
Software Development Kit for Multicore Acceleration

Version 3.1

Data Communication and Synchronization

Library

Programmer’s Guide and API Reference

SC33-8408-01

���

Software Development Kit for Multicore Acceleration

Version 3.1

Data Communication and Synchronization

Library

Programmer’s Guide and API Reference

SC33-8408-01

���

Note

Before using this information and the product it supports, read the information in “Notices” on page 209.

Edition notice

This edition applies to version 4.0.0 of the Data Communication and Synchronization Library for the Software

Development Kit for Multicore Acceleration Version 3.1 (program number 5724-S84) and to all subsequent releases

and modifications until otherwise indicated in new editions.

© Copyright International Business Machines Corporation 2007, 2008.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

About this publication v

What’s new in this release v

Conventions vii

Related information vii

How to send your comments vii

Part 1. Overview of DaCS 1

Chapter 1. Services 3

Chapter 2. DaCS implementations . . . 5

DaCS for Cell/B.E. 5

DaCS for Hybrid 5

Coexistence 8

Chapter 3. Specified operating

environments 9

Supported DaCS implementations 9

Supported compilers for the DaCS Fortran bindings 9

Part 2. Installing and configuring

DaCS 11

Chapter 4. Installing DaCS 13

Chapter 5. Configuring DaCS for Hybrid 15

Configuring the topology 15

Setting affinity for DaCS for Hybrid 19

Verifying user ids on the accelerator 20

Configuring when using sockets 20

Configuring when using PCIe-Axon 21

Configuring the DaCS for Hybrid daemon 22

Part 3. Programming with DaCS . . 25

Chapter 6. Building a DaCS application 27

Affinity requirements for host applications 28

Blocking APIs 29

Using the Hybrid library 29

Handling API Return codes 29

Part 4. API reference 31

Chapter 7. Initialization and termination 33

Initialization and termination usage scenarios . . . 33

dacs_init 35

dacs_exit 37

dacs_runtime_init (deprecated) 38

dacs_runtime_exit (deprecated) 39

Chapter 8. Reservation services 41

Reservation services usage scenarios 41

dacs_get_num_avail_children 43

dacs_reserve_children 45

dacs_release_de_list 47

Chapter 9. Process management . . . 49

Process control 50

dacs_num_processes_supported 51

dacs_num_processes_running 53

dacs_de_start 54

dacs_de_test 59

dacs_de_wait 61

dacs_de_kill (prototype) 63

Process synchronization 65

Groups 66

Group usage scenarios 66

dacs_group_init 68

dacs_group_add_member 69

dacs_group_close 71

dacs_group_destroy 72

dacs_group_accept 73

dacs_group_leave 74

dacs_barrier_wait 75

Mutexes 76

Mutex owner functions 76

dacs_mutex_init 79

dacs_mutex_share 80

dacs_mutex_destroy 82

dacs_mutex_accept 83

dacs_mutex_release 84

dacs_mutex_lock 85

dacs_mutex_try_lock 86

dacs_mutex_unlock 87

Chapter 10. Data communication . . . 89

Remote Direct Memory Access 90

Registered local region functions 90

dacs_mem_create 96

dacs_mem_share 98

dacs_mem_accept 100

dacs_mem_release 102

dacs_mem_register 103

dacs_mem_deregister 105

dacs_mem_destroy 107

dacs_mem_get 108

dacs_mem_put 110

dacs_mem_get_list 112

dacs_mem_put_list 115

dacs_mem_limits_query 118

dacs_mem_query 120

Unregistered local region functions 122

dacs_remote_mem_create 126

dacs_remote_mem_share 128

dacs_remote_mem_accept 130

dacs_remote_mem_release 132

© Copyright IBM Corp. 2007, 2008 iii

dacs_remote_mem_destroy 133

dacs_remote_mem_query 134

dacs_put 136

dacs_get 138

dacs_put_list 140

dacs_get_list 144

Message passing 148

Message passing usage scenarios 148

dacs_send 149

dacs_recv 151

Mailboxes 153

Mailbox usage scenario 153

dacs_mailbox_write 154

dacs_mailbox_read 156

dacs_mailbox_test 158

Wait identifier management services 160

dacs_wid_reserve 161

dacs_wid_release 162

Transfer completion 163

dacs_test 164

dacs_wait 165

Chapter 11. Error handling 167

User error handler example 167

Abnormal child termination 169

dacs_errhandler_reg 170

dacs_strerror 172

dacs_error_num 173

dacs_error_code 174

dacs_error_str 175

dacs_error_de 176

dacs_error_pid 177

Chapter 12. Fortran Address Handling 179

dacsf_makeptr 180

dacsf_makevoid 181

Part 5. Appendixes 183

Appendix A. DaCS DE types 185

Appendix B. Performance and debug

trace 187

Trace control 187

Appendix C. DaCS trace events . . . 189

DaCS API hooks 189

DaCS performance hooks 192

Appendix D. Error codes 193

Appendix E. Environment variables 195

Appendix F. DaCS for Hybrid

debugging 197

Message redirection 197

Logging 197

DaCS diagnostic tools 198

Appendix G. DaCS Fortran bindings 199

Overview 199

Programming with the Fortran bindings 199

Include files 200

Subroutines and functions 200

Return codes 200

Differences in the Fortran Bindings From the DaCS

C APIs 200

dacs_de_start 200

dacs_remote_mem_query and dacs_mem_query 201

dacsf_makevoid and dacsf_makeptr 201

Data types 203

Signed and Unsigned Integers 203

Strings and Arrays of strings 204

Arrays 204

Binding alias names 204

dacsf_de_start examples 205

DaCS Fortran binding examples 206

DaCS APIs not supported on the SPU 206

Appendix H. Accessibility features 207

Notices 209

Trademarks 211

Terms and conditions 212

Related documentation 213

Glossary 215

Index 217

iv DaCS Library for Cell/B.E. and Hybrid Programmer’s Guide and API Reference

About this publication

This programmer’s guide provides detailed information regarding the use of the

Data Communication and Synchronization for Cell/B.E. and Hybrid library APIs.

It contains an overview of the Data Communication and Synchronization library,

detailed reference information about the APIs, and usage information for

programming with the APIs.

For information about the accessibility features of this product, see Appendix H,

“Accessibility features,” on page 207.

Who should use this book

This book is intended for use by accelerated library developers.

What’s new in this release

Features and improvements

v New DaCS support for the 32-bit environment

v New DaCS support for Fortran bindings

v New DaCS support for PDT trace hooks

v New DaCS example code to demonstrate the use of DaCS interfaces in both C

and Fortran

v DaCS performance on Cell/B.E. is improved and the SPU library size is reduced

v DaCS for Hybrid support is upgraded from prototype to beta level

v Improved debug tracing and new returned error codes

v Added support for management of the local memory regions

New DaCS APIs

The following APIs have been added to the DaCS library:

 API Functionality

dacs_mem_create Designates a region in the memory space of the current process

for use by DMA services.

dacs_mem_share Passes a memory handle from the current process to a remote

process.

dacs_mem_accept Accepts a memory handle from a remote process.

dacs_mem_release Releases a previously-accepted memory handle.

dacs_mem_register Registers this memory region to be used as a local memory

handle on DMA operations.

dacs_mem_deregister Deregisters memory access for a local region.

dacs_mem_destroy Invalidates access to the specified memory region.

dacs_mem_put Initiates a data copy from a local memory region into a remote

memory region.

dacs_mem_get Initiates a data copy from a remote memory region into a local

memory region.

© Copyright IBM Corp. 2007, 2008 v

API Functionality

dacs_mem_get_list Initiates a scatter or gather data transfer from a remote memory

region into a local memory region.

dacs_mem_put_list Initiates a scatter or gather data transfer from a local memory

region into a remote memory region.

dacs_mem_limits_query Queries the limits on memory regions for communications with a

specific DaCS Element process identifier.

dacs_mem_query Queries the attributes of a memory region.

dacs_de_kill (prototype

only)

Requests the termination of the specified AE process, identified

by its DE and PID.

dacsf_makeptr Fortran only: converts a dacs_pvoid_t handle to an address or

Fortran pointer.

dacsf_makevoid Fortran only: converts a Fortran pointer or address to a

dacs_pvoid_t handle.

Deprecated DaCS APIs

The following APIs have been deprecated:

 API Replacement

dacs_runtime_init dacs_init may be used instead.

dacs_runtime_exit dacs_exit may be used instead.

Consolidated DaCS documentation

The new Data Communication and Synchronization Library Programmer’s Guide and

API Reference combines two guides from the previous SDK 3.0 Release These

guides were:

v Data Communication and Synchronization for Cell/B.E. Programmer’s Guide and API

Reference

v Data Communication and Synchronization for Hybrid-x86. Programmer’s Guide and

API Reference

The new manual provides a standalone guide to implementing the DaCS library

on both Cell/B.E. and Hybrid platforms.

Added Fortran support

The DaCS library now supports Fortran. Usage details have been added to each

API reference. In addition, there are two new Fortran-specific APIs as listed in the

table below:

 API Functionality

dacsf_makeptr Converts a dacs_pvoid_t handle to an address or Fortran pointer.

dacsf_makevoid Converts a Fortran pointer or address to a dacs_pvoid_t handle.

vi DaCS Library for Cell/B.E. and Hybrid Programmer’s Guide and API Reference

Conventions

Typographical conventions

The following table explains the typographical conventions used in this document.

 Table 1. Typographical conventions

Typeface Indicates Example

Bold Lowercase commands,

library functions.

void sscal_spu (float *sx,

float sa, int n)

Italics Parameters or variables

whose actual names or

values are to be supplied by

the user. Italics are also used

to introduce new terms.

The following example

shows how a test program,

test_name can be run

Monospace Examples of program code

or command strings.

int main()

Document conventions

Throughout the DaCS API documentation, there are references to specific DaCS

implementations and programming languages. The following table describes these

references.

 Table 2. Document conventions

Convention Indicates Example

Hybrid The information in the

section that follows applies

to DaCS for Hybrid only.

Hybrid: the mailbox depth is

limited to 32 incoming and

outgoing mailboxes for each

PID.

Cell/B.E. The information in the

section that follows applies

to DaCS for Cell/B.E. only.

Cell/B.E.: the mailbox depth

is limited to 4 incoming and

4 outgoing mailboxes for

each SPU.

C The information in the

section that follows applies

to the C programming

language only.

C: a pointer to the message

received.

Fortran The information in the

section that follows applies

to the Fortran programming

language only.

Fortran: the message

received.

Fortran only The preceding parameter is

only available to the Fortran

programming language.

Fortran only: the number of

elements in the envv array.

Related information

See “Related documentation” on page 213.

How to send your comments

About this publication vii

Your feedback is important in helping to provide the most accurate and highest

quality information. If you have any comments about this publication, send your

comments using Resource Link™ at http://www.ibm.com/servers/resourcelink.

Click Feedback on the navigation pane. Be sure to include the name of the book,

the form number of the book, and the specific location of the text you are

commenting on (for example, a page number or table number).

viii DaCS Library for Cell/B.E. and Hybrid Programmer’s Guide and API Reference

http://www.ibm.com/servers/resourcelink

Part 1. Overview of DaCS

The Data Communication and Synchronization (DaCS) library provides a set of

services which ease the development of applications and application frameworks

in a heterogeneous multi-tiered system, for example a 64 bit x86 system (x86_64)

and one or more Cell/B.E. systems. The DaCS services are implemented as a set of

APIs providing an architecturally neutral layer for application developers on a

variety of multi-core systems. One of the key features that further differentiates

DaCS from other programming frameworks is a hierarchical topology of processing

elements, each referred to as a DaCS Element (DE). Within the hierarchy each DE

can serve one or both of the following roles:

v A general purpose processing element, acting as a supervisor, control or master

processor. This type of element usually runs a full operating system and

manages jobs running on other DEs. This is referred to as a Host Element (HE).

v A general or special purpose processing element running tasks assigned by an

HE. This is referred to as an Accelerator Element (AE).

The above figure demonstrates the relationship between the HE and AE in DaCS.

An application is first started on the HE which uses the AEs to offload an

accelerated workload.

1. Prior to using DaCS, the HE application must first initialize DaCS. See

Chapter 7, “Initialization and termination,” on page 33 for further information.

2. Once initialized, the desired number of AEs may be reserved and programs

started on them. See Chapter 8, “Reservation services,” on page 41 and

Chapter 9, “Process management,” on page 49 for further information.

3. Processes may be controlled through provided synchronization primitives. See

“Process synchronization” on page 65 for further information.

4. Now that the AE is up and running, it may communicate with the HE.

Chapter 10, “Data communication,” on page 89 for further information.

Host Element Accelerator Element

Application

2. Reserve/Start

Process

3. Synchronize

4. Communicate

1. Init DaCS

Figure 1. Example interaction between Host and Accelerator elements

© Copyright IBM Corp. 2007, 2008 1

2 DaCS Library for Cell/B.E. and Hybrid Programmer’s Guide and API Reference

Chapter 1. Services

The DaCS services can be divided into the following categories:

Resource Management

DaCS provides services for managing the hardware compute resources

available to DaCS.

 Resource reservation services are included for allocation, de-allocation and

querying of system wide compute resources. These resource reservation

services allow an HE to reserve AE resources below itself in the hierarchy.

The APIs abstract the specifics of the reservation system (O/S, middleware,

etc.) to allocate resources for an HE. Once reserved, the AEs can be used

by the HE to execute tasks for accelerated applications.

Process Management

DaCS provides services for managing and controlling DaCS processes.

 In conjunction with the reserved resources, process management services

are also provided as a means for HE initiation and management of

accelerated applications on AEs. These services include, but are not limited

to, remote process launch and remote error notification.

Data communication

DaCS provides several mechanisms for managing, synchronizing, and

sharing data through remote DMA, message passing, and mailbox services.

 The DMA services provided offer a means to create, share, and transfer

data to or from a local or remote memory region. Transfers are performed

using a one-sided put/get remote direct memory access remote DMA

model. In addition, the ability to perform scatter/gather list operations is

also available and provides optional enforcement of ordering for the data

transfers.

Message passing services provide the means for passing asynchronous

messages using a two-sided send/receive model. Messages are passed

point-to-point from one process to another.

Mailbox services provide a simple interface for synchronous transfer of

small (32-bit) messages from one process to another.

Wait identifier data synchronization services are also provided to

compliment the DMA and message passing services.

Error Handling

The error handling services enable the user to register error handlers and

gather error information.

© Copyright IBM Corp. 2007, 2008 3

4 DaCS Library for Cell/B.E. and Hybrid Programmer’s Guide and API Reference

Chapter 2. DaCS implementations

This section discusses the different implementations of DaCS.

Two implementations of the DaCS API are currently supported. The first

implementation, called DaCS for Cell/B.E., is support for the DaCS architecture on

the Cell Broadband Engine Architecture (CBEA). The other implementation, called

DaCS for Hybrid, is support of DaCS on a hybrid x86_64 / PowerPC Linux

system. The abovementioned implementations can operate independently of one

another or they can coexist. For example, with the current implementations the

PPE can act as both an HE and an AE. When working with the SPEs (via DaCS for

Cell) it is an HE, and when working with the x86_64 system (via DaCS for Hybrid)

it is a AE. This is discussed in “Coexistence” on page 8.

DaCS for Cell/B.E.

DaCS for Cell/B.E. is an implementation of the DaCS API specification for the

CBEA. DaCS for Cell/B.E. uses the PowerPC Processor Elements (PPE) as the HE

and the Synergistic Processor Elements (SPE) as AEs. Within a Cell/B.E. blade

server, there are two Cell/B.E.s, each containing a single PPE and eight SPEs. This

is shown in the Figure below.

DaCS for Hybrid

DaCS for Hybrid is an implementation of the DaCS API specification which

supports the connection of an x86_64 system to one or more PPEs. In this

environment, the x86_64 processor acts as the HE, whereas the PPEs act as AEs.

In DaCS 4.0, DaCS for Hybrid supports connecting the HE and AEs with sockets

or PCIe over Axon. DaCS for Hybrid provides the x86_64 system access to the PPE.

It allows a program to be started and stopped and data transfer between the HE

and AEs. Direct access to the Synergistic Processor Elements (SPEs), from the

x86_64 system is not provided. Instead, the SPEs can be accessed by the program

Cell/B.E. blade server

PPE

SPE SPE
...

Cell/B.E.

PPE

SPE SPE
...

Cell/B.E.

Host

Accelerators

Figure 2. Example PPE Host with SPE Accelerators

© Copyright IBM Corp. 2007, 2008 5

running on the PPE. This is shown in the figure below.

 In order to manage the interactions between both the HE and the AEs DaCS for

Hybrid starts a service on each of them. On the system where the HE will run the

service is the Host DaCS daemon (hdacsd) and on the AE the service is the

Accelerator DaCS daemon (adacsd). These services are shared between all DaCS

for Hybrid processes for an operating system image. For example, if the x86_64

system has multiple cores that each run as an HE, only a single instance of the

hdacsd service is needed to manage the interactions of each of the host applications

with their AEs. Similarly, on the AE, if the Cell/B.E. is on a Cell/B.E. blade server

(which has two Cell/B.E.s), a single instance of the adacsd service is needed to

manage both of the Cell/B.E.s acting as AEs, even if they are used by different

HEs.

When a host application starts using DaCS for Hybrid it connects to the hdacsd

service. This service manages the system topology from a DaCS perspective

(managing reservations) and starts the accelerator application on the AE. Only

process management requests will use the hdacsd and adacsd services. All other

interactions between the host and accelerator application will flow via a direct

connection. The following diagram provides a summary of the DaCS for Hybrid

components and their relationships:

x86_64 system

Cell /B.E.

PPE

SPE1 SPE8…

Sockets or PCIe-Axon

Host

Element

Accelerator

Element

Figure 3. Example x86_64 Host with PPE Accelerators

6 DaCS Library for Cell/B.E. and Hybrid Programmer’s Guide and API Reference

The figure above summarizes the parts of DaCS for Hybrid and their relationship

to each other. The Host Application, which is running on the HE, is started outside

the scope of DaCS. It is the application that is using DaCS (as an HE) so it can use

one or more AEs. The line from the Host Application to the DaCS for Hybrid box

represents the use of the DaCS for Hybrid library. The DaCS for Hybrid library

uses the hdacsd for process management and uses a direct connection between the

applications (via the DaCS for Hybrid library on each side) for all other

communications.

The process management communications between the hdacsd and adacsd is

represented by the arrow connecting them. This link is used for starting

Accelerator Applications on the AE and communicating status and connection

setup information. The hdacsd and adacsd use the file system for configuration

information (discussed in Part 2, “Installing and configuring DaCS,” on page 11)

and to optionally retrieve the executable for the Accelerator Application. Starting

applications on the AE is discussed in “dacs_de_start” on page 54.

OS installation OS installation

Host Element Accelerator Element

Host

application
Accelerator

application

DaCS for

Hybrid
DaCS for

Hybrid

Host

Element 2
Accelerator

Element 2hdacsd adacsd

socket socket

exec

socket

File system

stdout

stderr

File system

Figure 4. Summary of DaCS for Hybrid components

Chapter 2. DaCS implementations 7

When the Accelerator Application is started, stdout and stderr are redirected back

to the host application, which consolidates the output on the host application.

Figure 4 also shows the OS Installation because this is the scope of the daemon. It

manages all of the HEs or AEs that are within that scope. This is represented by

the Host Element 2 and Accelerator Element 2 boxes.

Coexistence

DaCS for Hybrid and DaCS for Cell/B.E. can work together. To use them both you

must install both. See the SDK 3.1 Installation Guide for further information.

When using both implementations of DaCS, the PPE acts as both an AE to the

x86_64 host and an HE to the SPE accelerators. The DaCS library automatically

directs incoming PPE requests to the appropriate HE or AE based on the supplied

target DE and PID. For example, when a PPE application calls dacs_send(), the

supplied target DE and PID are used to determine whether the message should be

sent to the x86_64 (via DaCS for Hybrid) or to an SPE (via DaCS for Cell).

In a combined system, shared resources may be created on the PPE and shared

with the x86_64 HE and SPE AEs. This provides a unified mechanism for data

sharing and synchronization.

For example, mutexes and memory regions created on the PPE can be shared

across all three DE types (x86_64, PPE and SPE) in the combined system. This

means that data may be shared across the entire system with synchronized access.

3

1598710

SPE...SPESPE

Host

PPE

Cell/B.E

SPE...SPESPE

Host

PPE

Cell/B.E.

Cell/B.E blade server ACCELERATOR

.....

0

1598710

SPE...SPESPE

Host

PPE

Cell/B.E.

SPE...SPESPE

Host

PPE

Cell/B.E.

Cell/B.E. blade server ACCELERATOR

x86_64 Core

Host

x86_64 Core

Host

x86_64 Core

Host

x86_64 Core

Host

AcceleratorAccelerator

Accelerator

Figure 5. Example node with AMD Host and Cell/B.E. accelerators

8 DaCS Library for Cell/B.E. and Hybrid Programmer’s Guide and API Reference

Chapter 3. Specified operating environments

DaCS is supported on multiple platforms.

Support for the DaCS API library depends upon your implementation. The

following two implementations of the DaCS API are currently supported:

v DaCS for Cell/B.E.

v DaCS for Hybrid

Note: The x86_64 portion of DaCS for Hybrid is only supported on AMD Opteron

Processors.

DaCS for Cell/B.E. is provided with the SDK Product package. DaCS for Hybrid is

provided with the SDK Extras package. For more information on these SDK

packages, see Cell Broadband Engine Resource Center - downloads

(http://www-128.ibm.com/developerworks/power/cell/downloads.html) on the

IBM DeveloperWorks Web site.

For more information on these implementations, see Chapter 2, “DaCS

implementations,” on page 5.

For more information on the hardware and software that supports the SDK, see

Specified operating environments.

Supported DaCS implementations

The libraries for DaCS 4.0 have various levels of support, as documented in this

section.

The SDK for Multicore Acceleration Version 3.1 is available in three different package

types: Developer, Product, and Extras. Full details of what these packages are and

what support is available may be found at the IBM developerWorks Web site at:

http://www-128.ibm.com/developerworks/power/cell/.

DaCS for Cell/B.E. support information

This is a component of the SDK Product package. The DaCS for Cell/B.E.

APIs are production components and therefore are fully supported and

warranted. These components are stable, with upgrade paths or backwards

compatibility maintained between releases.

DaCS for Hybrid support information

This is a component of the SDK Extras package. This package is not

officially supported by IBM, but limited assistance is available on the

Cell/B.E. forum on developerWorks.

Prototype interfaces and components

These are components of the SDK Extras package. Limited assistance is

available on the Cell/B.E. forum on developerWorks. These interfaces may

not be supported by all implementations. For example, the dacs_de_kill()

function is currently only supported by DaCS for Hybrid.

Supported compilers for the DaCS Fortran bindings

© Copyright IBM Corp. 2007, 2008 9

http://www-128.ibm.com/developerworks/power/cell/downloads.html
http://publib.boulder.ibm.com/infocenter/systems/topic/eicce/eiccespecifiedoperatingenvironments.htm
http://www-128.ibm.com/developerworks/power/cell/

For the DaCS Fortran Bindings, the following table identifies which Fortran

compilers have been tested by IBM. Not applicable indicates that a compiler does

not support the architecture of the DaCS implementation specified.

 Hybrid PPU SPU

GNU Fortran Yes Yes Yes

XLF No Yes Yes

Path Scale Yes

Not

applicable Not applicable

Note: The Fortran Bindings may work with other Fortran compilers such as PGI

Fortran and INTEL Fortran in the Cell Hybrid implementation but they have not

been tested.

10 DaCS Library for Cell/B.E. and Hybrid Programmer’s Guide and API Reference

Part 2. Installing and configuring DaCS

The DaCS libraries are part of the Cell Broadband Engine Software Development

Kit (SDK) for Multicore Acceleration. The DaCS for Cell/B.E. components are

installed in the default group of the SDK, while the DaCS for Hybrid components

are an optional install. After installation of the DaCS for Hybrid components, some

configuration is needed and is discussed in this section.

v You may need to set up library path information (by using LD_LIBRARY_PATH or

ldconfig) or you may instead use RPATH information when linking DaCS

applications.

v You will need to configure daemons on the host and start them on the host and

accelerators.

© Copyright IBM Corp. 2007, 2008 11

12 DaCS Library for Cell/B.E. and Hybrid Programmer’s Guide and API Reference

Chapter 4. Installing DaCS

Several packages are available that provide the means to develop, deploy and

debug DaCS applications on your x86_64 and Cell/B.E. and Hybrid system. The

32–bit and 64–bit packages can either be installed separately or together depending

on the applications that the user will be running.

In the tables that follow:

v ppc refers to 32 bit PPU binaries

v ppc64 refers to 64 bit PPU binaries

v x86_64 refers to 64 bit binaries

v i686 refers to 32 bit binaries

The DaCS runtime packages need to be installed on the target platform in order be

able to run DaCS applications. The development packages are needed if DaCS

development is going to be done. If the desired packages are not installed by

default, refer to the SDK Installation Guide for instructions on how to install the

other packages.

The following table shows the package names with a short description:

 Table 3. SDK packages for DaCS in a Cell/B.E. environment.

Package Description

dacs-4.0.0-#.ppc.rpm DaCS Runtime - Contains the optimized

PPU shared library. dacs-4.0.0-#.ppc64.rpm

dacs-devel-4.0.0-#.ppc.rpm DaCS Development - Contains the header

files, optimized static PPU and SPU libraries,

and debug libraries (static PPU and SPU;

shared PPU).

dacs-devel-4.0.0-#.ppc64.rpm

dacs-trace-4.0.0-#.ppc.rpm DaCS Trace Enabled Runtime - Contains the

trace enabled PPU shared library. dacs-trace-4.0.0-#.ppc64.rpm

dacs-trace-devel-4.0.0-#.ppc.rpm DaCS Trace Enabled Development -

Contains the trace-enabled PPU and SPU

static libraries.

dacs-trace-devel-4.0.0-#.ppc64.rpm

dacs-cross-devel-4.0.0-#.noarch.rpm DaCS Cross Development - Contains the

header files and libraries needed for

cross-architecture development.

dacs-tools-4.0.0-#.ppc64.rpm DaCS tools. Contains tools for the diagnosis

of problems.

dacs-compat-4.0.0-19.ppc64.rpm Contains the optimized 64 bit PPU shared

library supporting the DaCS 3.0 API

dacs-examples-source-4.0.0-#.noarch.rpm DaCS Examples - Contains samples that

demonstrate how to use the DaCS APIs.

© Copyright IBM Corp. 2007, 2008 13

Table 4. SDK packages for DaCS in a hybrid environment

Package Description

dacs-hybrid-4.0.0-#.i686.rpm

DaCS for Hybrid Runtime - Contains the

optimized shared library for the target

platform.

dacs-hybrid-4.0.0-#.x86_64.rpm

dacs-hybrid-4.0.0-#.ppc.rpm

dacs-hybrid-4.0.0-#.ppc64.rpm

dacs-hybrid-devel-4.0.0-#.i686.rpm

DaCS for Hybrid Development - Contains

the header files, optimized static libraries,

and debug libraries (static and shared) for

the target platform.

dacs-hybrid-devel-4.0.0#-#.x86_64.rpm

dacs-hybrid-devel-4.0.0-#.ppc.rpm

dacs-hybrid-devel-4.0.0-#.ppc64.rpm

dacs-hybrid-trace-4.0.0-#.i686.rpm

DaCS for Hybrid Trace Enabled Runtime -

Contains the trace enabled shared library for

the target platform.

dacs-hybrid-trace-4.0.0-#.x86_64.rpm

dacs-hybrid-trace-4.0.0-#.ppc.rpm

dacs-hybrid-trace-4.0.0-#.ppc64.rpm

dacs-hybrid-trace-devel-4.0.0-#.i686.rpm

DaCS for Hybrid Trace Development -

Contains the trace-enabled static library for

the target platform.

dacs-hybrid-trace-devel-4.0.0-#.x86_64.rpm

dacs-hybrid-trace-devel-4.0.0-#.ppc.rpm

dacs-hybrid-trace-devel-4.0.0-#.ppc64.rpm

dacs-hybrid-cross-devel-4.0.0-#.noarch.rpm DaCS for Hybrid Cross Development -

Contains the header files and libraries

needed for cross-architecture development.

dacs-hybrid-tools-4.0.0-#.x86_64.rpm DaCS for Hybrid-tools - Contains tools for

the diagnosis of problems.

dacs-hybrid-daemon-4.0.0-#.i686.rpm DaCS for Hybrid host daemon and

configuration files.

dacs-hybrid-daemon-4.0.0-#.ppc.rpm DaCS for Hybrid accelerator daemon and

configuration files.

dacs-hybrid-examples-source-4.0.0-
#.noarch.rpm

Contains examples that demonstrate how to

use the DaCS APIs in a Hybrid environment.

datamover-pcie-axon-1.0.0–#.i686.rpm

Additional library necessary for DaCS for

Hybrid to work with PCIe over Axon device

driver. If PCIe over Axon is not being used,

these libraries do not need to be installed.

datamover-pcie-axon-1.0.0–#.86_64.rpm

datamover-pcie-axon-1.0.0–#.ppc.rpm

datamover-pcie-axon-1.0.0–#.ppc64.rpm

14 DaCS Library for Cell/B.E. and Hybrid Programmer’s Guide and API Reference

Chapter 5. Configuring DaCS for Hybrid

When DaCS for Hybrid is installed, some configuration is necessary as stated in

this section. No configuration is necessary for standalone DaCS for Cell/B.E..

Configuring the topology

The dacs_topology.config file contains information about the physical layout of

the system using DaCS for Hybrid and information on the HE and which AEs they

can use. The topology configuration file must be modified to match the physical

topology of the system on which you want to use DaCS.

There are two different communication networks that are defined in the topology

file. The first is the process management network used by the daemons (hdacsd

and adacsd) and the second is the data movement network which is used for data

movement between the HE and the AE applications. Currently the process

management network must be over sockets and the data movement network can

be over either sockets or PCIe-Axon.

The topology file is specified using XML.

 Table 5. Structure of the configuration file

Section name Purpose

DaCS Topology

(<DaCS_Topology>)

Outermost container

Hardware

(<hardware>)

Contains information mapping physical

hardware assets to DaCS elements. This

includes the nesting relationships between

blade servers and individual processing

units.

Topology

(<topology>)

Represents the ability to reserve DaCS

elements using the information encoded in

the hardware section.

Process Management

(<processManagement>)

Represents information used by the DaCS

daemons.

Communications

(<communications>)

Defines communications connections

between DaCS elements as listed in the

Hardware section.

The elements and their associated attributes used in the topology configuration file

are as follows:

DaCS_Topology> element

 Format: <DaCS_Topology version=xs:string>

 Example: <DaCS_Topology version=’2.0’>

 Description The <DaCS_Topology> element is the outermost element in

the DaCS topology file. It contains the hardware, topology,

processManagement and communications sections.

© Copyright IBM Corp. 2007, 2008 15

Attributes version: The verson number of the topology file. Currently

only 2.0 is supported.

<hardware> element

 Format: <hardware>

 Example: <hardware>

 Description: The <hardware> element is a section delimiter and

container for <de> elements.

 Attributes: None.

<de> element

 Format: <de name=xs:string type=xs:string [numProcess=xs:integer]

[affinity=xs:string]>

 Example: <de tag=’OB1’ type=’DACS_DE_SYSTEMX’ numProcess=’1’ />

 Description: The <de> element allows for the description and naming

of hardware which will be used as HE and AE DaCS elements. <de>

elements may be nested to show an association between physical pieces

of hardware and logical grouping of DaCS Elements.

Attributes

name: A descriptive tag which represents this DE throughout the

rest of the file.

 type: A descriptive tag based on the DaCS Element enumerated

type in the dacs.h header which represents the type of this DE.

numProcess: (OPTIONAL) A numeric tag which represents the

maximum number of process which may be started on this DE

when it is used as an AE. If this is not specified only one process

will be allowed on the AE.

affinity: (OPTIONAL) The value for the processor affinity to use

when starting a process on this de (when it is an AE). If this is not

specified the process will be started without processor affinity. The

value is modeled after the taskset mask where 0x01 is processor #0,

0x02 is processor #1, and so forth.

Note: When a blade is reserved the accelerator process is started

without affinity. The connection entry used will be based on which

CBE the operating system starts the process on.

<topology> element

 Format: <topology>

 Example: <topology>

 Description The <topology> element is a section delimiter and

container for <canReserve> elements.

 Attributes None.

<canReserve> element

 Format: <canReserve he=xs:string ae=xs:string [only=xs:Boolean]

/>

 Example: <canReserve he=’OC1’ ae=’CBE22’ only=’false’ />

16 DaCS Library for Cell/B.E. and Hybrid Programmer’s Guide and API Reference

Description: The <canReserve> element defines the visibility and

reservation relationships between DEs. Its direct translation is that the

HE may reserve the AE, with the restrictions placed on it by the only

attribute.

 Attributes: These comprise the following:

 he: A descriptive tag which represents a DE in topology file. It must

match an entry in the <hardware> section.

 ae: A descriptive tag which represents a DE in the topology file. It must

match an entry in the <hardware> section.

 only: (OPTIONAL) The only attribute can be specified when the AE

attribute identifies a DACS_DE_CELLBLADE. When TRUE states that the

given HE can only reserve the given DACS_DE_CELLBLADE, not the

individual Cell/B.E. that it contains.

processManagement> element

 Format: <processManagement>

 Example: <processManagement>

 Description: The <processManagement> element is a section delimiter

and container for <mgtDe> elements.

 Attributes: None.

<mgtDe> element

Format: <mgtDe deName=xs:string fabric=xs:string connInfo=xs:string

/>

 Example: <mgtDe deName=’OB1’fabric=’IP’ connInfo=’192.168.1.1’ />

Description The <mgtDe> element defines which DaCS Elements are

serving as part of the process management framework, and the necessary

communications information to allow connections between these DEs by

the DaCS daemons.

Attributes:

 deName: A descriptive tag which represents a DE in this file. It must

match an entry in the <hardware> section.

 fabric: A descriptive tag which represents information on the format of

the connInfo information so that it may be processed. Currently only IP

is supported.

 connInfo: A representation of the information needed to setup

communications to this DE by the process management daemons.

<communications> element

Format: <communications>

 Example: <communications>

Description : The <communications> element is a section delimiter and

container for fabric and connection information that allows for

communication between DEs.

Attributes: None.

<fabrics> element

Format: <fabrics>

 Example: <fabrics default=’IP’>

Description The <fabrics> element is a section delimiter and container for

<fabric> elements.

Chapter 5. Configuring DaCS for Hybrid 17

Attributes

 default: This identifies the value of the type attribute of the contained

fabric element that represents the fabric that should be used by default.

This can be overridden using the DACS_HYBRID_USE_FABRIC_TYPE

environment variable.

<fabric> element

Format: <fabric type=xs:string device=xs:string [connInfo=xs:string]

/>

 Example: <fabric type=’AxonD’ device=’DM_IBM_AXON_PCIE’

connInfo=’libdm_pcie_axon.’ />

Description: The <fabric> element describes a communications fabric, that

is the underlying transport that is used for communication. It supplies a

type name for a given fabric definition along with device and connection

info.

Attributes:

 type: A descriptive tag which represents the fabric throughout the rest

of the file.

 device: A descriptive tag which represents information on the format of

the connInfo information so that it may be processed. Currently only IP

and DM are supported.

 connInfo: A representation of the information needed to setup the

given fabric for use.

<connections> element

Format: <connections>

 Example: <connections>

Description: The <connections> element is a section delimiter and

container for <connection> elements.

Attributes: None.

<connection> element

Format: <connection endPt1=xs:string endPt2=xs:string >

 Example: <connection endPt1=’OC1’ endPt2=’CBE22’ >

Description: The <connection> element is a container for information

regarding how to communicate over a given fabric between endPt1 and

endPt2. It contains a series of <forFabric> elements, each of which

describes specific communications information for a given fabric.

Attributes

 endPt1: A descriptive tag which represents a DE in the topology file. It

must match an entry in the <hardware> section.

 endPt2: A descriptive tag which represents a DE in the topology file. It

must match an entry in the <hardware> section.

<forFabric>

Format: <forFabric type=xs:string>

 Example: <forFabric type=’IP’>

Description The <forFabric> element exists inside of a <connection>

element supplying a container for specific connection information between

two DaCS elements for a given fabric.

18 DaCS Library for Cell/B.E. and Hybrid Programmer’s Guide and API Reference

Attributes:

 type: A value representing the fabric. This must be one of the fabric

types in the <fabrics> section.

<from1to2> element

Format: <from1to2 connInfo=xs:string />

 Example: <from1to2 connInfo=’192.168.1.2’ />

Description The <from1to2> element describes a specific communication

channel across a fabric, which is defined by the enclosing <forFabric>

element, where the 1 and 2 in the name refer to the enclosing <connection>

elements endPt1 and endPt2 attributes.

Attributes:

 connInfo: A fabric specific address representation for the

communication channel.

<from2to1> element

Format: <from2to1 connInfo=xs:string />

 Example: <from2to1 connInfo=’192.168.1.2’ />

Description: The <from2to1> element describes a specific communication

channel across a fabric, which is defined by the enclosing <forfabric>

element, where the 1 and 2 in the name refer to the enclosing <connection>

elements endPt1 and endPt2 attributes.

Attributes:

 connInfo: A fabric specific address representation for the

communication channel.

An XML schema for the topology file is provided as part of the dacs-hybrid-tools

RPM and is installed in /opt/cell/sdk/prototype/usr/src/dacs/hybrid/dacs-
topology/dacs_topology.xsd.

Setting affinity for DaCS for Hybrid

When creating the topology file, the use of affinity on the host element needs to be

taken into consideration. In some cases, especially in the case of PCIe-Axon,

associating a specific core with a specific Cell/B.E. provides the best performance.

In other cases, such as sockets, it is less important. This is different from the

specification of what affinity to use when starting the Accelerator process on an AE

as part of its DE element. Instead, the HE affinity is set on the host element prior

to running the host application (for example, by using taskset -p 0x00000001 $$).

The affinity on the host is used to determine which of the de elements should be

used for the host element. For example, given the following snippet of the

topology file:

 <de name="OB1" type=’DACS_DE_SYSTEMX’ >

 <de name=’OC1’ type=’DACS_DE_SYSTEMX_CORE’ />

 <de name=’OC2’ type=’DACS_DE_SYSTEMX_CORE’ />

 <de name=’OC3’ type=’DACS_DE_SYSTEMX_CORE’ />

 <de name=’OC4’ type=’DACS_DE_SYSTEMX_CORE’ />

 </de >

The first DACS_DE_SYSTEMX_CORE de element would be used for affinity 0x01,

the second for 0x02, the third for 0x04, and the fourth for 0x08. Thus when the

affinity is set to 0x02, the items in the topology file that reference OC3 will be

used.

Chapter 5. Configuring DaCS for Hybrid 19

If affinity is not set, then the first entry OC1 will always be used. If affinity is set,

then the associated entry for the core must be present in the topology file. For

example, given the following snippet of the topology file:

 <de name="OB1" type=’DACS_DE_SYSTEMX’ >

 <de name=’OC1’ type=’DACS_DE_SYSTEMX_CORE’ />

 </de >

Not setting affinity or setting it to 0x01 will work. However, because entry is not

found, any other affinity setting will cause the host application to be unable to

reserve any AEs.

