

SPU Application Binary Interface Specification

Version 1.9

���

CBEA JSRE Series
Cell Broadband Engine Architecture
Joint Software Reference Environment
Series

July 18, 2008

���®

© Copyright International Business Machines Corporation, Sony Computer Entertainment Incorporated, Toshiba
Corporation 2002 - 2008

All Rights Reserved
Printed in the United States of America July 2008

The following are trademarks of International Business Machines Corporation in the United States, or other countries, or
both.

IBM PowerPC
IBM Logo
ibm.com

Cell Broadband Engine is a trademark of Sony Computer Entertainment, Inc.

Other company, product and service names may be trademarks or service marks of others.

All information contained in this document is subject to change without notice. The products described in this document
are NOT intended for use in applications such as implantation, life support, or other hazardous uses where malfunction
could result in death, bodily injury or catastrophic property damage. The information contained in this document does
not affect or change IBM product specifications or warranties. Nothing in this document shall operate as an express or
implied license or indemnity under the intellectual property rights of IBM or third parties. All information contained in this
document was obtained in specific environments, and is presented as an illustration. The results obtained in other
operating environments may vary.

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROVIDED ON AN “AS IS” BASIS. In no event will IBM be
liable for damages arising directly or indirectly from any use of the information contained in this document.

IBM Systems and Technology Group
2070 Route 52, Bldg. 330
Hopewell Junction, NY 12533-6351

The IBM home page can be found at ibm.com

The IBM semiconductor solutions home page can be found at ibm.com/chips

July 18, 2008

���

 SPU Application Binary Interface Specification, Version 1.9

Table of Contents

List of Tables iv
List of Figures iv
About This Document v

Audience v
Version History v
Related Documentation vii
Conventions Used in This Document vii

1. Introduction 1
2. Low-Level System Information 3

2.1. Data Representation 3
2.1.1. Byte Ordering 3
2.1.2. Register Layout 4
2.1.3. Fundamental Types 4
2.1.4. Aggregates and Unions 5
2.1.5. Bit-Fields 6
2.1.6. Volatiles 7

2.2. Function Calling Sequence 7
2.2.1. Registers 8
2.2.2. The Stack Frame 8
2.2.3. Argument Passing 10
2.2.4. Variable Argument Lists 12
2.2.5. Return Values 14
2.2.6. Out-of-Module Function Calls 14

2.3. Coding Examples 14
2.3.1. Code Model Overview 14
2.3.2. Function Prologue and Epilogue 15
2.3.3. Register Saving and Restoring Functions 15
2.3.4. Data Objects 17
2.3.5. Function Calling by Name 18
2.3.6. Function Calling by Pointer 18
2.3.7. Dynamic Stack Space Allocation 18

2.4. Debug Format 19
2.4.1. DWARF Register Number Mapping 19
2.4.2. Address Class Code 20

2.5. Operating System Interface 20
2.5.1. Program Initialization 20

3. Object Files 22
3.1. File Format 22
3.2. ELF Header 22
3.3. Symbols 23
3.4. Sections 23
3.5. Relocation 23

3.5.1. Relocation Types 23
4. Program Loading and Dynamic Linking 26

4.1. Program Header 26
4.1.1. SPU Environment Note 26
4.1.2. SPU Name Note 27

iv Table of Contents ���

SPU Application Binary Interface Specification, Version 1.9

List of Tables
Table 2-1: Fundamental Data Types 4
Table 2-2: Vector Types 5
Table 2-3: Bit-Field Ranges 7
Table 2-4: General-Purpose Register Conventions 8
Table 2-5: Example of Register and Stack Assignment 12
Table 2-6: Relative-Addressed Named Function Calls 18
Table 2-7: Absolute-Addressed Named Function Calls 18
Table 2-8: SPU Register Number Mapping 19
Table 2-9: SPU Address Class Code 20
Table 3-10: SPU ELF Header Fields 22
Table 3-11: SPU Special Sections 23
Table 3-12: Relocation Fields 23
Table 3-13: Relocation Types 24
Table 4-14: SPU Environment Note 26
Table 4-15: spu_env Structure 26
Table 4-16: SPU Name Note 27

List of Figures
Figure 2-1: Bit and Byte Numbering of Halfwords 3
Figure 2-2: Bit and Byte Numbering of Words 3
Figure 2-3: Bit and Byte Numbering of Doublewords 3
Figure 2-4: Bit and Byte Numbering of Quadwords 3
Figure 2-5: Register Layout of Data Types 4
Figure 2-6: Vector Data Types Byte Ordering and Element Numbering 5
Figure 2-7: Structure Smaller Than a Word 6
Figure 2-8: Structure with No Padding 6
Figure 2-9: Structure with Internal Padding 6
Figure 2-10: Structure with Internal and Trailing Padding 6
Figure 2-11: Union Allocation 6
Figure 2-12: Standard Stack Frame 9
Figure 2-13: Layout of the Parameter List Area 11
Figure 2-14: Contents of stdarg.h 13
Figure 2-15: Pseudo-Code Implementations of Variable Argument List Macros 13
Figure 2-16: Sample Register Save Functions 16
Figure 2-17: Sample Register Restore Functions 16
Figure 2-18: Position-Independent Load and Store 17
Figure 2-19: Function Calling by Pointer 18
Figure 2-20: Dynamic Stack Space Allocation 19
Figure 2-21: Memory Stack 20
Figure 3-22: Object File Format 22

 ���

 SPU Application Binary Interface Specification, Version 1.9

About This Document

This document defines the Application Binary Interface (ABI) of the Synergistic Processor Unit (SPU).

Audience
This document is intended for system and application programmers who develop language processors and other
software for the SPU of a processor compliant with the Cell Broadband Engine™ Architecture (CBEA).

Version History
This section describes significant changes made to each version of this document.

Version Number &
Date Changes

v. 1.9
July 18, 2008

Added a description of a new SPU special section, ._ea. This section
allows an SPU compiler to allocate space and initialize __ea variable
definitions (TWG_RFC00133-0).

v. 1.8
September 3, 2007

Corrected miscellaneous documentation errors (TWG_RFC00102-1:
CORRECTION NOTICE).
Defined two new relocation types to allow SPU executables to access PPU
symbols (TWG_RFC00108-1).
Changed the specification for the va_list data type (TWG_RFC00110-1).

v. 1.7
March 8, 2007

Corrected minor organizational, grammatical, and spelling issues
(TWG_RFC00094-0: CORRECTION NOTICE).
Corrected minor errors (TWG_RFC00101-0: CORRECTION NOTICE)

v. 1.6
December 4, 2006

Corrected the placement of the label in the sample register save function
and added a missing label to the sample register restore function
(TWG_RFC00084-0).
Corrected the spelling of the va_start macro and added va_copy to the
list declared in stdarg.h (TWG_RFC00085-0).
Modified relocations to match the actual implementation, and added two
new relocations (TWG_RFC00088-0).

v. 1.5
October 11, 2006

Applied TWG_RFC00069-1.
Changed the SPUNAME descriptor size from a fixed size (32 bytes) to a
variable size that is a multiple of 4 bytes (TWG_RFC00048-0).
Revised the comment corresponding to the e_machine SPU ELF header
field, reflecting the fact that 23 has been officially accepted as its value.
Applied the changes made in the following requests:
TWG_RFC00063-2, TWG_RFC00064-0, TWG_RFC00065-1.
Made miscellaneous editorial changes.

