, the attach honors the

constraints of the inherited set. When POE is run under LoadLeveler

(which includes all User Space jobs), POE relies on LoadLeveler to handle

scheduling affinity, based on LoadLeveler job control file keywords that

POE sets up in submitting the job. Memory and task affinity must be

enabled in the LoadLeveler configuration file (using the RSET_SUPPORT

keyword).

 For more information, about handling task affinity, see “Managing task

affinity on large SMP nodes” on page 57.

With interactive POE jobs, the possible MP_TASK_AFFINITY values are

shown below. Note that these values are not case sensitive. For more

specific details about the value that can be provided with

MP_TASK_AFFINITY, see “Managing task affinity on large SMP nodes”

on page 57.

v MCM – Specifies that the tasks are allocated in a round-robin fashion

among the MCM’s attached to the job by WLM. By default, the tasks are

allocated to all the MCMs in the node.

v SNI – Specifies that the tasks are allocated to the MCM in common with

the first adapter assigned to the task by LoadLeveler. This applies only

to User Space MPI jobs. MP_TASK_AFFINITY=SNI should not be

specified for IP jobs.

v CORE – Specifies that each MPI task runs on a single physical processor

core. If simultaneous multithreading (SMT) is disabled, this may be one

CPU. If SMT is enabled, it may be two CPUs.

Chapter 6. Parallel Environment commands 193

v CPU – Specifies that each MPI task runs on a single logical CPU.

v CORE:n – Specifies the number of processor cores to which the threads

of an MPI task are constrained (one thread per core), where n is an

integer between 1 and 99999. When you specify the value for n, you

must precede it with a colon (:n). This option signifies the use of

OpenMP support, which requires XL Fortran Version 11 PTF1 (or later)

or XL C/C++ Version 9.0 (or later).

This option requires LoadLeveler 3.4.3, or later (when an interactive POE

job is run under LoadLeveler).

v CPU:n – Specifies the number of logical CPUs to which the threads of an

MPI task are constrained (one thread per CPU), where n is an integer

between 1 and 99999. When you specify the value for n, you must

precede it with a colon (:n). This option signifies the use of OpenMP

support, which requires XL Fortran Version 11 PTF1 (or later) or XL

C/C++ Version 9.0 (or later).

This option requires LoadLeveler 3.4.3 , or later (when an interactive

POE job is run under LoadLeveler).

v mcm-list – Specifies that the tasks are assigned on a round-robin basis to

this set, within the constraint of an inherited rset, if any. mcm-list

specifies a set of system level (LPAR) logical MCMs to which tasks can

be attached. Assignments to MCMs that are outside the constraint set are

attempted, but will fail. If a single MCM number is specified as the list,

all tasks are assigned to that MCM. If a single MCM number is specified

as the list, all tasks are assigned to that MCM. This option is only valid

when running either without LoadLeveler, or with LoadLeveler Version

3.2 (or earlier), which does not support scheduling affinity.

v -1 – Specifies that no affinity request will be made (disables task

affinity).

The following environment variables are associated with STDIO Control.

MP_LABELIO

Determines whether or not output from the parallel tasks are labeled by

task id. Valid values are yes or no. If not set, the default is no. The value

of this environment variable can be overridden using the -labelio flag.

MP_STDINMODE

Determines the input mode how STDIN is managed for the parallel tasks.

Valid values are:

all all tasks receive the same input data from STDIN.

none no tasks receive input data from STDIN; STDIN will be used by

the home node only.

n STDIN is only sent to the task identified (n).

If not set, the default is all. The value of this environment variable can be

overridden using the -stdinmode flag.

MP_STDOUTMODE

Determines the output mode how STDOUT is handled by the parallel

tasks. Valid values are:

unordered

all tasks write output data to STDOUT asynchronously.

194 IBM PE for AIX and Linux V5 R1: Operation and Use

ordered

output data from each parallel task is written to its own buffer.

Later, all buffers are flushed, in task order, to STDOUT.

a task id

only the task indicated writes output data to STDOUT.

If not set, the default is unordered. The value of this environment variable

can be overridden using the -stdoutmode flag.

MP_USE_MC

Used to determine whether to leverage the hardware multicast function or

use the peer-to-peer method to simulate the multicast function. In IP mode,

setting MP_USE_MC to yes indicates that the IP hardware multicast

function will be used. Setting MP_USE_MC to no indicates that the

peer-to-peer method will be used. With User Space protocol, only the

peer-to-peer method is currently supported.

 Valid values are yes and no. The default value is no.

MP_MC_INET_BASE_ ADDR

Used to determine the base IPv4 multicast address for the current LAPI

job.

 Valid values include any IPv4 multicast address. The default value is

224.3.0.1.

MP_MC_INET_ADDR_ LEN

Used to determine the length of the available multicast address range,

starting from value specified for MP_MC_INET_BASE_ADDR.

 Valid values include any integer, 1 or greater, that does not exceed the

range of multicast addresses that the operating system permits. The default

value is 16.

MP_MC_INET_PORT

Used to determine the port number used for multicasting.

 Valid values include any integer between 1024 and 65535. The default

value is 2008.

The following environment variables are associated with the generation of

diagnostic information.

MP_INFOLEVEL

Determines the level of message reporting. Valid values are:

0 error

1 warning and error

2 informational, warning, and error

3 informational, warning, and error. Also reports diagnostic messages

for use by the IBM Support Center.

4, 5, 6 informational, warning, and error. Also reports high- and low-level

diagnostic messages for use by the IBM Support Center.

If not set, the default is 1 (warning and error). The value of this

environment variable can be overridden using the -infolevel or -ilevel flag.

MP_PMDLOG

Determines whether or not diagnostic messages should be logged to a file

Chapter 6. Parallel Environment commands 195

in /tmp on each of the remote nodes. Typically, this environment

variable/command line flag is only used under the direction of the IBM

Support Center in resolving a PE-related problem. Valid values are yes or

no. If not set, the default is no. The value of this environment variable can

be overridden using the -pmdlog flag.

MP_PMDLOG_DIR

Specifies the directory in which the diagnostic log file, generated by setting

MP_PMDLOG to yes, is stored. If MP_PMDLOG_DIR is not set, the

location of the directory defaults to /tmp. If the specified directory is

invalid, or you do not have write permission to the specified directory,

pmd logging will be disabled and no log file will be created. The value of

this environment variable can be overridden using the -pmdlog_dir flag.

MP_PRINTENV

Use this environment variable to activate generating a report on the

parallel environment setup for the MPI job at hand. The report is printed

to STDOUT. The printing of this report will have no adverse effect on the

performance of the MPI program. The value can also be a user-specified

script name, the output of which will be added to end of the normal

environment setup report.

 The allowable values for MP_PRINTENV are:

no Do not produce a report of environment variable settings. This is

the default value.

yes Produce a report of MPI environment variable settings. This report

is generated when MPI job initialization is complete.

script_name

Produce the report (same as yes), then append the output of the

script specified here.

MP_PROFDIR (PE for Linux only)

Allows you to specify the directory into which POE stores the gmon.out

file for each task. A gmon.out file contains profiling data and is produced

by compiling a program with the -pg flag.

 You can specify any string with MP_PROFDIR. If you specify a directory

name without a leading slash, the new directory is created relative to the

working directory. If you include a leading slash, the new directory is

created with the absolute path.

If not set, the default directory is ./profdir.task_id.

MP_STATISTICS

Provides the ability to gather MPI and LAPI communication statistics for

MPI user space jobs. Valid values are yes, no and print. If not set, the

default is no and the values are not case sensitive. The MPI statistical

information can be used to get a summary on the network usage at the

end of the MPI job and to check the progress of inter-job message passing

during the execution of an MPI program. To get a summary of the network

usage, use print. A list of MPI statistical information will be printed when

MPI_Finalize is called.To check the progress of inter-job message passing,

use yes and the MPI nonstandard functions ’mpci_statistics_write’ and

’mpci_statistics_zero’. The calls must be inserted strategically into the MPI

program, and a program that contains them will not be portable to other

MPI implementations. The ’mpci_statistics_write’ is for printing out the

current counters and the ’mpci_statistics_zero’ function is for zeroing the

counters. These function prototypes are:

196 IBM PE for AIX and Linux V5 R1: Operation and Use

int mpci_statistics_zero(void)

int mpci_statistics_write(FILE *fptr)

Note: Activating MPCI statistics may have a slight impact on performance

of the MPI program.

MP_DEBUG_NOTIMEOUT

A debugging aid that allows programmers to attach to one or more of their

tasks without the concern that some other task may reach the LAPI

timeout. Such a timeout would normally occur if one of the job tasks was

continuing to run, and tried to communicate with a task to which the

programmer has attached using a debugger. When this flag is set to yes,

LAPI will never timeout and continue retransmitting message packets

forever. The default setting is no, allowing LAPI to timeout.

The following environment variables are associated with the Message Passing

Interface.

MP_UDP_PACKET_SIZE

Allows the user to control the LAPI UDP datagram size. Specify a positive

integer.

MP_ACK_THRESH

Allows the user to control the LAPI packet acknowledgement threshold.

Specify a positive integer, no greater than 31. The default is 30.

MP_BUFFER_MEM

Specifies the size of the Early Arrival (EA) buffer that is used by the

communication subsystem to buffer eager send message, for point-to-point

operations, that arrive before there is a matching receive posted. This value

can also be specified with the -buffer_mem command line flag. The

command line flag will override a value set with the environment variable.

 This environment variable can be used in one of two ways:

v Specify the size of a preallocated EA buffer and have PE/MPI guarantee

that no valid MPI application can require more EA buffer space than is

preallocated. For applications without very large tasks counts or with

modest memory demand per task, this form is almost always sufficient.

v Specify the size of a preallocated EA buffer and the maximum size that

PE/MPI will guarantee the buffer can never exceed. Aggressive use of

EA space is rare in real MPI applications but when task counts are large,

the need for PE/MPI to enforce an absolute guarantee may compromise

performance. Specifying a preallocated EA buffer that is big enough for

the application’s real needs but an upper bound that loosens

enforcement may provide better performance in some cases, but those

cases will not be common.

The default values for preallocated EA space are 64 MB when running with

either User Space or IP. (In prior versions of PE for AIX, the preallocation

for IP was 2.8 MB which often limited performance. The increase to 64 MB

can cause some applications that ran before to fail in a malloc. Such

applications can be recompiled with more heap, or can be run by

experimenting with MP_BUFFER_MEM settings below 64 MB.)

To evaluate whether overriding MP_BUFFER_MEM defaults for a

particular application is worthwhile, use MP_STATISTICS. This tells you

whether there is significantly more EA buffer space allocated than is used

or whether EA space limits are creating potential performance impacts by

Chapter 6. Parallel Environment commands 197

forcing some messages that are smaller than the eager limit to use

rendezvous protocol because EA buffer cannot be guaranteed.

The MP_BUFFER_MEM default value can be defined by the system

administrator in the /etc/poe.limits file as described in IBM Parallel

Environment: Installation Guide. If you have not specified

MP_BUFFER_MEM, and it is set in /etc/poe.limits, the default value is set

based on the value in /etc/poe.limits.

For more information about MP_BUFFER_MEM see “Using

MP_BUFFER_MEM” on page 67. For information about buffering eager

send messages, see IBM Parallel Environment: MPI Programming Guide.

MP_CC_BUF_MEM

Specifies the size of the Early Arrival (EA) buffer that is used by the

communication subsystem to buffer eager send messages, for collective

communications operations, that arrive before there is a matching receive

posted. This value can also be specified with the -cc_buf_mem command

line flag. The command line flag overrides a value set with the

environment variable.

 This environment variable can be used in one of three ways:

v Specify the size of a preallocated EA buffer and have PE/MPI guarantee

that no valid MPI application can require more EA buffer space than is

preallocated. For applications without very large task counts or with

modest memory demand per task, this form is almost always sufficient.

v Specify the upper bound of a preallocated buffer (the maximum size that

PE/MPI will guarantee the buffer can never exceed).

v Specify both the size of a preallocated EA buffer and the maximum size

that PE/MPI will guarantee the buffer can never exceed. Aggressive use

of EA space is rare in real MPI applications but when task counts are

large, the need for PE/MPI to enforce an absolute guarantee may

compromise performance. Specifying a preallocated EA buffer that is big

enough for the application’s real needs but an upper bound that loosens

enforcement may provide better performance in some cases, but those

cases will not be common.

The default value for preallocated EA space is 4 MB when running with

either User Space or IP.

The MP_CC_BUF_MEM default value can be defined by the system

administrator in the /etc/poe.limits file as described in IBM Parallel

Environment: Installation Guide. If you have not specified

MP_CC_BUF_MEM, and it is set in /etc/poe.limits, the default value is set

based on the value in /etc/poe.limits.

MP_CC_SCRATCH_BUF

Specifies whether MPI should always use the fastest collective

communication algorithm when there are alternatives that require less

scratch buffer. In some cases, the faster algorithm needs to allocate more

scratch buffers and therefore, consumes more memory than a slower

algorithm. The default value is yes, which means that you want MPI to

choose an algorithm that has the shortest execution time, even though it

may consume extra memory. A value of no specifies that MPI should

choose the algorithm that uses less memory. Note that restricting MPI to

the algorithm that uses the least memory normally sacrifices performance

in exchange for that memory savings, so a value of no should be specified

only when limiting memory usage is critical.

198 IBM PE for AIX and Linux V5 R1: Operation and Use

The value of MP_CC_SCRATCH_BUF can be overridden with the

-cc_scratch_buf command line flag.

MP_CLOCK_SOURCE

Under PE for AIX, determines whether or not to use the switch clock as a

time source. Valid values are AIX and switch. There is no default value.

The value of this environment variable can be overridden using the

-clock_source flag.

 Under PE for Linux, specifies the time source. Currently, the only valid

value is OS (operating system).

MP_CSS_INTERRUPT

Determines whether or not arriving message packets cause interrupts. This

may provide better performance for certain applications. Valid values are

yes and no. If not set, the default is no.

MP_EAGER_LIMIT

Changes the threshold value for message size, above which rendezvous

protocol is used.

 If the MP_EAGER_LIMIT environment variable is not set during

initialization, MPI automatically chooses a default eager limit value, based

on the number of tasks. For specific information about the default eager

limit values, see IBM Parallel Environment: MPI Programming Guide.

Consider running a new application once with eager limit set to 0 (zero)

because this is useful for confirming that an application is safe, but

normally higher eager limit gives better performance. Note that a safe

application, as defined by the MPI standard, is one that does not depend

on some minimum of MPI buffer space to avoid deadlock.

The maximum value for MP_EAGER_LIMIT is 256K (262144 bytes). Any

value that is less than 64 bytes but greater than zero bytes is automatically

increased to 64 bytes. A non-power of 2 value will be rounded up to the

nearest power of 2. A value may be adjusted if the early arrival buffer

(MP_BUFFER_MEM) size is set too small.

For information about buffering eager send messages and eager limit, see

IBM Parallel Environment: MPI Programming Guide.

MP_HINTS_FILTERED

Determines whether MPI info objects reject hints (key/value pairs) which

are not meaningful to the MPI implementation. In filtered mode, an

MPI_INFO_SET call which provides a key/value pair that the

implementation does not understand will behave as a no-op. A subsequent

MPI_INFO_GET call will find that the hint does not exist in the info

object.

 In unfiltered mode, any key/value pair is stored and may be retrieved.

Applications that wish to use MPI info objects to cache and retrieve

key/value pairs other than those actually understood by the MPI

implementation must use unfiltered mode. The option has no effect on the

way MPI uses the hints it does understand. In unfiltered mode, there is no

way for a program to discover which hints are valid to MPI and which are

simply being carried as uninterpreted key/value pairs.

Providing an unrecognized hint is not an error in either mode.

Valid values for this environment variable are yes and no. If set to yes,

unrecognized hints are be filtered. If set to no, they will not. If this

Chapter 6. Parallel Environment commands 199

environment variable is not set, the default is no. The value of this

environment variable can be overridden using the -hints_filtered

command line flag.

MP_IONODEFILE

The name of a parallel I/O node file — a text file that lists the nodes that

should be handling parallel I/O. This enables you to limit the number of

nodes that participate in parallel I/O, guarantee that all I/O operations are

performed on the same node, and so on. Valid values are any relative or

full path name. If not specified, all nodes will participate in parallel I/O

operations. The value of this environment variable can be overridden using

the -ionodefile command line flag.

MP_MSG_ENVELOPE_BUF

Changes the size of the message envelope buffer. You can specify any

positive number. There is no upper limit, but any value less than 1 MB is

ignored. MPI preallocates the message envelope buffer with a default size

of 8 MB. The MPI statistics function prints out the message envelope buffer

usage which you can use to determine the best envelope buffer size for a

particular MPI program.

 The envelope buffer is used for storing both send and receive descriptors.

An MPI_Isend or unmatched MPI_Irecv posting creates a descriptor that

lives until the MPI_Wait completes. When a message arrives and finds no

match, an early arrival descriptor is created that lives until a matching

receive is posted and that receive completes in an MPI_Wait. For any

message at the destination, there will be only one descriptor; either the one

created at the MPI_Irecv call or the one created at the early arrival. The

more uncompleted MPI_Irecv and MPI_Isend operations an application

maintains, the higher the envelope buffer requirement. Most applications

will have no reason to adjust the size of this buffer.