Affinity can be used to limit the number of AEs that an HE can use, for example,

allowing each core to reserve only one AE:

 <topology >

 <canReserve he=’OC1’ ae=’CBE22’ />

 <canReserve he=’OC2’ ae=’CBE12’ />

 <canReserve he=’OC3’ ae=’CBE21’ />

 <canReserve he=’OC4’ ae=’CBE11’ />

 </topology >

Or to ensure that only the best performing configuration is used. In the example

above, the hardware may perform best when OC1 communicates with CBE22, etc.

Verifying user ids on the accelerator

The accelerator application will be started using the user id of the host application.

It is important to verify that these user ids are available on the accelerator prior to

using DaCS for Hybrid.

Configuring when using sockets

The sample topology file using sockets is provided as part of the install:

/etc/dacs_topology.config.template_sockets. This file can be used as the basis

for a host connected to a Cell/B.E. blade server by getting the IP addresses and

filling them in.

<DaCS_Topology version=’2.0’ >

 <!-- Sample Topology config for single-core HE and IP-connected Cell Blade -->

 <!-- Modify the IP addresses to match the actual communication interfaces, -->

 <!-- and copy to /etc/dacs_topology.config -->

 <hardware >

 <de name="OB1" type=’DACS_DE_SYSTEMX’ >

 <de name=’OC1’ type=’DACS_DE_SYSTEMX_CORE’ />

 </de >

 <de name=’CB1’ type=’DACS_DE_CELLBLADE’ >

 <de name=’CBE11’ type=’DACS_DE_CBE’ />

 <de name=’CBE12’ type=’DACS_DE_CBE’ />

 </de >

 </hardware >

 <topology >

 <!-- Host application can reserve the Cell Blade -->

 <!-- or any CBE on the Cell Blade -->

 <canReserve he=’OC1’ ae=’CB1’ />

 </topology >

 <!-- Configure the IP addresses for the DaCS daemons -->

20 DaCS Library for Cell/B.E. and Hybrid Programmer’s Guide and API Reference

<!-- The IP addresses are for illustration only -->

 <!-- Replace them with your actual IP addresses -->

 <processManagement >

 <mgtDe deName=’OB1’ fabric=’IP’ connInfo=’XXX.XXX.1.1’ />

 <mgtDe deName=’CB1’ fabric=’IP’ connInfo=’XXX.XXX.1.2’ />

 </processManagement >

 <communications>

 <!-- This configuration file is only for TCP/IP -->

 <fabrics default=’IP’ >

 <fabric type=’IP’ device=’TCP’ />

 </fabrics>

 <!-- Configure point-to-point connections over the communication fabrics -->

 <!-- Each connection identifies the HE and CBE endpoints and -->

 <!-- the information needed to initiate a connection over each fabric -->

 <connections >

 <!-- HE: OC1 to AE: CBE11 -->

 <connection endPt1=’OC1’ endPt2=’CBE11’ >

 <forFabric type=’IP’ >

 <from1to2 connInfo=’XXX.XXX.1.2’ />

 <from2to1 connInfo=’XXX.XXX.1.1’ />

 </forFabric >

 </connection >

 <!-- HE: OC1 to AE: CBE12 -->

 <connection endPt1=’OC1’ endPt2=’CBE12’ >

 <forFabric type=’IP’ >

 <from1to2 connInfo=’XXX.XXX.1.2’ />

 <from2to1 connInfo=’XXX.XXX.1.1’ />

 </forFabric >

 </connection >

 </connections >

 </communications>

</DaCS_Topology >

Note: The canReserve element in this example specifies the blade server (CB1)

which allows the host (OC1) to reserve either (or both) of the Cell/B.E.s (CBE11 and

CBE12).

Configuring when using PCIe-Axon

In order to use PCIe-Axon, the datamover-pcie-axon RPM and the PCIe-Axon

device drivers must be installed on both the host and accelerators. Note that there

are both 32 bit and 64 bit versions of the RPMs.

When installed, the permissions for the PCIe-Axon device driver will not allow

DaCS for Hybrid to use it. With the DaCS hybrid program, the user program

cannot run unless the user is running as superuser (root) or as a member of the

root group. If an administrator does not choose to do this, the workaround is to

give the appropriate read/write permissions to the user for the device driver.

The permissions to set on the axon devices are:

root@localConsole /]# ls -l /dev/axon*

crw-rw---- 1 root root 250, 0 2008-05-06 13:48 /dev/axon0

crw-rw---- 1 root root 250, 1 2008-05-06 13:48 /dev/axon1

crw-rw---- 1 root root 250, 2 2008-05-06 13:48 /dev/axon2

crw-rw---- 1 root root 250, 3 2008-05-06 13:48 /dev/axon3

Chapter 5. Configuring DaCS for Hybrid 21

Only a single process can be started on an AE when running over PCIe-Axon.

Modifying the configuration file to support more than one process will result in

unpredictable results.

A sample topology file using PCIe-axon (and sockets) is provided as part of the

install: /etc/dacs_topology.config.template_pcie. This file contains

documentation on how to modify it.

Configuring the DaCS for Hybrid daemon

The host daemon service is named hdacsd and the accelerator daemon service is

named adacsd. Both daemons are configured by editing the /etc/dacsd.conf file

on their respective systems.

Default versions of the dacsd.conf file are provided when installing the daemon

RPMS. These default files will work in most cases without change. The dacsd.conf

file contains detailed comments about the supported parameters and values and

should be referred to for the most up-to-date information.

Sample file

Configuration file for DaCS daemons, hdacsd and adacsd

Configuration file version

dacsd_conf_version="1.0"

Topology configuration file

dacs_topology_config=/etc/dacs_topology.config

The number of seconds period between polling Cell Blades to keep

track of their availability setting blade_monitor_interval to 0

disables the Cell Blade monitor

blade_monitor_interval=60

The default dacs_de_kill timeout, the number of seconds between

sending SIGTERM and SIGKILL. 0 means that dacsd_he_terminate will

send SIGKILL immediately, without sending SIGTERM

dacsd_kill_timeout=5

AE Current Working Directory Prefix

Each AE process started by dacs_de_start is given a temporary

current working directory named

<ae_cwd_prefix>/adacsd-tmp/<HE Process Info>/<AE Process Info>

DaCS applications refer to this by $AE_CWD in dacs_de_start

program parameters and environment variables.

ae_cwd_prefix=/adacsd

AE Current Working Directory permissions

Specifies the permissions given to the AE Current Working Directory

The value is an octal number representing the bit pattern for the permissions,

as supported by the chmod command. Note that these are directory permissions.

ae_cwd_permissions=0755

22 DaCS Library for Cell/B.E. and Hybrid Programmer’s Guide and API Reference

Normally the AE Current Working Directories and their contents are

deleted when the adacsd starts. (i.e., all files and directories

below <ae_cwd_prefix>/adacsd-tmp). Set ae_cwd_keep=true if you

want to prevent all AE Current Working Directories from being deleted

when adacsd starts.

Use ae_cwd_keep in conjunction with the HE process environment variable

DACS_HYBRID_KEEP_CWD as follows.

To keep an AE CWD indefinitely:

ae_cwd_keep must be set to true in the dacsd.conf file, and

the DACS_HYBRID_KEEP_CWD environment variable must be set to Y.

To keep an AE CWD only until adacsd is restarted:

ae_cwd_keep must be set to false in the dacsd.conf file, and

the DACS_HYBRID_KEEP_CWD environment variable must be set to Y

To delete an AE CWD when the HE process terminates:

DACS_HYBRID_KEEP_CWD must be unset, or set to something other than Y

ae_cwd_keep=false

dacs_de_start transfers files via tar. The tar commands are

configurable to help with debugging, but should not normally be

changed. Configuring these commands incorrectly will cause

dacsd_he_xfer to fail. For example:

he_tar_command="/bin/tar cvvf -"

ae_tar_command="/bin/tar xvvf -"

he_tar_command="/bin/tar cf -"

ae_tar_command="/bin/tar xf -"

change adacsd_use_numa to false to disable numa support

adacsd_use_numa=true

Set the size limit on core files for the AE process

This cannot exceed the system-configured limit.

if a core dump is larger than the size limit, the dump will not occur

If child_rlimit_core=-1, the current core file size limit is NOT changed for AE process

If child_rlimit_core=value>0, the current core file size limit will be changed

 to min(value, system_limit)

If child_rlmit=-1, the core file size limit will be set to the system limit--which could be

infinite

child_rlimit_core=-1

Set the size limit on core files for the hdacsd and adacsd daemons

This cannot exceed the system-configured limit.

if a core dump is larger than the size limit, the dump will not occur

If DAEMON_COREFILE_LIMIT=0, daemon core files are disabled

If DAEMON_COREFILE_LIMIT=’unlimited’, daemon core files are enabled

DAEMON_COREFILE_LIMIT=’unlimited’

Log size limit

When the current log file size exceeds the specified limit,

the current log file is renamed and a new log file is started.

The log files are renamed to <log name>-<YYYY>-<MM>-<DD>-<HH>:<MM>:<SS>

For example: /var/log/adacsd.log-2007-08-17-13:49:52

A log size limit of 0 prevents this log rotation.

The minimum non-zero value of log_size_limit is 4194304

Chapter 5. Configuring DaCS for Hybrid 23

log_size_limit=16777216

Log file limit

This value specifies the total number of log files to keep, including the current one.

When the limit is exceeded, the oldest log files are deleted first.

A log file limit of 0 prevents the deletion of old log files.

The minimum non-zero value of log_file_limit is 1

log_file_limit=2

Default startup options

ADACSD_ARGS="--log /var/log/adacsd.log --pidfile /var/run/adacsd.pid"

HDACSD_ARGS="--log /var/log/hdacsd.log --pidfile /var/run/hdacsd.pid"

Applying changes

Changes to the topology or daemon configuration do not take affect until the

daemon is restarted. Start and stop the daemon using the service command in the

/sbin directory. To stop the host daemon, type the following command as root:

/sbin/service hdacsd stop

To start the host daemon type:

/sbin/service hdacsd start

The daemon will also read changes to dacsd.conf when it receives a SIGHUP

signal. To send a SIGHUP signal to the host daemon, send the following command

as root:

killall –SIGHUP hdacsd

See the service man page for more details about controlling daemons.

24 DaCS Library for Cell/B.E. and Hybrid Programmer’s Guide and API Reference

Part 3. Programming with DaCS

DaCS API functions

The DaCS library API services are provided as functions in the C and FORTRAN

languages. The protocols and constants required are made available to the compiler

by including the C or Fortran DaCS header files.

C: include dacs.h as:

#include <dacs.h>

Fortran: include dacsf.h and dacsf_interface.h as:

include ’dacsf.h’

include ’dacsf_interface.h’

See Appendix G, “DaCS Fortran bindings,” on page 199 for more information.

Errors

In general the return value from these functions is an error code (see Appendix D,

“Error codes,” on page 193). Data is returned within parameters passed to the

functions.

Implementations may provide options, restrictions and error codes that are not

specified here.

When more than one error condition is present it is not guaranteed which one will

be reported. The default (optimized) DaCS library does no error checking of the

parameters of the DaCS API calls. These checks are only performed in the debug

DaCS library. Therefore, it is recommended that application development be done

using the debug library and the optimized library used for performance

measurement and production runs.

Most DaCS APIs return a DACS_ERR_T value on completion. This error return type

can be broken into three categories: errors, success, and status.

v Error values are less than 0 and imply a failure in the API call

v Status values are greater than 0, and are used for returning a non-failure state

from certain APIs

v A return value of 0 (DACS SUCCESS) indicates a successful return from a DaCS

operation

API environment

To make these services accessible to the runtime code each process must create a

DaCS environment. This is done by calling the special initialization service

dacs_init(). When this service returns the environment is set up so that all other

DaCS function calls can be invoked.

When the DaCS environment is no longer required the process must call

dacs_exit() to free all resources used by the environment.

© Copyright IBM Corp. 2007, 2008 25

Process management model

When working with the HE and AEs there has to be a way to uniquely identify the

participants that are communicating. From an architectural perspective, each

accelerator could have multiple processes simultaneously running, so it is not

enough simply to identify the accelerator. Instead the unit of execution on the

accelerator (the DaCS Process) must be identified using its DaCS Element Id (DE)

and its Process Id (PID). The DE is received when the accelerator is reserved (using

dacs_reserve_children()) and the PID is received when the process is started

(using dacs_de_start()). Since the parent is not reserved, and no process is started

on it, two constants are provided to identify the parent: DACS_DE_PARENT and

DACS_PID_PARENT. When communicating with the parent, these constants must be

used. Similarly, to identify the calling process itself, the constants DACS_DE_SELF and

DACS_PID_SELF are provided.

Resource sharing model

The APIs supporting the locking primitives, memory regions and groups follow a

consistent pattern of creation, sharing, usage and destruction:

v Creation: An object is created which will be shared with other DEs, for example

with dacs_remote_mem_create().

v Sharing: The object created is then shared by coordinated share and accept calls.

The creator shares the item (for instance with dacs_remote_mem_share()), and the

DE it is shared with accepts it (in this example with dacs_remote_mem_accept()).

These calls must be paired. When one is invoked it waits for the other to occur.

This is done for each DE the share is associated with.

v Usage: This may require closure (such as in the case of groups) or the object

may immediately be available for use. For instance remote memory can

immediately be used for put and get.

v Destruction: The DEs that have accepted an item can release the item when they

are done with it (for example by calling dacs_remote_mem_release()). The

release does not block, but notifies the creator that it is no longer being used and

cleans up any local storage. The creator does a destroy (in this case

dacs_remote_mem_destroy()) which blocks until all of the DEs it has shared the

object with release the object. It then destroys the object.

26 DaCS Library for Cell/B.E. and Hybrid Programmer’s Guide and API Reference

Chapter 6. Building a DaCS application

Three versions of the DaCS libraries are provided with the DaCS packages:

optimized, debug and trace. The optimized libraries do no error checking of the

parameters of the DaCS API calls and are intended for production use. The debug

libraries have much more error checking than the optimized libraries and are

intended to be used during application development. The traced libraries are the

optimized libraries with performance and debug trace hooks in them. These are

intended to be used to debug functional and performance problems that might be

encountered. The traced libraries use the interfaces provided by the Performance

Debug Tool (PDT) and require that this tool be installed. See Appendix B,

“Performance and debug trace,” on page 187 for more information on configuring

and using traced libraries.

Both static and shared libraries are provided for both implementations. For DaCS

for Cell/B.E., only static libraries are provided for the SPE. The desired library is

selected by linking to the chosen library in the appropriate path. Static libraries are

named libdacs.a for DaCS Cell/B.E., libdacs_hybrid.a for DaCS Hybrid, and the

shared libraries are libdacs.so for DaCS Cell/B.E. and libdacs_hybrid.so for

DaCS Hybrid.

The C and Fortran APIs are both included in these libraries. C APIs start with the

prefix dacs_ and Fortran APIs start with the prefix dacsf_. See “Binding alias

names” on page 204 for Fortran C interoperability information.

When using the DaCS Cell/B.E. and DaCS for Hybrid together the SPE code

should link in the appropriate libdacs.a and the PPE code should link to the

appropriate libdacs_hybrid.so or libdacs_hybrid.a.

If you use the libdacs_hybrid.a library, then other libraries are required. These

are:

v -lstdc++ -ldl -lrt -pthread for the x86 side

v -lstdc++ -ldl -lrt -lspe2 -pthread for the ppu side

v -lstdc++ for the shared library on the PPU side

If you use the DaCS for Cell/BE static PPU library libdacs.a, then you will need

to build with ’-lspe2’.

The locations of the DaCS Cell static and shared libraries are:

 Table 6.

Description PPU 32 bit Library Path PPU 64 bit Library Path SPU Library Path

Optimized /usr/lib /usr/lib64 /usr/spu/lib

Debug /usr/lib/dacs/debug /usr/lib64/dacs/debug /usr/spu/lib/dacs/
debug

Traced /usr/lib/dacs/trace /usr/lib64/dacs/trace /usr/spu/lib/dacs/
trace

The locations of the DaCS Hybrid static and shared libraries are the same on both

x86_64 and PPU:

© Copyright IBM Corp. 2007, 2008 27

Table 7.

Description 32 bit Library Path 64 bit Library Path

Optimized /usr/lib /usr/lib64

Debug /usr/lib/dacs/debug /usr/lib64/dacs/debug

Traced /usr/lib/dacs/trace /usr/lib64/dacs/trace

Affinity requirements for host applications

A DaCS for Hybrid application on the host (x86_64) may need to set affinity to

start. If the topology configuration file has been setup to use affinity (see

Chapter 5, “Configuring DaCS for Hybrid,” on page 15 for further information)

then processor affinity must be used. This can be done:

v on the command line,

v in mpirun, or

v through the sched_setaffinity function.

Here is a command line example to set affinity of the shell to the first processor:

taskset -p 0x00000001 $$

The bit mask, starting with 0 from right to left, is an index to the processor affinity

setting. Bit 0 is on or off for CPU 0, bit 1 for CPU 1, and bit number x is CPU

number x. $$ means the current process gets the affinity setting.

taskset -p $$

will return the mask setting as an integer. Using the -c option makes the taskset

more usable. For example,

taskset -pc 7 $$

will set the processor CPU affinity to CPU 7 for the current process. The -pc

parameter sets by process and CPU number.

taskset -pc $$

will return the current CPU setting for affinity for the current process. According

to the man page for taskset a user must have CAP_SYS_NICE permission to change

CPU affinity. See the man page for taskset for more details.

To launch a DaCS application use a taskset call, for example:

taskset 0x00000001 HelloDaCSApp Mike

or equivalently

taskset -c 0 HelloDaCSApp Mike

where the application program is HelloDaCSApp and is passed an argument of

″Mike″.

If specified in the topology configuration, on the accelerator system the adacsd

launch of an AE application on a specific Cell/B.E. includes setting the affinity to

the Cell/B.E. and its associated memory node. If the launch is on the Cell/B.E.

blade server as an AE no affinity is set.

28 DaCS Library for Cell/B.E. and Hybrid Programmer’s Guide and API Reference

Blocking APIs

Some APIs are defined as blocking. This means that they do not return to the caller

until the operation is finished. This does not reflect whether the underlying

implementation spins, polls, or blocks the calling thread to a non- runnable state.

Note: For the current release, none of the blocking APIs block the calling thread to

a non-runnable state. For cases where the application wishes to control the

frequency at which the completion of an operation is checked, the associated

non-blocking test API can be used instead of the blocking API.

Using the Hybrid library

The DaCS Hybrid version of the library integrates with the DaCS for Cell/B.E.

implementation on a Cell/B.E. (PPU) system. Integrated API calls can be

interpreted as Hybrid or Cell/B.E. library calls, depending on the set of parameters

that are passed in. This can lead to confusing return codes in some situations,

especially when debugging an application using the debug libraries. The memory

init and cleanup APIs suffer from this problem in particular; the Hybrid versions

are only called when DACS_DE_PARENT is used as the DE, any other value calls the

Cell/B.E. version which returns DACS_ERR_NOT_SUPPORTED_YET, instead of

DACS_ERR_INVALID_DE.

The following functions exhibit this behavior:

v dacs_mem_accept: The PPU host cannot accept memory from an SPU because an

SPU cannot create memory.

v dacs_mem_release: The PPU host cannot release memory from an SPU because

an SPU cannot create memory.

v dacs_mem_register: The PPU host cannot release memory from an SPU because

an SPU cannot create memory.

Handling API Return codes

The API return code which is returned by the C signatures and returned as the rc

out parameter on the Fortran signatures will always be positive when the service is

successful and negative when it fails. It is a best practice to check for a negative

return code when checking for a failure, rather than checking for a specific failing

return code. Once a failing return code is discovered, the application can then

process specific return codes and handle any unexpected ones. In this way, future

API changes that add new failing return codes or change the failure returned when

more than one is applicable will be handled.

Chapter 6. Building a DaCS application 29

30 DaCS Library for Cell/B.E. and Hybrid Programmer’s Guide and API Reference

Part 4. API reference

This topic describes the DaCS functions.

© Copyright IBM Corp. 2007, 2008 31

32 DaCS Library for Cell/B.E. and Hybrid Programmer’s Guide and API Reference

Chapter 7. Initialization and termination

The dacs_init() and dacs_exit() services initialize and close down access to the

DaCS library.

Call dacs_init() before you use any other DaCS services, and do not use any

DaCS services after you have called dacs_exit().

Calling dacs_exit() on an AE causes the communications between the AE and HE

to be stopped. On an AE, attempting to call dacs_init() after dacs_exit() will

result in a hang or failure because dacs_init() must coordinate with an HE call to

dacs_de_start(). This starts the AE process. An HE, however, may call

dacs_init() after a successful call to dacs_exit() if it were not started through

dacs_de_start().

Prior to calling dacs_exit(), all accepted shared resources must be explicitly

released. Not doing so can result in a hang on the destroy of the shared resource,

as the owner waits on all participants to release.

Initialization and termination usage scenarios

The section below describes how to initialize and terminate DaCS for use.

 Parent DE Child DE

Initialize DaCS for use:

 dacs_init(DACS_INIT_FLAGS_NONE)

Prior to using DaCS every DE must initialize

it.

In this case, the parent’s execution is not

related to any remote execution, so it simply

initializes the state of DaCS without needing

to communicate start-up state to an

initiating parent.

Start an accelerator DaCS application:

dacs_de_start(child_de,

 child_app,

 &argv,

 &envv,

 &child_pid)

This initiates the execution of an accelerator

application based on the application type

denoted in creation_flags. The supplied

application type indicates to DaCS how to

interpret the child_app argument for starting

the accelerator application. The child_app

argument can be a filename, list, or handle

to an embedded executable. Arguments to

the child application are passed through the

argv and envv argument pointers. On

successful return, a pointer to the started

process ID child_pid is returned.

Initialize DaCS for use:

dacs_init(DACS_INIT_FLAGS_NONE)

Prior to using DaCS every DE must initialize

it.

In this case, the child DE’s initialization of

DaCS corresponds to the parents starting of

the child application. The parent’s call to

de_start is blocked awaiting successful

completion of the initialization and state

feedback.

© Copyright IBM Corp. 2007, 2008 33

Parent DE Child DE

Test child run state:

dacs_de_test(child_de,

 child_pid,

 &exit_status)

At any time, the parent DE may request the

state of its children processes. The state

check is non-blocking, but will invalidate

child processes that have terminated. The

current state is returned via exit_status.

In this case, the processes test reveals that

the child has not exited and thus is still in

the running state.

Terminate DaCS usage:

dacs_exit()

Once use of DaCS is complete, it needs to be

shut-down.

In this case, the accelerator application is

terminating its use of DaCS with the intent

of eventually exiting. Once DaCS has been

closed-down, it cannot be restarted as that

requires another start operation. Thus, the

application must exit and be restarted in

order to use DaCS again

Wait for child completion:

 dacs_de_wait(child_de,

 child_pid,

 &exit_status)

This allows a parent DE to wait on the

completion of a child processes. The call

blocks execution of the parent until the

specified DE/PID has terminated. The status

of the terminated process is returned in

exit_status.

In this case, the parent DE is waiting on the

completion of child_de and child_pid. This

child process has exited and thus it’s status

is returned in exit_status.

Terminate DaCS usage:

dacs_exit()

Once use of DaCS is complete, it needs to be

shut-down.

In this case, the application is terminating its

use of DaCS, but does not necessarily intend

on exiting. Since the existence of this DE is

not related to a parent’s initiation, the

application may call the init/exit pairing as

many times as necessary.

34 DaCS Library for Cell/B.E. and Hybrid Programmer’s Guide and API Reference

dacs_init

NAME

dacs_init - Initialize all runtime services for DaCS.

SYNOPSIS

C syntax

DACS_ERR_T dacs_init (uint32_t config_flags)

Fortran syntax

dacsf_init (dacs_init_flags_t config_flags, DACS_ERR_T rc)

Call parameter

 config_flags Specifies various runtime settings.

Return parameter

 rc Fortran only: see Return value.

DESCRIPTION

The dacs_init service initializes all runtime services for DaCS.

This service must be called for every process before any other DaCS services can

be used. All other DaCS services will return DACS_ERR_NOT_INITIALIZED if called

before this service.

A host process may call this service more than once, provided there is a call to

dacs_exit() in between. An accelerator process may only call this service once,

even if there is an intervening call to dacs_exit(). The host process is blocked in

dacs_de_start() until dacs_init() is called on the accelerator.

Specifying that DaCS will be used in a single threaded mode means that DaCS will

not perform locks to ensure that internal structures are not being updated

simultaneously. This means that either the application using DaCS must only use

DaCS from a single thread or must ensure that the DaCS calls are serialized

(possibly via their own locking).

If single threaded mode is specified and the application does not adhere to it,

internal data structures may be destroyed and unpredictable results occur.

The benefit of using single threaded mode is that for architectures where locks are

expensive, such as the PPU, avoiding the locks can provide a performance

improvement on every use of a DaCS service. Note that the threaded mode does

not have to be the same for both the accelerator and the host. In this way single

threaded mode can be used for the code running on the architecture with poor

lock performance, while not using it on architectures that have fast locks.

The config_flags parameter can have the following settings:

Chapter 7. Initialization and termination 35

v DACS_INIT_FLAGS_NONE or 0: default DaCS configuration

v DACS_INIT_SINGLE_THREADED: give a hint to DaCS that the application is running

in a single-threaded mode. DaCS can use this value to optimize its services for

this environment.

Cell/B.E. : the SPU is always single threaded and thus the config flag has no

meaning.

RETURN VALUE

The dacs_init service returns the following codes:

v DACS_SUCCESS: DaCS environment was successfully initialized.

v DACS_ERR_NO_RESOURCE: Unable to allocate required resources.

v DACS_ERR_INITIALIZED: DaCS is already initialized.

v DACS_ERR_DACSD_FAILURE: Unable to communicate with DaCS daemon services.

v DACS_ERR_INVALID_ATTR: the flags parameter has invalid flag values specified.

v DACS_ERR_VERSION_MISMATCH: the accelerator does not match the host/parent

version.

v DACS_ERR_ARCH_MISMATCH: Attempted to use a 64-bit accelerator application with a

32-bit host application or vice-versa.

SEE ALSO

dacs_exit(3)

36 DaCS Library for Cell/B.E. and Hybrid Programmer’s Guide and API Reference

dacs_exit

NAME

dacs_exit - Close down all runtime services for DaCS.

SYNOPSIS

C syntax

DACS_ERR_T dacs_exit ()

Fortran syntax

dacsf_exit (DACS_ERR_T rc)

 Return parameter

rc Fortran only: see Return value.

DESCRIPTION

The dacs_exit service closes down and destroys all runtime services, processes,

transfers, and memory used by DaCS. After calling this service, no other DaCS

services can be used until another dacs_init() is performed. Calling dacs_init()

after a dacs_exit() is only supported for a host process. For all accepted objects

the application must call the appropriate release function and for all created objects

the appropriate destroy function before dacs_exit() is called.

RETURN VALUE

The dacs_exit service returns the following error indicators:

v DACS_SUCCESS: DaCS environment was successfully shutdown.

v DACS_ERR_NOT_INITIALIZED: runtime environment was not initialized.

v DACS_ERR_DACSD_FAILURE: unable to communicate with DaCS daemon services.

SEE ALSO

dacs_init(3)

Chapter 7. Initialization and termination 37

dacs_runtime_init (deprecated)

NAME

dacs_runtime_init - Initialize all runtime services for DaCS.

SYNOPSIS

C syntax

DACS_ERR_T dacs_runtime_init (void *, void *)

Fortran syntax

dacsf_runtime_init(DACS_ERR_T rc)

 Call parameter

All parameters must be set to NULL for DaCS 4.0. Passing in a value other than NULL will

result in the error DACS_ERR_INVALID_ADDR.

 Return parameter

rc Fortran only: see Return value.

DESCRIPTION

The dacs_runtime_init function is deprecated. Use the dacs_init() function

instead.

The dacs_runtime_init service initializes all runtime services for DaCS.

Note: This service must be called for every process before any other DaCS services

can be used. All other DaCS services will return DACS_ERR_NOT_INITIALIZED if

called before this service.
A host process may call this service more than once, provided there is a call to

dacs_runtime_exit() in between. An accelerator process may only call this service

once, even if there is an intervening call to dacs_runtime_exit().

RETURN VALUE

The dacs_runtime_init service returns an error indicator defined as:

v DACS_SUCCESS: normal return.

v DACS_ERR_INVALID_ADDR: invalid pointer.

v DACS_ERR_NO_RESOURCE: unable to allocate required resources.This can be caused

by either running out of memory or a failure in the pthread library.

v DACS_ERR_INITIALIZED: DaCS is already initialized.

v DACS_ERR_ARCH_MISMATCH: attempted to use a 64-bit accelerator application with a

32-bit host application or vice-versa.

v DACS_ERR_VERSION_MISMATCH: version mismatch between library and DaCS.

SEE ALSO

dacs_init(3), dacs_exit(3), dacs_runtime_exit(3)

38 DaCS Library for Cell/B.E. and Hybrid Programmer’s Guide and API Reference

dacs_runtime_exit (deprecated)

NAME

dacs_runtime_exit - Close down all runtime services for DaCS.

SYNOPSIS

C syntax:

DACS_ERR_T dacs_runtime_exit (void)

Fortran syntax:

dacsf_runtime_exit(DACS_ERR_T rc)

 Return parameter

rc Fortran only: see Return value

DESCRIPTION

The dacs_runtime_exit function is deprecated. Use the dacs_exit() function

instead.

The dacs_runtime_exit service closes down and destroys all runtime services,

processes, transfers, and memory used by DaCS. After calling this service, no other

DaCS services can be used until another dacs_runtime_init() is performed.

Calling dacs_runtime_init() after a dacs_runtime_exit() is only supported for a

host process.

RETURN VALUE

The dacs_runtime_exit service returns an error indicator defined as:

v DACS_SUCCESS: normal return.

v DACS_ERR_DACSD_FAILURE: unable to communicate with the DaCS daemon

services.

v DACS_ERR_NOT_INITIALIZED: DaCS has not been initialized.

SEE ALSO

dacs_runtime_init(3), dacs_init(3), dacs_exit(3)

Chapter 7. Initialization and termination 39

40 DaCS Library for Cell/B.E. and Hybrid Programmer’s Guide and API Reference

Chapter 8. Reservation services

In the DaCS environment, hosts and accelerators have a hierarchical parent-child

relationship. This hierarchy forms a logical topology of parents, children, and

peers. In DaCS 4.0, only child-related APIs are defined and supported. DaCS only

supports access and reservation of immediate children to the calling DE.

Reservation services usage scenarios

The section below describes how to check for the number of available children and

then reserve the desired number of child accelerators.

 Parent DE Child DE

Check for the number of available children

of the specified type:

dacs_get_num_avail_children(DACS_DE_SPE,

 *num_avail)

Prior to reserving accelerator children, DaCS

applications should query for the number of

available children of the desired type. The

returned count of available children is

volatile and is not guaranteed after the call

has completed.

In this case, DaCS is being queried for the

number of available SPE accelerator

children.

Reserve the desired number of child

accelerators:

dacs_reserve_children(DACS_DE_SPE,

 &num_reserved,

 &de_list)

Reserving accelerator DEs makes them

exclusively available to the calling DaCS

application. This call is a request to reserve

and does not guarantee the specified

number of DEs have been reserved.

In this case, a request for num_reserved

accelerators has been made. On return,

num_reserved is overloaded to contain the

actual number of accelerators reserved. The

list of reserved DEs is returned in de_list.

Release DE list

The section below describes how to release the child accelerators previously

reserved.

© Copyright IBM Corp. 2007, 2008 41

Parent DE Child DE

Release the desired number of child

accelerators:

dacs_release_de_list(num_reserved,

 &de_list)

Once a DaCS application has finished using

the reserved accelerator DEs, it must release

them so they are available for other DaCS

applications to use. In this case, the DaCS

application requests num_reserved DEs from

de_list be released.

42 DaCS Library for Cell/B.E. and Hybrid Programmer’s Guide and API Reference

dacs_get_num_avail_children

NAME

dacs_get_num_avail_children - Return the number of children of the specified type

available to be reserved.

SYNOPSIS

C syntax

DACS_ERR_T dacs_get_num_avail_children (DACS_DE_TYPE_T type, uint32_t

*num_children)

Fortran syntax

dacsf_get_num_avail_children (DACS_DE_TYPE_T type, dacs_int32_t

num_children, DACS_ERR_T rc)

 Call parameter

type The type of children to report.

 Return parameters

num_children C: a pointer to the number of children available.

Fortran: number of children available.

rc Fortran only: see Return value.

DESCRIPTION

The dacs_get_num_avail_children service returns the number of children of the

caller of the specified type that are available for reservation.

type can be any of:

 DACS_DE_SYSTEMX: the supervising host for a node.

 DACS_DE_CELL_BLADE: an entire Cell/B.E. blade. This DE type encapsulates both

DACS_DE_CBE types within it, making them unavailable for use. This DE type has

16 DACS_DE_SPE children.

 DACS_DE_CBE: a single Cell/B.E. within a blade. Use of this type makes the

associated blade unavailable for use. This DE type has 8 DACS_DE_SPE children.

 DACS_DE_SPE: Cell/B.E. Synergistic Processing Element.

Note: This service returns the number of children that were available at the time

of the call. The actual number can change any time after the call. The number of

children is only returned upon success.

RETURN VALUE

The dacs_get_num_avail_children service returns an error indicator defined as:

v DACS_SUCCESS: normal return. Note that success does not guarantee available

children.

v DACS_ERR_INVALID_ADDR: invalid pointer.

Chapter 8. Reservation services 43

v DACS_ERR_INVALID_ATTR: invalid flag or enumerated constant.

v DACS_ERR_NOT_INITIALIZED: DaCS has not been initialized.

SEE ALSO

dacs_reserve_children(3), dacs_release_de_list(3)

44 DaCS Library for Cell/B.E. and Hybrid Programmer’s Guide and API Reference

dacs_reserve_children

NAME

dacs_reserve_children - Reserve children of a specified type.

SYNOPSIS

C syntax

DACS_ERR_T dacs_reserve_children (DACS_DE_TYPE_T type, uint32_t

*num_children, de_id_t *de_list)

Fortran syntax

dacsf_reserve_children (DACS_DE_TYPE_T type, dacs_int32_t num_children,

dacs_de_id_t de_list, DACS_ERR_T rc)

 Call parameters

type The type of children to report.

num_children C: a pointer to the number of children requested.

Fortran: the number of children requested.

 Return parameters

num_children C: a pointer to the number of children actually reserved. This may

be less than or equal to the number requested.

Fortran: the number of children actually reserved. This may be

less than or equal to the number requested.

de_list C: a pointer to a location where the list of reserved children is

returned. The space for this list must be allocated by the caller

and must have enough room for num_children entries.

Fortran: the list of reserved children is returned. The space for this

list must be allocated by the caller and must have enough room

for num_children entries.

rc Fortran only: see Return Value.

DESCRIPTION

The dacs_reserve_children service attempts to reserve the requested number of

children of the specified type. The actual number reserved may be less than or

equal to the number requested. The actual number and list of reserved children is

returned to the caller.

Be sure to check both the return code and the value returned in num_children. A

return code of DACS_SUCCESS and a value of 0 in num_children indicates no children

were reserved.

type can be any of:

 DACS_DE_SYSTEMX: the supervising host for a node.

Chapter 8. Reservation services 45

DACS_DE_CELL_BLADE: an entire Cell/B.E. blade. This DE type encapsulates both

DACS_DE_CBE types within it, making them unavailable for use. This DE type has

16 DACS_DE_SPE children.

 DACS_DE_CBE: a single Cell/B.E. within a blade. Use of this type makes the

associated blade unavailable for use. This DE type has 8 DACS_DE_SPE children.

 DACS_DE_SPE: Cell/B.E. Synergistic Processing Element.

Cell/B.E.: accepts all valid types, but only returns a non-zero value for

DACS_DE_SPE.

Hybrid: returns non-zero (if possible) for DACS_DE_CELL_BLADE and DACS_DE_CBE.

Cell/B.E.: this function is not supported on the SPUs.

RETURN VALUE

The dacs_reserve_children service returns an error indicator defined as:

v DACS_SUCCESS: normal return.

v DACS_ERR_INVALID_ATTR: invalid flag or enumerated constant.

v DACS_ERR_INVALID_ADDR: invalid pointer.

v DACS_ERR_INVALID_SIZE: number of children requested must be greater than zero.

v DACS_ERR_NOT_INITIALIZED: DaCS has not been initialized yet.

v DACS_ERR_NOT_SUPPORTED_YET: the DaCS function is currently unsupported by

this platform.

SEE ALSO

dacs_get_num_avail_children(3), dacs_release_de_list(3)

46 DaCS Library for Cell/B.E. and Hybrid Programmer’s Guide and API Reference

dacs_release_de_list

NAME

dacs_release_de_list - Release the reservations for a list of DEs.

SYNOPSIS

C syntax

DACS_ERR_T dacs_release_de_list (uint32_t num_des, de_id_t *de_list)

Fortran syntax

dacsf_release_de_list (dacs_int32_t num_des, dacs_de_id_t de_list, DACS_ERR_T

rc)

 Call parameters

num_des The number of DEs in the list. This must be greater than 0.

de_list C: a pointer to the list of DEs to release.

Fortran: the list of DEs to release.

 Return parameter

rc Fortran only: see Return value.

DESCRIPTION

The dacs_release_de_list service releases the reservation for the specified list of

DEs. On successful return all DEs in the list are released (made available). On

failure none of the DEs in the list are released.

Cell/B.E.: this function is not supported on the SPUs.

RETURN VALUE

The dacs_release_de_list service returns an error indicator defined as:

v DACS_SUCCESS: normal return.

v DACS_ERR_INVALID_ADDR: invalid pointer.

v DACS_ERR_INVALID_DE: the specified DE is either invalid or not reserved.

v DACS_ERR_RESOURCE_BUSY: the resource is in use.

v DACS_ERR_INVALID_SIZE: invalid list size.

v DACS_ERR_NOT_SUPPORTED_YET: the DaCS function is currently unsupported by

this platform.

v DACS_ERR_NOT_INITIALIZED: DaCS has not been initialized.

SEE ALSO

dacs_get_num_avail_children(3), dacs_reserve_children(3)

Chapter 8. Reservation services 47

48 DaCS Library for Cell/B.E. and Hybrid Programmer’s Guide and API Reference

Chapter 9. Process management

This chapter describes the functions for starting, stopping and monitoring

processes on DEs.

Current Working Directory in DaCS for Hybrid

A key element in process management is the current working directory on the

accelerator file system. DaCS for Hybrid internally determines this for the

dacs_de_start() call. For environment variables such as PATH or LD_LIBRARY_PATH,

the underlying implementation will substitute the current working directory for

$AE_CWD.

For example, if the current working directory on the accelerator is

/DACS-TMP/HOME/USER then PATH=$AE_CWD:/USR/BIN points to /DACS-TMP/HOME/USER:/
USR/BIN on the accelerator file system, and LD_LIBRARY_PATH=$AE_CWD:/DACS_LIB

points to /DACS-TMP/HOME/USER:/DACS_LIB.

