
Software Development Kit for Multicore Acceleration

Version 3.1

Performance Tools Reference

SC34-2565-00

���

Software Development Kit for Multicore Acceleration

Version 3.1

Performance Tools Reference

SC34-2565-00

���

Note

Before using this information and the product it supports, read the information in “Notices” on page 73.

Edition notice

This edition applies to version 3, release 1, modification 0 of the IBM Software Development Kit for Multicore

Acceleration (Product number 5724-S84) and to all subsequent releases and modifications until otherwise indicated

in new editions.

This edition replaces SC33-8427-01.

© Copyright International Business Machines Corporation 2007, 2008.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Preface v

About this publication v

Supported platforms v

Supported languages v

Beta-level (unsupported) environments v

Getting support v

Related documentation vi

Chapter 1. Cell Broadband Engine

Performance Debugging Tool (PDT) . . . 1

Introduction 1

Components high level description 1

Tracing facility 2

Trace processing 2

Visualization 3

PDT tracing-facility package directory structure . . . 4

Configuring the PDT kernel module (Red Hat

Enterprise Linux (RHEL) 5.2 only) 4

PDT example usage 5

Enabling the PDT tracing facility for a new

application 5

Compilation and application building 5

Running a program with trace-enabled PDT

libraries 7

Running a program with SPE profiling 8

Configuring the PDT for an application run 9

Using the tracing API 10

Essential definitions 11

Application programmer API 11

Library developer API 13

Installing and using the PDT trace facility on the

x86_64 (Opteron) 15

Using the PDT on Hybrid-x86 example 15

PDT Restrictions 16

Using the PDTR tool (pdtr command) 16

Chapter 2. Feedback Directed Program

Restructuring (FDPR-Pro) 19

Introduction 19

Input files 20

Instrumentation and profiling 20

Optimizations 20

Instrumentation and optimization options . . . 21

Profiling SPE executable files 21

Processing PPE/SPE executable files 21

Human-readable output 22

Running fdprpro from the IDE 23

Cross-development with FDPR-Pro 23

Chapter 3. OProfile 25

SPU profiling restrictions 25

SPU report anomalies 26

Chapter 4. Cell-perf-counter tool 27

Chapter 5. Hybrid performance tools 29

Overview 29

Requirements 29

Setting up and configuring the performance tool

scripts 30

Hybrid tools description 31

CPC hybrid support 32

FDPR-Pro hybrid support 34

OProfile hybrid support 36

PDT support for hybrid 39

PDTR support for Hybrid 42

Chapter 6. Performance tools example 45

FFT16M sample application 45

Preparing and building for profiling 45

Creating and working with profile data 48

Collecting data with CPC 48

Displaying the CPC report in VPA 49

Collecting data with OProfile 50

Displaying the OProfile report in VPA 51

Using FDPR-Pro to gather frequency information 53

Analyzing and displaying FDPR-Pro frequency

information in VPA 54

Creating and working with trace data 59

Appendix A. PDT troubleshooting . . . 65

Appendix B. Related documentation . . 69

Appendix C. Accessibility features . . . 71

Notices 73

Trademarks 75

Terms and conditions 76

Glossary 77

Index 83

© Copyright IBM Corp. 2007, 2008 iii

iv Cell/B.E.Performance Tools Reference

Preface

The IBM® Software Development Kit for Multicore Acceleration Version 3.1 (SDK

3.1) is a complete package of tools to enable you to program applications for the

Cell Broadband Engine™ (Cell/B.E.) processor. The Software Development Kit for

Multicore Acceleration is composed of development tool chains, software libraries

and sample source files, a system simulator, and a Linux® kernel, all of which fully

support the capabilities of the Cell Broadband Engine Architecture.

About this publication

This publication describes the various performance tools provided to optimize

your applications for the Cell Broadband Engine Architecture.

Supported platforms

Cell Broadband Engine Architecture applications can be developed on these

platforms.

v X86

v X86_64

v 64-bit PowerPC® (PPC64)

v IBM BladeCenter® QS21

v IBM BladeCenter QS22

Supported languages

The supported languages are:

v C/C++

v Assembler

v Fortran

v ADA (Power Processing Element (PPE) Only)

Note: Although C++ and Fortran are supported, take care when you write code

for the Synergistic Processing Units (SPUs) because many of the C++ and Fortran

libraries are too large for the 256 KB local storage memory available.

Beta-level (unsupported) environments

This publication contains documentation that may be applied to certain

environments on an ″as-is″ basis. Those environments are not supported by IBM,

but wherever possible, workarounds to problems are provided in the respective

forums.

Getting support

The SDK is supported through the CBEA architecture forum on the

developerWorks® Web site at http://www.ibm.com/developerworks/power/cell/.

Commercial support from IBM is available if you purchased the SDK from

Passport Advantage®.

© Copyright IBM Corp. 2007, 2008 v

http://www.ibm.com/developerworks/power/cell/

The XL C/C++ compilers are supported through the XL compiler Web site. See

http://www.ibm.com/software/awdtools/xlcpp/support/.

The XL Fortran compiler is supported through the XL compiler Web site. See

http://www.ibm.com/software/awdtools/fortran/support/.

This version of the SDK supersedes all versions of the SDK that were available

from alphaWorks®.

If you have a problem with the IBM BladeCenter QS21 or BladeCenter QS22 that

you think is caused by running the Barcelona Supercomputing Center kernel on

Fedora 9, report a bug to the public cbe-oss-dev@ozlabs.org mailing list. Archives

and subscription information for this list are available from https://ozlabs.org/
mailman/listinfo/cbe-oss-dev/. Since Fedora 9 is not a supported IBM product,

IBM provides no guaranteed reply or target dates for fixes for this configuration.

Commercial support is available for Red Hat Enterprise Linux (RHEL) 5.2.

Related documentation

This topic helps you find related information.

Document location

Links to documentation for the SDK are provided on the IBM developerWorks Web

site located at:

http://www.ibm.com/developerworks/power/cell/

Click the Docs tab.

The following documents are available, organized by category:

Architecture

v Cell Broadband Engine Architecture

v Cell Broadband Engine Registers

v SPU Instruction Set Architecture

Standards

v C/C++ Language Extensions for Cell Broadband Engine Architecture

v Cell Broadband Engine Linux Reference Implementation Application Binary Interface

Specification

v SIMD Math Library Specification for Cell Broadband Engine Architecture

v SPU Application Binary Interface Specification

v SPU Assembly Language Specification

Programming

v Cell Broadband Engine Programmer’s Guide

v Cell Broadband Engine Programming Handbook

v Cell Broadband Engine Programming Tutorial

Library

v Accelerated Library Framework for Cell Broadband Engine Programmer’s Guide and

API Reference

vi Cell/B.E.Performance Tools Reference

http://www.ibm.com/software/awdtools/xlcpp/support/
http://www.ibm.com/software/awdtools/fortran/support/
https://ozlabs.org/mailman/listinfo/cbe-oss-dev/
https://ozlabs.org/mailman/listinfo/cbe-oss-dev/
http://www.ibm.com/developerworks/power/cell/

v Basic Linear Algebra Subprograms Programmer’s Guide and API Reference

v Data Communication and Synchronization for Cell Broadband Engine Programmer’s

Guide and API Reference

v Example Library API Reference

v Fast Fourier Transform Library Programmer’s Guide and API Reference

v LAPACK (Linear Algebra Package) Programmer’s Guide and API Reference

v Mathematical Acceleration Subsystem (MASS)

v Monte Carlo Library Programmer’s Guide and API Reference

v SDK 3.0 SIMD Math Library API Reference

v SPE Runtime Management Library

v SPE Runtime Management Library Version 1 to Version 2 Migration Guide

v SPU Runtime Extensions Library Programmer’s Guide and API Reference

v Three dimensional FFT Prototype Library Programmer’s Guide and API Reference

Installation

v SDK for Multicore Acceleration Version 3.1 Installation Guide

Tools

v Getting Started - XL C/C++ for Multicore Acceleration for Linux

v Compiler Reference - XL C/C++ for Multicore Acceleration for Linux

v Language Reference - XL C/C++ for Multicore Acceleration for Linux

v Programming Guide - XL C/C++ for Multicore Acceleration for Linux

v Installation Guide - XL C/C++ for Multicore Acceleration for Linux

v Getting Started - XL Fortran for Multicore Acceleration for Linux

v Compiler Reference - XL Fortran for Multicore Acceleration for Linux

v Language Reference - XL Fortran for Multicore Acceleration for Linux

v Optimization and Programming Guide - XL Fortran for Multicore Acceleration for

Linux

v Installation Guide - XL Fortran for Multicore Acceleration for Linux

v Performance Analysis with the IBM Full-System Simulator

v IBM Full-System Simulator User’s Guide

v IBM Visual Performance Analyzer User’s Guide

IBM PowerPC Base

v IBM PowerPC Architecture Book

– Book I: PowerPC User Instruction Set Architecture

– Book II: PowerPC Virtual Environment Architecture

– Book III: PowerPC Operating Environment Architecture

v IBM PowerPC Microprocessor Family: Vector/SIMD Multimedia Extension Technology

Programming Environments Manual

Preface vii

viii Cell/B.E.Performance Tools Reference

Chapter 1. Cell Broadband Engine Performance Debugging

Tool (PDT)

This section describes the Cell Broadband Engine (Cell/B.E.) Performance

Debugging Tool (PDT) usage, how to configure it, and how to enable the tool.

Introduction

Introduction to the Performance Debugging Tool

The Cell/B.E. environment enables several levels of parallelism:

v A cluster of Cell/B.E. processors executing a parallel application

v A Cell/B.E. running a parallel program that simultaneously utilizes the Power

Processor Element (PPE) and the eight Synergistic Processor Elements (SPEs)

v A PPE or an SPE utilizing the vector units

Writing applications that utilize such multilevel parallelism effectively, and

understanding the performance behavior of such a system, is a challenge. The

objective of the Cell/B.E. PDT is to provide programmers with a means of

analyzing the execution of such a system and tracking problems in order to

optimize execution time and utilization of resources.

This version of the PDT addresses performance debugging of one Cell/B.E.

processor with two PPEs that share the main memory, run under the same Linux

operating system, and share up to 16 SPEs. The PDT also enables event tracing on

the x86_64 (Opteron) as well as the Hybrid environment..

Performance analysis is usually based on profiling or tracing. The PDT provides

tracing means for recording significant events during program execution and

maintaining the sequential order of events. The main objective of the PDT is to

provide the ability to trace events of interest, in real time, and record relevant data

from the SPEs and PPE. This objective is achieved by instrumenting the code that

implements key functions of the events on the SPEs and PPE and collecting the

trace records. This instrumentation requires additional communication between the

SPEs and PPE as trace records are collected in the PPE memory. Tracing 16 SPEs

using one central PPE might lead to a heavy load on the PPE, and therefore, might

influence the performance of your application. The PDT is designed to reduce the

tracing execution load and provide a means for throttling the tracing activity on

the PPE and each SPE. In addition, the SPE tracing code size is minimized so that

it fits into the small SPE local store.

Tracing is enabled at the application level (user space). After the application has

been enabled, the tracing facility trace data is gathered every time the application

runs.

Note: Tracing can produce a very large amount of data.

Components high level description

The Cell/B.E. PDT package contains a tracing facility and a trace analyzer (TA)

which is part of the Visual Performance Analyzer (VPA) tool.

© Copyright IBM Corp. 2007, 2008 1

In addition to the TA, other tools may process and analyze the trace files generated

by the tracing facility. The SDK includes the PDT trace Reader/post-processor

(PDTR) tool that provides trace-event listings and various summary reports,

including lock analysis.

Tracing facility

How to enable tracing of events.

The following SDK libraries have trace-enabled versions available, that you can use

for event tracing:

v On the PPE: DaCS, ALF, libspe2, and libsync

v On the SPE: DaCS, ALF, libsync, the spu_mfcio header file, and the overlay

manager

v On X86_64 (Opteron): DaCS and ALF

Performance events are captured by the SDK functions that are already

instrumented for tracing. These functions include:

v SPEs activation

v DMA transfers

v Synchronization

v Signaling

v User-defined events

A full list of events is found in the reference configuration file of PDT. You must

compile and link statically-linked applications with the trace-enabled libraries. You

do not need to rebuild applications which use shared libraries.

Note: The SPE code is always statically linked, and therefore must be recompiled

and linked.

Before each application run, you can configure the PDT to trace events of interest.

You can also use the PDT API to dynamically control the tracing.

During the application run, the PPE and SPE trace records are gathered in a

memory-mapped (mmap) file in the PPE memory. These records are written into the

file system when appropriate. The event-records order is maintained in this file.

The SPEs use efficient DMA transfers to write the trace records into the mmap file.

The trace records are written in the trace file using a format that is set by an

external definition (using an XML file). The PDTR and TA tools, that use PDT

traces as input, use the same format definition for visualization and analysis.

Trace processing

The TA processes the trace for analysis and visualization. This processing generates

interval records from some of the event records in the trace (for example, SPE

thread life intervals, wait intervals, and so on) as well as adding context

parameters (for example, estimated wall clock time, unique SPE thread IDs, and so

on) to individual records.

The SDK also provides the PDTR Trace Analyzer program. This command-line tool

runs natively on the Cell/B.E.and is provided to view and post-process PDT traces

(which enables local PDT trace analysis). The PDTR tool provides both sequential

and event-by-event PDT trace text output. It also provides postprocessing

summary reports based on specific instrumentation events.

2 Cell/B.E.Performance Tools Reference

Visualization

Traces can be viewed with the Eclipse-based VPA tool using the Trace Analyzer

perspective. This tool provides a means for graphical and textual visualization of

trace events over time. You can view the details that have been recorded in the

trace for each event.

The graphical timeline view in the trace visualization has time as the x axis, and

the PPE and SPEs as rows in the y axis. Each event interval is shown as a colored

bar the width of which represents its time duration. The colors in the color legend

determine the type of event interval. The following figure is a snapshot of the TA

GUI for the FFT16M workload.

 The textual trace overview lists all the PPE and SPE events in order of appearance

in the trace. If you select an event, it is highlighted the graphical timeline view and

the fields of the event record are displayed in the record details view.

For additional information about trace visualization, refer to the IBM Visual

Performance Analyzer User Guide available from IBM alphaWorks:

http://www.alphaworks.ibm.com/tech/vpa

Figure 1. Trace Analyzer GUI for the FFT16M workload

Chapter 1. Cell Broadband Engine Performance Debugging Tool (PDT) 3

http://www.alphaworks.ibm.com/tech/cellsw

PDT tracing-facility package directory structure

The tracing-facility package is part of the SDK. Use the following tables to locate

the directories for the tracing-facility package.

 Table 1. Tracing-facility directories on a Cell/B.E. system

Use Cell/B.E. Host

PDT development trace includes /usr/include/trace

PDT production trace libraries /usr/lib/trace

PDT production trace 64 bit libraries /usr/lib64/trace

PDT SPU development trace includes /usr/spu/include/trace

PDT SPU development trace libraries /usr/spu/lib/trace

PDT configuration /usr/share/pdt/config

PDT examples /opt/cell/sdk/src/pdt-cell-examples.tar

 Table 2. Tracing-facility directories on a cross system

Use Cross x86 to Cell/B.E.

PDT development trace includes /opt/cell/sysroot/usr/include/trace

PDT production trace libraries /opt/cell/sysroot/usr/lib/trace

PDT production trace 64 bit libraries /opt/cell/sysroot/usr/lib64/trace

PDT SPU development trace includes /opt/cell/sysroot/usr/spu/include/trace

PDT SPU development trace libraries /opt/cell/sysroot/usr/spu/lib/trace

PDT configuration /opt/cell/sysroot/usr/share/pdt/config

PDT examples /opt/cell/sdk/src/pdt-cell-examples.tar

 Table 3. Tracing-facility directories on an X86_64 (Opteron) system

Use Opteron Host

PDT development trace includes /usr/include/trace

PDT production trace libraries /usr/lib/trace

PDT production trace 64 bit libraries /usr/lib64/trace

PDT configuration /usr/share/pdt/config

PDT examples /opt/cell/sdk/src/pdt-opteron-
example.tar

Configuring the PDT kernel module (Red Hat Enterprise Linux

(RHEL) 5.2 only)

The PDT kernel module is a Linux-extension-kernel module that allows the PDT to

be synchronized with the Linux SPE context switches. The kernel module is

compiled and linked in the pdt.ko file, and is shipped in the /usr/lib/modules/

directory.

The application loads the PDT kernel module before the tracing starts and removes

it when the application ends. Because module insertion and removal require super

user (root) permissions, this operation requires the sudo facility. The call to the sudo

facility is integrated within the PDT.

4 Cell/B.E.Performance Tools Reference

To install the facility, update the /etc/sudoers file, using the visudo editor, as

follows:

ALL ALL=(ALL) NOPASSWD: /sbin/insmod /usr/lib/modules/pdt.ko, /sbin/rmmod pdt

Note:

1. If an application terminates abnormally, the kernel module remains loaded. It is

removed at the next run, and a new instance is inserted.

2. The context switch notification for RHEL 5.2 is implemented so that only one

user can activate the tracing facility at a time. Therefore, multiuser usage is

forbidden, but there is no protection against it.

3. If the kernel module is not installed, the TA does not show the SPE utilization

correctly because the events are not aligned in time; however, a trace is created.

4. The kernel module is not required in Fedora 9 or newer versions.

PDT example usage

The PDT package contains a sample application in the /opt/cell/sdk/src/pdt-
cell-examples.tar file. After installation, it is recommended that you compile and

run the application, and then use the TA and PDTR tools to examine the PDT

output.

Each example includes a pdt script file that you can use to compile and run an

available application. You can also study the script as a usage example, or

modified it to run your own applications. For example, use the SDK make.footer

file or an explicit Makefile. You can use the Makefile provided with the examples

as a reference. It contains a sample configuration file, and a full reference

configuration file named pdt_cbe_configuration.xml is located in the

/usr/share/pdt/config directory. Copy the configuration file to your working

directories and modify it as needed.

Enabling the PDT tracing facility for a new application

How to enable tracing in your application.

The PDT tracing facility is designed to minimize the effort that is needed to enable

the tracing facility for a given application. In most cases, no code changes or

additions are necessary. However, because the SPE code is statically linked and the

PDT uses a different spu_mfcio.h file, you must recompile the SPE code. In

addition, if the SPE executable is embedded in the PPE code, you must relink the

PPE code.

Compilation and application building

You only need to change your source code if user-defined events or dynamic-trace

control are used. For a cross-development environment, root (/) is defined as

/opt/cell/sysroot/.

The examples provided as part of the PDT package can be used as reference to the

following sections.

Compiling SPE code

How to compile SPE code

To compile SPE code, do the following:

1. Add the following compilation flags to your Makefile:

Chapter 1. Cell Broadband Engine Performance Debugging Tool (PDT) 5

-Dmain=_pdt_main -Dexit=_pdt_exit -DMFCIO_TRACE

Note: Add -DLIBSYNC_TRACE if any libsync function (from the libsync.h include

file) is used inline.