The value of MP_MSG_ENVELOPE_BUF can be overridden with the

-msg_envelope_buf command line flag.

MP_LAPI_TRACE_LEVEL

Used for debug purposes. Under PE for AIX, MP_LAPI_TRACE_LEVEL is

used in conjunction with AIX tracing. Levels 0-6 are supported.

MP_SHARED_MEMORY

To specify the use of shared memory (instead of the network) for message

passing between tasks running on the same node. The default value is yes.

Note: In past releases of PE for AIX, the MP_SHM_CC environment

variable was used to enable or disable the use of shared memory for

certain 64-bit MPI collective communication operations. Beginning

with the PE 4.2 release, this environment variable has been removed.

If you are using PE for AIX, you should now use

MP_SHARED_MEMORY to enable shared memory for both

collective communication and point-to-point routines. The default

setting for MP_SHARED_MEMORY is yes (enable shared memory).

MP_USE_BULK_XFER

Exploit the IBM High Performance Switch bulk data transfer mechanism.

This variable does not have any meaning and is ignored in other

environments.

 Before you can use MP_USE_BULK_XFER, the system administrator must

first enable Remote Direct Memory Access (RDMA). For more information,

see IBM Parallel Environment: Installation.

200 IBM PE for AIX and Linux V5 R1: Operation and Use

Valid values are yes and no. If not set, the default is no.

Note that when you use MP_USE_BULK_XFER, you also need to consider

the value of the MP_BULK_MIN_MSG_SIZE environment variable.

Messages with data lengths that are greater than the value specified for

MP_BULK_MIN_MSG_SIZE will use the bulk transfer path, if it is

available. See the description of MP_BULK_MIN_MSG_SIZE for more

information.

MP_BULK_MIN_MSG_SIZE

Set the minimum message length for bulk transfer. Contiguous messages

with data lengths greater than or equal to the value you specify for this

environment variable will use the bulk transfer path, if it is available.

Messages with data lengths that are smaller than the value you specify for

this environment variable, or are noncontiguous, will use packet mode

transfer.

 The valid range of values is from 4096 to 2147483647 (INT_MAX). The size

can be expressed in one of the following ways:

v As a number of bytes

v As a number of KB (1024 bytes), using the letter k as a suffix

v As a number of MB (1024 * 1024 bytes), using the letter m as a suffix

v As a number of GB (1024 * 1024 * 1024 bytes), using the letter g as a

suffix.

The default value is 153600.

MP_THREAD_STACKSIZE

Determines the additional stacksize allocated for user programs executing

on an MPI service thread. If you allocate insufficient space, the program

may encounter a SIGSEGV exception.

MP_SINGLE_THREAD

Avoids mutex lock overheads in a single threaded user program. This is an

optimization flag, with values of no and yes. The default value is no,

which means the potential for multiple user message passing threads is

assumed.

 Results are undefined if this variable is set to yes with multiple application

message passing threads in use. To confirm that is it safe to run the

application with MP_SINGLE_THREAD set to yes, run it once with

MP_SINGLE_THREAD set to confirm. The confirm option can only warn

you if this run has made MPI calls from more than a single thread. If an

application is capable of both single-thread and multithread execution,

confirm cannot warn you of the potential for multiple threads.

If you want to use the PE barrier synchronization register (BSR), you must

set MP_SINGLE_THREAD to yes. For more information about PE’s

support of the BSR, see IBM Parallel Environment: MPI Programming Guide.

Note: MPI-IO, nonstandard MPE_I nonblocking collective communications, and

MPI-1SC (MPI One Sided Communication) cannot be used when

MP_SINGLE_THREAD is set to yes. An application that tries to use

nonstandard MPE_I nonblocking collective communications, MPI-IO, or

MPI-1SC with MP_SINGLE_THREAD=yes will be terminated. MPI calls

from multiple user threads cannot be detected and will lead to unpredictable

results. MP_SINGLE_THREAD may help applications that use many small

point-to-point messages, but is less likely to help when the norm is larger

messages or collective communication.

Chapter 6. Parallel Environment commands 201

MP_WAIT_MODE

To specify how a thread or task behaves when it discovers it is blocked,

waiting for a message to arrive.

MP_RETRANSMIT_INTERVAL

MP_RETRANSMIT_INTERVAL=nnnnn and its command line equivalent,

-retransmit_interval=nnnnn, control how often the communication

subsystem library checks to see if it should retransmit packets that have

not been acknowledged. The value nnnnn is the number of polling loops

between checks. The acceptable range is 1000 to 400000. The default is

10000 for UDP and 400000 for User Space.

MP_IO_BUFFER_SIZE

Indicates the default size of the data buffer used by MPI-IO agents. For

example:

export MP_IO_BUFFER_SIZE=16M

sets the default size of the MPI-IO data buffer to 16MB. The default value

of the environment variable is the number of bytes corresponding to 16 file

blocks. This value depends on the block size associated with the file

system storing the file. Valid values are any positive size up to 128MB. The

size can be expressed as a number of bytes, as a number of KB (1024

bytes), using the letter k as a suffix, or as a number of MB (1024 * 1024

bytes), using the letter m as a suffix.

MP_IO_ERRLOG

Indicates whether to turn on error logging for I/O operations. For

example:

export MP_IO_ERRLOG=yes

turns on error logging. When an error occurs, a line of information will be

logged into file /tmp/mpi_io_errdump.app_name.userid.taskid, recording the

time the error occurs, the POSIX file system call involved, the file

descriptor, and the returned error number.

MP_REXMIT_BUF_SIZE

The maximum message size which LAPI will store in its local buffers so as

to more quickly free up the user buffer containing message data. This size

indicates the size of the local buffers LAPI will allocate to store such

messages, and will impact memory usage, while potentially improving

performance. Messages larger than this size will continue to be transmitted

by LAPI; the only difference is that user buffers will not become available

for the user to reuse until the message data has been acknowledged as

received by the target. The default user message size is 16352 bytes.

MP_REXMIT_BUF_CNT

The number of buffers that LAPI must allocate for each target job, each

buffer being of the size defined by MP_REXMIT_BUF_SIZE *

MP_REXMIT_BUF_CNT. This count indicates the number of in-flight

messages that LAPI can store in its local buffers so as to free up the user’s

message buffers. If there are no more message buffers left, LAPI will still

continue transmission of messages; the only difference is that user buffers

will not become available for the user to reuse until the message data has

been acknowledged as received by the target. The default number of

buffers is 128.

The following are core file generation environment variables:

202 IBM PE for AIX and Linux V5 R1: Operation and Use

MP_COREDIR

Creates a separate directory for each task’s core file. The value of this

environment variable can be overridden using the -coredir flag. A value of

″none″ signifies to bypass creating a new directory resulting in core files

written to /tmp.

MP_COREFILE_FORMAT (PE for AIX only)

Determines the format of core files generated when processes terminate

abnormally. If not set, POE will generate standard AIX core files. If set to

the string STDERR, output will go to standard error. If set to any other

string, POE will generate a lightweight core file (conforming to the Parallel

Tool Consortium’s Standardized Lightweight Corefile Format) for each

process in your partition. The string you specify is the name you want to

assign to each lightweight core file. By default, these lightweight core files

will be saved to subdirectories prefixed by the string coredir and suffixed

by the task id (as in coredir.0, coredir.1, and so on). You can specify a prefix

other than the default coredir by setting the MP_COREDIR environment

variable. The value of this environment variable can be overridden using

the -corefile_format flag.

MP_COREFILE_SIGTERM (PE for AIX only)

Determines if POE should generate a core file when a SIGTERM signal is

received. Valid values are yes and no. If not set, the default is no.

The following are miscellaneous environment variables:

MP_EUIDEVELOP

Determines whether PE MPI performs less, normal, or more detailed

checking during execution. The additional checking is intended for

developing applications, and can significantly slow performance. Valid

values are yes or no, deb (for debug), nor (for normal), and min (for

minimum). The min value shuts off parameter checking for all send and

receive operations, and may improve performance, but should be used

only with applications that are very well-validated. If not set, the default is

no. The value of this environment variable can be overridden using the

-euidevelop flag.

MP_FENCE

Determines a fence_string to be used for separating options you want

parsed by POE from those you do not. Valid values are any string, and

there is no default. Once set, you can then use the fence_string followed by

additional_options on the poe command line. The additional_options will not

be parsed by POE. This environment variable has no associated command

line flag.

MP_NOARGLIST

Determines whether or not POE ignores the argument list. Valid values are

yes and no. If set to yes, POE will not attempt to remove POE command

line flags before passing the argument list to the user’s program. This

environment variable has no associated command line flag.

MP_PRIORITY

Determines a coscheduler dispatch parameter set for execution. See

“Improving application scalability performance (PE for AIX only)” on page

97 for more information on coscheduler parameters. Valid values are any

of the dispatch priority classes set up by the system administrator in the

file /etc/poe.priority, or a string of threshold values, as controlled by the

/etc/poe.priority file contents. This environment variable has no associated

command line flag.

Chapter 6. Parallel Environment commands 203

Note: If your cluster does not have a global time source (for example, an

HPS switch), software synchronization of the node clocks (for

example, NTP) is required. Otherwise, the high-priority and

low-priority windows might not be sufficiently aligned, causing the

coscheduler to be ineffective.

MP_PRIORITY_LOG

Determines whether diagnostic messages should be logged to the POE

priority adjustment coscheduler log file on each of the remote nodes. The

default directory for this log file is in /tmp, with a default file name of

pmadjpri.jobid.log, where jobid is a unique job identifier. The directory and

the name of the log file can be modified using MP_PRIORITY_LOG_DIR

and MP_PRIORITY_LOG NAME.

 MP_PRIORITY_LOG should only be used in conjunction with the POE

coscheduler MP_PRIORITY variable. Valid values are yes or no. If not set,

the default is no. The value of this environment variable can be overridden

using the -priority_log flag.

See “POE priority adjustment coscheduler” on page 97 for more

information on the POE coscheduler.

MP_PRIORITY_LOG_DIR

Specifies the directory, on each of the remote nodes, into which the POE

priority adjustment coscheduler log file is stored. The default directory is

/tmp. The name of the log file is pmadjpri.jobid.log, by default, so after

issuing this environment variable, the log file is stored in

directory_name/pmadjpri.jobid.log. If the default directory is invalid, or you

do not have write permission to the specified directory, priority adjustment

logging will be disabled and no log file will be created. To specify a name

other than pmadjpri.jobid.log, use the MP_PRIORITY_LOG_NAME

environment variable.

 This variable should only be used when the POE coscheduler

MP_PRIORITY_LOG variable is set to yes. See “POE priority adjustment

coscheduler” on page 97 for more information on the POE coscheduler.

MP_PRIORITY_LOG_NAME

Specifies the name of the POE priority adjustment coscheduler log file. The

default name is pmadjpri.jobid.log. The directory into which this log file is

placed is /tmp, by default, so after issuing this environment variable, the

log file is stored in /tmp/log_file_name.jobid.log. To specify a directory other

than /tmp, use the MP_PRIORITY_LOG_DIR environment variable.

 This variable should only be used when the POE coscheduler

MP_PRIORITY_LOG variable is set to yes. See “POE priority adjustment

coscheduler” on page 97 for more information on the POE coscheduler.

If the file name you specified already exists, an ascending number from 1

through 255 is appended between jobid and .log. For example, if

/tmp/example_file_name.jobid.log already exists, the new file will be

named /tmp/example_file_name.jobid.1.log. If /tmp/
example_file_name.jobid.1.log already exists, the new file will be named

/tmp/example_file_name.jobid.2.log, and so on, until the file name reaches

/tmp/example_file_name.jobid.255.log. If there are already 255 files, priority

adjustment logging will be disabled.

MP_PRIORITY_NTP (PE for AIX only)

Determines whether the POE priority adjustment coscheduler will turn

NTP off during the priority adjustment period, or leave it running. Valid

204 IBM PE for AIX and Linux V5 R1: Operation and Use

values are yes or no. The value of no (which is the default) instructs the

POE coscheduler to turn the NTP daemon off (if it was running) and

restart NTP later, after the coscheduler completes. Specify a value of yes to

inform the coscheduler to keep NTP running during the priority

adjustment cycles (if NTP was not running, NTP will not be started). If

MP_PRIORITY_NTP is not set, the default is no. The value of this

environment variable can be overridden using the -priority_ntp flag. See

“POE priority adjustment coscheduler” on page 97 for more information

about the POE coscheduler.

MP_TLP_REQUIRED (PE for AIX only)

Specifies to POE whether to check to see if jobs being executed have been

compiled for large pages, and when it finds a job that was not, the action

to take. Using this variable helps avoid system failures, on systems with a

high percentage of memory configured as large pages, related to the

execution of large memory parallel jobs that were not compiled for large

pages. Valid values are none, warn, and kill. When you set

MP_TLP_REQUIRED to warn, POE detects and issues a warning message

for any job that was not compiled for large pages. Setting

MP_TLP_REQUIRED to kill causes POE to detect and kill any job that

was not compiled for large pages. The default is none (POE takes no

action).

EXAMPLES

1. Assume the MP_PGMMODEL environment variable is set to spmd, and

MP_PROCS is set to 6. To load and execute the SPMD program sample on the

six remote nodes of your partition, enter:

poe sample

2. Assume you have an MPMD application consisting of two programs; master

and workers. These programs are designed to run together and communicate via

calls to message passing subroutines. The program master is designed to run on

one processor node. The workers program is designed to run as separate tasks

on any number of other nodes. The MP_PGMMODEL environment variable is

set to mpmd, and MP_PROCS is set to 6. To individually load the six remote

nodes with your MPMD application, enter:

poe

Once the partition is established, the poe command responds with the prompt:

0:host1_name>

To load the master program as task 0 on host1_name, enter:

master

The poe command responds with a prompt for the next node to load. When

you have loaded the last node of your partition, the poe command displays the

message Partition loaded... and begins execution.

3. Assume you want to run three SPMD programs; setup, computation, and cleanup

– as job steps on the same partition of nodes. The MP_PGMMODEL

environment variable is set to spmd, and MP_NEWJOB is set to yes. You enter:

poe

Once the partition is established, the poe command responds with the prompt:

Enter program name (or quit):

Chapter 6. Parallel Environment commands 205

To load the program setup, enter:

setup

The program setup executes on all nodes of your partition. When execution

completes, the poe command again prompts you for a program name. Enter the

program names in turn. To release the partition, enter:

quit

4. To check the process status (using the nonparallel command ps) for all remote

nodes in your partition, enter:

poe ps

FILES

host.list (Default host list file)

RELATED INFORMATION

Commands: mpcc_r(1), mpcc(1), mpCC_r(1), mpCC(1), mpxlf_r(1), mpfort(1)

206 IBM PE for AIX and Linux V5 R1: Operation and Use

poeckpt

Takes a checkpoint of an interactive, non-LoadLeveler POE job. This command

applies to PE for AIX only.

SYNOPSIS

poeckpt [-?] [-H] [-k] [-u username] pid

FLAGS

-? Provides a short usage message.

-H Provides help information.

-k Specifies that the job is to be terminated after a successful checkpoint.

-u Specifies the owner of the resulting checkpoint file (used only when root

invokes the poeckpt command). Note that if the specified owner is not the

owner of the process being checkpointed, the restart will fail.

pid

The process id of the POE process for the job to be checkpointed.

DESCRIPTION

poeckpt will checkpoint an interactive POE job, ensuring that job is a

non-LoadLeveler POE job, running stand-alone. The process id specified

corresponds to the POE process id for the job to be checkpointed. If the process

specified is not a POE process or if a POE job is running under LoadLeveler, the

command will fail. If the terminate option is specified and the POE job cannot be

checkpointed, the terminate option is ignored and the POE job continues to run.

The poeckpt command will block until the checkpoint operation completes.

Interrupting this command by pressing Ctrl-c will cause the checkpoint to be

aborted.

This command must be run as the user who owns the specified process or as root.

When the -u flag is specified and the process is being run by root, poeckpt will

change the ownership of the checkpoint files to the user name specified. The -u

flag is ignored when poeckpt is run by a non-root user.

Return codes are:

0 Indicates success.

-1 Indicates failure. Occurs with error message(s) containing reasons for failure.

Note: For checkpoint failures, the primary errors reported are actual error numbers

as documented in /usr/include/sys/errno.h. The secondary errors provide

additional error information and are documented in /usr/include/sys/
chkerror.h. There may also be further error information reported in string

format as error data.

ENVIRONMENT VARIABLES

This command responds to the following environment variables:

Chapter 6. Parallel Environment commands 207

MP_CKPTDIR

Defines the directory where the checkpoint file created by poeckpt will

reside. If unset, the default value is the directory from which poeckpt is

run. If the value of MP_CKPTDIR that is specified in the environment

where poeckpt is invoked is not the same as the value of MP_CKPTDIR in

the environment of the POE job being checkpointed, the checkpoint file of

POE may appear in a different directory than the task checkpoint files.

MP_CKPTFILE

Defines the base name of the checkpoint file created by poeckpt. If unset,

the default value is poeckpt.<PID>, where PID is the process ID of the

POE process being checkpointed. If the value of MP_CKPTFILE that is

specified in the environment where poeckpt is invoked is not the same as

the value of MP_CKPTFILE in the environment of the POE job being

checkpointed, the base name of the POE checkpoint file may be different

than the base name of the task checkpoint files.

