
Software Development Kit for Multicore Acceleration

Version 3.1

LAPACK - Linear Algebra Package Library

Programmer’s Guide and API Reference

SC33-8428-02

���

Software Development Kit for Multicore Acceleration

Version 3.1

LAPACK - Linear Algebra Package Library

Programmer’s Guide and API Reference

SC33-8428-02

���

Note

Before using this information and the product it supports, read the information in “Notices” on page 33.

Edition notice

This edition applies to version 3, release 1, modification 0 of the IBM Software Development Kit for Multicore

Acceleration (Product number 5724-S84) and to all subsequent releases and modifications until otherwise indicated

in new editions.

This edition replaces SC33-8428-01.

© Copyright International Business Machines Corporation 2008.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Information for reviewers: draft changes

This topic lists the changes in this revision of the document.

Note: This is a draft version. As such, it contains incomplete information and

possible inaccuracies. It is provided for informational or review purposes only.

Note: This section is included in the draft copy only. It will not be published with

the book.

Selected information that is new or changed in this edition since version 3.0 of the

SDK are marked with the revision tag | (pipe symbol.) Online editions might use a

contrasting color to mark revisions and insertions.

Here is a summary of changes in this draft release of this book:

v Update to 3.1 versioning

v Large set of content updates from Hong Bo Peng

v Added a ″Concepts″ page

v Restructure and title changes

v Updates from Mike Perks

v New glossary

© Copyright IBM Corp. 2008 iii

iv LAPACK Library Programmer’s Guide and API Reference v3.1

Contents

Information for reviewers: draft

changes iii

About this publication vii

How to send your comments vii

What’s new ix

Concepts xi

Part 1. Overview of LAPACK 1

Chapter 1. Conventions 3

Part 2. Installing and configuring

LAPACK 5

Part 3. Programming with LAPACK . 7

Chapter 2. Basic structure of the

LAPACK library 9

Chapter 3. Programming FORTRAN

applications 11

Chapter 4. Programming C applications 13

Chapter 5. Tuning the LAPACK library

for performance 15

Chapter 6. Catching failures 17

Chapter 7. Memory size limitations . . 19

Chapter 8. LAPACK programming

examples 21

Part 4. LAPACK PPE APIs 25

Part 5. Appendixes 27

Appendix A. Accessibility features . . . 29

Appendix B. Getting help or technical

assistance 31

Notices 33

Trademarks 35

Terms and conditions 35

Related documentation 37

Glossary 39

Index 41

© Copyright IBM Corp. 2008 v

vi LAPACK Library Programmer’s Guide and API Reference v3.1

About this publication

This publication describes how to configure the IBM® Linear Algebra Package

(LAPACK) library and how to program applications that use it on the IBM

Software Development Kit for Multicore Acceleration (SDK). It contains reference

information about APIs for the library and sample applications showing usage of

these APIs.

Audience

The target audience for this document is application programmers using the SDK.

You should have a basic understanding of programming on the Cell Broadband

Engine™ Architecture (Cell/B.E.) and common terminology associated with the

Cell/B.E. platform.

Related documentation

Open source LAPACK documentation is available from the netlib Web site at:

http://netlib.org/lapack/.

For a list of SDK documentation, see “Related documentation” on page 37.

How to send your comments

Your feedback is important in helping to provide the most accurate and highest

quality information. If you have any comments about this publication, send your

comments using Resource Link™ at http://www.ibm.com/servers/resourcelink.

Click Feedback on the navigation pane. Be sure to include the name of the book,

the form number of the book, and the specific location of the text you are

commenting on (for example, a page number or table number).

© Copyright IBM Corp. 2008 vii

http://netlib.org/lapack/
http://www.ibm.com/servers/resourcelink

viii LAPACK Library Programmer’s Guide and API Reference v3.1

What’s new

What’s new in this publication.

All LAPACK routines are available for use in the SDK. These routines include real

single precision, real double precision, complex single precision, and complex

double precision.

The following 5 routines have been optimized to use features of the Cell/B.E.

Synergistic Processing Elements (SPEs):

v DGETRS - Linear equation solver.

v DPOTRS - Linear equation (symmetric positive definite) solver

v DGELQF - Computes the LQ factorization of a general matrix.

v DGESVD - Computes the singular value decomposition (SVD) of a real M-by-N

matrix A using implicit zero-shift QR algorithm, optionally computing the left

and/or right singular vectors.

v DGESDD - Computes the singular value decomposition (SVD) of a real M-by-N

matrix A using a divide-and-conquer algorithm. It optionally computes the left

and/or right singular vectors.

© Copyright IBM Corp. 2008 ix

x LAPACK Library Programmer’s Guide and API Reference v3.1

Concepts

These are the main concepts and terms used when describing LAPACK.

DMA Direct Memory Access. This is a technique for using a special purpose

controller to generate the source and destination addresses for a memory

or I/O transfer.

PPE IBM PowerPC® Processor Element. The general purpose processor in the

Cell/B.E..

PPU IBM PowerPC Processor Unit. The part of the PPE that executes

instructions from its main memory.

SPE Synergistic processor element. These extend the PowerPC 64 architecture

by acting as cooperative offload processors (synergistic processors), with

direct memory access (DMA) and synchronization mechanisms to

communicate with them (memory flow control), and with enhancements

for real time management. There are eight SPEs on each Cell/B.E.

processor die.

SPU Synergistic processor unit. This is the part of an SPE that executes

instructions from its local store (LS).