vi About This Document ���

SPU Application Binary Interface Specification, Version 1.9

Version Number &
Date Changes

v. 1.4
October 20, 2005

Defined a standard process for memory heap initialization and stack
management (TWG_RFC00024-3).
Changed the section describing rules that apply to the stack frame
(TWG_RFC00030-0).
Changed “Broadband Processor Architecture” to “Cell Broadband Engine
Architecture”, and changed “BPA” to “CBEA” (TWG_RFC00037-0:
CORRECTION NOTICE).
Added several restrictions that apply to allocatable ELF sections that will be
loaded into local storage (TWG_RFC00038-2 as amended by
TWG_RFC00044-0).
Specified that the R2 register will be used as an environment pointer for
languages that require one (TWG_RFC00039-0).
Corrected several documentation errors (TWG_RFC00041-0:
CORRECTION NOTICE, TWG_RFC00045-0: CORRECTION NOTICE).

v. 1.3
July 11, 2005

Deleted several sections in the “About This Document” chapter and
corrected several documentation errors. For example, in the Relocation
Types table, the “Field” entry corresponding to R_SPU_ADDR7 was changed
from I7* to I7 (TWG_RFC00032-0: CORRECTION NOTICE).

v. 1.2
June 10, 2005

Changed “Broadband Engine” or “BE” to “a processor compliant with the
Broadband Processor Architecture” or “a processor compliant with BPA”;
and changed Synergistic Processing Unit to Synergistic Processor Unit.
Defined a PPU as a PowerPC Processor Unit on first major instance.
Corrected several book references and changed copyright page so that
trademark owners were specified. (All changes per TWG_RFC00031-0:
CORRECTION NOTICE.)
Made miscellaneous changes to the “About This Document” section.

v. 1.1
May 9, 2005

Changed PU to PPU (TWG_RFC00028-0: CORRECTION NOTICE).

v.1.0
December 14, 2004

Added a PT_NOTE section to all SPU ELF executables (TWG_RFC00019-
0).
Modified stack layout to eliminate a requirement for minimum space in the
Parameter List Area, and increased the number of registers used for
argument passing and for the return value (TWG_RFC00020-0).

v. 0.9
July 16, 2004

Changed the description of the .bss SPU special section. This description
now specifies that the program loader is responsible for initializing .bss
(TWG_RFC00001-2).
Changed general-purpose register conventions to reflect a re-allocation
among volatile and non-volatile registers. Specifically, the number of non-
volatile registers has been decreased. This change also affected several
figures (TWG_RFC00004-5).
Made miscellaneous editorial changes.

v. 0.8
March 12, 2004

Added requirement that global data types must always be aligned to a
16-byte boundary (TWG_RFC00006). Made miscellaneous editorial
changes.

v. 0.7
February 25, 2004

Changed formatting of document so that it reflects the typographic
conventions mentioned in the “About This Document” section. Made
miscellaneous editorial changes.

v. 0.6
January 23, 2004

Changed document to new format, including front matter. Made
miscellaneous editorial changes.

v. 0.5
September 15, 2003

Added R_SPU_ADDR10I relocation type. Added SPUNAME section note to
support SPU plug-ins. Added description for ELF header field e_type.

 ��� About This Document vii

 SPU Application Binary Interface Specification, Version 1.9

Version Number &
Date Changes

v. 0.4
June 15, 2003

Changed mechanism of stack initialization and overflow detection. Added
additional relocation types R_SPU_ADDR7, R_SPU_REL9 and
R_SPU_REL9I. Added program header section describing SPU
environment notes used for embedding SPU objects with PU/PPC objects.

v. 0.3
March 7, 2003

Provided structure padding examples. Added additional conventions
regarding volatiles. Removed description of TOC register and its usage.
Edited register save/restore sample functions. Specified symbol name
mangling convention.

v. 0.2
November 21, 2002

Added register layout diagram. Added out-of-module function calling
sequence. Specified that the parameter list area equal at least 8 quadwords.
Provided examples of a parameter passing convention. Began adding
support for interrupt handling. Edited register save/restore and function
calling code samples.

v. 0.1
September 30, 2002

Initial release of this document.

Related Documentation
The following table provides a list of references and supporting materials for this document:

Document Title Version Date

Tool Interface Standard (TIS) Executable and Linking Format (ELF)
Specification

1.2 May 1995

Tool Interface Standard (TIS) DWARF Debugging Information Format
Specification

2.0 May 1995

Conventions Used in This Document

Bit Notation

Standard bit notation is used throughout this document. Bits and bytes are numbered in ascending order from left to
right. Thus, for a 4-byte word, bit 0 is the most significant bit and bit 31 is the least significant bit, as shown in the
following figure:

M
S

B

LS
B

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

MSB = Most significant bit

LSB = Least significant bit

Notation for bit encoding is as follows:

• Hexadecimal values are preceded by 0x. For example: 0x0A00.

• Binary values in sentences appear in single quotation marks. For example: ‘1010’.

viii About This Document ���

SPU Application Binary Interface Specification, Version 1.9

Other Conventions

The following typographic conventions are used throughout this document:

Convention Meaning

courier Indicates programming code and literals, such as processing
instructions, register names, data types, events, and file names. Also
indicates function and macro names. This convention is only used where
it facilitates comprehension, especially in narrative descriptions.

courier + italics Indicates arguments, parameters, and variables. This convention is only
used where it facilitates comprehension, especially in narrative
descriptions.

italics (without courier) Indicates emphasis. Except when hyperlinked, book references are in
italics. When a term is first defined, it is often in italics.

blue Indicates a hyperlink (color printers or online only).

 ���

 SPU Application Binary Interface Specification, Version 1.9

1. Introduction

The SPU Application Binary Interface defines the system interface for compiled application programs, which enables
these programs to be run without recompilation or recoding on a Synergistic Processor Unit of a CBEA-compliant
system. The purpose of this document is to standardize the set of binary interface specifications to achieve
portability.

This document defines low-level language binding conventions. Although the C programming language is used to
illustrate these conventions, other languages are not precluded from use.

2 Introduction ���

SPU Application Binary Interface Specification, Version 1.9

 ���

 SPU Application Binary Interface Specification, Version 1.9

2. Low-Level System Information

This chapter prescribes the rules that language processors must follow. By adhering to these rules, language
processors will be able to accomplish the following objectives:

• Generate conforming code for function-calling sequences, including passing arguments, returning values,
and using registers.

• Allow access to a program’s global data from code modules written in different source languages. (Only
rules for common data types are defined.)

• Mix object modules generated by language processors from different vendors.

2.1. Data Representation

2.1.1. Byte Ordering

The SPU architecture defines the following machine data types:

• 8-bit byte

• 16-bit halfword

• 32-bit word

• 64-bit doubleword

• 128-bit quadword

Byte ordering defines how the bytes that comprise halfwords, words, doublewords, and quadwords are ordered in
memory. The SPU supports most significant byte (MSB) ordering. An MSB, or “big endian”, ordering means that the
most significant byte is located in the lowest addressed byte position in a storage unit (byte 0).

Figure 2-1 through Figure 2-4 illustrate the conventions for bit and byte numbering within various width storage
units. These conventions apply to both integer and floating-point data (where the most significant byte holds the sign
and at least the start of the exponent). The following figures show byte numbers on the top and bit numbers in the
lower corners.

Figure 2-1: Bit and Byte Numbering of Halfwords

Figure 2-2: Bit and Byte Numbering of Words

Figure 2-3: Bit and Byte Numbering of Doublewords

Figure 2-4: Bit and Byte Numbering of Quadwords

4 Low-Level System Information ���

SPU Application Binary Interface Specification, Version 1.9

2.1.2. Register Layout

The general-purpose registers are 128 bits wide. Within these registers, data types that are less than 128 bits in
size are placed in a specified location that is referred to as the “preferred slot”. Figure 2-5 illustrates how data types
are laid out in a general-purpose register.