2. Add the compiler include option (-I/usr/spu/include/trace) as the first

location in the compile command line.

3. Add the libtrace.a library (from the /usr/spu/lib/trace directory) and any

other instrumented libraries, to the linkage of the executable file.

4. If overlays are used, add spu_ovl.o (from the /usr/spu/lib/trace directory) to

the spu linking stage.

Certain SPU applications, in combination with certain libraries, may present a

linking problem when using the PDT. For example, when instrumenting with the

PDT, an SPU application that uses a wrapping library (such as ALF), can create a

circular dependency. The solution is to specify the trace library twice: once before

the wrapping library and once after it. For example:

spu-gcc -o alf_hello_world_spumain_spu.o -L/usr/spu/lib/trace -ltrace \

 -lalf -L/usr/spu/lib/trace -Wl, -N -ltrace

You can also use the following option to enable the linker for circular-dependencies

search:

-Wl,-\(-lalf -ltrace -Wl,-\)

The following two statements give you more examples of how to compile SPE

code.

spu-gcc -O -c spe_test.c -W -Wno-main -g -I/usr/spu/include/trace \

 -Dmain=_pdt_main -Dexit=_pdt_exit -DMFCIO_TRACE -DLIBSYNC_TRACE \

 -I. -I/opt/cell/sdk/usr/spu/include

spu-gcc -O spe_test.o -o spe_test -W -Wno-main -g \

 -I/usr/spu/include/trace -Dmain=_pdt_main -Dexit=_pdt_exit \

 -DMFCIO_TRACE -DLIBSYNC_TRACE -I. -I/opt/cell/sdk/usr/spu/include \

 -Wl,-N -Wl,-q -L/usr/spu/lib/trace -ltrace

Compiling PPE code

Compilation of the PPE code is needed only if the tracing API is used in the

program or when inline instrumented library functions are used.

To compile PPE code, do the following:

1. If any libsync functions (from the libsync.h include file) is used inline, add the

following compilation flags to your Makefile:

-DLIBSYNC_TRACE

2. Add the compiler include option (-I/usr/include/trace) as the first location in

the compile command line.

3. Add the -L/usr/lib/trace (or -L/usr/lib64/trace for 64 bit applications) flags

to the linkage process. If using the trace-enabled libsync,also add

-L/opt/cell/sdk/usr/lib[64]/trace

To enable the Trace Analyzer to link between events and the source code, rebuild

the application using the linking relocation flags (for SPE and PPE). Use the -g flag

for compilation and the -g -Wl,-q flags for linking. Do not use the -s stripping

option.

A linking problem may occur when some SPU applications are combined with

certain librarie whenusing the PDT. For example, when instrumenting with the

PDT, an SPU application that uses a wrapping library, such as ALF, can create a

6 Cell/B.E.Performance Tools Reference

circular dependency. The solution is to specify the trace library twice: once before

the wrapping library and once after. For example:

spu-gcc -o alf_hello_world_spumain_spu.o -L/usr/spu/lib/trace -ltrace \

 -lalf -L/usr/spu/lib/trace -Wl, -N -ltrace

An alternative is to use the following option to enable the linker for

circulate-dependencies search:

-Wl,-\(-lalf -ltrace -Wl,-\)

Running a program with trace-enabled PDT libraries

The PDT package provides a script file called pdt which is located in the pdt

examples tar file, /opt/cell/sdk/src/pdt-examples.tar. You can use it to compile

and run trace-enabled applications, or refer to it as a reference to the following

explicit instructions.

You can copy the pdt script to your development environment, modify it if

necessary, and run it. Here are the usage instructions for this:

pdt [options] execution_file [execution_parameters]

OPTIONS

 -h

 Print help

 -m [[-f make_file_ name] -b [32 | 64]]

 Build the application after clean, using Makefile or the optional make_file_name.

 Compilation target architecture width can be provided using the -b option (32 or 64 bits).

 Default is 64 bits. This option is based on the use of the COMPILATION_BITS enevironment

 variable in the make file.

 -c configuration_file

 Set the PDT configuration file for this run. Default is

 /usr/share/pdt/config/pdt_cbe_configuration.

 -o output_directory

 Set the output directory for the trace files. Default is the current directory.

 -p prefix

 Set the prefix for the trace files. Default is none (use the prefix that is set

 in the configuration file).

To enable the program to use the PDT libraries after the rebuild process, do the

following:

1. Set the following environment variables for the PDT before you run the

program:

LD_LIBRARY_PATH

This is a colon separated list of directories that the runtime loader

search for libraries. The full path to the trace library location is

required: /usr/lib/trace (or /usr/lib64/trace for 64 bit applications).

 Add also the directories of other trace-enabled libraries such as libsync,

located in /opt/cell/sdk/usr/lib/trace (or /opt/cell/sdk/usr/lib64/
trace for 64 bit applications). The list is colon separated. For example,

LD_LIBRARY_PATH=/usr/lib64/trace:/opt/cell/sdk/usr/lib64/trace.

PDT_CONFIG_FILE

The full path to the PDT configuration file for the application run. The

PDT package contains a pdt_cbe_configuration.xml file in the

/usr/share/pdt/config directory that can be used without

modification, or copied and modified for each application run. For

Chapter 1. Cell Broadband Engine Performance Debugging Tool (PDT) 7

more information on PDT configuration, see “Configuring the PDT for

an application run” on page 9 below.

PDT_TRACE_OUTPUT (optional)

The full path to the PDT output directory. The directory must exist

before the application runs.

PDT_OUTPUT_PREFIX (optional)

This variable is used to add a prefix to the PDT output file names.
2. Modify the pdt configuration file for the application, if desired.

3. Run the program.

The PDT libraries produces trace files in a directory that is defined by the

environment variable PDT_TRACE_OUTPUT. If this environment variable is not

defined, the output location is taken from the definition provided by the

output_dir attribute in the PDT configuration file. If neither is defined, the current

path is used. The output directory must exist before the application runs, and the

user must have write access to this directory. PDT creates the following files in that

output directory at each run.

 Table 4. Output directory files

File Name Description

<prefix>-<app_name>-
yyyymmddhhmmss.pex

Meta file of the trace event definitions

<prefix>-<app_name>-
yyyymmddhhmmss.maps

This is a copy of the maps file from /proc/<pid>/. It

is used for address-to-name resolution done by the

PDTR tool (pdtr command).

<prefix>-<app_name>-
yyyymmddhhmmss.<N>.trace

Trace file or files

Note:

1. <prefix> is provided by the optional PDT_OUTPUT_PREFIX environment variable.

2. <app_name> is a string provided in the PDT configuration file application_name

attribute.

3. yyyymmddhhmmss is the date and time when the application started (trace_init() time).

4. <N> is the sequential number of the trace file. The maximum size of each trace file is 32

MB.

Running a program with SPE profiling

The PDT libraries provide an option to produce event records by profiling SPE

programs. You can profile PPE programs with oProfile. The PDTR tool has the

ability to process these records and show the profile information.

To perform SPE profiling on a program, do the following:

1. Compile your program with the Tracing Facility enabled.

2. Activate profiling in the SPE. To do this, modify the configuration XML file as

follows:

a. Locate the SPE <configuration name=″SPE″> tag.

b. Under the that tag, set the profile statement to <profile active=″true″

rate=″100″/>.

c. The profiling sampling rate that is set here is limited to 20000 samples per

second. Minimize other event tracing during profiling at rates higher than

2000 samples per second.

8 Cell/B.E.Performance Tools Reference

3. Run your program, then run the PDTR tool on the trace results.

Note: When you use SPE profiling with PDT, ensure that atomic and DMA

operations in application code and any library code in use are interrupt safe.

Disable interrupts during these operations.

Configuring the PDT for an application run

An XML configuration file is used to configure the PDT. The PDT tracing facility

that is built into the application at run time reads the configuration file defined by

the PDT_CONFIG_FILE environment variable. The /usr/share/pdt/config

directory contains a reference configuration file, pdt_cbe_configuration.xml. Copy

this file and modify it for the requirements of your application.

If you have installed the DaCS, ALF, or libsync libraries, the /usr/share/pdt/
config directory contains additional reference configuration files for each installed

library.

 Table 5. Reference files for additional libraries

Reference file Library

pdt_dacs_config_cell.xml DaCS

pdt_dacs_config_hybrid.xml DaCS for Hybrid

pdt_alf_config_cell.xml ALF

pdt_alf_config_hybrid.xml ALF for Hybrid

pdt_libsync_config.xml libsync

The first line of the configuration file contains the application name. This name is

used as a prefix for the PDT output files. To correlate the output name with a

specific run, the name can be changed before each run. The PDT output directory

is also defined in the output_dir attribute. This location will be used if the

PDT_TRACE_OUTPUT environment variable is not defined.

The first section of the file, <groups>, defines the groups of events for the run. The

events of each group are defined in other definition files (which are also in XML

format), and included in the configuration file. These files reside in the

/usr/share/pdt/config directory. They are provided with the instrumented library

and you should not modify them. Each of these files contains a list of events with

the definition of the trace-record data for each event. Note that some of the events

define an interval with StartTime and EndTime, and some are single events in which

the StartTime is 0 and the EndTime is set to the event time. The names of the

trace-record fields match the names defined by the API functions, and each event

is related to an API function. There are two types of records: one for the PPE and

one for the SPE. Each of these record types has a different header that is defined in

a separate file: pdt_ppe_event_header.xml for the PPE and

pdt_spe_event_header.xml for the SPE.

The SDK provides instrumentation for the following libraries. The traced events

with a description of each record are provided in the following XML files:

GENERAL (pdt_general.xml)

These are the general trace events such as trace start, trace stop, etc.

Tracing of these events is always active.

Chapter 1. Cell Broadband Engine Performance Debugging Tool (PDT) 9

LIBSPE2 (pdt_lbspe2.xml)

These are the LIBSPE2 events.

SPU_MFCIO (pdt_mfcio.xml)

These are the spu_mfcio events that are defined in the

/usr/spu/include/trace/spu_mfcio.h header file.

LIBSYNC (pdt_libsync.xml)

These are the mutex events that are part of the libsync library.

DACS (pdt_dacs*.xml)

These are the DaCS events, separated into three groups of events. For more

information, see the Data Communication and Synchronization

programmer’s guide and API reference.

ALF (pdt_alf*.xml)

These are the ALF events, separated into three groups of events. For more

information, see the Data Communication and Synchronization

programmer’s guide and API reference.

The second section of the file contains the tracing control definitions for each type

of processor. The PDT is made ready for the hybrid environment so each processor

has a host, <host>. On each processor, several groups of events can be activated in

the group control, <groupControl>. Each group is divided into subgroups, and each

subgroup, <subgroup>, has a set of events. Each group, subgroup, and event has an

active attribute that can be either true or false. This attribute affects tracing as

follows:

v If a group is active, all of its events will be traced.

v If a group is not active, and the subgroup is active, all of its subgroup’s events

will be traced.

v If a group and subgroup are not active, and an event is active, that event will be

traced.

You can create new group of events for new libraries that are in use. Defined these

groups using XML files like those above. Give each group a unique name and ID.

Once created, add them to the other files in the /usr/share/pdt/config directory.

Next, add a reference to these group to the two sections in the configuration file

used by the application. Instrument the libraries using the library developer API

functions described below,

Note: It is highly recommended that tracing be enabled only for those events that

are of interest. Depending on the number of processors involved, programs might

produce events at a high rate. If this scenario occurs, the number of traced events

might also be very high.

Using the tracing API

The tracing API used by the PDT is a generic API. It enables any implementation

of a tracing facility: the PDT is only one possible implementation. For example,

you can implement a tracing facility that only prints a trace.

The PDT API is intended for library developers who want to add the tracing

facility to their libraries. Because tracing is done invisibly to users, application

programmers use only a subset of the API. This subset provides an interface for

user defined events and dynamic trace control.

10 Cell/B.E.Performance Tools Reference

http://publib.boulder.ibm.com/infocenter/systems/topic/eicck/eicckkickoff.html
http://publib.boulder.ibm.com/infocenter/systems/topic/eicck/eicckkickoff.html
http://publib.boulder.ibm.com/infocenter/systems/topic/eicck/eicckkickoff.html
http://publib.boulder.ibm.com/infocenter/systems/topic/eicck/eicckkickoff.html

Essential definitions

The trace_basic_defs.h and trace_defs.h files contain the definitions for the PDT

API parameters located in the /usr/include/trace directory.

Application programmer API

Use this API only if you want to create user defined events records in a trace, or if

you need dynamic trace control at run time.

User-defined events

These APIs are for user-defined events.

Include the trace_user.h file in your program.

void trace_user_event(trace_payload_p payload)

This function writes a trace record with the provided payload. The user

event ID is defined by the user and should be the first element (long) in

trace_ payload_t, pointed by payload. On the SPE, the payload array must

be aligned on a 16-byte boundary.

trace_interval_p trace_user_interval_entry()

This function initiates a user-defined interval that terminates when

trace_user_interval_exit() is called. This function does not write a trace

record. The function returns a pointer to trace_interval type that must be

used as a parameter to the trace_user_interval_exit() function.

void trace_user_interval_exit(trace_interval_p user_interval, trace_payload_p

payload)

This function terminates a user-defined interval that was initiated by

trace_user_interval_entry(). The trace_user_interval_entry() function

provides the trace interval pointer. This function writes a trace record with

the provided payload. On the SPE, the payload array must be aligned on a

16-byte boundary.

Dynamic trace control

These APIs control which events are traced at run time.

Include the trace_dynamic.h file in your program.

void trace_event_control(trace_event_id_t event_id, trace_bool_t value);

This API changes the control state of an event according to the requested

value: trace_false = off or trace_true = on. The event IDs are provided

in the events-groups XML files.

void trace_group_control(trace_group_t group, trace_bool_t value);

This API changes the state of all the group’s events according to the

requested value: trace_false = off or trace_true = on. The event IDs are

provided in the events-groups XML files.

trace_bool_t trace_event_get_control(trace_event_id_t event_id);

This API returns the current control state of an event.

Generic profiling interface with user defined payload

The PDT enables an application to activate a generic profiling. This service allows

the application to define a set of variables to be periodically recorded in the trace.

Include the trace_profile.h header file in your application.

Chapter 1. Cell Broadband Engine Performance Debugging Tool (PDT) 11

Service activation interface

Syntax:

trace_profile_handle trace_profile_register(

 trace_event_id_t event_id, int tm_sec,

 void (*callback)(trace_payload_p payload_ptr)

The following table shows the interface parameters.

 Table 6. trace_profile_handle trace_profile_register parameters

Parameter Explanation

event_id The event ID that has been defined in the group.

tm_sec An interval in 1 millisecond units.

callback A callback function that is called by the service with two

output parameters, to be filled by the callback function.

payload_ptr A pointer to the trace record payload of size trace_payload_t

which is defined as 80 characters. The callback function should

fill the payload with data.

The function returns the trace_profile_handle handle to be used for service control.

NULL is returned if the registration failed.

Service termination interface

Syntax:

void trace_profile_unregister(

 trace_profile_handle handle)

The following table shows the interface parameters.

 Table 7. trace_profile_unregister parameters

Parameter Explanation

handle The handle returned by the trace_profile_register() function.

Profile trace start interface

Syntax:

void trace_profile_start(trace_profile_handle handle)

Profile trace pause interface

Syntax:

void trace_profile_pause(trace_profile_handle handle)

Using the trace functions

Setting a callback function through this API enables this function to manage the

recorded information as you require, for example to gather data from various

sources and use mutex operation if necessary.

You can activate several profiling intervals, but the resource usage is high. It’s best

to use only one interval, or one service activation per run. Because the profiling

12 Cell/B.E.Performance Tools Reference

time resolution is 1 msec, we recommend that you use an interval of more than 10

msec (profiling of less than 100 times a second) to reduce the influence of the

profiling code on your application.

On the SPE, the profiling timing is based on the SPU timer which enables up to

four intervals, while the application can use some or all of those intervals. Take

care in using this resource.

Library developer API

An extended API is provided for library developers. This API is used to instrument

a library with generic tracing code. A library may be assigned with one or more

groups of events. Each group ID should be obtained from IBM. This requirement

enables the usage of any combination of groups in the same run. The PDT can

handle up 256 groups: currently 10 groups are in use. Each group can have up to

64 events.

Trace facility control

Use this function to initiate the tracing facility.

Include the trace_control.h header file in your applications.

void trace_init(void);

This function initiates the tracing facility. Call it before you call any traced

event. You can call it more than one time within an application, but it will

be activated only once.

Events recording

Use these functions to create a single trace record and a trace record that defines

an interval.

long trace_event(trace_event_id_t event_id, int argc, trace_payload_p payload,

const char *format, unsigned int level);

This function writes a trace record with the provided payload and returns

an event count. On the SPE, this array must be aligned on a 16-byte

boundary.

event id

This is the event identifier. In the PDT, the event id is combined

from the group id (one byte) and the specific id within this group

(0-63).

argc The number of parameters in the payload.

format

A string that describes the payload parameters using printf format.

pavload

A pointer to the data to be recorded in the trace record.

level The number of calls from the application until this function is

called. It enables the tracing facility to provide the program

counter at the application level in order to link between the event

and the source code.

This function returns a sequential event count.

trace_interval_p trace_interval_entry(trace_event_id_t event_id, unsigned int

level); This function initiates an interval that terminates when trace_interval_exit()

is called. This function does not write a trace record.

Chapter 1. Cell Broadband Engine Performance Debugging Tool (PDT) 13

event id

This is the event identifier. In the PDT, the event id is combined

from the group id (one byte) and the specific id within this group

(0-63).

level The number of calls from the application until this function is

called. It enables the tracing facility to provide the program

counter at the application level in order to link between the event

and the source code.

The function returns a pointer to a trace_interval type that must be used as

a parameter to the trace_interval_exit function.

long trace_interval_exit(trace_interval_p interval, int argc, trace_payload_p

payload, const char *format);

This function terminates an interval that was initiated when

trace_interval_entry() was called. The pointer to the trace interval type is

provided by the trace_interval_entry() function.

Interval

This pointer to the trace_interval type is provided by the

trace_interval_entry() function.

argc The number of parameters in the payload.

format

A string that describes the payload parameters using printf format.

pavload

A pointer to the data to be recorded in the trace record.

This function writes a trace record with the provided payload. On the SPE,

this array must be aligned on a 16–byte boundary. The function returns a

sequential event count.

Note: On the SPE, interrupts are disabled during the functions that create trace

records. This is essential because the interrupts handler may create a traced event

that can override the record creation.

Define event and interval class

The additional trace record attribute pdtRecordClass is enabled as an option. This

attribute states the event or interval record class. The class enables the trace

analyzer (PDTR or TA) to perform special processing on the events of the same

class.

You can define the following types of classes (lowercase):

blocking_wait_interval

An interval caused by a blocking event

busy_wait_interval

A polling interval

working_interval

While processing is performed

user_interval

Allow summarization of user intervals

profile_event

Direct the Trace Analyzer to provide a graphical timeline visualization of

the payload data

14 Cell/B.E.Performance Tools Reference

You can define additional classes.

