
IBM Software Development Kit for Multicore Acceleration

Version 3.0

SPE Runtime Management Library

Version 1 to Version 2 Migration Guide

SC33-8332-01

���

IBM Software Development Kit for Multicore Acceleration

Version 3.0

SPE Runtime Management Library

Version 1 to Version 2 Migration Guide

SC33-8332-01

���

Note

Before using this information and the product it supports, read the information in “Notices” on page 51.

Edition notice

This edition applies to version 3, release 0, modification 0 of the IBM Software Development Kit for Multicore

Acceleration (product number 5724-S84) and to all subsequent releases and modifications until otherwise indicated

in new editions.

This edition replaces SC33-8332-00.

© Copyright International Business Machines Corporation 2007. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

About this publication v

How to send your comments v

Chapter 1. Introduction 1

Why has LIBSPE changed? 1

Conventions 2

Chapter 2. SPE Thread Management

Facilities 5

Function: spe_count_physical_spes 6

Function: spe_create_group 7

Function: spe_create_thread 8

Function: spe_destroy_group 10

Function: spe_get_affinity, spe_set_affinity 11

Function: spe_get_context, spe_set_context 14

Function: spe_get_event 15

Function: spe_get_group 17

Function: spe_get_ls 18

Function: spe_get_ps_area 19

Function: spe_get_priority, spe_set_priority,

spe_get_policy 20

Function: spe_get_threads 21

Function: spe_group_defaults 22

Function: spe_group_max 23

Function: spe_kill 24

Function: spe_open_image, spe_close_image . . . 25

Function: spe_set_app_data, spe_get_app_data . . 26

Function: spe_wait 28

Typedef: speid_t 29

Typedef: spe_gid_t 30

Typedef: spe_program_handle_t 31

Chapter 3. MFC Problem State

Facilities 33

Function: spe_mfc_get, spe_mfc_getb, spe_mfc_getf 34

Function: spe_mfc_put, spe_mfc_putb, spe_mfc_putf 36

Function: spe_mfc_read_tag_status_all,

spe_mfc_read_tag_status_any,

spe_mfc_read_tag_status_immediate 38

Function: spe_read_out_mbox 39

Function: spe_stat_in_mbox, spe_stat_out_mbox,

spe_stat_out_intr_mbox 40

Function: spe_write_in_mbox 41

Function: spe_write_signal 42

Chapter 4. Examples 43

Example: Non-threaded PPU/SPU application

(non-embedded) 44

Example: Single-threaded PPU/SPU application

(non-embedded) 45

Example: Mailbox PPU/SPU 47

Appendix. Accessibility features 49

Notices 51

Edition notices 53

Trademarks 53

Terms and conditions 54

Related documentation 55

Glossary 57

Index 59

© Copyright IBM Corp. 2007 iii

iv LIBSPE Migration Guide

About this publication

This document describes how to migrate code designed for the SPE Runtime

Management Library (LIBSPE) version 1 to use version 2.

For information about the accessibility features of this product, for users who have

a physical disability, see “Accessibility features,” on page 49.

Who should use this book

This book is intended for use by software developers.

Related information

For a full list of documentation available for the SDK, see “Related documentation”

on page 55.

How to send your comments

Your feedback is important in helping to provide the most accurate and highest

quality information. If you have any comments about this publication, send your

comments using Resource Link™ at http://www.ibm.com/servers/resourcelink.

Click Feedback on the navigation pane. Be sure to include the name of the book,

the form number of the book, and the specific location of the text you are

commenting on (for example, a page number or table number).

© Copyright IBM Corp. 2007 v

http://www.ibm.com/servers/resourcelink

vi LIBSPE Migration Guide

Chapter 1. Introduction

This topic introduces the process of migrating code from the SPE Runtime

Management Library (LIBSPE) version 1 to version 2.

The IBM® Software Development Kit for Multicore Acceleration (SDK) version 3.0

includes version 2.2 of LIBSPE, referred to as LIBSPE2. LIBSPE version 1, referred

to as LIBSPE1, is deprecated. If your code depends on features available only in

LIBSPE1, you will be affected when LIBSPE1 is eliminated. Therefore, you are

encouraged to migrate your code to use LIBSPE2. We recommend that new code

be written to use only LIBSPE2. When you migrate your code to the new library,

keep in mind the following points:

v All code in the SDK uses LIBSPE2.

v Migration of the SDK code was done by re-coding, not by using a wrapper.

v An application cannot use the LIBSPE1 API and the LIBSPE2 API concurrently.

v Migration does not affect SPU code.

v Nearly all PPU code using LIBSPE1 is affected.

There are significant changes in LIBSPE2 with respect to LIBSPE1:

v Primarily in context and thread management.

v Secondarily in the removal of group capability.

v Finally in the renaming of all functions and some typedefs, and the creation of

new typedefs.

The functions in this book appear in the same order as in the “SPE Runtime

Management Library Version 1.2” document. The text explains for each group of

functions whether a construct is replaced or removed in the new version, and

shows how to migrate from the old to the new version if available. More code is

required to perform an equivalent task in LIBSPE2, but it provides additional

capabilities over LIBSPE1.

Why has LIBSPE changed?

LIBSPE is designed to be used as the low-level API to access SPE resources. The

SPE context introduced in LIBSPE2 is a better low-level construct than the SPE

thread construct defined in LIBSPE1, which suggests a particular programming

model and view. This SPE thread model can be implemented using SPE contexts

and the standard pthread library, if desired. By using SPE contexts, other

programming models such as synchronous functions can more easily offload to

SPEs without introducing the complexity and overhead that threading would

include. LIBSPE2 has the ability to exchange code on an SPE but leave the data in

place, thereby allowing for easy and efficient chaining of processing steps and PPE

control. If you use the thread model, it relies on SPE programs using overlays. It is

very easy to implement the LIBSPE1 thread model as a special case on top of

LIBSPE2. IBM has successfully done this exercise internally.

Many people asked for a more complete SPE thread library similar to pthreads.

This request has been satisfied by removing the special concept of an SPE thread

as used in LIBSPE1. The programmer using LIBSPE2 relies on a thread package of

choice, and simply uses SPEs in these threads. All aspects of an application specific

to threads are standardized so you have full thread functionality available to you.

© Copyright IBM Corp. 2007 1

LIBSPE2 resolves many complaints about the event API in LIBSPE1, from usability

to efficiency.

SPE groups in LIBSPE1 tied together orthogonal concepts such as scheduling and

event handling. Therefore, this construct was discarded in the new library. LIBSPE2

introduces SPE gang contexts which will be leveraged by gang scheduling. Note that

gangs are purely a scheduling construct and do not replace LIBSPE1 groups.

LIBSPE2 introduces a new event mechanism that is based on SPE contexts and is

not tied to scheduling in any way.

The proposed LIBSPE1 API to bind SPE threads to physical SPE resources was

heavily debated and therefore never implemented. To provide an equivalent

feature, LIBSPE2 introduces a new concept of logical affinity for SPE contexts. Using

logical affinity, a programmer can request that two SPE contexts be placed on

adjacent physical SPE resources. Affinity ensures low latency and high

communication bandwidth between programs running on adjacent SPEs. The

affinity API does not allow the programmer to directly select physical SPE

resources, which are subject to change in new revisions of hardware. The operating

system encapsulates the physical SPE topology, and uses this information to select

adjacent processors. Therefore, an application can request logical conditions on

relative context placement without the application having to manage physical

details of Cell/B.E.™ topology information. SPE affinity was tied to the concept of

SPE gangs, because placement constraints to improve communication efficiency

only make sense if it can be assumed that the SPEs run concurrently.

Conventions

This document contains many examples that demonstrate how to migrate your

code from LIBSPE1 to LIBSPE2. In order to use these examples, you must

understand the following conventions:

 Document Text Meaning

LIBSPE1 PPU Example The source code that follows is used with

version 1 of the LIBSPE library.

LIBSPE2 PPU Example The source code that follows is used with

version 2 of the LIBSPE library.

... The provided source code example is not a

complete compilable program. The ellipsis

(...) indicates where you can insert

supporting code to complete the program.

<text> For lines of example code other than those

that begin with #include, you must choose

the code to replace the text between opening

(<) and closing (>) brackets. Identical names

are used where possible in both LIBSPE1

and LIBSPE2 examples for continuity.

Here is a short example that illustrates the migration process:

LIBSPE1 PPU Example

int <name>;

LIBSPE2 PPU Example

long <name>;

2 LIBSPE Migration Guide

Therefore, you would change your code from:

int abc;

to

long abc;

Chapter 1. Introduction 3

4 LIBSPE Migration Guide

Chapter 2. SPE Thread Management Facilities

This section shows how to migrate the SPE thread management facilities.

© Copyright IBM Corp. 2007 5

Function: spe_count_physical_spes

The spe_count_physical_spes function has been replaced in LIBSPE2.

Introduction

The int spe_count_physical_spes() function is replaced in LIBSPE2 with

spe_cpu_info_get, with specific arguments to request the count.

LIBSPE1 PPU Example

#include <libspe.h>

...

int <count>;

...

<count> = spe_count_physical_spes();

LIBSPE2 PPU Example

#include <libspe2.h>

...

int <count>;

...