Figure 2-5: Register Layout of Data Types

DOUBLEWORD

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

BYTE

HALFWORD

WORD

QUADWORD

2.1.3. Fundamental Types

Table 2-1 shows the standard C data types, their size and alignment, and their corresponding SPU machine data
type. Global variables must always be aligned to a 16-byte boundary regardless of their data type. Although 16-byte
alignment of global variables increases the amount of data memory that is used, this alignment enables faster
access to the data with fewer instructions, thereby compensating for the additional data memory usage.

Table 2-1: Fundamental Data Types

Type C Type Sizeof
Alignment
(bytes) SPU Machine Data Type

char
unsigned char 1 1 unsigned byte

signed char 1 1 signed byte
short
signed short 2 2 signed halfword

Character

unsigned short 2 2 unsigned halfword
_Bool 1 1 unsigned byte
int
signed int
long int
signed long
enum

4 4 signed word

unsigned int
unsigned long 4 4 unsigned word

long long
signed long long 8 8 signed doubleword

Integral

unsigned long long 8 8 unsigned doubleword

Pointer any type *
any type (*) () 4 4 unsigned word

float 4 4 single precision
double 8 8 double precision Floating-Point
long double 8 8 double precision

Vector any type 16 16 quadword

 ��� Low-Level System Information 5

 SPU Application Binary Interface Specification, Version 1.9

This ABI does not specify IEEE 754 double extended precision (128-bit) floating-point. Programs that use this
standard are not ABI conformant, and platforms that implement this ABI are not required to support these
programs. If a platform supports double extended precision, it must be implemented with a sign bit, a 15-bit
exponent with a bias of 16383 and 112 fraction bits with a leading “implicit” bit. Alignment must be 16 bytes.

The SPU supports several vector data types. All of the vector types are 128 bits and contain multiple scalar
elements. Table 2-2 describes the supported vector types.

Table 2-2: Vector Types

Vector Data Type Contents

qword 128-bit quadword vector of unspecified type
vector unsigned char 16 8-bit unsigned integer characters (bytes)
vector signed char 16 8-bit signed integer characters (bytes)
vector unsigned short 8 16-bit unsigned integer halfwords
vector signed short 8 16-bit signed integer halfwords
vector unsigned int 4 32-bit unsigned integer words
vector signed int 4 32-bit signed integer words
vector unsigned long long 2 64-bit unsigned integer doublewords
vector signed long long 2 64-bit signed integer doublewords
vector float 4 32-bit single precision floats
vector double 2 64-bit double precision floats

Vectors and vector elements also use MSB ordering, as shown in Figure 2-6:

Figure 2-6: Vector Data Types Byte Ordering and Element Numbering

2.1.4. Aggregates and Unions

Aggregates, whether structures or arrays, and unions assume the alignment of their most strictly aligned component
(the component with the largest alignment). The size of any object, including aggregates and unions, is always a
multiple of the alignment of the object.

An array uses the same alignment as its elements. Structure and union objects might require padding to meet size
and alignment constraints, according to the following criteria:

• An entire structure or union object is aligned on the same boundary as its most strictly aligned member.

• Each member is assigned to the lowest available offset with the appropriate alignment. This might require
internal padding, depending on the previous member.

• If necessary, the size of a structure is increased to make it a multiple of the structure’s alignment. This
might require tail padding, depending on the last member.

6 Low-Level System Information ���

SPU Application Binary Interface Specification, Version 1.9

To improve structure access efficiency, compilers may place further restrictions on outer-most structures to achieve
quadword alignment.

The examples in Figure 2-7 through Figure 2-11 illustrate each of the above alignment rules:

Figure 2-7: Structure Smaller Than a Word

0struct {

 char c;

}

byte aligned

sizeof is 1c

Figure 2-8: Structure with No Padding

0struct {

 char c, a;

 short s;

 int n;

 double d;

 vector float v;

}

quadword aligned

sizeof is 32c

16
v

1
a

2
s

4
n

8
d

Figure 2-9: Structure with Internal Padding

0struct {

 char c;

 short s;

 double d;

}

doubleword aligned

sizeof is 16c
1
pad

2
s

4
pad

8
d

Figure 2-10: Structure with Internal and Trailing Padding

0struct {

 char c;

 int i;

 short s;

}

word aligned

sizeof is 12c
1

pad
4

i
8

s
10

pad

Figure 2-11: Union Allocation

0union {

 char c;

 short s;

 char *p;

}

word aligned

sizeof is 4c
1

pad

0
s

0
p

2
pad

2.1.5. Bit-Fields

C structs or unions may have “bit-fields” defining integral objects that have a specified number of bits. “Plain” bit-
fields (those that are neither signed nor unsigned) always have non-negative values. Although bit-fields may be of
type short, int, long, or long long (which may have negative values), bit-fields of these types have the same
range as bit-fields of the same size of a corresponding unsigned type.

Bit-fields use the same size and alignment rules as other structure and union members, with the following additions:

• Bit-fields are allocated from left to right, that is, from the most to the least significant bit.

• A bit-field must be completely located in a storage unit appropriate for its declared data type. Thus, a bit-
field never crosses its unit boundary.

 ��� Low-Level System Information 7

 SPU Application Binary Interface Specification, Version 1.9

• Bit-fields must share a storage unit with other structure and union members (either bit-field or non bit-field) if
and only if there is sufficient space within the storage unit.

• Unnamed bit-field data types do not affect the alignment of a structure or union, although the member
offsets of an individual bit-field adhere to the alignment constraints. An unnamed zero-width bit-field must
prevent any other member, whether a bit-field or another kind of member, from residing in the storage unit
corresponding to the data type of the zero-width bit-field.

Table 2-3 shows the width and ranges for each supported bit-field data type.

Table 2-3: Bit-Field Ranges

Bit-Field Data Type Width (w) Range

signed char -2w-1 to 2w-1-1
char 0 to 2w-1
unsigned char

1 to 8

0 to 2w-1
signed short -2w-1 to 2w-1-1
short 0 to 2w-1
unsigned short

1 to 16
0 to 2w-1

signed int -2w-1 to 2w-1-1
int 0 to 2w-1
enum 0 to 2w-1
unsigned int 0 to 2w-1
signed long -2w-1 to 2w-1-1
long 0 to 2w-1
unsigned long

1 to 32

0 to 2w-1
signed long long -2w-1 to 2w-1-1
long long 0 to 2w-1
unsigned long long

1 to 64
0 to 2w-1

2.1.6. Volatiles

The SPU processor only supports quadword data accesses. Volatile qualified variables must reside in their own
quadwords in order to achieve correct volatile semantics. The programmer is responsible for ensuring that these
semantics are followed. The ABI does not provide additional specific rules for alignment or allocation of volatile
qualified variables.

2.2. Function Calling Sequence
This section describes the standard function calling sequence, including stack frame layout, register usage, and
argument passing.

The standard calling sequence requirements apply only to global functions. Local functions that are not reachable
from other compilation units may use different conventions; however, using non-standard calling sequences is not
recommended.

8 Low-Level System Information ���

SPU Application Binary Interface Specification, Version 1.9

2.2.1. Registers

The SPU has 128 general-purpose registers. These registers are each 128 bits wide. Table 2-4 shows the status
and usage of these registers.

Table 2-4: General-Purpose Register Conventions

Register Status Usage

R0 (LR) Dedicated Return Address / Link Register. This register contains the address to which a
called function normally returns. It is volatile across function calls and must be
saved by a non-leaf function.