Note that when using the current working directory as part of the

DACS_START_ENV_LIST environment variable it must be preceded by a backslash. For

example: DACS_START_ENV_LIST="LD_LIBRARY_PATH=\$AE_CWD".

All files transferred by dacs_de_start() are placed in the current working

directory. This will be unique across all AE applications on an accelerator.

Note: the file that is stored in the current working directory is in a fully-qualified

path in that working directory, so if you were passing the file /home/joe/dataset it

would be put in $AE_CWD/home/joe/dataset directory.

When the launched accelerator process terminates, DaCS clears the working

directory by default. A configuration option in /etc/dacsd.conf is available to

allow retention of the current working directory. See “Configuring the DaCS for

Hybrid daemon” on page 22 for further information.

Note: the programmer using LD_LIBRARY_PATH may need to incorporate the DaCS

libraries, and any required .so files, into the environment variable for running

accelerator DaCS applications.

Environment variables in DaCS for Hybrid

Hybrid DaCS has specific environment variables in the process issuing the

dacs_de_start() call. This allows an external program such as a debugging or

profiling tool to be started which in turn starts the accelerator process. These

variables are described in “ENVIRONMENT” on page 56.

© Copyright IBM Corp. 2007, 2008 49

Process control

This topic describes process control.

50 DaCS Library for Cell/B.E. and Hybrid Programmer’s Guide and API Reference

dacs_num_processes_supported

NAME

dacs_num_processes_supported - Return the number of processes that can be

started on a DE.

SYNOPSIS

C syntax

DACS_ERR_T dacs_num_processes_supported (de_id_t de, uint32_t

*num_processes)

Fortran syntax

dacsf_num_processes_supported (dacs_de_id_t de, dacs_int32_t num_processes,

DACS_ERR_T rc)

 Call parameter

de The DE to query.

 Return parameters

num_processes C: a pointer to a location where the maximum number of

processes that can be started on this DE is stored

Fortran: the maximum number of processes that can be started on

this DE.

rc Fortran: see Return value.

Cell/B.E.: on DaCS 4.0 only 1 process is supported per DE.

DESCRIPTION

The dacs_num_processes_supported service returns the number of simultaneous

processes that can be started on the specified DE. The target DE must have been

reserved by the caller.

Cell/B.E.: this is not supported on the SPU.

RETURN VALUE

The dacs_num_processes_supported service returns an error indicator defined as:

v DACS_SUCCESS: normal return.

v DACS_ERR_INVALID_DE: the specified DE is either invalid or not reserved.

v DACS_ERR_INVALID_ADDR: the pointer is invalid.

v DACS_ERR_INVALID_TARGET: the operation is not allowed for the target de.

v DACS_ERR_NOT_SUPPORTED_YET: the DaCS function is currently unsupported by

this platform.

v DACS_ERR_NOT_INITIALIZED: DaCS has not been initialized.

Chapter 9. Process management 51

SEE ALSO

dacs_de_start(3), dacs_num_processes_running(3), dacs_de_wait(3), dacs_de_test(3)

52 DaCS Library for Cell/B.E. and Hybrid Programmer’s Guide and API Reference

dacs_num_processes_running

NAME

dacs_num_processes_running - Return the number of processes currently running

on a DE.

SYNOPSIS

C syntax

DACS_ERR_T dacs_num_processes_running (de_id_t de, uint32_t *num_processes)

Fortran syntax

dacsf_num_processes_running (dacs_de_id_t de, dacs_int32_t num_processes,

DACS_ERR_T rc)

 Call parameter

de The DE to query.

 Return parameters

num_processes C: a pointer to a location where the number of processes currently

running on the target DE is stored.

Fortran: the number of processes currently running on the target

DE.

rc Fortran only: see Return value.

DESCRIPTION

The dacs_num_processes_running service returns the number of processes currently

running on the specified DE. This includes all processes that have been started

(with dacs_de_start()) and have not yet been reaped (with dacs_de_test() or

dacs_de_wait()). The target DE must have been reserved by the caller.

Cell/B.E: this is not supported on the SPU.

RETURN VALUE

The dacs_num_processes_running service returns an error indicator defined as:

v DACS_SUCCESS: normal return.

v DACS_ERR_INVALID_DE: the specified DE is either invalid or not reserved.

v DACS_ERR_INVALID_ADDR: the pointer is invalid.

v DACS_ERR_INVALID_TARGET: the operation is not allowed for the target de.

v DACS_ERR_NOT_SUPPORTED_YET: the DaCS function is currently unsupported by

this platform.

v DACS_ERR_NOT_INITIALIZED: DaCS has not been initialized.

SEE ALSO

dacs_de_start(3), dacs_num_processes_supported(3), dacs_de_wait(3),

dacs_de_test(3)

Chapter 9. Process management 53

dacs_de_start

NAME

dacs_de_start - Start a process on a DE.

SYNOPSIS

C syntax

DACS_ERR_T dacs_de_start (de_id_t de, void *prog, char const **argv, char const

**envv, DACS_PROC_CREATION_FLAG_T creation_flags, dacs_process_id_t *pid)

Fortran syntax

dacsf_de_start_std_file (dacs_de_id_t de, character prog, character argv, integer

argv_size, character envv, integer envv_size, DACS_PROC_CREATION_FLAG_T

creation flags, dacs_process_id_t pid, DACS_ERR_T rc)

dacsf_de_start_std_embedded(dacs_de_id_t de, external prog, character argv,

integer argv_size, character envv, integer envv_size, dacs_process_id_t pid,

DACS_ERR_T rc)

dacsf_de_start_ptr_file(dacs_de_id_t de, character prog , dacs_pvoid_t argv,

dacs_pvoid_t envv, DACS_PROC_CREATION_FLAG_T creation_flags,

dacs_process_id_t pid, DACS_ERR_T rc)

dacsf_de_start_ptr_embedded (dacs_de_id_t de, external prog, dacs_pvoid_t argv,

dacs_pvoid_t envv, dacs_process_id_t pid, DACS_ERR_T rc)

 Call parameters

de The target DE where the program will execute.

prog C: pointer to a filename, handle, or file list that identifies the

executable to be initiated as indicated in the specified

creation_flags.

Fortran: a filename, handle, or file list that identifies the

executable to be initiated as indicated in the specified

creation_flags.

argv C: a pointer to an array of pointers to argument strings (the

argument list), terminated by a NULL pointer.

Fortran: platform dependent. Either an array of strings or an

address handle created by dacsf_makevoid, depending on the

creation_flags parameter, platform, and Fortran subroutine.

argv_size Fortran only: the number of elements in the argv array

(dacsf_de_start_std_* subroutines).

envv C: a pointer to an array of pointers to environment variable

strings (the environment list), terminated by a NULL pointer.

Fortran: platform dependent. Either an array of strings or an

address handle created by dacsf_makevoid, depending on the

creation_flags parameter, platform, and Fortran subroutine.

54 DaCS Library for Cell/B.E. and Hybrid Programmer’s Guide and API Reference

envv_size Fortran only: the number of elements in the envv array

(dacsf_de_start_std_* subroutines).

creation_flags An implementation-specific flag that specifies how the executable

program is found.

 Return parameters

pid C: a pointer to a location where the process id is stored on

successful return.

Fortran: the process id on successful return.

rc Fortran only: see Return value.

DESCRIPTION

The dacs_de_start service starts a process on the specified DE. The service can be

called several times to start one or more processes on the same DE. The number of

processes that can be started on a particular DE is platform dependent and can be

determined by calling dacs_num_processes_supported().

The program’s main function signature must be compatible with

int main(int argc, char *argv[], char *envp[])

argv is an array of argument strings passed to the new program. argv[0] is a

pointer to the program name, and the remaining argv arguments are initialized

from the values passed on the dacs_de_start() argv parameter.

envv is an array of strings, conventionally of the form key=value, which are passed

as environment to the new program. In C, both argv and envp must be terminated

by a null pointer. In Fortran, the number of elements in the array is specified in

the argv_size and envv_size parameters. envp is initialized from the

dacs_de_start() env parameter, from the DACS_START_ENV_LIST environment

variable, and includes additional environment variables added by DaCS.

Cell/B.E: the PPU passes the argv and envv pointers directly to the SPUs

spu_main() function, and does not copy argument strings into local store.

creation_flags can be any of:

v DACS_PROC_LOCAL_FILE Hybrid only: a fully qualified pathname,

v DACS_PROC_LOCAL_FILE_LIST: specifies the name of a file which contains a list of

files to transfer to the PPE prior to launching the accelerator process. File names

are fully-qualified POSIX-compliant pathname files.

v DACS_PROC_REMOTE_FILE Hybrid only: a fully qualified path on a remote system

v DACS_PROC_EMBEDDED Cell/B.E. only: the handle of an embedded executable

image.

When a user uses DACS_PROC_LOCAL_FILE_LIST they pass a list of files to transfer to

the AE. For example:

/tmp/helloworld

/tmp/libhello.o

Chapter 9. Process management 55

If the user places a ’!’ character as the first character on a line then the file is not

transferred but is assumed to be on the AE already. This is useful when the

program to be executed already resides on the AE, but the SPU program and other

files need to be transferred.

!/tmp/helloworld

/tmp/libhello.o

If the first line (the binary program to execute) is marked with an ’!’ then DACS

does not assume it is in the current working directory, in other words it does not

prepend the $AE_CWD string to the file name.

Cell/B.E.: this function is not supported on the SPUs.

Fortran: For further Fortran examples see: “dacsf_de_start examples” on page 205

RETURN VALUE

The dacs_de_start service returns an error indicator defined as:

v DACS_SUCCESS: normal return.

v DACS_ERR_INVALID_ADDR: a pointer is invalid.

v DACS_ERR_INVALID_ATTR: a flag or enumerated constant is invalid.

v DACS_ERR_NO_RESOURCE: unable to allocate required resources.

v DACS_ERR_INVALID_DE: the specified DE is either invalid or not reserved.

v DACS_ERR_INVALID_TARGET: the operation is not allowed for the target DE.

v DACS_ERR_PROC_LIMIT: the maximum number of processes supported has been

reached.

v DACS_ERR_INVALID_PROG: the specified program could not be executed.

v DACS_ERR_INVALID_CWD: the ae_cwd_prefix specified in the dacsd.conf file is

invalid.

v DACS_ERR_NOT_FOUND: program file not found.

v DACS_ERR_TOO_LONG: program pathname is too long.

v DACS_ERR_VERSION_MISMATCH: the host and accelerator applications have

incompatible software versions.

v DACS_ERR_NOT_SUPPORTED_YET: the DaCS function is currently unsupported by

this platform.

v DACS_ERR_NO_PERM: no permission to the specified program or path.

v DACS_ERR_RESOURCE_BUSY: specified program is busy.

v DACS_ERR_TERM: program completed without calling dacs_init().

v DACS_ERR_ARCH_MISMATCH: attempting to run a 64-bit AE program with a 32-bit

HE application or vice-versa.

v DACS_ERR_NOT_INITIALIZED: DaCS has not been initialized.

ENVIRONMENT

Hybrid only: DaCS for Hybrid has specific environment variables in the process

issuing the dacs_de_start() call. This allows an external program such as a

debugging or profiling tool to be started which in turn starts the accelerator

process.

These variables are:

56 DaCS Library for Cell/B.E. and Hybrid Programmer’s Guide and API Reference

DACS_START_PARENT

specifies the command used to start an auxiliary program which starts the

accelerator process. Within the command, %e , %a and %p are replaced

respectively by the accelerator executable name, the accelerator arguments,

and the parent’s listening port value.

 For example, given:

DACS_START_PARENT="/usr/bin/gdb --args %e %a"

then:

dacs_de_start (de, "myaccel", "myargs", 0, ppid)

would launch the command:

/usr/bin/gdb --args myaccel myargs

DACS_START_FILES

specifies the name of a file which contains a list of files to transfer to the

PPE prior to launching the accelerator process. File names are

fully-qualified POSIX-compliant pathname files.

DACS_START_ENV_LIST

specifies an additional list of environment variables for the initial program

spawn on the accelerator. List items are separated by semicolons. An

example of the format is:

ENV1=VAL1;ENV2=VAL2;QSHELL_*;ENV3

where:

v ENV1 and ENV2 are the environment variables and VAL1 and VAL2 are their

respective settings,

v QSHELL_* means pull all environment variables prefixed with QSHELL_

from the present environment, and

v ENV3 means pull the environment variable from the present environment

and pass on.

Delete functions, such as <name>= and <prefix>*= to drop environment

variables by name or prefix, are not supported in DaCS 4.0.

DACS_PARENT_PORT

specifies the value of %p to pass in the dacs_de_start() call. This value is

post-incremented in the environment so that it is one more on the next

dacs_de_start() call.

Note: the port allocated by DACS_PARENT_PORT is solely the responsibility of

the environment setter and is not guaranteed to be available on the

accelerator OS.

In the execution environment, the environment variables in DACS_START_ENV_LIST

will be a list appended to the environment variables in the list under parameter

char const **envv.

The use of duplicate environment variables across the lists in the dacs_de_start()

service and DACS_START_ENV_LIST is possible. However the value that will be used

is implementation dependent, because accessing environment variables is

implementation dependent.

dacs_de_start executes the program pointed to by prog. prog must be either a

binary executable, or a script starting with a line of the form #! interpreter [arg].

Chapter 9. Process management 57

In the latter case, the interpreter must be a valid pathname for an executable which

is not itself a script, but which is invoked as interpreter [arg] <filename>.

SEE ALSO

dacs_num_processes_supported(3), dacs_num_processes_running(3),

dacs_de_wait(3), dacs_de_test(3), dacsf_makevoid(3), dacs_de_kill(3)

58 DaCS Library for Cell/B.E. and Hybrid Programmer’s Guide and API Reference

dacs_de_test

NAME

dacs_de_test - Test the status of a DE process.

SYNOPSIS

C syntax

DACS_ERR_T dacs_de_test (de_id_t de, dacs_process_id_t pid, int32_t *exit_status)

Fortran syntax

dacsf_de_test (dacs_de_id_t de, dacs_process_id_t pid, dacs_int32_t exit_status,

DACS_ERR_T rc)

 Call parameters

de The target DE.

pid The target process.

 Return parameters

exit_status C: a pointer to the location where the exit code or signal number

is stored depending on the status of the DE.

Fortran: the exit code or the signal number, depending on the

status of the DE.

rc Fortran only: see Return value.

DESCRIPTION

The dacs_de_test() service returns either the current state of the target DE process

or an error if the call was unsuccessful. If successful, the returned state can be any

one of the DACS_STS_* return values mentioned below. The remainder of return

values are consider errors. This operation is only supported for child processes

started by the caller.

Once this service or dacs_de_wait() returns a non-busy status, the status is

considered to be consumed and will no longer be available. Subsequent calls to

query the status will fail with DACS_ERR_INVALID_PID.

If this service or dacs_de_wait() are not called to reap the process, the process is

still considered to be a running process (see “dacs_num_processes_running” on

page 53). This could prevent future attempts to start new processes, on the DE, if

the number of running processes matches the maximum number supported.

The exit_status return value varies depending on the status returned for the child

DE. If the child DE terminated with a DACS_STS_PROC_FAILED status then the value

returned through exit_status is the non-zero exit code returned from the child

executable. If the child DE terminated with a DACS_STS_PROC_ABORTED status then

the value returned through exit_status is a platform-specific exception code.

Hybrid: in a hybrid environment the standard Linux/UNIX signal number, which

caused the termination, is returned through exit_status.

Chapter 9. Process management 59

Cell/B.E.: in a Cell/B.E environment the exit_code, as defined by libspe2’s

stop_info, is returned through exit_status.

Cell/B.E: dacs_de_test is not supported on the SPU.

RETURN VALUE

The dacs_de_test service returns an error indicator defined as:

v DACS_STS_PROC_RUNNING: The process is still active. exit_status is unmodified.

v DACS_STS_PROC_FINISHED: The process completed successfully. exit_status is

zero.

v DACS_STS_PROC_FAILED: The process exited with an error. exit_status contains

the process exit code.

v DACS_STS_PROC_KILLED: process was killed using dacs_de_kill .

v DACS_STS_PROC_ABORTED: the process terminated abnormally. exit_status

contains the terminating signal code.

v DACS_ERR_INVALID_DE: the specified DE is either invalid or not reserved.

v DACS_ERR_INVALID_PID: the specified PID does not refer to a valid process.

v DACS_ERR_INVALID_TARGET: the operation is not allowed for the target process.

v DACS_ERR_INVALID_ADDR: the pointer is invalid.

v DACS_ERR_NOT_SUPPORTED_YET: the DaCS function is currently unsupported by

this platform.

v DACS_ERR_DACSD_FAILURE: unable to communicate with DaCS daemon services.

v DACS_ERR_NOT_INITIALIZED: DaCS has not been initialized.

Note: If the return value is DACS_STS_PROC_RUNNING then the exit_status is not

modified.

SEE ALSO

dacs_de_start(3), dacs_num_processes_supported(3),

dacs_num_processes_running(3), dacs_de_wait(3)

60 DaCS Library for Cell/B.E. and Hybrid Programmer’s Guide and API Reference

dacs_de_wait

NAME

dacs_de_wait - Wait on the completion of a DE process.

SYNOPSIS

C syntax

DACS_ERR_T dacs_de_wait (de_id_t de, dacs_process_id_t pid, int32_t

*exit_status)

Fortran syntax

dacsf_de_wait (dacs_de_id_t de, dacs_process_id_t pid, dacs_int32_t exit_status,

DACS_ERR_T rc)

 Call parameters

de The target DE.

pid The target process.

 Return parameters

exit_status C: A pointer to the location where the exit code or signal number

is stored depending on the status of the DE.

Fortran: the exit code or signal number depending on the status of

the DE.

rc Fortran only: see Return value below.

DESCRIPTION

The dacs_de_wait service returns the status of the target process if it was

successful, or an error code if not. If the process is running at the time of the call,

the call blocks until it finishes execution. If the process has finished execution at

the time of the call, the call does not block.

Once this service or dacs_de_test() returns a non-busy status, the status is

considered to be consumed and will no longer be available. Subsequent calls to

query the status will fail with DACS_ERR_INVALID_PID.

If this service or dacs_de_test() are not called to reap the process, the process is

still considered to be a running process (see “dacs_num_processes_running” on

page 53). This could prevent future attempts to start new processes, on the DE, if

the number of running processes matches the maximum number supported.

The exit_status return value varies depending on the status returned for the child

DE. If the child DE terminated with a DACS_STS_PROC_FAILED status then the value

returned through exit_status is the non-zero exit code returned from the child

executable. If the child DE terminated with a DACS_STS_PROC_ABORTED status then

the value returned through exit_status is a platform-specific exception code.

Hybrid: in a hybrid environment the standard Linux/UNIX signal number, which

caused the termination, is returned through exit_status.

Chapter 9. Process management 61

Cell/B.E.: in a Cell/B.E environment the exit_code, as defined by libspe2’s

stop_info, is returned through exit_status.

Cell/B.E.: dacs_de_wait is not supported on the SPU.

RETURN VALUE

The dacs_de_wait service returns an error indicator defined as:

v DACS_STS_PROC_FINISHED: the process finished execution without error.

v DACS_STS_PROC_FAILED: the process exited with a failure.

v DACS_STS_PROC_ABORTED: the process terminated abnormally.

v DACS_STS_PROC_KILLED: process was killed via dacs_de_kill.

v DACS_ERR_INVALID_DE: the specified DE is either invalid or not reserved.

v DACS_ERR_INVALID_PID: the specified PID does not refer to a valid process.

v DACS_ERR_INVALID_TARGET: the operation is not allowed for the target process.

v DACS_ERR_INVALID_ADDR: the pointer is invalid.

v DACS_ERR_DACSD_FAILURE: unable to communicate with DaCS daemon services.

v DACS_ERR_NOT_SUPPORTED_YET: The DaCS function is currently unsupported by

this platform.

v DACS_ERR_NOT_INITIALIZED: DaCS has not been initialized.

SEE ALSO

dacs_de_start(3), dacs_num_processes_supported(3),

dacs_num_processes_running(3), dacs_de_test(3)

62 DaCS Library for Cell/B.E. and Hybrid Programmer’s Guide and API Reference

dacs_de_kill (prototype)

NAME

dacs_de_kill - Kill a process on a DE.

SYNOPSIS

C syntax

DACS_ERR_T dacs_de_kill (de_id_t de, dacs_process_id_t pid,

DACS_KILL_TYPE_T flag)

Fortran syntax

dacsf_de_kill (dacs_de_id_t de, dacs_process_id_t pid, DACS_KILL_TYPE_T flag,

DACS_ERR_T rc)

 Call parameters

de The de_id of the AE to terminate.

pid The process id of the process to kill.

flag An implementation-specific flag:

DACS_KILL_TYPE_ASYNC

 The DACS_KILL_TYPE_ASYNC flag protects internal DaCS data

structures, but does not protect application-critical sections. An

error handler registered with dacs_errhandler_reg is not called

with this flag.

 Return parameter

rc Fortran only: see Return value

DESCRIPTION

dacs_de_kill is a prototype and only supported on DaCS for Hybrid.

dacs_de_kill requests the termination of the specified AE process, identified by its

DE and PID. Only AE processes started by the calling process can be killed. The

call to dacs_de_kill() must be followed by a call to either dacs_de_wait() or

dacs_de_test() to complete the termination.

Cell/B.E.: dacs_de_kill() is not a supported on a PPU HE.

RETURN VALUE

The dacs_de_kill service returns an error indicator defined as:

v DACS_SUCCESS: normal return.

v DACS_ERR_INVALID_DE: the specified DE is either invalid or not reserved.

v DACS_ERR_INVALID_PID: the specified PID is either invalid or not reserved.

v DACS_ERR_INVALID_TARGET: the operation is not allowed for the target DE.

v DACS_ERR_INVALID_ATTR: the flag or enumerated constant is invalid.

v DACS_ERR_NOT_INITIALIZED: The DaCS environment is not initialized.

v DACS_ERR_NOT_SUPPORTED_YET: The DaCS function is currently unsupported by

this platform.

Chapter 9. Process management 63

SEE ALSO

dacs_num_processes_supported(3), dacs_num_processes_running(3),

dacs_de_wait(3), dacs_de_test(3)

64 DaCS Library for Cell/B.E. and Hybrid Programmer’s Guide and API Reference

Process synchronization

Chapter 9. Process management 65

Groups

Group functions allow you to organize processes into groups so that they can be

treated as a single entity.

Definitions

Group

A group is a collection of processes which can be involved in a collective

operation, such as a barrier.

Group Member

A group member is a process, uniquely identifiable by its DE and PID

combination.

Group design

Membership

A process can only be added to a group by the group creator/owner. The group

owner shares the group handle, generated when the group was created, with the

process to be added. In turn, the process being added must accept membership to

the group. Accepting membership means the process will participate in group

operations, such as barriers. Prior to exiting, the process must request to leave.

Group Leader/Owner

Creating a group through dacs_group_init() implicitly makes the calling DE the

owner. Group ownership does not imply membership, so the owner must add

itself if it wishes to participate in group operations. The owner is responsible for

adding members to the group and destroying the group when all members have

left the group.

Note: In DaCS 4.0, groups can only be created on an HE and only its direct

children may be added.

When DaCS for Hybrid is working with DaCS for Cell/B.E., creation of a group on

a PPU is done in the PPU’s role as an HE. This means that only it and the SPU

AEs can be members of the group. Trying to share the group with the x86_64 HE

(which is done as a PPU AE) will fail.

Barriers

Barriers provide synchronization among the participating members of a group. A

barrier is an implied resource associated with being in a group; they are not

allocated, initialized, shared or destroyed.

Group usage scenarios

Group operations can be classified into three stages: initialization, operation and

termination. An example showing the services used in these stages follows.

Initialization

The following steps, in this order, would be used by the group owner and

members to create and join a group.

66 DaCS Library for Cell/B.E. and Hybrid Programmer’s Guide and API Reference

Owner Members

Create the group:

dacs_group_init(&group, flags);

This creates an opaque group handle. The

handle will then used by all members

during group operations.

Add members (identified by DE and PID) to

the group, one by one:

dacs_group_add_member(de, pid, group);

Accept their addition, individually:

dacs_group_accept(de, pid, &group);

(Optional) Add itself to the group:

dacs_group_add_member(DACS_DE_SELF,

 DACS_PID_SELF, group);

(This does not require an accept response.)

Close the initialization of the group:

dacs_group_close(group);

Operation

Group operations are controlled by barriers. These are used to synchronize the

processing by different members of the group. If it is necessary to ensure that no

member enters a new stage of processing before other members are ready then

each member must make a wait call. Each member will then be blocked until all

members have made this call. When the last member is accounted for, all members

will be released.

 Owner Members

(Optional) Wait on barrier, individually:

dacs_barrier_wait(group)

If the owner added itself to the group, then

it too must wait on the barrier.

Wait on barrier, individually:

dacs_barrier_wait(group);

Termination

The following steps, in this order, would be used by the group owner and

members to remove a group.

 Owner Members

Destroy the group:

dacs_group_destroy(&group);

Leave the group, individually:

dacs_group_leave(&group);

Chapter 9. Process management 67

dacs_group_init

NAME

dacs_group_init - Initialize a DaCS group.

SYNOPSIS

C syntax

DACS_ERR_T dacs_group_init (dacs_group_t *group, uint32_t flags)

Fortran syntax

dacsf_group_init (dacs_group_t group, dacs_int32_t flags, DACS_ERR_T rc)

 Call parameter

flags Flags for group initialization.

 Return parameters

group C: a pointer to a group handle which is filled in upon successful

return.

Fortran: a group handle which is filled in upon successful return.

rc Fortran Only: see Return Value.

Note: In DaCS 4.0 no flags will be supported and the flags value passed in must

be zero.

DESCRIPTION

The dacs_group_init service initializes a DaCS group and returns a handle to the

group. The calling process is the owner of the group. The owner process is not a

member of the group by default, but may add itself as a member.

Note: In DaCS 4.0, only an HE can initiate a group.

RETURN VALUE

The dacs_group_init service returns an error indicator defined as:

v DACS_SUCCESS: normal return.

v DACS_ERR_INVALID_ADDR: the pointer is invalid.

v DACS_ERR_INVALID_ATTR: the flag or enumerated constant is invalid.

v DACS_ERR_NO_RESOURCE: could not allocate required resources.

v DACS_ERR_NOT_SUPPORTED_YET: the DaCS function is currently unsupported by

this platform.

v DACS_ERR_NOT_INITIALIZED: DaCS has not been initialized.

SEE ALSO

dacs_group_add_member(3), dacs_group_close(3), dacs_group_destroy(3),

dacs_group_accept(3), dacs_group_leave(3), dacs_barrier_wait(3)

68 DaCS Library for Cell/B.E. and Hybrid Programmer’s Guide and API Reference

dacs_group_add_member

NAME

dacs_group_add_member - Add a member to a DaCS group.

SYNOPSIS

C syntax

DACS_ERR_T dacs_group_add_member (de_id_t de, dacs_process_id_t pid,

dacs_group_t group)

Fortran syntax

dacsf_group_add_member (dacs_de_id_t de, dacs_process_id_t pid, dacs_group_t

group, DACS_ERR_T rc)

 Call parameters

de The DE of the member to add. The group owner must specify a

value of DACS_DE_SELF to add itself.

pid The process ID of the member to add. The group owner must

specify a value of DACS_PID_SELF to add itself.

group The handle of the group to which the new member is to be

added.

 Return parameter

rc Fortran only: see Return value.

DESCRIPTION

The dacs_group_add_member service adds the specified DE/PID as a member of the

specified group. This service can only be called by the process which owns the

group. If the owner process is adding itself the service returns immediately. If the

member to be added is not the owner of the group this service blocks, waiting for

an associated dacs_group_accept() call from the new member.

Note: This function is only supported on HE.

RETURN VALUE

The dacs_group_add_member service returns an error indicator defined as:

v DACS_SUCCESS: normal return.

v DACS_ERR_INVALID_DE: the specified DE is either invalid or not reserved.

v DACS_ERR_INVALID_PID: the specified PID does not refer to an active process.

v DACS_ERR_INVALID_HANDLE: the group handle does not refer to a valid group.

v DACS_ERR_INVALID_TARGET: this operation is not allowed for the target process.

v DACS_ERR_GROUP_CLOSED: the group is closed.

v DACS_ERR_GROUP_DUPLICATE: the specified process is already a member of the

specified group.

v DACS_ERR_NO_RESOURCE: unable to allocate required resources.

v DACS_ERR_NOT_INITIALIZED: DaCS has not been initialized.

v DACS_ERR_NOT_OWNER: the caller is not the owner of the group.

Chapter 9. Process management 69

v DACS_ERR_NOT_SUPPORTED_YET: the DaCS function is currently unsupported by

this platform.

SEE ALSO

dacs_group_init(3), dacs_group_close(3), dacs_group_destroy(3),

dacs_group_accept(3), dacs_group_leave(3), dacs_barrier_wait(3)

70 DaCS Library for Cell/B.E. and Hybrid Programmer’s Guide and API Reference

dacs_group_close

NAME

dacs_group_close - Close a DaCS group.

SYNOPSIS

C syntax

DACS_ERR_T dacs_group_close (dacs_group_t group)

Fortran syntax

dacsf_group_close (dacs_group_t group, DACS_ERR_T rc)

 Call parameter

group The handle of the group to close.

 Return parameter

rc Fortran only: see Return value.

DESCRIPTION

The dacs_group_close service closes the specified group, so no new members may

be added. The specified group must have been initialized with dacs_group_init().

Only the group owner may close the group. Group member operations will block

until the group is closed.

Note: This function is only supported on HE.

RETURN VALUE

The dacs_group_close service returns an error indicator defined as:

v DACS_SUCCESS: normal return.

v DACS_ERR_INVALID_HANDLE: the group handle does not refer to a valid group.

v DACS_ERR_NOT_INITIALIZED: DaCS has not been initialized.

v DACS_ERR_NOT_OWNER: the caller is not the owner of the group.

v DACS_ERR_GROUP_CLOSED: the group is already closed.

v DACS_ERR_NOT_SUPPORTED_YET: the DaCS function is currently unsupported by

this platform.

SEE ALSO

dacs_group_init(3), dacs_group_add_member(3), dacs_group_destroy(3),

dacs_group_accept(3), dacs_group_leave(3), dacs_barrier_wait(3)

Chapter 9. Process management 71

dacs_group_destroy

NAME

dacs_group_destroy - Remove a DaCS group.

SYNOPSIS

C syntax

DACS_ERR_T dacs_group_destroy (dacs_group_t *group)

Fortran syntax

dacsf_group_destroy (dacs_group_t group, DACS_ERR_T rc)

 Call parameter

group C: a pointer to the handle of the group to remove.

Fortran: the handle of the group to remove.

 Return parameter

rc Fortran: see Return value.

DESCRIPTION

The dacs_group_destroy service removes the specified group and invalidates the

handle. This service may only be called by the owner of the group, and blocks

until all members have left the group. Group owners that were also added as

members do not need to call dacs_group_release(), as an implicit release is

performed on destroy.

Note: This function is only supported on HE.

RETURN VALUE

The dacs_group_destroy service returns an error indicator defined as:

v DACS_SUCCESS: normal return.

v DACS_ERR_INVALID_ADDR: the pointer is invalid.

v DACS_ERR_INVALID_HANDLE: the group handle does not refer to a valid group.

v DACS_ERR_NOT_OWNER: the caller is not the owner of the group.

v DACS_ERR_GROUP_OPEN: the group has not been closed.

v DACS_ERR_NOT_INITIALIZED: DaCS has not been initialized.

v DACS_ERR_NOT_SUPPORTED_YET: the DaCS function is currently unsupported by

this platform.

SEE ALSO

dacs_group_init(3), dacs_group_add_member(3), dacs_group_close(3),

dacs_group_accept(3), dacs_group_leave(3), dacs_barrier_wait(3)

72 DaCS Library for Cell/B.E. and Hybrid Programmer’s Guide and API Reference

dacs_group_accept

NAME

dacs_group_accept - Accept membership to a DaCS group.

SYNOPSIS

C syntax

DACS_ERR_T dacs_group_accept (de_id_t de, dacs_process_id_t pid,

dacs_group_t *group)

Fortran syntax

dacsf_group_accept (dacs_de_id_t de, dacs_process_id_t pid, dacs_group_t group,

DACS_ERR_T rc)

 Call parameters

de The DE of the group owner.

pid The PID of the group owner.

 Return parameters

group C: a pointer to the handle of the group to be filled in.

Fortran: the handle of the group to be filled in.

rc Fortran only: see Return value.

DESCRIPTION

The dacs_group_accept service accepts membership to a group and returns the

group handle. For each dacs_group_accept() call there must be an associated

dacs_group_add_member() call by the owner of the group. This service blocks until

the caller has been added to the group by the group owner.

Note: When communicating with the parent node, DACS_DE_PARENT and

DACS_DE_PID must be used.

RETURN VALUE

The dacs_group_accept service returns an error indicator defined as:

v DACS_SUCCESS: normal return.

v DACS_ERR_INVALID_DE: the specified DE is either invalid or not reserved.

v DACS_ERR_INVALID_PID: the specified pid does not refer to an active process.

v DACS_ERR_INVALID_ADDR: the pointer is invalid.

v DACS_ERR_INVALID_TARGET: the operation not allowed for the target process.

v DACS_ERR_NOT_INITIALIZED: DaCS has not been initialized.

SEE ALSO

dacs_group_init(3), dacs_group_add_member(3), dacs_group_close(3),

dacs_group_destroy(3), dacs_group_leave(3), dacs_barrier_wait(3)

Chapter 9. Process management 73

dacs_group_leave

NAME

dacs_group_leave - Request from a member to leave a DaCS group.

SYNOPSIS

C syntax

DACS_ERR_T dacs_group_leave (dacs_group_t *group)

Fortran syntax

dacsf_group_leave (dacs_group_t group , DACS_ERR_T rc)

 Call parameter

group C: a pointer to the handle of the group to leave.

Fortran: the handle of the group to leave.

 Return parameter

rc Fortran only: see Return value.

DESCRIPTION

The dacs_group_leave service removes the calling process from the specified

group. All members other than the owner must leave the group before it can be

destroyed. The specified group handle is invalidated upon successful return. This

service does not block unless the group is not yet closed.

RETURN VALUE

The dacs_group_leave service returns an error indicator defined as:

v DACS_SUCCESS: normal return.

v DACS_ERR_INVALID_ADDR: the pointer is invalid.

v DACS_ERR_INVALID_HANDLE: the group handle does not refer to a valid DaCS

group.

v DACS_ERR_OWNER: the owner of the group may not leave it.

v DACS_ERR_NOT_INITIALIZED: DaCS has not been initialized.

SEE ALSO

dacs_group_init(3), dacs_group_add_member(3), dacs_group_close(3),

dacs_group_destroy(3), dacs_group_accept(3), dacs_barrier_wait(3)

74 DaCS Library for Cell/B.E. and Hybrid Programmer’s Guide and API Reference

dacs_barrier_wait

NAME

dacs_barrier_wait - Synchronize members of a group.

SYNOPSIS

C syntax

DACS_ERR_T dacs_barrier_wait (dacs_group_t group)

Fortran syntax

dacsf_barrier_wait (dacs_group_t group, DACS_ERR_T rc)

 Call parameter

group The handle of the group with which to synchronize.

 Return parameter

rc Fortran only: see Return value.

DESCRIPTION

The dacs_barrier_wait service blocks the caller on a group barrier until all

members in the group have reached the barrier. The caller must be a member of

the specified group.

RETURN VALUE

The dacs_barrier_wait service returns an error indicator defined as:

v DACS_SUCCESS: normal return.

v DACS_ERR_INVALID_HANDLE: the group handle does not refer to a valid DaCS

group.

v DACS_ERR_NO_PERM: caller is not a member of the group.

v DACS_ERR_NOT_INITIALIZED: DaCS has not been initialized.

SEE ALSO

dacs_group_init(3), dacs_group_add_member(3), dacs_group_close(3),

dacs_group_destroy(3), dacs_group_accept(3), dacs_group_leave(3)

Chapter 9. Process management 75

Mutexes

Shared data accesses can be serialized with DaCS by using a mutual exclusion

primitive (mutex) to protect critical sections. A mutex is hosted from the creating

DEs memory space and is controlled, using the provided services, by both local

and remote processes.

The significant features of a mutex are:

v the mutex is not recursive

v it is held by a particular DE/PID and that DE/PID is the only one that can

unlock it

v the lock is not thread based within the DE/PID. Any thread in the locking

DE/PID can unlock the mutex.

Sharing Mutexes It is possible to created a mutex so that it is accessible across the

entire hierarchy (x86, PPU, and, SPU). In this case, the mutex should be created on

the PPE and shared up to the HE (the x86) and also down to the AEs (SPUs). The

mutex can then be used to synchronize processes across all three levels.

The services which process a mutex fall into two categories:

v Mutex management services, for managing the mutex shared resource, which

include dacs_mutex_init(), dacs_mutex_share(), dacs_mutex_accept(),

dacs_mutex_release() and dacs_mutex_destroy()

v Mutex locking services, for locking and unlocking a mutex, which include

dacs_mutex_lock(), dacs_mutex_unlock() and dacs_mutex_try_lock().

Mutex owner functions

Using mutex owner functions.

Mutex owner usage scenarios

The table below describes how to create, share and accept the mutex.

 Creator DE User DE

Create a mutex:

dacs_mutex_init(&mutex)

Create a mutex to be used for synchronizing

process access to a critical resource. On

return, a handle to the created mutex is

returned.

.

Share the mutex with the synchronized

DE/PIDs:

dacs_mutex_share(accepter_de,

 accepter_pid,

 mutex)

The mutex must be explicitly shared with

each DE/PID that will use it for

synchronization. The request to share a

mutex will block until the corresponding

accept is performed.

Accept the shared mutex:

dacs_mutex_accept(creator_de,

 creater_pid,

 &mutex)

Each DE/PID that needs to use the mutex

for synchronization, must explicitly

accepted it from the sharing DE/PID. A

handle to the shared mutex will be

returned.

76 DaCS Library for Cell/B.E. and Hybrid Programmer’s Guide and API Reference

Destroying a mutex: The table below shows how to destroy a mutex

 Creator DE User DE

Destroy the mutex:

dacs_mutex_destroy(&mutex)

The creator of a mutex must destroy it when

it is no longer needed. Since the mutex had

been shared for remote process use, the call

blocks until the mutex has been released by

all DEs it was shared with.

Release the mutex:

dacs_mutex_release(&mutex)

Every mutex that was accepted must be

released when no longer needed. Every

accepter of the mutex must release it once

finished, so the creator knows when it is

safe to destroy it.

Mutex synchronization

This section describes mutex synchronization.

Locking and unlocking a mutex: The table below describes how to lock and

unlock mutexes.

 Creator DE User DE

Lock the shared mutex:

dacs_mutex_lock(mutex)

Locking the mutex blocks all other users of

the mutex until it has been unlocked. This

synchronizes access to critical sections of

code. In this case, the mutex is available, so

this DE/PID does not need to block, and

returns with the mutex held.

Try to lock the shared mutex:

dacs_mutex_trylock(mutex)

To avoid blocking on a held mutex, simply

try to lock it. If the lock is held, this call will

return that the mutex is busy and another

lock attempt may be performed later. If the

mutex is available for locking, then the

mutex is reserved.