208 IBM PE for AIX and Linux V5 R1: Operation and Use

poekill

Terminates all remote tasks for a given program.

SYNOPSIS

poe poekill pgm_name [poe_options]

or

rsh remote_node poekill pgm_name

poekill is a Korn shell script that searches for the existence of running programs

(named pgm_name) owned by the user, and terminates them via SIGTERM

signals. If run under POE, poekill uses the standard POE mechanism for

identifying the set of remote nodes; host.list, LoadLeveler, and so on. If run under

rsh, poekill applies only to the node specified as remote_node.

FLAGS

When run as a POE program, standard POE flags apply.

DESCRIPTION

poekill determines the user id of the user that submitted the command. It then

uses the id to obtain a list of active processes, which is filtered by the pgm_name

argument into a scratch file in /tmp. The file is processed by an awk/gawk script

that sends a SIGTERM signal (15) to each process in the list, and echoes the action

back to the user. The scratch file is then erased, and the script exits with code of 0.

If you do not provide a pgm_name, an error message is printed and the script exits

with a code of 1.

The pgm_name can be a substring of the program name.

RELATED INFORMATION

Commands: rsh(1), poe(1), kill(1)

Chapter 6. Parallel Environment commands 209

poerestart

Can be used to restart an interactive POE job. This command applies to PE for

AIX only.

SYNOPSIS

poerestart [-?] [-H] [-s] file

FLAGS

-? Provides a short usage message.

-h Provides extended help information.

-s Specifies that the same hosts should be used for the restarted job as were used

for the job that was checkpointed.

file The checkpoint file for the POE process.

DESCRIPTION

poerestart will restart a previously checkpointed interactive POE job, from the

checkpoint file specified. Only an interactive job, stand-alone or running under

LoadLeveler, can be restarted. A batch POE job cannot be restarted with this

command.

Interrupting the poerestart command by pressing Ctrl-c will cause the restart

operation to be aborted.

This command must be run as the user who owned the original checkpointed

process.

ENVIRONMENT VARIABLES

This command responds to the following environment variables:

MP_HOSTFILE

Specifies the name of the host file to be used. This setting is ignored if the

-s flag is specified.

MP_RMPOOL

Specifies the name of the LoadLeveler pool from which nodes will be

selected to restart the job. It is an error to use this specification if the

originally checkpointed POE job was not being run under LoadLeveler.

This setting is ignored if:

v The -s flag is specified.

v MP_HOSTFILE is set.

v A host.list file exists in the directory from which the command is run.

v MP_LLFILE is set.

MP_LLFILE

Specifies the name of the LoadLeveler job command file to be used for

specification of the restarted job. This must be specified if the originally

checkpointed POE job used the -llfile command line option or the

MP_LLFILE environment variable for job specification. This cannot be

210 IBM PE for AIX and Linux V5 R1: Operation and Use

used if the originally checkpointed POE job did not use the -llfile

command line option or the MP_LLFILE environment variable for job

specification.

NOTES

1. When restarting a non-LoadLeveler job, or a LoadLeveler job that does not use

MP_RMPOOL or MP_LLFILE, the hosts will be determined using the

following:

v The -s flag.

v The MP_HOSTFILE environment variable.

v A host.list file.
2. When MP_LLFILE is not being used, one of the following must be true:

v The -s flag is specified.

v The MP_HOSTFILE environment variable is set.

v A host.list file exists in the directory from which the command is being run.

v The MP_RMPOOL environment variable is set.
3. The following may be used in conjunction with the MP_LLFILE environment

variable:

v The -s flag.

v The MP_HOSTFILE environment variable.

v A host.list file in the directory from which the command is being run.
4. Any POE environment variables other than those indicated above are not used

by the restarted POE.

5. The task geometry (tasks that are common within a node) for the restarted task

must be the same as the originally started task.

6. This command may not be used to restart from a checkpoint file of a POE

batch job. If the file provided to the poerestart command was generated from

the checkpoint of a batch POE job, the poerestart command will return with no

error message printed. The #@error file specified in the original batch job (if

present) will contain a message indicating that this error occurred.

Return codes are:

0 Indicates success.

-1 Indicates failure. Occurs with error message(s) containing reasons for failure.

Chapter 6. Parallel Environment commands 211

rset_query

When run under POE, can be used to verify that memory affinity assignments are

performed. This command applies to PE for AIX only.

SYNOPSIS

rset_query

DESCRIPTION

rset_query is used to verify that memory affinity assignments are performed, as an

extension of the POE and LoadLeveler scheduling affinity functions. For more

information, see “Managing task affinity on large SMP nodes” on page 57.

rset_query does not require any input or arguments. Output is written to STDERR.

EXAMPLES

1. To verify that memory affinity assignments have been performed, run the

rset_query command under POE, using task affinity. For example, to show

affinity assignments for two tasks, each on a different node, issue the command

shown below. Note that this example assumes you are using a host list file that

lists the two nodes on the first two lines.

 poe rset_query -procs 2 -labelio yes -euilib us -task_affinity mcm

You will see output similar to this:

 0:ra_getrset returned RS_PARTITION_RSET

 0:Number of available processors: 16

 0:Number of available memory pools: 0

 0:Amount of available memory: 0 MB

 0:Maximum system detail level: 6

 0:SMP detail level: 2

 0:MCM detail level: 3

 0: Processor 0 in resource set

 0: Processor 1 in resource set

 0: Processor 2 in resource set

 0: Processor 3 in resource set

 0: Processor 4 in resource set

 0: Processor 5 in resource set

 0: Processor 6 in resource set

 0: Processor 7 in resource set

 0: Processor 8 in resource set

 0: Processor 9 in resource set

 0: Processor 10 in resource set

 0: Processor 11 in resource set

 0: Processor 12 in resource set

 0: Processor 13 in resource set

 0: Processor 14 in resource set

 0: Processor 15 in resource set

 0:numrads = 1

 0:

 0:MCM detail:

 0:MCM 0 found:

 0:Number of available processors: 16

 0:Number of available memory pools: 0

 0:Amount of available memory: 0 MB

 0:Maximum system detail level: 6

 0:SMP detail level: 2

 0:MCM detail level: 3

212 IBM PE for AIX and Linux V5 R1: Operation and Use

0: Processor 0 in resource set

 0: Processor 1 in resource set

 0: Processor 2 in resource set

 0: Processor 3 in resource set

 0: Processor 4 in resource set

 0: Processor 5 in resource set

 0: Processor 6 in resource set

 0: Processor 7 in resource set

 0: Processor 8 in resource set

 0: Processor 9 in resource set

 0: Processor 10 in resource set

 0: Processor 11 in resource set

 0: Processor 12 in resource set

 0: Processor 13 in resource set

 0: Processor 14 in resource set

 0: Processor 15 in resource set

 1:ra_getrset returned RS_PARTITION_RSET

 1:Number of available processors: 16

 1:Number of available memory pools: 0

 1:Amount of available memory: 0 MB

 1:Maximum system detail level: 6

 1:SMP detail level: 2

 1:MCM detail level: 3

 1: Processor 0 in resource set

 1: Processor 1 in resource set

 1: Processor 2 in resource set

 1: Processor 3 in resource set

 1: Processor 4 in resource set

 1: Processor 5 in resource set

 1: Processor 6 in resource set

 1: Processor 7 in resource set

 1: Processor 8 in resource set

 1: Processor 9 in resource set

 1: Processor 10 in resource set

 1: Processor 11 in resource set

 1: Processor 12 in resource set

 1: Processor 13 in resource set

 1: Processor 14 in resource set

 1: Processor 15 in resource set

 1:numrads = 1

 1:

 1:MCM detail:

 1:MCM 0 found:

 1:Number of available processors: 16

 1:Number of available memory pools: 0

 1:Amount of available memory: 0 MB

 1:Maximum system detail level: 6

 1:SMP detail level: 2

 1:MCM detail level: 3

 1: Processor 0 in resource set

 1: Processor 1 in resource set

 1: Processor 2 in resource set

 1: Processor 3 in resource set

 1: Processor 4 in resource set

 1: Processor 5 in resource set

 1: Processor 6 in resource set

 1: Processor 7 in resource set

 1: Processor 8 in resource set

 1: Processor 9 in resource set

 1: Processor 10 in resource set

 1: Processor 11 in resource set

 1: Processor 12 in resource set

 1: Processor 13 in resource set

 1: Processor 14 in resource set

 1: Processor 15 in resource set

Chapter 6. Parallel Environment commands 213

214 IBM PE for AIX and Linux V5 R1: Operation and Use

Chapter 7. POE Environment variables and command line

flags

PE includes a number of environment variables and command line flags you can

use to influence the execution of parallel programs and the operation of certain

tools. The command line flags temporarily override their associated environment

variables.

The environment variables and command line flags shown here are divided into

tables, depending on the PE function to which they relate.

v Table 54 on page 216 summarizes the environment variables and flags for

controlling the Partition Manager. These environment variables and flags enable

you to specify such things as an input or output host list file, and the method of

node allocation. For a complete description of the variables and flags

summarized in this table, see Chapter 2, “Executing parallel programs,” on page

11.

v Table 55 on page 221 summarizes the environment variables and flags for Job

Specifications. These environment variables and flags determine whether or not

the Partition Manager should maintain the partition for multiple job steps,

whether commands should be read from a file or STDIN, and how the partition

should be loaded. For a complete description of the variables and flags

summarized in this table, see Chapter 2, “Executing parallel programs,” on page

11.

v Table 56 on page 223 summarizes the environment variables and flags for

determining how I/O from the parallel tasks should be handled. These

environment variables and flags set the input and output modes, and determine

whether or not output is labeled by task id. For a complete description of the

variables and flags summarized in this table, see “Managing standard input,

output, and error” on page 45.

v Table 57 on page 225 summarizes the environment variables and flags for

collecting diagnostic information. These environment variables and flags enable

you to generate diagnostic information that may be required by the IBM Support

Center in resolving PE-related problems.

v Table 58 on page 226 summarizes the environment variables and flags for the

Message Passing Interface. These environment variables and flags allow you to

change message and memory sizes, as well as other message passing

information.

v Table 59 on page 234 summarizes the variables and flags for core file generation

(PE for AIX only).

v Table 60 on page 235 summarizes some miscellaneous environment variables and

flags. These environment variables and flags enable additional error checking

and let you set a dispatch priority class for execution.

You can use the POE command line flags on the poe command. You can also use

the following flags on program names when individually loading nodes from

STDIN or a POE commands file.

v -infolevel or -ilevel

v -euidevelop

© Copyright IBM Corp. 1993, 2008 215

Table 54 summarizes the environment variables and flags for controlling the

Partition Manager. It includes information about how to set each variable, the

values that may be specified, and the default value. These environment variables

and flags enable you to specify such things as an input or output host list file, and

the method of node allocation. For a complete description of the variables and

flags summarized in this table, see Chapter 2, “Executing parallel programs,” on

page 11.

 Table 54. POE environment variables and command line flags for partition manager control

The Environment

Variable/Command Line

Flag(s): Set: Possible Values: Default:

MP_ADAPTER_USE

-adapter_use

How the node’s adapter should be

used. The User Space communication

subsystem library does not require

dedicated use of the IBM High

Performance Switch on the node.

Adapter use will be defaulted, as in

“Step 3b: Create a host list file” on

page 22, but shared usage may be

specified.

One of the following

strings:

dedicated

Only a single

program task can

use the adapter.

shared A number of

tasks on the node

can use the

adapter.

dedicated (for

User Space

jobs)

shared (for IP

jobs)

MP_CPU_USE

-cpu_use

How the node’s CPU should be used.

The User Space communication

subsystem library does not require

unique CPU use on the node. CPU use

will be defaulted, as in “Step 3b: Create

a host list file” on page 22, but multiple

use may be specified.

For example, either one job per node

gets all CPUs, or more than one job can

go on a node.

One of the following

strings:

unique

Only your

program’s tasks

can use the CPU.

multiple

Your program

may share the

node with other

users.

unique (for

User Space

jobs)

multiple (for IP

jobs)

For more details

on the default

values for

MP_CPU_USE,

see Table 11 on

page 25.

MP_DEVTYPE

-devtype

Specifies the device type class. Note

that you can only specify a single

device type per parallel job; device

types may not be mixed.

One of the following

strings:

ib InfiniBand

None

216 IBM PE for AIX and Linux V5 R1: Operation and Use

Table 54. POE environment variables and command line flags for partition manager control (continued)

The Environment

Variable/Command Line

Flag(s): Set: Possible Values: Default:

MP_EUIDEVICE

-euidevice

The adapter set to use for message

passing.

For AIX, one of the

following:

en0 Ethernet

fi0 FDDI

tr0 token-ring

sn_all Multiple US

windows per

task

sn_single

One US window

per task

ml0

adapter device name or

network type string

Adapter device

name or network

type string as

configured in

LoadLeveler.

For Linux, one of the

following:

sn_all Multiple

windows per

task

sn_single

One window per

task

ethx Gigabit Ethernet

(GigE)

adapter device name or

network type string

Adapter device

name or network

type string as

configured in

LoadLeveler.

The adapter set

used as the

external network

address.

MP_EUILIB

-euilib

The communication subsystem

implementation to use for

communication – either the IP

communication subsystem or the User

Space communication subsystem.

One of the following

strings:

ip The IP

communication

subsystem.

us The User Space

communication

subsystem.
Note: This specification

is case-sensitive.

ip

Chapter 7. POE Environment variables and command line flags 217

Table 54. POE environment variables and command line flags for partition manager control (continued)

The Environment

Variable/Command Line

Flag(s): Set: Possible Values: Default:

MP_EUILIBPATH

-euilibpath

The path to the message passing and

communication subsystem libraries.

This only needs to be set if the libraries

are moved, or an alternate set is being

used.

Any path specifier. /usr/lpp/ppe.poe/
lib (AIX) or

/opt/ibmhpc/
ppe.poe/lib/
libmpi (Linux)

MP_HOSTFILE

-hostfile -hfile

The name of a host list file for node

allocation.

Any file specifier or the

word NULL.

host.list in the

current directory.

MP_INSTANCES

-instances

The number of instances of User Space

windows or IP addresses to be

assigned. This value is expressed as an

integer, or the string max. If the values

specified exceeds the maximum

allowed number of instances, as

determined by LoadLeveler, that

number is substituted.

A positive integer, or the

string max.

1

MP_PROCS

-procs

The number of program tasks. Any number from 1 to the

maximum supported

configuration.

1

MP_PULSE

-pulse

The interval (in seconds) at which POE

checks the remote nodes to ensure that

they are actively communicating with

the home node.

An integer greater than or

equal to 0.

600

MP_RESD

-resd

Whether or not the Partition Manager

should connect to LoadLeveler to

allocate nodes.

Note: When running POE from a

workstation that is external to the

LoadLeveler cluster, the LoadL.so file set

must be installed on the external node

(see Tivoli Workload Scheduler

LoadLeveler: Using and Administering and

IBM Parallel Environment: Installation for

more information).

yes

no

Context

dependent

MP_RETRY

-retry

The period of time (in seconds)

between processor node allocation

retries by POE if there are not enough

processor nodes immediately available

to run a program. This is valid only if

you are using LoadLeveler. If the

character string wait is specified

instead of a number, no retries are

attempted by POE, and the job remains

enqueued in LoadLeveler until

LoadLeveler either schedules the job or

cancels it.

An integer greater than or

equal to 0, or the

case-insensitive value

wait.

0 (no retry)

218 IBM PE for AIX and Linux V5 R1: Operation and Use

Table 54. POE environment variables and command line flags for partition manager control (continued)

The Environment

Variable/Command Line

Flag(s): Set: Possible Values: Default:

MP_RETRYCOUNT

-retrycount

The number of times (at the interval set

by MP_RETRY) that the partition

manager should attempt to allocate

processor nodes. This value is ignored

if MP_RETRY is set to the character

string wait.

An integer greater than or

equal to 0.

0

MP_MSG_API

-msg_api

To indicate to POE which message

passing API is being used by the

application code.

MPI Indicates that the application

makes only MPI calls.

LAPI Indicates that the application

makes only LAPI calls.

MPI_LAPI

Indicates that calls to both

message passing APIs are used

in the application, and the

same set of communication

resources (windows, IP

addresses) is to be shared

between them.

MPI,LAPI

Indicates that calls to both

message passing APIs are used

in the application, with

dedicated resources assigned

to each of them.

LAPI,MPI

Has a meaning identical to

MPI,LAPI.

 MPI

LAPI

MPI_LAPI

MPI,LAPI

LAPI,MPI

MPI

MP_RMPOOL

-rmpool

The name or number of the pool that

should be used for nonspecific node

allocation. This environment

variable/command line flag only

applies to LoadLeveler.

An identifying pool name

or number.

None

MP_NODES

-nodes

To specify the number of processor

nodes on which to run the parallel

tasks. It may be used alone or in

conjunction with

MP_TASKS_PER_NODE and/or

MP_PROCS, as described in “Step 3i:

Set the MP_RMPOOL environment

variable” on page 33.

Any number from 1 to the

maximum supported

configuration.

None

MP_TASKS_PER_ NODE

-tasks_per_node

To specify the number of tasks to be

run on each of the physical nodes. It

may be used in conjunction with

MP_NODES and/or MP_PROCS, as

described in “Step 3i: Set the

MP_RMPOOL environment variable”

on page 33, but may not be used alone.

