
Software Development Kit for Multicore Acceleration

Version 3.1

Fast Fourier Transform Library

Programmer’s Guide and API Reference

SC34-2562-00

���

Software Development Kit for Multicore Acceleration

Version 3.1

Fast Fourier Transform Library

Programmer’s Guide and API Reference

SC34-2562-00

���

Note

Before using this information and the product it supports, read the information in “Notices” on page 39.

Edition notice

This edition applies to version 3, release 1, modification 0 of the IBM Software Development Kit for Multicore

Acceleration (Product number 5724-S84) and to all subsequent releases and modifications until otherwise indicated

in new editions.

© Copyright International Business Machines Corporation 2008.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

About this publication v

How to send your comments v

Part 1. Overview of the FFT library . . 1

Part 2. Installing and configuring the

FFT library 3

Part 3. Programming 5

Chapter 1. Basic structure of the FFT

library 7

Chapter 2. Using the FFT library 9

Programming examples 9

Chapter 3. Tuning the FFT library for

performance 15

Part 4. FFT API reference 17

Chapter 4. PPE APIs 19

fft_1d_sp_initialize 20

fft_1d_sp_perform 21

fft_1d_sp_terminate 22

fft_2d_sp_initialize 23

fft_2d_sp_perform 24

fft_2d_sp_terminate 25

fft_2d_dp_initialize 26

fft_2d_dp_perform 27

fft_2d_dp_terminate 28

Chapter 5. SPE APIs 29

fft_1d_c2c_spu 30

fft_1d_c2r_spu 31

fft_1d_r2c_spu 32

Part 5. Appendixes 33

Appendix A. Related documentation . . 35

Appendix B. Accessibility features . . . 37

Notices 39

Trademarks 41

Terms and conditions 41

Glossary 43

Index 45

© Copyright IBM Corp. 2008 iii

iv libFFT Programmer’s Guide and API Reference

About this publication

This publication describes in detail how to configure the Fast Fourier Transform

library (FFT) and how to program applications using it on the IBM Software

Development Kit for Multicore Acceleration (SDK). It contains detailed reference

information about the APIs for the library as well as sample applications showing

usage of these APIs.

Who should use this book

The target audience for this document is application programmers using the SDK.

You are expected to have a basic understanding of programming on the Cell

Broadband Engine™ (Cell/B.E.) platform and common terminology used with the

Cell/B.E. platform.

Typographical conventions

The following table explains the typographical conventions used in this document.

 Table 1. Typographical conventions

Typeface Indicates Example

Bold Lowercase commands,

library functions.

void sscal_spu (float *sx,

float sa, int n)

Italics Parameters or variables

whose actual names or

values are to be supplied by

the user. Italics are also used

to introduce new terms.

The following example

shows how a test program,

test_name can be run

Monospace Examples of program code

or command strings.

int main()

Related information

For a list of SDK documentation, see Appendix A, “Related documentation,” on

page 35.

How to send your comments

Your feedback is important in helping to provide the most accurate and highest

quality information. If you have any comments about this publication, send your

comments using IBM Resource Link™ at http://www.ibm.com/servers/
resourcelink. Click Feedback on the navigation pane. Be sure to include the name

of the book, the form number of the book, and the specific location of the text you

are commenting on (for example, a page number or table number).

© Copyright IBM Corp. 2008 v

http://www.ibm.com/servers/resourcelink
http://www.ibm.com/servers/resourcelink

vi libFFT Programmer’s Guide and API Reference

Part 1. Overview of the FFT library

The FFT library is a collection of C routines for computing discrete Fourier

transform (DFT). The FFT is a widely used algorithm in science and engineering,

with applications in almost every discipline.

This FFT library provides both one-dimensional and two-dimensional FFT routines.

These routines are implemented in the C interface. Each FFT routine has three

versions:

 Data type Short name

Complex to Complex C2C

Complex to Real C2R

Real to Complex R2C

The FFT library in the SDK supports both single precision (SP) and double

precision (DP). All SP and DP FFT routines are supported on the Power Processing

Element (PPE). An SPE interface for single precision FFTs is also available.

Each of the different types of FFTs use APIs with the following naming pattern:

v fft_init: this routine is called to set up the environment for performing FFT

v fft_perform: this routine accomplishes FFT computation one or many FFTs

v fft_terminate: this routine is used to clean up the environment

© Copyright IBM Corp. 2008 1

2 libFFT Programmer’s Guide and API Reference

Part 2. Installing and configuring the FFT library

The following section describes how to install and configure the FFT library.

The FFT library is installed and configured during the installation of the SDK. For

details about how to install the SDK, see the ″Installing the SDK″ section of the

SDK Installation Guide available at the Cell/B.E. Resource Center developerWorks

Web site:

http://www-128.ibm.com/developerworks/power/cell

© Copyright IBM Corp. 2008 3

http://www-128.ibm.com/developerworks/power/cell

4 libFFT Programmer’s Guide and API Reference

Part 3. Programming

These topics provide information about how to program with the FFT library.

v Chapter 1, “Basic structure of the FFT library,” on page 7

v Chapter 2, “Using the FFT library,” on page 9

v Chapter 3, “Tuning the FFT library for performance,” on page 15

© Copyright IBM Corp. 2008 5

6 libFFT Programmer’s Guide and API Reference

Chapter 1. Basic structure of the FFT library

This topic describes the FFT library directory paths for each of the supported

platform.