<count> = spe_cpu_info_get(SPE_COUNT_PHYSICAL_SPES, -1);

6 LIBSPE Migration Guide

Function: spe_create_group

The spe_create_group function is eliminated from LIBSPE2.

Introduction

The spe_gid_t spe_create_group(int policy, int priority, int spe_event)

function has been eliminated. There is no replacement for groups in LIBSPE2. The

setting of policy and priority parameters is done using pthread functions, and the

spe_event parameter is set using the spe_context_create function.

v The policy parameter with values SCHED_RR, SCHED_FIFO, and

SCHED_OTHER is set using the pthread_attr_setschedpolicy function and a

previously initialized thread attribute object.

v The priority parameter is set using the pthread_attr_setschedparam function

and a thread attribute object.

v The spe_event parameter is set when invoking the function spe_context_create

and by providing the SPE_EVENTS_ENABLE value for the flags parameter

when spe_event is non-zero.

LIBSPE1 PPU Example

#include <libspe.h>

...

spe_gid_t <group>;

int <policy>;

int <priority>;

int <spe_event>;

...

<group> = spe_create_group(<policy>, <priority>, <spe_event>);

LIBSPE2 PPU Example

#include <libspe2.h>

#include <pthread.h>

...

int <policy>;

int <priority>;

int <spe_event>;

pthread_attr_t attr;

struct sched_param param;

spe_context_ptr_t <speid>;

...

pthread_attr_init(&attr);

pthread_attr_setschedpolicy(&attr, <policy>);

param.sched_priority = <priority>;

pthread_attr_setschedparam(&attr, ¶m);

...

<speid>=spe_context_create(<spe_event> != 0 ? SPE_EVENTS_ENABLE : 0, NULL);

Chapter 2. SPE Thread Management Facilities 7

Function: spe_create_thread

This spe_create_thread function is eliminated from LIBSPE2.

Introduction

The speid_t spe_create_thread(spe_gid_t gid, spe_program_handle_t

*spe_program, void *argp, void *envp, unsigned long mask, int flags)

function is eliminated in LIBSPE2. This function is replaced by a combination of

spe_context_create, spe_program_load, pthread_create, and spe_context_run

functions.

The following is a list of changes in LIBSPE2 that will help you understand how to

create threads.

v The gid parameter is eliminated in LIBSPE2. There is no replacement for groups

in LIBSPE2.

v The spe_program parameter is provided to the spe_program_load function.

v The argp parameter is passed to the spe_context_run function either directly or

indirectly using an intermediate data structure.

v The envp parameter is passed to the spe_context_run function either directly or

indirectly using an intermediate data structure.

v The mask parameter is eliminated in LIBSPE2. There is no replacement in

LIBSPE2.

v The flags parameter with values of SPE_CFG_SIGNOTFY1_OR,

SPE_CFG_SIGNOTFY2_OR, and SPE_MAP_PS are passed to the spe_context_create

function. The flag with a value of SPE_USER_REGS is passed to the

spe_context_run function.

The speid_t typedef is replaced by the combination of spe_context_ptr_t and

pthread_t typedefs.

LIBSPE1 PPU Example

#include <libspe.h>

...

spe_gid_t <group>;

spe_program_handle_t <spe_program>;

void *<argp>;

void *<envp>;

unsigned long <mask>;

int <flags>;

speid_t <speid>;

...

<speid> = spe_create_thread(<group>, &<spe_program>, <argp>, <envp>,

 <mask>, <flags>);

LIBSPE2 PPU Example

#include <libspe2.h>

#include <pthread.h>

...

typedef struct ppu_pthread_data {

 spe_context_ptr_t <speid>;

 pthread_t pthread;

 unsigned int entry;

 unsigned int <flags>;

 void *<argp>;

 void *<envp>;

 spe_stop_info_t stopinfo;

} ppu_pthread_data_t;

8 LIBSPE Migration Guide

...

spe_program_handle_t <spe_program>;

void *<argp>;

void *<envp>;

int <flags>;

pthread_attr_t attr;

ppu_pthread_data_t ppdata;

...

void *ppu_pthread_function(void *arg) {

 ppu_pthread_data_t *datap = (ppu_pthread_data_t *)arg;

 int rc;

 do {

 rc = spe_context_run(datap-><speid>, &datap->entry, datap-><flags>,

 datap-><argp>, datap-><envp>, &datap->stopinfo);

 } while (rc > 0); /* until exit or error, while stop & signal */

 pthread_exit(NULL);

}

...

ppdata.<speid> = spe_context_create(<flags>, NULL);

...

spe_program_load(ppdata.<speid>, &<spe_program>);

...

ppdata.entry = SPE_DEFAULT_ENTRY;

ppdata.flags = <flags>;

ppdata.argp = <argp>;

ppdata.envp = <envp>;

pthread_create(&ppdata.pthread, &attr, &ppu_pthread_function, &ppdata);

Chapter 2. SPE Thread Management Facilities 9

Function: spe_destroy_group

The spe_destroy_group function is eliminated from LIBSPE2.

Introduction

The int spe_destroy_group(spe_gid_t gid) function is eliminated in LIBSPE2.

There is no replacement in LIBSPE2.

LIBSPE1 PPU Example

#include <libspe.h>

...

spe_gid_t <group>;

...

spe_destroy_group(<group>);

LIBSPE2 PPU Example

No replacement is possible.

10 LIBSPE Migration Guide

Function: spe_get_affinity, spe_set_affinity

The spe_get_affinity and spe_set_affinity functions are eliminated from

LIBSPE2.

Introduction

The int spe_get_affinity(speid_t speid, unsigned long *mask), and int

spe_set_affinity(speid_t speid, unsigned long mask) functions have been

eliminated. They are replaced by the spe_context_ptr_t

spe_context_create_affinity(unsigned int flags, spe_context_ptr_t

affinity_neighbor, spe_gang_context_ptr_t gang) function in LIBSPE2.

Program sequence for SPE-to-SPE affinity

From an application perspective, SPE-to-SPE affinity is specified in a three part

sequence:

1. Create SPE Gang X.

2. Create N SPE Contexts with affinity in SPE Gang X.

3. Start N pthreads that run the N SPE contexts created in step 2.

Creating an SPE context with affinity

SPE-to-SPE affinity is specified in affinity pairs. The spe_context_create_affinity

function allows an SPE context to be created and placed next to another previously

created SPE context. The SPU file system (SPUFS) scheduler honors this

relationship by scheduling the specified SPE contexts on physically adjacent SPUs.

This function can be used to create a chain of SPE contexts that consumes all of the

available SPE resources on a Cell/B.E., but not more. If you want to use additional

SPE resources, you must create a separate gang or individual SPE contexts for that

purpose. All SPE contexts in the gang must be created before you run any SPE

contexts in the gang.

The LIBSPE2 create with affinity interface is the spe_context_ptr_t

spe_context_create_affinity(unsigned int flags, spe_context_ptr_t

affinity_neighbor, spe_gang_context_ptr_t gang) function. The flags parameter

has the same semantics as it does when used with the spe_context_create

function. The SPE_AFFINITY_MEMORY flag is available to specify SPE-to-memory

affinity. If the flag is set, the newly created SPE context will be run on an SPU that

is determined to be the closest to main memory storage. Only one SPE context in

the group can be created with memory affinity. The affinity_neighbor parameter

identifies a previously created SPE context in the named gang. A NULL value can be

specified for the initial SPE context. Alternately, use the spe_context_create

function to create the initial SPE context. The gang parameter identifies the

previously created gang that the context will create. The affinity_neighbor

parameter must be in the same gang.

For complete details of the spe_context_create_affinity function, see the SPE

Runtime Management Library Version 2.1 Reference.

LIBSPE1 PPU Example

#include <libspe.h>

...

speid_t <speid>;

unsigned long <mask>;

Chapter 2. SPE Thread Management Facilities 11

...

spe_get_affinity(<speid>, &<mask>);

...

spe_set_affinity(<speid>, <mask>);

LIBSPE2 PPU Example

The following is a mostly complete LIBSPE2 program that creates a context with

affinity:

#include <errno.h>

#include <stdio.h>

#include <stdlib.h>

#include <pthread.h>

#include "libspe2.h"

#define MAX_SPES_IN_BE 8

struct thread_args {

 struct spe_context *ctx;

 void *argp;

 void *envp;

};

void *spe_thread(void *arg);

__attribute__((noreturn)) void *spe_thread(void *arg) {

 int flags = 0;

 unsigned int entry = SPE_DEFAULT_ENTRY;

 int rc;

 spe_program_handle_t *program;

 struct thread_args *arg_ptr;

 arg_ptr = (struct thread_args *)arg;

 program = spe_image_open("hello");

 if (!program) {

 perror("spe_image_open");

 pthread_exit(NULL);

 }

 if (spe_program_load(arg_ptr->ctx, program)) {

 perror("spe_program_load");

 pthread_exit(NULL);

 }

 rc = spe_context_run(arg_ptr->ctx, &entry, flags, arg_ptr->argp,

 arg_ptr->envp, NULL);

 if (rc < 0)

 perror("spe_context_run");

 pthread_exit(NULL);