Any number from 1 to the

maximum supported

configuration.

None

Chapter 7. POE Environment variables and command line flags 219

Table 54. POE environment variables and command line flags for partition manager control (continued)

The Environment

Variable/Command Line

Flag(s): Set: Possible Values: Default:

MP_SAVEHOSTFILE

-savehostfile

The name of an output host list file to

be generated by the Partition Manager.

Any relative or full path

name.

None

MP_REMOTEDIR

(no associated command line

flag)

(Applies to PE for AIX only)

The name of a script which echoes the

name of the current directory to be

used on the remote nodes.

Any file specifier. None

MP_TIMEOUT

(no associated command line

flag)

The length of time, in seconds, that

POE waits before abandoning an

attempt to connect to the remote nodes.

Any number greater than

0. If set to 0 or a negative

number, the value is

ignored.

150

MP_CKPTFILE

(no associated command line

flag)

(Applies to PE for AIX only)

The base name of the checkpoint file. Any file specifier. See

“Checkpointing

and restarting

programs (PE for

AIX only)” on

page 54

MP_CKPTDIR

(no associated command line

flag)

(Applies to PE for AIX only)

The directory where the checkpoint

files will reside.

Any path specifier. Directory from

which POE is

run.

MP_CKPTDIR_PERTASK

(no associated command line

flag)

(Applies to PE for AIX only)

Specifies whether the checkpoint files

of the parallel tasks should be written

to separate subdirectories under the

directory that is specified by

MP_CKPTDIR.

yes

no

no

Table 55 on page 221 summarizes the environment variables and flags for Job

Specification. It includes information about how to set each variable, the values

that may be specified, and the default value. These environment variables and

flags determine whether or not the Partition Manager should maintain the

partition for multiple job steps, whether commands should be read from a file or

STDIN, and how the partition should be loaded. For a complete description of the

variables and flags summarized in this table, see Chapter 2, “Executing parallel

programs,” on page 11.

220 IBM PE for AIX and Linux V5 R1: Operation and Use

Table 55. POE environment variables and command line flags for job specification

The Environment

Variable/Command Line

Flag(s): Set: Possible Values: Default:

MP_CMDFILE

-cmdfile

The name of a POE commands

file used to load the nodes of

your partition. If set, POE will

read the commands file rather

than STDIN.

Any file specifier. None

MP_LLFILE

-llfile

The name of a LoadLeveler job

command file for node

allocation. If you are

performing specific node

allocation, you can use a

LoadLeveler job command file

in conjunction with a host list

file. If you do, the specific

nodes listed in the host list file

will be requested from

LoadLeveler.

Any path specifier. None

MP_NEWJOB

-newjob

Whether or not the Partition

Manager maintains your

partition for multiple job steps.

yes

no

no

MP_PGMMODEL

-pgmmodel

The programming model you

are using.

spmd

mpmd

spmd

MP_SAVE_LLFILE

-save_llfile

When using LoadLeveler for

node allocation, the name of the

output LoadLeveler job

command file to be generated

by the Partition Manager. The

output LoadLeveler job

command file will show the

LoadLeveler settings that result

from the POE environment

variables and/or command line

options for the current

invocation of POE. If you use

the MP_SAVE_LLFILE

environment variable for a

batch job, or when the

MP_LLFILE environment

variable is set (indicating that a

LoadLeveler job command file

should participate in node

allocation), POE will show a

warning and will not save the

output job command file.

Any relative or full path name. None

Chapter 7. POE Environment variables and command line flags 221

Table 55. POE environment variables and command line flags for job specification (continued)

The Environment

Variable/Command Line

Flag(s): Set: Possible Values: Default:

MP_TASK_AFFINITY

-task_affinity

Setting this environment

variable causes the PMD to

attach each task of a parallel job

to one of the system rsets (for

AIX) or cpusets (for Linux) at

the MCM level. This constrains

the task and all of its threads to

run within that MCM. If the

task has an inherited rset or

cpuset, the attach honors the

constraints of the inherited set.

When POE is run under

LoadLeveler (which includes all

User Space jobs), POE relies on

LoadLeveler to handle

scheduling affinity, based on

LoadLeveler job control file

keywords that POE sets up in

submitting the job. Memory and

task affinity must be enabled in

the LoadLeveler configuration

file (using the RSET_SUPPORT

keyword).

For more information about

handling task affinity and the

values that can be specified

with the MP_TASK_AFFINITY

environment variable, see

“Managing task affinity on

large SMP nodes” on page 57.

MCM Specifies that the tasks

are allocated in a

round-robin fashion

among the MCM’s

attached to the job by

WLM.

SNI Specifies that the tasks

are allocated to the

MCM in common with

the first adapter

assigned to the task by

LoadLeveler.

CORE Specifies that each MPI

task runs on a single

physical processor

core.

CPU Specifies that each MPI

task runs on a single

logical CPU.

CORE:n

Specifies the number of

processor cores to

which the threads of

an MPI task are

constrained (one thread

per core), where n is

an integer between 1

and 99999.

CPU:n Specifies the number of

logical CPUs to which

the threads of an MPI

task are constrained

(one thread per CPU),

where n is an integer

between 1 and 99999.

mcm-list

Specifies that the tasks

are assigned on a

round-robin basis to

this set, within the

constraint of an

inherited rset, if any.

-1 Specifies that no

affinity request will be

made (disables task

affinity).

None

Table 56 on page 223 summarizes the environment variables and flags for

determining how I/O from the parallel tasks should be handled. It includes

information about how to set each variable, the values that may be specified, and

222 IBM PE for AIX and Linux V5 R1: Operation and Use

the default value. These environment variables and flags set the input and output

modes, and determine whether or not output is labeled by task id. For a complete

description of the variables and flags summarized in this table, see “Managing

standard input, output, and error” on page 45.

 Table 56. POE environment variables and command line flags for I/O control

The Environment

Variable/Command

Line Flag(s): Set: Possible Values: Default:

MP_LABELIO

-labelio

Whether or not output from the parallel

tasks is labeled by task id.

yes

no

no

MP_STDINMODE

-stdinmode

The input mode. This determines how

input is managed for the parallel tasks.

all All tasks receive

the same input

data from STDIN.

none No tasks receive

input data from

STDIN; STDIN will

be used by the

home node only.

a task id

STDIN is only sent

to the task

identified.

all

MP_STDOUTMODE

-stdoutmode

The output mode. This determines how

STDOUT is handled by the parallel tasks.

One of the following:

unordered

All tasks write

output data to

STDOUT

asynchronously.

ordered

Output data from

each parallel task

is written to its

own buffer. Later,

all buffers are

flushed, in task

order, to STDOUT.

a task id

Only the task

indicated writes

output data to

STDOUT.

unordered

Chapter 7. POE Environment variables and command line flags 223

Table 56. POE environment variables and command line flags for I/O control (continued)

The Environment

Variable/Command

Line Flag(s): Set: Possible Values: Default:

MP_USE_MC

Used to determine whether to leverage

the hardware multicast function or use

the peer-to-peer method to simulate the

multicast function.

In IP mode, setting MP_USE_MC to yes

indicates that the IP hardware multicast

function will be used. Setting

MP_USE_MC to no indicates that the

peer-to-peer method will be used.

With User Space protocol, only the

peer-to-peer method is currently

supported.

yes

no

no

 MP_MC_INET_BASE_

ADDR

Used to determine the base IPv4 multicast

address for the current LAPI job.

Any IPv4 multicast address 224.3.0.1

 MP_MC_INET_ADDR_

LEN

Used to determine the length of the

available multicast address range, starting

from the value specified for

MP_MC_INET_BASE_ADDR.

Any integer, 1 or greater,

that does not exceed the

range of multicast addresses

that the operating system

permits.

16

MP_MC_INET_PORT

Used to determine the port number used

for multicasting.

1024 - 65535 2008

Table 57 on page 225 summarizes the environment variables and flags for collecting

diagnostic information. It includes information about how to set each variable, the

values that may be specified, and the default value. These environment variables

and flags enable you to generate diagnostic information that may be required by

the IBM Support Center in resolving PE-related problems.

224 IBM PE for AIX and Linux V5 R1: Operation and Use

Table 57. POE environment variables and command line flags for diagnostic information

The Environment

Variable/Command

Line Flag(s): Set: Possible Values: Default:

MP_INFOLEVEL

-infolevel and -ilevel

The level of message reporting.

You can use the infolevel and ilevel flags

when individually loading nodes. For

more information on individually loading

nodes, refer to “Invoking an MPMD

program” on page 36.

One of the following

integers:

0 Error

1 Warning and error

2 Informational,

warning, and error

3 Informational,

warning, and error.

Also reports

high-level

diagnostic

messages for use

by the IBM

Support Center.

4, 5, 6 Informational,

warning, and error.

Also reports high-

and low-level

diagnostic

messages for use

by the IBM

Support Center.

1

MP_PMDLOG

-pmdlog

Whether or not diagnostic messages

should be logged to a file in /tmp on each

of the remote nodes. Typically, this

environment variable/command line flag

is only used under the direction of the

IBM Support Center in resolving a

PE-related problem.

yes

no

no

MP_PMDLOG_DIR

-pmdlog_dir

The directory in which the diagnostic log

file, generated by setting MP_PMDLOG

to yes, is stored.

Any relative path name or

full path name.

/tmp

MP_DEBUG_

NOTIMEOUT

-debug_notimeout

A debugging aid that allows programmers

to attach to one or more of their tasks

without the concern that some other task

may reach a timeout.

yes

no

no

Chapter 7. POE Environment variables and command line flags 225

Table 57. POE environment variables and command line flags for diagnostic information (continued)

The Environment

Variable/Command

Line Flag(s): Set: Possible Values: Default:

MP_PROFDIR

-profdir

(Applies to PE for

Linux only)

Allows you to specify the directory into

which POE stores the gmon.out file for

each task. A gmon.out file contains

profiling data and is produced by

compiling a program with the -pg flag.

You can specify any string with

MP_PROFDIR. If you specify a directory

name without a leading slash, the new

directory is created relative to the

working directory. If you include a

leading slash, the new directory is created

with the absolute path.

If not set, the default directory is

/profdir.task_id.

Any relative path name or

full path name.

profdir.task_id

Table 58 summarizes the environment variables and flags for the Message Passing

Interface. It includes information about how to set each variable, the values that

may be specified, and the default value. These environment variables and flags

allow you to change message and memory sizes, as well as other message passing

information.

 Table 58. POE environment variables and command line flags for Message Passing Interface (MPI)

Environment Variable

Command Line Flag Set: Possible Values: Default:

MP_ACK_THRESH

-ack_thresh

Allows the user to control the

packet acknowledgement

threshold. Specify a positive

integer.

A positive integer limited to 31. 30

 MP_BUFFER_MEM

-buffer_mem

See “MP_BUFFER_MEM details” on page 239.

 64 MB

(User Space

 and IP)

 MP_CC_BUF_MEM

-cc_buf_mem

See “MP_CC_BUF_MEM details” on page 240.

 4 MB

(User Space

 and IP)

 MP_CC_SCRATCH_BUF

-cc_scratch_buf

Use the fastest collective

communication algorithm even

if that algorithm requires

allocation of more scratch buffer

space.

 yes

no

yes

226 IBM PE for AIX and Linux V5 R1: Operation and Use

Table 58. POE environment variables and command line flags for Message Passing Interface (MPI) (continued)

Environment Variable

Command Line Flag Set: Possible Values: Default:

 MP_CLOCK_SOURCE

-clock_source

For AIX, to use the IBM High

Performance Switch clock as a

time source. For Linux, to

specify the time source.

Currently, the only valid value

for Linux is OS (operating

system).

For AIX:

 AIX

SWITCH

For Linux:

 OS

For AIX, None.

See the table

entitled How the

clock source is

determined in

IBM Parallel

Environment:

MPI

Programming

Guide for more

information.

For Linux, OS

 MP_CSS_INTERRUPT

-css_interrupt

To specify whether or not

arriving packets generate

interrupts. Using this

environment variable may

provide better performance for

certain applications. Setting this

variable explicitly will suppress

the MPI-directed switching of

interrupt mode, leaving the user

in control for the rest of the run.

For more information, refer to

theMPI_FILE_OPEN and

MPI_WIN_CREATE

subroutines in IBM Parallel

Environment: MPI Subroutine

Reference.

 yes

no

no

Chapter 7. POE Environment variables and command line flags 227

Table 58. POE environment variables and command line flags for Message Passing Interface (MPI) (continued)

Environment Variable

Command Line Flag Set: Possible Values: Default:

 MP_EAGER_LIMIT

-eager_limit

To change the threshold value

for message size, above which

rendezvous protocol is used.

To ensure that at least 32

messages can be outstanding

between any two tasks,

MP_EAGER_LIMIT will be

adjusted based on the number

of tasks, when the user has

specified neither

MP_BUFFER_MEM nor

MP_EAGER_LIMIT. For

specific information about the

default eager limit values, see

IBM Parallel Environment: MPI

Programming Guide.

The maximum value for

MP_EAGER_LIMIT is 256 KB

(262144 bytes). Any value that

is less than 64 bytes but greater

than zero bytes is automatically

increased to 64 bytes. A value of

zero bytes is valid, and

indicates that eager send mode

is not to be used for the job.

A non-power of 2 value will be

rounded up to the nearest

power of 2. A value may be

adjusted if the early arrival

buffer (MP_BUFFER_MEM) is

too small.

 nnnnn

nnK (where:

K = 1024 bytes)

4096

 MP_HINTS_FILTERED

-hints_filtered

To specify whether or not MPI

info objects reject hints (key and

value pairs) that are not

meaningful to the MPI

implementation.

 yes

no

no

 MP_IONODEFILE

-ionodefile

To specify the name of a

parallel I/O node file — a text

file that lists the nodes that

should be handling parallel

I/O. Setting this variable

enables you to limit the number

of nodes that participate in

parallel I/O and guarantees

that all I/O operations are

performed on the same node.

See “Determining which nodes

will participate in parallel file

I/O” on page 52 for more

information.

Any relative path name or full

path name.

None. All nodes

will participate

in parallel I/O.

228 IBM PE for AIX and Linux V5 R1: Operation and Use

Table 58. POE environment variables and command line flags for Message Passing Interface (MPI) (continued)

Environment Variable

Command Line Flag Set: Possible Values: Default:

 MP_MSG_ENVELOPE_BUF

-msg_envelope_buf

The size of the message

envelope buffer (that is,

uncompleted send and receive

descriptors).

Any positive number. There is

no upper limit, but any value

less than 1 MB is ignored.

8 MB

 MP_POLLING_INTERVAL

-polling_interval

To change the polling interval

(in microseconds).

An integer between 1 and 2

billion.

400000

 MP_RETRANSMIT_INTERVAL

-retransmit_interval

MP_RETRANSMIT_

INTERVAL=nnnn and its

command line equivalent,

-retransmit_interval=nnnn,

control how often the

communication subsystem

library checks to see if it should

retransmit packets that have not

been acknowledged. The value

nnnn is the number of polling

loops between checks.

The acceptable range is from

1000 to INT_MAX

 10000 (for IP)

400000 (for

User Space)

MP_LAPI_TRACE_LEVEL

(no associated command line

flag)

Used for debug purposes. For

AIX,

MPI_LAPI_TRACE_LEVEL is

used in conjunction with AIX

tracing. Levels 0-5 are

supported.

0

1

2

3

4

5

0

Chapter 7. POE Environment variables and command line flags 229

Table 58. POE environment variables and command line flags for Message Passing Interface (MPI) (continued)

Environment Variable

Command Line Flag Set: Possible Values: Default:

MP_USE_BULK_XFER

-use_bulk_xfer

Exploits the IBM High

Performance Switch and

InfiniBand data transfer

mechanisms. In other

environments, this variable does

not have any meaning and is

ignored.

Before you can use

MP_USE_BULK_XFER, the

system administrator must first

enable Remote Direct Memory

Access (RDMA). For more

information, see IBM Parallel

Environment: Installation. In

other environments, this

variable has no meaning and is

ignored.

When you use this environment

variable, you also need to

consider the value of the

MP_BULK_MIN_MSG_SIZE

environment variable. Messages

with lengths that are greater

than the value specified

MP_BULK_MIN_MSG_SIZE

will use the bulk transfer path,

if it is available. For more

information, see the entry for

MP_BULK_MIN_MSG_SIZE in

this table.

 yes

no

no

MP_BULK_MIN_MSG_SIZE

-bulk_min_msg_size

Contiguous messages with data

lengths greater than or equal to

the value you specify for this

environment variable will use

the bulk transfer path, if it is

available. Messages with data

lengths that are smaller than the

value you specify for this

environment variable, or are

noncontiguous, will use packet

mode transfer.

The acceptable range is from

4096 to 2147483647 (INT_MAX).

Possible values:

 nnnnn (byte)

nnnK (where:

 K = 1024 bytes)

nnM (where:

 M = 1024*1024 bytes)

nnG (where:

 G = 1 billion bytes)

153600

MP_RC_MAX_QP

No associated command line

flag

Specifies the maximum number

of RC QPs that can be created.

Any positive integer. 2147483647

230 IBM PE for AIX and Linux V5 R1: Operation and Use

Table 58. POE environment variables and command line flags for Message Passing Interface (MPI) (continued)

Environment Variable

Command Line Flag Set: Possible Values: Default:

MP_RC_USE_LMC

No associated command line

flag

Determines whether LMC (Lid

Mask Control) is enabled.