The following tables detail the location of the various files installed with the FFT

package:

 Table 2. FFT library contents (Hybrid)

Platform X86 or x86_64 (Development)

PPE 32–bit library /opt/cell/sysroot/usr/lib/libfft.so.3.1

PPE 64–bit library /opt/cell/sysroot/usr/lib64/libfft.so.3.1

SPE library /opt/cell/sysroot/usr/spu/lib/libfft.a

PPE/SPE header files /opt/cell/sysroot/usr/include/libfft.h

/opt/cell/sysroot/usr/spu/include/libfft_spu.h

Example code /opt/cell/sdk/src/libfft-examples-source.tar

 Table 3. FFT library contents (Cell/B.E.)

Platform

Cell/B.E. or Power Host (Development or execution

including Simulator)

PPE 32–bit library /usr/lib/libfft.so.3.1

PPE 64–bit library /usr/lib64/libfft.so.3.1

SPE library /usr/spu/lib/libfft.a

PPE/SPE header files /usr/include/libfft.h

/usr/spu/include/libfft_spu.h

Example code /opt/cell/sdk/src/libfft-examples-source.tar

The following table describes the key file components of the FFT library.

 Table 4. File description

File Description

libfft.h Contains the C function interface of FFT on PPE and

SPE

libfft_spu.h Contains the C function interface of FFT on PPE and

SPE

libfft.a Contains the static FFT library which for SPE

libfft.so Shared FFT library for Cell/B.E

lifft-examples-source.tar Contains examples that demonstrate how to use the

FFT library with the SDK

© Copyright IBM Corp. 2008 7

8 libFFT Programmer’s Guide and API Reference

Chapter 2. Using the FFT library

These topics use programming examples to describe how to use the FFT library.

Programming examples

The following example application shows you how to use the FFT library. It

invokes the PPE library APIs.

Building the examples

To build the examples listed in this document, follow this procedure:

1. Cut and paste the Makefile source from an online or PDF copy of this

document into an editor and save it as Makefile.

2. Cut and paste the example source from an online or PDF copy of this

document into an editor and save the file with a name such as FFT1D_sample.c.

3. Edit the Makefile to use the name of the source file that you chose in the

previous step. If you did not use fft_example.c then substitute the name you

chose into the lines that contain FFT1D_sample and FFT1D_sample.a.

4. Copy the Makefile and the example source file into your development source

directory (for example into /opt/sandbox/).

5. From a shell prompt, type the following commands:

$ cd /opt/sandbox

$ export CELL_TOP=/opt/cell/sdk

$ make

Here is the Makefile:

Target

ifdef CREATE_LIB_PPU64

PROGRAM_ppu64 = FFT1D_sample

LDFLAGS += -R/usr/lib64

else

PROGRAM_ppu = FFT1D_sample

LDFLAGS += -R/usr/lib

endif

Objects

IMPORTS +=-lfft -lm

make.footer

ifdef CELL_TOP

 include $(CELL_TOP)/buildutils/make.footer

else

 include ../../../buildutils/make.footer

endif

© Copyright IBM Corp. 2008 9

Example: PPE application

The following sample application shows you how to use FFT library on PPE. It

invokes the FFT 1D routine.

/*

 FFT1D_sample.c - a simple routine to drive the fft library

*/

/* NOTE:

 * Computing a forward followed by a backward transform (or vice versa) will

 * result in the original data multiplied by the size of the transform

 * (the product of the dimensions).

 */

#include <stdio.h>

#include <stdlib.h>

#include <strings.h>

#include <time.h>

#include <sys/time.h>

#include <fcntl.h>

#include <unistd.h>

#include <sys/mman.h>

#include <errno.h>

#include <libfft.h>

#define HUGE_TLB

#define HUGE_PAGE_SIZE (16*1024*1024) /* 16MB */

// Forward declare.

int test_1D(int numberOfFfts, int sizeOfFfts, int spusToUse, int flavor,

int hugepage_flag);

// Main.

int main(int argc, char *argv[])

{

 if (argc < 6 || argc > 7)

 {

 fprintf(stderr, "Usage: %s <function type = c2c, r2c, c2r> <number of ffts>

 <spus to use> <size of each fft> <hugepage_flag>\n", argv[0]);

 exit(1);

 }

 int numberOfFfts = atoi(argv[2]);

 int spusToUse = atoi(argv[3]);

 int sizeOfFfts = atoi(argv[4]);

 int hugepage_flag = atoi(argv[5]);

 int flavor;

 if (strcasecmp(argv[1], "c2c") == 0)

 {

 flavor = FFT_TYPE_C2C;

 }

 else if (strcasecmp(argv[1], "r2c") == 0)

 {

 flavor = FFT_TYPE_R2C;

 }

 else if (strcasecmp(argv[1], "c2r") == 0)

 {

 flavor = FFT_TYPE_C2R;

 }

 else

 {

10 libFFT Programmer’s Guide and API Reference

fprintf(stderr, "Bad function type.\n");

 exit(1);

 }

 int res = test_1D(numberOfFfts, sizeOfFfts, spusToUse, flavor, hugepage_flag);

 return res;

} // end main

// Generate complex numbers as input.

void generateC2Cdata(int numberOfFfts, int sizeOfFfts, float **problems)

{

 int i;

 for (i=0; i<numberOfFfts; ++i)

 {

 int j;

 for (j=0; j<sizeOfFfts; ++j)

 {

 problems[i][j*2] = rand() % 1024; // Real

 problems[i][j*2+1] = rand() % 1024; // Imag

 }

 }

}

// Generate packed reals as input.

void generateR2Cdata(int numberOfFfts, int sizeOfFfts, float **problems)

{

 int i;

 for (i=0; i<numberOfFfts; ++i)

 {

 int j;

 for (j=0; j<sizeOfFfts; ++j)

 {

 problems[i][j] = rand() % 1024; // Real

 }

 // Don’t care about the elements in the other half of the array,

 // since they don’t get used.