© Copyright IBM Corp. 2008 xi

xii LAPACK Library Programmer’s Guide and API Reference v3.1

Part 1. Overview of LAPACK

The LAPACK (Linear Algebra Package) library is based upon a published standard

interface for commonly used linear algebra operations in high performance

computing (HPC) and other scientific domains. It provides routines for solving

systems of simultaneous linear equations, least-squares solutions of linear systems

of equations, eigenvalue problems, and singular value problems. The associated

matrix factorizations LU decomposition (lower triangular matrix L and upper

triangular matrix U), Cholesky decomposition, QR decomposition (orthogonal

matrix Q and upper triangular matrix R), and SVD (Singular value decomposition)

are provided. Dense and banded matrices are handled, but not general sparse

matrices.

The LAPACK API is available with standard ANSI C and standard FORTRAN 77

interfaces. LAPACK implementations are also available as open source from

http://netlib.org.

Each LAPACK routine has up to four versions, as detailed in the following table:

 Table 1. LAPACK routine precision

Precision Routine name prefix

Real single precision S

real double precision D

complex single precision C

complex double precision Z

The LAPACK library in the IBM Software Development Kit for Multicore

Acceleration (SDK) supports all C/S/D/Z LAPACK routines. All routines are

available as PPE APIs and conform to the standard LAPACK FORTRAN 77

interface.

The following routines have been optimized to use features of the Synergistic

Processing Elements (SPEs):

v DGETRF - Computes the LU factorization of a general matrix

v DGETRS – Linear equation solver

v DGETRI - Computes the inverse of a general matrix using an LU factorization

v DGEQRF - Computes the QR factorization of a general matrix

v DGELQF - Compute the LQ factorization of a general matrix

v DPOTRF - Computes the Cholesky factorization of a symmetric positive matrix

v DPOTRS – Linear equation (symmetric positive definite) solver

v DBDSQR - Computes the singular value decomposition of a real bi-diagonal

matrix using an implicit zero-shift QR algorithm

v DSTEQR - Computes the singular value decomposition of a real symmetric

tridiagonal matrix using an implicit QR algorithm

v DGESVD - Computes the singular value decomposition (SVD) of a real matrix

using an implicit zero-shift QR algorithm, optionally computing the left and/or

right singular vectors v

© Copyright IBM Corp. 2008 1

http://netlib.org

v DGESDD - Computes the singular value decomposition (SVD) of a real matrix

using a divide-and-conquer algorithm, optionally computing the left and/or

right singular vectors.

2 LAPACK Library Programmer’s Guide and API Reference v3.1

Chapter 1. Conventions

The following table explains the typographical conventions used in this

documentation.

 Table 2. Typographical conventions

Typeface Indicates Example

Bold Used for specific emphasis

with lowercase commands,

executables, compiler options

and directives.

If you specify -O3, the

compiler assumes

-qhot=level=0. To prevent all

HOT optimizations with -O3,

specify -qnohot.

Italics Parameters or variables

whose actual names or

values are to be supplied by

the user. Italics are also used

to introduce new terms.

Make sure that you update

the size parameter if you

return more than the size

requested.

monospace Programming keywords and

library functions, compiler

built-in functions, examples

of program code, command

strings, or user-defined

names.

If one or two cases of a

switch statement are

typically executed much

more frequently than other

cases, break out those cases

by handling them separately

before the switch statement.

© Copyright IBM Corp. 2008 3

4 LAPACK Library Programmer’s Guide and API Reference v3.1

Part 2. Installing and configuring LAPACK

Installation of the LAPACK library occurs during installation of the Software

Development Kit for Multicore Acceleration. No additional configuration for

LAPACK is necessary after installing the SDK.

For details on installing the SDK, see the “Installing the SDK” section of the

Software Development Kit for Multicore Acceleration Installation Guide available at the

Cell Broadband Engine Architecture Resource Center developerWorks® Web site:

http://www-128.ibm.com/developerworks/power/cell.

© Copyright IBM Corp. 2008 5

http://www-128.ibm.com/developerworks/power/cell

6 LAPACK Library Programmer’s Guide and API Reference v3.1

Part 3. Programming with LAPACK

The following topics describe how to program applications to use the LAPACK

library.

© Copyright IBM Corp. 2008 7

8 LAPACK Library Programmer’s Guide and API Reference v3.1

Chapter 2. Basic structure of the LAPACK library

The following tables show the location of the files installed with the LAPACK

package:

 Table 3. LAPACK library contents (X86)

Platform X86 or X86_64 (Development)

PPE 32–bit library /opt/cell/sysroot/usr/lib/liblapack.a

/opt/cell/sysroot/usr/lib/liblapack.so

/opt/cell/sysroot/usr/lib/liblapack.so.3.1.1

PPE 64–bit library /opt/cell/sysroot/usr/lib64/liblapack.a

/opt/cell/sysroot/usr/lib64/liblapack.so

/opt/cell/sysroot/usr/lib64/liblapack.so.3.1.1

PPE header files /opt/cell/sysroot/usr/include/lapack.h

/opt/cell/sysroot/usr/include/lapack_errno.h

Example Code /opt/cell/sdk/src/lapack-examples-source.tar

 Table 4. LAPACK library contents (Cell/B.E. and PowerXCell 8i processors)

Platform

Cell/B.E. or Power Host (Development or execution

including Full-System Simulator)

PPE 32–bit library /usr/lib/liblapack.a

/usr/lib/liblapack.so

/usr/lib/liblapack.so.3.1.1

PPE 64–bit library /usr/lib64/liblapack.a

/usr/lib64/liblapack.so

/usr/lib64/liblapack.so.3.1.1

PPE header files /usr/include/lapack.h

/usr/include/lapack_errno.h

Example Code /opt/cell/sdk/src/lapack-examples-source.tar

The following table describes the important file components of the LAPACK

library.