R1 (SP) Dedicated Stack pointer information. Word element 0 of the SP register contains the
current stack pointer. The stack pointer is always 16-byte aligned, and it must
always point to the lowest allocated valid stack frame and grow towards low
addresses. The contents of the word at the stack-frame address always point to
the previous allocated stack frame. Word element 1 of the SP register contains
the number of bytes of Available Stack Space. See section “2.2.2. The Stack
Frame” for more details.

R2 Volatile Environment pointer. This register is used as an environment pointer for
languages that require one.

R3 – R74 Volatile First 72 quadwords of a function’s argument list and its return value.
R75 – R79 Volatile Scratch Registers.
R80 - R127 Non-volatile Local variable registers. These must be preserved across function calls.

Registers R0, R2, and R3 through R79 are volatile; values in these registers are not preserved across function calls.
Values in register R0 and R75 through R79 may not even be preserved during the function call sequence, so a
function cannot depend on these registers having the same values that were placed in them by the caller.

Registers R1 and R80 through R127 are non-volatile. A called function must save the values in these registers
before it changes them, and it must restore the former values to these registers before it returns.

2.2.2. The Stack Frame

In addition to using registers, each function call may have a stack frame on the runtime stack. The runtime stack
grows downward from high addresses. Figure 2-12 shows the stack frame organization. In this figure, SP denotes
the stack pointer (word element 0 of the general-purpose register R1) of the called function after it has executed the
code that establishes its stack frame.

 ��� Low-Level System Information 9

 SPU Application Binary Interface Specification, Version 1.9

Figure 2-12: Standard Stack Frame

10 Low-Level System Information ���

SPU Application Binary Interface Specification, Version 1.9

The following requirements apply to the stack frame:

• The stack pointer must maintain 16-byte (quadword) alignment.

• The stack pointer must point to the first word of the lowest allocated stack frame, the Back Chain word. The
stack must grow downward (toward lower addresses). The first word of the stack frame must always point to
the previously allocated stack frame (toward higher addresses), except for the first stack frame, which must
have a back chain pointer of 0 (NULL).

• If a stack pointer is required, all word elements of the Stack Pointer Information register (SP) must be
decremented by the called function and restored prior to its return.

• Storing to memory using the stack pointer plus an offset must never be done with an offset less than -2000
(-125*16). This allows interrupt handlers to use the application stack by first adding -2000 to the stack
pointer.

• When a stack frame is allocated, stack overflow can be tested by evaluating the Available Stack Space
word (word element 1 of R1) of the decremented Stack Pointer Information register. If the Available Stack
Space word is negative, an overflow is detected and program execution is halted.

• A Parameter List Area must be allocated by the caller if the caller needs to pass more than 72 quadwords of
arguments. See section “2.2.3. Argument Passing”. If the Parameter List Area is needed, it must be large
enough to contain all of the arguments that are not passed in registers. Its contents are not preserved
across function calls.

• Before a function changes the value of any non-volatile register, it must save the value of the entire 128-bit
register in a quadword in the General Register Save Area.

• Other areas depend on the compiler and the code being compiled. The standard calling sequence does not
define the maximum stack frame size. The minimum stack frame consists of the first two quadwords,
described below. The calling sequence also does not restrict how a language uses the Local Variable
Space of the standard stack frame or how large the Local Variable Space must be.

The stack frame header consists of both the Back Chain quadword and the Link Register Save Area quadword. The
32 most significant bits of the 128-bit quadword contain a Back Chain pointer and return address, respectively. The
remaining 96 bits of each quadword are reserved for use by the tool chain.

Before a function calls another function, the calling function must:

• Save the contents of the 128-bit Link Register at the time the function was entered in the Link Register Save
Area of its caller’s stack frame

• Establish its own stack frame

Except for the stack frame header, a function is not required to allocate space for the areas that it does not use. If a
function does not call any other functions and does not require any of the other parts of the stack frame, it does not
need to establish a stack frame.

Any padding of the entire frame must be within the Local Variable Space. The Parameter List Area must
immediately follow the stack frame header, and the Register Save Area must not contain padding.

2.2.3. Argument Passing

It is more efficient to pass function arguments in registers than it is to construct an argument list in storage or to
push arguments onto the stack. There are two reasons for this efficiency: 1) all computations must be performed in
registers, and 2) memory traffic can be eliminated if the caller computes arguments into registers and passes these
arguments in the same registers to the called function. In the second case, the called function can then use the
same registers for further computation.

For the SPU, up to 72 quadwords are passed in general-purpose registers, loaded sequentially into registers R3
through R74. If fewer than 72 argument registers are needed, the unneeded registers are not loaded, and any
values that they contain when entering the called function are undefined.

 ��� Low-Level System Information 11

 SPU Application Binary Interface Specification, Version 1.9

When arguments passed to a callee function will not fit into these 72 registers, the caller function must allocate
additional space for these arguments in its Parameter List Area, as shown in Figure 2-13.

Figure 2-13: Layout of the Parameter List Area

The following algorithm specifies where argument data is passed for the C language. For illustrative purposes,
consider the arguments ordered from left, for the first argument, to right, although the actual order of evaluation of
the arguments is unspecified.

• Initialize reg = 3 and stack_arg = address of parameter quadword 1.

• For each argument, determine the type of argument and store it according to the following rules:
– For simple arguments (scalars, vectors, or pointers to an object), if reg is less than or equal to 74, copy

the argument into register reg and then increment reg.

– For structs or unions, if the entire structure will fit into the remaining argument registers, place a memory
image of the argument, aligned to the alignment of the structure, into registers 16 bytes at a time until the
entire argument has been copied. Otherwise, place the entire structure into the stack, as described
below. (See section “2.1.4. Aggregates and Unions”.)

– Pass non-simple arguments or simple arguments with reg greater than 74 (that is, arguments not
handled above) in the parameter quadwords of the caller’s stack frame. The values passed on the stack
are identical to those that have been placed in registers; thus, the stack contains register images. This
stack assignment can be accomplished by doing the following:
(a) Pad stack_arg to quadword alignment and copy the argument byte-for-byte (beginning with the
lowest addressed byte), into stack_arg, ..., stack_arg+size-1, where size is the number of bytes
in the argument.
(b) Set stack_arg to stack_arg+size.

– Place simple arguments in the “preferred slot” of the quadword, as described in section “2.1.2. Register
Layout”.

The contents of the registers and words skipped by the above alignment algorithm are undefined.

12 Low-Level System Information ���

SPU Application Binary Interface Specification, Version 1.9

Example of Parameter Passing
struct {
 int i;
 double d;
 vector unsigned int v[36];
} s, t;
int a, b;
float x, y, z;

x = func(a, x, y, z, s, t, b);

In this example, the parameters are passed in registers and on the stack, as shown in Table 2-5.

Table 2-5: Example of Register and Stack Assignment

Parameter Register(s) Parameter List Area Offset

a R3 Not stored
x R4 Not stored
y R5 Not stored
z R6 Not stored
s R7 – R43 Not stored
t – 0 – 591
b – 592 – 607

2.2.4. Variable Argument Lists

The ANSI C specification requires that a prototype containing trailing ellipses (...) be used when declaring a function
with a variable argument list.

Some generally portable C programs depend on a particular argument-passing scheme. Such programs assume
that all arguments are passed on the stack, and that arguments appear in increasing order on the stack. Programs
that make these assumptions are not truly portable, although they might have performed correctly with many
implementations. Nevertheless, these programs will not work with compliant SPU compilers because some of the
arguments are passed in registers.

To manage variable argument lists, portable C programs use the va_start, va_arg, va_end, and va_copy
macros, and the va_list type. These macros are defined by the compiler and are provided in the header file
stdarg.h.