 }

}

// Generate complex conjugates as input.

void generateC2Rdata(int numberOfFfts, int sizeOfFfts, float **problems)

{

 int i;

 for (i=0; i<numberOfFfts; ++i)

 {

 problems[i][0] = rand() % 1024; // Real

 problems[i][1] = 0; // Imag

 int j;

 for (j=1; j<(sizeOfFfts+1)/2; ++j)

 {

 problems[i][j*2] = rand() % 1024; // Real

 problems[i][j*2+1] = rand() % 1024; // Imag

 // Complex conjugate.

 problems[i][(sizeOfFfts-j)*2] = problems[i][j*2]; // Real

 problems[i][(sizeOfFfts-j)*2+1] = -problems[i][j*2+1]; // Imag

 }

 if (!(sizeOfFfts % 2)) // Size is even.

 {

 problems[i][sizeOfFfts] = rand() % 1024; // Real

 problems[i][sizeOfFfts+1] = 0; // Imag

 }

 }

}

// Allocate space for data and perform the FFT.

int test_1D(int numberOfFfts, int sizeOfFfts, int spusToUse, int flavor,

Chapter 2. Using the FFT library 11

int hugepage_flag)

{

 // Allocate storage for input and output data.

 void *ptr;

 int i;

 posix_memalign(&ptr, 128, sizeof(float *) * numberOfFfts);

 float **input_data = (float **)ptr;

 posix_memalign(&ptr, 128, sizeof(float *) * numberOfFfts);

 float **output_data = (float **)ptr;

 unsigned int mallocLen = sizeof(float) * 2 * sizeOfFfts; // Real + imaginary

 mallocLen += mallocLen % 16;

 unsigned int dataLen = 0;

 if (hugepage_flag)

 /* Using hugepage can significantly reduce the TLB miss thus improve

 the performance */

 {

 int fmem;

 char *mem_file = "/huge/FFT1D_sample_mem.bin";

 if ((fmem = open(mem_file, O_CREAT | O_RDWR, 0755)) == -1)

 {

 fprintf(stderr, "ERROR: unable to open file %s (errno=%d).\n", mem_file, errno);

 return -1;

 }

 else

 {

 remove(mem_file);

 dataLen = numberOfFfts * mallocLen * 2;

 dataLen = (dataLen + HUGE_PAGE_SIZE-1) & ~ (HUGE_PAGE_SIZE-1);

 ptr = mmap(0, dataLen, PROT_READ | PROT_WRITE, MAP_PRIVATE, fmem, 0);

 if (ptr == MAP_FAILED) {

 printf("ERROR: unable to mmap file %s (errno=%d).\n", mem_file, errno);

 close (fmem);

 return -1;

 }

 for (i=0; i<numberOfFfts; i++)

 {

 input_data[i] = (float *)ptr;

 /* If the input data are no longer used after computation,

 * the input and output data can share the same buffer.

 * In this in-place case, TLB miss can be further reduced.

 */

 ptr += mallocLen;

 output_data[i] = (float *)ptr;

 ptr += mallocLen;

 }

 }

 }

 else

 {

 for (i=0; i<numberOfFfts; ++i)

 {

 posix_memalign(&ptr, 128, mallocLen);

 input_data[i] = (float *)ptr;

 posix_memalign(&ptr, 128, mallocLen);

 output_data[i] = (float *)ptr;

 }

 }

 // Populate input data.

 srand(time(NULL));

 if (flavor == FFT_TYPE_C2C)

 {

 generateC2Cdata(numberOfFfts, sizeOfFfts, input_data);

 }

 else if (flavor == FFT_TYPE_R2C)

 {

12 libFFT Programmer’s Guide and API Reference

generateR2Cdata(numberOfFfts, sizeOfFfts, input_data);

 }

 else if (flavor == FFT_TYPE_C2R)

 {

 generateC2Rdata(numberOfFfts, sizeOfFfts, input_data);

 }

 // Start timer.

 struct timeval start, end;

 gettimeofday(&start, NULL);

 // Call library to process.

 fft_handle_t handle;

 int res = fft_1d_sp_initialize(&handle, spusToUse);

 if (res == FFT_RC_SUCCESS)

 {

 // Perform the transform.

 res = fft_1d_sp_perform(handle, numberOfFfts, sizeOfFfts, (void **)input_data,

 (void **)output_data, 0, flavor);

 if (res != FFT_RC_SUCCESS)

 {

 fprintf(stderr, "FFT failure: %d\n", res);

 }

 // Cleanup.

 fft_1d_sp_terminate(handle);

 }

 else

 {

 fprintf(stderr, "FFT failed to initialize: %d\n", res);

 }

 // Stop timer.

 gettimeofday(&end, NULL);

 unsigned int elapsed = ((end.tv_sec * 1000000) + end.tv_usec) -

 ((start.tv_sec * 1000000) + start.tv_usec);

 fprintf(stderr, "Calculation time took %u usec.\n", elapsed);

 // Cleanup.

 if (hugepage_flag)

 {

 munmap(input_data[0], dataLen);

 }

 else

 {

 for (i=0; i<numberOfFfts; ++i)

 {

 free(input_data[i]);

 free(output_data[i]);

 }

 }

 free(input_data);

 free(output_data);

 return res;

}

Chapter 2. Using the FFT library 13

14 libFFT Programmer’s Guide and API Reference

Chapter 3. Tuning the FFT library for performance

The FFT library provides additional features for customizing the FFT library. You

can use these features to effectively use the available resources and potentially

achieve higher performance.