In this case, the mutex is already held by

the creator DE/PID, thus the attempt will

return as busy.

Lock the shared mutex:

dacs_mutex_lock(mutex)

Locking the mutex blocks all other users of

the mutex until it has been unlocked. This

synchronizes access to critical sections of

code.

In this case the mutex is held by the creator

DE/PID, so this DE/PID will block until the

mutex is available

Chapter 9. Process management 77

Creator DE User DE

Unlock the shared mutex:

dacs_mutex_unlock(mutex)

Unlocking the mutex makes it available for

use by potential waiters. Any waiters for the

mutex can now retry obtaining the mutex

once again.

In this case, there is a user DE/PID blocked

waiting on the release of the mutex. Once

completely unlocked, the mutex is available

for the blocked DE/PIDs to obtain.

Unlock the shared mutex:

dacs_mutex_unlock(mutex)

Unlocking the mutex makes it available for

use by potential waiters. Any waiters for the

mutex can now retry obtaining the mutex

once again.

In this case there are no DE/PIDS blocked

waiting on the mutex, so it is simply

released and available for the next locker.

78 DaCS Library for Cell/B.E. and Hybrid Programmer’s Guide and API Reference

dacs_mutex_init

NAME

dacs_mutex_init - Initialize a mutual exclusion variable.

SYNOPSIS

C syntax

DACS_ERR_T dacs_mutex_init (dacs_mutex_t *mutex)

Fortran syntax

dacsf_mutex_init (dacs_mutex_t mutex, DACS_ERR_T rc)

 Return parameters

mutex C: a pointer to a newly initialized mutex handle.

Fortran: a newly initialized mutex handle.

rc Fortran only: see Return value.

DESCRIPTION

The dacs_mutex_init service initializes a mutual exclusion variable and returns a

handle to it.

Cell/B.E.: this function is not supported on the SPUs.

RETURN VALUE

The dacs_mutex_init service returns an error indicator defined as:

v DACS_SUCCESS: normal return.

v DACS_ERR_INVALID_ADDR: the pointer is invalid.

v DACS_ERR_NO_RESOURCE: unable to allocate required resources, such as memory.

v DACS_ERR_NOT_INITIALIZED: DaCS has not been initialized.

v DACS_ERR_NOT_SUPPORTED_YET: the DaCS function is currently unsupported by

this platform.

SEE ALSO

dacs_mutex_share(3), dacs_mutex_accept(3), dacs_mutex_lock(3),

dacs_mutex_try_lock(3), dacs_mutex_unlock(3), dacs_mutex_release(3),

dacs_mutex_destroy(3)

Chapter 9. Process management 79

dacs_mutex_share

NAME

dacs_mutex_share - Share a mutual exclusion variable with a remote process.

SYNOPSIS

C syntax

DACS_ERR_T dacs_mutex_share (de_id_t dst_de, dacs_process_id_t dst_pid,

dacs_mutex_t mutex)

Fortran syntax

dacsf_mutex_share (dacs_de_id_t dst_de, dacs_process_id_t dst_pid , dacs_mutex_t

mutex, DACS_ERR_T rc)

 Call parameters

dst_de The target DE for the share.

dst_pid The target process for the share.

mutex The handle of the mutex that is to be shared.

 Return parameter

rc Fortran only: see Return value

DESCRIPTION

The dacs_mutex_share service shares the specified mutual exclusion variable

between the current process and the remote process specified by dst_de and

dst_pid. This service blocks the caller, waiting for the remote process to call

dacs_mutex_accept() to accept the mutex.

Note: When communicating with the parent node, DACS_DE_PARENT and

DACS_DE_PID must be used.

Cell/B.E.: this function is not supported on the SPUs.

RETURN VALUE

The dacs_mutex_share service returns an error indicator defined as:

v DACS_SUCCESS: normal return; sharing succeeded.

v DACS_ERR_INVALID_DE: the specified DE is either invalid or not reserved.

v DACS_ERR_INVALID_PID: the specified PID does not refer to an active process.

v DACS_ERR_INVALID_TARGET: this operation is not allowed for the target process.

v DACS_ERR_INVALID_HANDLE: the specified mutex handle is not valid.

v DACS_ERR_NO_RESOURCE: unable to allocate required resources, such as memory.

v DACS_ERR_NOT_INITIALIZED: DaCS has not been initialized.

v DACS_ERR_NOT_SUPPORTED_YET: the DaCS function is currently unsupported by

this platform.

80 DaCS Library for Cell/B.E. and Hybrid Programmer’s Guide and API Reference

SEE ALSO

dacs_mutex_init(3), dacs_mutex_accept(3), dacs_mutex_lock(3),

dacs_mutex_try_lock(3), dacs_mutex_unlock(3), dacs_mutex_release(3),

dacs_mutex_destroy(3)

Chapter 9. Process management 81

dacs_mutex_destroy

NAME

dacs_mutex_destroy - Destroy a mutual exclusion variable.

SYNOPSIS

C syntax

DACS_ERR_T dacs_mutex_destroy (dacs_mutex_t *mutex)

Fortran syntax

dacsf_mutex_destroy (dacs_mutex_t mutex, DACS_ERR_T rc)

 Call parameter

mutex C: a pointer to the handle of the mutex to destroy.

Fortran: the handle of the mutex to destroy.

 Return parameter

rc Fortran only: see Return value.

DESCRIPTION

The dacs_mutex_destroy service destroys the specified mutex and invalidates the

handle. This service blocks until all users of the mutex have released it. The mutex

may only be destroyed by the process that initialized it (the owner).

The destroy will succeed whether or not the mutex is held by its owner.

Cell/B.E.: this function is not supported on the SPUs.

RETURN VALUE

The dacs_mutex_destroy service returns an error indicator defined as:

v DACS_SUCCESS: normal return.

v DACS_ERR_INVALID_ADDR: the pointer is invalid.

v DACS_ERR_INVALID_HANDLE: the specified mutex handle is invalid.

v DACS_ERR_NOT_OWNER: this operation is only valid for the owner of the resource.

v DACS_ERR_NOT_INITIALIZED: DaCS has not been initialized.

v DACS_ERR_NOT_SUPPORTED_YET: the DaCS function is currently unsupported by

this platform.

SEE ALSO

dacs_mutex_init(3), dacs_mutex_share(3), dacs_mutex_accept(3),

dacs_mutex_lock(3), dacs_mutex_try_lock(3), dacs_mutex_unlock(3),

dacs_mutex_release(3)

82 DaCS Library for Cell/B.E. and Hybrid Programmer’s Guide and API Reference

dacs_mutex_accept

NAME

dacs_mutex_accept - Accept access to a shared mutual exclusion variable from a

remote process.

SYNOPSIS

C syntax

DACS_ERR_T dacs_mutex_accept (de_id_t remote_de, dacs_process_id_t

remote_pid, dacs_mutex_t *received_mutex)

Fortran syntax

dacsf_mutex_accept (dacs_de_id_t remote_de, dacs_process_id_t remote_pid,

dacs_mutex_t received_mutex, DACS_ERR_T rc)

 Call parameters

remote_de The source DE which is sharing the mutex handle.

remote_pid The source PID which is sharing the mutex handle.

 Return parameters

received_mutex C: A pointer to the handle of the accepted mutex.

Fortran: the handle of the accepted mutex.

rc Fortran only: see Return value.

DESCRIPTION

The dacs_mutex_accept service receives a mutual exclusion variable from a remote

process. The service blocks until the remote process shares the mutex with a call to

dacs_mutex_share().

Note: When communicating with the parent node, DACS_DE_PARENT and

DACS_DE_PID must be used.

RETURN VALUE

The dacs_mutex_accept service returns an error indicator defined as:

v DACS_SUCCESS: normal return.

v DACS_ERR_INVALID_ADDR: the pointer is invalid.

v DACS_ERR_INVALID_DE: the specified DE is either invalid or not reserved.

v DACS_ERR_INVALID_PID: the specified PID does not refer to an active process.

v DACS_ERR_INVALID_TARGET: this operation is not allowed for the target process.

v DACS_ERR_NOT_INITIALIZED: DaCS has not been initialized.

SEE ALSO

dacs_mutex_init(3), dacs_mutex_share(3), dacs_mutex_lock(3),

dacs_mutex_try_lock(3), dacs_mutex_unlock(3), dacs_mutex_release(3),

dacs_mutex_destroy(3)

Chapter 9. Process management 83

dacs_mutex_release

NAME

dacs_mutex_release - Release a mutual exclusion variable.

SYNOPSIS

C syntax

DACS_ERR_T dacs_mutex_release (dacs_mutex_t *mutex)

Fortran syntax

dacsf_mutex_release (dacs_mutex_t mutex, DACS_ERR_T rc)

 Call parameter

mutex C: a pointer to the handle of the mutex to release.

Fortran: the handle of the mutex to release.

 Return parameter

rc Fortran only: see Return value.

DESCRIPTION

The dacs_mutex_release service releases a previously accepted mutex object and

invalidates the handle. When all accepters have released the mutex, it may be

destroyed by its owner. This service does not block.

The release will succeed whether or not the mutex is held by the caller.

RETURN VALUE

The dacs_mutex_release service returns an error indicator defined as:

v DACS_SUCCESS: normal return.

v DACS_ERR_INVALID_ADDR: the pointer is invalid.

v DACS_ERR_INVALID_HANDLE: the specified mutex handle is invalid.

v DACS_ERR_OWNER: this operation is not allowed for the owner of the resource.

v DACS_ERR_NOT_INITIALIZED: DaCS has not been initialized.

SEE ALSO

dacs_mutex_init(3), dacs_mutex_share(3), dacs_mutex_accept(3),

dacs_mutex_lock(3), dacs_mutex_try_lock(3), dacs_mutex_unlock(3),

dacs_mutex_destroy(3)

84 DaCS Library for Cell/B.E. and Hybrid Programmer’s Guide and API Reference

dacs_mutex_lock

NAME

dacs_mutex_lock - Acquire a lock on a mutual exclusion variable.

SYNOPSIS

C syntax

DACS_ERR_T dacs_mutex_lock (dacs_mutex_t mutex)

Fortran syntax

dacsf_mutex_lock (dacs_mutex_t mutex, DACS_ERR_T rc)

 Call parameter

mutex The handle of the mutex to lock.

 Return parameter

rc Fortran only: see Return value.

DESCRIPTION

The dacs_mutex_lock service acquires the specified mutex. The caller must either

be the owner of the mutex, or have previously accepted the mutex with a call to

dacs_mutex_accept(). This service blocks the caller until the mutex is acquired.

RETURN VALUE

The dacs_mutex_lock service returns an error indicator defined as:

v DACS_SUCCESS: normal return; lock succeeded.

v DACS_ERR_INVALID_HANDLE: the specified mutex handle is not valid.

v DACS_ERR_NOT_INITIALIZED: DaCS has not been initialized.

SEE ALSO

dacs_mutex_init(3), dacs_mutex_share(3), dacs_mutex_accept(3),

dacs_mutex_try_lock(3), dacs_mutex_unlock(3), dacs_mutex_release(3),

dacs_mutex_destroy(3)

Chapter 9. Process management 85

dacs_mutex_try_lock

NAME

dacs_mutex_try_lock - Attempt to acquire a lock on a mutual exclusion variable.

SYNOPSIS

C syntax

DACS_ERR_T dacs_mutex_try_lock (dacs_mutex_t mutex)

Fortran syntax

dacsf_mutex_try_lock (dacs_mutex_t mutex, DACS_ERR_T rc)

 Call parameter

mutex The handle of the mutex to lock.

 Return parameter

rc Fortran only: see Return value.

DESCRIPTION

The dacs_mutex_try_lock() service attempts to acquire the specified mutex. The

caller must be the owner of the mutex or previously accepted the mutex with a call

to dacs_mutex_accept(). This service does not block. Instead, if the mutex is

unavailable at the time of the call, it will immediately return a

DACS_ERR_MUTEX_BUSY error to the caller. If the lock was successfully acquired, the

call will return a success status with the mutex held.

RETURN VALUE

The dacs_mutex_try_lock service returns an error indicator defined as:

v DACS_SUCCESS: normal return; lock was acquired.

v DACS_ERR_MUTEX_BUSY: the mutex is not available.

v DACS_ERR_INVALID_HANDLE: the specified mutex handle is not valid.

v DACS_ERR_NOT_INITIALIZED: DaCS has not been initialized.

SEE ALSO

dacs_mutex_init(3), dacs_mutex_share(3), dacs_mutex_accept(3),

dacs_mutex_lock(3), dacs_mutex_unlock(3), dacs_mutex_release(3),

dacs_mutex_destroy(3)

86 DaCS Library for Cell/B.E. and Hybrid Programmer’s Guide and API Reference

dacs_mutex_unlock

NAME

dacs_mutex_unlock - Unlock a mutual exclusion variable.

SYNOPSIS

C syntax

DACS_ERR_T dacs_mutex_unlock (dacs_mutex_t mutex)

Fortran syntax

dacsf_mutex_unlock (dacs_mutex_t mutex, DACS_ERR_T rc)

 Call parameter

mutex The handle of the mutex to unlock.

 Return parameter

rc Fortran only: see Return value.

DESCRIPTION

The dacs_mutex_unlock service unlocks a mutex. The caller must either be the

owner of the mutex, or have previously accepted the mutex with a call to

dacs_mutex_accept().

RETURN VALUE

The dacs_mutex_unlock service returns an error indicator defined as:

v DACS_SUCCESS: normal return; unlock succeeded.

v DACS_ERR_INVALID_HANDLE: the specified mutex handle is not valid.

v DACS_ERR_NO_PERM: the requester did not have the lock.

v DACS_ERR_NOT_INITIALIZED: DaCS has not been initialized.

SEE ALSO

dacs_mutex_init(3), dacs_mutex_share(3), dacs_mutex_accept(3),

dacs_mutex_lock(3), dacs_mutex_try_lock(3), dacs_mutex_release(3),

dacs_mutex_destroy(3)

Chapter 9. Process management 87

88 DaCS Library for Cell/B.E. and Hybrid Programmer’s Guide and API Reference

Chapter 10. Data communication

DaCS provides communication services for both one-sided (rDMA) and two-sided

(mailboxes and message passing) data transfers. The general characteristics of these

services are described here, with the details in the following reference sections.

Data transfers are performed between two process, identified by the source or

destination DE and PID, as appropriate. As a convenience to the programmer, the

special values DACS_DE_PARENT and DACS_PID_PARENT are defined, which can be

used to refer to the parent DE and PID respectively. The special values

DACS_DE_SELF and DACS_PID_SELF are also provided for those interfaces where the

caller is the target of the operation.

DaCS does not impose any limitation on the size of a transfer, so the size of

transfer that can actually be performed is anywhere from zero up to the maximum

size imposed by the inherent system limitations.

To accommodate transfers across systems with different data representation

formats (endian-ness), the services provide an option for byte swapping.

The services provide the following types of byte swapping:

 DACS_BYTE_SWAP_DISABLE: no byte-swapping.

Hybrid only: the following values are also supported:

 DACS_BYTE_SWAP_HALF_WORD: byte-swapping for halfwords (2 bytes).

 DACS_BYTE_SWAP_WORD: byte-swapping for words (4 bytes).

 DACS_BYTE_SWAP_DOUBLE_WORD: byte-swapping for double words (8 bytes)

When byte swapping is used, the data being swapped must be naturally aligned

on the source system, to the alignment implied by the chosen flag. Failure to

properly align the data addresses, offsets, or sizes in accordance with the specified

swap flag could result in a failure.

Cell/B.E: Although DaCS on Cell supports transfers of unaligned data with no

specific size limitations, best performance will be achieved when the native

alignment rules are followed. This means that for transfers 16-bytes or greater, the

size of transfer is a multiple of 16 bytes and the source and destination buffer are

16-byte aligned. For transfers that are less than 16 bytes, the size of the transfer is a

power of 2, and the source and destination buffer have the same relative 16-byte

offset. For DMA list operations however, the size of each element must be multiple

of 16 bytes and it must be 16-byte aligned.

Note: In DaCS 4.0 direct communication is only allowed between a parent and its

children. Attempts to communicate with yourself or with a process which is not

the parent or child of the initiator will result in an error of

DACS_ERR_INVALID_TARGET.

© Copyright IBM Corp. 2007, 2008 89

Remote Direct Memory Access

DaCS provides two sets of rDMA function sets in order to improve ease of use

while also allowing maximum performance. The two sets of functions differ in

whether the local memory, used in an rDMA transfer, needs to be registered with

DaCS. Based on this difference, the two sets of functions will be referred to as

registered and unregistered local region functions.

Note: Memory regions used for these two function sets are not compatible and

cannot be interchanged.

In both sets of functions, at least one memory region must be created and shared

with a process that is remote to the region. This is commonly referred to as the

remote memory region. For example, if an HE wants to use put to move data into

an AEs memory, the AE must first create a memory region and then share the

memory region with the HE (which accepts it).

Another similarity in the two function sets is that certain preparation must be

performed on the local memory to be used in conjunction with the shared remote

memory region. This preparation may include pinning the memory so that it does

not get paged out while the rDMA is being performed. The method used to

prepare memory can impact performance, which differentiates the two sets of

rDMA functionality.

In the case where the local memory is unregistered, the local memory preparation

and platform specific limitations are handled inside of the DaCS library,

unbeknownst to the user. These are referred to as the unregistered local region

functions. This set of functionality provides a convenient more automated means

for performing the DMAs at the expense of decreased performance.

In the case where the local memory is registered, the application is responsible for

explicitly identifying the local memory regions to be used in rDMA transfers.

Platform limitations, such as the number of available memory regions or the size

of an rDMA request, must be considered when managing these regions. Although

this approach involves a bit more application intervention, it presents a better

opportunity for maximizing rDMA performance

Registered local region functions

The use of a registered local memory region exposes the limitations of the

underlying architecture in an effort to maximize performance. Registering a local

memory region permits DaCS to minimize both error checking as well as setup

overhead on each use of that region.

90 DaCS Library for Cell/B.E. and Hybrid Programmer’s Guide and API Reference

Local memory region usage scenarios

The table below shows how to initialize and share a memory region.

 DE A DE B

A memory region is created to be used for

DMA:

dacs_mem_create(memA_addr,

 memA_size,

 remote_access,

 local_access,&memA)

This creates a memory region of memA_size

bytes starting at local address memA_addr.

The memory region will have remote_access

permissions for remote consumers and

local_access permissions locally. A handle to

the created memory region memA is

returned.

Share the memory region for remote usage:

dacs_mem_share(de_B,

 pid_B,

 memA)

The memory region must be explicitly

shared with each DE/PID that will access

the region remotely. The request to share a

memory region will block until the

corresponding accept is performed.

Each shared memory region must be

accepted:

dacs_mem_accept(de_A,

 pid_A,

 &memA)

Each remotely created memory region to be

accessed must be accepted from the sharing

DE/PID. A handle to the shared memory

region memA is returned.

The memory region can be queried for its

attributes:

dacs_mem_query(memA,

 DACS_REMOTE_MEM_SIZE,

 &memQ)

The remotely created and shared memory

region can be queried to obtain its region

attributes. Attributes are individually

queried. The above query requests the size

of the remotely created region.

A memory region is created to be used for

DMA:

dacs_mem_create(memB_addr,

 memA_size,

 remote_access,

 local_access,

 &memB)

This creates a local memory region to be

used in conjunction with the accepted

memory region memA. This memory region

is created based on the size of the remotely

created region memA_size and starts at local

address memB_addr. The memory region will

have remote_access permissions for remote

consumers and local_access permissions

locally.

Chapter 10. Data communication 91

DE A DE B

The memory region is registered for local

DMA use:

dacs_mem_register(de_A,

 pid_A,

 memB)

All unshared memory regions must be

registered for access by the remote DE/PID,

if they are to be used for DMA.

Getting data from a remote memory region: This section shows how to get from

a remote memory region once it has been created:

 DE A DE B

Get data from the remote memory region to

the local memory region:

dacs_mem_get(memB,

 memB_offset,

 memA,

 memA_offset,

 size,

 widB,

 order,

 swap)

In this case we are initiating a MEM_GET of

size bytes from remote memory region

memA at offset memA_offset. This data is

stored into local memory region memB at

offset memB_offset. The memory transfer is

tracked through the wait identifier widB and

is ordered according to the specified

ordering type order. Intermediate byte

swapping is performed based on the swap

type swap.

92 DaCS Library for Cell/B.E. and Hybrid Programmer’s Guide and API Reference

DE A DE B

Wait on the MEM_GET to complete:

 dacs_wait(widB)

In order to verify the completion of the

DMA operation, the wait identifier must be

successfully waited on or tested. Multiple

messages or DMAs may be issued under a

single wait identifier which only requires a

single call to wait or test. The call to wait or

test will not complete until all DMAs or

messages associated with the wait identifier

have completed.

Wait is a blocking status check of all

outstanding transactions for wait identifier

widB. It will not return until all transfers

associated with widB have either completed

or encountered an error.

In the case of a MEM_GET, the successful

completion of waiting or testing guarantees

that size data bytes have arrived in the

associated local memory region memB at the

specified offset memB_offset.

Putting data into a remote memory region: This section shows how to put data into a

remote memory region:

 DE A DE B

Put data from the local memory region to

the remote memory region:

 dacs_mem_put(memA,

 memA_offset,

 memB,

 memB_offset,

 size,

 widB,

 order,

 swap)

In this case we are initiating a PUT of size

bytes from local memory region memB at

offset memB_offset. This data is stored into

remote memory region memA at offset

memA_offset. The memory transfer is tracked

through the wait identifier widB and is

ordered according to the specified ordering

type order. Intermediate byte swapping is

performed based on the swap type.

Chapter 10. Data communication 93

DE A DE B

Test whether the MEM_PUT has completed:

dacs_test(widB)

In order to verify the completion of the

DMA operation, the wait identifier must be

successfully waited on or tested. Multiple

messages or DMAs may be issued under a

single wait identifier which only requires a

single call to wait or test. The call to wait or

test will not complete until all DMAs or

messages associated with the wait identifier

have completed.

Test is a non-blocking status check of all

outstanding transactions for wait identifier

widB. If any transfers, associated with widB,

have not completed, the call will return

with a busy status.

In the case of a PUT, the successful

completion of waiting or testing only means

that the local memory buffer is available for

re-use. It does not guarantee that the data

has successfully arrived at the remote

memory region.

Deregistering memory regions: This section shows how to deregister a

locally-created memory region.

 DE A DE B

Deregister previously registered memory

regions:

dacs_mem_deregister(de_A,pid_A,memB)

For each DE/PID a locally created memory

region was registered a corresponding

deregistration must be performed. Prior to

destroying a locally created memory region

that had been registered, it must first be

deregistered. For every DE and PID a local

memory region was registered for, a

corresponding deregistration must be

performed. This detaches the locally created

memory region from being associated with

the specified DE/PID.

The creator of a memory region must

destroy it when the region is no longer

needed:

dacs_mem_destroy(&memB)

In this case the DE is destroying the

memory region it created for local use.

Normally this call would block until the

memory object had been released by all DEs

it was shared with, but in this case it was

never shared.

94 DaCS Library for Cell/B.E. and Hybrid Programmer’s Guide and API Reference

DE A DE B

The creator of a memory region must destroy

it when the region is no longer needed:

dacs_mem_destroy(&memA)

In this case the DE is destroying the memory

region it created for remote use. Since the

memory region had been shared for remote

use, the call must block until the memory

region has been released by all DEs it was

shared with.

Every remote memory region that was

accepted must be released when no longer

needed:

dacs_mem_release(&memA)

Each consumer of the remote memory must

release the memory object once finished, so

the creator knows when it is safe to destroy

it.

Chapter 10. Data communication 95

dacs_mem_create

NAME

dacs_mem_create - Designate a region in the memory space of the current process

for use by DMA services.

SYNOPSIS

C syntax

DACS_ERR_T dacs_mem_create (void *addr, uint64_t size,

DACS_MEM_ACCESS_MODE_T rmt_access_mode,

DACS_MEM_ACCESS_MODE_T lcl_access_mode, dacs_mem_t *mem)

Fortran syntax

dacsf_mem_create (dacs_pvoid_t addr, dacs_int64_t size,

DACS_MEM_ACCESS_MODE_T rmt_access_mode,

DACS_MEM_ACCESS_MODE_T lcl_access_mode, dacs_mem_t mem,

DACS_ERR_T rc)

 Call parameters

addr C: a pointer to the base address of the memory region to be

shared.

Fortran: handle to local address to create a memory region over.

Use dacsf_makevoid to create the handle.

size The size of the memory region in bytes.

rmt_access_mode Permission granted for remote access of the memory region.

lcl_access_mode Permission granted for local access of the memory region.

 Return parameters

mem C: a pointer to a memory handle to be filled in.

Fortran: a handle to the memory region.

rc Fortran only: see Return value.

DESCRIPTION

The dacs_mem_create service creates and returns a handle associated with the given

memory region. The returned handle can be used with the dacs_mem_share()

service to use it as a remote memory region, as well as the dacs_mem_register()

service to use it as a local memory region.

The following access modes are available:

v DACS_MEM_READ_ONLY: the memory region is only readable

v DACS_MEM_WRITE_ONLY: the memory region is only writeable

v DACS_MEM_READ_WRITE: the memory region is both readable and writeable

v DACS_MEM_NONE: the memory region is neither readable nor writeable

Cell/B.E.: This call is not supported on the SPU, and calling it will result in the

returning of the DACS_ERR_NOT_SUPPORTED_YET error indicator.

96 DaCS Library for Cell/B.E. and Hybrid Programmer’s Guide and API Reference

RETURN VALUE

The dacs_mem_create service returns an error indicator defined as:

v DACS_SUCCESS: the memory region was successfully created.

v DACS_ERR_INVALID_ADDR: the address or memory handle address was invalid.

v DACS_ERR_INVALID_SIZE: the memory regions must be larger than 0.

v DACS_ERR_INVALID_ATTR: an access mode was invalid.

v DACS_ERR_NO_RESOURCE: there are no resources available to complete this request.

v DACS_ERR_NOT_INITIALIZED: DaCS has not been initialized.

v DACS_ERR_NOT_SUPPORTED_YET: the DaCS function is currently unsupported by

this platform.

SEE ALSO

dacs_mem_share(3), dacs_mem_accept(3),

dacs_mem_release(3),dacs_mem_register(3), dacs_mem_deregister(3),

dacs_mem_destroy(3), dacs_mem_get(3), dacs_mem_put(3), dacs_mem_get_list(3),

dacs_mem_put_list(3), dacs_mem_limits_query(3), dacs_mem_query(3),

dacsf_makevoid(3)

Chapter 10. Data communication 97

dacs_mem_share

NAME

dacs_mem_share - Pass a memory handle from the current process to a remote

process.

SYNOPSIS

C syntax

DACS_ERR_T dacs_mem_share (de_id_t dst_de, dacs_process_id_t dst_pid,

dacs_mem_t mem)

Fortran syntax

dacsf_mem_share (dacs_de_id_t dst_de, dacs_process_id_t dst_pid, dacs_mem_t

mem mem, DACS_ERR_T rc)

 Call parameters

dst_de The target DE for the share.

dst_pid The target process for the share.

mem The handle of the memory to be shared.

 Return parameter

rc Fortran only: See Return value.

DESCRIPTION

The dacs_mem_share service shares the specified memory handle from the current

process to the remote process specified by dst_de and dst_pid. This service then

blocks, waiting for a matching call to the dacs_mem_accept() service on the remote

side.

Note: when communicating with the parent node, DACS_DE_PARENT and

DACS_DE_PID must be used.

Cell/B.E.: memory sharing is not supported from the PPU to the SPU. Attempting

this will result in a DACS_ERR_NOT_SUPPORTED_YET error.

RETURN VALUE

The dacs_mem_share service returns an error indicator defined as:

v DACS_SUCCESS: the memory region was successfully shared.

v DACS_ERR_INVALID_DE: the DE ID was invalid or not reserved.

v DACS_ERR_INVALID_PID: the program id is not valid.

v DACS_ERR_INVALID_HANDLE: the memory handle was invalid or is only initialized

for local access.

v DACS_ERR_NO_PERM: handle has no remote permissions.

v DACS_ERR_NOT_OWNER: the handle cannot be shared because this DE/PID did not

create it.

v DACS_ERR_NO_HANDLE: there are no local resources available for this memory

handle.

98 DaCS Library for Cell/B.E. and Hybrid Programmer’s Guide and API Reference

v DACS_ERR_INVALID_TARGET: the handle is already shared with the target or has

attempted to share with itself.

v DACS_ERR_NOT_INITIALIZED: DaCS has not been initialized yet.

v DACS_ERR_NOT_SUPPORTED_YET: the DaCS function is currently unsupported by

this platform.

v DACS_ERR_NO_RESOURCE: unable to allocate required resources.

SEE ALSO

dacs_mem_create(3), dacs_mem_accept(3), dacs_mem_release(3),

dacs_mem_register(3), dacs_mem_deregister(3), dacs_mem_destroy(3),

dacs_mem_get(3), dacs_mem_put(3), dacs_mem_get_list(3), dacs_mem_put_list(3),

dacs_mem_limits_query(3), dacs_mem_query(3)

Chapter 10. Data communication 99

dacs_mem_accept

NAME

dacs_mem_accept - Accept a memory handle from a remote process.

SYNOPSIS

C syntax

DACS_ERR_T dacs_mem_accept (de_id_t src_de, dacs_process_id_t src_pid,

dacs_mem_t *mem)

Fortran syntax

dacsf_mem_accept (dacs_de_id_t src_de, dacs_process_id_t src_pid, dacs_mem_t

mem, DACS_ERR_T rc)

 Call parameters

src_de The source DE which is sharing the memory handle.

src_pid The source process which is sharing the memory handle.

 Return parameters

mem C: a pointer to the accepted memory handle.

Fortran: the accepted memory handle.

rc Fortran only: see Return value.

DESCRIPTION

The dacs_mem_accept service blocks the caller until it receives a memory handle

from an associated dacs_mem_share() call. The memory handle is returned on

success.

Note: When communicating with the parent node, DACS_DE_PARENT and

DACS_DE_PID must be used.

Cell/B.E.: the PPU host cannot accept memory from an SPU because an SPU

cannot create memory.

RETURN VALUE

The dacs_mem_accept service returns an error indicator defined as:

v DACS_SUCCESS: The memory region was successfully accepted.

v DACS_ERR_INVALID_DE: The DE id was invalid or not reserved.

v DACS_ERR_INVALID_PID: the program id is not valid.

v DACS_ERR_INVALID_TARGET: attempt to accept with self.

v DACS_ERR_INVALID_ADDR: the address of the output handle is invalid.

v DACS_ERR_NO_RESOURCE: there are no local resources available for this memory

handle.

v DACS_ERR_NOT_INITIALIZED: DaCs has not been initialized.

v DACS_ERR_NOT_SUPPORTED_YET: the DaCS function is currently unsupported by

this platform.

100 DaCS Library for Cell/B.E. and Hybrid Programmer’s Guide and API Reference

SEE ALSO

dacs_mem_create(3), dacs_mem_share(3),

dacs_mem_release(3),dacs_mem_register(3), dacs_mem_deregister(3),

dacs_mem_destroy(3), dacs_mem_get(3), dacs_mem_put(3), dacs_mem_get_list(3),

dacs_mem_put_list(3), dacs_mem_limits_query(3), dacs_mem_query(3)

Chapter 10. Data communication 101

dacs_mem_release

NAME

dacs_mem_release - Release a previously accepted memory handle.

SYNOPSIS

C syntax

DACS_ERR_T dacs_mem_release (dacs_mem_t *mem)

Fortran syntax

dacsf_mem_release (dacs_mem_t mem, DACS_ERR_T rc)

 Call parameter

mem C: a pointer to the memory handle.

Fortran: a remote memory handle.

 Return parameter

rc Fortran only: see Return value.

DESCRIPTION

The dacs_mem_release service releases a previously accepted memory object and

invalidates the handle. When all accepters have released the object it may be

destroyed by its owner. This service does not block.

Cell/B.E.: this call is not supported on the PPU. Calling it will result in the

returning of the DACS_ERR_NOT_SUPPORTED_YET error indicator.

RETURN VALUE

The dacs_mem_release service returns an error indicator defined as:

v DACS_SUCCESS: the memory region was successfully released.

v DACS_ERR_INVALID_HANDLE: the handle is not for a valid remote memory region.

v DACS_ERR_INVALID_ADDR: the address of the output handle is invalid.

v DACS_ERR_OWNER: attempt to release a created memory region.

v DACS_ERR_NOT_INITIALIZED: DaCS has not been initialized.

v DACS_ERR_NOT_SUPPORTED_YET: the DaCS function is currently unsupported by

this platform.

SEE ALSO

dacs_mem_create(3), dacs_mem_share(3), dacs_mem_accept(3),

dacs_mem_register(3), dacs_mem_deregister(3), dacs_mem_destroy(3),

dacs_mem_get(3), dacs_mem_put(3), dacs_mem_get_list(3), dacs_mem_put_list(3),

dacs_mem_limits_query(3), dacs_mem_query(3)

102 DaCS Library for Cell/B.E. and Hybrid Programmer’s Guide and API Reference

dacs_mem_register

NAME

dacs_mem_register - Register this memory region to be used as a local memory

handle on DMA operations.

SYNOPSIS

C syntax

DACS_ERR_T dacs_mem_register (de_id_t dst_de, dacs_process_id_t dst_pid,

dacs_mem_t mem)

Fortran syntax

dacsf_mem_register (dacs_de_id_t dst_de, dacs_process_id_t dst_pid, dacs_mem_t

mem, DACS_ERR_T rc)

 Call parameters

dst_de The target DE for the register.

dst_pid The target process for the register.

mem The handle of the memory to be registered.

 Return parameter

rc Fortran only: see Return value.

DESCRIPTION

The dacs_mem_register service registers the specified memory handle from the

current process to the remote process specified by dst_de and dst_pid.

Note: When communicating with the parent node, DACS_DE_PARENT and

DACS_DE_PID must be used.

Cell/B.E.: this call is not supported on the PPU. Calling it will result in the

returning of the DACS_ERR_NOT_SUPPORTED_YET error indicator.

RETURN VALUE

The dacs_mem_register service returns an error indicator defined as:

v DACS_SUCCESS: the memory region was successfully accepted.

v DACS_ERR_INVALID_DE: the DE id was invalid or not reserved.

v DACS_ERR_INVALID_PID: the program id is not valid.

v DACS_ERR_INVALID_HANDLE: the memory handle was invalid or the region was

only created was only created for remote access.

v DACS_ERR_NOT_OWNER: the handle cannot be registered. The current DE/PID is not

the owner.

v DACS_ERR_NO_PERM: the memory region was created with no local permissions.

v DACS_ERR_NO_RESOURCE: there are no local resources available for this memory

handle.

v DACS_ERR_NOT_INITIALIZED: DaCS has not been initialized.

Chapter 10. Data communication 103

v DACS_ERR_NOT_SUPPORTED_YET: the DaCS function is currently unsupported by

this platform.

SEE ALSO

dacs_mem_create(3), dacs_mem_share(3), dacs_mem_accept(3),

dacs_mem_release(3), dacs_mem_deregister(3), dacs_mem_destroy(3),

dacs_mem_get(3), dacs_mem_put(3), dacs_mem_get_list(3), dacs_mem_put_list(3),

dacs_mem_limits_query(3), dacs_mem_query(3)

104 DaCS Library for Cell/B.E. and Hybrid Programmer’s Guide and API Reference

dacs_mem_deregister

NAME

dacs_mem_deregister - Deregister memory access for a local region.

SYNOPSIS

C syntax

DACS_ERR_T dacs_mem_deregister (de_id_t dst_de, dacs_process_id_t dst_pid,

dacs_mem_t mem)

Fortran syntax

dacsf_mem_deregister (dacs_de_id_t dst_de, dacs_process_id_t dst_pid,

dacs_mem_t mem, DACS_ERR_T rc)

 Call parameters

dst_de The target DE for the deregister.

dst_pid The target process for the deregister.

mem C: a pointer to the memory handle.

Fortran: the memory handle.

 Return parameter

rc Fortran only: see Return value.

DESCRIPTION

Remove the capability to use a created and registered memory region as a local

memory region in DMA operations with the specified DE/PID. The memory

handle must have been previously registered for this method to successfully

complete.

Note: When communicating with the parent node, DACS_DE_PARENT and

DACS_DE_PID must be used.

Cell/B.E.: this call is not supported on the PPU. The PPU host cannot accept

memory from an SPU because an SPU cannot create memory. Calling it will result

in the returning of the DACS_ERR_NOT_SUPPORTED_YET error indicator.

RETURN VALUE

The dacs_mem_deregister service returns an error indicator defined as:

v DACS_SUCCESS: The memory region was successfully deregistered.

v DACS_ERR_INVALID_DE: The DE id was invalid or not reserved.

v DACS_ERR_INVALID_HANDLE: memory region was never registered.

v DACS_ERR_INVALID_PID: the program id is not valid.

v DACS_ERR_INVALID_TARGET: the memory handle was not registered with this

DE/PID.

v DACS_ERR_NOT_OWNER: the handle cannot be deregistered. The current DE/PID is

not the owner.

v DACS_ERR_NOT_INITIALIZED: DaCS has not been initialized.

Chapter 10. Data communication 105

v DACS_ERR_NOT_SUPPORTED_YET: the DaCS function is currently unsupported by

this platform.

SEE ALSO

dacs_mem_create(3), dacs_mem_share(3), dacs_mem_accept(3),

dacs_mem_release(3), dacs_mem_register(3), dacs_mem_destroy(3),

dacs_mem_get(3), dacs_mem_put(3), dacs_mem_get_list(3), dacs_mem_put_list(3),

dacs_mem_limits_query(3), dacs_mem_query(3)

106 DaCS Library for Cell/B.E. and Hybrid Programmer’s Guide and API Reference

dacs_mem_destroy

NAME

dacs_mem_destroy - Invalidate access to the specified memory region.

SYNOPSIS

C syntax

DACS_ERR_T dacs_mem_destroy (dacs_mem_t *mem)

Fortran syntax

dacsf_mem_destroy (dacs_mem_t mem, DACS_ERR_T rc)

 Call parameter

mem C: pointer to a memory handle.

Fortran: the memory handle.

 Return parameter

rc Fortran only: see Return Value.

DESCRIPTION

The dacs_mem_destroy service invalidates the sharing of a specific memory region

that has been created by dacs_mem_create(). Only the creator of the memory

region may destroy it. This service blocks until all users of the memory region

have released it with either dacs_mem_release() or dacs_mem_deregister(). The

handle will be invalidated on successful completion of this method.

RETURN VALUE

The dacs_mem_destroy service returns an error indicator defined as:

v DACS_SUCCESS: the memory region was successfully destroyed.

v DACS_ERR_INVALID_HANDLE: the handle is not for a valid local memory region.

v DACS_ERR_INVALID_ADDR: the address of the output handle is invalid.

v DACS_ERR_NOT_OWNER: attempt to destroy an accepted memory region.

v DACS_ERR_RESOURCE_BUSY: the memory region is still registered for use.

v DACS_ERR_NOT_INITIALIZED: DaCS has not been initialized.