 Table 5. File descriptions

File Description

lapack.h Contains the C function interface of

LAPACK on PPE for DP

lapack_errno.h Defines the error codes that LAPACK

functions can return through a pointer. This

file is included in the lapack.h header file.

liblapack.a Contains the static library which contains

the LAPACK library for Cell/B.E.

liblapack.so Shared LAPACK library for Cell/B.E.

lapack-examples-source.tar Contains two examples that demonstrate

how to use the LAPACK library with the

Software Development Kit for Multicore

Acceleration

© Copyright IBM Corp. 2008 9

10 LAPACK Library Programmer’s Guide and API Reference v3.1

Chapter 3. Programming FORTRAN applications

This topic describes how to program FORTRAN applications using the LAPACK

library.

Calling LAPACK routines

In Fortran programs, most LAPACK routines can be invoked with the CALL

statement, such as CALL Routine-name (argument_1, ..., argument_n). The following

is an example:

CALL DGETRF(m, n, A, lda, ipiv, info);

Passing arguments for arrays

Arrays are declared in Fortran by specifying the array name, the number of

dimensions, and the range of each dimension in a DIMENSION statement or an

explicit data type statement, such as INTEGER, REAL, DOUBLE PRECISION, and

so forth. For example, for a two-dimensional array in Fortran77, use DATA_TYPE

A(E1:E2, F1:F2), where A is the name of the array, E1 and F1 are the lower

bounds of the first and second dimensions, respectively, and E2 and F2 are the

upper bounds of the first and second dimensions, respectively. If either of the

lower bounds is not specified, such as in A(E2,F1:F2), the value is assumed to be 1.

The upper bounds are always required for each dimension.

Differences between dynamic linking and static linking

You do not need to modify your existing Fortran compilation procedures when

using LAPACK. When linking and running your program, you must modify your

existing Makefiles for LAPACK in order to set up the necessary libraries. When

using dynamic linking, specify which libraries will be linked. When using static

linking, add –Wl,--export-dynamic to your linker flags so that the symbols in

LAPACK library are exported as dynamic symbols in the resulting binary. If you

are accessing LAPACK from a Fortran program, you can compile and link using

the commands shown in the table below. Or, you can follow the samples provided

in LAPACK examples to use the build tool provided with the Software

Development Kit for Multicore Acceleration.

 Table 6. Compiler options for Fortran programs

Compiler Environment Fortran compiler command

ppu-
gfortran

32 bit

application, 32

bit integer, 32

bit pointer

ppu-gfortran –m32 –ff2c abc.f –llapack –lblas (Dynamic

linking)

ppu-gfortran –m32 –ff2c abc.f -Wl,--export-dynamic

-Wl,-Bstatic,-llapack,-lalf,-Bdynamic –lblas -lspe2

-lpthread -ldl (Static linking)

64 bit

application, 32

bit integer, 64

bit pointer

ppu-gfortran –m64 –ff2c abc.f –llapack –lblas (Dynamic

linking)

© Copyright IBM Corp. 2008 11

Table 6. Compiler options for Fortran programs (continued)

Compiler Environment Fortran compiler command

ppu-gfortran –m64 –ff2c abc.f -Wl,--export-dynamic

-Wl,-Bstatic,-llapack,-lalf,-Bdynamic –lblas -lspe2

-lpthread -ldl (Static linking)

ppuxlf 32 bit

application, 32

bit integer, 32

bit pointer

ppuxlf -qextname -q32 abc.f –llapack –lblas (Dynamic

linking)

ppuxlf –qextname –q32 abc.f -Wl,--export-dynamic

-Wl,-Bstatic,-llapack,-lalf,-Bdynamic –lblas -lspe2

-lpthread -ldl (Static linking)

64 bit

application, 32

bit integer, 64

bit pointer

ppuxlf -qextname –q64 abc.f –llapack –lblas (Dynamic

linking)

ppuxlf –qextname –q64 abc.f -Wl,--export-dynamic

-Wl,-Bstatic,-llapack,-lalf,-Bdynamic –lblas -lspe2

-lpthread -ldl (Static linking)

12 LAPACK Library Programmer’s Guide and API Reference v3.1

Chapter 4. Programming C applications

This topic describes how to program C applications using the LAPACK library.

Calling LAPACK routines

Before calling LAPACK routines from your C program, add the following

statement to your program to include the LAPACK header file:

#include <lapack.h>

This file contains entries for all of the LAPACK routines. You can invoke the

LAPACK routines using the following type of statement: Routine-name (argument_1,

..., argument_n) Here is an example:

dgetrf_(&m, &n, A, &lda, &ipiv, &info);

Passing arguments for arrays

In C programs, arrays are arranged in storage in row-major order. This means that

the last subscript expression increases most rapidly, the next-to-the-last subscript

expression increases less rapidly, and so forth, with the first subscript expression

increasing the least rapidly. LAPACK routines require that arrays passed as

arguments must be in column-major order. This is the array storage convention

used by Fortran programs. To pass an array from your C program to LAPACK, to

have LAPACK process the data correctly, and to get a result that is in the proper

form for your C program, choose one of the following methods:

v Build and process the matrix, logically transposed from the outset, and transpose

the results as necessary.

v Before the LAPACK call, transpose the input arrays. Then, following the

LAPACK call, transpose any arrays updated as output.

v If there are arguments in the LAPACK calling sequence indicating whether the

arrays are to be processed in normal or transposed form, such as the trans

arguments in the DGETRS_ routines, use these arguments in combination with

the matrix equivalence rules to avoid transposing your data in separate

operations.