The following is the addition to the record definition in the XML file:

<recordType ... pdtRecordClass="blocking_wait_interval" ... >

Installing and using the PDT trace facility on the x86_64 (Opteron)

The tracing-facility package on the x86_64 is almost identical to the one used on

the PPE. Events tracing is enabled by instrumenting selected function of the DaCS

and ALF SDK libraries.

 Table 8. Tracing-facility directories on x86_64

Use Host X86

PDT development trace includes /usr/include/trace

PDT production trace libraries /usr/lib/trace

PDT production trace 64 bit libraries /usr/lib64/trace

The /usr/share/pdt/config directory contains reference configuration files for

applications that are use the DaCS and ALF libraries: pdt_dacs_config_hybrid.xml

for DaCS and pdt_alf_config_hybrid.xml for ALF. The instrumented libraries are

part of ALF and DaCS packages.

The instrumented events for the X86_64 libraries are defined in the following files:

GENERAL (pdt_general.xml)

These are the general trace events such as trace start, trace stop, and so on.

Tracing of these events is always active.

DACS (pdt_dacs*.xml)

These are the DaCS events (separated into two groups of events). Refer to

the Data Communication and Synchronization programmer’s guide and

API reference for more details.

ALF (pdt_alf*.xml)

These are the ALF events (separated into two groups of events). Refer to

the Data Communication and Synchronization programmer’s guide and

API reference for more details.

Using the PDT on Hybrid-x86 example

The PDT package contains a sample application in the /opt/cell/sdk/src/pdt-
opteron-example.tar file. After installation, compile and run the example, then

examine the PDT output using the TA and PDTR tools.

The example directory contains a Makefile that you can use as a reference, and a

pdt script file that is similar to the one used for the Cell/B.E. environment. A set of

full-reference-configuration files (pdt_x86_64_configuration.xml) is provided in the

/usr/share/pdt/config directory. You can copy these files to user directories and

modify them as necessary. The trace files that are produced during the application

run have the same characteristics as those generated on the PPE.

Note: When an application is run on a hybrid environment using DaCS or ALF,

the time on each processor in the hybrid system must be synchronized by the

operating system. Accurate time synchronization is required to compare traces

Chapter 1. Cell Broadband Engine Performance Debugging Tool (PDT) 15

http://publib.boulder.ibm.com/infocenter/systems/topic/eicck/eicckkickoff.html
http://publib.boulder.ibm.com/infocenter/systems/topic/eicck/eicckkickoff.html
http://publib.boulder.ibm.com/infocenter/systems/topic/eicck/eicckkickoff.html
http://publib.boulder.ibm.com/infocenter/systems/topic/eicck/eicckkickoff.html

from each processor in the hybrid system. The trace data contains ″heart beats″

that record the time of day. These heart beats can be used by the TA and other

tools to synchronize the traces.

PDT Restrictions

The PDT has certain restrictions

The following restrictions apply to using the PDT.

v The context-switch notification on Red Hat Enterprise Linux (RHEL) 5.2 is

implemented so that only one user can activate the tracing facility at a time.

Therefore, RHEL 5.2 multiuser usage of PDT is forbidden, but there is no

protection against it.

v The PDT and Oprofile cannot be used at the same time.

v For SPE applications, the SPU tag manager must be used for DMA-tag control.

v If decrementer usage is needed, use the spu_timer API. Do not directly modify

the SPU decrementer during the run.

The following restrictions apply to using the Opteron PDT.

v PDT on Opteron is using the RDTSCP to atomically read the TS register with the

processor ID. AMD processors former to the AMD NPT Family 0Fh do not

provide atomic reads of TS and physical processor ID. Therefore, on older

processors it is not possible to guarantee that a thread will not be switched out

between consecutive reads of these data elements with two instructions. As a

result, PDT on Opteron is limited to the AMD NPT Family 0Fh processors or

newer.

Using the PDTR tool (pdtr command)

About this task

The PDTR tool (pdtr command) is a command-line tool that provides both viewing

and postprocessing of PDT traces on the target (client) machine. To use this tool,

you must instrument your application by building it with the PDT. After the

instrumented application has run and created the trace output files, the pdtr

command can be run to show the trace output. For example, given PDT

instrumented application output files:

20070604073422.pex (the xml trace meta file)

20070604073422.1.trace (the binary trace data)

20070604073422.map (long strings data)

20070604073422.maps (copy of /proc/<pid>/maps data)

use the pdtr command to generate text-based output for this trace as follows:

pdtr [options] 20070604073422

which produces:

20070604073422.pep

Calling pdtr with no arguments produces a usage summary:

pdtr [options] name

 -trc Sequential per-event trace output

 -trc0 Sequential reduced trace output

 -meta Dump meta file output (name.meta)

 -map Dump address maps

16 Cell/B.E.Performance Tools Reference

-ip path Full path to trace input files

 -op path Full path to output files

 -tb TB Use timebase frequency TB

 -w level Set the warning level for unaligned or small DMAs

 -sw Suppress warnings

 -z Show zero count events

 -dc Disable repetative event compression

 -sf lspe Include output for only logical spe lspe

 -psc Per spe profile counts

 -mp Enable spe micro-profiling

Where name is the PDT trace prefix, for example foo for trace foo.pex, foo.maps,

foo.1.trace.

The pdtr output file contains a summary report for preselected events, such as

mutex locking and DMA. If you use the optional -trc flag, the file will also

include a time-stamped event-by-event sequential-trace listing. The following

example is a partial sequential-output trace.

See the PDTR man page for additional output examples and usage details.

The following example shows a lock report summary. This report shows summary

information for a single lock, shr_lock at address 0x10012180. It shows the total

number of accesses to that lock, the hit and miss counts and ratio, and the

minimum, average and maximum hold (after the lock is acquired) and wait

(waiting on a miss) times. Following this line are the individual callers of the lock

(procedure name, address, and logical SPE (lspe if from SPE code) and the

associated hit, miss, hold, and wait times per caller. The asterisk (*) character

indicates each lock that was not explicitly initialized with a mutex_init() call.

----- Trace File(s) --

Rec# TimeStamp DeltaTime Proc EvID EventName Event Parameters ...

1 0.000000 0.000ms PPE

2 1.035853 1035.853ms PPE 0200 HEART_BEAT EventID=200 Processor=2 PhysicalID=0 EventCount=1

 CallingThread=F53DF4B0 StartTime=101248800FFA0B08 EndTime=BABA597C8E7 ProgramCounter=FF8A788

 time_of_day=DBC0600000000

3 1.045290 9.436ms PPE 0001 CONTEXT_CREATE EventID=1 Processor=2 PhysicalID=0 EventCount=2

 CallingThread=F6F8F4B0 StartTime=F7FA3150F7FA3150 EndTime=BABA599D8AB ProgramCounter=10001C50

 gang=0 spe=100202C8 flags=0 run_spu_thread()

:

:

38 98 6.845us SPE 0302 SPE_MFC_GET EventID=302 Processor=3 PhysicalID=0 EventCount=2

 SPEcontext=100202C8 StartTime=0 EndTime=6D PPEcreateContextEventCount=12 ProgramCounter=1754

 ea=6D80 ls=10012680 size=80 tagid=1E tid=0 rid=0 main() lspe=1 Size: 0x80 (128), Tag: 0x1e (30)

39 111 0.908us SPE 1202 SPE_MFC_READ_TAG_STATUS EventID=1202 Processor=3 PhysicalID=0

 EventCount=3 SPEcontext=100202C8 StartTime=70 EndTime=7A PPEcreateContextEventCount=12

 ProgramCounter=1754 _update_type=2 _current_mask=40000000 tag_status=40000000 main() lspe=1

 {DMA done[tag=30,0x1e] rec:38 0.908us 141.0MB/s}

40 124 0.908us SPE 0503 SPE_MUTEX_LOCK EventID=503 Processor=3 PhysicalID=0 EventCount=4

 SPEcontext=100202C8 StartTime=7D EndTime=87 PPEcreateContextEventCount=12 ProgramCounter=65C

 lock=10012580 miss=0 main() lspe=1 lock:mylock

:

45 196 0.698us SPE 0703 SPE_MUTEX_UNLOCK EventID=703 Processor=3 PhysicalID=0 EventCount=9

 SPEcontext=100202C8 StartTime=BE EndTime=CF PPEcreateContextEventCount=12 ProgramCounter=880

 lock=10012580 main() lspe=1 lock:mylock rec:40 hold=5.0us

:

:

Chapter 1. Cell Broadband Engine Performance Debugging Tool (PDT) 17

If SPE profiling events are enabled in the PDT configuration file, these profile

events are summarized as follows:

Profile:

========

Total SPE profile samples: 426

lspe:1 context:01015D698

 /home/user/pep/pt3/gtst1/spu:0

 231 (54.2%) 00668-0068B procA

 110 (25.8%) 00690-006B3 procB

 57 (13.4%) 006B8-006DB procC

 28 (6.6%) 006E0-00703 procD

The preceding summary shows that of the 426 total sample events, 231 (spe

decrementer based) sample events (54.2% of the total) occurred in procA, 110

(25.8% of the total) occurred in procB, etc.

===

 Accesses Hits Misses Hit hold time (uS) Miss wait time (uS)

 Acount %Total Count %Acount Count %Acount min, avg, max min, avg, max Name

* 600 (100.0) 3 (0.5) 597 (99.5) 100.8, 184.6, 402.4 13.3, 264.4, 568.0 shr_lock (0x10012180)

 2 (66.7) 298 (49.9) 100.8, 101.1, 101.5 181.8, 249.7, 383.6 main (0x68c)(lspe=1)

 1 (33.3) 199 (33.3) 200.7, 201.3, 202.5 13.3, 315.2, 568.0 main (0x68c)(lspe=2)

 0 (0.0) 100 (16.8) 0.0, 0.0, 0.0 205.0, 206.8, 278.5 main (0x68c)(lspe=3)

* - Implicitly initialized locks (used before/without mutex_init)

18 Cell/B.E.Performance Tools Reference

Chapter 2. Feedback Directed Program Restructuring

(FDPR-Pro)

This section describes FDPR-Pro. It covers the following topics:

v “Input files” on page 20

v “Instrumentation and profiling” on page 20

v “Optimizations” on page 20

v “Profiling SPE executable files” on page 21

v “Processing PPE/SPE executable files” on page 21

v “Human-readable output” on page 22

v “Running fdprpro from the IDE” on page 23

v “Cross-development with FDPR-Pro” on page 23

Introduction

The Post-link Optimization for Linux on POWER™ tool (FDPR-Pro or fdprpro) is a

performance tuning utility that reduces the execution time and the real memory

utilization of user space application programs. It optimizes the executable image of

a program by collecting information on the behavior of the program under a

workload. It then creates a new version of that program optimized for that

workload. The new program typically runs faster and uses less real memory than

the original program.

The fdprpro tool applies advanced optimization techniques to a program. Some

aggressive optimizations might produce programs that do not behave as expected.

You should test the resulting optimized program with the same test suite used to

test the original program. You cannot re-optimize an optimized program by

passing it as input to fdprpro.

The post-link optimizer builds an optimized executable program in three distinct

phases:

1. Instrumentation phase

The optimizer creates an instrumented executable program and an empty

template profile file. Type the command fdprpro and specify the

instrumentation action as follows:

fdprpro -a instr myprog

The instrumentation phase creates an instrumented file and a profile file. The

default filename suffix appended to the instrumented file is .instr and the

default filename suffix appended to the profile file is .nprof. Therefore, the

preceding command would generate the files myprog.instr and myprog.nprof.

2. Training phase

The instrumented program is executed with a representative workload and as it

runs it updates the profile file.

3. Optimization phase

The optimizer generates the optimized executable program file. You can control

the behavior of the optimizer with options specified on the command line. Type

© Copyright IBM Corp. 2007, 2008 19

the command fdprpro and specify the optimization action, the (same) input

program, the profile file, and the desired optimization flags. The following is an

example.

$ fdprpro -a opt -f myprog.nprof [<opts> ...] myprog

The default suffix for the output file name is .fdpr. The preceding command

creates an optimized file named myprog.fdpr.

An instrumented executable, created in the instrumentation phase and run in the

training phase, typically runs several times slower than the original program. This

slowdown is caused by the increased execution time required by the

instrumentation. Select a lighter workload to reduce training time to a reasonable

value, while still fully exercising the desired code areas.

Input files

The input to the fdprpro command must be an executable or a shared library (for

PPE files) produced by the Linux linker. fdprpro supports 32-bit or 64-bit programs

compiled by the GCC or XLC compilers.

Build the executable program with relocation information. To do this, call the

linker with the --emit-relocs (or -q) option. Alternatively, pass the

 -Wl,--emit-relocs (or -Wl,-q) options to the GCC or XLC compiler.

The SDK helps you build sample programs using a make script named make.footer.

It compiles and links both the PPE and SPE parts of a program, and includes a

predefined set of compiler and linker options. Typically, a user has a simple

Makefile that begins with include $(CELL_TOP)/buildutils/make.footer. To

preserve relocation information, add the following lines to the Makefile before the

include $(CELL_TOP)/buildutils/make.footer line:

LDFLAGS_xlc += -Wl,-q

LDFLAGS_gcc += -Wl,-q

Alternatively, edit the make.footer file are add ″-Wl,-q″ to the definition of

_LDFLAGS

Instrumentation and profiling

The fdprpro command creates an instrumented file and a profile file. The profile

file is populated with profile information while the instrumented program runs

with a specified workload.

The instrumented program requires a shared library named libfsprinst32.so for

ELF32 programs, or libfdprinst64.so for ELF64 programs. These libraries are

placed in the library search path directory during installation.

The default directory for the profile file is the directory containing the

instrumented program. To specify a different directory, set the environment

variable FDPR_PROF_DIR to the directory containing the profile file.

Optimizations

If you invoke fdprpro with the basic optimization flag -O, it performs code

reordering optimization as well as optimization of branch prediction, branch

folding, code alignment and removal of redundant NOOP instructions.

To specify higher levels of optimizations, pass one of the flags -O2, -O3, or -O4 to

the optimizer. Higher optimization levels perform more aggressive function

20 Cell/B.E.Performance Tools Reference

inlining, DFA (data flow analysis) optimizations, data reordering, and code

restructuring such as loop unrolling. These high level optimization flags work well

for most applications. You can achieve optimal performance by selecting and

testing specific optimizations for your program.

Instrumentation and optimization options

The fdprpro command accepts many options to control optimization. In our tests,

the -O3 option consistently gave good performance results. For complete details,

see the fdprpro man page.

Profiling SPE executable files

About this task

When the optimizer processes PPE executables, it generates a profile file and an

instrumented file. The profile file is filled with counts while the instrumented file

runs. In contrast, when the optimizer processes SPE executables, the profile is

generated when the instrumented executable runs. Running a PPE/SPE

instrumented executable typically generates a number of profiles, one for each SPE

image whose thread is executed. This type of profile accumulates the counts of all

threads which execute the corresponding image. The SPE instrumented executable

generates an SPE profile named <spename>.mprof in the output directory, where

<spename> represents the name of the SPE thread. For more information, see

“Processing PPE/SPE executable files.”

If an old profile exists before instrumentation starts, fdprpro accumulates new data

into it. In this way you can combine the profiles of multiple workloads. If you do

not want to combine profiles, remove the old profile before starting the optimizer.

The instrumented file is 5% to 20% larger than the original file. Because of the

limited local store size of the Cell/B.E. architecture, instrumentation might cause

SPE memory overflow. If this happens, fdprpro issues an error message and exits.

To avoid this problem, the user can use the --ignore-function-list file or -ifl

file option. The file referenced by the file parameter contains names of the

functions that should not be instrumented and optimized. This results in a reduced

instrumented file size. Specify the same -ifl option in both the instrumentation

and optimization phases.

Note: The fdprpro command uses lock files named /tmp/fdpr_xflckxxxx to

synchronize multiple SPE threads updating a common profile file. A lock file is

created and removed one or more times during an instrumented run. In rare cases,

the file might still exist after instrumentation. It is advisable to remove the lock

files periodically.

Processing PPE/SPE executable files

By default, fdprpro processes the executable file as a PPE executable or as an SPE

executable, depending on its intended target (the intended target is specified inside

the executable file). Two modes are available in order to fully process the PPE/SPE

hybrid file: integrated mode, and standalone mode.

Integrated mode

About this task

The integrated mode of operation does not display the details of SPE processing.

This interface is convenient for performing full PPE/SPE processing, but flexibility

Chapter 2. Feedback Directed Program Restructuring (FDPR-Pro) 21

is reduced. To completely process a PPE/SPE file, run the fdprpro command with

the -cell (or --cell-supervisor) command-line option. The following is an

example.

$ fdprpro -cell -a instr myprog -o myprog.instr

To optimize the program myprog, type the following command.

$ fdprpro -cell -a opt[<opts> ...] myprog -f myprog.nprof -o myprog.fdpr

The option -spedir specifies the directory into which SPE files are extracted, where

they are processed, and from where they are encapsulated back into the PPE file. If

this option is not specified, a temporary directory is created in the /tmp directory

and is deleted if fdprpro exits without error.

Standalone mode

About this task

In integrated mode, the same optimization options are used when processing the

PPE file and when processing each of the SPE files. Full flexibility is available in

standalone mode, where you can specify the explicit commands needed to extract

the SPE files, process them, and then encapsulate and process the PPE file. The

following list shows the details of this mode.

v Extraction

SPE images are extracted from the input program and written as executable files

in the specified directory. The following is an example.

$ fdprpro -a extract -spedir mydir myprog

v SPE processing

The SPE images are processed one by one. You should place all of the output

files into a distinct directory by their original name. The following is an

example.

$ fdprpro -a <action> mydir/<spe1> [-f <prof1>] [<opts> ...] -o outdir/<spe1>

$ fdprpro -a <action> mydir/<spe2> [-f <prof2>] [<opts> ...] -o outdir/<spe2>

...

Select either instr or opt for action. Specify the profile file with the -f

command line option. If you do not specify this option, the program searches for

a default profile file named mydir/<spename>.mprof in the current directory.

Note: The FDPR_PROF_DIR environment variable cannot be used for overriding

the SPE profile directory. For more information, see “Instrumentation and

profiling” on page 20

v Encapsulation and PPE processing

The SPE files are encapsulated as a part of the PPE processing. The following is

an example. The -spedir option specifies the output SPE directory.

$ fdprpro -a <action> --encapsulate -spedir outdir [<opts> ...] myprog

Human-readable output

In addition to creating an optimized or instrumented program, fdprpro produces

human-readable output. The following list details the possible output streams of

fdprpro.

v Standard output. The output contains the sign-on message, progress information

and the sign-off message. Progress information displays the passage of fdprpro

through different phases of processing. The following is an example.

22 Cell/B.E.Performance Tools Reference

FDPR-Pro 5.4.0.10 for Linux (CELL)

fdprpro -a opt -O3 li.linux.gcc32.base -o 1.base

> reading_exe ...

> adjusting_exe ...

> analyzing ...

> building_program_infrastructure ...

...

> updating_executable ...

> writing_executable ...

bye.