Arguments to variable-argument functions are passed using the same method that is used for passing arguments to
fixed-argument functions. As described in section “2.2.3. Argument Passing”, arguments are placed in registers R3
up to R74, and if necessary, the Parameter List Area. The callee, a variable-argument function, copies the argument
registers into its Register Argument Save Area. The relative location of the Register Argument Save Area is shown
in Figure 2-12.

Scalar variable arguments are implicitly promoted by the calling function in the same way as arguments without data
types. Arguments of character and short data type are promoted to integers, and single-precision floats are
promoted to double-precision floats. All other data types are not promoted.

The va_list type and the variable argument macros that are declared in stdarg.h are shown in Figure 2-14.

 ��� Low-Level System Information 13

 SPU Application Binary Interface Specification, Version 1.9

Figure 2-14: Contents of stdarg.h

/* Aligning the fields makes accessing them faster. */
typedef struct __va_list {
 char *next_arg __attribute__ ((__aligned__ (16)));
 char *caller_stack __attribute__ ((__aligned__ (16)));
} va_list[1];

#define va_start(v,l) __builtin_va_start(v,l)
#define va_end(v) /* nothing */
#define va_arg(v,l) __builtin_va_arg(v,l)
#define va_copy(d,s) (d)[0] = (s)[0]

The __builtin_va_start and __builtin_va_arg functions that are shown in Figure 2-14 are implemented
within the compiler and behave according to the pseudo-code shown in Figure 2-15.

Figure 2-15: Pseudo-Code Implementations of Variable Argument List Macros

__builtin_va_start (AP, LAST)
{
 int paddedsize = (sizeof (LAST) + 15) & -16;

 AP[0].next_arg = (unsigned char *) &LAST;

 /* get caller's stack pointer */
 AP[0].caller_stack = __builtin_frame_address (1);

 if (AP[0].next_arg + paddedsize > AP[0].caller_stack
 && AP[0].next_arg <= AP[0].caller_stack)
 AP[0].next_arg = AP[0].caller_stack + 32;
 else
 AP[0].next_arg += padded_size;
}

TYPE __builtin_va_arg(AP, TYPE)
{
 int padded_size = (sizeof(TYPE) + 15) & -16;
 char *argp;

 /* If this arg overlaps with AP[0].caller_stack, the
 whole argument must start at the beginning of the caller's
 arguments. */

 if (AP[0].next_arg + paddedsize > AP[0].caller_stack
 && AP[0].next_arg <= AP[0].caller_stack)
 argp = AP[0].caller_stack + 32;
 else
 argp = AP[0].next_arg;
 AP[0].next_arg = argp + paddedsize;
 return *(TYPE *)argp;
}

14 Low-Level System Information ���

SPU Application Binary Interface Specification, Version 1.9

2.2.5. Return Values

Functions must return scalars, vectors, and aggregates and unions beginning with register R3. (Scalars are pointers
or one of the following data types: char, short, int, enum, long int, long long, float, or double.
Aggregates are structures and arrays.) Aggregates occupy the most significant, or left-most, bytes of the register.

Aggregates and unions that are larger than 1152 bytes must be returned in a storage buffer allocated by the caller.
The address of the buffer is passed as a hidden argument in R3. This address is passed as if it were the first
argument, causing reg in the argument-passing algorithm to be initialized to 4 instead of 3.

2.2.6. Out-of-Module Function Calls

In general, SPU programs are statically bound because all of the symbols are fully resolved by the link editor;
however, a limited form of dynamic binding, which is referred to as “plug-in” dynamic binding, is allowed. The
following characteristics define plug-in dynamic binding:

• Plug-in modules contain no dynamic external references and have a single entry point.

• Plug-in modules are loaded by the SPU. The plug-in module’s entry point is returned as a function pointer
from the SPU plug-in loader.

• Multiple plug-in modules may co-exist. The SPU program is responsible for plug-in storage management.

• Data sharing between the caller and plug-in callback functions may be passed to and from the plug-in by
mutual agreement. This ABI does not enforce a specific mechanism.

Calling a plug-in causes a function call by pointer. See section “2.3.6. Function Calling by Pointer”.

2.3. Coding Examples
This section describes example code sequences for fundamental operations, such as calling functions, accessing
static objects, and transferring control from one part of a program to another. Previous sections described how a
program must use the system and what a program may assume about the execution environment. Unlike previous
sections, this section describes how operations might be done, rather than how they must be done.

The examples in this section use ANSI C language conventions. Other programming languages may use the same
conventions. Regardless, failure to use these conventions will not prevent a program from conforming to the ABI.

SPU code is normally position-independent; that is, the code does not depend on a specific load address, and it
may be executed properly at various positions in local storage. Although it is possible to write code that is not
position-independent, the following examples show only position-independent code.

2.3.1. Code Model Overview

The SPU processor fills the niche between a general-purpose and special-purpose processor, and its particular
architectural features influence the techniques that are most effectively used to program it. Among the techniques
that might be used are 1) the use of plug-in objects to support large programs within the limited local storage, and 2)
the use of co-routines to support multiple simultaneous execution threads without incurring either preemptive or
non-preemptive context switching overhead.

Techniques, such as plug-in techniques, rely on the capability of the compiler to generate code that is position-
independent. Position-independent code depends on:

• Control transfer instructions that hold addresses relative to the current address or use registers that hold the
transfer address. (A relative branch computes its destination address in terms of the current address, not
relative to an absolute address.)

• Computing absolute addresses during execution instead of embedding absolute addresses in the
instructions.

These conditions are satisfied by the SPU architecture, which provides both relative and register-based branches
and load/store instructions.

 ��� Low-Level System Information 15

 SPU Application Binary Interface Specification, Version 1.9

2.3.2. Function Prologue and Epilogue

This section describes function prologue and epilogue code. A function prologue establishes a stack frame, if
necessary, and it saves any non-volatile registers that the function uses. A function epilogue restores registers that
were saved in the prologue code, restores the previous stack frame, and returns to the caller.

Although this ABI does not mandate predetermined code sequences for function prologues and epilogues, the
following rules, which permit reliable call-chain backtracking, must be followed:

1. If a function uses non-volatile general-purpose registers, it must save them in the General Register Save
Area. This can be done prior to establishing a new stack frame by using negative offsets from the caller’s
stack frame. If stack overflow is tested, it must be done prior to saving any non-volatile registers in the
General Register Save Area. The overflow test must also take into account the extent of stack that is used.

2. Before a function calls any other function, it must establish its own stack frame, which has a size that is a
multiple of 16 bytes, and it must save the Link Register (R0) at the time of entry in the Link Register Save
Area of its caller’s stack frame.

3. Establishing a new stack frame involves adjusting all word elements of the SP register (R1) by the
necessary negative displacement. Stack-frame overflow may be tested but testing is not required. Execution
is halted prior to establishing the new stack, by adjusting the stack pointer.

4. The new stack pointer may be tested for stack overflow by testing word element 1 of the Stack Pointer
Information register (R1). If an overflow is detected, that is, if word element 1 is negative, program execution
is halted.

5. When a function de-allocates its stack frame, it must do so either by (a) loading the Stack Pointer
Information register (R1) with the quadword value in the Back Chain or (b) incrementing all word elements of
the Stack Pointer Information register by the same amount by which it was decremented.

In-line code may be used to save and restore non-volatile registers that a function uses. However, if there are many
registers to be saved or restored, it might be more efficient to provide and use save and restore subroutines as
described in section “2.3.3. Register Saving and Restoring Functions”.

A nonstandard prologue may be used to enter a SPU program, and non-volatile registers do not need to be saved.

2.3.3. Register Saving and Restoring Functions

This section describes functions for saving and restoring registers. These functions use nonstandard calling
conventions that are not part of the ABI. Nevertheless, the functions are included in this document to encourage
uniformity among compilers.