Enabling the use of LMC can

improve performance, because a

single port can support multiple

RC paths. The default value is

no (only one RC connected path

is supported). Setting

MP_RC_USE_LMC to yes

causes multiple RC paths to be

supported, which may improve

performance.

yes

no

no

MP_RDMA_COUNT

-rdma_count

(Applies to PE for AIX only)

To specify the number of user

rCxt blocks. It supports the

specification of multiple values

when multiple protocols are

involved.

m for a single protocol

m.n for multiple protocols. The

values are positional; m is for

MPI, n is for LAPI. Only used

when MP_MSG_API=mpi.lapi.

None

MP_SHARED_MEMORY

-shared_memory

To specify the use of shared

memory (instead of IP or the

IBM High Performance Switch)

for message passing between

tasks running on the same

node.

Note: In past releases of PE for

AIX, the MP_SHM_CC

environment variable was used

to enable or disable the use of

shared memory for certain

64-bit MPI collective

communication operations.

Beginning with the PE 4.2

release, this environment

variable has been removed. You

should now use

MP_SHARED_MEMORY to

enable shared memory for both

collective communication and

point-to-point routines. The

default setting for

MP_SHARED_MEMORY is yes

(enable shared memory).

 yes

no

yes

Chapter 7. POE Environment variables and command line flags 231

Table 58. POE environment variables and command line flags for Message Passing Interface (MPI) (continued)

Environment Variable

Command Line Flag Set: Possible Values: Default:

 MP_SINGLE_THREAD

-single_thread

To avoid lock overheads in a

program that is known to be

single-threaded. This is an

optimization flag, with values

of no and yes. The default

value is no, which means the

potential for multiple user

message passing threads is

assumed.

Results are undefined if this

variable is set to yes with

multiple application message

passing threads in use. To

confirm that is it safe to run the

application with

MP_SINGLE_THREAD set to

yes, run it once with

MP_SINGLE_THREAD set to

confirm. The confirm option

can only warn you if this run

has made MPI calls from more

than a single thread. If an

application is capable of both

single-thread and multithread

execution, confirm cannot warn

you of the potential for multiple

threads.

If you want to use the PE

barrier synchronization register

(BSR), you must set

MP_SINGLE_THREAD to yes.

For more information about

PE’s support of the BSR, see

IBM Parallel Environment: MPI

Programming Guide.

 yes

no

confirm

no

 MP_THREAD_STACKSIZE

-thread_stacksize

To specify the additional stack

size allocated for user

subroutines running on an MPI

service thread. If you do not

allocate enough space, the

program may encounter a

SIGSEGV exception or more

subtle failures.

 nnnnn

nnnK (where:

K = 1024 bytes)

nnM (where:

M = 1024*1024 bytes)

0

232 IBM PE for AIX and Linux V5 R1: Operation and Use

Table 58. POE environment variables and command line flags for Message Passing Interface (MPI) (continued)

Environment Variable

Command Line Flag Set: Possible Values: Default:

MP_UDP_PACKET_SIZE

-udp_packet_size

Allows the user to control the

packet size. Specify a positive

integer.

A positive integer. For AIX, 8K if

MP_EUIDEVICE

is not set or is

set to a value of

enX. 64K if

MP_EUIDEVICE

is set to value

other than enX.

For Linux, 1500,

if the value of

MP_EUIDEVICE

is prefixed by

eth. Otherwise,

the default

value is 2044.

MP_WAIT_MODE

-wait_mode

Set: To specify how a thread or

task behaves when it discovers

it is blocked, waiting for a

message to arrive.

 nopoll

poll

sleep

yield

poll (for User

Space and IP)

 MP_IO_BUFFER_SIZE

-io_buffer_size

To specify the default size of

the data buffer used by MPI-IO

agents.

An integer less than or equal to

128 MB, in one of these formats:

 nnnnn

nnnK (where K=1024 bytes)

nnnM (where M=1024*1024

bytes)

The number of

bytes that

corresponds to

16 file blocks.

 MP_IO_ERRLOG

-io_errlog

To specify whether or not to

turn on I/O error logging.

 yes

no

no

 MP_REXMIT_BUF_SIZE

-rexmit_buf_size

The maximum LAPI level

message size that will be

buffered locally, to more quickly

free up the user send buffer.

This sets the size of the local

buffers that will be allocated to

store such messages, and will

impact memory usage, while

potentially improving

performance. The MPI

application message size

supported is smaller by, at

most, 32 bytes.

nnn bytes (where: nnn > 0

bytes)

 16352 bytes

 MP_REXMIT_BUF_CNT

-rexmit_buf_cnt

The number of retransmit

buffers that will be allocated

per task. Each buffer is of size

MP_REXMIT_BUF_SIZE *

MP_REXMIT_BUF_CNT. This

count controls the number of

inflight messages that can be

buffered to allow prompt return

of application send buffers.

nnn (where: nnn > 0)

 128

Chapter 7. POE Environment variables and command line flags 233

Table 58. POE environment variables and command line flags for Message Passing Interface (MPI) (continued)

Environment Variable

Command Line Flag Set: Possible Values: Default:

 MP_SHMCC_EXCLUDE_LIST

To specify the collective

communication routine in

which the MPI level shared

memory optimization should be

disabled. The shared memory

optimization in collective

communication operations

requires tight synchronization

among parallel processes.

Performance problems can arise

if an application has an

unbalanced workload such that

processes participating in the

same collective communication

operation are out of synch.

MP_SHMCC_EXCLUDE_LIST

applies to 64-bit environments

only.

None

All

Or a list of one or more of the

following values, separated by a

colon (:).

 Barrier

Bcast

Reduce

Allreduce

Reduce_scatter

Gather

Gatherv

Scatter

Scatterv

Allgather

Allgatherv

Alltoall

Alltoallv

Alltoallw

Scan

Exscan

None

Table 59 summarizes the variables and flags for core file generation. It includes

information about how to set each variable, the values that may be specified, and

the default value.

 Table 59. POE environment variables and command line flags for core file generation

The Environment

Variable/Command

Line Flag(s): Set: Possible Values: Default:

MP_COREDIR

-coredir

Creates a separate directory for each

task’s core file.

v Any valid directory name

v none (to bypass creating

a new directory)

coredir.taskid

MP_COREFILE_

FORMAT

-corefile_format

(Applies to PE for AIX

only)

The format of core files generated when

processes terminate abnormally.

STDERR (to specify that

the lightweight core file

information should be

written to standard error)

Any other string (to specify

the lightweight core file

name).

If not

set/specified,

standard AIX core

files will be

generated.

MP_COREFILE_

SIGTERM

-corefile_sigterm

(Applies to PE for AIX

only)

Determines if POE should generate a core

file when a SIGTERM signal is received.

Valid values are yes and no. If not set, the

default is no.

yes

no

no

234 IBM PE for AIX and Linux V5 R1: Operation and Use

Table 60 summarizes some miscellaneous environment variables and flags. It

includes information about how to set each variable, the values that may be

specified, and the default value. These environment variables and flags enable

additional error checking and let you set a dispatch priority class for execution.

 Table 60. Other POE environment variables and command line flags

The Environment

Variable/Command Line

Flag(s): Set: Possible Values: Default:

MP_COMPILER

-compiler

(Applies to PE for Linux

only)

Specifies the name of the compiler to

use. The default value is xlc_r (for C),

xlC_r (for C++), xlf_r (for Fortran). If

the IBM C Set++ vac.cmp package is

not installed, the default value

becomes one of the GNU compilers:

gcc (for C), g++ (for C++), or g77 (for

Fortran).

You can use MP_COMPILER to

specify a compiler other than the

default. For example, you may want

to use the GNU G++ compiler, even

if the IBM C Set++ vac.cmp package

is installed. Or, you may want to

specify one of the other compilers

that are contained in the IBM C

Set++ vac.cmp package.

For Fortran 90, specify the xlf90

compiler.

Any of the C, C++, or

Fortan compilers contained

in the IBM C Set++

vac.cmp package.

To specify a third-party

compiler, you must either

specify its full path or add

that compiler to a directory

in your search path (for

example, /usr/bin).

For C; xlc_r | gcc

For C++: xlC_r |

g++

For Fortran: xlf_r

| g77

MP_EUIDEVELOP

-euidevelop

Controls the level of parameter

checking during execution. Setting

this to yes enables some intertask

parameter checking which may help

uncover certain problems, but slows

execution. Normal mode does only

relatively inexpensive, local

parameter checking. Setting this

variable to min allows PE MPI to

bypass parameter checking on all

send and receive operations. yes or

deb (debug) checking is intended for

developing applications, and can

significantly slow performance. min

should only be used with well tested

applications because a bug in an

application running with min will

not provide useful error feedback.

 yes (develop mode)

no or nor (normal mode)

deb (debug mode)

min (minimum mode)

no

MP_STATISTICS

-statistics

Provides the ability to gather

communication statistics for User

Space jobs.

 yes

no

print

no

MP_FENCE

(no associated command

line flag)

A fence character string for

separating arguments you want

parsed by POE from those you do

not.

Any string. None

Chapter 7. POE Environment variables and command line flags 235

Table 60. Other POE environment variables and command line flags (continued)

The Environment

Variable/Command Line

Flag(s): Set: Possible Values: Default:

MP_NOARGLIST

(no associated command

line flag)

Whether or not POE ignores the

argument list. If set to yes, POE will

not attempt to remove POE

command line flags before passing

the argument list to the user’s

program.

 yes

no

no

MP_PRIORITY

(no associated command

line flag)

A dispatch priority class for

execution or a string of high/low

priority values. See IBM Parallel

Environment: Installation for more

information on dispatch priority

classes.

Any of the dispatch priority

classes set up by the system

administrator or a string of

high/low priority values in

the file /etc/poe.priority.

Note: If your cluster does

not have a global time

source (for example, an

HPS switch), software

synchronization of the node

clocks (for example, NTP) is

required. Otherwise, the

high-priority and

low-priority windows might

not be sufficiently aligned,

causing the coscheduler to

be ineffective.

None

MP_PRIORITY_LOG

-priority_log

Determines whether or not diagnostic

messages should be logged to the

POE priority adjustment coscheduler

log file in /tmp/log on each of the

remote nodes. This variable should

only be used in conjunction with the

POE coscheduler MP_PRIORITY

variable.

The value of this environment

variable can be overridden using the

-priority_log flag.

 yes

no

no

236 IBM PE for AIX and Linux V5 R1: Operation and Use

Table 60. Other POE environment variables and command line flags (continued)

The Environment

Variable/Command Line

Flag(s): Set: Possible Values: Default:

MP_PRIORITY_LOG_DIR

-priority_log_dir

Specifies the directory, on each of the

remote nodes, into which the POE

priority adjustment coscheduler log

file is stored. The default directory is

/tmp. The name of the log file is

pmadjpri.jobid.log, by default, so

after issuing this environment

variable, the log file is stored in

/directory_name/pmadjpri.jobid.log. If

the specified directory is invalid, or

cannot be written to, the default

directory is used. To specify a name

other than pmadjpri.jobid.log, use the

MP_PRIORITY_LOG_NAME

environment variable.

This variable should only be used

when the POE coscheduler

MP_PRIORITY_LOG variable is set

to yes.

Any full path name or

relative path name. Must be

a continuous ASCII string,

containing no imbedded

blanks.

/tmp

MP_PRIORITY_LOG_NAME

-priority_log_name

Specifies the name of the POE

priority adjustment coscheduler log

file. The default name is

pmadjpri.jobid.log. The directory into

which this log file is placed is /tmp,

by default, so after issuing this

environment variable, the log file is

stored in /tmp/log_file_name. jobid.log.

To specify a directory other than

/tmp, use the

MP_PRIORITY_LOG_DIR

environment variable.

This variable should only be used

when the POE coscheduler

MP_PRIORITY_LOG variable is set

to yes.

Any file specifier, with a

suffix of .log. Must be a

continuous ASCII string,

containing no imbedded

blanks.

pmadjpri.log

Chapter 7. POE Environment variables and command line flags 237

Table 60. Other POE environment variables and command line flags (continued)

The Environment

Variable/Command Line

Flag(s): Set: Possible Values: Default:

MP_PRIORITY_NTP

-priority_ntp

(Applies to PE for AIX

only)

Determines whether the POE priority

adjustment coscheduler will turn

NTP off during the priority

adjustment period, or leave it

running.

The value of no (which is the default)

instructs the POE coscheduler to turn

the NTP daemon off (if it was

running) and restart NTP later, after

the coscheduler completes. Specify a

value of yes to inform the

coscheduler to keep NTP running

during the priority adjustment cycles

(if NTP was not running, NTP will

not be started). If

MP_PRIORITY_NTP is not set, the

default is no.

The value of this environment

variable can be overridden using the

-priority_ntp flag.

 yes

no

no

MP_PRINTENV

-printenv

Whether to produce a report of the

current settings of MPI environment

variables, across all tasks in a job. If

yes is specified, the MPI environment

variable information is gathered at

initialization time from all tasks, and

forwarded to task 0, where the report

is prepared. If a script_name is

specified, the script is run on each

node, and the output script is

forwarded to task 0 and included in

the report.

When a variable’s value is the same

for all tasks, it is printed only once. If

it is different for some tasks, an

asterisk (*) appears in the report after

the word ″Task″.

no Do not produce a

report of MPI

environment

variable settings.

yes Produce a report of

MPI environment

variable settings.

script_name

Produce the report

(same as yes), then

run the script

specified here.

no

MP_TLP_REQUIRED

-tlp_required

(Applies to PE for AIX

only)

Specifies to POE whether to check to

see if jobs being executed have been

compiled for large pages, and when

it finds a job that was not, the action

to take.

none POE takes no

action.

warn POE detects and

issues a warning

message for any

job that was not

compiled for large

pages.

kill POE to detects and

kills any job that

was not compiled

for large pages.

none

238 IBM PE for AIX and Linux V5 R1: Operation and Use

MP_BUFFER_MEM details

The MP_BUFFER_MEM environment variable allows you to control the amount of

memory PE MPI allows for the buffering of early arrival message data for

point-to-point communications. Message data that is sent without knowing if the

receive is posted is said to be sent eagerly. If the message data arrives before the

receive is posted, this is called an early arrival and must be buffered at the receive

side.

Note: The MP_CC_BUF_MEM environment variable can be used to control the

amount of memory that PE allows for the buffering of early arrival

messages for collective communications. For more information, see

“MP_CC_BUF_MEM details” on page 240.

Set:

There are two ways that the MP_BUFFER_MEM environment variable can be

used:

1. To specify the pool size for memory to be allocated at MPI initialization time

and dedicated to buffering of early arrivals. Management of pool memory for

each early arrival is fast, which helps performance, but memory that is set

aside in this pool is not available for other uses. Eager sending is throttled by

PE MPI to be certain there will never be an early arrival that cannot fit within

the pool. (To throttle a car engine is to choke off its air and fuel intake by

lifting your foot from the gas pedal when you want to keep the car from going

faster than you can control).

2. To specify the pool size for memory to be allocated at MPI initialization time

and, with a second argument, an upper bound of memory to be used if the

preallocated pool is not sufficient. Eager sending is throttled to be certain there

will never be an early arrival that cannot fit within the upper bound. Any

early arrival will be stored in the preallocated pool using its faster memory

management if there is room, but if not, malloc and free will be used.

The constraints on eager send must be pessimistic because they must guarantee

an early arrival buffer no matter how the application behaves. Real applications

at large task counts may suffer performance loss due to pessimistic throttling of

eager sending, even though the application has only a modest need for early

arrival buffering.

Setting a higher bound allows more and larger messages to be sent eagerly. If

the application is well behaved, it is likely that the preallocated pool will

supply all the buffer space needed. If not, malloc and free will be used but

never beyond the stated upper bound.

Possible values:

nnnnn (byte)

nnnK (where: K = 1024 bytes)

nnM (where: M = 1024*1024 bytes)

nnG (where: G = 1024*1024*1024 bytes)

Formats:

M1

M1,M2

,M2 (a comma followed by the M2 value)

Chapter 7. POE Environment variables and command line flags 239

M1 specifies the size of the pool to be allocated at initialization time. M1 must be

between 0 and 256 MB.

M2 specifies the upper bound of memory that PE MPI will allow to be used for

early arrival buffering in the most extreme case of sends without waiting receives.

PE MPI will throttle senders back to rendezvous protocol (stop trying to use eager

send) before allowing the early arrivals at a receive side to overflow the upper

bound.

There is no limit enforced on the value you can specify for M2, but be aware that a

program that does not behave as expected has the potential to malloc this much

memory, and terminate if it is not available.

When MP_BUFFER_MEM is allowed to default, or is specified with a single

argument, M1, the upper bound is set to the pool size, and eager sending will be

throttled soon enough at each sender to ensure that the buffer pool cannot

overflow at any receive side. If M2 is smaller than M1, M2 is ignored.

The format that omits M1 is used to tell PE MPI to use its default size preallocated

pool, but set the upper bound as specified with M2. This removes the need for a

user to remember the default M1 value when the intention is to only change the

M2 value.

It is expected that only jobs with hundreds of tasks will have any need to set M2.

For most of these jobs, there will be an M1,M2 setting that eliminates the need for

PE MPI to throttle eager sends, while allowing all early arrivals that the

application actually creates to be buffered within the preallocated pool.