Differences between dynamic linking and static linking

To compile C programs calling LAPACK routines, specify the –I option to identify

the location of the LAPACK header file. For X86 machines, the location is

/opt/cell/sysroot/usr/include. For PowerPC machines and CBEA BladeCenter®

servers, the location is already included in the default search path, /usr/include.

When linking and running your program, modify your existing Makefiles for

LAPACK in order to set up the necessary libraries. When using dynamic linking,

specify which libraries will be linked. When using static linking, add

–Wl,--export-dynamic to your linker flags so that the symbols in the LAPACK

library are exported as dynamic symbols in the output binary.

If you are accessing LAPACK from a C program, you can compile and link using

the commands shown in the table below. Or you can follow the procedure listed in

“Building the LAPACK example code” on page 21 to use the build tool included in

the Software Development Kit for Multicore Acceleration.

© Copyright IBM Corp. 2008 13

Table 7. Compiler options for C programs

Compiler Environment Fortran compiler command

ppu-gcc 32 bit

application, 32

bit integer, 32

bit pointer

ppu-gcc –m32 abc.c –llapack –lblas (Dynamic linking)

ppu-gcc –m32 abc.c -Wl,--export-dynamic

-Wl,-Bstatic,-llapack,-lalf,-Bdynamic –lblas -lspe2

-lpthread -ldl (Static linking)

64 bit

application, 32

bit integer, 64

bit pointer

ppu-gcc –m64 abc.c –llapack –lblas (Dynamic linking)

ppu-gcc –m64 abc.c -Wl,--export-dynamic

-Wl,-Bstatic,-llapack,-lalf,-Bdynamic –lblas -lspe2

-lpthread -ldl (Static linking)

ppuxlc 32 bit

application, 32

bit integer, 32

bit pointer

ppuxlc -q32 abc.c –llapack –lblas (Dynamic linking)

ppuxlc –q32 abc.c -Wl,--export-dynamic -Wl,-Bstatic,-
llapack,-lalf,-Bdynamic –lblas -lspe2 -lpthread -ldl (Static

linking)

64 bit

application, 32

bit integer, 64

bit pointer

ppuxlc –q64 abc.c –llapack –lblas (Dynamic linking)

ppuxlc –q64 abc.c -Wl,--export-dynamic -Wl,-Bstatic,-
llapack,-lalf,-Bdynamic –lblas -lspe2 -lpthread -ldl (Static

linking)

14 LAPACK Library Programmer’s Guide and API Reference v3.1

Chapter 5. Tuning the LAPACK library for performance

The LAPACK library provides additional features to help you optimize available

resources and create high performance code.

The LAPACK routines use algorithms tailored to efficiently use specific

characteristics of the Cell Broadband Engine Architecture, such as double buffering

and dual issue, to achieve high performance.

When writing your code to use the LAPACK library, apply the following

guidelines to optimize performance.

1. Use 128–byte aligned data. Memory access is more efficient when data is

128–byte aligned.

2. Supply a matrix whose number of rows and columns is greater than 1024.

3. Use the NUMA APIs to interleave the memory of the data on different nodes or

bind the memory and processor to node0. You can try different modes to find

out which gives the best performance. For example, if you want to interleave

memory on both processors, you can run your application by typing the

following command:

 numactl --interleave=all <Your_Application> <Options>

4. When operating on a matrix whose number of rows and columns is less than

1024, you can specify that LAPACK use fewer SPEs. LAPACK routines can do

automatic adjustment for smaller size matrices. Interactive determination of the

most efficient matrix size improves performance.

Environment variables

The following table lists the environment variables you can modify.

 Table 8. Environment variables

Variable name Purpose Default value

LAPACK_NUMSPES Specifies the number of SPEs to use. 16

© Copyright IBM Corp. 2008 15

16 LAPACK Library Programmer’s Guide and API Reference v3.1

Chapter 6. Catching failures

At run time, you can encounter different types of errors that are specifically related

to the use of the LAPACK routines. It is good practice to check for a nonzero value

of INFO on return from a LAPACK routine.

Invalid arguments

If you supply an illegal value as an input argument to a LAPACK routine, the

routine will set INFO to a negative value (greater than LAPACK_ERR_BASE) and

cause the error handler XERBLA to write a message to the standard output. For

example,

** On entry to SGESV parameter number 4 had an illegal value

This message is caused by passing a value of LDA to SGESV that is less than the

value of the argument N. To remove this error, check the input arguments,

recompile, re-link, and then run your program again.

Computational failures

A positive value of INFO returned by a LAPACK routine results from a failure in

the algorithm process. The following are common causes of this failure:

v A matrix is singular (to working precision)

v Asymmetric matrix is not positive definite

v An iterative algorithm for computing eigenvalues or eigenvectors fails to

converge in the permitted number of iterations.

For example, if you call SGESVX to solve a system of equations with a coefficient

matrix that is approximately singular, the routine might detect exact singularity at

the i-th stage of the LU factorization. If this happens, the routine returns INFO = i,

or in most cases it will compute an estimate of the reciprocal condition number

that is less than machine precision. In this case it returns INFO = n+1. A failure with

a return value of INFO > 0 causes control to return to the calling program. Check

for a nonzero value of INFO on return from a LAPACK to catch these failures.