SEE ALSO

dacs_mem_create(3), dacs_mem_share(3), dacs_mem_accept(3),

dacs_mem_release(3), dacs_mem_register(3), dacs_mem_deregister(3),

dacs_mem_get(3), dacs_mem_put(3), dacs_mem_get_list(3), dacs_mem_put_list(3),

dacs_mem_limits_query(3), dacs_mem_query(3)

Chapter 10. Data communication 107

dacs_mem_get

NAME

dacs_mem_get - Get data from remote memory to local memory.

SYNOPSIS

C syntax

DACS_ERR_T dacs_mem_get (dacs_mem_t dst_local_mem, uint64_t

dst_local_mem_offset, dacs_mem_t src_remote_mem, uint64_t src_remote_mem_offset,

uint64_t size, dacs_wid_t wid, DACS_ORDER_ATTR_T order_attr,

DACS_BYTE_SWAP_T swap)

Fortran syntax

dacsf_mem_get (dacs_mem_t dst_local_mem, dacs_int64_t dst_local_mem_offset,

dacs_mem_t src_remote_mem, dacs_int64_t src_remote_mem_offset, dacs_int64_t size,

dacs_wid_t wid, DACS_ORDER_ATTR_T order_attr, DACS_BYTE_SWAP_T swap,

DACS_ERR_T rc)

 Call parameters

dst_local_mem The memory handle of the destination buffer.

dst_local_mem_offset The offset into local buffer where the get is to start.

src_remote_mem The memory handle of the source buffer.

src_remote_mem_offset The offset into the remote buffer where the get is to start.

size The size of transfer in bytes.

wid A communications wait identifier.

order_attr An ordering attribute.

swap The little-endian or big-endian byte-swapping flag.

 Return parameter

rc Fortran only: see Return value

DESCRIPTION

This is a non-blocking DMA operation that initiates a data copy from a remote

memory region into a local memory region. The data source is specified as an

offset, src_remote_mem_offset, into the remote memory region src_remote_mem.

The remote memory region must have been previously accepted using

dacs_mem_accept(). The data destination is specified as an offset,

dst_local_mem_offset, into the local memory region dst_local_mem. The local

memory region must have been previously registered using dacs_mem_register().

This operation is associated with a specified wait identifier, wid. To ensure that the

initiated data transfer has completed, either dacs_wait() or dacs_test() must be

successfully called using the same wid. Successfully waiting on the completion of

this operation guarantees that all data is available locally.

Possible values of order_attr are:

v DACS_ORDER_ATTR_FENCE: execution of this operation is delayed until all

previously issued DMA operations to the same DE using the same wid have

completed.

108 DaCS Library for Cell/B.E. and Hybrid Programmer’s Guide and API Reference

v DACS_ORDER_ATTR_BARRIER: execution of this command and all subsequent DMA

operations are delayed until all previously issued DMA operations to the same

DE using the same wid have completed.

v DACS_ORDER_ATTR_NONE: no ordering is enforced.

The services provide the following types of byte swapping:

 DACS_BYTE_SWAP_DISABLE: no byte-swapping.

Hybrid only: the following values are also supported:

 DACS_BYTE_SWAP_HALF_WORD: byte-swapping for halfwords (2 bytes).

 DACS_BYTE_SWAP_WORD: byte-swapping for words (4 bytes).

 DACS_BYTE_SWAP_DOUBLE_WORD: byte-swapping for double words (8 bytes)

Cell/B.E.: this API is not supported by the PPU for accessing remote memory on

the SPU. This is due to the inability of the SPU to create or share remote memory.

RETURN VALUE

The dacs_mem_get service returns an error indicator defined as:

v DACS_SUCCESS: the get was started successfully.

v DACS_ERR_INVALID_HANDLE: the remote or local handle was invalid or the local

memory region may have not been registered.

v DACS_ERR_BUF_OVERFLOW: the specified size at the given offset exceeded the

bounds of the destination memory region.

v DACS_ERR_INVALID_SIZE: the specified size at the given offset exceeded the

bounds of the source memory region.

v DACS_ERR_INVALID_WID: the wid is not reserved.

v DACS_ERR_INVALID_ATTR: the order or byteswap attribute is invalid.

v DACS_ERR_NO_RESOURCE : there are no local resources available.

v DACS_ERR_NO_PERM: local memory regions have no write access or remote memory

region has no read access.

v DACS_ERR_NOT_ALIGNED: an alignment conflict exists between the swap flag

granularity and the address, offset, or size.

v DACS_ERR_NOT_INITIALIZED: DaCS has not been initialized.

v DACS_ERR_NOT_SUPPORTED_YET: the DaCS function is currently unsupported by

this platform.

SEE ALSO

dacs_mem_create(3), dacs_mem_share(3), dacs_mem_accept(3),

dacs_mem_release(3), dacs_mem_register(3), dacs_mem_deregister(3),

dacs_mem_destroy(3), dacs_mem_put(3), dacs_mem_get_list(3),

dacs_mem_put_list(3), dacs_mem_limits_query(3), dacs_mem_query(3)

Chapter 10. Data communication 109

dacs_mem_put

NAME

dacs_mem_put - Initiate a data transfer from local memory to remote memory.

SYNOPSIS

C syntax

DACS_ERR_T dacs_mem_put (dacs_mem_t dst_remote_mem, uint64_t

dst_remote_mem_offset, dacs_mem_t src_local_mem, uint64_t src_local_mem_offset,

uint64_t size, dacs_wid_t wid, DACS_ORDER_ATTR_T order_attr,

DACS_BYTE_SWAP_T swap)

Fortran syntax

dacsf_mem_put (dacs_mem_t dst_remote_mem, dacs_int64_t dst_remote_mem_offset,

dacs_mem_t src_local_mem, dacs_int64_t src_local_mem_offset, dacs_int64_t size,

dacs_wid_t wid, DACS_ORDER_ATTR_T order_attr, DACS_BYTE_SWAP_T swap,

DACS_ERR_T rc)

 Call parameters

dst_remote_mem The memory handle of the destination buffer.

dst_remote_mem_offset The offset into the remote buffer where the put is to be

performed.

src_local_mem The memory handle of the source buffer.

src_local_mem_offset The offset into the local buffer where the put is to be

performed.

size The amount of data to transfer in bytes.

wid The communications wait identifer.

order_attr An ordering attribute.

swap The little-endian or big-endian byte-swapping flag.

 Return parameter

rc Fortran only: see Return value.

DESCRIPTION

This is a non-blocking DMA operation that initiates a data copy from a local

memory region into a remote memory region. The data source is specified as an

offset, src_local_mem_offset, into the local memory region src_local_mem. The

local memory region must have been previously registered using

dacs_mem_register(). The data destination is specified as an offset,

dst_remote_mem_offset, into the remote memory region dst_remote_mem. The

remote memory region must have been previously accepted using

dacs_mem_accept().

This operation is associated with a specified wait identifier, wid. To ensure that the

initiated data transfer has completed, either dacs_wait() or dacs_test() must be

successfully called using the same wid. Successfully waiting on the completion of

this operation only guarantees that the data has been sent and that the source

buffer can be safely reused.

Possible values of order_attr are:

110 DaCS Library for Cell/B.E. and Hybrid Programmer’s Guide and API Reference

v DACS_ORDER_ATTR_FENCE: execution of this operation is delayed until all

previously issued DMA operations to the same DE using the same wid have

completed.

v DACS_ORDER_ATTR_BARRIER: execution of this command and all subsequent DMA

operations are delayed until all previously issued DMA operations to the same

DE using the same wid have completed.

v DACS_ORDER_ATTR_NONE: no ordering is enforced.

The services provide the following types of byte swapping:

 DACS_BYTE_SWAP_DISABLE: no byte-swapping.

Hybrid only: the following values are also supported:

 DACS_BYTE_SWAP_HALF_WORD: byte-swapping for halfwords (2 bytes).

 DACS_BYTE_SWAP_WORD: byte-swapping for words (4 bytes).

 DACS_BYTE_SWAP_DOUBLE_WORD: byte-swapping for double words (8 bytes)

Cell/B.E.: this API is not supported by the PPU for accessing remote memory on

the SPU. This is due to the inability of the SPU to create or share remote memory.

RETURN VALUE

The dacs_mem_put service returns an error indicator defined as:

v DACS_SUCCESS: the put was started successfully.

v DACS_ERR_INVALID_HANDLE: the remote or local handle was invalid or the local

memory region may have not been registered.

v DACS_ERR_BUF_OVERFLOW: the specified size at the given offset exceeded the

bounds of the destination memory region.

v DACS_ERR_INVALID_SIZE: the specified size at the given offset exceeded the

bounds of the source memory region.

v DACS_ERR_INVALID_WID: the wid is not reserved.

v DACS_ERR_INVALID_ATTR: the order or byteswap attribute is invalid.

v DACS_ERR_NO_RESOURCE : there are no local resources available.

v DACS_ERR_NO_PERM: the local memory region has no read access or remote

memory region has no write access

v DACS_ERR_NOT_ALIGNED: an alignment conflict exists between the swap flag

granularity and the address, offset, or size.

v DACS_ERR_NOT_SUPPORTED_YET: the DaCS function is currently unsupported by

this platform.

v DACS_ERR_NOT_INITIALIZED: DaCS has not been initialized.

SEE ALSO

dacs_mem_create(3), dacs_mem_share(3), dacs_mem_accept(3),

dacs_mem_release(3), dacs_mem_register(3), dacs_mem_deregister(3),

dacs_mem_destroy(3), dacs_mem_get(3), dacs_mem_get_list(3),

dacs_mem_put_list(3), dacs_mem_limits_query(3), dacs_mem_query(3)

Chapter 10. Data communication 111

dacs_mem_get_list

NAME

dacs_mem_get_list - Initiate a scatter or gather data transfer from a remote

memory region into a local memory region.

SYNOPSIS

C syntax

DACS_ERR_T dacs_mem_get_list, (dacs_mem_t dst_lcl_handle, dacs_dma_list_t

*dst_list, uint32_t dst_count, dacs_mem_t src_rmt_handle, dacs_dma_list_t *src_list,

uint32_t src_count, dacs_wid_t wid, DACS_ORDER_ATTR_T order_attr,

DACS_BYTE_SWAP_T swap)

Fortran syntax

dacsf_mem_get_list (dacs_mem_t dst_lcl_handle, dacs_dma_list_t dst_list ,

dacs_int32_t dst_count, dacs_mem_t src_rmt_handle, dacs_dma_list_t src_list,

dacs_int32_t src_count, dacs_wid_t wid, DACS_ORDER_ATTR_T order_attr,

DACS_BYTE_SWAP_T swap, DACS_ERR_T rc)

 Call parameters

dst_lcl_handle Locally created memory region.

dst_list List of offset/sizes within the local memory region.

dst_count The number of destination DMA list descriptors.

src_rmt_handle Accepted remote memory region handle.

src_list List of offset/sizes within the remote memory region.

src_count The number of source DMA list descriptors.

wid Reserved wait id.

order_attr An ordering attribute.

swap The little-endian or big-endian byte-swapping flag.

 Return parameter

rc Fortran only: see Return value.

DESCRIPTION

This is a non-blocking DMA operation that initiates a scatter or gather data copy

from a remote memory region into a local memory region. This method can either

scatter contiguous remote data blocks across numerous, possibly disjunct, local

memory locations or gather numerous, possibly disjunct, remote data blocks into a

contiguous local data area. The data source is specified through the list,

src_dma_list, which contains size and offset pairings that are applied relative to

the specified remote memory region src_remote_mem. This remote memory region

must have been previously accepted using dacs_mem_accept(). The data

destination is specified through the list, dst_dma_list, which contains size and

offset pairings that are applied relative to the specified local memory region

dst_local_mem. This local memory region must have been previously registered

using dacs_mem_register().

This operation is associated with a specified wait identifier, wid. To ensure that the

initiated data transfer has completed, either dacs_wait() or dacs_test() must be

successfully called using the same wid. Successfully waiting on the completion of

112 DaCS Library for Cell/B.E. and Hybrid Programmer’s Guide and API Reference

this operation guarantees that all data is available locally.

Possible values of order_attr are:

v DACS_ORDER_ATTR_FENCE: execution of this operation is delayed until all

previously issued DMA operations to the same DE using the same wid have

completed.

v DACS_ORDER_ATTR_BARRIER: execution of this command and all subsequent DMA

operations are delayed until all previously issued DMA operations to the same

DE using the same wid have completed.

v DACS_ORDER_ATTR_NONE: no ordering is enforced.

The services provide the following types of byte swapping:

 DACS_BYTE_SWAP_DISABLE: no byte-swapping.

Hybrid only: the following values are also supported:

 DACS_BYTE_SWAP_HALF_WORD: byte-swapping for halfwords (2 bytes).

 DACS_BYTE_SWAP_WORD: byte-swapping for words (4 bytes).

 DACS_BYTE_SWAP_DOUBLE_WORD: byte-swapping for double words (8 bytes)

Cell/B.E.: this API is not supported by the PPU for accessing remote memory on

the SPU. This is due to the inability of the SPU to create or sharing remote

memory.

RETURN VALUE

The dacs_mem_get_list service returns an error indicator defined as:

v DACS_SUCCESS: the get was started successfully.

v DACS_ERR_INVALID_HANDLE: the remote or local handle was invalid or the local

memory region may have not been registered.

v DACS_ERR_BUF_OVERFLOW: this can be for one of the following reasons:

1. Source list is too large for destination list.

2. Destination list is too large for local (destination) region.

3. Destination list is out-of-bounds of local (destination) region.
v DACS_ERR_INVALID_SIZE: this can be for one of the following reasons:

1. Destination list is too large for source list.

2. Source list too large for remote (source) region.

3. Source list is out-of-bounds of remote (source) region.

4. The destination or the source list size is zero.

5. Either destination or the source list size is not equal to 1.
v DACS_ERR_INVALID_WID: the wid is not reserved.

v DACS_ERR_INVALID_ATTR: the order or byteswap attribute is invalid.

v DACS_ERR_NO_RESOURCE: there are no local resources available.

v DACS_ERR_INVALID_ADDR: the remote or local DMA list address is invalid.

v DACS_ERR_NO_PERM: Local memory regions has no write access or remote memory

region has no read access.

v DACS_ERR_NOT_ALIGNED: an alignment conflict exists between the swap flag

granularity and the address, offset, or size.

v DACS_ERR_NOT_SUPPORTED_YET: the swap identifier is invalid or the result of

calling the API on an unsupported platform.

v DACS_ERR_NOT_INITIALIZED: DaCS has not been initialized.

Chapter 10. Data communication 113

SEE ALSO

dacs_mem_create(3), dacs_mem_share(3), dacs_mem_accept(3),

dacs_mem_release(3), dacs_mem_register(3), dacs_mem_deregister(3),

dacs_mem_destroy(3), dacs_mem_get(3), dacs_mem_put(3), dacs_mem_put_list(3),

dacs_mem_limits_query(3), dacs_mem_query(3)

114 DaCS Library for Cell/B.E. and Hybrid Programmer’s Guide and API Reference

dacs_mem_put_list

NAME

dacs_mem_put_list - Initiate a scatter or gather data transfer from a local memory

region into a remote memory region.

SYNOPSIS

C syntax

DACS_ERR_T dacs_mem_put_list (dacs_mem_t dst_rmt_handle, dacs_dma_list_t

*dst_list, uint32_t dst_count, dacs_mem_t src_lcl_handle, dacs_dma_list_t *src_list,

uint32_t src_count, dacs_wid_t wid, DACS_ORDER_ATTR_T order_attr,

DACS_BYTE_SWAP_T swap)

Fortran syntax

dacsf_mem_put_list (dacs_mem_t dst_rmt_handle, dacs_dma_list_t dst_list,

dacs_int32_t dst_count, dacs_mem_t src_lcl_handle, dacs_dma_list_t src_list,

dacs_int32_t src_count, dacs_wid_t wid, DACS_ORDER_ATTR_T order_attr,

DACS_BYTE_SWAP_T swap, DACS_ERR_T rc)

 Call parameters

dst_rmt_handle Accepted remote memory region handle.

dst_list List of offset/sizes within the remote memory region.

dst_count The number of destination DMA list descriptors.

src_lcl_handle Locally created memory region.

src_list List of offset/sizes within the local memory region.

src_count The number of source DMA list descriptors.

wid Reserved wait id.

order_attr An ordering attribute.

swap The little-endian or big-endian byte-swapping flag.

 Return parameter

rc Fortran only: See Return values

DESCRIPTION

This is a non-blocking DMA operation that initiates a scatter or gather data copy

from a local memory region into a remote memory region. This method can either

scatter contiguous local data blocks across numerous, possibly disjunct, remote

memory locations or gather numerous, possibly disjunct, local data blocks into a

contiguous remote data area. The data source is specified through the

list, src_dma_list, which contains size and offset pairings that are applied relative

to the specified local memory region src_local_mem. This local memory region

must have been previously registered using dacs_mem_register(). The data

destination is specified through the list, dst_dma_list, which contains size and

offset pairings that are applied relative to the specified remote memory region

dst_remote_mem. This remote memory region must have been previously accepted

using dacs_mem_accept().

This operation is associated with a specified wait identifier, wid. To ensure that the

initiated data transfer has completed, either dacs_wait() or dacs_test() must be

successfully called using the same wid. Successfully waiting on the completion of

Chapter 10. Data communication 115

this operation only guarantees that the data has been sent and that the source

buffer can be safely reused.

Possible values of order_attr are:

v DACS_ORDER_ATTR_FENCE: execution of this operation is delayed until all

previously issued DMA operations to the same DE using the same wid have

completed.

v DACS_ORDER_ATTR_BARRIER: execution of this command and all subsequent DMA

operations are delayed until all previously issued DMA operations to the same

DE using the same wid have completed.

v DACS_ORDER_ATTR_NONE: no ordering is enforced.

The services provide the following types of byte swapping:

 DACS_BYTE_SWAP_DISABLE: no byte-swapping.

Hybrid only: the following values are also supported:

 DACS_BYTE_SWAP_HALF_WORD: byte-swapping for halfwords (2 bytes).

 DACS_BYTE_SWAP_WORD: byte-swapping for words (4 bytes).

 DACS_BYTE_SWAP_DOUBLE_WORD: byte-swapping for double words (8 bytes)

Cell/B.E.: this API is not supported by the PPU for accessing remote memory on

the SPU. This is due to the inability of the SPU to create or share remote memory.

RETURN VALUE

The dacs_mem_put_list service returns an error indicator defined as:

v DACS_SUCCESS: the get was started successfully.

v DACS_ERR_INVALID_HANDLE: the remote or local handle was invalid or the local

memory region may have not been registered.

v DACS_ERR_BUF_OVERFLOW: this can be for one of the following reasons:

1. Source list is too large for destination list.

2. Destination list is too large for local (destination) region.

3. Destination list is out-of-bounds of local (destination) region.
v DACS_ERR_INVALID_SIZE: this can be for one of the following reasons:

1. Destination list is too large for source list.

2. Source list too large for remote (source) region.

3. Source list is out-of-bounds of remote (source) region.

4. The destination or the source list size is zero.

5. neither the destination nor the source list size is equal to 1.
v DACS_ERR_INVALID_WID: the wid is not reserved.

v DACS_ERR_INVALID_ATTR: the order or byteswap attribute is invalid.

v DACS_ERR_NO_RESOURCE: there are no local resources available.

v DACS_ERR_INVALID_ADDR: the remote or local DMA list address is invalid.

v DACS_ERR_NO_PERM: Local memory regions has no write access or remote memory

region has no read access.

v DACS_ERR_NOT_ALIGNED: an alignment conflict exists between the swap flag

granularity and the address, offset, or size.

v DACS_ERR_NOT_SUPPORTED_YET: the swap identifier is invalid or the result of

calling the API on an unsupported platform.

v DACS_ERR_NOT_INITIALIZED: DaCS has not been initialized.

116 DaCS Library for Cell/B.E. and Hybrid Programmer’s Guide and API Reference

SEE ALSO

dacs_mem_create(3), dacs_mem_share(3), dacs_mem_accept(3),

dacs_mem_release(3), dacs_mem_register(3), dacs_mem_deregister(3),

dacs_mem_destroy(3), dacs_mem_get(3), dacs_mem_put(3), dacs_mem_get_list(3),

dacs_mem_limits_query(3), dacs_mem_query(3)

Chapter 10. Data communication 117

dacs_mem_limits_query

NAME

dacs_mem_limits_query - Query the limits on memory regions for communications

with a specific DE/PID.

SYNOPSIS

C syntax

DACS_ERR_T dacs_mem_limits_query (DACS_MEM_LIMITS_T attr, de_id_t

tgt_de, dacs_process_id_t tgt_pid, uint64_t * value)

Fortran syntax

dacsf_mem_limits_query (DACS_MEM_LIMITS_T attr, dacs_de_id_t tgt_de,

dacs_process_id_t tgt_pid, dacs_int64_t limit, DACS_ERR_T rc)

 Call parameters

attr The specific limit value to query.

tgt_de The target DE for the query.

tgt_pid The target process for the query.

 Return parameters

value C only: a pointer to the location where the attribute value is to be

returned. The value returned in this location depends on the attr

parameter passed. See Description for further details. A value of

UINT64_MAX indicates there is no limit for this attribute.

limit Fortran only: the value returned for limit depends on the attr

parameter passed. A value of -1 indicates there is no limit for the

attribute.

rc Fortran only: see Return value.

DESCRIPTION

Query the limits on memory regions for communications with a specific DE/PID.

Underlying devices may have restrictions on the size of memory regions. These

query attributes are used to help the programmer manage their DMA resources.

The numbers returned are guaranteed values at the time of the call. It may be

possible to successfully ask for more or larger memory regions than what is

returned here. These values may change after each dacs_mem_share or

dacs_mem_register call made.

Valid query limit attributes are:

v DACS_MEM_REGION_MAX_NUM: the maximum number of memory regions available

for communication with the target DE/PID.

v DACS_MEM_REGION_MAX_SIZE: the size, in bytes, of the largest single memory

region that can be created and shared/registered with the target DE/PID. This

size may change based on the current number of allocated memory regions and

the amount of memory each allocated memory region covers. As the aggregate

size of all allocated memory regions increases, this size may lower as it

approaches a maximum total aggregate memory size for the underlying device.

118 DaCS Library for Cell/B.E. and Hybrid Programmer’s Guide and API Reference

v DACS_MEM_REGION_AVAIL: the total number of currently unused memory regions

for communications with the target DE/PID.

Note: when communicating with the parent node, DACS_DE_PARENT and

DACS_DE_PID must be used.

RETURN VALUE

The dacs_mem_limits_query service returns an error indicator defined as:

v DACS_SUCCESS: query was successful.

v DACS_ERR_NOT_INITIALIZED: DaCS not initialized.

v DACS_ERR_INVALID_TARGET: DE/PID cannot be self.

v DACS_ERR_INVALID_ATTR: attribute was invalid.

v DACS_ERR_INVALID_DE: the specified DE is either invalid or not reserved.

v DACS_ERR_INVALID_PID: the specified PID does not refer to an active process.

v DACS_ERR_INVALID_ADDR: the address passed in for the return value was invalid.

v DACS_ERR_NOT_INITIALIZED: DaCS has not been initialized.

SEE ALSO

dacs_mem_create(3), dacs_mem_share(3), dacs_mem_accept(3),

dacs_mem_release(3),dacs_mem_register(3), dacs_mem_deregister(3),

dacs_mem_destroy(3), dacs_mem_get(3), dacs_mem_put(3), dacs_mem_get_list(3),

dacs_mem_put_list(3), dacs_mem_query(3)

Chapter 10. Data communication 119

dacs_mem_query

NAME

dacs_mem_query - Query the attributes of a memory region.

SYNOPSIS

C syntax

DACS_ERR_T dacs_mem_query (dacs_mem_t mem, DACS_MEM_ATTR_T attr,

uint64_t *value)

Fortran syntax

dacsf_mem_query_lcl_perm (dacs_mem_t mem, DACS_MEM_ACCESS_MODE_T

lcl_mode, DACS_ERR_T rc)

dacsf_mem_query_rmt_perm (dacs_mem_t mem,

DACS_MEM_ACCESS_MODE_T rmt_mode, DACS_ERR_T rc)

dacsf_mem_query_rmt_size (dacs_mem_t mem, dacs_int64_t mem_size,

DACS_ERR_T rc)

dacsf_mem_query_addr (dacs_mem_t mem, dacs_pvoid_t addr, DACS_ERR_Trc)

 Call parameters

mem The handle of the memory area to query.

attr The attribute to be queried. See Description for more information.

 Return parameters

value C only: a pointer to the location where the attribute value is to be

returned. The value returned in this location depends on the attr.

See Description for more information on the parameters that may

be passed.

For DACS_RMT_MEM_PERM and DACS_LCL_MEM_PERM. See Description

for more information about the access mode permissions.

lcl_mode Fortran only: the local access mode for the requested handle. See

Description for more information about the access mode

permissions.

rmt_mode Fortran only: the remote access mode for the requested handle.

See Description for more information about the access mode

permissions.

mem_size Fortran only: the size for the requested handle.

addr Fortran only: the address for the requested handle.

rc Fortran only: see Return value.

DESCRIPTION

The dacs_mem_query service queries the attributes of the specified memory region.

The memory region being queried must have been created or accepted by the

caller.

The value returned depends on the attr parameter passed as shown below:

v DACS_MEM_SIZE: size of the memory region.

120 DaCS Library for Cell/B.E. and Hybrid Programmer’s Guide and API Reference

v DACS_MEM_ADDR: address of the memory region.

v DACS_RMT_MEM_PERM: remote permissions on the memory region.

v DACS_LCL_MEM_PERM: local permissions on the memory region.

The following access mode permissions are available:

v DACS_MEM_READ_ONLY: the memory region is only readable

v DACS_MEM_WRITE_ONLY: the memory region is only writeable

v DACS_MEM_READ_WRITE: the memory region is both readable and writeable

v DACS_MEM_NONE: the memory region is neither readable nor writeable

RETURN VALUE

The dacs_mem_query service returns an error indicator defined as:

v DACS_SUCCESS: query was successful.

v DACS_ERR_INVALID_HANDLE: memory handle was invalid.

v DACS_ERR_INVALID_ATTR: attribute was invalid.

v DACS_ERR_INVALID_ADDR: value address was invalid.

v DACS_ERR_NOT_INITIALIZED: DaCS has not been initialized.

SEE ALSO

dacs_mem_create(3), dacs_mem_share(3), dacs_mem_accept(3),

dacs_mem_release(3), dacs_mem_register(3), dacs_mem_deregister(3),

dacs_mem_destroy(3), dacs_mem_get(3), dacs_mem_put(3), dacs_mem_get_list(3),

dacs_mem_put_list(3), dacs_mem_limits_query(3)

Chapter 10. Data communication 121

Unregistered local region functions

The unregistered local region functions provide the means for sharing memory

regions with remote processes. A memory region is made available to remote

consumers using a share/accept model whereby the owner of the memory creates

and shares a remote memory handle which is then accepted and used by remote

processes.

The unregistered local region functions, because they always work, make it easier

to get an application working, but by hiding the limitation they may hide

situations where an application change is required to achieve optimal performance.

Hybrid only: To help identify these situations, DaCS for Hybrid will create a log

entry when it hides a limitation. These logs are not automatically created, but can

be turned on as described in Appendix F, “DaCS for Hybrid debugging,” on page

197.

Note: With the exception of dacs_remote_mem_query(), the remote memory handle

can only be used on DaCS memory transfer services by the remote processes, and

only after they have accepted a share. The owner of the shared memory cannot use

these services.

Note: When DaCS for Hybrid is being used with DaCS for Cell/B.E, remote

memory that is created on the PPU (using dacs_remote_mem_create()) can be

shared with both the x86_64 (HE) and with the SPUs (AEs). If this is done then

either can use the put or get services to get from the memory shared by the PPU.

Remote memory usage scenarios

This table shows how to initialize and share a remote memory region.

 DE A DE B

A memory region is created to be used for

DMA:

dacs_remote_mem_create(memA_addr,

 memA_size,

 mem_access,

 &memA)

This creates a memory region of memA_size

bytes starting at local address memA_addr.

The memory region will have remote_access

permissions for remote consumers and

local_access permissions locally. A handle to

the created memory region memA is returned.

Share the memory region for remote usage:

dacs_remote_mem_share(de_B,

 pid_B,

 memA)

The memory region must be explicitly

shared with each DE/PID that will access

the region remotely. The request to share a

memory region will block until the

corresponding accept is performed.

Each shared memory region must be

accepted:

dacs_remote_mem_accept(de_A,

 pid_A,

 &memA)

Each remotely created memory region to be

accessed must be accepted from the sharing

DE/PID. A handle to the shared memory

region memA will be returned.

122 DaCS Library for Cell/B.E. and Hybrid Programmer’s Guide and API Reference

DE A DE B

The memory region can be queried for its

attributes:

dacs_remote_mem_query(memA,

 DACS_REMOTE_MEM_SIZE,

 &memQ)

The remotely created and shared memory

region can be queried to obtain its region

attributes. Attributes are individually

queried. The above query requests the size

of the remotely created region.

Get from a remote memory region: Getting data from a remote memory region.

 DE A DE B

Get data from the remote memory region:

dacs_get(memB_addr,

 memA,

 memA_offset,

 size,

 widB,

 order,

 swap)

In this case we are initiating a GET of size

bytes from remote memory region memA at

offset memA_offset. This data is stored

directly into local memory starting at

memB_addr. The memory transfer is tracked

through the wait identifier widB and is

ordered according to the specified ordering

type order. Intermediate byte swapping is

performed based on the swap type swap.

Wait on the MEM_GET to complete:

 dacs_wait(widB)

In order to verify the completion of the

DMA operation, the wait identifier must be

successfully waited on or tested. Multiple

messages or DMAs may be issued under a

single wait identifier which only requires a

single call to wait or test. The call to wait or

test will not complete until all DMAs or

messages associated with the wait identifier

have completed. Wait is a blocking status

check of all outstanding transactions for

wait identifier ‘widB’.

It will not return until all transfers,

associated with widB, have either completed

or encountered an error.

In the case of a GET, the successful

completion of waiting or testing guarantees

that size data bytes have arrived in the

associated local memory buffer pointed to

memB_addr.

Chapter 10. Data communication 123

Put to a remote memory region: Putting data into a remote memory region.

 DE A DE B

Put data into the remote memory region:

dacs_put(memA,

 memA_offset,

 memB_addr,

 size,

 widB,

 order,

 swap)

In this case we are initiating a PUT of size

bytes from local memory region memA at

offset memA_offset. This data is stored

directly into local memory starting at

memB_addr. The memory transfer is tracked

through the wait identifier widB and is

ordered according to the specified ordering

type order. Intermediate byte swapping is

performed based on the swap type swap.

Test whether the PUT has completed:

dacs_test(widB)

In order to verify the completion of the

DMA operation, the wait identifier must be

successfully waited on or tested. Multiple

messages or DMAs may be issued under a

single wait identifier which only requires a

single call to wait or test. The call to wait or

test will not complete until all DMAs or

messages associated with the wait identifier

have completed.

Test is a non-blocking status check of all

outstanding transactions for wait identifier

widB. If any transfers, associated with widB,

have not completed, the call will return

with a busy status.

In the case of a PUT, the successful

completion of waiting or testing only means

that the local memory buffer is available for

re-use. It does not guarantee that the data

has successfully arrived at the remote

memory region.

Destroying remote memory: Releasing and destroying a remote memory region.

124 DaCS Library for Cell/B.E. and Hybrid Programmer’s Guide and API Reference

DE A DE B

The creator of a memory region must destroy

it when the region is no longer needed:

dacs_remote_mem_destroy(&memA)

In this case the DE is destroying the memory

region it created for remote use. Since the

memory region had been shared for remote

use, the call must block until the memory

region has been released by all DEs it was

shared with.

Every remote memory region that was

accepted must be released when no longer

needed:

dacs_remote_mem_release(&memA)

Each consumer of the remote memory must

release the memory object once finished, so

the creator knows when it is safe to destroy

it.

Using the Hybrid library

The DaCS Hybrid version of the library integrates with the DaCS on Cell /B.E.

implementation on a CBEA (PPU) system. Integrated API calls can be interpreted

as Hybrid or Cell/B.E. library calls, depending on the set of parameters that are

passed in. This can lead to confusing return codes in some situations, especially

when debugging an application using the debug libraries. The memory init and

cleanup APIs suffer from this problem in particular; the Hybrid version are only

called when DACS_DE_PARENT is used as the DE, any other value calls the

Cell/B.E. version which returns DACS_ERR_NOT_SUPPORTED_YET, instead of

DACS_ERR_INVALID_DE.

The following functions exhibit this behavior:

v dacs_remote_mem_accept: The PPU host cannot accept memory from an SPU

because an SPU cannot create memory.

v dacs_remote_mem_release: The PPU host cannot release memory from an SPU

because an SPU cannot create memory.

Chapter 10. Data communication 125

dacs_remote_mem_create

NAME

dacs_remote_mem_create - Designate a region in the memory space of the current

process for access by remote processes by DMA services.

SYNOPSIS

C syntax

DACS_ERR_T dacs_remote_mem_create (void *addr, uint64_t size,

DACS_MEMORY_ACCESS_MODE_T access_mode, dacs_remote_mem_t *mem)

Fortran syntax

dacsf_remote_mem_create (dacs_pvoid_t addr, dacs_int64_t size,

DACS_MEMORY_ACCESS_MODE_T access_mode, dacs_remote_mem_t mem,

DACS_ERR_T rc)

 Call parameters

addr C: a pointer to the base address of the memory region to be

shared.

Fortran: the base address of the memory region to be shared. Use

dacsf_makevoid to create the handle.

size The size of the memory region in bytes.

access_mode The access mode to be given to the memory region.

 Return parameters

mem C: a pointer to a remote memory handle to be filled in.

Fortran: a remote memory handle to be filled in.

rc Fortran only: see Return value.

DESCRIPTION

The dacs_remote_mem_create service creates and returns a handle associated with

the given memory region. The returned handle can be used with the

dacs_remote_mem_share() service to share and gain access to remote shared

memory.

The access mode may be one of:

v DACS_READ_ONLY

v DACS_WRITE_ONLY

v DACS_READ_WRITE

Cell/B.E.: this call is not supported on the SPU, and calling it will result in the

returning of the DACS_ERR_NOT_SUPPORTED_YET error indicator.

RETURN VALUE

The service dacs_remote_mem_create returns an error indicator defined as:

v DACS_SUCCESS: normal return.

v DACS_ERR_INVALID_ADDR: the pointer is invalid.

126 DaCS Library for Cell/B.E. and Hybrid Programmer’s Guide and API Reference

v DACS_ERR_INVALID_ATTR: the flag or enumerated constant is invalid.

v DACS_ERR_NO_RESOURCE: unable to allocate required resources.

v DACS_ERR_INVALID_SIZE: a size of zero was requested.

v DACS_ERR_NOT_INITIALIZED: DaCS has not been initialized.

v DACS_ERR_NOT_SUPPORTED_YET: this call is not currently supported.

SEE ALSO

dacs_remote_mem_share(3), dacs_remote_mem_accept(3),

dacs_remote_mem_release(3), dacs_remote_mem_destroy(3),

dacs_remote_mem_query(3), dacsf_makevoid(3)

Chapter 10. Data communication 127

dacs_remote_mem_share

NAME

dacs_remote_mem_share - Share memory region access with a remote process.

SYNOPSIS

C syntax

DACS_ERR_T dacs_remote_mem_share (de_id_t dst_de, dacs_process_id_t dst_pid,

dacs_remote_mem_t mem)

Fortran syntax

dacsf_remote_mem_share (dacs_de_id_t dst_de, dacs_process_id_t dst_pid,

dacs_remote_mem_t mem, DACS_ERR_T rc)

 Call parameters

dst_de The target DE for the share.

dst_pid The target process for the share.

mem The handle of the remote memory to be shared.

 Return parameter

rc Fortran only: see Return value.

DESCRIPTION

The dacs_remote_mem_share service shares the specified remote memory handle

from the current process to the remote process specified by dst_de and dst_pid.

This service then blocks, waiting for a matching call to the dacs_remote_mem_accept

service on the remote side.

Note: When communicating with the parent node, DACS_DE_PARENT and

DACS_DE_PID must be used.

Cell/B.E.: this call is not supported on the SPU, and calling it will result in the

returning of the DACS_ERR_NOT_SUPPORTED_YET error indicator.

RETURN VALUE

The dacs_remote_mem_share service returns an error indicator defined as:

v DACS_SUCCESS: normal return.

v DACS_ERR_INVALID_DE: the specified DE is either invalid or not reserved.

v DACS_ERR_INVALID_PID: the specified PID does not refer to an active process.

v DACS_ERR_INVALID_TARGET: this operation is not allowed for the target process.

v DACS_ERR_INVALID_HANDLE: the remote memory handle is invalid.

v DACS_ERR_NOT_OWNER: this operation is only valid for the owner of the resource.

v DACS_ERR_NOT_INITIALIZED: DaCS has not been initialized.

v DACS_ERR_NOT_SUPPORTED_YET: this call is not currently supported.

v DACS_ERR_NO_RESOURCE: no resources are currently available.

128 DaCS Library for Cell/B.E. and Hybrid Programmer’s Guide and API Reference

SEE ALSO

dacs_remote_mem_create(3), dacs_remote_mem_accept(3),

dacs_remote_mem_release(3), dacs_remote_mem_destroy(3),

dacs_remote_mem_query(3)

Chapter 10. Data communication 129

dacs_remote_mem_accept

NAME

dacs_remote_mem_accept - Accept access to a remote memory region.

SYNOPSIS

C syntax

DACS_ERR_T dacs_remote_mem_accept (de_id_t src_de, dacs_process_id_t

src_pid, dacs_remote_mem_t *mem)

Fortran syntax

dacsf_remote_mem_accept (dacs_de_id_t src_de, dacs_process_id_t src_pid,

dacs_remote_mem_t mem, DACS_ERR_T rc)

 Call parameters

src_de The source DE which is sharing the remote memory handle.

src_pid The source process which is sharing the remote memory handle.

 Return parameters

mem C: a pointer to the accepted memory handle.

Fortran: the accepted memory handle.

rc Fortran only: see Return value.

DESCRIPTION

The dacs_remote_mem_accept service blocks the caller until it receives a remote

memory handle from an associated dacs_remote_mem_share() call. The remote

memory handle is returned on success.

Note: When communicating with the parent node, DACS_DE_PARENT and

DACS_DE_PID must be used.

Cell/B.E.: attempting to use this API on the PPU to accept a memory region from

the SPU will return DACS_ERR_NOT_SUPPORTED_YET.

RETURN VALUE

The dacs_remote_mem_accept service returns an error indicator defined as:

v DACS_SUCCESS: normal return.

v DACS_ERR_INVALID_DE: the specified DE is either invalid or not reserved.

v DACS_ERR_INVALID_PID: the specified PID does not refer to an active process.

v DACS_ERR_INVALID_TARGET: this operation is not allowed for the target process.

v DACS_ERR_INVALID_ADDR: the pointer is invalid.

v DACS_ERR_NO_RESOURCE: unable to allocate the required resources.

v DACS_ERR_NOT_INITIALIZED: DaCS has not been initialized.

v DACS_ERR_NOT_SUPPORTED_YET: this call is not currently supported by this

platform.