}

int main() {

 int th_id;

 pthread_t pts[MAX_SPES_IN_BE];

 spe_context_ptr_t ctx[MAX_SPES_IN_BE], neighbor;

 struct thread_args t_args[MAX_SPES_IN_BE];

 spe_gang_context_ptr_t gang;

 int value = 1;

 int flags;

 int i;

 if ((gang = spe_gang_context_create(0)) == NULL) {

 perror("spe_gang_context_create");

 return -1;

12 LIBSPE Migration Guide

}

 /* First, create all of the contexts. */

 for (i = 0; i < MAX_SPES_IN_BE; i++) {

 if (i == 0) {

 /* Place the initial context near main storage. */

 flags = SPE_AFFINITY_MEMORY;

 neighbor = NULL;

 }

 else {

 /* Place the rest of them in order. */

 flags = 0;

 neighbor = ctx[i-1];

 }

 ctx[i] = spe_context_create_affinity(flags, neighbor, gang);

 if (ctx[i] == NULL) {

 perror("spe_context_create_affinity");

 return -2;

 }

 t_args[i].ctx = ctx[i];

 t_args[i].argp = &value;

 }

 /* Next, start them. */

 for (i = 0; i < MAX_SPES_IN_BE; i++) {

 th_id = pthread_create(&pts[i], NULL, &spe_thread, &t_args[i]);

 }

 /* Do stuff, process SPU events, and so on. */

 ...

 /* Wait for ctxs to terminate */

 for (i = 0; i < MAX_SPES_IN_BE; i++) {

 pthread_join(pts[i], NULL);

 spe_context_destroy(ctx[i]);

}

 spe_gang_context_destroy(gang);

 return 0;

}

Chapter 2. SPE Thread Management Facilities 13

Function: spe_get_context, spe_set_context

The spe_get_context and spe_set_context functions are eliminated from LIBSPE2.

Introduction

The int spe_get_context(speid_t speid, struct spe_ucontext *uc), and int

spe_set_context(speid_t speid, struct ucontext *uc) functions have been

eliminated. There are no replacements for these functions in LIBSPE2.

LIBSPE1 PPU Example

#include <libspe.h>

...

speid_t <speid>;

struct spe_ucontext <uc>;

...

spe_get_context(<speid>, &<uc>);

...

spe_set_context(<speid>, &<uc>);

LIBSPE2 PPU Example

No replacement is possible.

14 LIBSPE Migration Guide

Function: spe_get_event

The spe_get_event function is replaced by a combination of other functions in

LIBSPE2.

Introduction

The int spe_get_event(struct spe_event *pevents, int nevents, int timeout)

function is replaced by a combination of functions detailed in the following table:

 LIBSPE1 LIBSPE2

spe_get_event function Replaced by a combination of:

spe_event_handler_create function

spe_event_handler_register function

spe_event_wait function

spe_event_handler_deregister function

spe_event_handler_destroy function

The following list describes other details of migrating the spe_get_event function.

v The pevents parameter is replaced by the spe_event_unit_t parameter both as

input when registering with the spe_event_handler_register function and as

output after waiting with the spe_event_wait function.

– The pevents.gid parameter is replaced by the pevents.spe parameter along

with changing the type from spe_gid_t to spe_context_ptr_t.

– The pevents.events parameter is replaced by the pevents.events parameter

along with changing the bit-mask values.

– The pevents.revents parameter is replaced by the pevents.events parameter

along with changing the bit-mask values.

– The pevents.speid parameter is replaced by the pevents.spe parameter.

– The pevents.data parameter is replaced by the stopinfo.stop_reason

parameter set by the spe_stop_info_read function.
v The nevents parameter is replaced by the max_events parameter in the

spe_event_wait function.

v The timeout parameter is unchanged in the spe_event_wait function.

LIBSPE1 PPU Example

#include <libspe.h>

...

spe_gid_t <group>;

#define NUM_EVENTS <#>

struct spe_event <pevents>[NUM_EVENTS];

int <nevents> = NUM_EVENTS;

int <mask>;

int <timeout>;

int i;

...

for (i=0; i<NUM_EVENTS; i++) {

 <pevents>[i].gid = <group>;

 <pevents>[i].events = <mask>;

}

...

spe_get_event(<pevents>, <nevents>, <timeout>);

LIBSPE2 PPU Example

Chapter 2. SPE Thread Management Facilities 15

#include <libspe2.h>

...

spe_context_ptr_t <speid>;

spe_event_handler_ptr_t event_handler;

#define NUM_EVENTS <#>

spe_event_unit_t <pevents>[NUM_EVENTS];

int <nevents> = NUM_EVENTS;

int <mask>;

int <timeout>;

int i;

spe_stop_info_t stopinfo;

...

event_handler = spe_event_handler_create();

...

<speid>=spe_context_create(SPE_EVENTS_ENABLE, NULL);

...

<pevents>[0].events = <mask>;

<pevents>[0].spe = <speid>;

spe_event_handler_register(event_handler, &<pevents>[0]);

...

<nevents> = spe_event_wait(...);

...

for (i=0; i < <nevents>; i++) {

/* The spe_stop_info_read loop should check for SPE_EVENT_SPE_STOPPED

 event received in the events mask */

 if (<pevents>[i].events & SPE_EVENT_SPE_STOPPED) {spe_stop_info_read();}

 ...

}

...

spe_event_handler_deregister(event_handler, &<pevents>[0]);

...

spe_event_handler_destroy(event_handler);

16 LIBSPE Migration Guide

Function: spe_get_group

The spe_get_group function is eliminated from LIBSPE2.

Introduction

The spe_gid_t spe_get_group(speid_t speid) function has been eliminated. There

is no replacement in LIBSPE2.

LIBSPE1 PPU Example

#include <libspe.h>

...

speid_t <speid>;

spe_gid_t <group>;

...

<group> = spe_get_group(<speid>);

LIBSPE2 PPU Example

No replacement is possible.

Chapter 2. SPE Thread Management Facilities 17

Function: spe_get_ls

The spe_get_ls function is replaced by the spe_ls_area_get function in LIBSPE2.

Introduction

The void *spe_get_ls(speid_t speid) function has been replaced by the void

*spe_ls_area_get(spe_context_ptr_t spe) function.

The speid_t typedef is replaced by the spe_context_ptr_t typedef.

LIBSPE1 PPU Example

#include <libspe.h>

...

speid_t <speid>;

void *<ls>;

...

<ls> = spe_get_ls(<speid>);

LIBSPE2 PPU Example

#include <libspe2.h>

...

spe_context_ptr_t <speid>;

void *<ls>;

...

<ls> = spe_ls_area_get(<speid>);

18 LIBSPE Migration Guide

Function: spe_get_ps_area

The spe_get_ps_area function is replaced by the spe_ps_area_get function in

LIBSPE2.

Introduction

The void *spe_get_ps_area(speid_t speid, enum ps_area) function is replaced by

the int spe_ps_area_get(spe_context_ptr_t spe, enum pa_area) function.

The following table shows the changes for LIBSPE2.

 LIBSPE1 LIBSPE2

void *spe_get_ps_area(speid_t speid,

enum ps_area) function

int spe_ps_area_get(spe_context_ptr_t

spe, enum pa_area) function

speid_t typedef spe_context_ptr_t typedef

ps_area parameter Unchanged including all existing

enumeration values and secondary data

structures.

LIBSPE1 PPU Example

#include <libspe.h>

...

speid_t <speid>;

enum ps_area area;

void *<ps>;

...

<ps> = spe_get_ps_area(<speid>, area);

LIBSPE2 PPU Example

#include <libspe2.h>

...

spe_context_ptr_t <speid>;

enum ps_area area;

void *<ps>;

...

<ps> = spe_ps_area_get(<speid>, area);

Chapter 2. SPE Thread Management Facilities 19

Function: spe_get_priority, spe_set_priority, spe_get_policy

The spe_get_priority, spe_set_priority, and spe_get_policy functions are

eliminated from LIBSPE2.

Introduction

The int spe_get_priority(spe_gid_t gid), int spe_set_priority(spe_gid_t gid,

int priority), and int spe_get_policy(spe_gid_t gid) functions have been

eliminated. The following table shows their replacements:

 LIBSPE1 LIBSPE2

int spe_get_priority(spe_gid_t gid)

function

pthread_attr_getschedparam function and a

previously initialized thread attribute object

int spe_set_priority(spe_gid_t gid, int

priority) function

pthread_attr_setschedparam function and a

previously initialized thread attribute object

int spe_get_policy(spe_gid_t gid)

function

pthread_attr_getschedpolicy function and

a previously initialized thread attribute

object

spe_gid_t typedef pthread_attr_t typedef

priority parameter Unchanged

LIBSPE1 PPU Example

#include <libspe.h>

...

spe_gid_t <group>;

int <priority>;

int <policy>;

...

<priority> = spe_get_priority(<group>);

...

spe_set_priority(<group>, <priority>);

...