Program exceptions

A failure in the runtime environment might cause a LAPACK routine to return a

negative value for INFO (less than LAPACK_ERR_BASE). Common causes of this

failure are:

v Out of memory

v A Cell/B.E. SPE resource is unavailable or not functioning correctly

For example, the return value E_LAPACK_INIT indicates that there is no accelerator

available and the LAPACK library cannot initialize the environment to do the

calculation. To remove this error, check the runtime environment, ensure that there

is enough memory, and that the accelerator is functioning correctly. Finally, run

your program again.

© Copyright IBM Corp. 2008 17

18 LAPACK Library Programmer’s Guide and API Reference v3.1

Chapter 7. Memory size limitations

The Cell/B.E. memory size and lack of swap partition limits the matrix size

processed by the LAPACK library.

The following tables provides an approximation of how much memory will be

used by the DGESVD and DGESDD routines. Use these tables to determine how

large the matrix will be after one processing cycle. These limits assume a N*N

square matrix containing double precision floating point numbers

 Table 9. Memory limitation when calling DGESVD from LAPACK library

JOBU JOBVT

Additional

Memory

required by

the LAPACK

library

Matrix size

limitation for

BladeCenter QS21

(2GB)

Matrix size

limitation for

BladeCenter QS22

(8GB)

Matrix size

limitation for

BladeCenter

QS22 (32GB)

A/S A/S 5*N*N 7000 x 7000 14000 x 14000 28000 x 28000

A/S N/O 4*N*N 7900 x 7900 15800 x 15800 31600 x 31600

N/O A/S 4*N*N 7900 x 7900 15800 x 15800 31600 x 31600

N/O N/O 3*N*N 9100 x 9100 18200 x 18200 36400 x 36400

 Table 10. Memory limitation when calling DGESDD from LAPACK library

JOBZ

Additional

Memory

required by the

LAPACK

library

Matrix size

limitation for

BladeCenter QS21

(2GB)

Matrix size

limitation for

BladeCenter QS22

(8GB)

Matrix size

limitation for

BladeCenter QS22

(32GB)

N 5*N*N + 17*N 7300 x 7300 14600 x 14600 29000 x 29000

O 13*N*N + 11*N 4500 x 4500 9000 x 9000 17408 x 17408

S/A 12*N*N + 11*N 4700 x 4700 9400 x 9400 17408 x 17408

© Copyright IBM Corp. 2008 19

20 LAPACK Library Programmer’s Guide and API Reference v3.1

Chapter 8. LAPACK programming examples

To build the examples listed in this document, follow this procedure:

Building the LAPACK example code

1. Cut and paste the Makefile source from an online or PDF copy of this

document into an editor and save it as ″Makefile″.

2. Cut and paste the example source from an online or PDF copy of this

document into an editor and save the file with a name such as doc_example.c

3. Edit the Makefile to use the name of the source file that you chose in the

previous step. If you did not use ″doc_example.c″ then substitute the name you

chose into the lines that contain doc_example and doc_example.a.

4. Copy the Makefile and the example source file into your development source

directory (for example into /opt/sandbox/).

5. From a shell prompt, type the following commands:

$ cd /opt/sandbox

$ export CELL_TOP=/opt/cell/sdk

$ make

The following Makefile is similar to other SDK library Makefiles; however the

IMPORTS line is different.

--

(C)Copyright 2007,2008

International Business Machines Corporation

All Rights Reserved.

Redistribution and use in source and binary forms, with or

without modification, are permitted provided that the

following conditions are met:

Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.

Redistributions in binary form must reproduce the above

copyright notice, this list of conditions and the following

disclaimer in the documentation and/or other materials

provided with the distribution.

Neither the name of IBM Corporation nor the names of its

contributors may be used to endorse or promote products

derived from this software without specific prior written

permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND

CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,

INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE

DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR

CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,

SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT

NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;

LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN

CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR

OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,

EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

--

PROLOG END TAG zYx

© Copyright IBM Corp. 2008 21

Target

 PROGRAM_spu := doc_example

 LIBRARY_embed := doc_example.a

Local Defines

 IMPORTS := -llapack –lblas -lm

make.footer

If necessary, change this to the location of make.footer:

 include /opt/cell/sdk/buildutils/make.footer

Example: Inverse matrix application

The following sample application shows you how to use the LAPACK library. It

invokes the DGETRF and DGETRI routines to get an inverse matrix.

#include <stdlib.h>

#include <stdio.h>

#include <lapack.h>

int main(int argc, char *argv[])

{

 int info = 0;

 double *a;

 int *ipiv;

 int n;

 int i,j;

 if(argc < 2)

 {

 fprintf(stderr, "%s N\n", argv[0]);

 return 0;

 }

 n = atoi(argv[1]);

 posix_memalign((void **)(&ipiv), 128, sizeof(int)*n);

 posix_memalign((void **)(&a), 128, sizeof(double)*n*n);

 if(a == NULL || ipiv == NULL)

 {

 fprintf(stderr, "a/ipiv malloc error\n");

 return 0;

 }

 for(i = 0; i < n; i++)

 {

 for(j = 0; j < n; j++)

 {

 a[i+j*n]= (drand48() - 0.5f)*4;

 }

 }

 /*---------Call Cell LAPACK library---------*/

 dgetrf_(&n, &n, a, &n, ipiv, &info);

 if(info != 0)

22 LAPACK Library Programmer’s Guide and API Reference v3.1

{

 fprintf(stderr, "Call dgetrf error\n");

 goto end;

 }

 /*---------Query workspace-------*/

 double workspace;

 int tmp=-1;

 int lwork;

 double *work;

 dgetri_(&n, a, &n, ipiv, &workspace, &tmp, &info);

 lwork = (int)workspace;

 work = malloc(sizeof(double)*lwork);

 if(work == NULL)

 {

 printf("work malloc error\n");

 goto end;

 }

 /*---------Call Cell LAPACK library---------*/

 dgetri_(&n, a, &n, ipiv, work, &lwork, &info);

 if(info != 0)

 {

 fprintf(stderr, "Call dgetri error\n");

 free(work);

 goto end;

 }

 printf("Inverse matrix completed!\n");

 end:

 free(ipiv);

 free(a);

 return 0;

}

Chapter 8. LAPACK programming examples 23

24 LAPACK Library Programmer’s Guide and API Reference v3.1

Part 4. LAPACK PPE APIs

The LAPACK package provides optimized APIs.