The following are tips for optimizing the FFT program:

v It is advisable to use huge pages for storing the input/output matrix of

computing FFT. This reduces page fault which may affect performance.

v Make the data 128-byte aligned. Memory access is more efficient when the data

is 128-byte aligned.

v If you want to use more than 8 SPEs, use NUMA APIs to interleave the memory

of the data on different nodes.

v The library performs better for 1D FFTs if the vector size is a multiple of 16 *

number_of_spu2.

v The library performs better for 2D FFTs if the matrix dimensions are powers of

2.

v For 2D FFTs, if input data follows the ’tiled’ format, performance is greatly

improved.

© Copyright IBM Corp. 2008 15

16 libFFT Programmer’s Guide and API Reference

Part 4. FFT API reference

The FFT library provides two sets of interfaces.

The interfaces are:

v Chapter 4, “PPE APIs,” on page 19

v Chapter 5, “SPE APIs,” on page 29

© Copyright IBM Corp. 2008 17

18 libFFT Programmer’s Guide and API Reference

Chapter 4. PPE APIs

The FFT library provides three sets of FFT APIs.

One set is for FFT 1D single precision and the other two sets are for FFT 2D single

and double precision.

The following APIs are provided:

FFT 1D single precision APIs

v “fft_1d_sp_initialize” on page 20

v “fft_1d_sp_perform” on page 21

v “fft_1d_sp_terminate” on page 22

FFT 2D single precision APIs

v “fft_2d_sp_initialize” on page 23

v “fft_2d_sp_perform” on page 24

v “fft_2d_sp_terminate” on page 25

FFT 2D double precision APIs

v “fft_2d_dp_initialize” on page 26

v “fft_2d_dp_perform” on page 27

v “fft_2d_dp_terminate” on page 28

© Copyright IBM Corp. 2008 19

fft_1d_sp_initialize

NAME

fft_1d_sp_initialize: Sets up the environment for performing 1D FFTs single

precision computation.

SYNOPSIS

int fft_1d_sp_initialize(fft_handle_t *handle, unsigned int nspus);

 Parameters

handle [IN] Handle of type *fft_handle_t.

nspus [IN] Number of SPUs to be assigned to the problem.

DESCRIPTION

This function set up the environment for performing 1D FFTs single precision

computation. Number of spu and fft_handle are input.

RETURN VALUE

 FFT_RC_SUCCESS Success

FFT_RC_NO_SPUS Insufficient SPUs are available

FFT_RC_BAD_PARM Invalid input parameter

FFT_RC_FAILED Generic internal errors

20 libFFT Programmer’s Guide and API Reference

fft_1d_sp_perform

NAME

fft_1d_sp_perform: Accomplishes either one or many 1D complex to complex,

complex to real, real to complex FFTs.

SYNOPSIS

int fft_1d_sp_perform(fft_handle_t handle, unsigned int n_arrays, unsigned int

num_elems, void **src_addr, void **dst_addr, unsigned int inverse_flag,

unsigned int format_flag);

 Parameters

handle[IN] Pointer to the handle created in the initialization step.

n_arrays[IN] Number of FFTs that the customer wishes to compute with this

call.

num_elems[IN] Number of elements of each FFT.

src_addr[IN] An array of addresses of n_arrays input arrays. Each such array

contains the data for a particular 1D to be performed.

dst_addr[IN] An array of addresses of n_arrays output arrays. Each such

array is sized large enough to hold the 1D output of the FFT

operation.

inverse_flag[IN] Flag, which is a 0 for a forward FFT, and non-zero for an

inverse FFT.

format_flag[IN] Bit flag to set the FFT type. Possible values are:

v FFT_TYPE_C2C Do 1D Complex to Complex.

v FFT_TYPE_R2C Do 1D Real to Complex. Not implemented

if num_elems is greater than 10000. The size of output buffer

should be double size of input, but the only the first

(num_elems/2)+1 complexes in the output buffer are valid.

FFT 1D R2C is a forward FFT transform always and

inverse_flag will be ignored here.

v FFT_TYPE_C2R Do 1D Complex to Real FFT. Not

implemented if num_elems is greater than 10000. FFT 1D C2R

is a forward FFT transform always, and inverse_flag will be

ignored here. Only FFT_TYPE_C2C can be used for an

inverse transform.

DESCRIPTION

This function accomplishes either one or many 1D complex to complex, complex to

real, real to complex FFTs. According to inverse flag, determine whether an FFT or

IFFT is needed. format_flag determines the FFT type. FFT_TYPE_R2C and

FFT_TYPE_C2R are not implemented if num_elems is greater than 10000.

RETURN VALUE

 FFT_RC_SUCCESS Success

FFT_RC_NOT_IMPLEMENTED Not implemented feature

FFT_RC_BAD_PARM Invalid input parameter

FFT_RC_FAILED Generic internal errors

Chapter 4. PPE APIs 21

fft_1d_sp_terminate

NAME

fft_1d_sp_terminate - Cleans up the environment after you have finished

computing 1D FFTs.

SYNOPSIS

int fft_1d_sp_terminate(fft_handle_t handle);

 Parameters

handle [IN] The handle created in the initialization step

DESCRIPTION

This function cleans up the environment after you have finished computing 1D

FFTs. fft_handle is input.

RETURN VALUE

 FFT_RC_SUCCESS Success

FFT_RC_BAD_PARM Invalid input parameter

FFT_RC_FAILED Generic internal errors

22 libFFT Programmer’s Guide and API Reference

fft_2d_sp_initialize

NAME

fft_2d_sp_initialize: Sets up the environment for performing 2D FFTs single

precision computation.