These functions save/restore consecutive general registers from register 127 through register r, where r represents
a value between 80 and 127. Each function represents a family of 48 subfunctions with identical behavior except for
the number of registers that are affected.

To improve efficiency, a branch hint and no-operations (NOPS) could be appropriately inserted into these functions
to avoid instruction fetch starvation. The following algorithm ensures that sufficient instructions to place the hint are
available in the caller function and save/restore functions:

• Inline the save and restore functions if the number of registers to be saved/restored is less than some
number n.

• If the number of registers to be saved/restored exceeds n, save/restore the first n registers inline, and then
call the save/restore function to save/restore the remaining registers.

There are two functions: one function representing a family of subfunctions for saving registers, and the other
representing a family of subfunctions for restoring registers:

• The register saving functions, _savegpr_n, save registers n through 127 and return. These functions
expect LR to contain the return address, R75 to contain the adjusted stack pointer, and SP to contain the
address of the top of the Register Save Area. Code might also be inserted to test for stack overflow.

16 Low-Level System Information ���

SPU Application Binary Interface Specification, Version 1.9

• The register restoring functions, _restoregpr_n, restore registers n through 127 and return. These
functions expect that the 128-bit LR has been reloaded, R75 contains the adjusted stack pointer, and SP
contains the address of the top of the Register Save Area.

Figure 2-16 and Figure 2-17 show usage of the save and restore functions as called from a sample prologue and
epilogue, respectively.

Figure 2-16: Sample Register Save Functions

Sample prologue (saves register 94 though 127)

prologue_branch:

il
hbrr
sf
stqd
stqd
stqd
stqd
. . .
stqd
stqd

brsl

$75, <frame_size>
prologue_branch, _savegpr_110
$75, $75, $SP
$LR, 16($SP)
$94, -544($SP)
$95, -528($SP)
$96, -512($SP)

$108, -320($SP)
$109, -304($SP)

$LR, _savegpr_110

Save function

_savegpr_80:
_savegpr_81:
_savegpr_82:

stqd
stqd
stqd
. . .

$80, -768($SP)
$81, -752($SP)
$82, -736($SP)

_savegpr_110:
_savegpr_111:
_savegpr_112:

stqd
stqd
hbr
stqd
stqd
stqd
stqd
. . .

$110, -288($SP)
$111, -272($SP)
_save_branch, $LR
$112, -256($SP)
$113, -240($SP)
$114, -224($SP)
$115, -208($SP)

_save_branch:

stqd
stqd
stqd
lr
bi

$125, -48($SP)
$126, -32($SP)
$127, -16($SP)
$SP, $75
$LR

Figure 2-17: Sample Register Restore Functions

Sample epilogue (restores registers 94 through 127)

il
hbrr
a
lr
lqd

$75, <frame_size>
epilogue_branch, _restoregpr_110
$75, $SP, $75
$SP, $75
$94, -544($SP)

 ��� Low-Level System Information 17

 SPU Application Binary Interface Specification, Version 1.9

epilogue_branch:

lqd
lqd
. . .
lqd
lqd
lqd
br

$95, -528($SP)
$96, -512($SP)

$108, -320($SP)
$109, -304($SP)
$LR, 16($SP)
_restoregpr_110

 #Restore function

_restoregpr_80:
_restoregpr_81:
_restoregpr_82:

_restoregpr_110:
_restoregpr_111:
_restoregpr_112:

_restore_branch:

lqd
lqd
lqd
. . .
lqd
lqd
hbr
. . .
lqd
lqd
lqd

. . .
lqd
lqd
lqd
lr
bi

$80, -768($SP)
$81, -752($SP)
$82, -736($SP)

$110, -288($SP)
$111, -272($SP)
_restore_branch,$LR

$112, -256($SP)
$113, -240($SP)
$114, -224($SP)

$125, -48($SP)
$126, -32($SP)
$127, -16($SP)
$SP,$75
$LR

2.3.4. Data Objects

This section describes objects with static storage duration. It excludes stack-resident objects because programs
always compute their addresses relative to the stack pointer or the frame pointer.

In the SPU architecture, only load and store instructions access memory. To maintain position-independent code,
data objects must be addressed using the relative load and store instructions lqr and stqr. Examples of
position-independent loads and stores are shown in Figure 2-18.

Figure 2-18: Position-Independent Load and Store

C Assembly

extern vector unsigned int src;
extern vector unsigned int dst;
extern vector unsigned int *ptr;

dst = src;

.extern src

.extern dst

.extern ptr

.text

 lqr $5, src
 stqr $5, dst

ptr = &dst; ila $2, base
 brsl $3, base
base: ila $5, dst
 sf $3, $2, $3
 a $5, $5, $3

18 Low-Level System Information ���

SPU Application Binary Interface Specification, Version 1.9

 stqr $5, ptr

*ptr = src; lqr $5, ptr
 lqr $6, src
 stqd $6, 0($5)

2.3.5. Function Calling by Name

Because named functions must be statically bound, call addresses for these functions are resolved during link edit.
To maintain position independence, relative branching instructions are used, as shown in Table 2-6. The
instructions that are generated depend on the distance of the relative branch.

Table 2-6: Relative-Addressed Named Function Calls

Distance (bytes) Instructions

-128K to 128K-1 brsl $LR, relative_func_addr

Relative-addressed function calls that are less than -128K or greater than 128K-1 bytes are supported by using a
“trampoline” that is within the range of relative addressability of the SPU processor.

Position-dependent code may use absolute addressing, as shown in Table 2-7. The instructions that are generated
depend on the address of the function being called.

Table 2-7: Absolute-Addressed Named Function Calls

Address Instructions

0x00000000 to 0x0001FFFF
0xFFFE0000 to 0xFFFFFFFF

brasl $LR, func_addr

0x00020000 to 0xFFFDFFFF ilhu $3, func_addr@h
iohl $3, func_addr@l
bisl $LR, $3

See section “3.5. Relocation” for relocation fix-up of function call branches. The notation func_addr@h and
func_addr@l refers to the high and low parts of the function address.

2.3.6. Function Calling by Pointer

The code generated to support function calling by pointer is the same whether the function being called is an
out-of-module or an intra-module function. Figure 2-19 shows an example of function calling by pointer.

Figure 2-19: Function Calling by Pointer

lqr
bisl

$11, func_ptr
$LR, $11
. . .

load pointer to function entry into register 11
call the out-of-module function

2.3.7. Dynamic Stack Space Allocation

Frames are allocated dynamically on the program stack during program execution. Usually, individual stack frames
have static sizes, but the SPU architecture provides facilities for dynamic allocation to support the alloca function.

The mechanism for allocating dynamic space is embedded completely within a function. This mechanism does not
affect the standard calling sequence. Dynamic stack allocation is accomplished by “opening” the stack immediately
above the Parameter List Area (at a higher address). The following steps describe the process in greater detail:

1. After a new stack frame is acquired and before the first dynamic space allocation, a new register (the frame
pointer) is set to the value of the stack pointer. The frame pointer is used for references to the function’s
local, non-static variables.

 ��� Low-Level System Information 19

 SPU Application Binary Interface Specification, Version 1.9

2. The amount of dynamic space to be allocated is rounded to a multiple of 16 bytes so that the 16-byte stack
alignment is maintained.

3. The stack pointer is decreased by the rounded byte count, and the address of the previous stack frame (the
Back Chain) is stored at the word addressed by the new stack pointer.

Figure 2-20 shows the organization of the stack frame before and after dynamic stack allocation.