The LAPACK package included with the Software Development Kit for Multicore

Acceleration includes optimized LAPACK routines.

The following routines have been optimized to use features of the Synergistic

Processing Elements (SPEs):

v DGETRF - Computes the LU factorization of a general matrix

v DGETRS – Linear equation solver

v DGETRI - Computes the inverse of a general matrix using an LU factorization

v DGEQRF - Computes the QR factorization of a general matrix

v DGELQF - Compute the LQ factorization of a general matrix

v DPOTRF - Computes the Cholesky factorization of a symmetric positive matrix

v DPOTRS – Linear equation (symmetric positive definite) solver

v DBDSQR - Computes the singular value decomposition of a real bi-diagonal

matrix using an implicit zero-shift QR algorithm

v DSTEQR - Computes the singular value decomposition of a real symmetric

tridiagonal matrix using an implicit QR algorithm

v DGESVD - Computes the singular value decomposition (SVD) of a real matrix

using an implicit zero-shift QR algorithm, optionally computing the left and/or

right singular vectors v

v DGESDD - Computes the singular value decomposition (SVD) of a real matrix

using a divide-and-conquer algorithm, optionally computing the left and/or

right singular vectors.

For general information about LAPACK, or for specific syntax information about

these APIs, refer to the netlib documentation at: http://netlib.org/lapack/. In

addition to the features documented in this link, the Cell/B.E. LAPACK library

provides extended error information in INFO. For example, if the output of *info is

less than LAPACK_ERR_BASE (defined in the lapack_errno.h header file), then an

error specific to the Cell Broadband Engine Architecture occurred during the call to

that routine.

© Copyright IBM Corp. 2008 25

http://netlib.org/lapack/

26 LAPACK Library Programmer’s Guide and API Reference v3.1

Part 5. Appendixes

© Copyright IBM Corp. 2008 27

28 LAPACK Library Programmer’s Guide and API Reference v3.1

Appendix A. Accessibility features

Accessibility features help users who have a physical disability, such as restricted

mobility or limited vision, to use information technology products successfully.

The following list includes the major accessibility features:

v Keyboard-only operation

v Interfaces that are commonly used by screen readers

v Keys that are tactilely discernible and do not activate just by touching them

v Industry-standard devices for ports and connectors

v The attachment of alternative input and output devices

IBM and accessibility

See the IBM Accessibility Center at http://www.ibm.com/able/ for more

information about the commitment that IBM has to accessibility.

© Copyright IBM Corp. 2008 29

http://www.ibm.com/able/

30 LAPACK Library Programmer’s Guide and API Reference v3.1

Appendix B. Getting help or technical assistance

If you need help, service, or technical assistance or just want more information

about IBM products, you will find a wide variety of sources available from IBM to

assist you.

This appendix contains information about where to go for additional information

about IBM and IBM products and whom to call for service, if it is necessary.

Using the documentation

Information about your IBM hardware or software is available in the

documentation that comes with the product. That documentation can include

printed documents, online documents, readme files, and help files. See the

troubleshooting information in your documentation for instructions for using

diagnostic programs. The troubleshooting information or the diagnostic programs

might tell you that you need additional or updated device drivers or other

software. IBM maintains pages on the World Wide Web where you can get the

latest technical information and download device drivers and updates. To access

these pages, go to http://www.ibm.com/bladecenter/, click Support, and follow

the instructions. Also, some documents are available through the IBM Publications

Center at http://www.ibm.com/shop/publications/order/.

Getting help and information from the World Wide Web

You can locate documentation and other resources on the World Wide Web. Refer

to the following web sites:

v IBM BladeCenter systems, optional devices, services, and support information at

http://www.ibm.com/bladecenter/. For service information, select Support.

v developerWorks Cell Broadband Engine Resource Center at

http://www.ibm.com/developerworks/power/cell/. To access the Cell/B.E.

forum on developerWorks, select Community.

v The Barcelona Supercomputing Center (BSC) Web site at http://www.bsc.es/
projects/deepcomputing/linuxoncell.

v There is also support for the Full-System Simulator and XL C/C++ Compiler

through their individual alphaWorks® forums. If in doubt, start with the

Cell/B.E. architecture forum.

v The GNU Project debugger, GDB, is supported through many different forums

on the Web, but primarily at the GDB Web site http://www.gnu.org/software/
gdb/gdb.html.

Contacting IBM Support

To obtain telephone assistance, for a fee or on a support contract, contact IBM

Support. In the U.S. and Canada, call 1-800-IBM-SERV (1-800-426-7378), or see

http://www.ibm.com/planetwide/ for support telephone numbers.