SYNOPSIS

int fft_2d_sp_initialize(fft_2d_handle_t *handle, unsigned int nspus);

 Parameters

handle [IN] A handle to the FFT runtime code

nspus [IN] Number of SPUs to be assigned to the problem

DESCRIPTION

This function set up the environment for performing 2D FFTs single precision

computation. Number of spu and fft_handle are input.

RETURN VALUE

 FFT_RC_SUCCESS Success

FFT_RC_NO_SPUS Insufficient SPUs are available

FFT_RC_BAD_PARM Invalid input parameter

FFT_RC_FAILED Generic internal errors

Chapter 4. PPE APIs 23

fft_2d_sp_perform

NAME

fft_2d_sp_perform: Completes one 2D complex to complex single precision FFTs.

SYNOPSIS

int fft_2d_sp_perform(fft_2d_handle_t handle, unsigned int xdim, unsigned int

ydim, void **src_addr, void **dst_addr, unsigned int inverse_flag, unsigned int

format_flag);

 Parameters

handle[IN] Pointer to the handle created in the initialization step.

xdim[IN] Size of 2D array in the x dimension.

ydim[IN] Size of 2D array in the y dimension.

src_addr[IN] Input data address.

dst_addr[IN] Output data address.

inverse_flag[IN] Flag, which is a 0 for a forward FFT, and non-zero for an

inverse FFT.

format_flag[IN] Bit flag to set the FFT type. Possible values are:

v FFT_TILED: The format of all input and output matrices is

TILED.

v FFT_TYPE_C2C: Do 2D Complex to Complex FFT.

v FFT_TYPE_R2C: Do 2D Real to Complex FFT. xdim or ydim

must be to the power of 2. FFT2D R2C is a forward

transform always and inverse_flag will be ignored here. The

size of output buffer should be double size of input.

v FFT_TYPE_C2R: Do 2D Complex to Real FFT. xdim or ydim

must be to the power of 2. FFT2D C2R is an inverse

transform always, and inverse_flag will be ignored here.

DESCRIPTION

This function completes one 2D complex to complex single precision FFTs.

According to inverse flag, determine whether a FFT or IFFT is needed. format_flag

determines FFT type. Also format_flag help determines whether input data is tiled

format. If xdim or ydim are not to the power of 2, fft_2d_sp_perform does not

support FFT_TYPE_C2R and FFT_TYPE_R2C.

RETURN VALUE

 FFT_RC_SUCCESS Success.

FFT_RC_BAD_DIMENSION xdim or ydim is less than 1 or larger than 2048.

FFT_RC_NOT_IMPLEMENTED Not implemented feature.

FFT_RC_NO_INVERSE This is a limitation of the current release. Inverse FFT is not

supported in this release.

FFT_RC_BAD_PARM Invalid input parameter.

FFT_RC_FAILED Generic internal errors.

24 libFFT Programmer’s Guide and API Reference

fft_2d_sp_terminate

NAME

fft_2d_sp_terminate: Cleans up the environment after you have finished

computing 2D FFTs.

SYNOPSIS

int fft_2d_sp_terminate(fft_2d_handle_t handle);

 Parameters

handle [IN] The handle created in the initialization step

DESCRIPTION

This function cleans up the environment after you have finished computing 2D

FFTs. fft_handle is input.

RETURN VALUE

 FFT_RC_SUCCESS Success

FFT_RC_BAD_PARM Invalid input parameter

FFT_RC_FAILED Generic internal errors

Chapter 4. PPE APIs 25

fft_2d_dp_initialize

NAME

fft_2d_2p_initialize: Sets up the environment for performing 2D FFTs double

precision computation.

SYNOPSIS

int fft_2d_dp_initialize(fft_2d_handle_t *handle, unsigned int nspus);

 Parameters

handle [IN] A handle to the FFT runtime code

nspus [IN] Number of SPUs to be assigned to the problem

DESCRIPTION

This function set up the environment for performing 2D FFTs double precision

computation. Number of spu and fft_handle are input.

RETURN VALUE

 FFT_RC_SUCCESS Success

FFT_RC_NO_SPUS Insufficient SPUs are available

FFT_RC_BAD_PARM Invalid input parameter

FFT_RC_FAILED Generic internal errors

26 libFFT Programmer’s Guide and API Reference

fft_2d_dp_perform

NAME

fft_2d_dp_perform: Completes one 2D complex to complex double precision FFTs.

SYNOPSIS

int fft_2d_dp_perform(fft_2d_handle_t handle, unsigned int xdim, unsigned int

ydim, void **src_addr, void **dst_addr, unsigned int inverse_flag, unsigned int

format_flag);

 Parameters

handle[IN] Handle of type *fft_2d_handle_t created in the initialization

step.

xdim[IN] Size of 2D array in the x dimension.

ydim[IN] Size of 2D array in the y dimension.

src_addr[IN] Input data address.

dst_addr[IN] Output data address.

inverse_flag[IN] Flag, which is a 0 for a forward FFT, and non-zero for an

inverse FFT.

format_flag[IN] Bit flag to set the FFT type. Possible values are:

v FFT_TYPE_C2C: Do 2D Complex to Complex FFT

DESCRIPTION

This function completes one 2D complex to complex double precision FFTs.

According to inverse flag, determine whether a FFT or IFFT is needed. format_flag

determines the FFT type. For this release, only FFT_TYPE_C2C is supported.

RETURN VALUE

 FFT_RC_SUCCESS Success.

FFT_RC_BAD_DIMENSION xdim or ydim is less than 1 or larger than 2048.

FFT_RC_NOT_IMPLEMENTED Not implemented feature.

FFT_RC_NO_INVERSE This is a limitation of the current release. Inverse FFT is not

supported in this release.

FFT_RC_BAD_PARM Invalid input parameter.