Specify the --quiet option to suppress this output.

v Standard error. Warnings and errors messages are written to the standard error

stream. fdprpro exits after the first error.

v Statistics file. If you specify the --verbose <level> option, fdprpro writes

various statistics to a file. The default file name for the statistics file is

<output_file>.stat. This file contains a list of tables in the form of <attribute>

<value> pairs, one per line. You can control the output detail level by specifying

the level parameter. The following is an excerpt from the statistics file

corresponding to the above example.

options.group active_options

options.optimization -bf -bp -dp -hr -hrf 0.10 -kr -las -lro

 -lu 9 -isf 12 -nop -pr -RC -RD -rt 0.00

 -si -tlo -vro

options.output -o 1.base

global.use_try_and_catch: 0

global.profile_info: not_available

file.input: li.linux.gcc32.base

file.output: 1.base

file.statistics: 1.base.stat

analysis.csects: 347

analysis.functions: 343

analysis.constants: 13

analysis.basic_blocks: 5360

analysis.function_descriptors: 0

analysis.branch_tables: 10

analysis.branch_table_entries: 374

analysis.unknown_basic_units: 17

analysis.traceback_tables: 0

...

The options specified in the optimization group are those enabled by the -O3

option.

Running fdprpro from the IDE

You can invoke fdprpro using the GUI of the Eclipse-based Cell/B.E. IDE. A

special plugin is integrated to the IDE to enable this feature. See the IDE

documentation for more detailed information.

Cross-development with FDPR-Pro

About this task

FDPR-Pro can be used also in cross-development environment available on Linux

X86 systems. The same three-phase profile-driven optimization process is used:

instrumentation, profile collection (training), and optimization. In addition, the

fdprpro commands used during instrumentation and optimization are identical.

The difference is in how profile is collected.

Chapter 2. Feedback Directed Program Restructuring (FDPR-Pro) 23

Profile collection in native development is achieved by running the instrumented

file locally on the host and using the created profile when performing the

optimization phase. However, the instrumented file (like the optimized file) can

only be executed on a Cell BE-based system. Perform the following steps to collect

the profile in a cross-development environment:

1. Pass the instrumented file, with its empty PPE profile (typically with an .nprof

extension), and any input files needed for its execution, to a native Cell BE

environment (or to the Cell BE full-system simulator). Verify that the native

environment includes the shared libraries required for instrumentation:

/usr/lib/libfdprinst32.so and /usr/lib64/libfdprinst64.so.

2. Execute the instrumented file with its workload. This fills the PPE profile and

creates the SPE profile (with the .mprof extension).

3. Pass the generated profiles back to the cross-development environment where

they will be used in the optimization phase.

24 Cell/B.E.Performance Tools Reference

Chapter 3. OProfile

OProfile is a tool for profiling user and kernel level code. It uses the hardware

performance counters to sample the program counter every N events. You specify

the value of N as part of the event specification. The system enforces a minimum

value on N to ensure the system does not get completely swamped trying to

capture a profile.

Make sure you select a large enough value of N to ensure the overhead of

collecting the profile is not excessively high.

The opreport tool produces the output report. Reports can be generated based on

the file names that correspond to the samples, symbol names or annotated source

code listings.

How to use OProfile and the postprocessing tool is described in the user manual

available at:

http://oprofile.sourceforge.net/doc/

The current Software Development Kit for Multicore Acceleration version of

OProfile for Cell BE supports profiling on the POWER processor events and SPU

cycle profiling. These events include cycles as well as the various processor, cache

and memory events. It is possible to profile on up to four events simultaneously

on the Cell BE system. There are restrictions on which of the PPU events can be

measured simultaneously. When using PPU profiling, events must be within the

same group due to restrictions in the underlying hardware support for the

performance counters. You can use the opcontrol –list-events command to view

the events and which group contains each event.

There is one set of performance counters for each node that are shared between the

two CPUs on the node. For a given profile period, only half of the time is spent

collecting data for the even CPUs and half of the time for the odd CPUs. You may

need to allow more time to collect the profile data across all CPUs.

Note:

1. Before you issue an opcontrol --start, you should issue the following

command:

opcontrol --start-daemon

2. To produce a report with Linux kernel symbol information you should install

the corresponding Kernel debuginfo RPM..

SPU profiling restrictions

When SPU cycle profiling is used, the opcontrol command is configured for

separating the profile based on SPUs and on the library. This corresponds to the

you specifying –separate=CPU and –separate=lib. The separate CPU is required

because it is possible to have multiple SPU binary images embedded into the

executable file or into a shared library. So for a given executable, the various SPUs

may be running different SPU images.

With –separate=CPU, the image and corresponding symbols can be displayed for

each SPU. The user can use the opreport –merge command to create a single report

© Copyright IBM Corp. 2007, 2008 25

http://oprofile.sourceforge.net/doc/

for all SPUs that shows the counts for each symbol in the various embedded SPU

binaries. By default, opreport does not display the app name column when it

reports samples for a single application, such as when it profiles a single SPU

application. For opreport to attribute samples to a binary image, the opcontrol

script defaults to using –separate=lib when profiling SPU applications so that the

image name column is always displayed in the generated reports.

SPU report anomalies

The report file uses the term CPUs when the event is SPU_CYCLES. In this case,

CPUs actually refer to the various SPUs in the system. For all other events, the

CPU term refers to the virtual PPU processors.

With SPU profiling, opreport’s --long-filenames option may not print the full path

of the SPU binary image for which samples were collected. Short image names are

used for SPU applications that employ the technique of embedding SPU images in

another file (executable or shared library). The embedded SPU ELF data contains

only the filename and no path information to the SPU binary file being embedded

because this file may not exist or be accessible at runtime. You must have sufficient

knowledge of the application’s build process to be able to correlate the SPU binary

image names found in the report to the application’s source files.

Tip

Compile the application with -g and generate the OProfile report with -g to

facilitate finding the right source file(s) to focus on.

Generally, when the report contains information about a single application,

opreport does not include the report column for the application name. It is

assumed that the performance analyst knows the name of the application being

profiled.

26 Cell/B.E.Performance Tools Reference

Chapter 4. Cell-perf-counter tool

The cell-perf-counter (cpc) tool is used for setting up and using the hardware

performance counters in the Cell/B.E. processor. These counters allow you to see

how many times certain hardware events are occurring, which is useful if you are

analyzing the performance of software running on a Cell Broadband Engine

Architecture system. Hardware events are available from all of the logical units

within the Cell/B.E. processor, including the PPE, SPEs, interface bus, and memory

and I/O controllers. Four 32-bit counters, which can also be configured as pairs of

16-bit counters, are provided in the Cell/B.E. performance monitoring unit (PMU)

for counting these events.

The cpc tool also makes use of the hardware sampling capabilities of the Cell/B.E.

PMU. This feature allows the hardware to collect very precise counter data at

programmable time intervals. The accumulated data can be used to monitor the

changes in performance of the Cell/B.E. system over longer periods of time.

The cpc tool provides a variety of output formats for the counter data. Simple text

output is shown in the terminal session, HTML output is available for viewing in a

Web browser, and XML output can be generated for use by higher-level analysis

tools such as the Visual Performance Analyzer (VPA).

You can find details in the documentation and manual pages included with the

cellperfctr-tools package, which can found in the /usr/share/doc/cellperfctr-
<version>/ directory after you have installed the package.

© Copyright IBM Corp. 2007, 2008 27

28 Cell/B.E.Performance Tools Reference

Chapter 5. Hybrid performance tools

Overview

An application running in a hybrid environment typically consists of a root

application that runs on the host (for example, an AMD X86_64 processor) and

application fragments that run on one or more accelerators (in this case a Cell/B.E.

processor). The hybrid application itself is launched from the host system and by

default the output from all parts of the application is returned to the host console.

There are a variety of performance and debug tools that either work on the AMD

X86_64 processor, on the Cell/B.E., or on both. To use these tools on a hybrid

application, follow this procedure:

v Launch a Cell/B.E. performance tool against an application fragment which runs

on an arbitrary accelerator when the application itself is launched from the host.

v Launch a host performance tool and a Cell/B.E. performance tool for a hybrid

application and coordinate the output.

The hybrid performance tooling works with DaCS for Hybrid and is able to solve

these problems for the following tools:

v CPC

v FDPR-Pro

v OProfile

v PDT

v PDTR

DaCS for Hybrid provides a mechanism to allow environment variables to be

exported from the host application process to the accelerator application fragment

process. In addition, when you launch a program, you can specify a parent

executable to be specified, which is called to do the final launch of the application

fragment on the accelerator.

With these two capabilities, the hybrid tooling currently consists of Bash scripts.

Typically, there is a script for the host and a script for the accelerator. The host

script sets up the environment, including setting up environment variables to pass

along to the accelerator process, and launches the root application. It also can

coordinate the launch of the host based performance tools.

Anytime that DaCS for Hybrid needs to start an application fragment on an

accelerator, it instead starts the corresponding accelerator script. This script does

any required setup needed by the performance tool, launches the application, and

does any required post processing when the application is finished.

Requirements

Your system must meet the following requirements to run the Cell/B.E.

performance tools.

© Copyright IBM Corp. 2007, 2008 29

SSH usage

Some of the tools make use of SSH (Secure SHell) to launch applications on the

accelerator. Ensure that SSH support between the host and the accelerator is

configured so that scripts can ssh from the host to the accelerator without needing

to supply a password.

Hybrid application

The scripts are designed to run against a hybrid application. The scripts depend on

DaCS being used in the application to launch an application fragment on the

accelerator.

Hybrid tools RPMs

There are two RPMs associated with the hybrid tools:

v One for the X86_64 host system

v One for the PPC64 accelerator system

The base RPM name is cell-perf-hybrid-tools.

Supporting performance tools

The cell-perf-hybrid-tools RPMs do not directly require other RPMs, however; the

RPM’s associated with the base performance tools you want to use must be

installed. For example, if you want to run the script to launch CPC against your

hybrid application, the CPC RPMs must be installed on the Cell/B.E. system(s)

you are using for acceleration. See the IBM Software Development Kit for Multicore

Acceleration Installation Guide for details about how to install the performance tools.

NFS

For tooling data output, create an NFS mount point that can be shared between the

host and accelerator systems . This is mandatory for hybrid systems that do not

have a local hard drive on the accelerator part of the node.

Setting up and configuring the performance tool scripts

This topic describes how to set up and configure the performance tool scripts.

By default the hybrid performance tooling scripts are installed in /usr/bin.

The hybrid performance tools use common setup scripts to set up environment

information for the tools and applications.

The perfToolHostSetup script is sourced in the host portion of the tooling scripts.

Within this script the perfToolUsrEnv script is sourced. This script is generally

where environment settings that you want or need to change can be found. This is

installed as a read-only file. If the defaults do not work for a given user, the user

can copy this file and modify the values of the environment variables.

To make the perfToolHostSetup find your new perfToolUsrEnv, export

PERF_TOOLS_USR_ENV. The environment variable should reference the full path

and file name of the new perfToolUsrEnv. Type for example:

$ export PERF_TOOLS_USR_ENV=/home/johndoe/bin/myPerfToolUsrEnv

30 Cell/B.E.Performance Tools Reference

The current user environment variables are as follows:

v SDK_ROOT - points to the SDK install location. Only set this variable if the SDK

is installed to other than the default location.

v PERF_DATA_ROOT - this is the base location for all the tool output. This needs

to be the same on both the host and the accelerator. This is usually an NFS

mounted file system. All output directories created by the tools have this as a

base directory.

The default location is: /$SCRATCH/perfData

Where $SCRATCH points to a common NFS mount point which is shared between

host and accelerator to output data.

The following four optional environment variables allow you to identify the

location of the host and accelerator pieces of your hybrid application so they can

be added to the appropriate path.

These also allow you to point to alternative versions of your executable which you

are using to work with the tools (for example, if you have compiled a version of

your application with trace-enabled, when you run the trace launching tool you

want to make sure the traced version of your executable is placed at the front of

various paths).

 HOST_APP_PATH Path where the host application executable is located.

HOST_APP_LD_LIBRARY_PATH Path for host application dependent shared libraries.

ACCEL_APP_PATH Path where the accelerator application executable is

located.

ACCEL_APP_LD_LIBRARY_PATH Path for accelerator application dependent shared

libraries.

General output directory

The top part of the directory structure which is common to all the tools is as

follows:

$PERF_DATA_ROOT/userid/hostname

where:

v userid is the userid of the person running the host script command

v hostname is the hostname of the machine where the host script command was

launched

The rest of the directory structure is unique for each tool.

Hybrid tools description

How to run each performance tool against a sample hybrid application.

Using the DaCS for Hybrid-x86 sample

Note: For each tool a walk-thru is provided, which shows you how to run the tool

against a sample hybrid application. To run the sample application you must

Chapter 5. Hybrid performance tools 31

install the dacs-hybrid-examples-source-*.*.-* RPM on the host system. Follow

the directions in the README and be able to run the sample_dacs_hybrid_1t_he

application.

The sample comes with a bash script, ../dacs-hybrid-examples/dacs_hello/
hybrid/bin/runsample.sh, which sets some environment variables and launches

the sample_dacs_hybrid_1t_he program. You can use this script to run the sample

directly. The hybrid performance tools MUST run against the host executable

directly otherwise they do not function so do NOT use runsample.sh with the

performance tools.

The simplest way to work around this problem is to export the following

environment variable prior to running any of the performance tools against the

sample. Make sure you export from the directory where the

sample_dacs_hybrid_1t_he is located.

export ACCEL_PROG_PATH=`pwd`/accel

CPC hybrid support

The hybrid performance tools package includes the scripts cpch and cpca to assist

in using CPC in a hybrid environment.

A hybrid program can be monitored using the cpch script. The cpca script is used

internally by cpch and is not intended to be used by a user directly.

CPC usage

cpch [options] <application name> [<application parameters>]

Options:

 --runid=ID Optional. Name of the current run. If no

runid is provided a timestamp is used.

--cell-event=EVT Required. Can be specified multiple times

depending on the capabilities of the

Cell/B.E. PMU and OProfile. The event(s) to

be monitored on the Cell/B.E. part of the

application is (are) specified. For example:

 --cell-event=C

--cell-options=OPTS Optional. Specifies any parameters for the

CPC command. Multiple parameter values

can be specified by enclosing them in

quotes.

--html Create HTML output.

--xml Create XML output.

--help,-h Print help information for this command.

--listenv,-l Prints out trace environment variable

information.

Example:

cpch --cell-event=C --cell-options="-i 32000000" my_application -xyz

32 Cell/B.E.Performance Tools Reference

CPC tool results

v Any application output from either the host or the accelerator parts of the

application is normally routed back to the host console window. Any output

generated by the CPC hybrid scripts is also displayed in the host console

window.

v CPC output: The output from the CPC tool is in the following directory:

<PERF_DATA_ROOT>/<username>/<hostname>/cpc/<runid>/cbe/<acceleratorhostname>

where:

PERF_DATA_ROOT

is the environment variable set in the perfToolUsrEnv configuration file

(see “Setting up and configuring the performance tool scripts” on page

30)

username

is the userid that called the cpch script

hostname

is the host system’s name

runid is either the runid supplied on the cpch invocation, or at date-timestamp

taken at the time cpch is called

accelerator hostname

is the hostname for the accelerator where cpc is running.
The basic output is in a file named cpc.out.

If XML or HTML output is requested when you invoke cpch, cpc.html, or

cpc.xml, or both is also in this directory.

CPC example

Take the sample hybrid application sample_dacs_hybrid_1t and run CPC against it.

1. Make sure that you can run the sample_dacs_hybrid_1t application. To do this,

change to the */dacs-hybrid-examples/dacs_hello/bin directory and type:

./runsample.sh

Note: If you have previously exported DACS_START_ENV_LIST make sure

you reset it before you run ./runsample.sh:

export DACS_START_ENV_LIST=

The hybrid sample is now running.

2. Run the cpc tool against the Cell/B.E. part of the application. Export the

following variable:

export ACCEL_PROG_PATH=`pwd`/accel

/usr/bin/cpch --runid=hybridSample_run1 --cell-event=C ./sample_dacs_hybrid_1t_he

Given the following:

PERF_DATA_ROOT = /myData

Userid = johndoe

Host System Name = myHost

Accelerator System Name = myAcceleratorName

The file output by cpch is in the following directory:

/myData/perfData/johndoe/myHost/cpc/hybridSample_run1/cbe/myAcceleratorName

Chapter 5. Hybrid performance tools 33

FDPR-Pro hybrid support

The hybrid performance tools include the scripts fdprproh and fdprproa to assist

in using FDPR-Pro in a hybrid environment.

Use the fdprproh script to analyze and optimize a hybrid program. The fdprproa

script is used internally by fdprproh and is not intended to be used by a user

directly.

Note: The hybrid script, fdprproh, supports coordinating fdrprpro usage on the

Cell/B.E. accelerator ().

FDPR-Pro usage

fdprproh [OPTION] ... <application name> [<application parameters>]

Note: If application arguments contain switches (for example -p), all the

arguments must be placed in double quotes.

Options:

 -l, --listenv List the environment variables for the script

processing.

-h, --help Print help information for this command.

-o, --optimization-options "<fdprpro

optimization options>"

Enclose the optimization options in double

quotes.

Example:

fdprproh --optimization-options "-O3" /myAppPath/myApp appArguments

Note: If fdprpro fails, the output directory contains files that can contain

additional information, which can help you to determine the cause of the failure.

For example, a log file is created, which logs every phase of the tool when it is

running; instrumentation, executing the instrumented code, and optimizing the

code.

FDPR-Pro tool results

v Any application output from either the host or the accelerator parts of the

application is normally routed back to the host console window. Any output

generated by the fdprpro hybrid scripts is also displayed in the host console

window.

v FDPR-Pro output:

All output from the three stages of the fdprpro tool is in the following directory:

$PERF_DATA_ROOT/<userid>/<hostname>/fdprpro/<application name>/

The final optimized version of the original executable file is named:

<applicationName>.opt

FDPR-Pro example

This example takes the sample hybrid application sample_dacs_hybrid_1t and runs

a basic fdprproh run against it.

1. Make sure that you can run the sample_dacs_hybrid_1t application. To do this,

change to the */dacs-hybrid-examples/dacs_hello/bin directory and type:

34 Cell/B.E.Performance Tools Reference

./runsample.sh

Note: If you have previously exported DACS_START_ENV_LIST, make sure

you reset it before you type ./runsample.sh:

export DACS_START_ENV_LIST=

The sample provides instructions about how to build and run it.

Now that the hybrid sample is running, run the fdprpro tool against the

Cell/B.E. part of the application.