© Copyright IBM Corp. 2008 31

http://www.ibm.com/bladecenter/
http://www.ibm.com/shop/publications/order/
http://www.ibm.com/bladecenter/
http://www.ibm.com/developerworks/power/cell/
http://www.bsc.es/projects/deepcomputing/linuxoncell
http://www.bsc.es/projects/deepcomputing/linuxoncell
http://www.gnu.org/software/gdb/gdb.html
http://www.gnu.org/software/gdb/gdb.html
http://www.ibm.com/planetwide/

32 LAPACK Library Programmer’s Guide and API Reference v3.1

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in

other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not grant you

any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing 2-31 Roppongi 3-chome, Minato-ku

Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore, this statement may not apply

to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 2008 33

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact:

IBM Corporation

Software Interoperability Coordinator, Department 49XA

3605 Highway 52 N

Rochester, MN 55901

U.S.A.

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this information and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement, or any equivalent agreement

between us.

Any performance data contained herein was determined in a controlled

environment. Therefore, the results obtained in other operating environments may

vary significantly. Some measurements may have been made on development-level

systems and there is no guarantee that these measurements will be the same on

generally available systems. Furthermore, some measurements may have been

estimated through extrapolation. Actual results may vary. Users of this document

should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of

performance, compatibility or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the

suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or

withdrawal without notice, and represent goals and objectives only.

All IBM prices shown are IBM’s suggested retail prices, are current and are subject

to change without notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to

change before the products described become available.

This information contains examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious and any similarity to the names and addresses used by an actual business

enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which

illustrate programming techniques on various operating platforms. You may copy,

modify, and distribute these sample programs in any form without payment to

IBM, for the purposes of developing, using, marketing or distributing application

programs conforming to the application programming interface for the operating

34 LAPACK Library Programmer’s Guide and API Reference v3.1

platform for which the sample programs are written. These examples have not

been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or

imply reliability, serviceability, or function of these programs.

Each copy or any portion of these sample programs or any derivative work, must

include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.

Sample Programs. © Copyright IBM Corp. _enter the year or years_. All rights

reserved.

If you are viewing this information in softcopy, the photographs and color

illustrations may not appear.

Trademarks

The following terms are trademarks of International Business Machines

Corporation in the United States, other countries, or both:

alphaWorks

BladeCenter

developerWorks

IBM

PowerPC

Resource Link

Adobe®, Acrobat, Portable Document Format (PDF), and PostScript® are either

registered trademarks or trademarks of Adobe Systems Incorporated in the United

States, other countries, or both.

Cell Broadband Engine is a trademark of Sony Computer Entertainment, Inc. in the

United States, other countries, or both and is used under license therefrom.

Linux® is a trademark of Linus Torvalds in the United States, other countries, or

both.

Other company, product or service names may be trademarks or service marks of

others.

Terms and conditions

Permission for the use of these publications is granted subject to the following

terms and conditions.

Personal Use: You may reproduce these publications for your personal,

noncommercial use provided that all proprietary notices are preserved. You may

not distribute, display or make derivative works of these publications, or any

portion thereof, without the express consent of the manufacturer.

Commercial Use: You may reproduce, distribute and display these publications

solely within your enterprise provided that all proprietary notices are preserved.

You may not make derivative works of these publications, or reproduce, distribute

or display these publications or any portion thereof outside your enterprise,

without the express consent of the manufacturer.

Notices 35

Except as expressly granted in this permission, no other permissions, licenses or

rights are granted, either express or implied, to the publications or any data,

software or other intellectual property contained therein.

The manufacturer reserves the right to withdraw the permissions granted herein

whenever, in its discretion, the use of the publications is detrimental to its interest

or, as determined by the manufacturer, the above instructions are not being

properly followed.

You may not download, export or re-export this information except in full

compliance with all applicable laws and regulations, including all United States

export laws and regulations.

THE MANUFACTURER MAKES NO GUARANTEE ABOUT THE CONTENT OF

THESE PUBLICATIONS. THESE PUBLICATIONS ARE PROVIDED ″AS-IS″ AND

WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,

INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF

MERCHANTABILITY, NON-INFRINGEMENT, AND FITNESS FOR A

PARTICULAR PURPOSE.

36 LAPACK Library Programmer’s Guide and API Reference v3.1

Related documentation

This topic helps you find related information.

Document location

Links to documentation for the SDK are provided on the IBM developerWorks Web

site located at:

http://www.ibm.com/developerworks/power/cell/

Click the Docs tab.

The following documents are available, organized by category:

Architecture

v Cell Broadband Engine Architecture

v Cell Broadband Engine Registers

v SPU Instruction Set Architecture

Standards

v C/C++ Language Extensions for Cell Broadband Engine Architecture

v Cell Broadband Engine Linux Reference Implementation Application Binary Interface

Specification

v SIMD Math Library Specification for Cell Broadband Engine Architecture

v SPU Application Binary Interface Specification

v SPU Assembly Language Specification

Programming

v Cell Broadband Engine Programmer’s Guide

v Cell Broadband Engine Programming Handbook

v Cell Broadband Engine Programming Tutorial

Library

v Accelerated Library Framework for Cell Broadband Engine Programmer’s Guide and

API Reference

v Basic Linear Algebra Subprograms Programmer’s Guide and API Reference

v Data Communication and Synchronization for Cell Broadband Engine Programmer’s

Guide and API Reference

v Example Library API Reference

v Fast Fourier Transform Library Programmer’s Guide and API Reference

v LAPACK (Linear Algebra Package) Programmer’s Guide and API Reference

v Mathematical Acceleration Subsystem (MASS)