130 DaCS Library for Cell/B.E. and Hybrid Programmer’s Guide and API Reference

SEE ALSO

dacs_remote_mem_create(3), dacs_remote_mem_share(3),

dacs_remote_mem_release(3), dacs_remote_mem_destroy(3),

dacs_remote_mem_query(3)

Chapter 10. Data communication 131

dacs_remote_mem_release

NAME

dacs_remote_mem_release - Release access to a previously accepted remote

memory region.

SYNOPSIS

C syntax

DACS_ERR_T dacs_remote_mem_release (dacs_remote_mem_t *mem)

Fortran syntax

dacsf_remote_mem_release (dacs_remote_mem_t mem, DACS_ERR_T rc)

 Call parameter

mem C: a pointer to the remote memory handle.

Fortran: the remote memory handle.

 Return parameter

rc Fortran only: see Return value.

DESCRIPTION

The dacs_remote_mem_release service releases a previously accepted remote

memory object and invalidates the handle. When all accepters have released the

object it may be destroyed by its owner. This service does not block.

Cell/B.E.: attempting to use this API on the PPU to accept a memory region from

the SPU will return DACS_ERR_NOT_SUPPORTED_YET.

RETURN VALUE

The dacs_remote_mem_release service returns an error indicator defined as:

v DACS_SUCCESS: normal return.

v DACS_ERR_INVALID_ADDR: the pointer is invalid.

v DACS_ERR_INVALID_HANDLE: the specified handle does not refer to a valid remote

memory object.

v DACS_ERR_OWNER: this operation is not valid for the owner of the resource.

v DACS_ERR_NOT_INITIALIZED: DaCS has not been initialized.

v DACS_ERR_NOT_SUPPORTED_YET: this call is not currently supported.

v DACS_ERR_RESOURCE_BUSY: an operation that uses the handle is still active.

SEE ALSO

dacs_remote_mem_create(3), dacs_remote_mem_share(3),

dacs_remote_mem_accept(3), dacs_remote_mem_destroy(3),

dacs_remote_mem_query(3)

132 DaCS Library for Cell/B.E. and Hybrid Programmer’s Guide and API Reference

dacs_remote_mem_destroy

NAME

dacs_remote_mem_destroy - Invalidate remote access to the specified memory

region.

SYNOPSIS

C syntax

DACS_ERR_T dacs_remote_mem_destroy (dacs_remote_mem_t *mem)

Fortran syntax

dacsf_remote_mem_destroy (dacs_remote_mem_t mem, DACS_ERR_T rc)

 Call parameter

mem C: a pointer to a remote memory handle.

Fortran: the remote memory handle.

 Return parameter

rc Fortran only: see Return value.

DESCRIPTION

The dacs_remote_mem_destroy service invalidates the sharing of a specific memory

region which has been created by dacs_remote_mem_create(). Only the creator of

the memory region may destroy it. This service blocks until all users of the

memory region have released it. The handle is invalidated on successful

completion of this method.

Cell/B.E.: this call is not supported on the SPU, and calling it will result in the

returning of the DACS_ERR_NOT_SUPPORTED_YET error indicator.

RETURN VALUE

The dacs_remote_mem_destroy service returns an error indicator defined as:

v DACS_SUCCESS: normal return.

v DACS_ERR_INVALID_ADDR: the pointer is invalid.

v DACS_ERR_INVALID_HANDLE: the remote memory handle is invalid.

v DACS_ERR_NOT_OWNER: this operation is only valid for the owner of the resource.

v DACS_ERR_NOT_INITIALIZED: DaCS has not been initialized.

v DACS_ERR_NOT_SUPPORTED_YET: this call is not currently supported.

SEE ALSO

dacs_remote_mem_create(3), dacs_remote_mem_share(3),

dacs_remote_mem_accept(3), dacs_remote_mem_release(3),

dacs_remote_mem_query(3)

Chapter 10. Data communication 133

dacs_remote_mem_query

NAME

dacs_remote_mem_query - Query the attributes of a remote memory region.

SYNOPSIS

C syntax

DACS_ERR_T dacs_remote_mem_query (dacs_remote_mem_t mem,

DACS_REMOTE_MEM_ATTR_T attr, uint64_t *value)

Fortran syntax

dacsf_remote_mem_query_mode (dacs_remote_mem_t mem,

DACS_REMOTE_MEM_ATTR_T mode, DACS_ERR_T rc)

dacsf_remote_mem_query_size (dacs_remote_mem_t mem, dacs_int64_t size,

DACS_ERR_T rc)

dacsf_remote_mem_query_addr (dacs_remote_mem_t mem, dacs_pvoid_t addr,

DACS_ERR_T rc)

 Call parameters

mem The handle of the remote memory area to query.

attr C only: the attribute to be queried.

 Return parameters

value C only: a pointer to the location where the attribute value is to be

returned.

mode Fortran only: the returned access mode from

dacs_remote_mem_query_mode.

size Fortran only: the returned memory region size from

dacs_remote_mem_query_size .

addr Fortran only : the returned memory region address from

dacs_remote_mem_query_addr.

rc Fortran only: See Return value.

DESCRIPTION

The dacs_remote_mem_query service queries the attributes of the specified remote

memory region. The memory region being queried must have been created or

accepted by the caller.

C only: the attr parameter can be any of:

 DACS_REMOTE_MEM_SIZE:

 DACS_REMOTE_MEM_ADDR

 DACS_REMOTE_MEM_ACCESS_MODE

C only: the contents of value depends on the attr parameter passed as shown in

the following table:

v DACS_REMOTE_MEM_SIZE: a uint64_t value indicating the size of the memory

region in bytes.

134 DaCS Library for Cell/B.E. and Hybrid Programmer’s Guide and API Reference

v DACS_REMOTE_MEM_ADDR: a uint64_t value indicating the starting virtual address

within the creating process of the memory region.

v DACS_REMOTE_MEM_ACCESS_MODE: this can be one of:

 DACS_READ_ONLY

 DACS_WRITE_ONLY

 DACS_READ_WRITE

RETURN VALUE

The dacs_remote_mem_query service returns an error indicator defined as:

v DACS_SUCCESS: normal return.

v DACS_ERR_INVALID_ADDR: the pointer is invalid.

v DACS_ERR_INVALID_ATTR: the flag or enumerated constant is invalid.

v DACS_ERR_INVALID_HANDLE: the specified handle is invalid.

v DACS_ERR_NOT_INITIALIZED: DaCS has not been initialized.

SEE ALSO

dacs_remote_mem_create(3), dacs_remote_mem_share(3),

dacs_remote_mem_accept(3), dacs_remote_mem_release(3),

dacs_remote_mem_destroy(3)

Chapter 10. Data communication 135

dacs_put

NAME

dacs_put - Initiate a data transfer from local memory into a remote memory region.

SYNOPSIS

C syntax

DACS_ERR_T dacs_put (dacs_remote_mem_t dst_remote_mem, uint64_t

dst_remote_mem_offset, void *src_addr, uint64_t size, dacs_wid_t wid,

DACS_ORDER_ATTR_T order_attr, DACS_BYTE_SWAP_T swap)

Fortran syntax

dacsf_put (dacs_remote_mem_t dst_remote_mem, dacs_int64_t

dst_remote_mem_offset, dacs_pvoid_t src_addr, dacs_int64_t size, dacs_wid_t wid,

DACS_ORDER_ATTR_T order_attr, DACS_BYTE_SWAP_T swap, DACS_ERR_T

rc)

 Call parameters

dst_remote_mem The remote memory handle of the destination buffer.

dst_remote_mem_offset The offset into the remote buffer where the put is to be

performed.

src_addr C: a pointer to the source memory buffer.

Fortran: the source memory buffer. Use dacsf_makevoid to

create the handle.

size The amount of data to transfer in bytes.

wid The communications wait identifier.

order_attr An ordering attribute. See Description for further information

about possible values.

swap The little-endian or big-endian byte-swapping flag. See

Description for further information about possible values.

 Return parameter

rc Fortran only: see Return value.

DESCRIPTION

This is a non-blocking DMA operation that initiates a data copy from local memory

into a remote memory region. The data source is specified as a pointer, src_addr,

into the caller’s local address space. It is the responsibility of the caller to ensure

that enough memory is available to accommodate the specified size starting from

this address. The data destination is specified as an offset, dst_remote_mem_offset,

into the remote memory region dst_remote_mem. The remote memory region must

have been previously accepted using dacs_remote_mem_accept().

This operation is associated with a specified wait identifier, wid. To ensure that the

initiated data transfer has completed, either dacs_wait() or dacs_test() must be

successfully called using the same wid. Successfully waiting on the completion of

this operation only guarantees that the data has been sent and that the source

buffer can be safely reused.

136 DaCS Library for Cell/B.E. and Hybrid Programmer’s Guide and API Reference

Possible values for order_attr are:

v DACS_ORDER_ATTR_FENCE: execution of this operation is delayed until all

previously issued DMA operations to the same DE using the same wid have

completed.

v DACS_ORDER_ATTR_BARRIER: execution of this command and all subsequent DMA

operations are delayed until all previously issued DMA operations to the same

DE using the same wid have completed.

v DACS_ORDER_ATTR_NONE: no ordering is enforced.

The services provide the following types of byte swapping:

 DACS_BYTE_SWAP_DISABLE: no byte-swapping.

Hybrid only: the following values are also supported:

 DACS_BYTE_SWAP_HALF_WORD: byte-swapping for halfwords (2 bytes).

 DACS_BYTE_SWAP_WORD: byte-swapping for words (4 bytes).

 DACS_BYTE_SWAP_DOUBLE_WORD: byte-swapping for double words (8 bytes)

The target remote memory region must have been previously accepted by the

caller with a call to dacs_remote_mem_accept().

Note: The caller of the dacs_put() and dacs_get() methods is the process that

accepted the memory handle. The owner of the remote memory cannot use these

functions.

Cell/B.E. this API is not supported by the PPU for accessing remote memory on

the SPU. This is due to the inability of the SPU in to create or share remote

memory.

RETURN VALUE

The dacs_put service returns an error indicator defined as:

v DACS_SUCCESS: normal return.

v DACS_ERR_BUF_OVERFLOW: the specified size at the given offset exceeded the

bounds of the destination memory region.

v DACS_ERR_INVALID_ADDR: the pointer is invalid.

v DACS_ERR_INVALID_ATTR: the flag or enumerated constant is invalid.

v DACS_ERR_INVALID_WID: the wait identifier is invalid.

v DACS_ERR_INVALID_HANDLE: the remote memory handle is invalid.

v DACS_ERR_NO_PERM: the resource attributes do not allow this operation.

v DACS_ERR_NOT_ALIGNED: an alignment conflict exists between the swap flag

granularity and the address, offset, or size.

v DACS_ERR_NOT_SUPPORTED_YET: the DaCS function is currently unsupported by

this platform.

v DACS_ERR_NOT_INITIALIZED: DaCS has not been initialized.

SEE ALSO

dacs_get(3), dacs_put_list(3), dacs_get_list(3), dacs_test(3), dacs_wait(3),

dacsf_makevoid(3), dacs_remote_mem_create(3), dacs_remote_mem_accept(3),

dacs_remote_mem_release(3), dacs_remote_mem_destroy(3),

dacs_remote_mem_query(3), dacs_remote_mem_share(3)

Chapter 10. Data communication 137

dacs_get

NAME

dacs_get - Initiate a data transfer from a remote memory region into local memory.

SYNOPSIS

C syntax

DACS_ERR_T dacs_get (void *dst_addr, dacs_remote_mem_t src_remote_mem,

uint64_t src_remote_mem_offset, uint64_t size, dacs_wid_t wid,

DACS_ORDER_ATTR_T order_attr, DACS_BYTE_SWAP_T swap)

Fortran syntax

dacsf_get (dacs_pvoid_t dst_addr, dacs_remote_mem_t src_remote_mem,

dacs_int64_t src_remote_mem_offset, dacs_int64_t size, dacs_wid_t wid,

DACS_ORDER_ATTR_T order_attr, DACS_BYTE_SWAP_T swap, DACS_ERR_T

rc)

 Call parameters

dst_addr C: a pointer to the base address of the destination memory

buffer.

Fortran: the base address of the destination memory buffer. Use

dacsf_makevoid to create the handle.

src_remote_mem The remote memory handle of the source buffer.

src_remote_mem_offset The offset into the remote buffer where the get is to start.

size The size of the transfer in bytes.

wid A communications wait identifier.

order_attr An ordering attribute. See Description for further information

about possible values.

swap The little-endian or big-endian byte-swapping flag. See

Description for further information about possible values.

 Return parameter

rc Fortran only: see Return value.

DESCRIPTION

This is a non-blocking DMA operation that initiates a data copy from a remote

memory region into local memory. The data source is specified as an offset,

src_remote_mem_offset, into the remote memory region src_remote_mem. The

remote memory region must have been previously accepted using

dacs_remote_mem_accept(). The data destination is specified as a pointer, dst_addr,

into the caller’s local address space. It is the responsibility of the caller to ensure

that enough memory is available to accommodate the specified size starting from

this address.

This operation is associated with a specified wait identifier, wid. To ensure that the

initiated data transfer has completed, either dacs_wait() or dacs_test() must be

successfully called using the same wid. Successfully waiting on the completion of

this operation guarantees that all data is available locally.

138 DaCS Library for Cell/B.E. and Hybrid Programmer’s Guide and API Reference

Possible values of order_attr are:

v DACS_ORDER_ATTR_FENCE: execution of this operation is delayed until all

previously issued DMA operations to the same DE using the same wid have

completed.

v DACS_ORDER_ATTR_BARRIER: execution of this command and all subsequent DMA

operations are delayed until all previously issued DMA operations to the same

DE using the same wid have completed.

v DACS_ORDER_ATTR_NONE: no ordering is enforced.

The services provide the following types of byte swapping:

 DACS_BYTE_SWAP_DISABLE: no byte-swapping.

Hybrid only: the following values are also supported:

 DACS_BYTE_SWAP_HALF_WORD: byte-swapping for halfwords (2 bytes).

 DACS_BYTE_SWAP_WORD: byte-swapping for words (4 bytes).

 DACS_BYTE_SWAP_DOUBLE_WORD: byte-swapping for double words (8 bytes)

Cell/B.E.: this API is not supported by the PPU for accessing remote memory on

the SPU. This is due to the inability of the SPU to create or share remote memory.

Note: The user of the dacs_put() and dacs_get() methods is the process that

accepted the memory handle. The owner of the remote memory cannot use these

functions.

RETURN VALUE

The dacs_get service returns an error indicator defined as:

v DACS_SUCCESS: normal return.

v DACS_ERR_INVALID_ADDR: the pointer is invalid.

v DACS_ERR_INVALID_ATTR: the flag or enumerated constant is invalid.

v DACS_ERR_INVALID_SIZE: the specified size at the given offset exceeded the

bounds of the source memory region.

v DACS_ERR_INVALID_WID: the wait identifier is invalid.

v DACS_ERR_INVALID_HANDLE: the remote memory handle is invalid.

v DACS_ERR_NO_PERM: the resource attributes do not allow this operation.

v DACS_ERR_NOT_ALIGNED: an alignment conflict exists between the swap flag

granularity and the address, offset, or size.

v DACS_ERR_NOT_SUPPORTED_YET: the DaCS function is currently unsupported by

this platform.

v DACS_ERR_NOT_INITIALIZED: DaCS has not been initialized.

SEE ALSO

dacs_put(3), dacs_put_list(3), dacs_get_list(3), dacs_test(3), dacs_wait(3),

dacsf_makevoid(3), dacs_remote_mem_create(3), dacs_remote_mem_accept(3),

dacs_remote_mem_release(3), dacs_remote_mem_destroy(3),

dacs_remote_mem_query(3), dacs_remote_mem_share(3)

Chapter 10. Data communication 139

dacs_put_list

NAME

dacs_put_list - Initiate a scatter or gather data transfer into a remote memory

region from a local memory.

SYNOPSIS

C syntax

DACS_ERR_T dacs_put_list, (dacs_remote_mem_t dst_mem, dacs_dma_list_t *

dst_list, uint32_t dst_count, void *src_addr, dacs_dma_list_t *src_list, uint32_t

src_count, dacs_wid_t wid, DACS_ORDER_ATTR_T order_attr,

DACS_BYTE_SWAP_T swap)

Fortran syntax

dacsf_put_list (dacs_remote_mem_t dst_mem, dacs_dma_list_t dst_list, dacs_int32_t

dst_count, dacs_pvoid_t src_addr, dacs_dma_list_t src_list, dacs_int32_t src_count,

dacs_wid_t wid, DACS_ORDER_ATTR_T order_attr, DACS_BYTE_SWAP_T swap,

DACS_ERR_T rc)

 Call parameters

dst_mem The remote memory handle for the destination buffer.

dst_list C: a pointer to a list of entries describing transfer locations in the

destination buffer.

Fortran: a list of entries describing transfer locations in the

destination buffer. Use dacsf_makevoid to create the handles.

dst_count The number of elements in the destination DMA list.

src_addr C: the base address of the source memory buffer.

Fortran: The base address of the source memory buffer. Use

dacsf_makevoid to create the handle.

src_list C: a pointer to a list of entries describing transfer locations in the

source buffer.

Fortran: a list of entries describing transfer locations in the source

buffer. Use dacsf_makevoid to create the handles.

src_count The number of elements in the source DMA list.

wid The communication wait identifier associated with this transfer.

order_attr Ordering attribute. See Description for further information about

possible values.

swap The little-endian or big-endian byte-swapping flag. See

Description for further information about possible values.

 Return parameter

rc Fortran only: see Return value.

DESCRIPTION

This is a non-blocking DMA operation that initiates a scatter or gather data copy

from local memory into a remote memory region. This method can either scatter

contiguous local data blocks across numerous, possibly disjunct, remote memory

locations or gather numerous, possibly disjunct, local data blocks into a contiguous

remote data area. The data source is specified through the list, src_dma_list, which

140 DaCS Library for Cell/B.E. and Hybrid Programmer’s Guide and API Reference

contains size and offset pairings that are applied relative to the specified local

memory pointer src_addr. It is the responsibility of the caller to ensure that

enough memory is available to accommodate all size and offset pairings, starting

from this address. The data destination is specified through the list, dst_dma_list,

which contains size and offset pairings that are applied relative to the specified

remote memory region dst_remote_mem. This remote memory region must have

been previously accepted using dacs_remote_mem_accept().

DataD

DataC

DataB

DataA

DataD

DataC

DataB

DataA

src_list[3]

src_list[2]

src_list[1]

src_list[0]

dst_list[0]

DataD

DataC

DataB

DataA

src_list[0]

dst_list[3]

dst_list[2]

dst_list[1]

dst_list[0]

DataD

DataC

DataB

DataA

dacs_put_list - Scatter (src_list_size = 1 dst_list_size = 4)

Local Memory Remote Memory

Local Memory Remote Memory

Dacs_put_list - Gather to Remote (src_list_size = 4 dst_list_size = 1)

Get list from a remote memory region with source list size = 4

This operation is associated with a specified wait identifier: wid. To ensure that the

initiated data transfer has completed, either dacs_wait() or dacs_test() must be

Chapter 10. Data communication 141

successfully called using the same wid. Successfully waiting on the completion of

this operation only guarantees that the data has been sent and that the source

buffer can be safely reused.

Possible values of order_attr are:

v DACS_ORDER_ATTR_FENCE: execution of this operation is delayed until all

previously issued DMA operations to the same DE using the same wid have

completed.

v DACS_ORDER_ATTR_BARRIER: execution of this operation and all subsequent DMA

operations are delayed until all previously issued DMA operations to the same

DE using the same wid have been completed.

v DACS_ORDER_ATTR_NONE: no ordering is enforced.

The services provide the following types of byte swapping:

 DACS_BYTE_SWAP_DISABLE: no byte-swapping.

Hybrid only: the following values are also supported:

 DACS_BYTE_SWAP_HALF_WORD: byte-swapping for halfwords (2 bytes).

 DACS_BYTE_SWAP_WORD: byte-swapping for words (4 bytes).

 DACS_BYTE_SWAP_DOUBLE_WORD: byte-swapping for double words (8 bytes)

Cell/B.E.: this API is not supported by the PPU for accessing remote memory on

the SPU. This is due to the inability of the SPU to create or share remote memory.

RETURN VALUE

The dacs_put_list service returns an error indicator defined as:

v DACS_SUCCESS: the put was started successfully.

v DACS_ERR_INVALID_HANDLE: the remote or local handle was invalid or the local

memory region may have not been registered.

v DACS_ERR_BUF_OVERFLOW: this can be for one of the following reasons:

1. Source list is too large for destination list.

2. Destination list is too large for local (destination) region.

3. Destination list is out-of-bounds of local (destination) region.
v DACS_ERR_INVALID_SIZE: this can be for one of the following reasons:

1. Destination list is too large for source list.

2. Source list too large for remote (source) region.

3. Source list is out-of-bounds of remote (source) region.

4. The destination or the source list size is zero.

5. On Cell /B.E., neither the destination nor the source list size is equal to 1.
v DACS_ERR_INVALID_WID: the wid is not reserved.

v DACS_ERR_INVALID_ATTR: the order or byteswap attribute is invalid.

v DACS_ERR_NO_RESOURCE: there are no local resources available.

v DACS_ERR_INVALID_ADDR: the remote or local DMA list address is invalid.

v DACS_ERR_NO_PERM: Local memory regions has no write access or remote memory

region has no read access.

v DACS_ERR_NOT_ALIGNED: an alignment conflict exists between the swap flag

granularity and the address, offset, or size.

v DACS_ERR_NOT_SUPPORTED_YET: the DaCS function is currently unsupported by

this platform.

142 DaCS Library for Cell/B.E. and Hybrid Programmer’s Guide and API Reference

v DACS_ERR_NOT_INITIALIZED: DaCS has not been initialized.

SEE ALSO

dacs_put(3), dacs_get(3), dacs_get_list(3), dacs_test(3), dacs_wait(3),

dacs_makevoid(3), dacs_remote_mem_create(3), dacs_remote_mem_accept(3),

dacs_remote_mem_release(3), dacs_remote_mem_destroy(3),

dacs_remote_mem_query(3), dacs_remote_mem_share(3), dacs_makevoid(3)

Chapter 10. Data communication 143

dacs_get_list

NAME

dacs_get_list - Initiate a scatter or gather data transfer from a remote memory

region into local memory.

SYNOPSIS

C syntax

DACS_ERR_T dacs_get_list (void *dst_addr, dacs_dma_list_t *dst_dma_list,

uint32_t dst_list_size, dacs_remote_mem_t src_remote_mem, dacs_dma_list_t

*src_dma_list, uint32_t src_list_size, dacs_wid_t wid, DACS_ORDER_ATTR_T

order_attr, DACS_BYTE_SWAP_T swap)

Fortran syntax

dacsf_get_list (dacs_pvoid_t dst_addr, dacs_dma_list_t dst_dma_list, dacs_int32_t

dst_list_size, dacs_remote_mem_t src_remote_mem, dacs_dma_list_t src_dma_list,

dacs_int32_t src_list_size , dacs_wid_t wid, DACS_ORDER_ATTR_T order_attr,

DACS_BYTE_SWAP_T swap, DACS_ERR_T rc)

 Call parameters

dst_addr C: a pointer to the base address of the destination memory buffer.

Fortran: the base address of the destination memory buffer. Use

dacsf_makevoid to create the handle.

dst_dma_list C: a pointer to a list of entries describing transfer locations in the

destination buffer.

Fortran: a list of entries describing transfer locations in the

destination buffer. Use dacsf_makevoid to create the handles.

dst_list_size The number of elements in the destination DMA list.

src_remote_mem A handle for the remote source memory buffer.

src_dma_list C: a pointer to a list of entries describing transfer locations in the

source buffer.

Fortran: a list of entries describing transfer locations in the source

buffer. Use dacsf_makevoid to create the handles.

src_list_size The number of elements in the source DMA list.

wid The communication wait identifier associated with this transfer.

order_attr Ordering attribute. See Description for further information about

possible values.

swap The little-endian or big-endian byte-swapping flag. See

Description for further information about possible values.

 Return parameter

rc Fortran only: see Return value.

DESCRIPTION

This is a non-blocking DMA operation that initiates a scatter or gather data copy

from a remote memory region into local memory. This method can either scatter

contiguous remote data blocks across numerous, possibly disjunct, local memory

locations or gather numerous, possibly disjunct, remote data blocks into a

contiguous local data area. The data source is specified through the list,

144 DaCS Library for Cell/B.E. and Hybrid Programmer’s Guide and API Reference

src_dma_list, which contains size and offset pairings that are applied relative to

the specified remote memory region src_remote_mem. This remote memory region

must have been previously accepted using dacs_remote_mem_accept(). The data

destination is specified through the list, dst_dma_list, which contains size and

offset pairings that are applied relative to the specified local memory pointer

dst_addr. It is the responsibility of the caller to ensure that enough memory is

available to accommodate all size and offset pairings, starting from this address.

This operation is associated with a specified wait identifier wid. To ensure that the

initiated data transfer has completed, either dacs_wait() or dacs_test() must be

successfully called using the same wid. Successfully waiting on the completion of

this operation guarantees that all data is available locally.

Possible values of order_attr are:

v DACS_ORDER_ATTR_FENCE: execution of this operation is delayed until all

previously issued DMA operations to the same DE using the same wid have

completed.

v DACS_ORDER_ATTR_BARRIER: execution of this operation and all subsequent DMA

operations are delayed until all previously issued DMA operations to the same

DE using the same wid have been completed.

v DACS_ORDER_ATTR_NONE: no ordering is enforced.

Cell/B.E.: this API is not supported by the PPU for accessing remote memory on

the SPU. This is due to the inability of the SPU to create or share remote memory.

The services provide the following types of byte swapping:

 DACS_BYTE_SWAP_DISABLE: no byte-swapping.

Hybrid only: the following values are also supported:

 DACS_BYTE_SWAP_HALF_WORD: byte-swapping for halfwords (2 bytes).

 DACS_BYTE_SWAP_WORD: byte-swapping for words (4 bytes).

 DACS_BYTE_SWAP_DOUBLE_WORD: byte-swapping for double words (8 bytes)

The destination address for each DMA operation is an effective address formed by

the sum of dst_addr and the offset specified in each DMA list element. The

assumption is that the destination buffers for the data are all within a contiguous

buffer starting at dst_addr. For cases where the destination buffers may not be in a

contiguous buffer with a known base address, a destination address of zero may

be specified. In this case the actual address of the destination buffer can be used as

the offset in the DMA list element.

This is an asynchronous service in that the data transfers are only initiated (but not

completed) when it returns. To ensure completion of the transfer you should make

a call to dacs_wait() or dacs_test() passing the wait identifier.

The target remote memory region must have been previously accepted by the

caller with a call to dacs_remote_mem_accept().

Chapter 10. Data communication 145

DataD

DataC

DataB

DataA

DataD

DataC

DataB

DataA

dst_list[3]

dst_list[2]

dst_list[1]

dst_list[0]

src_list[0]

DataD

DataC

DataB

DataA

dst_list[0]

src_list[3]

src_list[2]

src_list[1]

src_list[0]

DataD

DataC

DataB

DataA

dacs_get_list - Gather (src_list_size = 4 dst_list_size = 1)

Local Memory Remote Memory

Local Memory Remote Memory

dacs_get_list - Scatter to local (src_list_size = 1 dst_list_size = 4)

Get list from a remote memory region with source list size = 1

RETURN VALUE

The dacs_get_list service returns an error indicator defined as:

v DACS_SUCCESS: normal return.

v DACS_ERR_BUF_OVERFLOW: the buffer has overflowed - the specified offset or size of

one or more list elements exceed the bounds of the target buffer.

v : the buffer is not aligned correctly for the size of the transfer.

v DACS_ERR_INVALID_ADDR: the pointer is invalid.

v DACS_ERR_INVALID_ATTR: the flag or enumerated constant is invalid.

v DACS_ERR_INVALID_SIZE: this error is returned if the offset+size is outside the

src/local address range specified.

146 DaCS Library for Cell/B.E. and Hybrid Programmer’s Guide and API Reference

v DACS_ERR_INVALID_WID: the wait identifier is invalid.

v DACS_ERR_INVALID_HANDLE: the remote memory handle is invalid.

v DACS_ERR_NO_RESOURCE: unable to allocate required resources.

v DACS_ERR_NO_PERM: the resource attributes do not allow this operation.

v DACS_ERR_NOT_ALIGNED: an alignment conflict exists between the swap flag

granularity and the address, offset, or size.

v DACS_ERR_NOT_SUPPORTED_YET: the DaCS function is currently unsupported by

this platform.

v DACS_ERR_NOT_INITIALIZED: DaCS has not been initialized.

SEE ALSO

dacs_put(3), dacs_get(3), dacs_put_list(3), dacs_test(3), dacs_wait(3),

dacs_makevoid(3) dacs_remote_mem_create(3), dacs_remote_mem_accept(3),

dacs_remote_mem_release(3), dacs_remote_mem_destroy(3),

dacs_remote_mem_query(3), dacs_remote_mem_share(3)

Chapter 10. Data communication 147

Message passing

The messaging passing services provide two way communications using the

familiar send/recv model. These services are asynchronous, but can be

synchronized using the dacs_test() and dacs_wait() services as needed.

Message passing usage scenarios

The table below describes the process of message passing.

 Sender DE Receiver DE

The sender initiates the send of its data:

dacs_send(msg_addr,

 msg_size,

 recv_de,

 recv_pid,

 msg_stream,

 send_wid,swap)

This DE posts a request to send a message

of msg_size bytes, from its local memory

starting at msg_addr to the recipient DE/PID.

The message is sent via stream ID

msg_stream. The memory transfer is tracked

through the wait identifier send_wid.

Intermediate byte swapping is performed

based on the swap type swap.

The recipient of the message initiates the

receive:

dacs_recv(local_addr,

 msg_size,

 send_de,

 send_pid,

 msg_stream,

 recv_wid,swap)

This DE posts a request to receive a message

of msg_size bytes, into local memory starting

at local_addr, from the sender DE/PID. The

message is expected to be sent via stream ID

msg_stream. The memory transfer is tracked

through the wait identifier recv_wid.

Intermediate byte swapping is performed

based on the swap type swap.

Test whether the SEND has completed:

dacs_test(send_wid)

In order to verify the completion of the

message passing operation, the wait

identifier must be successfully waited on or

tested. Multiple messages or DMAs may be

issued under a single wait identifier which

only requires a single call to wait or test.

The call to wait or test will not complete

until all DMAs or messages associated with

the wait identifier have completed.

Test is a non-blocking status check of all

outstanding transactions for wait identifier

send_wid. If any transfers, associated with

send_wid, have not completed, the call will

return with a busy status.

In the case of a SEND, the successful

completion of waiting or testing only means

that the local memory buffer at msg_addr is

available for re-use. It does not guarantee

that the message has successfully arrived in

the receiver’s buffer.

Wait on the RECEIVE to complete:

dacs_wait(recv_wid)

In order to verify the completion of the

message passing operation, the wait

identifier must be successfully waited on or

tested. Multiple messages or DMAs may be

issued under a single wait identifier which

only requires a single call to wait or test.

The call to wait or test will not complete

until all DMAs or messages associated with

the wait identifier have completed.

Wait is a blocking status check of all

outstanding transactions for wait identifier

recv_wid. It will not return until all transfers,

associated with recv_wid, have either

completed or encountered an error.

In the case of a RECEIVE, the successful

completion of waiting or testing guarantees

that a message of msg_size bytes has

completely arrived in the associated local

memory buffer at local_addr.

148 DaCS Library for Cell/B.E. and Hybrid Programmer’s Guide and API Reference

dacs_send

NAME

dacs_send - Send a message to another process.

SYNOPSIS

C syntax

DACS_ERR_T dacs_send (void *src_data, uint32_t size, de_id_t dst_de,

dacs_process_id_t dst_pid, uint32_t stream, dacs_wid_t wid, DACS_BYTE_SWAP_T

swap)

Fortran syntax

dacsf_send (dacs_pvoid_t src_data, dacs_int32_t size, dacs_de_id_t dst_de,

dacs_process_id_t dst_pid, dacs_stream_t stream, dacs_wid_t wid,

DACS_BYTE_SWAP_T swap, DACS_ERR_T rc)

 Call parameters

src_data C: a pointer to the beginning of the source (send) message buffer.

Fortran: the beginning of the source (send) message buffer. Use

dacsf_makevoid to create the handle

size The size of the message buffer.

dst_de The message destination DE.

dst_pid The message destination process.

stream The identifier of the stream on which the message is to be sent.

The stream id must be between 0 and DACS_STREAM_UB

inclusive.

wid The wait identifier to synchronize on.

swap The little-endian or big-endian byte-swapping flag. See

Description for further information about possible values.

 Return parameter

rc Fortran only: see Return value.

DESCRIPTION

The dacs_send service asynchronously sends a message to another process. Upon

successful return a send operation is either pending or in progress. Use

dacs_test() or dacs_wait() to test for completion on this DE, so that the local

buffer can be reused or changed.

The services provide the following types of byte swapping:

 DACS_BYTE_SWAP_DISABLE: no byte-swapping.

Hybrid only: the following values are also supported:

 DACS_BYTE_SWAP_HALF_WORD: byte-swapping for halfwords (2 bytes).

 DACS_BYTE_SWAP_WORD: byte-swapping for words (4 bytes).

 DACS_BYTE_SWAP_DOUBLE_WORD: byte-swapping for double words (8 bytes)

Chapter 10. Data communication 149

Note: The size of the buffer at the destination process must be greater than or

equal to amount of data sent; otherwise the send operation fails silently. This error

will later be reported by dacs_test() or dacs_wait() as DACS_ERR_BUF_OVERFLOW.

Cell/B.E.: up to 8 outstanding (unmatched) sends and receives are supported.

Note: When communicating with the parent node, DACS_DE_PARENT and

DACS_DE_PID must be used.

Cell/B.E.: can return DACS_ERR_NOT_SUPPORTED_YET if a swap flag other than

DACS_BYTE_SWAP_DISABLE is used.

RETURN VALUE

The dacs_send service returns an error indicator defined as:

v DACS_SUCCESS: normal return.

v DACS_ERR_INVALID_ADDR: the pointer is invalid.

v DACS_ERR_INVALID_ATTR: the flag or enumerated constant is invalid.

v DACS_ERR_NO_RESOURCE: unable to allocate required resources.

v DACS_ERR_INVALID_DE: the specified DE is either invalid or not reserved.

v DACS_ERR_INVALID_PID: the specified PID does not refer to an active process.

v DACS_ERR_INVALID_TARGET: this operation is not allowed for the target process.

v DACS_ERR_INVALID_SIZE: the size is not supported by the platform.

v DACS_ERR_INVALID_WID: the wait identifier is invalid.

v DACS_ERR_INVALID_STREAM: the stream identifier is invalid.

v DACS_ERR_NOT_ALIGNED: an alignment conflict exists between the swap flag

granularity and the address, offset, or size.

v DACS_ERR_NOT_SUPPORTED_YET: the DaCS function is currently unsupported by

this platform.

v DACS_ERR_NOT_INITIALIZED: DaCS has not been initialized.

SEE ALSO

dacs_recv(3), dacs_wait(3), dacs_test(3), dacsf_makevoid(3)

150 DaCS Library for Cell/B.E. and Hybrid Programmer’s Guide and API Reference

dacs_recv

NAME

dacs_recv - Receive a message from another process.

SYNOPSIS

C syntax

DACS_ERR_T dacs_recv (void *dst_data, uint32_t size, de_id_t src_de,

dacs_process_id_t src_pid, uint32_t stream, dacs_wid_t wid, DACS_BYTE_SWAP_T

swap)

Fortran syntax

dacsf_recv (dacs_pvoid dst_data, dacs_int32_t size, de_id_t src_de,

dacs_process_id_t src_pid, dacs_stream_t stream, dacs_wid_t wid,

DACS_BYTE_SWAP_T swap, DACS_ERR_T rc)

 Call parameters

dst_data C: a pointer to the beginning of the destination (receive) data

buffer.

Fortran: the beginning of the destination(receive) message buffer.

Use dacsf_makevoid to create the handle.

size The size of the message buffer.

src_de The message source DE.

src_pid The message source process.

stream The stream on which to receive the message, or

DACS_STREAM_ALL.

wid The wait identifier to synchronize on.

swap The little-endian or big-endian byte-swapping flag.See Description

for further information about possible values.

 Return parameter

rc Fortran only: see Return value.

DESCRIPTION

The dacs_recv service asynchronously receives a message from another process.

Upon successful return a receive operation is either pending or in progress. You

should use dacs_test() or dacs_wait() to test for completion.

The number of bytes sent by the source process must be less than or equal to the

local buffer size, otherwise the receive operation fails.

Stream identifiers are used to select messages for reception. A message will be

received if the stream identifier of the message matches the stream identifier

specified to dacs_recv(), or if DACS_STREAM_ALL is specified. Stream identifier

values must be between 0 and DACS_STREAM_UB inclusive.

The services provide the following types of byte swapping:

 DACS_BYTE_SWAP_DISABLE: no byte-swapping.

Chapter 10. Data communication 151

Hybrid only: the following values are also supported:

 DACS_BYTE_SWAP_HALF_WORD: byte-swapping for halfwords (2 bytes).

 DACS_BYTE_SWAP_WORD: byte-swapping for words (4 bytes).

 DACS_BYTE_SWAP_DOUBLE_WORD: byte-swapping for double words (8 bytes)

The swap flag must be the same at both ends of the transfer. If not the completion

test (dacs_test() or dacs_wait()) will fail with DACS_ERR_BYTESWAP_MISMATCH, and

no data is transferred.

Note: When communicating with the parent node, DACS_DE_PARENT and

DACS_DE_PID must be used.

Cell/B.E.: up to 8 outstanding (unmatched) sends and receives are supported.

Cell/B.E.: can return DACS_ERR_NOT_SUPPORTED_YET if a swap flag other than

DACS_BYTE_SWAP_DISABLE is used.

RETURN VALUE

The dacs_recv service returns an error indicator defined as:

v DACS_SUCCESS: normal return.

v DACS_ERR_INVALID_ADDR: the pointer is invalid.

v DACS_ERR_INVALID_ATTR: the flag or enumerated constant is invalid.

v DACS_ERR_NO_RESOURCE: unable to allocate required resources.

v DACS_ERR_INVALID_DE: the specified DE is either invalid or not reserved.

v DACS_ERR_INVALID_PID: the specified PID does not refer to an active process.

v DACS_ERR_INVALID_TARGET: this operation is not allowed for the target process.

v DACS_ERR_INVALID_SIZE: the DaCS function is currently unsupported by this

platform.

v DACS_ERR_INVALID_WID: the wait identifier is invalid.

v DACS_ERR_INVALID_STREAM: the stream identifier is invalid.

v DACS_ERR_NOT_ALIGNED: an alignment conflict exists between the swap flag

granularity and the address, offset, or size.

v DACS_ERR_NOT_SUPPORTED_YET: the DaCS function is currently unsupported by

this platform.

v DACS_ERR_NOT_INITIALIZED: DaCS has not been initialized.

SEE ALSO

dacs_send(3), dacs_wait(3), dacs_test(3), dacsf_makevoid(3)

152 DaCS Library for Cell/B.E. and Hybrid Programmer’s Guide and API Reference

Mailboxes

The mailbox services provide a simple method of passing a single 32-bit unsigned

word between processes. These services use a blocking read/write model. The

mailbox is a FIFO queue with an implementation-specific depth.