2. Modify the Makefiles:fdprpro requires its executables to be built with

relocation information. To do this, make the following modifications to the

sample’s Makefiles:

a. In file: */dacs-hybrid-examples/dacs_hello/hybrid/ppu64/Makefile on the

LDFLAGS line, insert ″-Wl,-q″ after ″+=″ (do not add any spaces).

b. To rebuild the files, type the following from the combined directory:

make clean

make

3. Run:

cd bin

Export the following variable:

export ACCEL_PROG_PATH=`pwd`/accel

/usr/bin/fdprproh –o "-O2" ./sample_dacs_hybrid_1t_he

Given the following:

PERF_DATA_ROOT = /myData

Userid = johndoe

Host System Name = myHost

PPC Executable Name = myPPCExecName

SPE Executable Name = mySPEExecName

The output files from the fdprproh run are saved in the following directory:

/myData/perfData/johndoe/myHost/fdprpro/myPPCExecName

If the run is successful, the following files are in the directory:

 myPPCExecName.instr The instrumented executable.

myPPCExecName.instr.log fdprpro console output from the

instrumentation step.

myPPCExecName.instr.out Console output from running

myPPCExecName.instr.

myPPCExecName.nprof Tool output file for the PPC executable.

mySPEExecName.mprof Tool output file for the SPE executable.

myPPCExecName.log fdprpro console output from the

optimization step.

spe_dir SPE temporary directory. Empty unless there

was a failure concerning the SPE part of the

run.

myPPCExecName.opt The optimized PPC with the embedded SPE

executable file.

Chapter 5. Hybrid performance tools 35

OProfile hybrid support

OProfile is available for hybrid. You can download it from:

http://oprofile.sourceforge.net/

Root access

Because the OProfile tool accesses hardware registers, it requires that the userid

running this tool either has root authority or sudo authority to run OProfile. For

more information about which events can be monitored for each type of CPU, the

event names, and other command line options, refer to the OProfile documentation

at:

http://oprofile.sourceforge.net/

OProfile usage

The Hybrid Tools includes the scripts oprofileh, oprofilea, and oprofilerpt to

assist in using OProfile in a hybrid environment. A hybrid program can be profiled

using the oprofileh script. The oprofilerpt script can be used at a later time to

create a report from the profile data. The oprofilea script is used internally by

oprofileh and is not intended to be called by a user directly. OProfile can be run

on the host part of the application and/or the Cell/B.E. part of the application.

oprofileh usage:

oprofileh [options] <application name> [<application parameters>]

Note: If you want to pass parameters to your application you need to add a blank

parameter (--) between the last oprofileh parameter and the program name, for

example:

oprofileh --host-vm=--no-vmlinux --host-event=CPU_CLK_UNHALTED:1000000 -- myApp myAppParm

Parameters for oprofileh

 --runid=ID Optional. Name of the current run to refer to

the data using the oprofilerpt command at a

later time. If no runid is provided a

timestamp is used.

--host-vm=VM Optional: (--no-vmlinux,--vmlinux=,...)

Common OProfile parameters that are

provided before starting OProfile. These

option are used on the host OProfile.

Multiple parameter values may be specified

by enclosing in quotes.

--cell-vm=VM Optional: (--no-vmlinux,--vmlinux=,...)

Common OProfile parameters that are

provided prior to starting OProfile. These

option are used on the Cell/B.E. OProfile.

Multiple parameter values can be specified

by enclosing in quotes.

36 Cell/B.E.Performance Tools Reference

http://oprofile.sourceforge.net/
http://oprofile.sourceforge.net/

--host-event=EVT Optional. Can be specified multiple times

depending on the capabilities of the host

system’s PMU and OProfile.

The events to be monitored on the host part

of the program are specified. For example:

--host-event= CPU_CLK_UNHALTED:500000

--cell-event=EVT Optional. Can be specified multiple times

depending on the capabilities of the

Cell/B.E. PMU and OProfile. The event to

be monitored on the Cell/B.E. part of the

program are specified. For example:

--host-event=SPU_CYCLES:500000

--host-options=OPTS Optional. Can specify any parameters for the

OProfile host opcontrol --start command.

Multiple parameter values can be specified

by enclosing in quotes.

--cell-options=OPTS Optional. Can specify any parameters for the

OProfile Cell/B.E. opcontrol --start

command. Multiple parameter values can be

specified by enclosing in quotes.

--help,-h Prints help information for this command.

--listenv,-l Prints out trace variable information.

Example for oprofileh:

oprofileh --runid=Run7 --cell-vm=--no-vmlinux

 --cell-event=SPU_CYCLES:200000 my_application -lx

The oprofilerpt command is used after oprofileh to create the desired reports. It

references the data using the required parameter runid. Reports are stored in the

performance tools directory structure. The script prints the directory name where

the reports are found as it runs the report commands.

oprofilerpt usage:

oprofilerpt --runid=<id> [options] opreport|opannotate|opgprof

Parameters for oprofilerpt:

 --runid=ID Name of the run that was specified or

created when oprofileh was previously used

to profile a program.

--host Optional. Create a report on the host

OProfile data.

--cell Optional,. Create report(s) on the Cell/B.E.

OProfile data.

--host-options=OPT Optional. Specify any parameters for the

host opreport/opannotate/opgprof

command.

--cell-options=OPT Optional. Specify any parameters for the

Cell/B.E. opreport/opannotate/opgprof

command. Multiple parameter values can be

specified by enclosing in quotes.

Chapter 5. Hybrid performance tools 37

--delete,-d Delete the OProfile session data (saved

under runid) after the report has been

created.

--print,-p Print a copy of the OProfile report.

--help,-h Prints help information for this command.

Example for oprofilerpt:

oprofilerpt --runid=Run7 --cell --cell-options=--symbols

 --print opreport

OProfile tool results

v Any application output from either the host or the accelerator parts of the

application is normally routed back to the host console window. Any output

generated by the Oprofile hybrid scripts is also displayed in the host console

window.

v OProfile output: the output from the OProfile tool is in the following directory:

<PERF_DATA_ROOT>/<username>/<hostname>/oprofile/<runid>/<arch>/<accelerator hostname>

where:

PERF_DATA_ROOT

Is the environment variable set in perfToolUsrEnv configuration file (see

“Setting up and configuring the performance tool scripts” on page 30).

username

Is the userid that called the oprofileh script

hostname

Is the host system’s name

runid Is either the runid supplied on the oprofileh invocation, or a

date-timestamp taken at the time cpch was called.

arch Is the hardware architecture (either x86_64 or cbe)

accelerator hostname

Is the hostname for the accelerator where OProfile is running.

After oprofileh has run, oprofilerpt should be run to generate a report which is

placed in the same directory.

Note: if you run oprofileh against both the host and the accelerator at the same

time you get multiple <arch> directories.

OProfile example

Take the sample hybrid application sample_dacs_hybrid_1t and run OProfile

against both the host and accelerator executables.

1. Make sure that you can run the sample_dacs_hybrid_1t application. To do this,

change to the */dacs-hybrid-examples/dacs_hello/hybrid/bin directory and

type:

./runsample.sh

Note: If you have previously exported DACS_START_ENV_LIST, reset it before

typing ./runsample.sh:

export DACS_START_ENV_LIST=

38 Cell/B.E.Performance Tools Reference

The sample comes with instructions about how to build and run it.

Now that you have the hybrid sample running, run the oprofileh tool against

the application.

2. Export the following variable:

export ACCEL_PROG_PATH=`pwd`/accel

/usr/bin/oprofileh

 --runid=hybridSample_run1

 --host-vm=--no-vmlinux

 --host-event=CPU_CLK_UNHALTED:1000000

 --cell-vm=--no-vmlinux

 -–cell-event=CYCLES:1000000 ./sample_dacs_hybrid_1t_he

Given the following:

PERF_DATA_ROOT = /myData

Userid = johndoe

Host System Name = myHost

Accelerator System Name = myAcceleratorName

3. The output files from the oprofileh run are in the following directory:

/myData/perfData/johndoe/myHost/oprofile/hybridSample_run1/cbe/myAcceleratorName

/myData/perfData/johndoe/myHost/oprofile/hybridSample_run1/x86_64/myAcceleratorName

4. Run the OProfile report tool against the output:

/usr/bin/oprofilerpt --runid=hybridSample_run1

 --cell --cell-options=--symbols –d --print opreport

After running the oprofilerpt command each of the output directories contains

the file opreport.out, one in the x86_64 directory and one in the cbe directory. This

contains the reports from the OProfile runs.

PDT support for hybrid

For general information about how to use and configure PDT, see Chapter 1, “Cell

Broadband Engine Performance Debugging Tool (PDT),” on page 1.

The scripts provided here in the hybrid tooling RPMs enable easy setup,

coordination, and use of the trace facility in the hybrid environment.

These scripts assume you have enabled your application for trace (see the PDT

documentation for details). The scripts also allow for transparent switching of the

LD_LIBRARY_PATH to include the traced versions of the IBM provided shared

libraries. This is useful if you are using the shared library versions of these

libraries. If you are statically linking in libraries that are trace enabled you need to

modify your make files accordingly (see the PDT documentation).

Environment variables are also provided so that the user can point to traced

versions of users’ shared libraries and have them substituted when tracing the

application (see the user environment variable descriptions above for

ACCEL_APP_PATH and ACCEL_APP_LD_LIBRARY_PATH).

PDT usage

traceh [OPTION] ... <application name> [<application arguments>]

Note: If application arguments contain switches (for example, -p or --myOpt), all

the arguments must be placed in double quotes.

Chapter 5. Hybrid performance tools 39

Options:

 -h, --help Print command help.

-l, --listenv Prints out trace environment variable

information.

--runid Specifies a prefix to prepend to the base

trace directory associated with the trace of

this application. Default is a date/time

based directory name.

Note: This is used to coordinate PDTR

analysis.

Example:

traceh --runid myFastRun2 myHybridApp argument

Setting up PDT

PDT exists on both the host and the accelerator. It supports the ability to trace

shipped libraries that have been enabled for trace. It also supports the ability for

the user to add trace points to their code (see the PDT users guide for details).

Both PDT on the host as well as PDT on the accelerator require a configuration file

to tell them which trace functions you want turned on for the run of your

application. Use the following export statements from the host environment to

point to the appropriate configuration files:

Host PDT configuration file example:

export PDT_CONFIG_FILE=/usr/share/pdt/config/pdt_dacs_config_hybrid.xml

Accelerator PDT configuration file example:

export DACS_START_ENV_LIST=

"PDT_CONFIG_FILE=/usr/share/pdt/config/pdt_dacs_config_cell.xml"

Note: The example shows an export statement split onto two lines because of the

width of the printed page. The export statement is normally one continuous line.

Note: The example listed enables default tracing of all the DaCS code.

PDT tool results

v Any application output from either the host or the accelerator parts of the

application is normally routed back to the host console window. Any output

generated by the trace hybrid scripts are also displayed in the host console

window.

v Trace/PDT Output: The output from the PDT tool is in the following directories:

<PERF_DATA_ROOT>/<username>/<hostname>/trace/<runid>

where:

PERF_DATA_ROOT

Is the environment variable set in perfToolUsrEnv configuration file (see

“Setting up and configuring the performance tool scripts” on page 30).

username

Is the userid that called the traceh script.

hostname

Is the host system’s name.

40 Cell/B.E.Performance Tools Reference

runid Is either the runid supplied on the traceh invocation, or at date-timestamp

<YYYYmmddHHMMSS> taken at the time traceh was called.

Individual files generated by PDT also have the source hostname prepended to the

front so that point of origin can be determined.

After traceh is run, pdtrh can be run to analyze the trace or print a readable text

file output. VPA can also be used to visualize the results.

PDT Trace example

Take the sample hybrid application sample_dacs_hybrid_1t and run traceh against

both the host and accelerator executables.

Required RPMs for Trace/PDT to function for DaCS:

 Platform Required RPMs

Hybrid-x86 pdt-*.*.-*

pdt-devel-*.*.-*

pdt-cross-devel-*

pdt-cross-devel-*.*.-*

pdtr-*.*.-*

trace-*.*.-*

trace-devel-*.*.-*

trace-cross-devel-*.*.-*

dacs-hybrid-trace-*.*.-*

dacs-hybrid-trace-devel-*.*.-*

Cell/B.E. pdt-*.*.-*

pdtr-*.*.-*

trace-*.*.-*

dacs-trace-*.*.-*

dacs-hybrid-trace-*.*.-*

1. Make sure that you can run the sample_dacs_hybrid_lt application by

navigating to the */dacs-hybrid-examples/dacs_hello/hybrid/bin directory and

invoking:

./runsample.sh

Note: If you have previously exported DACS_START_ENV_LIST make sure

you reset it before typing ./runsample.sh as follows:

export DACS_START_ENV_LIST=

./runsample.sh

If it does not run, refer to the sample documentation on how to build and run

it.

2. Export the following two variables:

export ACCEL_PROG_PATH=`pwd`/accel

3. Because DaCS on the host as well as on the PPU ship shared libraries with

tracing enabled, it is a matter of using those libraries instead of the normal

libraries. The traceh and tracea scripts facilitate this by defining TRACE to

enable it. Run the following export:

export TRACE=1

Then navigate to the ../hybrid directory and type:

make clean

make

Chapter 5. Hybrid performance tools 41

4. You have now built the hybrid sample for trace. Next, run the traceh tool

against the application. To do this, you first need to use environment variables

to tell PDT on the host and accelerator where to find the config file you want it

to use. For this example, tell it to use a config file which enables tracing of

DaCS.

a. For the host:

export PDT_CONFIG_FILE=/usr/share/pdt/config/pdt_dacs_config_hybrid.xml

b. For the accelerator:

export DACS_START_ENV_LIST=

"PDT_CONFIG_FILE=/usr/share/pdt/config/pdt_dacs_config_cell.xml"

Note: The example shows an export statement split onto two lines because

of the width of the printed page. The export statement is normally one

continuous line.
5. Execute a run with tracing:

cd bin

/usr/bin/traceh --runid=hybridSample_trace ./sample_dacs_hybrid_1t_he

Given the following:

PERF_DATA_ROOT = /myData

Userid = johndoe

Host System Name = myHost

Accelerator System Name = myAccelertorName

Then the output files from the traceh run are in the following directory:

/myData/perfData/johndoe/myHost/trace/hybridSample_trace

6. Run the pdtr tool against the output:

/usr/bin/pdtrh --runid=hybridSample_trace

Output from pdtr is in the same directory, and ends with a pep file extension.

PDTR support for Hybrid

PDTR is a command line tool that provides both viewing and postprocessing of

PDT traces on the target machine.

Use of PDTR requires trace output files from PDT. After you have run the PDT

application and it has generated trace output files, use PDTR to show the trace

output and analysis.

For more information about using PDTR see the pdtr manual page or the

Chapter 1, “Cell Broadband Engine Performance Debugging Tool (PDT),” on page

1.

PDTR usage

pdtrh --runid=ID [options]

Required parameters:

 --runid=ID Required. Must either match the runID

given to traceh when generating the trace, or

match the default date-timestamp assigned

when traceh was run.

Options:

42 Cell/B.E.Performance Tools Reference

-h,--help Prints out trace environment variable

information.

-l,--listenv Specifies a prefix to be pre-pend to the base

trace directory associated with the trace of

this application. The default is a

date/time-based directory name.

Note: This is used to coordinate PDTR

analysis.

-o, --pdtr-options Options ″<pdtr command line options>″

Note: If more than one option is supplied it

must be enclosed in double quotes.

Example:

If you create the trace with:

traceh --runid myFastRun2 myHybridApp argument

To produce a text-readable basic trace file, run:

pdtrh –runid myFastRun2

PDTR tool results

v Any application output from either the host or the accelerator parts of the

application are normally routed back to the host console window. Any output

generated by the trace hybrid scripts is also displayed in the host console

window.

v Trace/PDT output: The output from the pdtrh tool is placed in the same

directory as the source trace files generated by traceh/pdt and has a .pep

extension.

Chapter 5. Hybrid performance tools 43

44 Cell/B.E.Performance Tools Reference

Chapter 6. Performance tools example

The performance tools example is a practical ″hands-on″ example, which shows

you how to use the performance tools, collect information, and access relevant

visualization features.

FFT16M sample application

The target sample application for analysis is the FFT16M application that can be

found in the Cell BE SDK demos bundle:

/opt/cell/sdk/src/demos/FFT16M

This application, which was hand-tuned, performs a 4-way SIMD single-precision

complex FFT on an array of size 16,777,216 elements. The available command

options are:

fft <ncycles> <printflag> [<log2_spus> <numa_flag> <largepage_flag>]

Preparing and building for profiling

You need to set up a ″sandbox″ styled project tree structure, so that you have more

flexibility when you modify and generate files:

Before you begin

About this task

1. Copy the application from the SDK tree. To work on a ″sandbox″ tree you need

your own copy of the project in an accessible location (for example your home

directory):

cp -R /opt/cell/sdk/demos/FFT16M ~/

2. Prepare the Makefile.

a. Go to your recently created project structure and locate the following three

Makefiles:

~/FFT16M/Makefile

~/FFT16M/ppu/Makefile

~/FFT16M/ppu/Makefile

b. Modify the Makefiles to prevent them from trying to install executable files

back to the SDK tree, and introduce the required compilation flags for

profiling data. To do this:

v Comment out the install directives in ~/FFT16M/ppu/Makefile

v Introduce the -g and -Wl,-q compilation flags in order to preserve the

relocation and the line number information in the final integrated

executable

The following is an example of how to change ~/FFT16M/ppu/Makefile

for gcc.

Target

PROGRAM_ppu= fft

##

© Copyright IBM Corp. 2007, 2008 45

Objects

IMPORTS = ../spu/fft_spu.a -lspe2 -lpthread -lm -lnuma

#INSTALL_DIR= $(EXP_SDKBIN)/demos

#INSTALL_FILES= $(PROGRAM_ppu)

LDFLAGS_gcc = -Wl,-q

CFLAGS_gcc = -g

buildutils/make.footer

Note:

v No further Makefile modifications, beyond these, are required

v There are specific changes depending whether you use gcc our xlc as the

compiler
ifdef CELL_TOP

include $(CELL_TOP)/buildutils/make.footer

else

include ../../../../buildutils/make.footer

endif

Changing ~/FFT16M/ppu/Makefile for gcc

Target

PROGRAM_ppu= fft

Objects

PPU_COMPILER = xlc

IMPORTS = ../spu/fft_spu.a -lspe2 -lpthread -lm -lnuma

#INSTALL_DIR= $(EXP_SDKBIN)/demos

#INSTALL_FILES= $(PROGRAM_ppu)

LDFLAGS_xlc = -Wl,-q

CFLAGS_xlc = -g

buildutils/make.footer

ifdef CELL_TOP

include $(CELL_TOP)/buildutils/make.footer

else

include ../../../../buildutils/make.footer

endif

_ ~/FFT16M/spu/Makefile

Example: Changing ~/FFT16M/ppu/Makefile for gcc

Target

PROGRAM_ppu= fft

Objects

#

46 Cell/B.E.Performance Tools Reference

PPU_COMPILER = xlc

IMPORTS = ../spu/fft_spu.a -lspe2 -lpthread -lm -lnuma

#INSTALL_DIR= $(EXP_SDKBIN)/demos

#INSTALL_FILES= $(PROGRAM_ppu)

LDFLAGS_xlc = -Wl,-q

CFLAGS_xlc = -g

buildutils/make.footer

ifdef CELL_TOP

include $(CELL_TOP)/buildutils/make.footer

else

include ../../../../buildutils/make.footer

endif

_ ~/FFT16M/spu/Makefile

Introduce the -g and -Wl,-q compilation flags in order to preserve the

relocation and the line number information in the final integrated

executable file.