<policy> = spe_get_policy(<group>);

LIBSPE2 PPU Example

#include <pthread.h>

...

int <priority>;

int <policy>;

pthread_attr_t attr;

struct sched_param param;

...

pthread_attr_getschedparam(&attr, ¶m);

<priority> = param.sched_priority;

...

param.sched_priority = <priority>;

pthread_attr_setschedparam(&attr, ¶m);

...

pthread_attr_getschedpolicy(&attr, &<policy>);

20 LIBSPE Migration Guide

Function: spe_get_threads

The spe_get_threads function is eliminated from LIBSPE2.

Introduction

The int spe_get_threads(spe_gid_t gid, speid_t *spe_ids) function has been

eliminated. There is no replacement for this function in LIBSPE2.

LIBSPE1 PPU Example

#include <libspe.h>

...

speid_t <speids>[16];

spe_gid_t <group>;

...

spe_get_threads(<group>, <speids>);

LIBSPE2 PPU Example

No replacement is possible.

Chapter 2. SPE Thread Management Facilities 21

Function: spe_group_defaults

The spe_group_defaults function is eliminated from LIBSPE2.

Introduction

The int spe_group_defaults(int policy, int priority, int spe_events)

function has been eliminated. There is no replacement for this function in LIBSPE2.

LIBSPE1 PPU Example

#include <libspe.h>

...

int <policy>;

int <priority>;

int <spe_events>;

...

spe_group_defaults(<policy>, <priority>, <spe_events>);

LIBSPE2 PPU Example

No replacement is possible.

22 LIBSPE Migration Guide

Function: spe_group_max

The spe_group_max function is eliminated from LIBSPE2.

Introduction

The int spe_group_max(spe_gid_t gid) function has been eliminated. There is no

replacement for this function in LIBSPE2. You can consider using the

spe_cpu_info_get function.

LIBSPE1 PPU Example

#include <libspe.h>

...

spe_gid_t <group>;

int <count>;

...

<count> = spe_group_max(<group>);

LIBSPE2 PPU Example

No replacement is possible.

Chapter 2. SPE Thread Management Facilities 23

Function: spe_kill

The spe_kill function is eliminated from LIBSPE2.

Introduction

The int spe_kill(speid_t speid, int signal) function has been eliminated. It is

replaced by the pthread_cancel(pthread_t thread, int sig) function.

The speid_t typedef is replaced by a combination of pthread_t and

spe_context_ptr_t typedefs.

LIBSPE1 PPU Example

#include <libspe.h>

...

speid_t <speid>;

int <signal>;

...

spe_kill(<speid>, <signal>);

LIBSPE2 PPU Example

#include <libspe2.h>

#include <pthread.h>

...

spe_context_ptr_t <speid>;

pthread_t pthread;

...

pthread_cancel(pthread);

spe_context_destroy(<speid>);

24 LIBSPE Migration Guide

Function: spe_open_image, spe_close_image

The spe_open_image and spe_close_image functions have been replaced in

LIBSPE2.

Introduction

The spe_open_image and spe_close_image functions have been replaced. The

following table shows the changes required to migrate your code to the new

functions:

 LIBSPE1 LIBSPE2

spe_program_handle_t

*spe_open_image(const char *filename)

function

spe_program_t *spe_image_open(const char

*filename) function

int spe_close_image(spe_program_handle_t

*program) function

int spe_image_close(spe_program_handle t

*program) function

filename parameter Unchanged

program parameter Unchanged

LIBSPE1 PPU Example

#include <libspe.h>

...

spe_program_handle_t *<program_handle>;

...

<program_handle> = spe_open_image("<filename>");

...

spe_close_image(<program_handle>);

LIBSPE2 PPU Example

#include <libspe2.h>

...

spe_program_handle_t *<program_handle>;

...

<program_handle> = spe_image_open("<filename>");

...

spe_image_close(<program_handle>);

Chapter 2. SPE Thread Management Facilities 25

Function: spe_set_app_data, spe_get_app_data

The spe_set_app_data and spe_get_app_data functions have been replaced in

LIBSPE2.

Introduction

The int spe_set_app_data(speid_t speid, void *data) and int

spe_get_app_data(speid_t speid, void **p_data) functions are replaced by a

combination of the spe_event_handler_create, spe_event_handler_register,

spe_event_wait, spe_event_handler_deregister, and spe_event_handler_destroy

functions.

v The speid_t typedef is replaced by the spe_context_ptr_t typedef.

v The data parameter is mapped to the spe_event_data_t parameter in the

spe_event_unit_t parameter both as input when registering with the

spe_event_handler_register function and as output after a wait using the

spe_event_wait function.

LIBSPE1 PPU Example

#include <libspe.h>

speid_t <speid>;

spe_gid_t <group>;

spe_program_handle_t <program_handle>;

void *<argp>;

void *<envp>;

unsigned long <mask>;

int <flags>;

void *<data>;

...

<speid>=spe_create_thread(<group>, &<program_handle>, <argp>, <envp>,

 <mask>, <flags>);

...

spe_set_app_data(<speid>, <data>);

...

spe_get_app_data(<speid>, &<data>);

LIBSPE2 PPU Example

#include <libspe2.h>

spe_context_ptr_t <speid>;

unsigned int <flags>;

int <mask>;

spe_event_handler_ptr_t event_handler;

#define NUM_EVENTS <#>

spe_event_unit_t <pevents>[NUM_EVENTS];

int <nevents> = NUM_EVENTS;

int <timeout>;

void *<data>;

...

<speid>=spe_context_create(<flags>, NULL);

...

<pevents>[0].events = <mask>;

<pevents>[0].spe = <speid>;

<pevents>[0].data.ptr = &<data>;

spe_event_handler_register(event_handler, &<pevents>[0]);

...

<nevents> = spe_event_wait(event_handler, <pevents>, <nevents>, <timeout>);

...

<data> = (int*)<pevents>[0].data.ptr;

26 LIBSPE Migration Guide

...

spe_event_handler_deregister(event_handler, &<pevents>[0]);

...

spe_event_handler_destroy(event_handler);

Chapter 2. SPE Thread Management Facilities 27

Function: spe_wait

The spe_wait function is eliminated from LIBSPE2.

Introduction

The int spe_wait(speid_t speid, int *status, int options) function has been

eliminated. The following table shows the details of its replacement.

 LIBSPE1 LIBSPE2

int spe_wait(speid_t speid, int *status,

int options) function

Combination of the int

spe_context_run(spe_context_ptr_t spe,

unsigned int *entry, unsigned int

runflags, void *argp, void *envp,

spe_stop_info_t *stopinfo) function and

the int pthread_join(pthread_t thread,

void **value_ptr) function

speid typedef Combination of spe_context_ptr_t and

pthread_t typedefs

status parameter stopinfo.stop_reason parameter along with

stopinfo.result.spe_exit_code parameter or

stopinfo.result.spe_signal_code parameter

which is received from the spe_context_run

function.

WNOHANG, WUNTRACED options No replacement

LIBSPE1 PPU Example

#include <libspe.h>

...

speid_t <speid>;

int <status>;

int <options>;

...

spe_wait(<speid>, &<status>, <options>);

LIBSPE2 PPU Example

#include <libspe2.h>

#include <pthread.h>

...

typedef struct ppu_pthread_data {

 spe_context_ptr_t <speid>;

 pthread_t pthread;

 unsigned int entry;

 unsigned int flags;

 void *argp;

 void *envp;

 spe_stop_info_t stopinfo;

} ppu_pthread_data_t;

...

ppu_pthread_data_t ppdata;

void *value_ptr;

int <status>;

...

pthread_join(ppdata.pthread, &value_ptr);

<status> = ppdata.stopinfo.stop_reason;

...

spe_context_destroy(ppdata.<speid>);

28 LIBSPE Migration Guide

Typedef: speid_t

The speid_t typedef is eliminated from LIBSPE2.

Introduction

The speid_t typedef is replaced by either the spe_context_ptr_t typedef or the

pthread_t typedef as appropriate. In declarations, the type of the variable is

typically changed from speid_t to spe_context_ptr_t and a new variable is

declared as a pthread_t type.

LIBSPE1 PPU Example

#include <libspe.h>

...

speid_t <speid>;

LIBSPE2 PPU Example

#include <libspe2.h>

#include <pthread.h>

...

spe_context_ptr_t <speid>;

pthread_t pthread;

Chapter 2. SPE Thread Management Facilities 29

Typedef: spe_gid_t

The spe_gid_t typedef is eliminated from LIBSPE2.

Introduction

The spe_gid_t typedef has been eliminated. There is no replacement for groups in

LIBSPE2.

LIBSPE1 PPU Example

#include <libspe.h>

...

spe_gid_t <group>;

LIBSPE2 PPU Example

No replacement is possible.

30 LIBSPE Migration Guide

Typedef: spe_program_handle_t

The spe_program_handle_t typedef is unchanged in LIBSPE2.

Introduction

The spe_program_handle_t typedef is unchanged.

LIBSPE1 PPU Example

#include <libspe.h>

...

spe_program_handle_t <program_handle>;

LIBSPE2 PPU Example

#include <libspe2.h>

...

spe_program_handle_t <program_handle>;

Chapter 2. SPE Thread Management Facilities 31

32 LIBSPE Migration Guide

Chapter 3. MFC Problem State Facilities

This section shows how to migrate the MFC Problem State Facilities functions.