Mailboxes provide communication between an accelerator and it’s host. Each

accelerator has an incoming and outgoing mailbox to the host (full duplex), each

has a size of 4 when using Dacs for Cell/B.E. and a size of 32 when using DaCS

for Hybrid. Mailboxes will block when the implementation specific size is reached.

Mailbox usage scenario

The table below shows how to use the mailbox services.

 Writer DE Reader DE

Test whether the reader has any available

incoming mailbox slots:

dacs_mailbox_test(DACS_TEST_MAILBOX_WRITE,

 reader_de,

 reader_pid,

 &avail_slots)

This test checks that the reader DE/PID has

available mailbox slots for posting a new

mailbox message. The test returns a non-zero

value if there are mailbox slots for the target

reader.

Test whether the reader has any available

incoming mailbox slots:

dacs_mailbox_test(DACS_TEST_MAILBOX_READ,

 writer_de,

 writer_pid,

 &avail_mail)

This test checks that the reader DE/PID has

available mailbox slots for posting a new

mailbox message. The test returns a

non-zero value if there are mailbox slots for

the target reader.

Post a mail message for the target DE/PID:

dacs_mailbox_write(&message,

 reader_de,

 reader_pid)

The writer can post a mail message for the

reader. If no mailbox slots are available then

the call will block until a slot is available.

Upon return, it is guaranteed that the mail

message, pointed to by message is available in

the reader’s mailbox.

Fetch a mail message from the source

DE/PID:

dacs_mailbox_read(&message,

 writer_de,

 writer_pid)

The reader can check whether a mail

message from the writer has been delivered.

If no messages are available from the writer

then the call will block until one is

available. Upon return, the incoming mail

message is removed from the mailbox and

stored at the location pointed to by message.

Chapter 10. Data communication 153

dacs_mailbox_write

NAME

dacs_mailbox_write - Send a single 32-bit value to another process.

SYNOPSIS

C syntax

DACS_ERR_T dacs_mailbox_write (uint32_t *msg, de_id_t dst_de,

dacs_process_id_t dst_pid)

Fortran syntax

dacsf_mailbox_write (dacs_int32_t msg, dacs_de_id_t dst_de, dacs_process_id_t

dst_pid, DACS_ERR_T rc)

 Call parameters

msg C: a pointer to the message to write.

Fortran: message to write

dst_de The message destination DE.

dst_pid The destination process id.

 Return parameter

rc Fortran only: see Return value.

DESCRIPTION

The dacs_mailbox_write service writes a single 32-bit unsigned integer to the

specified target mailbox. There are a number of mailbox slots for each process; this

number is defined by the implementation. If the destination has an empty mailbox

slot this service returns immediately. Otherwise this service blocks until a slot

becomes available. Mailbox operations are ordered with respect to local and remote

memory operations, as well as message passing operations.

Byte-swapping is done automatically if required. A DE cannot write to its own

mailbox and can only read from its own mailbox. Any attempt to do otherwise

returns an error.

Note: when communicating with the parent node, DACS_DE_PARENT and

DACS_DE_PID must be used.

Cell/B.E.: The mailbox depth is limited to 4 incoming and 4 outgoing mailboxes for

each SPU.

Hybrid: The mailbox depth is limited to 32 incoming and outgoing mailboxes for

each PID.

RETURN VALUE

The dacs_mailbox_write service returns an error indicator defined as:

v DACS_SUCCESS: normal return.

154 DaCS Library for Cell/B.E. and Hybrid Programmer’s Guide and API Reference

v DACS_ERR_INVALID_ADDR: the pointer is invalid.

v DACS_ERR_INVALID_DE: the specified DE is either invalid or not reserved.

v DACS_ERR_INVALID_PID: the specified PID does not refer to an active process.

v DACS_ERR_INVALID_TARGET: this operation is not allowed for the target process.

v DACS_ERR_NOT_INITIALIZED: DaCS has not been initialized.

SEE ALSO

dacs_mailbox_read(3), dacs_mailbox_test(3)

Chapter 10. Data communication 155

dacs_mailbox_read

NAME

dacs_mailbox_read - Receive a single 32-bit value from another process.

SYNOPSIS

C syntax

DACS_ERR_T dacs_mailbox_read (uint32_t *msg, de_id_t src_de,

dacs_process_id_t src_pid)

Fortran syntax

dacsf_mailbox_read (dacs_int32_t msg, dacs_de_id_t src_de, dacs_process_id_t

src_pid, DACS_ERR_T rc)

 Call parameters

src_de The message source DE.

src_pid The message source process.

 Return parameters

msg C: a pointer to the message received.

Fortran: the message received.

rc Fortran only: see Return value.

DESCRIPTION

The dacs_mailbox_read service reads a single 32-bit unsigned integer from the

specified source mailbox. There are an implementation specific number of mailbox

entries for each DE and PID. If the source does not have any pending mailbox

messages this service call blocks until one arrives.

Mailbox operations are ordered with respect to local and remote memory

operations, as well as message passing operations.

Byte-swapping is done automatically if required. A DE cannot write to its own

mailbox and can only read from its own mailbox. Any attempt to do otherwise

returns an error.

Note: when communicating with the parent node, DACS_DE_PARENT and

DACS_DE_PID must be used.

Cell/B.E.: The mailbox depth is limited to 4 incoming and 4 outgoing mailboxes for

each SPU.

Hybrid: The mailbox depth is limited to 32 incoming and outgoing mailboxes for

each PID.

156 DaCS Library for Cell/B.E. and Hybrid Programmer’s Guide and API Reference

RETURN VALUE

The dacs_mailbox_read service returns an error indicator defined as:

v DACS_SUCCESS: normal return.

v DACS_ERR_INVALID_ADDR: the pointer is invalid.

v DACS_ERR_INVALID_DE: the specified DE is either invalid or not reserved.

v DACS_ERR_INVALID_PID: the specified PID does not refer to an active process.

v DACS_ERR_INVALID_TARGET: operation not allowed for the target process.

v DACS_ERR_NOT_INITIALIZED: DaCS has not been initialized.

SEE ALSO

dacs_mailbox_write(3), dacs_mailbox_test(3)

Chapter 10. Data communication 157

dacs_mailbox_test

NAME

dacs_mailbox_test - Test if a mailbox access returns data or blocks.

SYNOPSIS

C syntax

DACS_ERR_T dacs_mailbox_test (DACS_TEST_MAILBOX_T rw_flag, de_id_t de,

dacs_process_id_t pid, int32_t *mbox_status)

Fortran syntax

dacsf_mailbox_test (DACS_TEST_MAILBOX_T rw_flag, dacs_de_id_t de,

dacs_process_id_t pid, dacs_int32_t mbox_status, DACS_ERR_T rc)

 Call parameters

rw_flag Flag to indicate which mailbox to test.

de The DE owning the mailbox to test.

pid The process owning the mailbox to test

 Return parameters

mbox_status C: a pointer to the location where the mailbox status is returned.

Fortran: mailbox status.

rc Fortran only: see Return value.

DESCRIPTION

The dacs_mailbox_test service allows the programmer to test if the mailbox will

block before calling dacs_mailbox_read() or dacs_mailbox_write().

rw_flag can be any of:

v DACS_TEST_MAILBOX_READ: test the read mailbox to see if a call to

dacs_mailbox_read() will block, or

v DACS_TEST_MAILBOX_WRITE: test the write mailbox to see if a call to

dacs_mailbox_write() will block.

mbox_status can be:

v zero if the mailbox read or write will block,

v non-zero if the mailbox read or write will not block.

Note: when communicating with the parent node, DACS_DE_PARENT and

DACS_DE_PID must be used.

RETURN VALUE

The dacs_mailbox_test service returns an error indicator defined as:

v DACS_SUCCESS: normal return.

v DACS_ERR_INVALID_ADDR: the pointer is invalid.

v DACS_ERR_INVALID_ATTR: the flag or enumerated constant is invalid.

158 DaCS Library for Cell/B.E. and Hybrid Programmer’s Guide and API Reference

v DACS_ERR_INVALID_DE: the specified DE is either invalid or not reserved.

v DACS_ERR_INVALID_PID: the specified PID does not refer to an active process.

v DACS_ERR_INVALID_TARGET: this operation is not allowed for the target process.

v DACS_ERR_NOT_INITIALIZED: DaCS has not been initialized.

SEE ALSO

dacs_mailbox_read(3), dacs_mailbox_write(3)

Chapter 10. Data communication 159

Wait identifier management services

These services are intended to manage wait identifiers (WIDs), which are used to

synchronize data communication. A WID is required for the data communication

services, and is used to test for completion of asynchronous data transfers.

160 DaCS Library for Cell/B.E. and Hybrid Programmer’s Guide and API Reference

dacs_wid_reserve

NAME

dacs_wid_reserve - Reserve a wait identifier.

SYNOPSIS

C syntax

DACS_ERR_T dacs_wid_reserve (dacs_wid_t *wid)

Fortran syntax

dacsf_wid_reserve (dacs_wid_t wid, DACS_ERR_T rc)

 Return parameters

wid C: A pointer to the reserved wait identifier.

Fortran: The reserved wait identifier.

rc Fortran only: See Return value.

DESCRIPTION

The dacs_wid_reserve service reserves a wait identifier.

RETURN VALUE

The dacs_wid_reserve service returns an error indicator defined as:

v DACS_SUCCESS: normal return.

v DACS_ERR_INVALID_ADDR: the pointer is invalid.

v DACS_ERR_NO_WIDS: no wait identifiers are available.

v DACS_ERR_NOT_INITIALIZED: DaCS has not been initialized.

SEE ALSO

dacs_wid_release(3)

Chapter 10. Data communication 161

dacs_wid_release

NAME

dacs_wid_release - Release a reserved wait identifier.

SYNOPSIS

C syntax

DACS_ERR_T dacs_wid_release (dacs_wid_t *wid)

Fortran syntax

dacsf_wid_release (dacs_wid_t wid, DACS_ERR_T rc)

 Call parameter

wid C: a pointer to the wait identifier to be released.

Fortran: the wait identifier to be released.

 Return parameter

rc Fortran only: see Return value.

DESCRIPTION

The dacs_wid_release service releases the reserved wait identifier. If a data

transfer using the wait identifier is still active, an error is returned and the wait

identifier is not released. On successful return the wait identifier is invalidated.

RETURN VALUE

The dacs_wid_release service returns an error indicator defined as:

v DACS_SUCCESS: normal return; the wait identifier was invalidated.

v DACS_ERR_INVALID_ADDR: the pointer is invalid.

v DACS_ERR_WID_ACTIVE: a data transfer involving the wait identifier is still active.

v DACS_ERR_INVALID_WID: the specified wait identifier is not reserved.

SEE ALSO

dacs_wid_reserve(3)

162 DaCS Library for Cell/B.E. and Hybrid Programmer’s Guide and API Reference

Transfer completion

A wait identifier is reserved and assigned to an asynchronous data communication

operation on initiation. These routines test the wait identifier to see if the

communication operation has completed.

Chapter 10. Data communication 163

dacs_test

NAME

dacs_test - Test if communication operations have finished on this wid so the

parameters can be changed or reused.

SYNOPSIS

C syntax

DACS_ERR_T dacs_test (dacs_wid _t wid)

Fortran syntax

dacsf_test (dacs_wid _t wid, DACS_ERR_T rc)

 Call parameter

wid A communication wait identifier.

 Return parameter

rc Fortran only: See Return value.

DESCRIPTION

The dacs_test service checks the data transfers for the given communication wait

identifier and returns a status. This service can be called multiple times. When it

returns DACS_WID_READY and no other operations are performed, subsequent calls

will then return DACS_ERR_WID_NOT_ACTIVE.

RETURN VALUE

The dacs_test service returns an error indicator defined as:

v DACS_WID_READY: all data transfers have completed.

v DACS_WID_BUSY: one or more data transfers have not completed.

v DACS_ERR_WID_NOT_ACTIVE: there are no outstanding transfers to test.

v DACS_ERR_INVALID_WID: the specified wait identifier is invalid.

v DACS_ERR_BYTESWAP_MISMATCH: the Little-endian / Big-endian architectures at the

ends of the transfer are incompatible.

v DACS_ERR_BUF_OVERFLOW: the data to be transferred is too large for the receive

buffer.

v DACS_ERR_INVALID_PID: a target process of an operation has either been killed,

died, or already exited while this process is waiting for the operations to

complete.

v DACS_ERR_NOT_INITIALIZED: DaCS has not been initialized.

SEE ALSO

dacs_wait(3), dacs_put(3), dacs_get(3), dacs_put_list(3), dacs_get_list(3),

dacs_put_list(3), dacs_wid_reserve(3), dacs_mem_get(3), dacs_mem_put(3),

dacs_mem_put_list(3), dacs_mem_get_list(3)

164 DaCS Library for Cell/B.E. and Hybrid Programmer’s Guide and API Reference

dacs_wait

NAME

dacs_wait - Wait for communication operations to finish on this wid so the

parameters can be changed or reused.

SYNOPSIS

C syntax

DACS_ERR_T dacs_wait (dacs_wid_t wid)

Fortran syntax

dacsf_wait (dacs_wid_t wid, DACS_ERR_T rc)

 Call parameter

wid A communication wait identifier.

 Return parameter

rc Fortran only: See Return value.

DESCRIPTION

The dacs_wait service blocks the caller, waiting for outstanding data transfers for

the given wait identifier to complete. It returns when all outstanding transfers are

finished. If one or more of the transfers fails, the first failure encountered is

reported.

Successfully completing a DaCS wait ensures that rDMA data is available at the

remote location and indicates that the local buffer is available for re-use. Both past

and future memory accesses are ordered with respect to this call.

dacs_wait() will not return until the rDMAs associated with the wid parameter

have completed. For example the data associated with a dacs_put() will be

available for use on the remote system when dacs_wait() returns.

Note: On dacs_send(), successful completion of wait does not guarantee that data

is available at the remote location. It only guarantees that the local buffer may be

safely re-used.

RETURN VALUE

The dacs_wait service returns an error indicator defined as:

v DACS_WID_READY: all data transfers have completed.

v DACS_ERR_WID_NOT_ACTIVE: there are no outstanding transfers to test.

v DACS_ERR_INVALID_WID: the specified wait identifier is invalid.

v DACS_ERR_BYTESWAP_MISMATCH: the Little-endian / Big-endian architectures at the

ends of the transfer are incompatible.

v DACS_ERR_BUF_OVERFLOW: the data to be transferred is too large for the receive

buffer.

Chapter 10. Data communication 165

v DACS_ERR_INVALID_PID: a target process of an operation has either been killed,

died, or already exited while this process is waiting for the operations to

complete.

v DACS_ERR_NOT_INITIALIZED: DaCS has not been initialized.

SEE ALSO

dacs_test(3), dacs_put(3), dacs_get(3), dacs_put_list(3), dacs_get_list(3),

dacs_wid_reserve(3), dacs_mem_get(3), dacs_mem_put(3), dacs_mem_put_list(3),

dacs_mem_get_list(3)

166 DaCS Library for Cell/B.E. and Hybrid Programmer’s Guide and API Reference

Chapter 11. Error handling

DaCS provides support for registration of user-created error handlers which are

called under certain error conditions. The error handlers can be called for

synchronous or asynchronous errors.

In DaCS any asynchronous error reported to the error handlers will cause the

process to abort. This will happen when DaCS has detected a fatal error from

which it cannot recover. Asynchronous errors include child failures (accelerator

process) and termination requests from a parent (host process). Abnormal child

termination will cause the parent to abort after calling all registered error handlers.

A normal child exit with a non-zero status will be reported asynchronously to the

error handlers, but will not cause the process to abort. This allows the parent

process to determine if the non-zero exit represents an error condition.

When it is called a user error handler is passed an error object describing the error,

which can be inspected using services provided. The error object contains the DE

and PID of the failing process. These can be used to call dacs_de_test() to reap its

status and so allow another process to be started on that DE.

The DaCS library uses the SIGTERM signal for handling asynchronous errors and

termination requests. A dedicated error handling thread is created in dacs_init()

for this purpose. Applications using the DaCS library should not create any

application threads before calling dacs_init(), and no application thread should

unmask this signal.

User error handler example

User error handler registration

For this example we’re going to create an user error handler called my_errhandler.

Once this has been defined we can register the user error handler using the

dacs_errhandler_reg API:

dacs_rc= dacs_errhandler_reg((dacs_error_handler_t)&my_errhandler,0);

Note: If the address of my_errhandler is not passed or the cast to

dacs_error_handler_t is omitted the compiler will produce warnings.

User error handler code:

/**

Example of a user error handler

This includes invocations of additional functions of

the passed "dacs_error_t" error parameter

**/

int my_errhandler(dacs_error_t error){

 /*need local variables for passback of values */

 DACS_ERR_T dacs_rc=0;

 DACS_ERR_T dacs_error_rc;//hold code for error

 de_id_t de=0;

 dacs_process_id_t pid=0;

 uint32_t code = 0;

 const char * error_string;

 /* Get the DACS_ERR_T in the error to learn what happened */

© Copyright IBM Corp. 2007, 2008 167

printf("\n\n--in my_dacs_errhandler\n");

 dacs_error_rc=dacs_rc=dacs_error_num(error);

 printf(" dacs_error_num indicates DACS_ERR_T=%d %s\n",

 dacs_rc,dacs_strerror(dacs_rc));

 /* Get the exit code in the error to learn what happened */

 dacs_rc=dacs_error_code(error,&code);

 if(dacs_rc){//if error invoking dacs_error_code

 printf(" dacs_error_code call had error DACS_ERR_T=%d %s\n",

 dacs_rc,dacs_strerror(dacs_rc));

 }

 else {

 if (DACS_STS_PROC_ABORTED==dacs_error_rc){

 printf(" dacs_error_code signal signal=%d ",code);

 }

 else if (DACS_STS_PROC_FAILED==dacs_error_rc){

 printf(" dacs_error_code exit code=%d\n",code);

 }

 else {//else reason is different than aborted or failed

 printf(" dacs_error_code exit/signal code=%d\n",code);

 }

 }

 /* Get the error string in the error to learn what happened */

 dacs_rc=dacs_error_str(error,&error_string);

 if(dacs_rc){//if error invoking dacs_error_str

 printf(" dacs_error_str call had error DACS_ERR_T=%d %s\n",

 dacs_rc,dacs_strerror(dacs_rc));

 }

 else {

 printf(" dacs_error_str=%s\n",error_string);

 }

 /* what DE had this error ? */

 dacs_rc=dacs_error_de(error,&de);

 if(dacs_rc){//if error invoking dacs_error_de

 printf(" dacs_error_de call had error DACS_ERR_T=%d %s\n",

 dacs_rc,dacs_strerror(dacs_rc));

 }

 else {

 printf(" dacs_error_de=%08x\n",de);

 }

 /* what was the dacs_process_id_t? */

 dacs_rc=dacs_error_pid(error,&pid);

 if(dacs_rc){//if error invoking dacs_error_pid

 printf(" dacs_error_pid call had error"

 "DACS_ERR_T=%d %s\n",dacs_rc,dacs_strerror(dacs_rc));

 }

 else {

 printf(" dacs_error_pid=%ld\n",pid);

 }

 printf("exiting user error handler\n\n");

 return 0;//in SDK 3.1, return value is ignored

}

 User error handler output

Example output if the accelerator program exits with a return code of 9:

--in my_dacs_errhandler

 dacs_error_num indicates DACS_ERR_T=4 DACS_STS_PROC_FAILED

 dacs_error_code exit code=9

 dacs_error_str=DACS_STS_PROC_FAILED

 dacs_error_de=01020200

 dacs_error_pid=5503

exiting user error handler

168 DaCS Library for Cell/B.E. and Hybrid Programmer’s Guide and API Reference

Example output if the accelerator program aborts:

--in my_dacs_errhandler

 dacs_error_num indicates DACS_ERR_T=5 DACS_STS_PROC_ABORTED

 dacs_error_code signal signal=6 dacs_error_str=DACS_STS_PROC_ABORTED

 dacs_error_de=01020200

 dacs_error_pid=5894

exiting user error handler

Abnormal child termination

In the case of abnormal child termination, the error code in the error object is a

platform-specific code.

Hybrid: Error code is the signal number that caused the termination.

Cell/B.E.: Error code is the libspe2 exception code. See the SPE Runtime

Management Library documentation for further information.

Chapter 11. Error handling 169

dacs_errhandler_reg

NAME

dacs_errhandler_reg - Register an error handler to be called when an asynchronous

or fatal error occurs.

SYNOPSIS

C syntax

DACS_ERR_T dacs_errhandler_reg (dacs_error_handler_t handler, uint32_t flags)

Fortran syntax

dacsf_errhandler_reg (external handler, dacs_int32_t flags, DACS_ERR_T rc)

 Call parameters

handler C: a pointer to an error handling function.

Fortran: an error handling function reference.

flags Flags for error handling options.

Note: In DaCS 4.0 no flags are supported; the flags value passed

in must be 0 (zero).

 Return parameter

rc Fortran only: see Return value.

DESCRIPTION

The dacs_errhandler_reg service registers an error handler. This handler will then

be called whenever an asynchronous DaCS process fails, or a synchronous DaCS

process encounters a fatal error.

Note: In DaCS 4.0 the return value from the user handler will be ignored in all

cases.

C only: if the error handler is coded in the form

uint32_t my_errhandler(dacs_error_t error)

then write the registration as

dacs_rc=dacs_errhandler_reg(&my_errhandler,0);

where dacs_rc has been declared as a variable of type DACS_ERROR_T.

Fortran only: Code the error handler in a module with the form:

FUNCTION errhandler(errdata)RESULT (rc)

Then code the error handler registration as:

call dacsf_errhandler_reg(errhandler,flags,rc)

A complete example of error handler registration in both C and Fortran is included

in the DaCS example source code which can be found in the rpms:

170 DaCS Library for Cell/B.E. and Hybrid Programmer’s Guide and API Reference

dacs-examples-source*.rpm and the dacs-hybrid-examples-source*.rpm

The user-registered handler must accept a handle to an error object, and return 1

(one) or 0 (zero) to indicate whether the error is deemed fatal or not. For fatal

internal errors, the process will be terminated without consideration for the

handler’s return value.

In C, the prototype of the handler is:

int (*dacs_error_handler_t)(dacs_error_t error)

In Fortran, the interface of the handler is:

function handler(errdata) RESULT(rc)

 include "dacsf.h"

 integer(kind=dacs_pvoid_t), intent(in) :: errdata

 integer(kind=dacs_err_t) :: rc

end function handler

RETURN VALUE

The dacs_errhandler_reg service returns an error indicator defined as:

v DACS_SUCCESS: normal return.

v DACS_ERR_INVALID_ADDR: the pointer is invalid.

v DACS_ERR_INVALID_ATTR: the flag or enumerated constant is invalid.

v DACS_ERR_NO_RESOURCE: unable to allocate required resources.

v DACS_ERR_NOT_INITIALIZED: DaCS has not been initialized.

SEE ALSO

dacs_strerror(3), dacs_error_num(3), dacs_error_code(3), dacs_error_str(3),

dacs_error_de(3), dacs_error_pid(3)

Chapter 11. Error handling 171

dacs_strerror

NAME

dacs_strerror - Return a pointer to a string describing an error.

SYNOPSIS

C syntax

const char * dacs_strerror (DACS_ERR_T errcode)

Fortran syntax

dacsf_strerror (DACS_ERR_T errcode, character errorstr)

 Call parameter

errcode An error code that was returned by a DaCS API.

 Return parameter

errorstr Fortran only: see Return value.

DESCRIPTION

The dacs_strerror service returns a pointer to the error string for the given error

code. The input error code can be any error returned by the DaCS API.

RETURN VALUE

The dacs_strerror service returns the error string for the given error code. In

Fortran, the length of the string variable is defined by the constant

DACS_MAX_ERRSTR_LEN in dacsf.h.

If no string was found, in C a NULL is returned, in Fortran an empty string is

returned.

SEE ALSO

dacs_errhandler_reg(3), dacs_error_num(3), dacs_error_code(3), dacs_error_str(3),

dacs_error_de(3), dacs_error_pid(3)

172 DaCS Library for Cell/B.E. and Hybrid Programmer’s Guide and API Reference

dacs_error_num

NAME

dacs_error_num - Return the error code for the specified error handle.

SYNOPSIS

C syntax

DACS_ERR_T dacs_error_num (dacs_error_t error)

Fortran syntax

dacsf_error_num (dacs_int64_t error, DACS_ERR_T errorcode)

 Call parameter

error An error handle.

 Return parameter

errorcode Fortran only: see Return Value.

DESCRIPTION

The dacs_error_num service returns the error code associated with the specified

error handle.

RETURN VALUE

The dacs_error_num service returns a DaCS error code, DACS_ERR_NOT_INITIALIZED

or DACS_ERR_INVALID_HANDLE if the given handle does not refer to a valid error

object.

SEE ALSO

dacs_errhandler_reg(3), dacs_strerror(3), dacs_error_code(3), dacs_error_str(3),

dacs_error_de(3), dacs_error_pid(3)

Chapter 11. Error handling 173

dacs_error_code

NAME

dacs_error_code - Retrieve the extended error code from the specified error object.

SYNOPSIS

C syntax

DACS_ERR_T dacs_error_code (dacs_error_t error, uint32_t *code)

Fortran syntax

dacsf_error_code (dacs_int64_t error, dacs_int32_t code, DACS_ERR_T rc)

 Call parameter

error An error handle.

 Return parameters

code C: a pointer to the error code.

Fortran: the error code.

rc Fortran only: see Return value.

DESCRIPTION

The dacs_error_code service retrieves the platform-specific extended error code

from the specified error object.

RETURN VALUE

The dacs_error_code service returns an error indicator defined as:

v DACS_SUCCESS: normal return; error code is returned in code.

v DACS_ERR_INVALID_HANDLE: the error handle is invalid.

v DACS_ERR_INVALID_ADDR: the pointer is invalid.

v DACS_ERR_NOT_INITIALIZED: DaCS has not been initialized.

SEE ALSO

dacs_errhandler_reg(3), dacs_strerror(3), dacs_error_num(3), dacs_error_str(3),

dacs_error_de(3), dacs_error_pid(3)

174 DaCS Library for Cell/B.E. and Hybrid Programmer’s Guide and API Reference

dacs_error_str

NAME

dacs_error_str - Retrieve the error string for the specified error object.

SYNOPSIS

C syntax

DACS_ERR_T dacs_error_str (dacs_error_t error, const char **errstr)

Fortran syntax

dacsf_error_str (dacs_int64_t error, character errstr, DACS_ERR_T rc)

 Call parameter

error An error handle.

 Return parameters

errstr C: a pointer to the error string.

Fortran: the error string.

rc Fortran only: see Return value.

DESCRIPTION

The dacs_error_str service returns the error string associated with the specified

error. This is the string that is returned from dacs_strerror().

In Fortran, the length of the string variable is defined by the constant

DACS_MAX_ERRSTR_LEN in dacsf.h. If the string returned is larger than the errstr

length, the string is truncated.

RETURN VALUE

The dacs_error_str service returns an error indicator defined as:

v DACS_SUCCESS: normal return: a pointer to the error string is passed back in

errstr.

v DACS_ERR_INVALID_HANDLE: the specified error handle is invalid.

v DACS_ERR_INVALID_ADDR: the pointer is invalid.

v DACS_ERR_NOT_INITIALIZED: DaCS has not been initialized.

SEE ALSO

dacs_errhandler_reg(3), dacs_strerror(3), dacs_error_num(3), dacs_error_code(3),

dacs_error_de(3), dacs_error_pid(3)

Chapter 11. Error handling 175

dacs_error_de

NAME

dacs_error_de - Retrieve the originating DE for the specified error object.

SYNOPSIS

C syntax

DACS_ERR_T dacs_error_de (dacs_error_t error, de_id_t *de)

Fortran syntax

dacsf_error_de (dacs_int64_t error, dacs_de_id_t de, DACS_ERR_T rc)

 Call Parameter

error An error handle.

 Return parameters

de C: a pointer indicating the DE which was the source of the error.

Fortran: the DE which was the source of the error.

rc Fortran only: see Return value.

DESCRIPTION

The dacs_error_de service returns the originating DE for the specified error object.

RETURN VALUE

The dacs_error_de service returns an error indicator defined as:

v DACS_SUCCESS: normal return: the originating DE is passed back in de.

v DACS_ERR_INVALID_HANDLE: the specified error handle is invalid.

v DACS_ERR_INVALID_ADDR: the pointer is invalid.

v DACS_ERR_NOT_INITIALIZED: DaCS has not been initialized.

SEE ALSO

dacs_errhandler_reg(3), dacs_strerror(3), dacs_error_num(3), dacs_error_code(3),

dacs_error_str(3), dacs_error_pid(3)

176 DaCS Library for Cell/B.E. and Hybrid Programmer’s Guide and API Reference

dacs_error_pid

NAME

dacs_error_pid - Retrieve the originating PID for the specified error object.

SYNOPSIS

C syntax

DACS_ERR_T dacs_error_pid (dacs_error_t error, dacs_process_id_t *pid)

Fortran syntax

dacsf_error_pid (dacs_int64_t error, dacs_process_id_t pid, DACS_ERR_T rc)

 Call parameter

error An error handle.

 Return parameters

pid C: a pointer indicating the PID which was the source of the error.

Fortran: the PID which was the source of the error.

rc Fortran only: see Return value.

DESCRIPTION

The dacs_error_pid service returns the originating PID for the specified error

object.

RETURN VALUE

The dacs_error_pid service returns an error indicator defined as:

v DACS_SUCCESS: normal return; the originating PID is passed back in pid.

v DACS_ERR_INVALID_HANDLE: the specified error handle is invalid.

v DACS_ERR_INVALID_ADDR: the specified address is invalid.

v DACS_ERR_NOT_INITIALIZED: DaCS has not been initialized.

SEE ALSO

dacs_errhandler_reg(3), dacs_strerror(3), dacs_error_num(3), dacs_error_code(3),

dacs_error_str(3), dacs_error_de(3)

Chapter 11. Error handling 177

178 DaCS Library for Cell/B.E. and Hybrid Programmer’s Guide and API Reference

Chapter 12. Fortran Address Handling

Some of the DaCS C APIs include a parameter type of void *. In Fortran two APIs

are provided to convert addresses to and from a dacs_pvoid_t handle for use as

parameters in the DaCS Fortran APIs. These are:

v dacsf_makeptr: convert a dacs_pvoid_t handle to an address or Fortran pointer.

v dacsf_makevoid: convert a Fortran pointer or address to a dacs_pvoid_t handle.

© Copyright IBM Corp. 2007, 2008 179

dacsf_makeptr

NAME

dacsf_makeptr - Convert a dacs_pvoid_t handle to an address or Fortran pointer.

SYNOPSIS

C syntax

Fortran only.

Fortran syntax

pointer dacsf_makeptr (dacs_pvoid_t holder)

 Call parameter

holder Handle returned from a DaCS API such as dacsf_mem_query_addr.

DESCRIPTION

The dacsf_makeptr service converts a dacs_pvoid_t handle to an address. Both 32

and 64 bit addressing is supported. To convert a dacs_pvoid_t into a Fortran

pointer the program must call the function dacsf_makeptr after calling an API

which returns a dacs_pvoid_t such as dacsf_mem_query to obtain the address.

Note: The C utility function prototype for dacsf_makeptr() is void *

dacsf_makeptr(int64_t *holder)

RETURN VALUE

The dacsf_makeptr service returns a Fortran pointer.

SEE ALSO

dacs_mem_query(3), dacs_remote_mem_query(3)

180 DaCS Library for Cell/B.E. and Hybrid Programmer’s Guide and API Reference

dacsf_makevoid

NAME

dacsf_makevoid - Convert a Fortran pointer or address to a dacs_pvoid_t handle.

SYNOPSIS

C syntax

Fortran only.

Fortran syntax

dacsf_makevoid (pointer in, dacs_pvoid_t out)

 Call parameter

in a Fortran pointer or data object where the handle will be used as

a parameter in a DaCS API such as dacsf_put

 Return parameter

out Handle of type dacs_pvoid_t.

DESCRIPTION

The dacsf_makevoid service converts the address of a Fortran data area, or the

contents of a Fortran pointer to a dacs_pvoid_t handle. Both 32 and 64 bit

addressing is supported.

Note: The C utility function prototype for dacs_makevoid() is void

dacsf_makevoid(void *in, int64_t *out).

RETURN VALUE

None.

SEE ALSO

dacs_put(3), dacs_get(3), dacs_put_list(3), dacs_get_list(3), dacs_send(3),

dacs_recv(3), dacs_mem_create(3), dacs_remote_mem_create(3), dacs_de_start(3)

Chapter 12. Fortran Address Handling 181

182 DaCS Library for Cell/B.E. and Hybrid Programmer’s Guide and API Reference

Part 5. Appendixes

© Copyright IBM Corp. 2007, 2008 183

184 DaCS Library for Cell/B.E. and Hybrid Programmer’s Guide and API Reference

Appendix A. DaCS DE types

The current DaCS Element (DE) types in the current supported DaCS topology are

listed below.

DACS_DE_SYSTEMX

The x86_64 supervisor host for a node.

DACS_DE_CELL_BLADE

An entire Cell/B.E. blade server. If a program is run on this DE, it has 16

SPE children, and the DACS_DE_CBE elements are not allowed to execute any

processes. Some applications may find this configuration useful.

DACS_DE_CBE

Cell/B.E.processor. A Cell/B.E. blade server contains two of these. If used

this way, a Cell/B.E. has 8 SPE children. As with the DACS_DE_CELL_BLADE,

if processes are running on a DACS_DE_CBE element, no processes are

allowed on the parent DACS_DE_CELL_BLADE. Running processes on a

Cell/B.E. node allows finer control of memory and processor affinity and

may increase performance.

DACS_DE_SPE

Cell/B.E. Synergistic Processing Element.

© Copyright IBM Corp. 2007, 2008 185

186 DaCS Library for Cell/B.E. and Hybrid Programmer’s Guide and API Reference

Appendix B. Performance and debug trace

The Performance Debugging Tool (PDT) provides trace data necessary to debug

functional and performance problems for applications using the DaCS library.

Versions of the DaCS libraries built with PDT trace hooks enabled are delivered

with DaCS 4.0.

Installing and running the PDT

The libraries with the trace hooks enabled are packaged in separate -trace named

packages. The trace-enabled libraries install to a subdirectory named dacs/trace in

the library install directory. These packages and the PDT are included in the SDK

3.1 package but may not be installed by default. Please refer to the PDT user’s

guide for full instructions on how to install PDT, and how to set the correct

environment variables to cause trace events to be generated. Included in the DaCS

trace package is an example PDT configuration file which shows the available trace

events that can be enabled or disabled.

Trace control

In the Hybrid environment, PDT functions the same as it does in the single-system

environment: When a PDT-enabled application starts, PDT reads its configuration

from a file. For a distributed DaCS application you can distribute the PDT

configuration with each job by specifying it as one of the DACS_START_FILES (see

“dacs_de_start” on page 54). The PDT configuration for DaCS is separate from the

configuration for your job.

Environment variable

PDT supports an environment variable (PDT_CONFIG_FILE) which allows you to

specify the relative or full path to a configuration file. DaCS will ship an example

configuration file which lists all of the DaCS groups and events and allows you to

turn selected items on or off as desired. This will be shipped as:

/usr/share/pdt/config/pdt_dacs_config_cell.xml

/usr/share/pdt/config/pdt_dacs_config_hybrid.xml

To see DaCS PPU or Hybrid events the application must use the trace-enabled

DaCS PPU/Hybrid code. If the application is using the static library then it must

be re-linked with the trace-enabled library code (/usr/lib64/dacs/trace/libdacs.a

or /usr/lib/dacs/trace/libdacs.a as appropriate for Cell/B.E. on the PPU, and

/usr/lib64/dacs/trace/libdacs_hybrid.a or /usr/lib/dacs/trace/
libdacs_hybrid.a as appropriate for DaCS for Hybrid). If the application was built

using the shared DaCS library then no re-linking is needed. In that case the library

path must be changed to point to the trace-enabled code as well as the PDT trace

library, by setting the environment as appropriate before running the application:

If the application was built using the shared PPU library then no re-linking is

needed. In that case the library path must be changed to point to the trace-enabled

PPU code as well as the PDT trace library, by setting the environment as

appropriate before running the application:

© Copyright IBM Corp. 2007, 2008 187

LD_LIBRARY_PATH=/usr/lib64/dacs/trace:/usr/lib64/trace # for 64-bit applications

LD_LIBRARY_PATH=/usr/lib/dacs/trace:/usr/lib/trace # for 32-bit applications

188 DaCS Library for Cell/B.E. and Hybrid Programmer’s Guide and API Reference

Appendix C. DaCS trace events

Where inputs or outputs are pointers to scalar types, both the pointer and the

contents will be traced. To avoid any extra overhead of checking for NULL

pointers, the trace code will only trace contents for pointers that are either required

to be non-NULL by the API spec. or already have appropriate checks in the library.

The contents of aggregate types will not be traced unless the entire object is passed

in as an argument.

In general, there will be two trace hooks per API. The first will trace the input

parameters and the second will trace the output values as well as the time interval

of the API call. The performance hooks will generally have entry and exit hooks so

the post-processing tools can show the time deltas. Note that the performance

hooks are also debug hooks and will be enabled when either category is enabled.

DaCS API hooks

 Table 8. Trace hooks enabled by LIBDACS group (0x04) in the config file.