Example: Modifying ~/FFT16M/spu/Makefile for gcc

Target

PROGRAMS_spu:= fft_spu

LIBRARY_embed:= fft_spu.a

Local Defines

CFLAGS_gcc:= -g --param max-unroll-times=1 # needed to keep size of

program down

LDFLAGS_gcc = -Wl,-q -g

buildutils/make.footer

ifdef CELL_TOP

include $(CELL_TOP)/buildutils/make.footer

else

include ../../../../buildutils/make.footer

endif

Example: Modifying ~/FFT16M/spu/Makefile for xlc

Target

SPU_COMPILER = xlc

PROGRAMS_spu:= fft_spu

LIBRARY_embed:= fft_spu.a

Local Defines

CFLAGS_xlc:= -g -qnounroll -O5

LDFLAGS_xlc:= -O5 -qflag=e:e -Wl,-q -g

#

Chapter 6. Performance tools example 47

buildutils/make.footer

ifdef CELL_TOP

include $(CELL_TOP)/buildutils/make.footer

else

include ../../../../buildutils/make.footer

endif

3. Before the actual build, make sure you set the default compiler accordingly. To

do this, issue the following command:

/opt/cell/sdk/buildutils/cellsdk_select_compiler [gcc|xlc]

4. You are now ready for the build:

cd ~/FFT16M ; CELL_TOP=/opt/cell/sdk make

Creating and working with profile data

After you have set up the project tree and have a successful build, you can collect

and work with profile data.

About this task

The following steps describe how to:

1. Collect data with Cell-perf-counter tool (CPC).

2. Display the CPC report in the Visual Performance Analyzer (VPA).

3. Collect data with OProfile.

4. Display the OProfile report in VPA.

5. Use Feedback Directed Program Restructuring (FDPR-Pro) to gather frequency

information.

6. Analyze and display FDPR-Pro frequency information in VPA.

Collecting data with CPC

The following procedure describes how to collect data with CPC.

1. Before collecting the application data, run a small test in order to verify that

CPC is properly work. Type the following command to measure clock-cycles

and branch instructions committed on both hardware threads for all processes

on all CPUs for five seconds, and you should immediately see the following

counter statistics:

cpc --cpus all --time 5s --events C

2. Collect counter data for the FFT16M application. The following example counts

PPC instructions committed in one event-set, and L1 cache load misses in a

second event-set and writes the output in xml format (suitable for the counter

analyzer) to the file fft_cpc.pmf:

cd ~/FFT16M

cpc --events C,2100,2119 --cpus all --xml fft_cpc.pmf \

 ./ppu/fft 40 1

3. This results in the following file:

~/FFT16M/fft_cpc.pmf

Example

A more useful way to use the CPC is to use the CPC --interval option to set a

sampling interval. Setting a time interval in which events are counted can show

the number of events occurring at different time units during the interval.

48 Cell/B.E.Performance Tools Reference

The following is an example of the CPC with the -interval option. Note the CPC is

split onto two lines because of the width of the printed page. The CPC is normally

one continuous line.

$ cpc -e 2100,2101,2106,2109 -e 2103,2104,2111,2119 -c all \

 --sampling-buffer-size 15 --interval 100000000 -X fft_cpc2.pmf \

 -t 10 ./fft 1 1 4 1 0

The output file fft_cpc2.pmf now includes counted events information for each of

the following sampled events within the specified interval:

v Branch_Commit_t0

v Branch_Commit_t1

v Branch_Flush_t0

v Dispatch_Blocked_t0

v IERAT_Miss_t0

v IL1_Miss_Cycles_t0

v Instr_Flushed_t0

v PPC_Commit_t0

Displaying the CPC report in VPA

The generated counter information can now be visualized with the VPA tool.

Before you begin

You can download the VPA tool from

http://www.alphaworks.ibm.com/tech/vpa/download

About this task

To display the counter information, do the following:

1. Open VPA and select Tools → Counter Analyzer.

2. Select File → Open File.

3. Locate the fft_cpc.pmf file and select it.

Example

The result is something similar to the following screen, which shows the collected

counter information and a graph that displays the amount of events occurring at

every time unit during the sampling interval:

Chapter 6. Performance tools example 49

http://www.alphaworks.ibm.com/tech/vpa/download

Collecting data with OProfile

The following steps generate appropriate profile information (suitable for the

Profile Analyzer) for both PPU and SPU, from the FFT16M application:

Before you begin

About this task

Before you run Oprofile make sure you remove any previous profiling options and

setup which can interfere with the profile generation process. To this, you should

completely remove (as root) the file daemonrc located under /root/.oprofile as

follows:

rm /root/.oprofile/daemonrc

1. Initialize the OProfile environment for the SPU and run the fft workload to

collect SPU average cycle events:

As root

opcontrol --deinit

opcontrol --init

opcontrol --reset

opcontrol --separate=all --event=SPU_CYCLES:100000

opcontrol --start

As regular user

Figure 2. Counter information displayed by the VPA

50 Cell/B.E.Performance Tools Reference

fft 20 1

As root

opcontrol --stop

opcontrol --dump

2. To generate the report, type the following:

opreport -X -g -l -d -o fft.spu.opm

3. Repeat the steps for PPU. The following is an example of OProfile initialization

and run for PPU profiling:

As root

opcontrol --deinit

opcontrol --init

opcontrol --reset

opcontrol --separate=all --event=CYCLES:100000

opcontrol --start

As regular user

fft 20 1

As root

opcontrol --stop

opcontrol --dump

4. To generate the report, type the following:

opreport -X -g -l -d -o fft.ppu.opm

Displaying the OProfile report in VPA

Load the generated profile information with VPA and use the Profile Analyzer

plugin to display the information.

About this task

To display the OProfile report in VPA, do the following:

1. Open VPA and select Tools → Profile Analyzer.

2. Choose File → Open File.

3. Locate the fft.spu.opm file and select it. The following screen is displayed:

Figure 3. fft.spu.opm displayed in the Profile Analyzer

Chapter 6. Performance tools example 51

4. Examine the disassembly information by selecting the fft_spu entry contained

inside the Modules section at the center of the screen (see Figure 3 on page 51),

then double-click the main symbol in theSymbol/Functions view.

5. The result appears in the Disassembly view, as follows:

6. After you have double-clicked the symbol, the tool optionally asks you for that

particular symbol’s source code. If you have the source code, click the Source

Code tab at the bottom center portion of the screen.

Figure 4. Disassembly view for fft_spu.opm

Figure 5. Source view for fft_spu.opm

52 Cell/B.E.Performance Tools Reference

7. To load a listing file that was generated by the compiler, select the Compiler

Listing tab and open the file. You can generate listing files at compile time

using the GCC flags: -Wa, -a, -ad or with the -qlist IBM XLC compiler option.

8. Optionally, you can repeat the procedure to analyze the fft_ppu.opm profile

results.

Using FDPR-Pro to gather frequency information

In addition to using FDPR-Pro to optimize applications, you can also use it in

combination with the VPA Code Analyzer plugin to investigate application

performance, while mapping back to the source code.

About this task

Initially, you need to set up FDPR-Pro to collect the profiling data as follows:

1. Clean up old profile information and create a temporary working directory for

FDPR-Pro:

cd ~/FFT16M/ppu ; rm -f *.mprof *.nprof ; mkdir sputmp

2. Configure the fft executable file with the following command:

fdprpro fft -cell -spedir sputmp -a instr

This results in the following output:

FDPR-Pro Version 5.4.0.16 for Linux (CELL)

fdprpro ./fft -cell -spedir sputmp -a instr

> spe_extraction -> ./fft ...

...

> processing_spe_file -> sputmp/fft_spu ...

...

> reading_exe ...

> adjusting_exe ...

...

> analyzing ...

> building_program_infrastructure ...

@Warning: Relocations based on section .data -- section may not be

reordered

> building_profiling_cfg ...

> spe_encapsulation -> sputmp/out ...

>> processing_spe -> sputmp/out/fft_spu ...

> instrumentation ...

>> throw_&_catch_fixer ...

>> adding_universal_stubs ...

>> running_markers_and_instrumenters ...

>> linker_stub_fixer ...

>> dynamic_entries_table_sections_bus_fixer ...

>> writing_profile_template -> fft.nprof ...

> symbol_fixer ...

> updating_executable ...

> writing_executable -> fft.instr ...

bye.

3. Run the generated profile:

./fft.instr 20 1

4. The following two files are created:

v ~/FFT16M/ppu/fft.nprof # PPU profile information

v ~/FFT16M/ppu/fft_spu.mprof # SPU profile information

Chapter 6. Performance tools example 53

Analyzing and displaying FDPR-Pro frequency information in

VPA

The VPA Code Analyzer plugin imports information from the FDPR-Pro, and

displays it.

About this task

To import and display the information, do the following:

1. With VPA open, select Tools → Code Analyzer.

2. Go to Tools → Code Analyzer → Analyze Executable and locate the original fft

executable file. Two editor tabs are displayed in the center view of the screen,

one for PPU and one for SPU:

3. Associate the PPU profile information. To do this, select the PPU editor tab

view and click File → Code Analyzer → Add Profile Info, then locate the

fft.nprof file.

Figure 6. SPU and PPU editor tabs opened in the Code Analyzer

54 Cell/B.E.Performance Tools Reference

4. Repeat the same procedure for the SPU part. To do this, select the SPU editor

tab, and click File → Code Analyzer → Add Profile Info, then locate the

fft_spu.mprof file. After you load the profile information, the instructions in

both editors tabs are displayed in red, which indicates that these instructions

are very frequently executed (refer the color-coded execution frequency scale

displayed at the bottom of the screen).

5. You can also associate the source code by selecting symbols in the Program

Tree. To do this, right click and select Open Source Code, then locate the

source code. The Source Code tab displays rates of execution per line of source

code in the center of the screen, see XREF. Click the Link with Table button at

the top of the displayed source file, as follows:

Figure 7. Adding profile information

Figure 8. Code Analyzer showing execution rates

Chapter 6. Performance tools example 55

6. Calculate dispatch grouping boundaries for both fft PPE and fft SPU tabs. To

do this, select each tab and click Collect display information about dispatch

groups. You can also simultaneously click Collect hazard info to collect

comments about performance bottlenecks above source lines that apply.

Figure 9. Code Analyzer with source code tab

Figure 10. The Collect Dispatch Grouping and the Performance Hazard buttons in the Code

Analyzer for PPU instructions

56 Cell/B.E.Performance Tools Reference

7. Display pipeline population for each dispatch group. To do this, select the

Dispatch Info tab (inside the Instruction Properties tab), then click the Link

with table button.

The Latency Info tab displays latencies for each selected instruction, see

Figure 13 on page 58.

Figure 11. Hazards Info commented source code for SPU instructions

Figure 12. The Dispatch info tab with the Link with Table option selected

Chapter 6. Performance tools example 57

8. You can also use the Code Analyzer to inspect SPU Timing information at the

pipeline level, with detailed stages of the Cell BE pipeline population. To do

this, select the fft SPU editor tab, locate the desired symbol on the Program

Tree, right-click and select Show SPU-Timing.

The full pipeline layout is displayed as follows:

9. Click the Pipeline Analyzer icon to navigate in the trace.

Figure 13. Latency Info view

Figure 14. Cell Pipeline tab

58 Cell/B.E.Performance Tools Reference

The following navigation view is displayed.

Creating and working with trace data

The PDT tool produces tracing data, which can be viewed and analyzed in the

Trace Analyzer tool.

About this task

The following topics describe how to:

1. Create and work with trace data.

2. Import PDT data into VPA.

Collecting trace data with PDT

To properly collect trace data, you need to recompile the fft application according

to the required PDT procedures:

1. Prepare the spu Makefile according to PDT requirements, depending on the

compiler of your choice:

Example: Modifying ~/FFT16M/spu/Makefile for gcc compiler

Target

PROGRAMS_spu:= fft_spu

LIBRARY_embed:= fft_spu.a

Local Defines

CFLAGS_gcc:= -g --param max-unroll-times=1 -Wall -Dmain=_pdt_main

-Dexit=_pdt_exit -DMFCIO_TRACE -DLIBSYNC_TRACE

LDFLAGS_gcc = -Wl,-q -g -L/usr/spu/lib/trace

INCLUDE = -I/usr/spu/include/trace

IMPORTS = -ltrace

#

Figure 15. Navigation view

Chapter 6. Performance tools example 59

buildutils/make.footer

ifdef CELL_TOP

include $(CELL_TOP)/buildutils/make.footer

else

include ../../../../buildutils/make.footer

endif

Example 6-9 Modifying ~/FFT16M/spu/Makefile for xlc compiler

Target

SPU_COMPILER = xlc

PROGRAMS_spu:= fft_spu

LIBRARY_embed:= fft_spu.a

Local Defines

CFLAGS_xlc:= -g -qnounroll -O5

CPP_FLAGS_xlc := -I/usr/spu/include/trace -Dmain=_pdt_main

-Dexit=_pdt_exit -DMFCIO_TRACE -DLIBSYNC_TRACE

LDFLAGS_xlc:= -O5 -qflag=e:e -Wl,-q -g -L/usr/spu/lib/trace -ltrace

buildutils/make.footer

ifdef CELL_TOP

include $(CELL_TOP)/buildutils/make.footer

else

include ../../../../buildutils/make.footer

endif

Modifying ~/FFT16M/spu/Makefile for xlc compiler

Target

SPU_COMPILER = xlc

PROGRAMS_spu:= fft_spu

LIBRARY_embed:= fft_spu.a

Local Defines

CFLAGS_xlc:= -g -qnounroll -O5

CPP_FLAGS_xlc := -I/usr/spu/include/trace -Dmain=_pdt_main

-Dexit=_pdt_exit -DMFCIO_TRACE -DLIBSYNC_TRACE

LDFLAGS_xlc:= -O5 -qflag=e:e -Wl,-q -g -L/usr/spu/lib/trace -ltrace

buildutils/make.footer

ifdef CELL_TOP

include $(CELL_TOP)/buildutils/make.footer

else

include ../../../../buildutils/make.footer

endif

2. Rebuild the fft application:

60 Cell/B.E.Performance Tools Reference

cd ~/FFT16M ; CELL_TOP=/opt/cell/sdk make

3. Set up a configuration file with only the relevant stalls (mailboxes and read tag

status for SPE):

a. Copy the default xml to the place where the FFT runs, so that you can

modify it.

cp /usr/share/pdt/config/pdt_cbe_configuration.xml ~/FFT16M

b. Open the copied file for editing. At the first line, change the application

name value to fft.

c. Search for <configuration name=″SPE″> and below that line you find the

MFCIO group tag. Set it to active="false". Then delete the SPE_MFC

group. This should be sufficient to trace only the *stalls* in the SPE.
4. Prepare the environment. To do this, set the following variables:

export LD_LIBRARY_PATH=/usr/lib/trace

export PDT_KERNEL_MODULE=/usr/lib/modules/pdt.ko

export PDT_CONFIG_FILE=~/FFT16M/pdt_cbe_configuration.xml

5. Run the fft application at least three times to get better sampling:

cd ~/FFT16M/ppu ; ./fft 1 1 4 1 0

The following trace files should be available after you have run the application:

v .pex,

v .map

v .trace
6. It is recommended that you use the PDTR tool to generate a textual summary

report. To do this, type the following:

$ /usr/bin/pdtr -trc <generated pdt trace file without its suffix>

This produces a summary reports file with the suffix .pep.

Importing PDT data into VPA

The VPA Trace Analyzer plugin displays the application’s stages of execution. It

works with data generated from the PDT tool, more specifically it reads

information available in the generated .pex file.

About this task

Do the following to display the data in the Trace Analyzer:

1. With VPA open, select Tools → Trace Analyzer.

2. Go to File → Open File and locate the .pex file, generated in “Collecting trace

data with PDT” on page 59. The following screen is displayed:

Chapter 6. Performance tools example 61

Note:

v The default PDT_CONFIG_FILE for the SDK establishes the trace files prefix

as ″test″. If you have not modified the file, look for the trace files, which

have ″test″ as the prefix.

v Remember to unset LD_LIBRARY_PATH environment variable, before you

run the original (non-PDT) binary later.
Figure 16 corresponds to the FFT16M application run with 16 SPEs and no

huge pages. A less intensive blue has been selected for the MFC_IO group, and

you now see the difference between the borders and the internals of the

interval. The color map has been used to change the color of read_in_mbox to

be red rather than its group’s default blue. You see a huge stall in the middle.

This is where the benchmark driver verifies the result of the test run to make

sure the benchmark computes correctly. The timed run is the thin blue strip

after the stall.

3. Zoom into this area, which is all that interests you in this benchmark.

Figure 16. Trace Analyzer screen

62 Cell/B.E.Performance Tools Reference

Figure 17 shows how the mailboxes (red bars) break the execution into six

stages. Different stages have different behavior, for example, the third and sixth

stages are much longer than the rest and have a lot of massive stalls. The Trace

Analyzer allows you to click a stall to select it and to obtain further details (as

shown in Figure 17 by the yellow highlight). The selection marker rulers on the

left and top show the location of the selected item (and can be used to get back

to it if you scroll away). The data collected by the PDT for the selected stall is

shown in the record details window. In this example the stall is huge; almost

12K ticks.

You can now check Cell BE performance tips for a possible cause of the stall,

and see that TLB misses is a possible cause, and huge pages are a possible fix.

Example

This is an example of how trace visualization allows you to discover a significant

amount of information regarding the potential application problems.

What to do next

It is possible to observe how well balanced the application is by looking at how it

executes and the start/stop time for each SPU. Because the Trace Analyzer breaks

down the causes of stalls in the code by type, you can identify synchronization

problems.

Figure 17. Zoomed trace view

Chapter 6. Performance tools example 63

64 Cell/B.E.Performance Tools Reference

Appendix A. PDT troubleshooting

This section describes known issues that you may encounter and suggested

solutions.

v Missing/wrong PDT_CONFIG_FILE environment variable at runtime

Symptoms: when running the user application (with PDT enabled) the following

message appears: ″(PDT) ERROR: Environment variable PDT_CONFIG_FILE

was not set.″

Solution: Set PDT_CONFIG_FILE to the right PDT configuration file.

v Missing/wrong LD_LIBRARY_PATH environment variable at runtime

Symptoms: when running the user application (with PDT enabled) one of the

following happen: a. Bus error: likely when a SPU starts running (when

spe_context_run is called). b. Message: ″error while loading shared libraries:

libtrace.so.3: cannot open shared object file: No such file or directory″.