© Copyright IBM Corp. 2007 33

Function: spe_mfc_get, spe_mfc_getb, spe_mfc_getf

The spe_mfc_get, spe_mfc_getb, and spe_mfc_getf functions have been replaced by

other functions in LIBSPE2.

Introduction

The spe_mfc_get, spe_mfc_getb, and spe_mfc_getf functions have been replaced by

other functions as shown in the following table:

 LIBSPE1 LIBSPE2

int spe_mfc_get(speid_t speid, unsigned

int ls, void *ea, unsigned int size,

unsigned int tag, unsigned int tid,

unsigned int rid) function

int spe_mfcio_get(spe_context_ptr_t spe,

unsigned int lsa, void *ea, unsigned int

size, unsigned int tag, unsigned int

tid, unsigned int rid) function

int spe_mfc_getb(speid_t speid, unsigned

int ls, void *ea, unsigned int size,

unsigned int tag, unsigned int tid,

unsigned int rid) function

int spe_mfcio_getb(spe_context_ptr_t

spe, unsigned int lsa, void *ea,

unsigned int size, unsigned int tag,

unsigned int tid, unsigned int rid)

function

int spe_mfc_getf(speid_t speid, unsigned

int ls, void *ea, unsigned int size,

unsigned int tag, unsigned int tid,

unsigned int rid) function

int spe_mfcio_getf(spe_context_ptr_t

spe, unsigned int lsa, void *ea,

unsigned int size, unsigned int tag,

unsigned int tid, unsigned int rid)

function

speid_t typedef spe_context_ptr_t typedef

All other arguments Unchanged

LIBSPE1 PPU Example

#include <libspe.h>

...

speid_t <speid>;

unsigned int <ls>;

void *<ea>;

unsigned int <size>;

unsigned int <tag>;

unsigned int <tid>;

unsigned int <rid>;

...

spe_mfc_get(<speid>, <ls>, <ea>, <size>, <tag>, <tid>, <rid>);

...

spe_mfc_getb(<speid>, <ls>, <ea>, <size>, <tag>, <tid>, <rid>);

...

spe_mfc_getf(<speid>, <ls>, <ea>, <size>, <tag>, <tid>, <rid>);

LIBSPE2 PPU Example

#include <libspe2.h>

...

spe_context_ptr_t <speid>;

unsigned int <ls>;

void *<ea>;

unsigned int <size>;

unsigned int <tag>;

unsigned int <tid>;

unsigned int <rid>;

...

spe_mfcio_get(<speid>, <ls>, <ea>, <size>, <tag>, <tid>, <rid>);

...

34 LIBSPE Migration Guide

spe_mfcio_getb(<speid>, <ls>, <ea>, <size>, <tag>, <tid>, <rid>);

...

spe_mfcio_getf(<speid>, <ls>, <ea>, <size>, <tag>, <tid>, <rid>);

Chapter 3. MFC Problem State Facilities 35

Function: spe_mfc_put, spe_mfc_putb, spe_mfc_putf

The spe_mfc_put, spe_mfc_putb, and spe_mfc_putf functions have been replaced by

other functions in LIBSPE2.

Introduction

The spe_mfc_put, spe_mfc_putb, and spe_mfc_putf functions have been replaced by

other functions as shown in the following table:

 LIBSPE1 LIBSPE2

int spe_mfc_put(speid_t speid, unsigned

int ls, void *ea, unsigned int size,

unsigned int tag, unsigned int tid,

unsigned int rid) function

int spe_mfcio_put(spe_context_ptr_t spe,

unsigned int lsa, void *ea, unsigned int

size, unsigned int tag, unsigned int

tid, unsigned int rid) function

int spe_mfc_putb(speid_t speid, unsigned

int ls, void *ea, unsigned int size,

unsigned int tag, unsigned int tid,

unsigned int rid) function

int spe_mfcio_putb(spe_context_ptr_t

spe, unsigned int lsa, void *ea,

unsigned int size, unsigned int tag,

unsigned int tid, unsigned int rid)

function

int spe_mfc_putf(speid_t speid, unsigned

int ls, void *ea, unsigned int size,

unsigned int tag, unsigned int tid,

unsigned int rid) function

int spe_mfcio_putf(spe_context_ptr_t

spe, unsigned int lsa, void *ea,

unsigned int size, unsigned int tag,

unsigned int tid, unsigned int rid)

function

speid_t typedef spe_context_ptr_t typedef

All other arguments Unchanged

LIBSPE1 PPU Example

#include <libspe.h>

...

speid_t <speid>;

unsigned int <ls>;

void *<ea>;

unsigned int <size>;

unsigned int <tag>;

unsigned int <tid>;

unsigned int <rid>;

...

spe_mfc_put(<speid>, <ls>, <ea>, <size>, <tag>, <tid>, <rid>);

...

spe_mfc_putb(<speid>, <ls>, <ea>, <size>, <tag>, <tid>, <rid>);

...

spe_mfc_putf(<speid>, <ls>, <ea>, <size>, <tag>, <tid>, <rid>);

LIBSPE2 PPU Example

#include <libspe2.h>

...

spe_context_ptr_t <speid>;

unsigned int <ls>;

void *<ea>;

unsigned int <size>;

unsigned int <tag>;

unsigned int <tid>;

unsigned int <rid>;

...

spe_mfcio_put(<speid>, <ls>, <ea>, <size>, <tag>, <tid>, <rid>);

...

36 LIBSPE Migration Guide

spe_mfcio_putb(<speid>, <ls>, <ea>, <size>, <tag>, <tid>, <rid>);

...

spe_mfcio_putf(<speid>, <ls>, <ea>, <size>, <tag>, <tid>, <rid>);

Chapter 3. MFC Problem State Facilities 37

Function: spe_mfc_read_tag_status_all, spe_mfc_read_tag_status_any,

spe_mfc_read_tag_status_immediate

The spe_mfc_read_tag_status_all, spe_mfc_read_tag_status_any, and

spe_mfc_read_tag_status_immediate functions have been replaced by other

functions in LIBSPE2.

Introduction

The spe_mfc_read_tag_status_all, spe_mfc_read_tag_status_any, and

spe_mfc_read_tag_status_immediate functions have been replaced by other

functions as shown in the following table:

 LIBSPE1 LIBSPE2

int spe_mfc_read_tag_status_all(speid_t

speid, unsigned int mask) function

int

spe_mfcio_tag_status_read(spe_context_ptr_t

spe, unsigned int mask, unsigned int

behavior, unsigned int *tag_status) function

with behavior set to SPE_TAG_ALL

int spe_mfc_read_tag_status_any(speid_t

speid, unsigned int mask) function

int

spe_mfcio_tag_status_read(spe_context_ptr_t

spe, unsigned int mask, unsigned int

behavior, unsigned int *tag_status) function

with behavior set to SPE_TAG_ANY

int spe_mfc_read_tag_status_immediate(speid_t

speid, unsigned int mask) function

int

spe_mfcio_tag_status_read(spe_context_ptr_t

spe, unsigned int mask, unsigned int

behavior, unsigned int *tag_status) function

with behavior set to SPE_TAG_IMMEDIATE

Function return values Value set in tag_status

speid_t typedef spe_context_ptr_t typedef

mask parameter Unchanged

LIBSPE1 PPU Example

#include <libspe.h>

...

speid_t <speid>;

unsigned int <mask>;

int <tag_status>;

...

<tag_status> = spe_mfc_read_tag_status_all(<speid>, <mask>);

...

<tag_status> = spe_mfc_read_tag_status_any(<speid>, <mask>);

...

<tag_status> = spe_mfc_read_tag_status_immediate(<speid>, <mask>);

LIBSPE2 PPU Example

#include <libspe2.h>

...

spe_context_ptr_t <speid>;

unsigned int <mask>;

unsigned int <tag_status>;

...

spe_mfcio_tag_status_read(<speid>, <mask>, SPE_TAG_ALL, &<tag_status>);

...

spe_mfcio_tag_status_read(<speid>, <mask>, SPE_TAG_ANY, &<tag_status>);

...

spe_mfcio_tag_status_read(<speid>, <mask>, SPE_TAG_IMMEDIATE, &<tag_status>);

38 LIBSPE Migration Guide

Function: spe_read_out_mbox

The spe_read_out_mbox function has been replaced in LIBSPE2.

Introduction

The following table shows the changes required to migrate code that uses the

spe_read_out_mbox function.

 LIBSPE1 LIBSPE2

unsigned int spe_read_out_mbox(speid_t

speid) function

int spe_out_mbox_read(spe_context_ptr_t

spe, unsigned int *mbox_data, int count)

function

Set the mbox_data parameter to an unsigned

integer pointer

Set the count parameter to 1

speid_t typedef spe_context_ptr_t typedef

LIBSPE1 PPU Example

#include <libspe.h>

...

speid_t <speid>;

unsigned int <data>;

...