Figure 2-20: Dynamic Stack Space Allocation

Back Chain

Before Dynamic Stack Allocation

Register Save Areas

area containing local,
non-static variables

area for constructing
parameter lists for callees

Link Register Save Area

Back ChainSP

Back Chain

After Dynamic Stack Allocation

Register Save Areas

area containing local,
non-static variables

area for constructing
parameter lists for callees

Link Register Save Area

Back ChainSP

Dynamic Allocation Area

The above process can be repeated as many times as required within a single function activation. When it is time to
return, the stack pointer is set to the value of the Back Chain, thus removing all dynamically allocated stack space in
addition to the rest of the stack frame. A program must not reference the dynamically allocated stack area after it
has been freed.

2.4. Debug Format
The debugging format used in objects targeted for the SPU may be the Debug with Arbitrary Record Format
(DWARF). Although this ABI does not specify a particular debug format, all of the systems that implement DWARF
must use the definitions described in the sections below.

2.4.1. DWARF Register Number Mapping

Register number mapping must be specified for the SPU registers. Table 2-8 describes the register number
mapping for the SPU processor. Some general-purpose registers are reserved for special purposes and are thus
accessible using several abbreviations.

Table 2-8: SPU Register Number Mapping

Register Name Number Abbreviation

General-Purpose Registers 0-127 0 - 127 R0 - R127
Link Register 0 LR
Stack Pointer 1 SP
Floating-Point Status and Control Register 128 FPSCR

20 Low-Level System Information ���

SPU Application Binary Interface Specification, Version 1.9

2.4.2. Address Class Code

The DWARF version 2 specifications also require that processor-specific address class codes be defined. As shown
in Table 2-9, SPU processors define the address class code.

Table 2-9: SPU Address Class Code

Code Value Meaning

ADDR_none 0 No class specified

2.5. Operating System Interface
Because the SPU does not generally execute an operating system, it relies on operating system services provided
by the controlling PowerPC® Processor Unit (PPU). Operating system interfaces between the PPU and SPU are
specified by the CBEA Application Binary Interface specification for the respective operating system.

2.5.1. Program Initialization

When an SPU program is first entered, the contents of register r1 (SP) are initialized to the top of the stack.
Generally, the top of the stack is a minimal stack located at the largest quadword address. As shown in Figure 2-21,
a system with 256 KB of local storage initializes the stack pointer to 0x3FFD0. This address contains a Back Chain
pointer to 0x3FFF0. The Back Chain pointer at 0x3FFF0 contains a NULL (0) pointer. Space is allocated for the
entry function to save the Link Register (address 0x3FFE0). The contents of all other registers are unspecified.
Thus, if a program requires registers to have specified values, it must explicitly set them.

Figure 2-21: Memory Stack

Back Chain Pointer

0x0

Link Register Save Area

Back Chain Pointer

0x3FFF0

0x3FFF0

0x3FFE0

0x3FFD0Initial Stack Pointer

Address

 ��� Low-Level System Information 21

 SPU Application Binary Interface Specification, Version 1.9

 ���

 SPU Application Binary Interface Specification, Version 1.9

3. Object Files

The SPU object file format must be the Executable and Linking Format (ELF). This document does not completely
specify the ELF standard; instead, it provides an overview of ELF while specifying the sections and fields necessary
to ensure portability of object files between software tools.

3.1. File Format
Object files are involved in two activities: 1) program linking (building a program) and 2) program execution (running
a program). For convenience and efficiency, the object file format provides a parallel view of a file’s contents,
reflecting the differing needs of these activities. Figure 3-22 shows these two views.

Figure 3-22: Object File Format

ELF Header

Linking View

Program Header Table
(optional)

Section Header Table
(optional)

Section Header Table

Section 1

. . .

Section n

. . .

ELF Header

Execution View

Program Header Table

Segment 1

Segment 2

. . .

3.2. ELF Header
The ELF header contains machine-specific information. Table 3-10 shows the specific information for SPU objects.

Table 3-10: SPU ELF Header Fields

Field Value Comments

e_ident[EI_CLASS] ELFCLASS32 32-bit implementation.
e_ident[EI_DATA] ELFDATA2MSB Big endian data encoding.

ET_NONE No file type.
ET_REL Relocatable file. A relocatable file that holds code and data

suitable for linking with objects to create an executable or plug-
in file.

ET_EXEC Executable file. An executable file that holds a program suitable
for execution.

e_type

ET_DYN Plug-in file. The plug-in file must contain a SPUNAME note
section for each named plug-in. See section “2.2.6. Out-of-
Module Function Calls” for additional information.

e_machine EM_SPU SPU processor identification. The defined value is 23.
e_flags 0 Currently no flags have been defined. Therefore, this member

must contain zero.

 ��� Object Files 23

 SPU Application Binary Interface Specification, Version 1.9

3.3. Symbols
The global symbols produced by a compiler must not be “mangled”; that is, these symbols must not be prepended
by any leading characters.

3.4. Sections
Table 3-11 shows ELF sections that hold program data and code.

Table 3-11: SPU Special Sections

Name Type Attributes Section Contents

.bss SHT_NOBITS SHF_ALLOC
SHF_WRITE

Uninitialized data that contributes to the program’s memory
image. By definition, the program loader initializes the data
with zeros when the program begins to run.

.data SHT_PROGBITS SHF_ALLOC
SHF_WRITE

Initialized data contributing to the program’s memory
image.

.text SHT_PROGBITS SHF_ALLOC
SHF_EXECINSTR

The text, or executable instructions, of a program.

._ea SHT_PROGBITS SHF_WRITE Initialized data occupying PPU memory.

The following restrictions apply to allocatable ELF sections that will be loaded into local storage:

• The lower boundary of the section must begin on a 16-byte aligned address.

• The section size should be a multiple of 16 bytes. If the total size of the section contents is not a multiple of
16 bytes, the section will be expanded to the next multiple of 16 bytes. Each byte in the expanded area will
be zero-filled.

If ELF sections are not loaded into local storage, they do not need to comply with these restrictions.

Because of these restrictions, (1) all loadable ELF segments will begin on a 16-byte boundary; and (2) both memory
size and file size will be a multiple of 16 bytes.

This specification defines the minimum requirement. For some CBEA implementations, data-transfer performance
can be improved by using a larger segment-alignment constraint, for example, to enable more efficient DMA
transfers.

3.5. Relocation

3.5.1. Relocation Types

Relocation entries describe how to change the instructions and data relocation fields. Relocation is performed on a
word or a subset of a word. The calculations shown in Table 3-13 assume that the actions are transforming a
relocatable file into an executable. Conceptually, the link editor merges one or more relocatable files to form the
output file. As part of the process, it first determines how to combine and locate the input files. Next, it updates the
symbol values, and then it performs the necessary relocations. Table 3-12 shows the relocation fields and their
description.

Table 3-12: Relocation Fields

Field Description

word64 This specifies a 64-bit field occupying 8 bytes, aligned to an 8-byte boundary.
word32 This specifies a 32-bit field occupying 4 bytes, aligned to a 4-byte boundary.
I7 This specifies a 7-bit field contained within bits 11-17 of a word with 4-byte alignment. The other bits of

the word are unchanged.
I9 This specifies a 9-bit field contained within bits 7-8 and 25-31 of a word with 4-byte alignment. The other

24 Object Files ���

SPU Application Binary Interface Specification, Version 1.9

Field Description

bits of the word are unchanged.
I9I This specifies a 9-bit field contained within bits 16-17, 25-31 of a word with 4-byte alignment. The other

bits of the word are unchanged.
I10 This specifies a 10-bit field contained within bits 8-17 of a word with 4-byte alignment. The other bits of

the word are unchanged.
I16 This specifies a 16-bit field contained within bits 9-24 of a word with 4-byte alignment. The other bits of

the word are unchanged.
I18 This specifies an 18-bit field contained within bits 7-24 of a word with 4-byte alignment. The other bits of

the word are unchanged.