Solution: In both cases, the LD_LIBRARY_PATH is not set, incorrectly set (wrong

path or 32/64 path error), or the paths’ order is wrong where the PDT library

path appears (/usr/lib[64]/trace) after another path so another library occlude

the PDT library.

v Missing context switch notifications in trace file

Symptoms: No context switch notifications records exist in the output trace files

Solution: For RHEL 5.2, verify that the PDT kernel module is installed. For

Fedora 9, ensure the you are using kernel version 2.6.25 or later.

v Config XML file errors

Symptoms: the following messages are related:

 1. ″(PDT) ERROR: Invalid group name GROUP″

 2. ″(PDT) ERROR: Invalid group id GROUP_ID, for group : GROUP″

 3. ″(PDT) ERROR: Invalid subgroup name: SUBGROUP on group GROUP″

 4. ″(PDT) ERROR: Invalid event name: EVENT on subgroup SUBGROUP and

group GROUP″

 5. ″(PDT) ERROR: Invalid event id EVENT_ID for event EVENT of subgroup

SUBGROUP and group GROUP″

 6. ″(PDT) ERROR: The file FILE was not found″

 7. ″(PDT) ERROR: Invalid file FILE.″

 8. ″(PDT) ERROR: FILE is not a file.″

 9. ″(PDT) ERROR: Processor PROCESSOR does not appear in the

configuration″

10. ″(PDT) ERROR: Unknown processor type PROCESSOR″

Solution: for 1, 2, 3, 4, and 5, the respective throttling sections of the config file

should be checked. Problems 6, 7, and 8 mean that the value of the

PDT_CONFIG_FILE environment variable is wrong (e.g. the file doesn’t exists, it

is not an XML config file, the file is corrupted, the value is a directory instead a

config file, etc.). Finally, 9 and 10 indicate that the ″<configuration

name=″PROCESSOR″>″ tag in the config file is missing or an unknown

processor for PDT.

v 32/64 bit compilation and/or linking errors

Symptoms: Cannot compile/link the PPU program with PDT libraries.

© Copyright IBM Corp. 2007, 2008 65

Solution: Re-compilation of the PPE code is needed when user events or

dynamic control were added to the code, and re-linking is needed when

compilation is needed or the SPU code is embedded in the PPE executable.

Make sure that ″-I[/opt/cell/sysroot]/usr/include/trace″ flag is used for

compilation and ″-ltrace″ and ″-L[/opt/cell/sysroot]/usr/lib[64]/trace″ are used

for linkage.

v The program terminates with bus error when starting the SPE program run.

Symptoms: The program terminates with bus error or segmentation fault when

starting the SPE program run.

Solution: First, check that the LD_LIBRARY_PATH is defined correctly (see

problem ″Missing/wrong LD_LIBRARY_PATH environment variable at

runtime″). Check that the SPE was compiled with PDT, specially look for the

-Dmain=_pdt_main flag. If this is not the problem, recompile the SPE code with

-Os (optimization for shorter code), in order to verify that PDT code in the SPE

executable does not grow the executable to a size bigger than the 256K size

allowed.

v Irrelevant context switch notifications

Symptoms: In the output trace files, there are some context switch notifications

with an unknown thread ID value.

Solution: Do not relate to this context switches. Also, make sure that the SPEs

are running before trying to access their problem state (e.g. send a mailbox, etc).

In addition, only one user can use PDT at a time.

v Implicit declarations when compiling SPE or PPE

Symptoms: ″warning: implicit declaration of function ’trace_XXXXX’ ″.

Solution: The trace_* functions were added to the code but their respective

″#include″ are missing. (It is possible that the name of the function is wrong,

too).

v Static event recording throttling are not working, the events are or are not

recorded according to the user setup in the configuration file.

Symptoms: Undesired events are recorded, or, desired events are not recorded.

Solution: Check the XML configuration file pointed by the PDT_CONFIG_FILE

environment variable.

v spu_mfcio events are not recorded.

Symptoms: spu_mfcio (SPU) events are not recorded in the trace file.

Solution: Make sure that the flag ″-DMFCIO_TRACE″ is in the compilation of

ALL the SPE files. Also make sure that the flag ″-I[/opt/cell/sysroot]/usr/spu/
include/trace″ appears as the first include flag (″-I″) in the compilation

command.

v Large unexpected intervals in almost all the SPEs and PPE simultaneously

Symptoms: The trace shows large intervals in many SPEs and PPE at the same

time.

Solution: If the intervals durations are intersected by a ″DAEMON interval″,

then PDT was halted for some milliseconds by the OS. Do not infer that these

large intervals are problems in your code.

v The output trace files are not in the right directory or are not found in the

expected directory.

Symptoms: No trace files in the expected directory.

Solution: Check if the PDT_TRACE_OUTPUT is defined and see if the files were

not written there. If the environment variable wasn’t defined, check the output

directory that is defined in the configuration file and see if the files were not

66 Cell/B.E.Performance Tools Reference

written there. Check that the directory exists and that write permission is

granted for the current user. Note that if both are not defined the trace output is

directed to the current directory.

v Large amount of trace files are written to the disk and the program fails

(although the program runs without PDT enabled).

Symptoms: Many trace files are written to the disk and the program fails with

error.

Solution: Check space in the hard disk. Try using static or dynamic throttling to

decrease the amount of events written to the trace files.

v PPE linking problem with -ltrace

Symptoms: When linking the PPE code,″-ltrace″ and ″-L/usr/lib[64]/trace″

should be added, and then the message ″undefined reference to

`_Unwind_GetIPInfo@GCC_4.2.0’″ shows up.

Solution: add also ″-lstdc++″ flag to the PPE linkage

v Opteron produces ″Illegal instruction″ when PDT is enabled

Symptoms: The above is generated by PDT

Solution: The problem is with the RDTSCP assembly instruction used by PDT.

RDTSCP is a feature that is not found in all AMD processors. It was introduced

in AMD’s NPT Family 0Fh processors. Make sure you are using one of those.

v PDTR problem with stripped executables

Symptoms: In the pdtr output (.pep output file), instruction and/or data

addresses are not mapped to symbolic names (or shows unknown(), no_map(),

unknown-no_symbol_map()), and/or WARNINGS from pdtr tool indicating ″no

symbol map″).

Solution: ignore or rebuild the executable and do not strip

v Issues related to the PDT kernel module (RHEL 5.2 only):

– Message ″insmod: error inserting ’pdt.ko’: -1 File exists″

Symptom: The kernel is trying to be loaded by two processes (two persons

trying to run a program with PDT at the same time).

Solution: Do not run two processes with PDT at the same time.

– Message ″insmod: can’t read /usr/lib/modules/pdt.ko’: No such file or

directory″

Symptom: The kernel cannot be loaded because it was not installed or the

kernel module env variable is wrong. Note that the path in the message is the

current module path that is trying to be loaded.

Solution: Install the PDT kernel module if missing or set the

PDT_KERNEL_MODULE to the actual directory.

– Message ″ERROR: Module PDT does not exist in /proc/modules″

Symptom: The kernel can not be unloaded because it was not loaded.

Solution: Install the PDT kernel module if missing or set the

PDT_KERNEL_MODULE to the actual directory.

– Message ″There will be no error message (the first unloader will succeed)″

Symptom: The kernel is being unloaded twice (two processes trying to unload

the module, one owns it and the other tries to unload it).

Solution: Do not run two processes with PDT at the same time.

Appendix A. PDT troubleshooting 67

68 Cell/B.E.Performance Tools Reference

Appendix B. Related documentation

This topic helps you find related information.

Document location

Links to documentation for the SDK are provided on the IBM developerWorks Web

site located at:

http://www.ibm.com/developerworks/power/cell/

Click the Docs tab.

The following documents are available, organized by category:

Architecture

v Cell Broadband Engine Architecture

v Cell Broadband Engine Registers

v SPU Instruction Set Architecture

Standards

v C/C++ Language Extensions for Cell Broadband Engine Architecture

v Cell Broadband Engine Linux Reference Implementation Application Binary Interface

Specification

v SIMD Math Library Specification for Cell Broadband Engine Architecture

v SPU Application Binary Interface Specification

v SPU Assembly Language Specification

Programming

v Cell Broadband Engine Programmer’s Guide

v Cell Broadband Engine Programming Handbook

v Cell Broadband Engine Programming Tutorial

Library

v Accelerated Library Framework for Cell Broadband Engine Programmer’s Guide and

API Reference

v Basic Linear Algebra Subprograms Programmer’s Guide and API Reference

v Data Communication and Synchronization for Cell Broadband Engine Programmer’s

Guide and API Reference

v Example Library API Reference

v Fast Fourier Transform Library Programmer’s Guide and API Reference

v LAPACK (Linear Algebra Package) Programmer’s Guide and API Reference

v Mathematical Acceleration Subsystem (MASS)

v Monte Carlo Library Programmer’s Guide and API Reference

v SDK 3.0 SIMD Math Library API Reference

v SPE Runtime Management Library

v SPE Runtime Management Library Version 1 to Version 2 Migration Guide

v SPU Runtime Extensions Library Programmer’s Guide and API Reference

© Copyright IBM Corp. 2007, 2008 69

http://www.ibm.com/developerworks/power/cell/

v Three dimensional FFT Prototype Library Programmer’s Guide and API Reference

Installation

v SDK for Multicore Acceleration Version 3.1 Installation Guide

Tools

v Getting Started - XL C/C++ for Multicore Acceleration for Linux

v Compiler Reference - XL C/C++ for Multicore Acceleration for Linux

v Language Reference - XL C/C++ for Multicore Acceleration for Linux

v Programming Guide - XL C/C++ for Multicore Acceleration for Linux

v Installation Guide - XL C/C++ for Multicore Acceleration for Linux

v Getting Started - XL Fortran for Multicore Acceleration for Linux

v Compiler Reference - XL Fortran for Multicore Acceleration for Linux

v Language Reference - XL Fortran for Multicore Acceleration for Linux

v Optimization and Programming Guide - XL Fortran for Multicore Acceleration for

Linux

v Installation Guide - XL Fortran for Multicore Acceleration for Linux

v Performance Analysis with the IBM Full-System Simulator

v IBM Full-System Simulator User’s Guide

v IBM Visual Performance Analyzer User’s Guide

IBM PowerPC Base

v IBM PowerPC Architecture Book

– Book I: PowerPC User Instruction Set Architecture

– Book II: PowerPC Virtual Environment Architecture

– Book III: PowerPC Operating Environment Architecture

v IBM PowerPC Microprocessor Family: Vector/SIMD Multimedia Extension Technology

Programming Environments Manual

70 Cell/B.E.Performance Tools Reference

Appendix C. Accessibility features

Accessibility features help users who have a physical disability, such as restricted

mobility or limited vision, to use information technology products successfully.

The following list includes the major accessibility features:

v Keyboard-only operation

v Interfaces that are commonly used by screen readers

v Keys that are tactilely discernible and do not activate just by touching them

v Industry-standard devices for ports and connectors

v The attachment of alternative input and output devices

IBM and accessibility

See the IBM Accessibility Center at http://www.ibm.com/able/ for more

information about the commitment that IBM has to accessibility.

© Copyright IBM Corp. 2007, 2008 71

http://www.ibm.com/able/

72 Cell/B.E.Performance Tools Reference

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in

other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not grant you

any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION ″AS IS″ WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore, this statement may not apply

to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 2007, 2008 73

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact:

IBM Corporation

Software Interoperability Coordinator, Department 49XA

3605 Highway 52 N

Rochester, MN 55901

U.S.A.

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this document and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement or any equivalent agreement

between us.

Any performance data contained herein was determined in a controlled

environment. Therefore, the results obtained in other operating environments may

vary significantly. Some measurements may have been made on development-level

systems and there is no guarantee that these measurements will be the same on

generally available systems. Furthermore, some measurements may have been

estimated through extrapolation. Actual results may vary. Users of this document

should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of

performance, compatibility or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the

suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or

withdrawal without notice, and represent goals and objectives only.

All IBM prices shown are IBM’s suggested retail prices, are current and are subject

to change without notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to

change before the products described become available.

This information contains examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious and any similarity to the names and addresses used by an actual business

enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which

illustrate programming techniques on various operating platforms. You may copy,

74 Cell/B.E.Performance Tools Reference

modify, and distribute these sample programs in any form without payment to

IBM, for the purposes of developing, using, marketing or distributing application

programs conforming to the application programming interface for the operating

platform for which the sample programs are written. These examples have not

been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or

imply reliability, serviceability, or function of these programs.

Each copy or any portion of these sample programs or any derivative work, must

include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.

Sample Programs. © Copyright IBM Corp. _enter the year or years_. All rights

reserved.

If you are viewing this information softcopy, the photographs and color

illustrations may not appear.

Trademarks

The following terms are trademarks of International Business Machines

Corporation in the United States, other countries, or both:

 alphaWorks

BladeCenter

developerWorks

IBM

Passport Advantage

POWER

Power PC®

PowerPC

PowerPC Architecture™

Cell Broadband Engine and Cell BE are trademarks of Sony Computer

Entertainment, Inc., in the United States, other countries, or both and is used under

license therefrom.

Intel®, MMX, and Pentium® are trademarks of Intel Corporation in the United

States, other countries, or both.

Microsoft®, Windows®, and Windows NT® are trademarks of Microsoft Corporation

in the United States, other countries, or both.

UNIX® is a registered trademark of The Open Group in the United States and

other countries.

Java™ and all Java-based trademarks and logos are trademarks or registered

trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

Linux is a trademark of Linus Torvalds in the United States, other countries, or

both.

Red Hat, the Red Hat “Shadow Man” logo, and all Red Hat-based trademarks and

logos are trademarks or registered trademarks of Red Hat, Inc., in the United

States and other countries.

Notices 75

XDR is a trademark of Rambus Inc. in the United States and other countries.

Other company, product, or service names may be trademarks or service marks of

others.

Terms and conditions

Permissions for the use of these publications is granted subject to the following

terms and conditions.

Personal Use: You may reproduce these publications for your personal,

noncommercial use provided that all proprietary notices are preserved. You may

not distribute, display or make derivative works of these publications, or any

portion thereof, without the express consent of IBM.

Commercial Use: You may reproduce, distribute and display these publications

solely within your enterprise provided that all proprietary notices are preserved.

You may not make derivative works of these publications, or reproduce, distribute

or display these publications or any portion thereof outside your enterprise,

without the express consent of IBM.

Except as expressly granted in this permission, no other permissions, licenses or

rights are granted, either express or implied, to the publications or any

information, data, software or other intellectual property contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its

discretion, the use of the publications is detrimental to its interest or, as

determined by IBM, the above instructions are not being properly followed.

You may not download, export or re-export this information except in full

compliance with all applicable laws and regulations, including all United States

export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE

PUBLICATIONS. THE PUBLICATIONS ARE PROVIDED ″AS-IS″ AND WITHOUT

WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING

BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY,

NON-INFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.

76 Cell/B.E.Performance Tools Reference

Glossary

ABI. Application Binary Interface. This is the standard

that a program follows to ensure that code generated

by different compilers (and perhaps linking with

various, third-party libraries) run correctly on Cell/B.E..

The ABI defines data types, register use, calling

conventions and object formats.

ALF. Accelerated Library Framework. This an API that

provides a set of services to help programmers solving

data parallel problems on a hybrid system. ALF

supports the multiple-program-multiple-data (MPMD)

programming style where multiple programs can be

scheduled to run on multiple accelerator elements at

the same time. ALF offers programmers an interface to

partition data across a set of parallel processes without

requiring architecturally-dependent code.

API. Application Program Interface.

atomic operation. A set of operations, such as

read-write, that are performed as an uninterrupted unit.

Auto-SIMDize. To automatically transform scaler code

to vector code.

Barcelona Supercomputing Center. Spanish National

Supercomputing Center, supporting IBM BladeCenter

servers and Linux on Cell/B.E.

BE. Broadband Engine.

Broadband Engine. See CBEA.

BSC. See Barcelona Supercomputing Center.

C++. C++ is an object-orientated programming

language, derived from C.

cache. High-speed memory close to a processor. A

cache usually contains recently-accessed data or

instructions, but certain cache-control instructions can

lock, evict, or otherwise modify the caching of data or

instructions.

call stub. A small piece of code used as a link to other

code which is not immediately accessible.

Cell BE processor. The Cell BE processor is a

multi-core broadband processor based on IBM’s Power

Architecture.

CBEA. Cell Broadband Engine Architecture. A new

architecture that extends the 64-bit PowerPC

Architecture. The CBEA and the Cell Broadband Engine

are the result of a collaboration between Sony, Toshiba,

and IBM, known as STI, formally started in early 2001.

Cell Broadband Engine processor. See Cell BE.

code section. A self-contained area of code, in

particular one which may be used in an overlay

segment.

coherence. Refers to memory and cache coherence.

The correct ordering of stores to a memory address,

and the enforcement of any required cache writebacks

during accesses to that memory address. Cache

coherence is implemented by a hardware snoop (or

inquire) method, which compares the memory

addresses of a load request with all cached copies of

the data at that address. If a cache contains a modified

copy of the requested data, the modified data is written

back to memory before the pending load request is

serviced.

compiler. A programme that translates a high-level

programming language, such as C++, into executable

code.

computational kernel. Part of the accelerator code that

does stateless computation task on one piece of input

data and generates corresponding output results.

compute task. An accelerator execution image that

consists of a compute kernel linked with the

accelerated library framework accelerator runtime

library.

CPC. A tool for setting up and using the hardware

performance counters in the Cell BE processor.

CPI. Cycles per instruction. Average number of clock

cycles taken to perform one CPU instruction.

CPL. Common Public License.

cycle. Unless otherwise specified, one tick of the PPE

clock.

Cycle-accurate simulation. See Performance simulation.

DaCS. The Data Communication and Synchronization

(DaCS) library provides functions that focus on process

management, data movement, data synchronization,

process synchronization, and error handling for

processes within a hybrid system.

DaCS Element. A general or special purpose

processing element in a topology. This refers

specifically to the physical unit in the topology. A DE

can serve as a Host or an Accelerator.

DE. See DaCS element.

DMA. Direct Memory Access. A technique for using a

special-purpose controller to generate the source and

destination addresses for a memory or I/O transfer.

© Copyright IBM Corp. 2007, 2008 77

DMA command. A type of MFC command that

transfers or controls the transfer of a memory location

containing data or instructions. See MFC.

DMA list. A sequence of transfer elements (or list

entries) that, together with an initiating DMA-list

command, specify a sequence of DMA transfers

between a single area of LS and discontinuous areas in

main storage. Such lists are stored in an SPE’s LS, and

the sequence of transfers is initiated with a DMA-list

command such as getl or putl. DMA-list commands

can only be issued by programs running on an SPE,

but the PPE or other devices can create and store the

lists in an SPE’s LS. DMA lists can be used to

implement scatter-gather functions between main

storage and the LS.

dual-issue. Issuing two instructions at once, under

certain conditions. See fetch group.

EA. See Effective address.

ECC. Error-Correcting Code.

effective address. An address generated or used by a

program to reference memory. A memory-management

unit translates an effective address (EA) to a virtual

address (VA), which it then translates to a real address

(RA) that accesses real (physical) memory. The

maximum size of the effective address space is 264

bytes.

ELF. Executable and Linking Format. The standard

object format for many UNIX operating systems,

including Linux. Originally defined by AT®&T and

placed in public domain. Compilers generate ELF files.