<data> = spe_read_out_mbox(<speid>);

LIBSPE2 PPU Example

#include <libspe2.h>

...

spe_context_ptr_t <speid>;

unsigned int <data>;

...

spe_out_mbox_read(<speid>, &<data>, 1);

Chapter 3. MFC Problem State Facilities 39

Function: spe_stat_in_mbox, spe_stat_out_mbox,

spe_stat_out_intr_mbox

The spe_stat_in_mbox, spe_stat_out_mbox, and spe_stat_out_intr_mbox functions

have been replaced in LIBSPE2.

Introduction

The following table shows how to migrate code that uses the spe_stat_in_mbox,

spe_stat_out_mbox, and spe_stat_out_intr_mbox functions:

 LIBSPE1 LIBSPE2

int spe_stat_in_mbox(speid_t speid) function int spe_in_mbox_status(spe_context_ptr_t spe)

function

int spe_stat_out_mbox(speid_t speid) function int spe_out_mbox_status(spe_context_ptr_t

spe) function

int spe_stat_out_intr_mbox(speid_t speid)

function

int

spe_out_intr_mbox_status(spe_context_ptr_t

spe) function

speid_t typedef spe_context_ptr_t typedef

LIBSPE1 PPU Example

#include <libspe.h>

...

speid_t <speid>;

int <status>;

...

<status> = spe_stat_in_mbox(<speid>);

...

<status> = spe_stat_out_mbox(<speid>);

...

<status> = spe_stat_out_intr_mbox(<speid>);

LIBSPE2 PPU Example

#include <libspe2.h>

...

spe_context_ptr_t <speid>;

int <status>;

...

<status> = spe_in_mbox_status(<speid>);

...

<status> = spe_out_mbox_status(<speid>);

...

<status> = spe_out_intr_mbox_status(<speid>);

40 LIBSPE Migration Guide

Function: spe_write_in_mbox

The spe_write_in_mbox function has been replaced in LIBSPE2.

Introduction

The spe_write_in_mbox function is replaced by the spe_in_mbox_write function.

The following table shows the changes required to migrate your code to the new

function:

 LIBSPE1 LIBSPE2

int spe_write_in_mbox(speid_t speid,

unsigned int data) function

int spe_in_mbox_write(spe_context_ptr_t

spe, unsigned int *mbox_data, int count,

unsigned int behavior) function

Set the mbox_data parameter to point to an

unsigned integer data

Set the behavior parameter to

SPE_MBOX_ANY_NONBLOCKING

speid_t typedef spe_context_ptr_t typedef

data parameter mbox_data parameter that contains the

address of the data parameter

LIBSPE1 PPU Example

#include <libspe.h>

...

speid_t <speid>;

unsigned int <data>;

...

spe_write_in_mbox(<speid>, <data>);

LIBSPE2 PPU Example

/* For passing an integer */

#include <libspe2.h>

#include <sync_utils.h>

...

spe_context_ptr_t <speid>;

unsigned int <data>;

...

spe_in_mbox_write(<speid>, &<data>, 1, SPE_MBOX_ANY_NONBLOCKING);

or,

/* For passing a 32-bit effective address low-order word */

#include <libspe2.h>

...

spe_context_ptr_t <speid>;

unsigned int <data>;

addr64 data_addr;

...

data_addr.ull = (unsigned long long)&<data>;

spe_in_mbox_write(<speid>, &data_addr.ui[1], 1, SPE_MBOX_ANY_NONBLOCKING);

Chapter 3. MFC Problem State Facilities 41

Function: spe_write_signal

The spe_write_signal function is replaced by the spe_signal_write function in

LIBSPE2.

Introduction

The following table shows how to migrate your code to the new spe_signal_write

function:

 LIBSPE1 LIBSPE2

int spe_write_signal(speid_t speid,

unsigned int signal_reg, unsigned int

data) function

int spe_signal_write(spe_context_ptr_t

spe, unsigned int signal_reg, unsigned

int data) function

speid_t typedef spe_context_ptr_t typedef

All other arguments Unchanged

LIBSPE1 PPU Example

#include <libspe.h>

...

speid_t <speid>;

unsigned int <signal_reg>;

unsigned int <data>;

...

spe_write_signal(<speid>, <signal_reg>, <data>);

LIBSPE2 PPU Example

#include <libspe2.h>

...

spe_context_ptr_t <speid>;

unsigned int <signal_reg>;

unsigned int <data>;

...

spe_signal_write(<speid>, <signal_reg>, <data>);

42 LIBSPE Migration Guide

Chapter 4. Examples

The following sections give complete program examples showing the migration

from LIBSPE1 to LIBSPE2.

© Copyright IBM Corp. 2007 43

Example: Non-threaded PPU/SPU application (non-embedded)

This is an example of a non-threaded PPU/SPU application.

Shared SPU Example

This is an SPU program. It is used by the LIBSPE2 example as the program named

teslibspe2hello.

#include<stdio.h>

int main(long long speid, void *argp, void *envp) {

 printf("\t\tHello World! speid=0x%llx, argp=%p, envp=%p\n", speid,

 argp, envp);

 return 0;

}

LIBSPE1 PPU Example

In LIBSPE1, defining and running a non-threaded SPU application is not possible.

All PPU applications must create a SPE thread using the spe_create_thread

function to launch an SPU application (see the following example). Alternatively,

you can launch a standalone SPU application from the PPU command line using

the elfspe capability.

LIBSPE2 PPU Example

#include <stdio.h>

#include <libspe2.h>

int main(void) {

 spe_context_ptr_t context;

 unsigned int entry = SPE_DEFAULT_ENTRY;

 spe_program_handle_t *program;

 spe_stop_info_t stop_info;

 context = spe_context_create(0, NULL);

 program = spe_image_open("testlibspe2hello");

 spe_program_load(context, program);

 spe_context_run(context, &entry, 0, NULL, NULL, &stop_info);

 spe_context_destroy(context);

 return 0;

}

The following is the output from the example:

Hello World! speid=0x181f008, argp=(nil), envp=(nil)

44 LIBSPE Migration Guide

Example: Single-threaded PPU/SPU application (non-embedded)

This is an example of a single-threaded PPU/SPU application.

Shared SPU Example

This is an SPU program. It is used by the LIBSPE1 example as the program named

testlibspe1hello and it is used by the LIBSPE2 example as the program named

testlibspe2hello.

#include<stdio.h>

int main(long long speid, void *argp, void *envp) {

 printf("\t\tHello World! speid=0x%llx, argp=%p, envp=%p\n", speid,

 argp, envp);

 return 0;

}

LIBSPE1 PPU Example

#include <stdio.h>

#include <libspe.h>

int main(void) {

 spe_program_handle_t *program;

 speid_t speid;

 int status;

 program = spe_open_image("testlibspe1hello");

 speid = spe_create_thread(SPE_DEF_GRP, program, NULL, NULL, -1, 0);

 spe_wait(speid, &status, 0);

 return 0;

}

LIBSPE2 PPU Example

A secondary function must be defined which is passed to the pthread_create

function. The secondary function should run the SPU context.

#include <stdio.h>

#include <libspe2.h>

#include <pthread.h>

void *ppu_pthread_function(void *arg) {

 spe_context_ptr_t context = *(spe_context_ptr_t *) arg;

 unsigned int entry = SPE_DEFAULT_ENTRY;

 spe_stop_info_t stop_info;

 spe_context_run(context, &entry, 0, NULL, NULL, &stop_info);

 pthread_exit(NULL);

}

int main(void) {

 spe_program_handle_t *program;

 spe_context_ptr_t context;

 int flags = 0;

 pthread_t pthread;

 context = spe_context_create(flags, NULL);

 program = spe_image_open("testlibspe2hello");

 spe_program_load(context, program);

 pthread_create(&pthread, NULL, &ppu_pthread_function, &context);

 pthread_join(pthread, NULL);

 spe_context_destroy(context);

 return 0;

}

Chapter 4. Examples 45

The following is the output from the example:

Hello World! speid=0x1812050, argp=(nil), envp=(nil)

46 LIBSPE Migration Guide

Example: Mailbox PPU/SPU

This is an SPU program. It is used by the LIBSPE1 example as the program named

testlibspe1mailbox and it is used by the LIBSPE2 example as the program named

testlibspe2mailbox.

Shared SPU Example

This example is shared by both LIBSPE1 and LIBSPE2. It is an SPU program.