FFT_RC_FAILED Generic internal errors.

Chapter 4. PPE APIs 27

fft_2d_dp_terminate

NAME

fft_2d_dp_terminate: Cleans up the environment after you have finished

computing 2D FFTs.

SYNOPSIS

int fft_2d_dp_terminate(fft_2d_handle_t handle);

 Parameters

handle [IN] The handle created in the initialization step

DESCRIPTION

This function cleans up the environment after you have finished computing 2D

FFTs. fft_handle is input.

RETURN VALUE

 FFT_RC_SUCCESS Success

FFT_RC_BAD_PARM Invalid input parameter

FFT_RC_FAILED Generic internal errors

28 libFFT Programmer’s Guide and API Reference

Chapter 5. SPE APIs

The FFT library provides one set of SPE APIs for single precision FFT 1D

computation.

This section describes the following APIs:

v “fft_1d_c2c_spu” on page 30

v “fft_1d_c2r_spu” on page 31

v “fft_1d_r2c_spu” on page 32

© Copyright IBM Corp. 2008 29

fft_1d_c2c_spu

NAME

fft_1d_c2c_spu: Performs a single complex to complex FFT on the SPU.

SYNOPSIS

int fft_1d_c2c_spu(unsigned int num_elems, vector float* srcAddr, vector float*

dstAddr, unsigned int inverse_flag);

 Parameters

num_elems[IN] Number of elements of each FFT

srcAddr[IN] Address of the first input element

dstAddr[IN] Address of the first output element

inverse_flag[IN] Flag, which is a 0 for a forward FFT, and non-zero for an

inverse FFT

DESCRIPTION

This function completes one complex to complex FFT 1D on SPU. inverse flag

determines whether a FFT or IFFT is needed.

RETURN VALUE

 FFT_RC_SUCCESS Success

FFT_RC_BAD_DIMENSION If num_elems > MAX_PROB_SIZE_C2C_1 (10000).

FFT_RC_BAD_PARM Invalid input parameter

30 libFFT Programmer’s Guide and API Reference

fft_1d_c2r_spu

NAME

fft_1d_c2r_spu: Performs a single complex to real FFT on the SPU.

SYNOPSIS

int fft_1d_c2r_spu(unsigned int num_elems, vector float* srcAddr, vector float*

dstAddr, unsigned int inverse_flag);

 Parameters

num_elems[IN] Number of elements of each FFT

srcAddr[IN] Address of the first input element

dstAddr[IN] Address of the first output element

inverse_flag[IN] Flag, which is a 0 for a forward FFT, and non-zero for an

inverse FFT

DESCRIPTION

This function completes one complex to real FFT 1D on the SPU. It only does a

forward transform. Inverse transform has not been implemented.

RETURN VALUE

 FFT_RC_SUCCESS Success

FFT_RC_BAD_DIMENSION If num_elems > MAX_PROB_SIZE_C2R_1 (10000)

FFT_RC_BAD_PARM Invalid input parameter

FFT_RC_NOT_IMPLEMENTED If inverse_flag for C2R/R2C is set to non-zero

Chapter 5. SPE APIs 31

fft_1d_r2c_spu

NAME

fft_1d_r2c_spu: Performs a single real to complex FFT on the SPU.

SYNOPSIS

int fft_1d_r2c_spu(unsigned int num_elems, vector float* srcAddr, vector float*

dstAddr, unsigned int inverse_flag);

 Parameters

num_elems[IN] Number of input

srcAddr[IN] Address of the first input element

dstAddr[IN] Address of the first output element

inverse_flag[IN] Flag, which is a 0 for a forward FFT, and non-zero for an

inverse FFT

DESCRIPTION

This function completes one real to complex FFT 1D on the SPU. It only does a

forward transform here. Inverse transform has not been implemented.

RETURN VALUE

 FFT_RC_SUCCESS Success

FFT_RC_BAD_DIMENSION If num_elems > MAX_PROB_SIZE_C2C_1 (10000)

FFT_RC_BAD_PARM Invalid input parameter

FFT_RC_NOT_IMPLEMENTED If inverse_flag for C2R/R2C is set to non-zero

32 libFFT Programmer’s Guide and API Reference

Part 5. Appendixes

© Copyright IBM Corp. 2008 33

34 libFFT Programmer’s Guide and API Reference

Appendix A. Related documentation

This topic helps you find related information.

Document location

Links to documentation for the SDK are provided on the IBM® developerWorks®

Web site located at:

http://www.ibm.com/developerworks/power/cell/

Click the Docs tab.

The following documents are available, organized by category:

Architecture

v Cell Broadband Engine Architecture

v Cell Broadband Engine Registers

v SPU Instruction Set Architecture

Standards

v C/C++ Language Extensions for Cell Broadband Engine Architecture

v Cell Broadband Engine Linux Reference Implementation Application Binary Interface