IMPORTANT

The default size of the Early Arrival buffer has been changed from 2.8 MB to 64

MB for 32-bit IP applications. This is important to note, because the new default

could cause your application to fail due to insufficient memory. As a result, you

may need to adjust your application’s memory allocation. For more information,

see “PE Version 5 Release 1 migration information” on page 4.

MP_CC_BUF_MEM details

The MP_CC_BUF_MEM environment variable allows you to control the amount of

memory PE MPI allows for the buffering of early arrival message data for

collective communications. Message data that is sent without knowing if the

receive is posted is said to be sent eagerly. If the message data arrives before the

receive is posted, this is called an early arrival and must be buffered at the receive

side.

Note: In PE 5.1, the early arrival buffer that is controlled by MP_CC_BUF_MEM is

used by MPI_Bcast only. Early arrival messages in other collective

communication operations continue to use the early arrival buffer for

point-to-point communication that is controlled by MP_BUFFER_MEM.

Note: The MP_BUFFER_MEM environment variable can be used to control the

amount of memory that PE allows for the buffering of early arrival

messages for point-to-point communications. For more information, see

“MP_BUFFER_MEM details” on page 239.

Set:

240 IBM PE for AIX and Linux V5 R1: Operation and Use

There are three ways that the MP_CC_BUF_MEM environment variable can be

used:

1. To specify the pool size for memory to be allocated at MPI initialization time

and dedicated to buffering of early arrivals. Management of pool memory for

each early arrival is fast, which helps performance, but memory that is set

aside in this pool is not available for other uses. Eager sending is throttled by

PE MPI to be certain there will never be an early arrival that cannot fit within

the pool. (To throttle a car engine is to choke off its air and fuel intake by

lifting your foot from the gas pedal when you want to keep the car from going

faster than you can control).

2. To specify an upper bound of memory to be used if the preallocated pool is not

sufficient. Eager sending is throttled to be certain there will never be an early

arrival that cannot fit within the upper bound.

3. To specify both the pool size for memory to be allocated at MPI initialization

time and, with a second argument, an upper bound of memory to be used if

the preallocated pool is not sufficient. Any early arrival will be stored in the

preallocated pool using its faster memory management if there is room, but if

not, malloc and free will be used.

The constraints on eager send must be pessimistic because they must guarantee

an early arrival buffer no matter how the application behaves. Real applications

at large task counts may suffer performance loss due to pessimistic throttling of

eager sending, even though the application has only a modest need for early

arrival buffering.

Setting a higher bound allows more messages to be sent eagerly. If the

application is well behaved, it is likely that the preallocated pool will supply all

the buffer space needed. If not, malloc and free will be used but never beyond

the stated upper bound.

Possible values:

nnnnn (byte)

nnnK (where: K = 1024 bytes)

nnM (where: M = 1024*1024 bytes)

nnG (where: G = 1024*1024*1024 bytes)

Formats:

M1

M1,M2

,M2 (a comma followed by the M2 value)

M1 specifies the size of the pool to be allocated at initialization time. M1 must be

between 4 and 128 MB.

M2 specifies the upper bound of memory that PE MPI will allow to be used for

early arrival buffering in the most extreme case of sends without waiting receives

(the default upper bound is 36 MB). PE MPI will throttle senders back to

rendezvous protocol (stop trying to use eager send) before allowing the early

arrivals at a receive side to overflow the upper bound.

There is no limit enforced on the value you can specify for M2, but be aware that a

program that does not behave as expected has the potential to malloc this much

memory, and terminate if it is not available.

Chapter 7. POE Environment variables and command line flags 241

When a value for only M1 is specified, and the specified value is greater than 36

MB, the value of M2 is automatically increased to the same value.

The format that omits M1 is used to tell PE MPI to use its default size preallocated

pool, but set the upper bound as specified with M2. This removes the need for a

user to remember the default M1 value when the intention is to only change the

M2 value.

It is expected that only jobs that create a large number of communicators will have

any need to set M2. For most of these jobs, there will be an M1,M2 setting that

eliminates the need for PE MPI to throttle eager sends, while allowing all early

arrivals that the application actually creates to be buffered within the preallocated

pool.

242 IBM PE for AIX and Linux V5 R1: Operation and Use

Appendix. Accessibility features for Parallel Environment

Accessibility features help users who have a disability, such as restricted mobility

or limited vision, to use information technology products successfully.

Accessibility features

The following list includes the major accessibility features in Parallel Environment:

v Keyboard-only operation

v Interfaces that are commonly used by screen readers

v Keys that are discernible by touch but do not activate just by touching them

v Industry-standard devices for ports and connectors

v The attachment of alternative input and output devices

The IBM Cluster information center, and its related publications, are

accessibility-enabled. The accessibility features of the information center are

described at http://publib.boulder.ibm.com/infocenter/clresctr/vxrx/topic/
com.ibm.cluster.addinfo.doc/access.html.

IBM and accessibility

See the IBM Human Ability and Accessibility Center for more information about

the commitment that IBM has to accessibility:

http://www.ibm.com/able

© Copyright IBM Corp. 1993, 2008 243

244 IBM PE for AIX and Linux V5 R1: Operation and Use

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in

other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not grant you

any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte character set (DBCS) information,

contact the IBM Intellectual Property Department in your country or send

inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore, this statement may not apply

to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 1993, 2008 245

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact:

For AIX:

IBM Corporation

Department LRAS, Building 003

11400 Burnet Road

Austin, Texas 78758–3498

U.S.A

For Linux:

IBM Corporation

Department LJEB/P905

2455 South Road

Poughkeepsie, NY 12601-5400

U.S.A

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this document and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement or any equivalent agreement

between us.

Any performance data contained herein was determined in a controlled

environment. Therefore, the results obtained in other operating environments may

vary significantly. Some measurements may have been made on development-level

systems and there is no guarantee that these measurements will be the same on

generally available systems. Furthermore, some measurement may have been

estimated through extrapolation. Actual results may vary. Users of this document

should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of

performance, compatibility or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the

suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or

withdrawal without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious and any similarity to the names and addresses used by an actual business

enterprise is entirely coincidental.

COPYRIGHT LICENSE:

246 IBM PE for AIX and Linux V5 R1: Operation and Use

This information contains sample application programs in source language, which

illustrates programming techniques on various operating platforms. You may copy,

modify, and distribute these sample programs in any form without payment to

IBM, for the purposes of developing, using, marketing or distributing application

programs conforming to the application programming interface for the operating

platform for which the sample programs are written. These examples have not

been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or

imply reliability, serviceability, or function of these programs.

Each copy or any portion of these sample programs or any derivative work, must

include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.

Sample Programs. © Copyright IBM Corp. _enter the year or years_. All rights

reserved.

All implemented function in the PE MPI product is designed to comply with the

requirements of the Message Passing Interface Forum, MPI: A Message-Passing

Interface Standard. The standard is documented in two volumes, Version 1.1,

University of Tennessee, Knoxville, Tennessee, June 6, 1995 and MPI-2: Extensions to

the Message-Passing Interface, University of Tennessee, Knoxville, Tennessee, July 18,

1997. The second volume includes a section identified as MPI 1.2 with clarifications

and limited enhancements to MPI 1.1. It also contains the extensions identified as

MPI 2.0. The three sections, MPI 1.1, MPI 1.2 and MPI 2.0 taken together constitute

the current standard for MPI.

PE MPI provides support for all of MPI 1.1 and MPI 1.2. PE MPI also provides

support for all of the MPI 2.0 Enhancements, except the contents of the chapter

titled Process Creation and Management.

If you believe that PE MPI does not comply with the MPI standard for the portions

that are implemented, please contact IBM Service.

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of

International Business Machines Corporation in the United States, other countries,

or both. If these and other IBM trademarked terms are marked on their first

occurrence in this information with a trademark symbol (® or

™), these symbols

indicate U.S. registered or common law trademarks owned by IBM at the time this

information was published. Such trademarks may also be registered or common

law trademarks in other countries. A current list of IBM trademarks is available on

the Web at ″Copyright and trademark information″ at www.ibm.com/legal/
copytrade.shtml.

InfiniBand is a trademark and/or service mark of the InfiniBand Trade Association.

Intel is a trademark or registered trademark of Intel Corporation or its subsidiaries

in the United States and other countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or

both.

UNIX is a registered trademark of The Open Group in the United States and other

countries.

Notices 247

Other company, product, and service names may be trademarks or service marks

of others.

248 IBM PE for AIX and Linux V5 R1: Operation and Use

Glossary

This glossary defines technical terms used in the

IBM Parallel Environment documentation. If you

do not find the term you are looking for, refer to

the IBM Terminology site on the World Wide

Web:

http://www.ibm.com/software/globalization/
terminology/index.html

A

address. A unique code or identifier for a register,

device, workstation, system, or storage location.

API. application programming interface (API): An

interface that allows an application program that is

written in a high-level language to use specific data or

functions of the operating system or another program.

application. One or more computer programs or

software components that provide a function in direct

support of a specific business process or processes.

argument. A value passed to or returned from a

function or procedure at run time.

authentication. The process of validating the identity

of a user or server.

authorization. The process of obtaining permission to

perform specific actions.

B

bandwidth. A measure of frequency range, typically

measured in hertz. Bandwidth also is commonly used

to refer to data transmission rates as measured in bits

or bytes per second.

blocking operation. An operation that has not

completed until the operation either succeeds or fails.

For example, a blocking receive will not return until a

message is received or until the channel is closed and

no further messages can be received.

breakpoint. A place in a program, specified by a

command or a condition, where the system halts

execution and gives control to the workstation user or

to a specified program.

broadcast. The simultaneous transmission of data to

more than one destination.

C

C. A programming language designed by Bell Labs in

1972 for use as the systems language for the UNIX

operating system.

C++. An enhancement of the C language that adds

features supporting object-oriented programming.

client. A software program or computer that requests

services from a server.

cluster. A group of processors interconnected through

a high-speed network that can be used for

high-performance computing.

collective communication. A communication

operation that involves more than two processes or

tasks. Broadcasts and reductions are examples of

collective communication operations. All tasks in a

communicator must participate.

communicator. A Message Passing Interface (MPI)

object that describes the communication context and an

associated group of processes.

compile. translate all or part of a program expressed

in a high-level language into a computer program

expressed in an intermediate language, an assembly

language, or a machine language.

condition. One of a set of specified values that a data

item can assume.

core dump. A process by which the current state of a

program is preserved in a file. Core dumps are usually

associated with programs that have encountered an

unexpected, system-detected fault, such as a

segmentation fault or a severe user error. A

programmer can use the core dump to diagnose and

correct the problem.

core file. A file that preserves the state of a program,

usually just before a program is terminated because of

an unexpected error. See also core dump.

D

data parallelism. A situation in which parallel tasks

perform the same computation on different sets of data.

debugger. A tool used to detect and trace errors in

computer programs.

distributed shell (dsh). A Cluster Systems

Management (CSM) command that lets you issue

© Copyright IBM Corp. 1993, 2008 249

commands to a group of hosts in parallel. See IBM

Cluster Systems Management: Command and Technical

Reference for details.

E

environment variable. (1) A variable that defines an

aspect of the operating environment for a process. For

example, environment variables can define the home

directory, the command search path, the terminal in

use, or the current time zone. (2) A variable that is

included in the current software environment and is

therefore available to any called program that requests

it.

Ethernet. A packet-based networking technology for

local area networks (LANs) that supports multiple

access and handles contention by using Carrier Sense

Multiple Access with Collision Detection (CSMA/CD)

as the access method. Ethernet is standardized in the

IEEE 802.3 specification.

executable program. A program that can be run as a

self-contained procedure. It consists of a main program

and, optionally, one or more subprograms.

execution. The process of carrying out an instruction

or instructions of a computer program by a computer.

F

fairness. A policy in which tasks, threads, or processes

must eventually gain access to a resource for which

they are competing. For example, if multiple threads

are simultaneously seeking a lock, no set of

circumstances can cause any thread to wait indefinitely

for access to the lock.

Fiber Distributed Data Interface (FDDI). An

American National Standards Institute (ANSI) standard

for a 100-Mbps LAN using fiber optic cables.

file system. The collection of files and file

management structures on a physical or logical mass

storage device, such as a diskette or minidisk.

fileset. (1) An individually-installable option or

update. Options provide specific function, and updates

correct an error in, or enhance, a previously installed

program. (2) One or more separately-installable,

logically-grouped units in an installation package. See

also licensed program and package.

FORTRAN. A high-level programming language used

primarily for scientific, engineering, and mathematical

applications.

G

GDB. An open-source portable debugger supporting

Ada, C, C++, and FORTRAN. GDB is a useful tool for

determining why a program crashes and where, in the

program, the problem occurs.

global max. The maximum value across all processors

for a given variable. It is global in the sense that it is

global to the available processors.

global variable. A symbol defined in one program

module that is used in other program modules that are

independently compiled.

graphical user interface (GUI). A type of computer

interface that presents a visual metaphor of a

real-world scene, often of a desktop, by combining

high-resolution graphics, pointing devices, menu bars

and other menus, overlapping windows, icons and the

object-action relationship.

GUI. See graphical user interface.

H

high performance switch. A high-performance

message-passing network that connects all processor

nodes.

home node. The node from which an application

developer compiles and runs a program. The home

node can be any workstation on the LAN.

host. A computer that is connected to a network and

provides an access point to that network. The host can

be a client, a server, or both a client and server

simultaneously.

host list file. A file that contains a list of host names,

and possibly other information. The host list file is

defined by the application that reads it.

host name. The name used to uniquely identify any

computer on a network.

I

installation image. A copy of the software, in backup

format, that the user is installing, as well as copies of

other files the system needs to install the software

product.

Internet. The collection of worldwide networks and

gateways that function as a single, cooperative virtual

network.

Internet Protocol (IP). A protocol that routes data

through a network or interconnected networks. This

protocol acts as an intermediary between the higher

protocol layers and the physical network.

IP. Internet Protocol.

250 IBM PE for AIX and Linux V5 R1: Operation and Use

K

kernel. The part of an operating system that contains

programs for such tasks as input/output, management

and control of hardware, and the scheduling of user

tasks.

L

latency. The time from the initiation of an operation

until something actually starts happening (for example,

data transmission begins).

licensed program. A separately priced program and

its associated materials that bear a copyright and are

offered to customers under the terms and conditions of

a licensing agreement.

lightweight core files. An alternative to standard AIX

core files. Core files produced in the Standardized

Lightweight Corefile Format provide simple process

stack traces (listings of function calls that led to the

error) and consume fewer system resources than

traditional core files.

LoadLeveler pool. A group of resources with similar

characteristics and attributes.

local variable. A symbol defined in one program

module or procedure that can only be used within that

program module or procedure.

M

management domain . A set of nodes that are

configured for management by Cluster Systems

Management. Such a domain has a management server

that is used to administer a number of managed nodes.

Only management servers have knowledge of the

domain. Managed nodes only know about the servers

managing them.

menu. A displayed list of items from which a user can

make a selection.

message catalog. An indexed table of messages. Two

or more catalogs can contain the same index values.

The index value in each table refers to a different

language version of the same message.

message passing. The process by which parallel tasks

explicitly exchange program data.

Message Passing Interface (MPI). A library

specification for message passing. MPI is a standard

application programming interface (API) that can be

used by parallel applications.

MIMD. multiple instruction stream, multiple data

stream.

multiple instruction stream, multiple data stream

(MIMD). A parallel programming model in which

different processors perform different instructions on

different sets of data.

MPMD. Multiple program, multiple data.

Multiple program, multiple data (MPMD). A parallel

programming model in which different, but related,

programs are run on different sets of data.

N

network. In data communication, a configuration in

which two or more locations are physically connected

for the purpose of exchanging data.

network information services (NIS). A set of network

services (for example, a distributed service for

retrieving information about the users, groups, network

addresses, and gateways in a network) that resolve

naming and addressing differences among computers

in a network.

NIS. See network information services.

node ID. A string of unique characters that identifies

the node on a network.

nonblocking operation. An operation, such as

sending or receiving a message, that returns

immediately whether or not the operation has

completed. For example, a nonblocking receive does

not wait until a message arrives. A nonblocking receive

must be completed by a later test or wait.

O

object code. Machine-executable instructions, usually

generated by a compiler from source code written in a

higher level language. Object code might itself be

executable or it might require linking with other object

code files.

optimization. The process of achieving improved

run-time performance or reduced code size of an

application. Optimization can be performed by a

compiler, by a preprocessor, or through hand tuning of

source code.

option flag. Arguments or any other additional

information that a user specifies with a program name.

Also referred to as parameters or command line

options.

P

package. 1) In AIX, a number of filesets that have

been collected into a single installable image of licensed

programs. See also fileset and licensed program. 2) In

Glossary 251

Linux, a collection of files, usually used to install a

piece of software. The equivalent AIX term is fileset.

parallelism. The degree to which parts of a program

may be concurrently executed.

parallelize. To convert a serial program for parallel

execution.

parameter. A value or reference passed to a function,

command, or program that serves as input or controls

actions. The value is supplied by a user or by another

program or process.

peer domain. A set of nodes configured for high

availability. Such a domain has no distinguished or

master node. All nodes are aware of all other nodes,

and administrative commands can be issued from any

node in the domain. All nodes also have a consistent

view of the domain membership. Contrast with

management domain.

point-to-point communication. A communication

operation that involves exactly two processes or tasks.