#include <stdio.h>

#include <spu_mfcio.h>

int main(long long speid, void *argp, void *envp) {

 unsigned int data;

 printf("\t\tMailbox! speid=0x%llx, argp=%p, envp=%p\n", speid,

 argp, envp);

 printf("\t\tRead mailbox, waiting...\n");

 data = spu_read_in_mbox();

 printf("\t\tRead mailbox, data=%x\n", data);

 data++;

 printf("\t\tWrite mailbox, data=%x\n", data);

 spu_write_out_mbox(data);

 printf("\t\tWrite mailbox, completed\n");

 return 0;

}

LIBSPE1 PPU Example

#include <stdio.h>

#include <libspe.h>

int main(void) {

 spe_program_handle_t *program;

 speid_t speid;

 int status;

 int data;

 program = spe_open_image("testlibspe1mailbox");

 speid = spe_create_thread(SPE_DEF_GRP, program, NULL, NULL, -1, 0);

 data = 1;

 printf("Write mailbox, data=%x\n", data);

 spe_write_in_mbox(speid, data);

 printf("Write mailbox, completed\n");

 printf("Read mailbox, waiting...\n");

 while (spe_stat_out_mbox(speid) < 1);

 data = spe_read_out_mbox(speid);

 printf("Read mailbox, data=%x\n", data);

 spe_wait(speid, &status, 0);

 return 0;

}

LIBSPE2 PPU Example

#include <stdio.h>

#include <libspe2.h>

#include <pthread.h>

void *ppu_pthread_function(void *arg) {

 spe_context_ptr_t context = *(spe_context_ptr_t *) arg;

 unsigned int entry = SPE_DEFAULT_ENTRY;

 spe_stop_info_t stop_info;

 spe_context_run(context, &entry, 0, NULL, NULL, &stop_info);

 pthread_exit(NULL);

}

Chapter 4. Examples 47

int main(void) {

 spe_program_handle_t *program;

 spe_context_ptr_t context;

 int flags = 0;

 pthread_t pthread;

 unsigned int data;

 context = spe_context_create(flags, NULL);

 program = spe_image_open("testlibspe2mailbox");

 spe_program_load(context, program);

 pthread_create(&pthread, NULL, &ppu_pthread_function, &context);

 data = 1;

 printf("Write mailbox, data=%x\n", data);

 spe_in_mbox_write(context, &data, 1, SPE_MBOX_ANY_NONBLOCKING);

 printf("Write mailbox, completed\n");

 printf("Read mailbox, waiting...\n");

 while (spe_out_mbox_status(context) < 1);

 spe_out_mbox_read(context, &data, 1);

 printf("Read mailbox, data=%x\n", data);

 pthread_join(pthread, NULL);

 spe_context_destroy(context);

 return 0;

}

The following is the output from the example:

Write mailbox, data=1

Write mailbox, completed

Read mailbox, waiting...

 Mailbox! speid=0x1812050, argp=(nil), envp=(nil)

 Read mailbox, waiting...

 Read mailbox, data=1

 Write mailbox, data=2

 Write mailbox, completed

Read mailbox, data=2

48 LIBSPE Migration Guide

Appendix. Accessibility features

Accessibility features help users who have a physical disability, such as restricted

mobility or limited vision, to use information technology products successfully.

The following list includes the major accessibility features:

v Keyboard-only operation

v Interfaces that are commonly used by screen readers

v Keys that are tactilely discernible and do not activate just by touching them

v Industry-standard devices for ports and connectors

v The attachment of alternative input and output devices

IBM and accessibility

See the IBM Accessibility Center at http://www.ibm.com/able/ for more

information about the commitment that IBM has to accessibility.

© Copyright IBM Corp. 2007 49

http://www.ibm.com/able/

50 LIBSPE Migration Guide

Notices

This information was developed for products and services offered in the U.S.A.

The manufacturer may not offer the products, services, or features discussed in this

document in other countries. Consult the manufacturer’s representative for

information on the products and services currently available in your area. Any

reference to the manufacturer’s product, program, or service is not intended to

state or imply that only that product, program, or service may be used. Any

functionally equivalent product, program, or service that does not infringe any

intellectual property right of the manufacturer may be used instead. However, it is

the user’s responsibility to evaluate and verify the operation of any product,

program, or service.

The manufacturer may have patents or pending patent applications covering

subject matter described in this document. The furnishing of this document does

not give you any license to these patents. You can send license inquiries, in

writing, to the manufacturer.

For license inquiries regarding double-byte (DBCS) information, contact the

Intellectual Property Department in your country or send inquiries, in writing, to

the manufacturer.

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law: THIS

INFORMATION IS PROVIDED “AS IS ” WITHOUT WARRANTY OF ANY KIND,

EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE

IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR

FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of

express or implied warranties in certain transactions, therefore, this statement may

not apply to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. The manufacturer may make

improvements and/or changes in the product(s) and/or the program(s) described

in this publication at any time without notice.

Any references in this information to Web sites not owned by the manufacturer are

provided for convenience only and do not in any manner serve as an endorsement

of those Web sites. The materials at those Web sites are not part of the materials for

this product and use of those Web sites is at your own risk.

The manufacturer may use or distribute any of the information you supply in any

way it believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact the manufacturer.

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

© Copyright IBM Corp. 2007 51

The licensed program described in this information and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement, IBM License Agreement for

Machine Code, or any equivalent agreement between us.

Any performance data contained herein was determined in a controlled

environment. Therefore, the results obtained in other operating environments may

vary significantly. Some measurements may have been made on development-level

systems and there is no guarantee that these measurements will be the same on

generally available systems. Furthermore, some measurements may have been

estimated through extrapolation. Actual results may vary. Users of this document

should verify the applicable data for their specific environment.

Information concerning products not produced by this manufacturer was obtained

from the suppliers of those products, their published announcements or other

publicly available sources. This manufacturer has not tested those products and

cannot confirm the accuracy of performance, compatibility or any other claims

related to products not produced by this manufacturer. Questions on the

capabilities of products not produced by this manufacturer should be addressed to

the suppliers of those products.

All statements regarding the manufacturer’s future direction or intent are subject to

change or withdrawal without notice, and represent goals and objectives only.

The manufacturer’s prices shown are the manufacturer’s suggested retail prices, are

current and are subject to change without notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to

change before the products described become available.

This information contains examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious and any similarity to the names and addresses used by an actual business

enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which

illustrate programming techniques on various operating platforms. You may copy,

modify, and distribute these sample programs in any form without payment to the

manufacturer, for the purposes of developing, using, marketing or distributing

application programs conforming to the application programming interface for the

operating platform for which the sample programs are written. These examples

have not been thoroughly tested under all conditions. The manufacturer, therefore,

cannot guarantee or imply reliability, serviceability, or function of these programs.

CODE LICENSE AND DISCLAIMER INFORMATION:

The manufacturer grants you a nonexclusive copyright license to use all

programming code examples from which you can generate similar function

tailored to your own specific needs.

SUBJECT TO ANY STATUTORY WARRANTIES WHICH CANNOT BE

EXCLUDED, THE MANUFACTURER, ITS PROGRAM DEVELOPERS AND

SUPPLIERS, MAKE NO WARRANTIES OR CONDITIONS EITHER EXPRESS OR

52 LIBSPE Migration Guide

IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES

OR CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR

PURPOSE, AND NON-INFRINGEMENT, REGARDING THE PROGRAM OR

TECHNICAL SUPPORT, IF ANY.

UNDER NO CIRCUMSTANCES IS THE MANUFACTURER, ITS PROGRAM

DEVELOPERS OR SUPPLIERS LIABLE FOR ANY OF THE FOLLOWING, EVEN

IF INFORMED OF THEIR POSSIBILITY:

1. LOSS OF, OR DAMAGE TO, DATA;

2. SPECIAL, INCIDENTAL, OR INDIRECT DAMAGES, OR FOR ANY

ECONOMIC CONSEQUENTIAL DAMAGES; OR

3. LOST PROFITS, BUSINESS, REVENUE, GOODWILL, OR ANTICIPATED

SAVINGS.

SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OR LIMITATION OF

DIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, SO SOME OR ALL

OF THE ABOVE LIMITATIONS OR EXCLUSIONS MAY NOT APPLY TO YOU.

Each copy or any portion of these sample programs or any derivative work, must

include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.

Sample Programs. © Copyright IBM Corp. _enter the year or years_. All rights

reserved.

If you are viewing this information in softcopy, the photographs and color

illustrations may not appear.

Edition notices

© Copyright International Business Machines Corporation 2007. All rights

reserved.

U.S. Government Users Restricted Rights — Use, duplication, or disclosure

restricted by GSA ADP Schedule Contract with IBM Corp.

Trademarks

The following terms are trademarks of International Business Machines

Corporation in the United States, other countries, or both:

developerWorks

IBM

PowerPC

PowerPC Architecture

Resource Link

Cell Broadband Engine™ and Cell/B.E. are trademarks of Sony Computer

Entertainment, Inc., in the United States, other countries, or both and is used under

license therefrom.

Intel®, MMX, and Pentium® are trademarks of Intel Corporation in the United

States, other countries, or both.

Notices 53

Java™ and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in

the United States, other countries, or both.

Linux® is a trademark of Linus Torvalds in the United States, other countries, or

both.

Red Hat, the Red Hat “Shadow Man” logo, and all Red Hat-based trademarks and

logos are trademarks or registered trademarks of Red Hat, Inc., in the United

States and other countries.

UNIX® is a registered trademark of The Open Group in the United States and

other countries.

Other company, product or service names may be trademarks or service marks of

others.

Terms and conditions

Permissions for the use of these publications is granted subject to the following

terms and conditions.

Personal Use: You may reproduce these publications for your personal,

noncommercial use provided that all proprietary notices are preserved. You may

not distribute, display or make derivative works of these publications, or any

portion thereof, without the express consent of the manufacturer.

Commercial Use: You may reproduce, distribute and display these publications

solely within your enterprise provided that all proprietary notices are preserved.

You may not make derivative works of these publications, or reproduce, distribute

or display these publications or any portion thereof outside your enterprise,

without the express consent of the manufacturer.