Table 3-13 shows relocation types. (See the notes following Table 3-13 for an explanation of the notational
conventions used in the table.)

Table 3-13: Relocation Types

Name Value Field1 Calculation2 Code Generating Example

R_SPU_NONE 0 none none -
R_SPU_ADDR10 1 I10* (S + A) >> 4 lqd $3, symbol($4)
R_SPU_ADDR16 2 I16* (S + A) >> 2 brasl $LR, function
R_SPU_ADDR16_HI 3 I16 #hi(S + A) ilhu $3, symbol@h
R_SPU_ADDR16_LO 4 I16 #lo(S + A) iohl $3, symbol@l
R_SPU_ADDR18 5 I18* S + A ila $3, symbol
R_SPU_ADDR32 6 word32 S + A .word symbol
R_SPU_REL16 7 I16* (S + A - P) >> 2 brsl $LR, function
R_SPU_ADDR7 8 I7 S + A cwd $3, symbol($4)
R_SPU_REL9 9 I9* (S + A - P) >> 2 hbra function, -100
R_SPU_REL9I 10 I9I* (S + A - P) >> 2 hbr function, $3
R_SPU_ADDR10I 11 I10* S + A ai $3, $3, symbol
R_SPU_ADDR16I 12 I16* S + A il $3, symbol
R_SPU_REL32 13 word32 S + A - P .word symbol
R_SPU_ADDR16X 14 I16* S + A ilh $3, symbol
R_SPU_PPU323 15 word32 S + A .long foo@ppu
R_SPU_PPU643 16 word64 S + A .quad foo@ppu

1 Those relocation types whose Field entry in the table contains an asterisk are subject to failure if the value of the relocation
does not fit in the allocated bits.
2 The following notation is used to describe the Calculation entry in the table:

- The letters A, P, and S represent:
 A: the addend used to compute the value of the relocatable field.
 P: the place (section offset or address) of the storage unit being relocated. This is computed using r_offset.
 S: the value of the symbol whose index is located in the relocation entry.

- The “+” and “-” symbols denote 32-bit modulus addition and subtraction, respectively. “>>” denotes arithmetic right-shifting
(shifting with sign copying) of the value of the left operand by the numbers of bits given by the right operand.

- For relocation types that update the subset of a word, the upper bits must all be the same before being shifted. For relocation
types that perform shifting, the shifted number of least significant bits must be 0.

- #hi(value) and #lo(value) denote the most and least significant 16-bits, respectively, of the indicated value. That is,
#lo(x) = (x & 0xFFFF) and #hi(x) = ((x >> 16) & 0xFFFF.

 ��� Object Files 25

 SPU Application Binary Interface Specification, Version 1.9

3 The R_SPU_PPU32 and R_SPU_PPU64 relocations resolve to locations in PPU memory. In a relocatable SPU object file,
these relocations may refer to PPU symbols or to symbols in the ._ea section. In the case of PPU symbols, the SPU linker
will copy the relocation into an SPU executable, and the relocation will ultimately be resolved by the PPU linker at the time the
SPU executable is being embedded. In a stand-alone SPU executable, the relocation will resolve to zero. In the case of a
._ea symbol, the SPU linker will also emit the relocation into the SPU executable, but without a symbol, and with an addend
specifying the file offset relative to the start of the SPU ELF image. This relocation will then ultimately be resolved either by the
PPU linker, during embedding, or by the stand-alone SPU executable loader.

 ���

 SPU Application Binary Interface Specification, Version 1.9

4. Program Loading and Dynamic Linking

This chapter describes object file structures that relate to program execution. This chapter should be read in
conjunction with “3. Object Files”.

4.1. Program Header
The program header table is a primary data structure. It contains the location of the segment images within the file
and other information necessary to create the memory image for a program.

4.1.1. SPU Environment Note

SPU objects may contain sections of type SHT_NOTE with program header elements of type PT_NOTE that define
the attributes and runtime environment of a SPU program. Table 4-14 and Table 4-15 provide details about the
SPU environment note.

Table 4-14: SPU Environment Note

Field Size (bytes) Value

namesz 4 8
descsz 4 sizeof(spu_env)
type 4 1
name 8 “IBM SPU”
desc sizeof(spu_env) spu_env structure

The SPU environment note contains an instance of the spu_env structure. Entries in the spu_env structure are
shown in Table 4-15.

Table 4-15: spu_env Structure

Type Name Description

Elf32_Word revision Structure revision number. Initial structure revision number is 1. Future
additions to this structure are added to the end, and the revision number
is incremented.

Elf32_Word ls_size Size of SPU local storage where the program is targeted to run. Specifies
the required AMR (Address Memory Range) register setting. A size of 0
indicates that the AMR register must be set to the entire available
address range.

Elf32_Word stack_size Runtime SPU stack size. Used to establish the Available Stack Space
(word element 1 of register R1). If the SPU environment is unspecified or
if the stack_size is specified as zero, the value of Available Stack
Space is initialized to <top_of_stack> - _end. Otherwise, the
Available Stack Space is initialized to stack_size.

Elf32_Word flags ELF_SPU_ENCRYPTED (bit 31) - specifies that the SPU ELF program is
encrypted and must be decrypted and authenticated before being
executed.

 ��� Program Loading and Dynamic Linking 27

 SPU Application Binary Interface Specification, Version 1.9

4.1.2. SPU Name Note

An SPU object must be identified with a lookup name string, and this name must be contained within a SHT_NOTE
with program header elements of type PT_NOTE.

Table 4-16 shows the size and values of fields within an SPU name note.

Table 4-16: SPU Name Note

Field Size (bytes) Value

namesz 4 8
descsz 4 The number of bytes in the desc field. This value must be a multiple of 4 bytes.
type 4 1
name 8 “SPUNAME”
desc (see descsz) A null terminated look-up string that identifies the path name of the object.

END OF DOCUMENT

	SPU Application Binary Interface Specification
	Table of Contents
	 List of Tables
	List of Figures
	About This Document
	Audience
	Version History
	Related Documentation
	Conventions Used in This Document
	Bit Notation
	Other Conventions

	1. Introduction
	2. Low-Level System Information
	2.1. Data Representation
	2.1.1. Byte Ordering
	2.1.2. Register Layout
	2.1.3. Fundamental Types
	2.1.4. Aggregates and Unions
	2.1.5. Bit-Fields
	2.1.6. Volatiles

	2.2. Function Calling Sequence
	2.2.1. Registers
	2.2.2. The Stack Frame
	2.2.3. Argument Passing
	2.2.4. Variable Argument Lists
	2.2.5. Return Values
	2.2.6. Out-of-Module Function Calls

	2.3. Coding Examples
	2.3.1. Code Model Overview
	2.3.2. Function Prologue and Epilogue
	2.3.3. Register Saving and Restoring Functions
	2.3.4. Data Objects
	2.3.5. Function Calling by Name
	2.3.6. Function Calling by Pointer
	2.3.7. Dynamic Stack Space Allocation

	2.4. Debug Format
	2.4.1. DWARF Register Number Mapping
	2.4.2. Address Class Code

	2.5. Operating System Interface
	2.5.1. Program Initialization

	3. Object Files
	3.1. File Format
	3.2. ELF Header
	3.3. Symbols
	3.4. Sections
	3.5. Relocation
	3.5.1. Relocation Types

	4. Program Loading and Dynamic Linking
	4.1. Program Header
	4.1.1. SPU Environment Note
	4.1.2. SPU Name Note