One process initiates the communication through a

send operation. The partner process issues a receive

operation to accept the data being sent.

procedure. In a programming language, a block, with

or without formal parameters, that is initiated by

means of a procedure call. (2) A set of related control

statements that cause one or more programs to be

performed.

process. A program or command that is actually

running the computer. A process consists of a loaded

version of the executable file, its data, its stack, and its

kernel data structures that represent the process’s state

within a multitasking environment. The executable file

contains the machine instructions (and any calls to

shared objects) that will be executed by the hardware.

A process can contain multiple threads of execution.

 The process is created with a fork() system call and

ends using an exit() system call. Between fork and exit,

the process is known to the system by a unique process

identifier (PID).

Each process has its own virtual memory space and

cannot access another process’s memory directly.

Communication methods across processes include

pipes, sockets, shared memory, and message passing.

profiling. A performance analysis process that is

based on statistics for the resources that are used by a

program or application.

pthread. A shortened name for the i5/OS threads API

set that is based on a subset of the POSIX standard.

R

reduction operation. An operation, usually

mathematical, that reduces a collection of data by one

or more dimensions. For example, an operation that

reduces an array to a scalar value.

remote host. Any host on a network except the host at

which a particular operator is working.

remote shell (rsh). A variant of the remote login

(rlogin) command that invokes a command interpreter

on a remote UNIX machine and passes the

command-line arguments to the command interpreter,

omitting the login step completely.

RSCT peer domain. See peer domain.

S

secure shell (ssh). A Unix-based command interface

and protocol for securely accessing a remote computer.

shell script. A program, or script, that is interpreted

by the shell of an operating system.

segmentation fault. A system-detected error, usually

caused by a reference to a memory address that is not

valid.

server. A software program or a computer that

provides services to other software programs or other

computers.

single program, multiple data (SPMD). A parallel

programming model in which different processors run

the same program on different sets of data.

source code. A computer program in a format that is

readable by people. Source code is converted into

binary code that can be used by a computer.

source line. A line of source code.

SPMD. single program, multiple data.

standard error (STDERR). The output stream to

which error messages or diagnostic messages are sent.

standard input (STDIN). An input stream from which

data is retrieved. Standard input is normally associated

with the keyboard, but if redirection or piping is used,

the standard input can be a file or the output from a

command.

standard output (STDOUT). The output stream to

which data is directed. Standard output is normally

associated with the console, but if redirection or piping

is used, the standard output can be a file or the input

to a command.

STDERR. standard error.

252 IBM PE for AIX and Linux V5 R1: Operation and Use

STDIN. standard input.

STDOUT. standard output.

subroutine. A sequence of instructions within a larger

program that performs a particular task. A subroutine

can be accessed repeatedly, can be used in more than

one program, and can be called at more than one point

in a program.

synchronization. The action of forcing certain points

in the execution sequences of two or more

asynchronous procedures to coincide in time.

system administrator. The person who controls and

manages a computer system.

T

task. In a parallel job, there are two or more

concurrent tasks working together through message

passing. Though it is common to allocate one task per

processor, the terms task and processor are not

interchangeable.

thread. A stream of computer instructions. In some

operating systems, a thread is the smallest unit of

operation in a process. Several threads can run

concurrently, performing different jobs.

trace. A record of the processing of a computer

program or transaction. The information collected from

a trace can be used to assess problems and

performance.

U

user. (1) An individual who uses license-enabled

software products. (2) Any individual, organization,

process, device, program, protocol, or system that uses

the services of a computing system.

User Space. A version of the message passing library

that is optimized for direct access to the high

performance switch (PE for AIX) or communication

adapter (PE for Linux). User Space maximizes

performance by not involving the kernel in sending or

receiving a message.

utility program. A computer program in general

support of computer processes; for example, a

diagnostic program, a trace program, a sort program.

utility routine. A routine in general support of the

processes of a computer; for example, an input routine.

V

variable. A representation of a changeable value.

X

X Window System. A software system, developed by

the Massachusetts Institute of Technology, that enables

the user of a display to concurrently use multiple

application programs through different windows of the

display. The application programs can execute on

different computers.