Except as expressly granted in this permission, no other permissions, licenses or

rights are granted, either express or implied, to the publications or any data,

software or other intellectual property contained therein.

The manufacturer reserves the right to withdraw the permissions granted herein

whenever, in its discretion, the use of the publications is detrimental to its interest

or, as determined by the manufacturer, the above instructions are not being

properly followed.

You may not download, export or re-export this information except in full

compliance with all applicable laws and regulations, including all United States

export laws and regulations.

THE MANUFACTURER MAKES NO GUARANTEE ABOUT THE CONTENT OF

THESE PUBLICATIONS. THESE PUBLICATIONS ARE PROVIDED ″AS-IS″ AND

WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,

INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF

MERCHANTABILITY, NON-INFRINGEMENT, AND FITNESS FOR A

PARTICULAR PURPOSE.

54 LIBSPE Migration Guide

Related documentation

This topic helps you find related information.

Document location

Links to documentation for the SDK are provided on the developerWorks® Web

site located at:

http://www.ibm.com/developerworks/power/cell/

Click on the Docs tab.

The following documents are available, organized by category:

Architecture

v Cell Broadband Engine Architecture

v Cell Broadband Engine Registers

v SPU Instruction Set Architecture

Standards

v C/C++ Language Extensions for Cell Broadband Engine Architecture

v SPU Assembly Language Specification

v SPU Application Binary Interface Specification

v SIMD Math Library Specification for Cell Broadband Engine Architecture

v Cell Broadband Engine Linux Reference Implementation Application Binary Interface

Specification

Programming

v Cell Broadband Engine Programming Handbook

v Programming Tutorial

v SDK for Multicore Acceleration Version 3.0 Programmer’s Guide

Library

v SPE Runtime Management library

v SPE Runtime Management library Version 1 to Version 2 Migration Guide

v Accelerated Library Framework for Cell Programmer’s Guide and API Reference

v Accelerated Library Framework for Hybrid-x86 Programmer’s Guide and API Reference

v Data Communication and Synchronization for Cell Programmer’s Guide and API

Reference

v Data Communication and Synchronization for Hybrid-x86 Programmer’s Guide and

API Reference

v SIMD Math Library Specification

v Monte Carlo Library API Reference Manual (Prototype)

Installation

v SDK for Multicore Acceleration Version 3.0 Installation Guide

© Copyright IBM Corp. 2007 55

http://www.ibm.com/developerworks/power/cell/

IBM XL C/C++ Compiler and IBM XL Fortran Compiler

Detail about documentation for the compilers is available on the developerWorks

Web site.

IBM Full-System Simulator and debugging documentation

Detail about documentation for the simulator and debugging tools is available on

the developerWorks Web site.

PowerPC® Base

v PowerPC Architecture™ Book, Version 2.02

– Book I: PowerPC User Instruction Set Architecture

– Book II: PowerPC Virtual Environment Architecture

– Book III: PowerPC Operating Environment Architecture

v PowerPC Microprocessor Family: Vector/SIMD Multimedia Extension Technology

Programming Environments Manual Version 2.07c

56 LIBSPE Migration Guide

Glossary

This glossary contains terms and abbreviations

used in LIBSPE and Cell/B.E. systems.

ELF

Executable and Linking Format. The standard

object format for many UNIX operating systems,

including Linux. Compilers generate ELF files.

Linkers link to files with ELF files in libraries.

Systems run ELF files.

Gang context

The SPE gang context is one of the base data

structures for the LIBSPE implementation. It holds

all persistent information about a group of SPE

contexts that should be treated as a gang, that is,

be executed together with certain properties. This

data structure should not be accessed directly;

instead the application uses a pointer to an SPE

gang context as an identifier for the SPE gang it is

dealing with through LIBSPE API calls.

LS

Local Store. The 256-KB local store associated

with each SPE. It holds both instructions and

data.

Main thread

The application’s main thread. In many cases,

CBEA programs are multi-threaded using

multiple SPEs running concurrently. A typical

scenario is that the application consists of a main

thread that creates as many SPE threads as

needed and ″orchestrates″ them.

MFC

Memory Flow Controller. Part of an SPE which

provides two main functions: it moves data via

DMA between the SPE’s local store (LS) and main

storage, and it synchronizes the SPU with the rest

of the processing units in the system.

PPE

PowerPC Processor Element. The general-purpose

processor in the Cell/B.E. processor.

SPE

Synergistic Processor Element. It includes a SPU,

a MFC, and a LS.

SPE context

The SPE context is one of the base data structures

for the LIBSPE implementation. It holds all

persistent information about a ″logical SPE″ used

by the application. This data structure should not

be accessed directly; instead the application uses a

pointer to an SPE context as an identifier for the

″logical SPE″ it is dealing with through LIBSPE

API calls.

SPE event

In a multi-threaded environment, it is often

convenient to use an event mechanism for

asynchronous notification. A common usage is

that the main thread sets up an event handler to

receive notification about certain events caused by

the asynchronously running SPE threads. The

current library supports events to indicate that an

SPE has stopped execution, mailbox messages

being written or read by an SPE, and

PPE-initiated DMA operations have completed.

SPE thread

A thread scheduled and run on a SPE. A program

has one or more SPE threads. Each such thread

has its own SPU local store (LS), 128 x 128-bit

register file, program counter, and MFC

Command Queues, and it can communicate with

other execution units (or with effective-address

memory through the MFC channel interface). The

API call spe_context_run is a synchronous,

blocking call from the perspective of the thread

using it, that is, while an SPE program is

executed, the associated SPE thread blocks and is

usually put to ″sleep″ by the operating system.

SPU

Synergistic Processor Unit. The part of an SPE

that executes instructions from its local store (LS).

© Copyright IBM Corp. 2007 57

58 LIBSPE Migration Guide

Index

A
affinity 1, 11

C
conventions 1

D
documentation 55

E
examples 43

G
gang contexts 1

gangs 11

M
mailbox PPU/SPU 47

MFC problem state 33

N
non-threaded PPU/SPU 44

S
SDK documentation 55

single-threaded PPU/SPU 45

SPE thread management 5

spe_close_image 25

spe_count_physical_spes 6

spe_create_group 7

spe_create_thread 8

spe_destroy_group 10

spe_get_affinity 11

spe_get_app_data 26

spe_get_context 14

spe_get_event 15

spe_get_group 17

spe_get_ls 18

spe_get_policy 20

spe_get_priority 20

spe_get_ps_area 19

spe_get_threads 21

spe_gid_t 30

spe_group_default 22

spe_group_max 23

spe_kill 24

spe_mfc_get 34

spe_mfc_getb 34

spe_mfc_getf 34

spe_mfc_put 36

spe_mfc_putb 36

spe_mfc_putf 36

spe_mfc_read_tag_status_all 38

spe_mfc_read_tag_status_any 38

spe_mfc_read_tag_status_immediate 38

spe_open_image 25

spe_program_handle_t 31

spe_read_out_mbox 39

spe_set_affinity 11

spe_set_app_data 26

spe_set_context 14

spe_set_priority 20

spe_stat_in_mbox 40

spe_stat_out_intr_mbox 40

spe_stat_out_mbox 40

spe_wait 28

spe_write_in_mbox 41

spe_write_signal 42

speid_t 29

© Copyright IBM Corp. 2007 59

60 LIBSPE Migration Guide

����

Printed in USA

SC33-8332-01

	Contents
	About this publication
	How to send your comments

	Chapter 1. Introduction
	Why has LIBSPE changed?
	Conventions

	Chapter 2. SPE Thread Management Facilities
	Function: spe_count_physical_spes
	Function: spe_create_group
	Function: spe_create_thread
	Function: spe_destroy_group
	Function: spe_get_affinity, spe_set_affinity
	Function: spe_get_context, spe_set_context
	Function: spe_get_event
	Function: spe_get_group
	Function: spe_get_ls
	Function: spe_get_ps_area
	Function: spe_get_priority, spe_set_priority, spe_get_policy
	Function: spe_get_threads
	Function: spe_group_defaults
	Function: spe_group_max
	Function: spe_kill
	Function: spe_open_image, spe_close_image
	Function: spe_set_app_data, spe_get_app_data
	Function: spe_wait
	Typedef: speid_t
	Typedef: spe_gid_t
	Typedef: spe_program_handle_t

	Chapter 3. MFC Problem State Facilities
	Function: spe_mfc_get, spe_mfc_getb, spe_mfc_getf
	Function: spe_mfc_put, spe_mfc_putb, spe_mfc_putf
	Function: spe_mfc_read_tag_status_all, spe_mfc_read_tag_status_any, spe_mfc_read_tag_status_immediate
	Function: spe_read_out_mbox
	Function: spe_stat_in_mbox, spe_stat_out_mbox, spe_stat_out_intr_mbox
	Function: spe_write_in_mbox
	Function: spe_write_signal

	Chapter 4. Examples
	Example: Non-threaded PPU/SPU application (non-embedded)
	Example: Single-threaded PPU/SPU application (non-embedded)
	Example: Mailbox PPU/SPU

	Appendix. Accessibility features
	Notices
	Edition notices
	Trademarks
	Terms and conditions

	Related documentation
	Glossary
	Index