Linkers link to files with ELF files in libraries. Systems

run ELF files.

elfspe. The SPE that allows an SPE program to run

directly from a Linux command prompt without

needing a PPE application to create an SPE thread and

wait for it to complete.

ext3. Extended file system 3. One of the file system

options available for Linux partitions.

FDPR-Pro. Feedback Directed Program Restructuring.

A feedback-based post-link optimization tool.

Fedora. Fedora is an operating system built from open

source and free software. Fedora is free for anyone to

use, modify, or distribute. For more information about

Fedora and the Fedora Project, see the following Web

site: http://fedoraproject.org/.

fence. An option for a barrier ordering command that

causes the processor to wait for completion of all MFC

commands before starting any commands queued after

the fence command. It does not apply to these

immediate commands: getllar, putllc, and putlluc.

FFT. Fast Fourier Transform.

firmware. A set of instructions contained in ROM

usually used to enable peripheral devices at boot.

FSF. Free Software Foundation. Organization

promoting the use of open-source software such as

Linux.

FSS. IBM Full-System Simulator. IBM’s tool which

simulates the cell processor environment on other host

computers.

GCC. GNU C compiler

GDB. GNU application debugger. A modified version

of gdb, ppu-gdb, can be used to debug a Cell Broadband

Engine program. The PPE component runs first and

uses system calls, hidden by the SPU programming

library, to move the SPU component of the Cell

Broadband Engine program into the local store of the

SPU and start it running. A modified version of gdb,

spu-gdb, can be used to debug code executing on SPEs.

GNU. GNU is Not Unix. A project to develop free

Unix-like operating systems such as Linux.

GPL. GNU General Public License. Guarantees

freedom to share, change and distribute free software.

graph structure. A program design in which each

child segment is linked to one or more parent

segments.

group. A group construct specifies a collection of

DaCS DEs and processes in a system.

guarded. Prevented from responding to speculative

loads and instruction fetches. The operating system

typically implements guarding, for example, on all I/O

devices.

GUI. Graphical User Interface. User interface for

interacting with a computer which employs graphical

images and widgets in addition to text to represent the

information and actions available to the user. Usually

the actions are performed through direct manipulation

of the graphical elements.

handle. A handle is an abstraction of a data object;

usually a pointer to a structure.

host. A general purpose processing element in a

hybrid system. A host can have multiple accelerators

attached to it. This is often referred to as the master

node in a cluster collective.

HTTP. Hypertext Transfer Protocol. A method used to

transfer or convey information on the World Wide Web.

Hybrid. A module comprised of two Cell BE cards

connected via an AMD Opteron processor.

IDE. Integrated Development Environment. Integrates

the Cell/B.E. GNU tool chain, compilers, the

Full-System Simulator, and other development

78 Cell/B.E.Performance Tools Reference

http://fedoraproject.org/

components to provide a comprehensive, Eclipse-based

development platform that simplifies Cell/B.E.

development.

IDL. Interface definition language. Not the same as

CORBA IDL

ILAR. IBM International License Agreement for early

release of programs.

initrd. A command file read at boot

interrupt. A change in machine state in response to an

exception. See exception.

intrinsic. A C-language command, in the form of a

function call, that is a convenient substitute for one or

more inline assembly-language instructions. Intrinsics

make the underlying ISA accessible from the C and

C++ programming languages.

ISO image. Commonly a disk image which can be

burnt to CD. Technically it is a disk image of and ISO

9660 file system.

K&R programming. A reference to a well-known

book on programming written by Dennis Kernighan

and Brian Ritchie.

kernel. The core of an operating which provides

services for other parts of the operating system and

provides multitasking. In Linux or UNIX operating

system, the kernel can easily be rebuilt to incorporate

enhancements which then become operating-system

wide.

L1. Level-1 cache memory. The closest cache to a

processor, measured in access time.

L2. Level-2 cache memory. The second-closest cache to

a processor, measured in access time. A L2 cache is

typically larger than a L1 cache.

LA. Local address. A local store address of a DMA list.

It is used as a parameter in a MFC command.

latency. The time between when a function (or

instruction) is called and when it returns. Programmers

often optimize code so that functions return as quickly

as possible; this is referred to as the low-latency

approach to optimization. Low-latency designs often

leave the processor data-starved, and performance can

suffer.

LGPL. Lesser General Public License. Similar to the

GPL, but does less to protect the user’s freedom.

libspe. A SPU-thread runtime management library.

list element. Same as transfer element. See DMA list.

lnop. A NOP (no-operation instruction) in a SPU’s

odd pipeline. It can be inserted in code to align for

dual issue of subsequent instructions.

loop unrolling. A programming optimization that

increases the step of a loop, and duplicates the

expressions within a loop to reflect the increase in the

step. This can improve instruction scheduling and

memory access time.

LS. See local store.

LSA. Local Store Address. An address in the local

store of a SPU through which programs running in the

SPU, and DMA transfers managed by the MFC, access

the local store.

main memory. See main storage.

main storage. The effective-address (EA) space. It

consists physically of real memory (whatever is

external to the memory-interface controller, including

both volatile and nonvolatile memory), SPU LSs,

memory-mapped registers and arrays, memory-mapped

I/O devices (all I/O is memory-mapped), and pages of

virtual memory that reside on disk. It does not include

caches or execution-unit register files. See also local

store.

Makefile. A descriptive file used by the makecommand

in which the user specifies: (a) target program or

library, (b) rules about how the target is to be built, (c)

dependencies which, if updated, require that the target

be rebuilt.

mailbox. A queue in a SPE’s MFC for exchanging

32-bit messages between the SPE and the PPE or other

devices. Two mailboxes (the SPU Write Outbound

Mailbox and SPU Write Outbound Interrupt Mailbox)

are provided for sending messages from the SPE. One

mailbox (the SPU Read Inbound Mailbox) is provided

for sending messages to the SPE.

main thread. The main thread of the application. In

many cases, Cell BE architecture programs are

multi-threaded using multiple SPEs running

concurrently. A typical scenario is that the application

consists of a main thread that creates as many SPE

threads as needed and the application organizes them.

Mambo. Pre-release name of the IBM Full-System

Simulator, see FSS

MASS. MASS and MASS/V libraries contain

optimized scalar and vector math library operations.

MFC. Memory Flow Controller. Part of an SPE which

provides two main functions: it moves data via DMA

between the SPE’s local store (LS) and main storage,

and it synchronizes the SPU with the rest of the

processing units in the system.

MFC proxy commands. MFC commands issued using

the MMIO interface.

Glossary 79

MPMD. Multiple Program Multiple Data. Parallel

programming model with several distinct executable

programs operating on different sets of data.

MT. See multithreading.

multithreading. Simultaneous execution of more than

one program thread. It is implemented by sharing one

software process and one set of execution resources but

duplicating the architectural state (registers, program

counter, flags and associated items) of each thread.

NaN. Not-a-Number. A special string of bits encoded

according to the IEEE 754 Floating-Point Standard. A

NaN is the proper result for certain arithmetic

operations; for example, zero divided by zero = NaN.

There are two types of NaNs, quiet NaNs and signaling

NaNs. Signaling NaNs raise a floating-point exception

when they are generated.

netboot. Command to boot a device from another on

the same network. Requires a TFTP server.

node. A node is a functional unit in the system

topology, consisting of one host together with all the

accelerators connected as children in the topology (this

includes any children of accelerators).

NUMA. Non-uniform memory access. In a

multiprocessing system such as the Cell/B.E., memory

is configured so that it can be shared locally, thus

giving performance benefits.

Oprofile. A tool for profiling user and kernel level

code. It uses the hardware performance counters to

sample the program counter every N events.

overlay region. An area of storage, with a fixed

address range, into which overlay segments are loaded.

A region only contains one segment at any time.

overlay. Code that is dynamically loaded and

executed by a running SPU program.

page table. A table that maps virtual addresses (VAs)

to real addresses (RA) and contains related protection

parameters and other information about memory

locations.

parent. The parent of a DE is the DE that resides

immediately above it in the topology tree.

PDF. Portable document format.

Performance simulation. Simulation by the IBM Full

System Simulator for the Cell Broadband Engine in

which both the functional behavior of operations and

the time required to perform the operations is

simulated. Also called cycle-accurate simulation.

PERL. Practical extraction and reporting language. A

scripting programming language.

pipelining. A technique that breaks operations, such

as instruction processing or bus transactions, into

smaller stages so that a subsequent stage in the

pipeline can begin before the previous stage has

completed.

plugin. Code that is dynamically loaded and executed

by running an SPU program. Plugins facilitate code

overlays.

PPC-64. 64 bit implementation of the PowerPC

Architecture.

PPC. See Power PC.

PPE. PowerPC Processor Element. The

general-purpose processor in the Cell.

PPSS. PowerPC Processor Storage Subsystem. Part of

the PPE. It operates at half the frequency of the PPU

and includes an L2 cache and a Bus Interface Unit

(BIU).

PPU. PowerPC Processor Unit. The part of the PPE

that includes the execution units, memory-management

unit, and L1 cache.

program section. See code section.

proxy. Allows many network devices to connect to the

internet using a single IP address. Usually a single

server, often acting as a firewall, connects to the

internet behind which other network devices connect

using the IP address of that server.

region. See overlay region.

root segment. Code that is always in storage when a

SPU program runs. The root segment contains overlay

control sections and may also contain code sections and

data areas.

RPM. Originally an acronym for Red Hat Package

Manager, and RPM file is a packaging format for one

or more files used by many Linux systems when

installing software programs.

Sandbox. Safe place for running programs or script

without affecting other users or programs.

SDK. Software development toolkit for Multicore

Acceleration. A complete package of tools for

application development.

section. See code section.

segment. See overlay segment and root segment.

SFP. SPU Floating-Point Unit. This handles

single-precision and double-precision floating-point

operations.

signal. Information sent on a signal-notification

channel. These channels are inbound registers (to a

80 Cell/B.E.Performance Tools Reference

SPE). They can be used by the PPE or other processor

to send information to a SPE. Each SPE has two 32-bit

signal-notification registers, each of which has a

corresponding memory-mapped I/O (MMIO) register

into which the signal-notification data is written by the

sending processor. Unlike mailboxes, they can be

configured for either one-to-one or many-to-one

signalling. These signals are unrelated to UNIX signals.

See channel and mailbox.

signal notification. See signal.

SIMD. Single Instruction Multiple Data. Processing in

which a single instruction operates on multiple data

elements that make up a vector data-type. Also known

as vector processing. This style of programming

implements data-level parallelism.

SIMDize. To transform scaler code to vector code.

SMP. Symmetric Multiprocessing. This is a

multiprocessor computer architecture where two or

more identical processors are connected to a single

shared main memory.

SPE. Synergistic Processor Element. Extends the

PowerPC 64 architecture by acting as cooperative

offload processors (synergistic processors), with the

direct memory access (DMA) and synchronization

mechanisms to communicate with them (memory flow

control), and with enhancements for real-time

management. There are 8 SPEs on each cell processor.

SPE thread. A thread scheduled and run on a SPE. A

program has one or more SPE threads. Each such

thread has its own SPU local store (LS), 128 x 128-bit

register file, program counter, and MFC Command

Queues, and it can communicate with other execution

units (or with effective-address memory through the

MFC channel interface).

specific intrinsic. A type of C and C++ language

extension that maps one-to-one with a single SPU

assembly instruction. All SPU specific intrinsics are

named by prefacing the SPU assembly instruction with

si_.

splat. To replicate, as when a single scalar value is

replicated across all elements of an SIMD vector.

SPMD. Single Program Multiple Data. A common

style of parallel computing. All processes use the same

program, but each has its own data.

SPU. Synergistic Processor Unit. The part of an SPE

that executes instructions from its local store (LS).

spulet. 1) A standalone SPU program that is managed

by a PPE executive. 2) A programming model that

allows legacy C programs to be compiled and run on

an SPE directly from the Linux command prompt.

stub. See methodstub.

synchronization. The order in which storage accesses

are performed.

System X. This is a project-neutral description of the

supervising system for a node.

tag group. A group of DMA commands. Each DMA

command is tagged with a 5-bit tag group identifier.

Software can use this identifier to check or wait on the

completion of all queued commands in one or more tag

groups. All DMA commands except getllar, putllc,

and putlluc are associated with a tag group.

Tcl. Tool Command Language. An interpreted script

language used to develop GUIs, application prototypes,

Common Gateway Interface (CGI) scripts, and other

scripts. Used as the command language for the Full

System Simulator.

TFTP. Trivial File Transfer Protocol. Similar to, but

simpler than the Transfer Protocol (FTP) but less

capable. Uses UDP as its transport mechanism.

thread. A sequence of instructions executed within the

global context (shared memory space and other global

resources) of a process that has created (spawned) the

thread. Multiple threads (including multiple instances

of the same sequence of instructions) can run

simultaneously if each thread has its own architectural

state (registers, program counter, flags, and other

program-visible state). Each SPE can support only a

single thread at any one time. Multiple SPEs can

simultaneously support multiple threads. The PPE

supports two threads at any one time, without the need

for software to create the threads. It does this by

duplicating the architectural state. A thread is typically

created by the pthreads library.

TLB. Translation Lookaside Buffer. An on-chip cache

that translates virtual addresses (VAs) to real addresses

(RAs). A TLB caches page-table entries for the most

recently accessed pages, thereby eliminating the

necessity to access the page table from memory during

load/store operations.

tree structure. A program design in which each child

segment is linked to a single parent segment.

TS. The transfer size parameter in an MFC command.

UDP. User Datagram Protocol. Transports data as a

connectionless protocol, i.e. without acknowledgement

or receipt. Fast but fragile.

user mode. The mode in which problem state software

runs.

vector. An instruction operand containing a set of data

elements packed into a one-dimensional array. The

elements can be fixed-point or floating-point values.

Most Vector/SIMD Multimedia Extension and SPU

SIMD instructions operate on vector operands. Vectors

are also called SIMD operands or packed operands.

Glossary 81

virtual memory. The address space created using the

memory management facilities of a processor.

virtual storage. See virtual memory.

VMA. Virtual memory address. See virtual memory.

work block. A basic unit of data to be managed by

the framework. It consists of one piece of the

partitioned data, the corresponding output buffer, and

related parameters. A work block is associated with a

task. A task can have as many work blocks as

necessary.

workload. A set of code samples in the SDK that

characterizes the performance of the architecture,

algorithms, libraries, tools, and compilers.

work queue. An internal data structure of the

accelerated library framework that holds the lists of

work blocks to be processed by the active instances of

the compute task.

X86. Generic name for Intel-based processors.

XDR. Rambus Extreme Data Rate DRAM memory

technology.

XLC. The IBM optimizing C/C++ compiler.

yaboot. Linux utility which is a boot loader for

PowerPC-based hardware.

82 Cell/B.E.Performance Tools Reference

Index

C
cell-perf-counter 27

compilation 5

compiling
PPE code 6

SPE code 5

CPC 48

displaying report 49

D
DaCS for Hybrid 29

documentation vi, 69

dynamic trace 11

E
event class 14

events 13

F
FDPR-Pro 34, 53, 54

FFT16M 45

H
hybrid 29, 34

requirements 29

hybrid tools
description 31

I
IDE

running fdprpro 23

interval class 14

L
languages

ADA v

Assembler v

Fortran v

libraries
cell-perf-counter 27

OProfile 25

M
Makefile 45

O
Oprofile

collecting data 50

daemonrc file 50

Oprofile (continued)
SPU profiling restrictions 25

SPU report anomalies 26

OProfile 25

displaying report 51

hybrid 36

oreport tool 25

P
PDT

API 13

collecting trace data 59

configuring 9

directories 4

enabling tracing 5

example 15

hybrid 39

installation 15

introduction 1

kernel module 4

parameter definitions 11

profiling interface 11

restrictions 16

running your program 7

troubleshooting 65

usage 5

PDTR
hybrid 42

PERF_TOOLS_USR_ENV 30

perfToolHostSetup 30

perfToolUsrEnv 30

programming languages
supported v

S
script

perfToolHostSetup 30

perfToolUsrEnv 30

SDK
demos bundle 45

package download 45

SDK documentation vi, 69

SPE profiling 8

support v

supported platforms v

T
TA 2

trace analyzer 2

trace data 59

trace facility 13

trace processing 2

tracing 2

tracing API 10

trademarks 75

U
user-defined events 11

V
Visual Performance Analyzer 2

visualization 3

VPA 2

displaying CPC report 49

displaying OProfile report 51

downloading 49

© Copyright IBM Corp. 2007, 2008 83

84 Cell/B.E.Performance Tools Reference

����

Printed in USA

SC34-2565-00

	Contents
	Preface
	About this publication
	Supported platforms
	Supported languages
	Beta-level (unsupported) environments
	Getting support
	Related documentation

	Chapter 1. Cell Broadband Engine Performance Debugging Tool (PDT)
	Introduction
	Components high level description
	Tracing facility
	Trace processing
	Visualization

	PDT tracing-facility package directory structure
	Configuring the PDT kernel module (Red Hat Enterprise Linux (RHEL) 5.2 only)
	PDT example usage

	Enabling the PDT tracing facility for a new application
	Compilation and application building
	Compiling SPE code
	Compiling PPE code

	Running a program with trace-enabled PDT libraries
	Running a program with SPE profiling

	Configuring the PDT for an application run
	Using the tracing API
	Essential definitions
	Application programmer API
	User-defined events
	Dynamic trace control
	Generic profiling interface with user defined payload

	Library developer API
	Trace facility control
	Events recording
	Define event and interval class

	Installing and using the PDT trace facility on the x86_64 (Opteron)
	Using the PDT on Hybrid-x86 example

	PDT Restrictions
	Using the PDTR tool (pdtr command)

	Chapter 2. Feedback Directed Program Restructuring (FDPR-Pro)
	Introduction
	Input files
	Instrumentation and profiling
	Optimizations
	Instrumentation and optimization options
	Profiling SPE executable files
	Processing PPE/SPE executable files
	Integrated mode
	Standalone mode

	Human-readable output
	Running fdprpro from the IDE
	Cross-development with FDPR-Pro

	Chapter 3. OProfile
	SPU profiling restrictions
	SPU report anomalies

	Chapter 4. Cell-perf-counter tool
	Chapter 5. Hybrid performance tools
	Overview
	Requirements
	Setting up and configuring the performance tool scripts
	Hybrid tools description
	CPC hybrid support
	FDPR-Pro hybrid support
	OProfile hybrid support
	PDT support for hybrid
	PDTR support for Hybrid

	Chapter 6. Performance tools example
	FFT16M sample application
	Preparing and building for profiling
	Creating and working with profile data
	Collecting data with CPC
	Displaying the CPC report in VPA
	Collecting data with OProfile
	Displaying the OProfile report in VPA
	Using FDPR-Pro to gather frequency information
	Analyzing and displaying FDPR-Pro frequency information in VPA
	Creating and working with trace data
	Collecting trace data with PDT
	Importing PDT data into VPA

	Appendix A. PDT troubleshooting
	Appendix B. Related documentation
	Appendix C. Accessibility features
	Notices
	Trademarks
	Terms and conditions

	Glossary
	Index