Glossary 253

254 IBM PE for AIX and Linux V5 R1: Operation and Use

Index

Special characters
-ack_thresh command line flag 226

-adapter_use command line flag 216

-buffer_mem command line flag 226,

233

-bulk_min_msg_size command line

flag 230

-clock_source command line flag 227

-cmd command line flag 221

-compiler command line flag 235

-coredir command line flag 234

-corefile_format command line flag 234

-corefile_sigterm command line flag 234

-cpu_use command line flag 216

-css_interrupt command line flag 227

-debug_notimeout command line

flag 225

-devtype command line flag 216

-eager_limit command line flag 228

-euidevelop command line flag 235

-euidevice command line flag 217

-euilib command line flag 217

-euilibpath command line flag 218

-hfile command line flag 218

-hints_filtered command line flag 228

-hostfile command line flag 218

-ilevel command line flag 225

-infolevel command line flag 225

-instances command line flag 192, 218

-io_buffer_size command line flag 233

-io_errlog command line flag 233

-ionodefile command line flag 228

-labelio command line flag 223

-llfile command line flag 221

-msg_api command line flag 191, 219

-msg_envelope_buf command line

flag 229

-newjob command line flag 221

-nodes command line flag 219

-pgmmodel command line flag 221

-pmdlog command line flag 225

-pmdlog_dir command line flag 225

-polling_interval command line flag 229

-printenv command line flag 238

-priority_log command line flag 236

-priority_log_dir command line flag 237

-priority_log_name command line

flag 237

-priority_ntp command line flag 238

-procs command line flag 218

-profdir command line flag 226

-pulse command line flag 218

-rdma_count command line flag 231

-resd command line flag 218

-retransmit_interval command line

flag 229

-retry command line flag 218

-retrycount command line flag 219

-rexmit_buf_cnt command line flag 233

-rmpool command line flag 219

-save_llfile command line flag 221

-savehostfile command line flag 220

-shared_memory command line

flag 200, 231

-single_thread command line flag 232

-statistics command line flag 235

-stdinmode command line flag 223

-stdoutmode command line flag 223

-task_affinity command line flag 222

-tasks_per_node command line flag 219

-thread_stacksize command line flag 232

-tlp_required command line flag 238

-udp_packet_size command line

flag 197, 233

-use_bulk_xfer 94, 95

-use_bulk_xfer command line flag 230

-wait_mode command line flag 202, 233

A
abbreviated names xi

accessibility features for this

product 243

acronyms for product names xi

AIX Dispatcher tuning 101

attach mode, PDB 118

B
buffer 48

C
C shell, running programs under 93

cancelling a POE job 72

checkpointing programs 54

limitations 55

restrictions 55

scenario 56

collective communication 155, 157

command line flags, POE 21, 215

commands, PE 129

cpuset_query 130

mcp 143

mcpgath 145

mcpscat 149

mpamddir 152

mpcc 153

mpCC 158

mpcc_r 156

mpCC_r 161

mpfort 163

mpiexec 166

mpxlf_r 167

mpxlf2003_r 176

mpxlf90_r 170

mpxlf95_r 173

perpms 182

poe 183

poeckpt 207

poekill 209

commands, PE (continued)
poerestart 210

rset_query 212

communication subsystem library 2

compiling parallel programs 12

configuration file, creating 113

Considerations for using the high

performance switch
requesting use of multiple

adapters 83

using TWS LoadLeveler JCF keywords

to request use of multiple

adapters 85

controlling program execution 42, 56

checkpointing and restarting

programs 54

checkpointing 54

checkpointing limitations 55

managing checkpoint files 55

restarting 55

determining which nodes will

participate in parallel file I/O 52

making POE ignore arguments 44

entire argument list 44

portion of the argument list 44

making POE wait for processor

nodes 43

managing standard input, output, and

error 45

generating a diagnostic log on

remote nodes 51

labeling message output 50

setting message reporting level for

standard error 50

STDIN 45

STDOUT 48

managing task affinity on large SMP

nodes 57

POE ignore argument limits 45

POE user authorization 53

AIX user authorization 53

cluster based security 53

Linux user authorization 54

running POE from a shell script 62

specifying develop mode 42

core file generation, environment

variables for 215, 234

D
data striping 86

debugging parallel programs 111

develop mode, specifying 42

diagnosing problems with PDB 118

diagnostic information, environment

variables for 215, 224

DISH agents, launching 116

DISH agents, setting up 116

dish command 132

DISH console, using 115

DISH states 116

© Copyright IBM Corp. 1993, 2008 255

dish subcommands 137

exit 139

group 137

help 137

interrupt 138

kquit 138

leave 139

match 140

on 139

send 139

toggle 139

disha command 141

Distributed Interactive Shell (DISH)
creating a configuration file 113

creating an instance file 112

ensuring clients are accessible to

DISH 115

example of setting up ksh with

DISH 117

launching DISH agents 116

setting up DISH agents 116

understanding DISH states 116

using 111

using the DISH console 115

using variable substitution 114

E
environment variables, POE 21, 215

executing parallel programs 11

compiling the program 12

copying files to individual nodes 15

invoking the executable 34

invoking a nonparallel program on

remote nodes 41

loading a series of programs as job

steps 38

MPMD program 36

SPMD program 36

setting up the execution

environment 15

creating a host list file 22

creating a host list file to allocate

nodes with LoadLeveler 23

creating a host list file to allocate

nodes without LoadLeveler 22

setting MP_DEVTYPE 32

setting MP_EUIDEVICE 30

setting MP_EUILIB 29

setting MP_HOSTFILE 27

setting MP_MSG_API 32

setting MP_PROCS 21

setting MP_RESD 28

setting MP_RMPOOL 33

execution environment 15

exit subcommand (of the dish

command) 139

F
failover 83

file system 15

function 48, 72

G
generating an output host list file 26

gprof, profiling AIX programs with 123

gprof, profiling Linux programs

with 126

group subcommand (of the dish

command) 137

H
help subcommand (of the dish

command) 137

High Performance Switch, considerations

for using 79

home node 2

host list file 22

host name 22

I
InfiniBand internconnect

specifying with MP_DEVTYPE

environment variable 32

instance file, creating 112

Internet Protocol (IP) 2

interrupt subcommand (of the dish

command) 138

J
job specification, environment variables

for 215, 220

K
killing a POE job 72

kquit subcommand (of the dish

command) 138

L
LAPI environment variables

MP_RC_MAX_QP 230

MP_RC_USE_LMC 231

LAPI timeout 197

launch mode, PDB 118

leave subcommand (of the dish

command) 139

loading nodes individually
from standard input 37

using a POE commands file 38

LoadLeveler, submitting a batch POE job

to 72

Low-level Application Programming

Interface (LAPI) 2

M
managing POE jobs 65

AIX Dispatcher tuning 101

cancelling a POE job 72

considerations for data striping 86

communication and memory 88

managing POE jobs (continued)
considerations for using the high

performance switch
failover and recovery 83

considerations for using the High

Performance Switch 79

data striping 86

detecting remote node failures 72

improving application scalability

performance 97

killing a POE job 72

large memory parallel jobs 93

multi-task core file 65

parallel file copy utilities 78

POE priority adjustment

coscheduler 97

running programs under the C

shell 93

specifying the format of core files or

suppressing core file generation 90

generating core files for

sigterm 91

generating lightweight core

files 91

generating standard AIX core

files 90

writing core file information to

standard error 91

starting a User Space POE job, using

the InfiniBand interconnect, without

LoadLeveler 101

starting an InfiniBand User Space POE

job without LoadLeveler
compiling and installing the NRT

API sample programs 102

constructing input data files 102

displaying adapter device status

information 108

loading the network tables on each

node 106

running the parallel job under

POE 107

unloading the network tables 108

stopping a POE job 71

submitting a batch POE job using

TWS LoadLeveler 72

PE for AIX example 73

PE for Linux example 75

submitting an interactive POE job

using a TWS LoadLeveler command

file 76

generating an output TWS

Loadleveler job command

file 77

support for performance

improvements 67

MP_BUFFER_MEM 67

MP_CSS_INTERRUPT 70

using RDMA with the IBM High

Performance Switch 94

using RDMA with the InfiniBand

interconnect 95

match subcommand (of the dish

command) 140

message catalog 36

message passing 2

Message Passing Interface (MPI) 2

256 IBM PE for AIX and Linux V5 R1: Operation and Use

migration
PE for AIX 4

PE for Linux 8

miscellaneous environment variables and

flags 215, 235

MP_ACK_THRESH environment

variable 197, 226

MP_ADAPTER_USE environment

variable 216

MP_BUFFER_MEM details 239, 240

MP_BUFFER_MEM environment

variable 67, 226, 233

MP_BULK_MIN_MSG_SIZE 95

MP_BULK_MIN_MSG_SIZE environment

variable 230

MP_CC_BUF_MEM environment

variable 226

MP_CC_SCRATCH_BUF environment

variable 226

MP_CKPTDIR environment variable 220

MP_CKPTDIR_PERTASK environment

variable 220

MP_CKPTFILE environment

variable 220

MP_CLOCK_SOURCE environment

variable 227

MP_CMDFILE environment

variable 221

MP_COMPILER environment

variable 235

MP_COREDIR environment

variable 234

MP_COREFILE_FORMAT environment

variable 234

MP_COREFILE_SIGTERM environment

variable 234

MP_CPU_USE environment variable 216

MP_CSS_INTERRUPT environment

variable 70, 227

MP_DEBUG_NOTIMEOUT environment

variable 225

MP_DEVTYPE 95

MP_DEVTYPE environment variable 32,

216

MP_EAGER_LIMIT environment

variable 228

MP_EUIDEVELOP environment

variable 235

MP_EUIDEVICE environment

variable 217

MP_EUILIB environment variable 217

MP_EUILIBPATH environment

variable 218

MP_FENCE environment variable 235

MP_HINTS_FILTERED environment

variable 228

MP_HOLD_STDIN environment

variable 46

MP_HOSTFILE environment

variable 218

MP_INFOLEVEL environment

variable 225

MP_INSTANCES environment

variable 192, 218

MP_IO_BUFFER_SIZE environment

variable 233

MP_IO_ERRLOG environment

variable 233

MP_IONODEFILE environment

variable 228

MP_LABELIO environment variable 223

MP_LAPI_TRACE_LEVEL environment

variable 229

MP_LLFILE environment variable 221

MP_MC_INET_BASE_ADDR

environment variable 224

MP_MC_INET_BASE_ADDR_LEN

environment variable 224

MP_MC_INET_PORT environment

variable 224

MP_MSG_API environment

variable 191, 219

MP_MSG_ENVELOPE_BUF environment

variable 229

MP_NEWJOB environment variable 221

MP_NOARGLIST environment

variable 236

MP_NODES environment variable 219

MP_PGMMODEL environment

variable 221

MP_PMDLOG environment variable 225

MP_PMDLOG_DIR environment

variable 225

MP_POLLING_INTERVAL environment

variable 229

MP_PRINTENV environment

variable 238

MP_PRIORITY environment

variable 236

MP_PRIORITY_LOG environment

variable 236

MP_PRIORITY_LOG_DIR environment

variable 237

MP_PRIORITY_LOG_NAME

environment variable 237

MP_PRIORITY_NTP environment

variable 238

MP_PROCS environment variable 218

MP_PROFDIR environment variable 226

MP_PULSE environment variable 218

MP_RC_INIT_SETUP 95

MP_RC_MAX_QP 95

MP_RC_MAX_QP environment

variable 230

MP_RC_USE_LMC 95

MP_RC_USE_LMC environment

variable 231

MP_RC_USE_LRU 95

MP_RDMA_COUNT environment

variable 231

MP_REMIXIT_BUF_CNT environment

variable 233

MP_REMOTEDIR environment

variable 220

MP_RESD environment variable 218

MP_RETRANSMIT_INTERVAL

environment variable 229

MP_RETRY environment variable 218

MP_RETRYCOUNT environment

variable 219

MP_RMPOOL environment variable 219

MP_SAVE_LLFILE environment

variable 221

MP_SAVEHOSTFILE environment

variable 220

MP_SHARED_MEMORY environment

variable 200, 231

MP_SHMCC_EXCLUDE_LIST

environment variable 234

MP_SINGLE_THREAD environment

variable 232

MP_STATISTICS environment

variable 235

MP_STDINMODE environment

variable 45, 46, 223

MP_STDOUTMODE 48

MP_STDOUTMODE environment

variable 49, 223

MP_TASK_AFFINITY environment

variable 222

MP_TASKS_PER_NODE environment

variable 219

MP_THREAD_STACKSIZE environment

variable 232

MP_TIMEOUT environment

variable 220

MP_TLP_REQUIRED environment

variable 238

MP_UDP_PACKET_SIZE environment

variable 197, 233

MP_USE_BULK_XFER 94, 95

MP_USE_BULK_XFER environment

variable 230

MP_USE_MC environment variable 224

MP_WAIT_MODE environment

variable 202, 233

MPI, environment variables for 215, 226

MPMD (Multiple Program Multiple

Data) 1

multi-step STDIN for newjob mode 40

multiple input mode 45

N
newjob mode, multi-step STDIN 40

O
on subcommand (of the dish

command) 139

ordered output mode 49

P
Parallel Environment (PE), overview 1

parallel file copy utilities 78

Parallel Operating Environment (POE)
executing parallel programs 11

parallel profiling capability 123, 126

parallel programs
compiling 12

controlling program execution 42, 67

debugging 111

executing 11

parallel task I/O, environment variables

for 215, 222

Parallel Utility Function 49

Partition Manager 3

Index 257

Partition Manager, environment variables

for 215, 216

pdb command 179

PDB debugger
using 118

attach mode 118

diagnosing problems 118

example of debugging a program

with PDB 119

launch mode 118

PE commands 129

cpuset_query 130

mcp 129, 143

mcpgath 145

mcpscat 149

mpamddir 152

mpcc 153

mpCC 158

mpcc_r 156

mpCC_r 161

mpfort 163

mpiexec 166

mpxlf_r 167

mpxlf2003_r 176

mpxlf90_r 170

mpxlf95_r 173

perpms 182

poe 183

poeckpt 207

poekill 209

poerestart 210

rset_query 212

PE tools commands
dish command 132, 141

pdb command 179

performance, improving for AIX 97

POE
argument limits 45

commands file, loading nodes

individually using 38

commands file, reading job steps

from 40

compiling parallel programs 12

controlling program execution

using 42, 67

executing nonparallel programs

using 41

invoking executables in 34, 42

setting up execution environment 15

POE command line flags 21, 215

-ack_thresh 226

-adapter_use 25, 216

-buffer_mem 186, 226

-bulk_min_msg_size 187, 230

-cc_buf_mem 186

-cc_scratch_buf 186, 226

-cc_scratch_buf command line

flag 226

-clock_source 186, 227

-cmdfile 38, 40, 221

-compiler 235

-coredir 234

-corefile_format 234

-corefile_format_sigterm 234

-cpu_use 25, 216

-css_interrupt 186, 227

-debug_notimeout 186, 225

POE command line flags (continued)
-devtype 216

-eager_limit 186, 228

-euidevelop 203, 215, 235

-euidevice 31, 217

-euilib 29, 217

-euilibpath 30, 218

-hfile 27, 218

-hints_filtered 186, 228

-hostfile 27, 218

-ilevel 215, 225

-infolevel 215, 225

-instances 192, 218

-io_buffer_size 187, 233

-io_errlog 187, 233

-ionodefile 228

-labelio 50, 223

-llfile 221

-msg_api 191, 219

-msg_envelope_buf 187, 229

-newjob 38, 221

-nodes 219

-pgmmodel 35, 221

-pmdlog 196, 225

-pmdlog_dir 196, 225

-polling_interval 187, 229

-printenv 196, 238

-priority_log 236

-priority_log_dir 204, 237

-priority_log_name 204, 237

-priority_ntp 238

-procs 21, 218

-profdir 196

-pulse 72, 218

-rdma_count 231

-resd 28, 218

-retransmit_interval 187, 229

-retry 43, 218

-retrycount 43, 219

-rexmit_buf_cnt 187, 233

-rexmit_buf_size 187, 233

-rmpool 33, 219

-save_llfile 221

-savehostfile 26, 220

-shared_memory 200, 231

-single_thread 187, 232

-statistics 187, 196, 235

-stdinmode 45, 223

-stdoutmode 48, 223

-task_affinity 222

-tasks_per_node 219

-thread_stacksize 187, 232

-tlp_required 238

-udp_packet_size 187, 197, 233

-use_bulk_xfer 187, 230

-wait_mode 187, 202, 233

generating diagnostic logs using 51

labeling task output using 50

maintaining partition for multiple job

steps using 38

making POE wait for available nodes

using 43

managing standard input using 45

managing standard output using 48

profdir 226

setting number of task processes 21

POE command line flags (continued)
setting the message reporting level

using 50

specifying a commands file using 38,

40

specifying a host list file 27

specifying adapter set for message

passing using 31

specifying additional error checking

using 42

specifying communication subsystem

library implementation using 29

specifying device type 32

specifying programming model

using 35

POE environment variables 21, 215

generating diagnostic logs using 51

labeling task output using 50

maintaining partition for multiple job

steps using 38

making POE ignore arguments

using 44

making POE wait for available nodes

using 43

managing standard input using 45

managing standard output using 48

MP_ACK_THRESH 197, 226

MP_ADAPTER_USE 25, 216

MP_BUFFER_MEM 197, 226

MP_BULK_MIN_MSG_SIZE 201, 230

MP_CC_BUF_MEM 198, 226

MP_CC_SCRATCH_BUF 198, 226

MP_CKPT_DIR_PERTASK 192

MP_CKPTDIR 42, 54, 192, 208, 220

MP_CKPTDIR_PERTASK 220

MP_CKPTFILE 42, 54, 192, 208, 220

MP_CLOCK_SOURCE 199, 227

MP_CMDFILE 38, 40, 221

MP_COMPILER 235

MP_COREDIR 234

MP_COREFILE_FORMAT 234

MP_COREFILE_SIGTERM 234

MP_CPU_USE 25, 216

MP_CSS_INTERRUPT 199, 227

MP_DEBUG_NOTIMEOUT 197, 225

MP_DEVTYPE 17, 216

MP_EAGER_LIMIT 199, 228

MP_EUIDEVELOP 203, 235

MP_EUIDEVICE 17, 217

MP_EUILIB 17, 217

MP_EUILIBPATH 30, 124, 126, 218

MP_FENCE 203, 235

MP_HINTS_FILTERED 199, 228

MP_HOSTFILE 17, 210, 218

MP_INFOLEVEL 195, 225

MP_INSTANCES 192, 218

MP_IO_BUFFER_SIZE 202, 233

MP_IO_ERRLOG 202, 233

MP_IONODEFILE 228

MP_LABELIO 42, 223

MP_LAPI_TRACE_LEVEL 200, 229

MP_LLFILE 210, 221

MP_MC_INET_BASE_ADDR 224

MP_MC_INET_BASE_ADDR_LEN 224

MP_MC_INET_PORT 224

MP_MSG_API 191, 219

MP_MSG_ENVELOPE_BUF 200, 229

258 IBM PE for AIX and Linux V5 R1: Operation and Use

POE environment variables (continued)
MP_NEWJOB 38, 221

MP_NOARGLIST 203, 236

MP_NODES 219

MP_PGMMODEL 35, 221

MP_PMDLOG 195, 225

MP_PMDLOG_DIR 196, 225

MP_POLLING_INTERVAL 229

MP_PRINTENV 196, 238

MP_PRIORITY 203, 236

MP_PRIORITY_LOG 204, 236

MP_PRIORITY_LOG_DIR 204, 237

MP_PRIORITY_LOG_NAME 204,

237

MP_PRIORITY_NTP 204, 238

MP_PROCS 16, 218

MP_PROFDIR 196, 226

MP_PULSE 218

MP_RDMA_COUNT 231

MP_REMOTEDIR 93, 220

MP_RESD 17, 218

MP_RETRANSMIT_INTERVAL 202,

229

MP_RETRY 42, 218

MP_RETRYCOUNT 42, 219

MP_REXMIT_BUF_CNT 202, 233

MP_REXMIT_BUF_SIZE 202, 233

MP_RMPOOL 17, 210, 219

MP_SAVE_LLFILE 221

MP_SAVEHOSTFILE 26, 220

MP_SHARED_MEMORY 200, 231

MP_SHMCC_EXCLUDE_LIST 234

MP_SINGLE_THREAD 201, 232

MP_STATISTICS 196, 235

MP_STDINMODE 42, 223

MP_STDOUTMODE 42, 223

MP_TASK_AFFINITY 42, 222

MP_TASKS_PER_NODE 219

MP_THREAD_STACKSIZE 201, 232

MP_TIMEOUT 192, 220

MP_TLP_REQUIRED 205, 238

MP_UDP_PACKET_SIZE 197, 233

MP_USE_BULK_XFER 200, 230

MP_USE_MC 224

MP_WAIT_MODE 202, 233

setting number of task processes 21

setting the message reporting level

using 50

specifying a commands file using 38,

40

specifying a host list file 27

specifying adapter set for message

passing using 31

specifying additional error checking

using 42

specifying communication subsystem

library implementation using 29

specifying device type 32

specifying programming model

using 35

poerestart command 55

priority adjustment coscheduler 97

processor node 1

prof, profiling AIX programs with 123

R
RDMA, using 94

IBM High Performance Switch 94

InfiniBand interconnect 95

reading job steps from a POE commands

file 40

reading job steps from standard

input 39

recovery 83

Remote Direct Memory Access, using 94

IBM High Performance Switch 94

InfiniBand interconnect 95

remote node 3

restarting programs 54

scenario 56

S
scalability, improving for AIX 97

send subcommand (of the dish

command) 139

serial program 124, 126

single input mode 46

single output mode 49

specifying how a node’s resources are

used 24

SPMD (Single Program Multiple Data) 1

standard error (STDERR) 45

standard input (STDIN) 45

standard output (STDOUT) 45

STDERR, setting message reporting

level 50

STDIN, redirected 46

stopping a POE job 71

submitting a batch POE job using TWS

LoadLeveler 72

PE for AIX example 73

PE for Linux example 75

submitting an interactive POE job using a

TWS Loadleveler command file 76

generating an output TWS

Loadleveler job command file 77

T
toggle subcommand (of the dish

command) 139

trademarks 247

typographic conventions and

terminology x

U
unordered output mode 48

User Space (US) 2

using POE with AIX large pages 62

using POE with MALLOCDEBUG 62

using redirected STDIN 46

V
variable substitution 114

Index 259

260 IBM PE for AIX and Linux V5 R1: Operation and Use

Reader’s Comments– We’d like to hear from you

Parallel Environment for AIX and Linux

Operation and Use

Version 5 Release 1

 Publication No. SC23-6667-00

 We appreciate your comments about this publication. Please comment on specific errors or omissions, accuracy,

organization, subject matter, or completeness of this book. The comments you send should pertain to only the

information in this manual or product and the way in which the information is presented.

For technical questions and information about products and prices, please contact your IBM branch office, your

IBM business partner, or your authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any

way it believes appropriate without incurring any obligation to you. IBM or any other organizations will only use

the personal information that you supply to contact you about the issues that you state on this form.

Comments:

 Thank you for your support.

Submit your comments using one of these channels:

v Send your comments to the address on the reverse side of this form.

v Send your comments via e-mail to: mhvrcfs@us.ibm.com

If you would like a response from IBM, please fill in the following information:

Name

Address

Company or Organization

Phone No. E-mail address

Readers’ Comments — We’d Like to Hear from You
 SC23-6667-00

SC23-6667-00

����

Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
 FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

 POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation

Department 58HA, Mail Station P181

2455 South Road

Poughkeepsie NY

 12601-5400

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

Program Number: 5765-PEA and 5765-PEL

SC23-6667-00

	Contents
	Tables
	About this information
	Who should read this information
	How this information is organized
	Overview of contents

	Conventions and terminology used in this information
	Abbreviated names

	Prerequisite and related information
	How to send your comments
	National language support (NLS)
	Functional restrictions for PE 5.1
	Summary of changes
	Changes for PE 5.1

	Chapter 1. Introduction
	PE Version 5 Release 1 migration information
	PE for AIX 5.1 migration information
	PE for Linux 5.1 migration information

	Chapter 2. Executing parallel programs
	Executing parallel programs using POE
	Step 1: Compile the program
	Step 2: Copy files to individual nodes
	Step 3: Set up the execution environment
	Step 3a: Set the MP_PROCS environment variable
	Step 3b: Create a host list file
	Step 3c: Set the MP_HOSTFILE environment variable
	Step 3d: Set the MP_RESD environment variable
	Step 3e: Set the MP_EUILIB environment variable
	Step 3f: Set the MP_EUIDEVICE environment variable
	Step 3g: Set the MP_DEVTYPE environment variable
	Step 3h: Set the MP_MSG_API environment variable
	Step 3i: Set the MP_RMPOOL environment variable

	Step 4: Invoke the executable
	Invoking an SPMD program
	Invoking an MPMD program
	Loading a series of programs as job steps
	Invoking a nonparallel program on remote nodes

	Controlling program execution
	Specifying develop mode
	Making POE wait for processor nodes
	Making POE ignore arguments
	Making POE ignore the entire argument list
	Making POE ignore a portion of the argument list

	POE argument limits
	Managing standard input, output, and error
	Managing standard input (STDIN)
	Managing standard output (STDOUT)
	Labeling message output
	Setting the message reporting level for standard error (STDERR)
	Generating a diagnostic log on remote nodes

	Determining which nodes will participate in parallel file I/O
	POE user authorization
	Cluster based security (PE for AIX only)
	AIX user authorization (PE for AIX only)
	Linux user authorization (PE for Linux only)

	Checkpointing and restarting programs (PE for AIX only)
	Checkpointing programs (PE for AIX only)
	Restarting programs (PE for AIX only)
	Checkpointing limitations (PE for AIX only)
	Managing checkpoint files (PE for AIX only)
	A checkpoint/restart scenario (PE for AIX only)

	Managing task affinity on large SMP nodes
	OpenMP task affinity support

	Running POE from a shell script (PE for AIX only)

	Using POE with MALLOCDEBUG (PE for AIX only)
	Using POE with AIX large pages (PE for AIX only)

	Chapter 3. Managing POE jobs
	Multi-task core file
	Support for performance improvements
	Using MP_BUFFER_MEM
	Improving performance with MP_CSS_INTERRUPT

	Stopping a POE job
	Cancelling and killing a POE job
	Detecting remote node failures
	Submitting a batch POE job using TWS LoadLeveler
	PE for AIX example of submitting a batch POE job using TWS LoadLeveler
	PE for Linux example of submitting a batch POE job using TWS LoadLeveler

	Submitting an interactive POE job using a TWS LoadLeveler command file
	Generating an output TWS LoadLeveler job command file

	Parallel file copy utilities
	Considerations for using the High Performance Switch interconnect
	Scenario 1: Explicitly allocating nodes with TWS LoadLeveler
	Scenario 2: Implicitly allocating nodes with TWS LoadLeveler
	Scenario 3: Implicitly allocating nodes with TWS LoadLeveler (mixing dedicated and shared adapters)
	Considerations for failover and recovery with PE
	Failover and recovery
	Requesting the use of multiple adapters
	Failover and recovery restrictions

	Considerations for data striping, with PE
	Data striping
	Communication and memory considerations

	Specifying the format of core files or suppressing core file generation (PE for AIX only)
	Generating standard AIX core files (PE for AIX only)
	Generating core files for sigterm (PE for AIX only)
	Writing core file information to standard error (PE for AIX only)
	Generating lightweight core files (PE for AIX only)

	Managing large memory parallel jobs (PE for AIX only)
	Running programs under the C shell (PE for AIX only)
	Using RDMA
	Using RDMA with the IBM High Performance Switch (PE for AIX only)
	Using RDMA with the InfiniBand interconnect

	Improving application scalability performance (PE for AIX only)
	POE priority adjustment coscheduler
	AIX Dispatcher tuning (PE for AIX only)
	Starting a User Space POE job, using the InfiniBand interconnect, without LoadLeveler (PE for AIX only)
	Step 1: Compile and install the NRT API sample programs (PE for AIX only)
	Step 2: Construct input data files (PE for AIX only)
	Step 2a: Construct an input data file for loading (PE for AIX only)
	Step 2b: Construct an input data file for unloading (PE for AIX only)

	Step 3: Load the network tables on each node (PE for AIX only)
	Step 4: Run the parallel job under POE (PE for AIX only)
	Step 5: Unload the network tables (PE for AIX only)
	Displaying adapter device status information (PE for AIX only)

	Chapter 4. Debugging parallel programs using DISH and the PDB debugger
	Using the Distributed Interactive Shell
	Before you begin using DISH
	Creating an instance file
	Creating a configuration file
	Using variable substitution
	Ensuring the clients are accessible to DISH

	Using the DISH console
	Setting up the DISH agents
	Launching DISH agents
	Understanding the DISH states
	Example: Setting up ksh with DISH

	Using the PDB debugger
	Using PDB in launch mode
	Using PDB in attach mode
	Diagnosing problems with PDB
	Example: Debugging a program with PDB

	Chapter 5. Profiling programs with the prof and gprof commands
	Profiling AIX programs with the prof and gprof commands
	Profiling Linux programs with the gprof command

	Chapter 6. Parallel Environment commands
	cpuset_query
	dish
	Subcommands of the dish command
	group subcommand (of the dish command)
	help subcommand (of the dish command)
	interrupt subcommand (of the dish command)
	kquit subcommand (of the dish command)
	leave subcommand (of the dish command)
	on subcommand (of the dish command)
	exit subcommand (of the dish command)
	send subcommand (of the dish command)
	toggle subcommand (of the dish command)
	match subcommand (of the dish command)

	disha
	mcp
	mcpgath
	mcpscat
	mpamddir
	mpcc
	mpcc_r
	mpCC
	mpCC_r
	mpfort
	mpiexec
	mpxlf_r
	mpxlf90_r
	mpxlf95_r
	mpxlf2003_r
	pdb
	perpms
	poe
	poeckpt
	poekill
	poerestart
	rset_query

	Chapter 7. POE Environment variables and command line flags
	MP_BUFFER_MEM details
	MP_CC_BUF_MEM details

	Appendix. Accessibility features for Parallel Environment
	Accessibility features
	IBM and accessibility

	Notices
	Trademarks

	Glossary
	Index
	Reader's Comments– We'd like to hear from you