v Monte Carlo Library Programmer’s Guide and API Reference

v SDK 3.0 SIMD Math Library API Reference

v SPE Runtime Management Library

v SPE Runtime Management Library Version 1 to Version 2 Migration Guide

v SPU Runtime Extensions Library Programmer’s Guide and API Reference

© Copyright IBM Corp. 2008 37

http://www.ibm.com/developerworks/power/cell/

v Three dimensional FFT Prototype Library Programmer’s Guide and API Reference

Installation

v SDK for Multicore Acceleration Version 3.1 Installation Guide

Tools

v Getting Started - XL C/C++ for Multicore Acceleration for Linux

v Compiler Reference - XL C/C++ for Multicore Acceleration for Linux

v Language Reference - XL C/C++ for Multicore Acceleration for Linux

v Programming Guide - XL C/C++ for Multicore Acceleration for Linux

v Installation Guide - XL C/C++ for Multicore Acceleration for Linux

v Getting Started - XL Fortran for Multicore Acceleration for Linux

v Compiler Reference - XL Fortran for Multicore Acceleration for Linux

v Language Reference - XL Fortran for Multicore Acceleration for Linux

v Optimization and Programming Guide - XL Fortran for Multicore Acceleration for

Linux

v Installation Guide - XL Fortran for Multicore Acceleration for Linux

v Performance Analysis with the IBM Full-System Simulator

v IBM Full-System Simulator User’s Guide

v IBM Visual Performance Analyzer User’s Guide

IBM PowerPC Base

v IBM PowerPC Architecture Book

– Book I: PowerPC User Instruction Set Architecture

– Book II: PowerPC Virtual Environment Architecture

– Book III: PowerPC Operating Environment Architecture

v IBM PowerPC Microprocessor Family: Vector/SIMD Multimedia Extension Technology

Programming Environments Manual

38 LAPACK Library Programmer’s Guide and API Reference v3.1

Glossary

This glossary provides definitions for terms included in this publication.

ALF. Accelerated Library Framework. This an API that

provides a set of services to help programmers solving

data parallel problems on a hybrid system. ALF

supports the multiple-program-multiple-data (MPMD)

programming style where multiple programs can be

scheduled to run on multiple accelerator elements at

the same time. ALF offers programmers an interface to

partition data across a set of parallel processes without

requiring architecturally-dependent code.

Barcelona Supercomputing Center. Spanish National

Supercomputing Center, supporting IBM BladeCenter

servers and Linux on Cell/B.E.

Broadband Engine. See CBEA.

CBEA. Cell Broadband Engine Architecture. A new

architecture that extends the 64-bit PowerPC

Architecture™. The CBEA and the Cell Broadband

Engine are the result of a collaboration between Sony,

Toshiba, and IBM, known as STI, formally started in

early 2001.

Cell BE processor. The Cell BE processor is a

multi-core broadband processor based on IBM’s Power

Architecture.

Cell Broadband Engine processor. See Cell BE.

GNU. GNU is Not Unix. A project to develop free

Unix-like operating systems such as Linux.

GPL. GNU General Public License. Guarantees

freedom to share, change and distribute free software.

HTTP. Hypertext Transfer Protocol. A method used to

transfer or convey information on the World Wide Web.

Makefile. A descriptive file used by the makecommand

in which the user specifies: (a) target program or

library, (b) rules about how the target is to be built, (c)

dependencies which, if updated, require that the target

be rebuilt.

NUMA. Non-uniform memory access. In a

multiprocessing system such as the Cell/B.E., memory

is configured so that it can be shared locally, thus

giving performance benefits.

PDF. Portable document format.

RPM. Originally an acronym for Red Hat Package

Manager, and RPM file is a packaging format for one

or more files used by many Linux systems when

installing software programs.

SDK. Software development toolkit for Multicore

Acceleration. A complete package of tools for

application development.

© Copyright IBM Corp. 2008 39

40 LAPACK Library Programmer’s Guide and API Reference v3.1

Index

A
API

PPE 1

array arguments 11, 13

C
C 13

changes iii

customizing 15

D
documentation 37

LAPACK-related vii

draft changes iii

dynamic and static linking 11, 13

E
environment variables 15

example
inverse matrix 22

examples
building 21

F
fault handling 17

FORTRAN 11

H
header file 13

I
installation 5

L
LAPACK 1

LAPACK documentation vii

LAPACK_NUMSPES 15

lapack.h 13

library structure 9

M
memory size

limitations 19

O
optimizing 15

overview 1

P
performance

considerations 15

PPE
API 1, 25

programming 9

S
SDK documentation 37

static and dynamic linking 11, 13

T
trapping failures 17

W
what’s new ix

© Copyright IBM Corp. 2008 41

42 LAPACK Library Programmer’s Guide and API Reference v3.1

����

Printed in USA

SC33-8428-02

	Information for reviewers: draft changes
	Contents
	About this publication
	How to send your comments

	What's new
	Concepts
	Part 1. Overview of LAPACK
	Chapter 1. Conventions
	Part 2. Installing and configuring LAPACK
	Part 3. Programming with LAPACK
	Chapter 2. Basic structure of the LAPACK library
	Chapter 3. Programming FORTRAN applications
	Chapter 4. Programming C applications
	Chapter 5. Tuning the LAPACK library for performance
	Chapter 6. Catching failures
	Chapter 7. Memory size limitations
	Chapter 8. LAPACK programming examples
	Part 4. LAPACK PPE APIs
	Part 5. Appendixes
	Appendix A. Accessibility features
	Appendix B. Getting help or technical assistance
	Notices
	Trademarks
	Terms and conditions

	Related documentation
	Glossary
	Index