Specification

v SIMD Math Library Specification for Cell Broadband Engine Architecture

v SPU Application Binary Interface Specification

v SPU Assembly Language Specification

Programming

v Cell Broadband Engine Programmer’s Guide

v Cell Broadband Engine Programming Handbook

v Cell Broadband Engine Programming Tutorial

Library

v Accelerated Library Framework for Cell Broadband Engine Programmer’s Guide and

API Reference

v Basic Linear Algebra Subprograms Programmer’s Guide and API Reference

v Data Communication and Synchronization for Cell Broadband Engine Programmer’s

Guide and API Reference

v Example Library API Reference

v Fast Fourier Transform Library Programmer’s Guide and API Reference

v LAPACK (Linear Algebra Package) Programmer’s Guide and API Reference

v Mathematical Acceleration Subsystem (MASS)

v Monte Carlo Library Programmer’s Guide and API Reference

v SDK 3.0 SIMD Math Library API Reference

v SPE Runtime Management Library

v SPE Runtime Management Library Version 1 to Version 2 Migration Guide

v SPU Runtime Extensions Library Programmer’s Guide and API Reference

© Copyright IBM Corp. 2008 35

http://www.ibm.com/developerworks/power/cell/

v Three dimensional FFT Prototype Library Programmer’s Guide and API Reference

Installation

v SDK for Multicore Acceleration Version 3.1 Installation Guide

Tools

v Getting Started - XL C/C++ for Multicore Acceleration for Linux

v Compiler Reference - XL C/C++ for Multicore Acceleration for Linux

v Language Reference - XL C/C++ for Multicore Acceleration for Linux

v Programming Guide - XL C/C++ for Multicore Acceleration for Linux

v Installation Guide - XL C/C++ for Multicore Acceleration for Linux

v Getting Started - XL Fortran for Multicore Acceleration for Linux

v Compiler Reference - XL Fortran for Multicore Acceleration for Linux

v Language Reference - XL Fortran for Multicore Acceleration for Linux

v Optimization and Programming Guide - XL Fortran for Multicore Acceleration for

Linux

v Installation Guide - XL Fortran for Multicore Acceleration for Linux

v Performance Analysis with the IBM Full-System Simulator

v IBM Full-System Simulator User’s Guide

v IBM Visual Performance Analyzer User’s Guide

IBM PowerPC® Base

v IBM PowerPC Architecture™ Book

– Book I: PowerPC User Instruction Set Architecture

– Book II: PowerPC Virtual Environment Architecture

– Book III: PowerPC Operating Environment Architecture

v IBM PowerPC Microprocessor Family: Vector/SIMD Multimedia Extension Technology

Programming Environments Manual

36 libFFT Programmer’s Guide and API Reference

Appendix B. Accessibility features

Accessibility features help users who have a physical disability, such as restricted

mobility or limited vision, to use information technology products successfully.

The following list includes the major accessibility features:

v Keyboard-only operation

v Interfaces that are commonly used by screen readers

v Keys that are tactilely discernible and do not activate just by touching them

v Industry-standard devices for ports and connectors

v The attachment of alternative input and output devices

IBM and accessibility

See the IBM Accessibility Center at http://www.ibm.com/able/ for more

information about the commitment that IBM has to accessibility.

© Copyright IBM Corp. 2008 37

http://www.ibm.com/able/

38 libFFT Programmer’s Guide and API Reference

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in

other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not grant you

any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing 2-31 Roppongi 3-chome, Minato-ku

Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore, this statement may not apply

to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 2008 39

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact:

IBM Corporation

Software Interoperability Coordinator, Department 49XA

3605 Highway 52 N

Rochester, MN 55901

U.S.A.

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this information and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement, or any equivalent agreement

between us.

Any performance data contained herein was determined in a controlled

environment. Therefore, the results obtained in other operating environments may

vary significantly. Some measurements may have been made on development-level

systems and there is no guarantee that these measurements will be the same on

generally available systems. Furthermore, some measurements may have been

estimated through extrapolation. Actual results may vary. Users of this document

should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of

performance, compatibility or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the

suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or

withdrawal without notice, and represent goals and objectives only.

All IBM prices shown are IBM’s suggested retail prices, are current and are subject

to change without notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to

change before the products described become available.

This information contains examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious and any similarity to the names and addresses used by an actual business

enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which

illustrate programming techniques on various operating platforms. You may copy,

modify, and distribute these sample programs in any form without payment to

IBM, for the purposes of developing, using, marketing or distributing application

programs conforming to the application programming interface for the operating

40 libFFT Programmer’s Guide and API Reference

platform for which the sample programs are written. These examples have not

been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or

imply reliability, serviceability, or function of these programs.

Each copy or any portion of these sample programs or any derivative work, must

include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.

Sample Programs. © Copyright IBM Corp. _enter the year or years_. All rights

reserved.

If you are viewing this information in softcopy, the photographs and color

illustrations may not appear.

Trademarks

IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of

International Business Machines Corporation in the United States, other countries,

or both. These and other IBM trademarked terms are marked on their first

occurrence in this information with the appropriate symbol (® or

™), indicating US

registered or common law trademarks owned by IBM at the time this information

was published. Such trademarks may also be registered or common law

trademarks in other countries. A complete and current list of IBM trademarks is

available on the Web at http://www.ibm.com/legal/copytrade.shtml.

Adobe®, Acrobat, Portable Document Format (PDF), and PostScript® are either

registered trademarks or trademarks of Adobe Systems Incorporated in the United

States, other countries, or both.

Cell Broadband Engine is a trademark of Sony Computer Entertainment, Inc., in

the United States, other countries, or both and is used under license therefrom.

Linux® is a trademark of Linus Torvalds in the United States, other countries, or

both.

Other company, product or service names may be trademarks or service marks of

others.

Terms and conditions

Permissions for the use of these publications is granted subject to the following

terms and conditions.

Personal Use: You may reproduce these publications for your personal,

noncommercial use provided that all proprietary notices are preserved. You may

not distribute, display or make derivative works of these publications, or any

portion thereof, without the express consent of the manufacturer.

Commercial Use: You may reproduce, distribute and display these publications

solely within your enterprise provided that all proprietary notices are preserved.

You may not make derivative works of these publications, or reproduce, distribute

or display these publications or any portion thereof outside your enterprise,

without the express consent of the manufacturer.

Notices 41

http://www.ibm.com/legal/copytrade.shtml

Except as expressly granted in this permission, no other permissions, licenses or

rights are granted, either express or implied, to the publications or any data,

software or other intellectual property contained therein.

The manufacturer reserves the right to withdraw the permissions granted herein

whenever, in its discretion, the use of the publications is detrimental to its interest

or, as determined by the manufacturer, the above instructions are not being

properly followed.

You may not download, export or re-export this information except in full

compliance with all applicable laws and regulations, including all United States

export laws and regulations.

THE MANUFACTURER MAKES NO GUARANTEE ABOUT THE CONTENT OF

THESE PUBLICATIONS. THESE PUBLICATIONS ARE PROVIDED ″AS-IS″ AND

WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,

INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF

MERCHANTABILITY, NON-INFRINGEMENT, AND FITNESS FOR A

PARTICULAR PURPOSE.

42 libFFT Programmer’s Guide and API Reference

Glossary

API

Application Program Interface.

Broadband Engine

See CBEA.

CBEA

Cell Broadband Engine Architecture. A new

architecture that extends the 64-bit PowerPC

Architecture. The CBEA and the Cell Broadband

Engine are the result of a collaboration between

Sony, Toshiba, and IBM, known as STI, formally

started in early 2001.

Cell/B.E. processor

The Cell/B.E. processor is a multi-core broadband

processor based on IBM’s Power Architecture.

Cell Broadband Engine processor

See Cell/B.E processor.

compiler

A programme that translates a high-level

programming language, such as C++, into

executable code.

DFT

Discrete Fourier transform. One of the specific

forms of Fourier analysis. It transforms one

function into another, which is called the

frequency domain representation, or the DFT, of

the original function. The DFT requires an input

function that is discrete and whose non-zero

values have a limited (finite) duration.

FFT

Fast Fourier Transform. An algorithm to compute

the discrete Fourier transform (DFT) and its

inverse.

FORTRAN

FORmula TRANslator). A high-level

programming language for problems that can be

expressed algebraically.

PDF

Portable document format.

PPE

PowerPC Processor Element. The general-purpose

processor in the Cell.

PPU

PowerPC Processor Unit. The part of the PPE that

includes the execution units, memory-
management unit, and L1 cache.

SDK

Software development toolkit for Multicore

Acceleration. A complete package of tools for

application development.

SPE

Synergistic Processor Element. Extends the

PowerPC 64 architecture by acting as cooperative

offload processors (synergistic processors), with

the direct memory access (DMA) and

synchronization mechanisms to communicate

with them (memory flow control), and with

enhancements for real-time management. There

are 8 SPEs on each cell processor.

SPU

Synergistic Processor Unit. The part of an SPE

that executes instructions from its local store (LS).

vector

An instruction operand containing a set of data

elements packed into a one-dimensional array.

The elements can be fixed-point or floating-point

values. Most Vector/SIMD Multimedia Extension

© Copyright IBM Corp. 2008 43

and SPU SIMD instructions operate on vector

operands. Vectors are also called SIMD operands

or packed operands.

44 libFFT Programmer’s Guide and API Reference

Index

A
API 17

fft_1d_c2c_spu 30

fft_1d_c2r_spu 31

fft_1d_r2c_spu 32

fft_1d_sp_initialize 20

fft_1d_sp_perform 21

fft_1d_sp_terminate 22

fft_2d_dp_initialize 26

fft_2d_dp_perform 27

fft_2d_dp_terminate 28

fft_2d_sp_initialize 23

fft_2d_sp_perform 24

fft_2d_sp_terminate 25

PPE 1

SPE 1

B
bandwidth

memory 15

C
customizing 15

D
documentation 35

FFT-related v

DP routine 1

E
example

PPE interface 9

F
FFT

packages 7

FFT documentation v

fft_1d_c2c_spu 30

fft_1d_c2r_spu 31

fft_1d_r2c_spu 32

fft_1d_sp_initialize 20

fft_1d_sp_perform 21

fft_1d_sp_terminate 22

fft_2d_dp_initialize 26

fft_2d_dp_perform 27

fft_2d_dp_terminate 28

fft_2d_sp_initialize 23

fft_2d_sp_perform 24

fft_2d_sp_terminate 25

I
installing 3

L
library structure 7

N
NUMA 15

O
overview 1

P
packages 7

performance
considerations 15

PPE
API 1, 19

API sample 9

FFT library example 9

programming 5

R
routine

real double precision (DP) 1

real single precision (SP) 1

S
sample 9

sample application 9

SDK documentation 35

SP routine 1

SPE
API 1, 29

© Copyright IBM Corp. 2008 45

46 libFFT Programmer’s Guide and API Reference

����

Printed in USA

SC34-2562-00

	Contents
	About this publication
	How to send your comments

	Part 1. Overview of the FFT library
	Part 2. Installing and configuring the FFT library
	Part 3. Programming
	Chapter 1. Basic structure of the FFT library
	Chapter 2. Using the FFT library
	Programming examples

	Chapter 3. Tuning the FFT library for performance
	Part 4. FFT API reference
	Chapter 4. PPE APIs
	fft_1d_sp_initialize
	fft_1d_sp_perform
	fft_1d_sp_terminate
	fft_2d_sp_initialize
	fft_2d_sp_perform
	fft_2d_sp_terminate
	fft_2d_dp_initialize
	fft_2d_dp_perform
	fft_2d_dp_terminate

	Chapter 5. SPE APIs
	fft_1d_c2c_spu
	fft_1d_c2r_spu
	fft_1d_r2c_spu

	Part 5. Appendixes
	Appendix A. Related documentation
	Appendix B. Accessibility features
	Notices
	Trademarks
	Terms and conditions

	Glossary
	Index