Hook identifier Traced values

_DACS_BARRIER_WAIT_ENTRY group

_DACS_BARRIER_WAIT_EXIT_INTERVAL retcode

_DACS_DE_KILL_ENTRY deid, pid

_DACS_DE_KILL_EXIT_INTERVAL retcode

_DACS_DE_START_ENTRY deid, text, argv, envv, creation_flags, p_pid

_DACS_DE_START_EXIT_INTERVAL retcode, pid

_DACS_DE_TEST_ENTRY deid, pid, p_exit_status

_DACS_DE_TEST_EXIT_INTERVAL retcode, exit_status

_DACS_DE_WAIT_ENTRY deid, pid, p_exit_status

_DACS_DE_WAIT_EXIT_INTERVAL retcode, exit_status

_DACS_GENERIC_DEBUG long1, long2, long3, long4, long5, long6, long7, long8, long9,

long10

_DACS_GET_ENTRY dst_addr, src, src_offset, size, wid, order_attr, swap

_DACS_GET_EXIT_INTERVAL retcode

_DACS_GET_LIST_ENTRY dst_addr, dst_dma_list, dst_list_size, src_remote_mem,

src_dma_list, src_list_size, wid, order_attr, swap

_DACS_GET_LIST_EXIT_INTERVAL retcode

_DACS_MBOX_READ_ENTRY msg, src_de, src_pid

_DACS_MBOX_READ_EXIT_INTERVAL retcode

_DACS_MBOX_TEST_ENTRY rw_flag, deid, pid, p_mbox_status

_DACS_MBOX_TEST_EXIT_INTERVAL retcode, result

_DACS_MBOX_WRITE_ENTRY msg, dst_de, dst_pid

_DACS_MBOX_WRITE_EXIT_INTERVAL retcode

_DACS_MUTEX_ACCEPT_ENTRY deid, pid, mutex

_DACS_MUTEX_ACCEPT_EXIT_INTERVAL retcode

© Copyright IBM Corp. 2007, 2008 189

Table 8. Trace hooks enabled by LIBDACS group (0x04) in the config file. (continued)

Hook identifier Traced values

_DACS_MUTEX_DESTROY_ENTRY mutex

_DACS_MUTEX_DESTROY_EXIT_INTERVAL retcode

_DACS_MUTEX_INIT_ENTRY mutex

_DACS_MUTEX_INIT_EXIT_INTERVAL retcode

_DACS_MUTEX_LOCK_ENTRY mutex

_DACS_MUTEX_LOCK_EXIT_INTERVAL retcode

_DACS_MUTEX_RELEASE_ENTRY mutex

_DACS_MUTEX_RELEASE_EXIT_INTERVAL retcode

_DACS_MUTEX_SHARE_ENTRY deid, pid, mutex

_DACS_MUTEX_SHARE_EXIT_INTERVAL retcode

_DACS_MUTEX_TRY_LOCK_ENTRY mutex

_DACS_MUTEX_TRY_LOCK_EXIT_INTERVAL retcode

_DACS_MUTEX_UNLOCK_ENTRY mutex

_DACS_MUTEX_UNLOCK_EXIT_INTERVAL retcode

_DACS_PUT_ENTRY dst, dst_offset, src_addr, size, wid, order_attr, swap

_DACS_PUT_EXIT_INTERVAL retcode

_DACS_PUT_LIST_ENTRY dst, dst_dma_list, dma_list_size, src_addr, src_dma_list,

src_list_size, wid, order_attr, swap

_DACS_PUT_LIST_EXIT_INTERVAL retcode

_DACS_RMEM_ACCEPT_ENTRY src_de, src_pid, remote_mem

_DACS_RMEM_ACCEPT_EXIT_INTERVAL retcode

_DACS_RMEM_CREATE_ENTRY addr, size, mode, local_mem

_DACS_RMEM_CREATE_EXIT_INTERVAL retcode

_DACS_RMEM_DESTROY_ENTRY remote_mem

_DACS_RMEM_DESTROY_EXIT_INTERVAL retcode

_DACS_RMEM_RELEASE_ENTRY remote_mem

_DACS_RMEM_RELEASE_EXIT_INTERVAL retcode

_DACS_RMEM_SHARE_ENTRY dst, dst_pid, local_mem

_DACS_RMEM_SHARE_EXIT_INTERVAL retcode

_DACS_INIT_ENTRY config_flags

_DACS_INIT_EXIT_INTERVAL retcode

_DACS_EXIT_ENTRY zero

_DACS_EXIT_EXIT_INTERVAL retcode

_DACS_SEND_ENTRY src_data, len, dst_de, dst_pid, stream, wid, swap

_DACS_SEND_EXIT_INTERVAL retcode

_DACS_RECV_ENTRY dst_data, len, src_de, src_pid, stream, wid, swap

_DACS_RECV_EXIT_INTERVAL retcode

190 DaCS Library for Cell/B.E. and Hybrid Programmer’s Guide and API Reference

Table 9. Trace hooks enabled by the LIBDACS2 group (0x0A) in the config file:

Hook identifier Traced values

_DACS_GROUP_INIT p_group, flags, group, retcode

_DACS_GROUP_ADD_MEMBER_ENTRY deid, pid, group

_DACS_GROUP_ADD_MEMBER_EXIT_INTERVAL retcode

_DACS_GROUP_CLOSE_ENTRY group

_DACS_GROUP_CLOSE_EXIT_INTERVAL retcode

_DACS_GROUP_DESTROY_ENTRY p_group, group

_DACS_GROUP_DESTROY_EXIT_INTERVAL retcode,

_DACS_GROUP_ACCEPT_ENTRY deid, pid, p_group

_DACS_GROUP_ACCEPT_EXIT_INTERVAL retcode, group

_DACS_GROUP_LEAVE_ENTRY p_group, group

_DACS_GROUP_LEAVE_EXIT_INTERVAL retcode, group

_DACS_WID_RESERVE_ENTRY p_wid

_DACS_WID_RESERVE_EXIT_INTERVAL retcode, wid

_DACS_WID_RELEASE_ENTRY p_wid, wid

_DACS_WID_RELEASE_EXIT_INTERVAL retcode, wid

_DACS_TEST_ENTRY wid

_DACS_TEST_EXIT_INTERVAL retcode

_DACS_WAIT_ENTRY wid

_DACS_WAIT_EXIT_INTERVAL retcode

_DACS_GET_NUM_AVAIL_CHILDREN type, p_num_children, num_children, retcode

_DACS_RESERVE_CHILDREN_ENTRY type, p_num_children, num_children, p_de_list

_DACS_RESERVE_CHILDREN_EXIT_INTERVAL retcode, num_children, child[1..18]

_DACS_RELEASE_DE_LIST_ENTRY num_des, p_num_de_list, child[1..16]

_DACS_RELEASE_DE_LIST_EXIT_INTERVAL retcode, num_children, child[1..16]

_DACS_MEM_CREATE_ENTRY addr, size, rmt_access_mode, lcl_acces_mode, p_mem

_DACS_MEM_CREATE_EXIT_INTERVAL retcode, mem

_DACS_MEM_SHARE_ENTRY dst_de, dst_pid, local_mem

_DACS_MEM_SHARE_EXIT_INTERVAL retcode

_DACS_MEM_ACCEPT_ENTRY src_de, src_pid, p_mem

_DACS_MEM_ACCEPT_EXIT_INTERVAL retcode, mem

_DACS_MEM_DESTROY_ENTRY remote_mem

_DACS_MEM_DESTROY_EXIT_INTERVAL retcode

_DACS_MEM_RELEASE_ENTRY remote_mem

_DACS_MEM_RELEASE_EXIT_INTERVAL retcode

_DACS_MEM_PUT_ENTRY dst, dst_offset, src, src_offset, size, wid, order_attr, swap

_DACS_MEM_PUT_EXIT_INTERVAL retcode

_DACS_MEM_GET_ENTRY dst, dst_offset, src, src_offset, size, wid, order_attr, swap

_DACS_MEM_GET_EXIT_INTERVAL retcode

_DACS_MEM_PUT_LIST_ENTRY dst, dst_dma_list, dst_list_size, src, src_dma_list, src_list_size,

wid, order, attr, swap

Appendix C. DaCS trace events 191

Table 9. Trace hooks enabled by the LIBDACS2 group (0x0A) in the config file: (continued)

Hook identifier Traced values

_DACS_MEM_PUT_LIST_EXIT_INTERVAL retcode

_DACS_MEM_GET_LIST_ENTRY dst, dst_dma_list, dst_list_size, src, src_dma_list, src_list_size,

wid, order, attr, swap

_DACS_MEM_GET_LIST_EXIT_INTERVAL retcode

_DACS_MEM_REGISTER_ENTRY dst_de, dst_pid, local_mem

_DACS_MEM_REGISTER_EXIT_INTERVAL retcode

_DACS_MEM_DEREGISTER_ENTRY dst_de, dst_pid, local_mem

_DACS_MEM_DEREGISTER_EXIT_INTERVAL retcode

DaCS performance hooks

The COUNTERS and TIMERS hooks contain data that are accumulated during the

DaCS calls. These data and trace events are reported by the dacs_exit() function.

 Table 10. Trace hooks enabled by LIBDACS_GROUP group (0x06) in the config file.

Hook identifier Traced values

_DACS_COUNTERS1 dacs_de_starts, dacs_de_waits, dacs_put_count, dacs_get_count,

dacs_put_bytes, dacs_get_bytes, dacs_send_count,

dacs_recv_count, dacs_send_bytes, dacs_recv_bytes

_DACS_COUNTERS2 dacs_mutex_try_success, dacs_mutex_try_failure, dacs_x1,

dacs_x2

_DACS_HOST_MUTEX_INIT lock

_DACS_HOST_MUTEX_LOCK lock, miss

_DACS_HOST_MUTEX_TRYLOCK lock, ret

_DACS_HOST_MUTEX_UNLOCK lock

_DACS_PERF_GENERIC_DEBUG long1, long2, long3, long4, long5, long6, long7, long8, long9,

long10

_DACS_SPE_MUTEX_INIT lock

_DACS_SPE_MUTEX_LOCK lock, miss

_DACS_SPE_MUTEX_TRYLOCK lock, ret

_DACS_SPE_MUTEX_UNLOCK lock

_DACS_TIMERS dacs_put, dacs_put_list, dacs_wait, dacs_send, dacs_recv,

dacs_mutex_lock, dacs_barrier_wait, dacs_mbox_read,

dacs_mbox_write, dacs_x

_DACS_PPE_UNALIGNED_DMA op, ls, ea, len

_DACS_SPE_UNALIGNED_DMA op, ls, ea, len

_DACS_INTERNAL_BARRIER_WAIT

_DACS_INTERNAL_MESSAGE_WAIT

_DACS_INTERNAL_MUTEX_WAIT

192 DaCS Library for Cell/B.E. and Hybrid Programmer’s Guide and API Reference

Appendix D. Error codes

This section describes the DaCS error codes

All error codes which may be issued by DaCS APIs are listed here:

DACS_ERR_ARCH_MISMATCH: attempted to use a 64-bit accelerator application with a

 32-bit host application or vice-versa

DACS_ERR_BUF_OVERFLOW: buffer overflow

 - the specified offset or size exceed the bounds of the target buffer.

DACS_ERR_BYTESWAP_MISMATCH: the byte swap flags on the source and target

 do not match.

DACS_ERR_DACSD_FAILURE: unable to communicate with the DaCS daemon services.

DACS_ERR_DE_TERM: the de_started process has terminated before calling dacs_init().

DACS_ERR_GROUP_CLOSED: the group is closed.

DACS_ERR_GROUP_DUPLICATE: the specified process is already a member of the

 specified group.

DACS_ERR_GROUP_OPEN: the group has not been closed.

DACS_ERR_INITIALIZED: DaCS is already initialized.

DACS_ERR_INVALID_ARGV: the value of argv is too large or invalid.

DACS_ERR_INVALID_ADDR: the pointer is invalid.

DACS_ERR_INVALID_ATTR: the flag or enumerated constant is invalid.

DACS_ERR_INVALID_CWD: an error occurred accessing the current working directory on the accelerator

DACS_ERR_INVALID_DE: the specified DE is either invalid or not reserved.

DACS_ERR_INVALID_ENV: the value of env is too large or invalid.

DACS_ERR_INVALID_HANDLE: the handle is invalid.

DACS_ERR_INVALID_PID: the specified PID does not refer to a valid process.

DACS_ERR_INVALID_PROG: unable to execute the specified program.

DACS_ERR_INVALID_SIZE: the size is zero or is not supported by the platform.

DACS_ERR_INVALID_STREAM: the stream identifier is invalid.

DACS_ERR_INVALID_TARGET: this operation is not allowed for the target DE or process.

DACS_ERR_INVALID_USERNAME: current userid is not configured.

Typically this occurs if the userid is not setup on the accelerator but it is set up on the host

DACS_ERR_INVALID_WID: the wait identifier is invalid.

DACS_ERR_MUTEX_BUSY: the mutex is not available.

DACS_ERR_NO_PERM: the process does not have the appropriate privilege

 or the resource attributes do not allow the operation.

DACS_ERR_NO_RESOURCE: unable to allocate required resources.

DACS_ERR_NO_WIDS: no more wait identifiers are available to be reserved.

DACS_ERR_NOT_ALIGNED: an alignment conflict exists between the swap flag

granularity and the address, offset, or size.

DACS_ERR_NOT_INITIALIZED: DaCS has not been initialized.

DACS_ERR_NOT_FOUND: there is an error in the configuration file and some aspect

 of the hardware information is missing.

DACS_ERR_NOT_OWNER: this operation is only permitted for the owner of the resource.

DACS_ERR_NOT_SUPPORTED_YET: the DaCS function is currently unsupported by this

 platform.

DACS_ERR_OWNER: attempt to release a resource owned by the process. Resource must be

 destroyed.

DACS_ERR_PROC_LIMIT: the maximum number of processes supported has been reached.

DACS_ERR_RESOURCE_BUSY: the specified resource is in use.

DACS_ERR_SYSTEM: an error occurred interacting with the operating system

DACS_ERR_TOO_LONG: the executable name specified in de_start is too long

DACS_ERR_VERSION_MISMATCH: version mismatch between two parts of DaCS. This could be a mismatch

between the library and the DaCS daemon services or between the host and accelerator libraries.

DACS_ERR_WID_ACTIVE: data transfer involving the wait identifier is still active.

DACS_ERR_WID_NOT_ACTIVE: there are no outstanding transfers to test.

DACS_STS_PROC_ABORTED: the process terminated abnormally.

DACS_STS_PROC_FAILED: the process exited with a failure.

DACS_STS_PROC_FINISHED: the process finished execution without error.

DACS_STS_PROC_KILLED: the process was killed by a call to dacs_de_kill

© Copyright IBM Corp. 2007, 2008 193

DACS_STS_PROC_RUNNING: the process is still running.

DACS_SUCCESS: the API returned successfully.

DACS_WID_READY: all data transfers have completed.

DACS_WID_BUSY: one or more data transfers have not completed.

194 DaCS Library for Cell/B.E. and Hybrid Programmer’s Guide and API Reference

Appendix E. Environment variables

The environment variables supported by the DaCS APIs are summarized in the

tables below:

 Table 11. DaCS for Cell Environment Variables

Environment variable Description

DACS_SPE_EXCEPTION_HALT Halt SPU execution on exception.

This variable is used for debugging SPU exceptions within a DaCS

application. Typically, DaCS will handle SPU exceptions by collecting the

pertinent error information along with reaping the SPU thread. There are

times where the SPU application programmer may wish for the SPU

application to halt at the exception point for easier diagnosis and debug.

Setting this environment variable will cause the SPU application to halt, on

exception, at the offending location for debugging purposes.

 Table 12. DaCS for Hybrid Environment Variables

Environment variable Description

DACS_PARENT_PORT Specifies the port value to pass when starting the AE process.

See “dacs_de_start” on page 54 for more information.

DACS_START_ENV_LIST Specified an additional list of environment variables for the initial program

spawn on the accelerator.

See “dacs_de_start” on page 54 for more information.

DACS_START_FILES Specifies the name of a file which contains a list of files to transfer to the AE

prior to launching the AE process.

See “dacs_de_start” on page 54 for more information.

DACS_START_PARENT Specifies the command used to start an auxiliary program which starts the

AE process.

See “dacs_de_start” on page 54 for more information.

DACS_HYBRID_DEBUG Sets the level of debug messages to generate for DaCS for Hybrid.

When set:

v The daemon sends additional details about the daemon operation to the

daemon log

v The optimized and debug libraries send additional details about library

operations to the log

v The trace libraries send details about the library operation to PDT

For more details see Appendix F, “DaCS for Hybrid debugging,” on page

197.

DACS_HYBRID_KEEP_CWD When the dacsd.conf file specifies that the current working directory should

not be saved (default), this environment variable can be set to Y to indicate

that the behavior should be overridden temporarily.

For more details see Chapter 5, “Configuring DaCS for Hybrid,” on page 15.

© Copyright IBM Corp. 2007, 2008 195

Table 12. DaCS for Hybrid Environment Variables (continued)

Environment variable Description

DACS_HYBRID_USE_FABRIC_TYPE More than one fabric type can be specified in the dacs_topology.config file.

The fabric that is used by default is set using the default attribute of the

fabrics element. For debugging, this environment variable can be set to

indicate a temporary value for the fabric, overriding the default in the

configuration file.

Note: This variable must be set to one of the values specified in the

dacs_topology.config file as a type from one of the fabric elements.For

more details see Chapter 5, “Configuring DaCS for Hybrid,” on page 15.

196 DaCS Library for Cell/B.E. and Hybrid Programmer’s Guide and API Reference

Appendix F. DaCS for Hybrid debugging

DaCS for Hybrid provides message redirection, logging and tools to aid with

debugging.

Message redirection

With the redirection of stdout and stderr from the AEs to their associated HE, the

output becomes intermingled. To improve the ability to debug code, it is

recommended that messages should either be unique across all parts of the

application or should identify where they are coming from.

In addition, while output from the same source (in other words the same AE

process) is in the order written, output from different sources may not be in the

correct order relative to each other. For example if the HE prints out a message,

intermingled AE messages occurring after it in the output may have actually

occurred before it in time. To enable synchronization of output, it is recommended

that output be produced on both the HE and AE at points where they synchronize

(such as a share and accept).

Logging

In some cases DaCS for Hybrid will log information about the daemon or

application. Log entries are created with different severities:

 Emergency = 0

 Alert = 1

 Critical = 2

 Error = 3

 Warning = 4

 Notice = 5

 Information = 6

 Debug = 7

If the events being logged are severe enough (Emergency, Alert, or Critical), they

are also logged to the syslog (when the syslog daemon is running).

Daemon Logs

 The daemon logs can contain information about the heartbeat between the

daemons, messages flowing between processes, process start and end, and

topology information.The level and amount of information logged can be

controlled by using the dacs-hdacsd-loglevel tool (prototype). Calling this

tool with the parameter LOG_DEBUG will cause all messages at all levels

to be logged. Calling it with LOG_NOTICE will log only messages at the

Notice level or higher. The environment variable DACS_HYBRID_DEBUG can

also be used to control the level of messages. Setting it equal to Y does all

messages at all levels, setting it to a number logs messages at that level

(see above) or more severe.

 The log is put into /var/log/hdacsd.log or /var/log/adacsd.log for the

hdacsd or adacsd respectively.

© Copyright IBM Corp. 2007, 2008 197

The dacs-hdacsd-diag (prototype) tool can be used to retrieve information

about the daemons, including the logs. Note this is only available on the

HE, but it does, if requested, retrieve logs from the AEs as well.

Application Logs

Application Logs Critical or severe problems will be logged for the

application. If a trace library is being used, these logs are redirected to

PDT. Otherwise the logged information will go into /tmp/dlog_<pid>.log,

where pid is the process id. The PID information is available as part of the

daemon log from when the process was started.

 In addition to critical messages, if the dacs-hdacsd-loglevel tool

(prototype) or DACS_HYBRID_DEBUG environment variable are used (described

above), then messages about areas where DaCS for Hybrid performance

could be improved by application changes are logged. For example, if

memory regions are exhausted and dacs_put is used, DaCS for Hybrid will

not be able to get the temporary memory region needed to perform the put

and may either have to delay the put or redirect it to a different data path

with less performance.

DaCS diagnostic tools

A number of tools to aid in diagnosis of DaCS for Hybrid are provided. These

tools are prototype tools and are not supported. The tools are installed in the

/opt/cell/sdk/prototype/usr/bin directory.

The current DaCS Diagnostic Tools for Hybrid are listed below.

dacs-hdacsd-diag

this tool gathers information about the DaCS for Hybrid daemons (hdacsd

and adacsd) that are running, their versions, configuration and current

status. It also supports gathering of log files from both the hdacsd and

adacsd. Results are returned as an xml file.

dacs-hdacsd-loglevel

this tool allows the logging level of the daemon to be changed between

LOG_NOTICE (log only significant messages) and LOG_DEBUG (log all

messages)

dacs-diag

this tool gathers diagnostic information and checks for common problems

such as the library not being installed, the daemon not running, basic

dacs_topology.config problems such as invalid ip addresses, etc.

dacs-hdacsd-check-availability

this tool queries the status of the daemons to ensure that they are

operating and communicating.

dacs-query

this tool queries how many accelerator elements are available and of what

type for the host element the tool is run on

198 DaCS Library for Cell/B.E. and Hybrid Programmer’s Guide and API Reference

Appendix G. DaCS Fortran bindings

The Fortran bindings allow Fortran programs to invoke the DaCS APIs. These

bindings follow the DaCS APIs as closely as possible, however some differences

exist. The bindings are written to the Fortran 90 standard.

Overview

The DaCS Fortran bindings consist of the following items:

v dacsf.h: Fortran include file which defines constants and data types

v dacsf_interface.h: Fortran include file which defines the Fortran interfaces for the

DaCS APIs

v Entry points in each of the DaCS libraries for the Fortran bindings

v DaCS Fortran binding examples in the DaCS examples RPMs

The interfaces in Fortran to the DaCS APIs are subroutine calls. Arguments are

passed in by reference, and can be modified by the API. This follows the DaCS API

pattern of modifying parameters. The Fortran Interface definitions identify which

parameters are modified with the Intent keyword. Many interfaces for DaCS are

simple, and consist of integers as call and return parameters, and return an integer

return code. Some exceptions to this exist however, in particular the handling of

strings and pointers.

The DaCS APIs require that space be allocated by the caller for returned string and

array parameter values from subroutine calls. The caller in Fortran must ensure

that enough space is allocated. Constants are defined to determine the maximum

space required.

For a complete listing of the compilers that have been tested with the Fortran

binding, see “Supported compilers for the DaCS Fortran bindings” on page 9.

Programming with the Fortran bindings

The DaCS Fortran bindings are provided as subroutines and functions in the

Fortran language. The example below illustrates the conventions:

!compile command:

!ppu-gfortran -I /usr/include -o simple simple.f90 /usr/lib64/libdacs.a -lspe2

program simple

implicit none

include ’dacsf.h’

include ’dacsf_interface.h’

integer(kind=dacs_err_t) :: rc

integer(kind=dacs_int32_t) :: num_processes

character (len= DACS_MAX_ERRSTR_LEN) :: return_msg

call dacsf_init(DACS_INIT_FLAGS_NONE,rc)

call dacsf_strerror(rc,return_msg)

write (*,*) ’dacsf_init[’,trim(return_msg),’]’

call dacsf_num_processes_supported(DACS_DE_SELF, num_processes,rc)

call dacsf_strerror(rc,return_msg)

write (*,*) ’dacsf_num_processes_supported[’,trim(return_msg),’]’

write (*,*) ’num_processes[’,num_processes,’]’

© Copyright IBM Corp. 2007, 2008 199

call dacsf_exit(rc)

write (*,*) ’dacsf_exit[’,trim(return_msg),’]’

end program

Include files

Two include files are provided as part of the DaCS Fortran bindings. The file

dacsf.h contains the DaCS constants and data types definitions used in the DaCS

subroutines and functions. The file dacsf_interface.h contains the subroutine and

function interface definitions. The file dacsf_interface.h, while not required to be

included in the program, provides compile time validation of the subroutine calls

in the application when it is included. These include files can be used as

documentation for the subroutine calls, data types, and constants.

Subroutines and functions

The majority of the DaCS APIs are implemented as Fortran subroutines, due to the

number of in/out parameters. The error handler procedure which can be registered

with the dacsf_errhandler_reg API, and the utility routine dacsf_makeptr, are

functions.

Return codes

All DaCS APIs return the return code as the last parameter except dacsf_strerror,

and dacsf_error_num. The return codes are defined in dacsf.h and match the C

return codes defined in dacs.h.

Differences in the Fortran Bindings From the DaCS C APIs

The sections below describe the differences between the Fortran implementation

and the C implementation of some APIs.

dacs_de_start

The dacs_de_start API is implemented in Fortran as an Interface Block with the

name dacs_de_start. To handle the parameter overloading in the C API, four

Fortran subroutines are defined

v dacsf_de_start_std_file

v dacsf_de_start_std_embedded

v dacsf_de_start_ptr_file

v dacsf_de_start_ptr_embedded

dacsf_de_start_std_*

Provides the standard main argv and envv parameters. These subroutines

are used with DaCS for Hybrid when starting an accelerator process on the

PPE from the x86_64 system host element. Only the

dacsf_de_start_std_file subroutine is supported by DaCS for Hybrid.

dacsf_de_start_ptr_*

Provides the SPU main argv and envv parameters. These subroutines are

used with DaCS for Cell when starting an accelerator process on the SPE

from the PPE system host element. Both the dacsf_de_start_ptr_file,

dacsf_de_start_ptr_embedded subroutines are supported by DaCS for Cell.

The SPU main C Function prototype is extern int main (unsigned long

long spuid, unsigned long long argp, unsigned long long envp).

200 DaCS Library for Cell/B.E. and Hybrid Programmer’s Guide and API Reference

dacsf_de_start_*_file

Provide the filename or file list that identifies the executable to be initiated.

dacsf_de_start_*_embedded

Provide an external reference to the program to start as it is embedded in

the executable.

The table below summarizes the parameters used in the subroutine definitions for

dacsf_de_start.

 Table 13.

Parameter name dacsf_de_start_std_file dacsf_de_start_ptr_file dacsf_de_start_ptr_embedded

de dacs_de_id_t dacs_de_id_t dacs_de_id_t

prog string string external

argv

array of strings (if empty, argv[0] is

still passed to the AE) dacs_pvoid_t dacs_pvoid_t

argv_size argv element count na na

envv

array of strings (if empty, the

variables in DACS_START_ENV_LIST are

still passed to the AE) dacs_pvoid_t dacs_pvoid_t

envv_size envv element count na na

creation flags dacs_proc_creation_flags_t dacs_proc_creation_flags_t na

pid dacs_process_id_t dacs_process_id_t dacs_process_id_t

rc dacs_err_t dacs_err_t dacs_err_t4

Note: na=not available.
The most commonly used subroutines are:

v PPU to SPU: dacsf_de_start_ptr_embedded

v Opteron to PPU: dacsf_de_start_std_file

dacs_remote_mem_query and dacs_mem_query

The C APIs dacs_remote_mem_query and dacs_mem_query have multiple Fortran

subroutines to match the data types returned in the value parameter.

 Table 14. dacs_remote_mem_query

parameter name dacsf_remote_mem_query_mode dacsf_remote_mem_query_addr dacsf_remote_mem_query_size

mem dacs_remote_mem_t dacs_remote_mem_t dacs_remote_mem_t

mode/mem_size/
addr dacs_memory_access_mode_t dacs_pvoid_t dacs_int64_t

rc dacs_err_t dacs_err_t dacs_err_t

 Table 15. dacs_mem_query

parameter name dacsf_mem_query_lcl_perm dacsf_mem_query_rmt_perm dacsf_mem_query_addr dacsf_mem_query_size

mem dacs_mem_t dacs_mem_t dacs_mem_t dacs_mem_t

mode/mem_size/
addr dacs_mem_access_mode_t dacs_mem_access_mode_t dacs_pvoid_t dacs_int64_t

rc dacs_err_t dacs_err_t dacs_err_t dacs_err_t

dacsf_makevoid and dacsf_makeptr

Some of the DaCS C APIs include a parameter type of void *. In Fortran two

utility procedures are provided to convert addresses to and from a dacs_pvoid_t

handle for use as parameters in the DaCS Fortran bindings.

Subroutine dacsf_makevoid:

Appendix G. DaCS Fortran bindings 201

dacsf_makevoid is not defined in dacsf_interface.h. This function converts a void

* reference to an dacs_pvoid_t handle. Both 32 and 64 bit addressing is supported.

The closest corresponding data type to void * in Fortran is an integer(kind=8) or

dacs_int64_t. To pass a C void * parameter in a DaCS subroutine the Fortran

program must first call the dacsf_makevoid subroutine to obtain the 64 bit handle

for the void * address. This handle is passed in the DaCS subroutine and converted

back to a void *pointer in the binding implementation.

The C utility function prototype for dacsf_makevoid is void dacsf_makevoid(void

*in, int64_t *out)

See “dacsf_makevoid” on page 181 for further information.

Function dacsf_makeptr:

dacsf_makeptr is not defined in dacsf_interface.h. This function converts a

dacs_pvoid_t handle to an address. Both 32 and 64 bit addressing is supported. To

convert a dacs_pvoid_t into a Fortran pointer the program must call the function

dacsf_makeptr after calling an API which returns a dacs_pvoid_t, such as

dacs_mem_query_addr to obtain the address.

The C utility function prototype for dacsf_makeptr is void *

dacsf_makeptr(int64_t *holder)

See “dacsf_makeptr” on page 180 for further information.

The APIs listed in the following table include a dacs_pvoid_t parameter and

require the use of dacsf_makevoid or dacsf_makeptr:

 Table 16.

API Parameter Function Parameter Description

dacsf_remote_mem_create addr dacsf_makevoid memory region to be shared

dacsf_remote_mem_query_addr addr dacsf_makeptr memory region address

dacsf_put src_addr dacsf_makevoid source memory buffer

dacsf_get dst_addr dacsf_makevoid destination memory buffer

dacsf_put_list src_addr dacsf_makevoid source memory buffer

dacsf_get_list dst_addr dacsf_makevoid destination memory buffer

dacsf_recv dst_data dacsf_makevoid destination message buffer

dacsf_send src_data dacsf_makevoid source message buffer

dacsf_mem_create addr dacsf_makevoid

address to create memory

region over

dacsf_mem_query_addr addr dacsf_makeptr

address for the memory

region

dacsf_de_start_ptr_file argv,envv dacsf_makevoid long long

dacsf_de_start_ptr_embedded argv,envv dacsf_makevoid long long

See the DaCS Fortran examples for uses of dacsf_makevoid and dacsf_makeptr.

202 DaCS Library for Cell/B.E. and Hybrid Programmer’s Guide and API Reference

Data types

Signed and Unsigned Integers

In Fortran all integers are signed. Where the C APIs specify unsigned integers

these are converted to signed integers. In the DaCS Debug libraries limit checking

is done for the following subroutines. If the value is less than 0 as a signed integer

then DACS_ERR_INVALID_SIZE is returned.

API Parameter Intent

Value

Checked Return Code

dacsf_recv len in <0 DACS_ERR_INVALID_SIZE

dacsf_send len in <0 DACS_ERR_INVALID_SIZE

dacsf_num_processes_supported num_processes out <0 DACS_ERR_INVALID_SIZE

dacsf_num_processes_running num_processes out <0 DACS_ERR_INVALID_SIZE

dacsf_mem_create mem_size in <0 DACS_ERR_INVALID_SIZE

dacsf_mem_query_size mem_size out <0 DACS_ERR_INVALID_SIZE

dacsf_mem_put mem_size in <0 DACS_ERR_INVALID_SIZE

dacsf_mem_get mem_size in <0 DACS_ERR_INVALID_SIZE

dacsf_mem_put_list

dst_list[].size

src_list[].size in <0 DACS_ERR_INVALID_SIZE

dacsf_mem_put_list

dst_list[].size

src_list[].size in <0 DACS_ERR_INVALID_SIZE

Appendix G. DaCS Fortran bindings 203

dacsf_remote_mem_create mem_size in <0 DACS_ERR_INVALID_SIZE

dacsf_remote_mem_query_size mem_size out <0 DACS_ERR_INVALID_SIZE

dacsf_put mem_size in <0 DACS_ERR_INVALID_SIZE

dacsf_get mem_size in <0 DACS_ERR_INVALID_SIZE

dacsf_put_list

dst_list[].size

src_list[].size in <0 DACS_ERR_INVALID_SIZE

dacsf_put_list

dst_list[].size

src_list[].size in <0 DACS_ERR_INVALID_SIZE

Strings and Arrays of strings

The Fortran interoperability calling convention for passing strings as arguments is

to automatically append the length of the string area in the interface as an

additional parameter. This length is the allocated length and will include any

default blank padding.

The dacsf_de_start API is the only API which has strings as in parameters. It will

accept strings in this format for the prog, argv, and envv parameters. The binding

code removes trailing (but not embedded) blanks.

When using the dacsf_de_start_std_* subroutines the argv and envv parameters

are arrays of strings. The argv_size and envv_size specify the number of entries in

the array. A null element following the last string element is NOT required for argv

and envv parameters. If no elements are to be passed use the constant

DACS_NULL_STRINGLIST to specify a zero element array.

The dacsf_strerror and dacsf_error_str APIs contain an error message character

strings as an out parameter. Use the constant DACS_MAX_ERRSTR_LEN to allocate

enough space for the error string to be returned, for example

character (len= DACS_MAX_ERRSTR_LEN) :: return_msg

The string is truncated if the length in the subroutine call is less than the length of

the string.

Arrays

The subroutines dacsf_reserve_children and dacsf_release_de_list include an

array of dacs_de_id_t as a parameter. Be sure to allocate enough elements in the

array for the values. Constants are provided in dacsf.h to define the maximum

number of SPEs available.The parameters must be allocated as arrays even if they

contain only a single element.

The subroutines dacsf_put_list, dacsf_get_list, dacsf_mem_put_list and

dacsf_mem_get_list include arrays of the type dacs_dma_list_t. These parameters

must be defined as arrays even if they contain only a single element.

Binding alias names

Fortran compilers provide options to generate names interoperable with C

programs in multiple variations using options flags. Using aliases the DaCS

Fortran bindings support binding names with no underscore, one underscore, two

underscores, and an uppercase version of the name with no underscores.

Applications converted to use the DaCS Fortran bindings will not be required to

204 DaCS Library for Cell/B.E. and Hybrid Programmer’s Guide and API Reference

conform to a single interoperability convention.

For each compiler the table below shows the compiler flags required to generate

each alias. NA indicates that the compiler will not generate the specified alias.

 Table 17. Compiler flags

Compiler

One

underscore No underscores Two underscores

Upper case (no

underscore)

GNU

gfortran default

-fno-
underscoring -fsecond-underscore NA

IBM® XLF -qextname

-qnoextname

(default) NA

-qmixed

-qnoextname

Pathscale default

-fno-
underscoring -fsecond-underscore NA

PGI default NA -Msecond-underscore NA

Intel® default

-assume

nounderscore -assume 2underscores -assume nounderscore

dacsf_de_start examples

These are code fragments which demonstrate how to code dacsf_de_start

subroutines. These code fragments will not compile and execute by themselves. See

the DaCS Fortran examples for sample code which will compile and run.

Variable Definitions:

integer(kind=dacs_de_id_t) :: de

character(len=*), parameter :: file = "/home/user1/fortrantest/myprogram"

external :: hello_world

character(len=10), dimension(1) :: argv = (/"one"/)

character(len=10), dimension(2) :: envv = (/"a", "b"/)

integer(kind=dacs_pvoid_t) :: spu_argv

integer(kind=dacs_pvoid_t) :: spu_envv

integer(kind=dacs_proc_creation_flag_t) :: creation_flags

integer(kind=dacs_process_id_t) :: pid

integer(kind=dacs_err_t) :: rc

Subroutine Calls:

This call demonstrates using the generic interface name to invoke the subroutine

data_de_start_std_file. This call is made from the Opteron to PPU because it

passes standard main argv and envv parameters and does not use the embedded

creation flag. The creation flags are set to specify a local file name is passed. See

the dacs_de_start API section for a discussion of the creation flags.

call dacsf_de_start(de,file,argv,size(argv),envv,size(envv),creation_flags,pid,rc)

This is the same call as above using the subroutine name:

call dacsf_de_start_std_file(de,file,argv,size(argv),envv,

size(envv),creation_flags,pid,rc)

This is the same call as above except no data is passed for argv and envv

call dacsf_de_start_std_file(de,file,DACS_NULL_STRINGLIST,0,DACS_NULL_STRINGLIST,0,

creation_flags,pid,rc)

Appendix G. DaCS Fortran bindings 205

This call demonstrates the embedded version DACS_PROC_EMBEDDED. The creation

flag parameter is not required as it can be determined from the parameters. This

call is made from the PPU to the SPU because it passes the SPU main arguments

and it uses the embedded creation flag:

call dacsf_de_start_ptr_embedded(de,hello_world,spu_argv,spu_envv,pid,rc)

DaCS Fortran binding examples

The DaCS Fortran Binding Example code can be found in the dacs-examples-
source*.rpm and the dacs-hybrid-examples-source*.rpm.

These examples include four separate programs which demonstrate the use of

Fortran, DaCS and the Fortran bindings for the DaCS API in both the cell and

hybrid architectures.

The first three programs are designed to run on DaCS Cell and are included in the

DaCS Samples. The fourth is designed to run on DaCS Hybrid and is included

with the DaCS Hybrid samples.

v spe2_c: Cell programs which use libspe2 C APIs between PPU and SPU

v dacs_c: Cell programs which use DaCS C APIs between PPU and SPU

v dacs_f: Cell programs which use DaCS Fortran APIs between PPU and SPU

v dacs_f Hybrid: Hybrid and Cell programs which use DaCS Fortran APIs

between Opteron, PPU, and SPU

DaCS APIs not supported on the SPU

The following APIs are not supported on the SPU. Attempts to build SPU code

with these APIs will result in a link error.

dacsf_de_kill

dacsf_de_start_ptr_embedded

dacsf_de_start_ptr_file

dacsf_de_start_std_embedded

dacsf_de_start_std_file

dacsf_de_test

dacsf_de_wait

dacsf_group_add_member

dacsf_group_close

dacsf_group_destroy

dacsf_group_init

dacsf_mem_share

dacsf_mutex_destroy

dacsf_mutex_init

dacsf_mutex_share

dacsf_num_processes_running

dacsf_num_processes_supported

dacsf_release_de_list

dacsf_remote_mem_create

dacsf_remote_mem_destroy

dacsf_remote_mem_share

206 DaCS Library for Cell/B.E. and Hybrid Programmer’s Guide and API Reference

Appendix H. Accessibility features

IBM and accessibility

See the IBM Accessibility Center at http://www.ibm.com/able/ for more

information about the commitment that IBM has to accessibility.

© Copyright IBM Corp. 2007, 2008 207

http://www.ibm.com/able/

208 DaCS Library for Cell/B.E. and Hybrid Programmer’s Guide and API Reference

Notices

This information was developed for products and services offered in the U.S.A.

The manufacturer may not offer the products, services, or features discussed in this

document in other countries. Consult the manufacturer’s representative for

information on the products and services currently available in your area. Any

reference to the manufacturer’s product, program, or service is not intended to

state or imply that only that product, program, or service may be used. Any

functionally equivalent product, program, or service that does not infringe any

intellectual property right of the manufacturer may be used instead. However, it is

the user’s responsibility to evaluate and verify the operation of any product,

program, or service.

The manufacturer may have patents or pending patent applications covering

subject matter described in this document. The furnishing of this document does

not give you any license to these patents. You can send license inquiries, in

writing, to the manufacturer.

For license inquiries regarding double-byte (DBCS) information, contact the

Intellectual Property Department in your country or send inquiries, in writing, to

the manufacturer.

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law: THIS

INFORMATION IS PROVIDED “AS IS ” WITHOUT WARRANTY OF ANY KIND,

EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE

IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR

FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of

express or implied warranties in certain transactions, therefore, this statement may

not apply to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. The manufacturer may make

improvements and/or changes in the product(s) and/or the program(s) described

in this publication at any time without notice.

Any references in this information to Web sites not owned by the manufacturer are

provided for convenience only and do not in any manner serve as an endorsement

of those Web sites. The materials at those Web sites are not part of the materials for

this product and use of those Web sites is at your own risk.

The manufacturer may use or distribute any of the information you supply in any

way it believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact the manufacturer.

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

© Copyright IBM Corp. 2007, 2008 209

The licensed program described in this information and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement, IBM License Agreement for

Machine Code, or any equivalent agreement between us.

Any performance data contained herein was determined in a controlled

environment. Therefore, the results obtained in other operating environments may

vary significantly. Some measurements may have been made on development-level

systems and there is no guarantee that these measurements will be the same on

generally available systems. Furthermore, some measurements may have been

estimated through extrapolation. Actual results may vary. Users of this document

should verify the applicable data for their specific environment.

Information concerning products not produced by this manufacturer was obtained

from the suppliers of those products, their published announcements or other

publicly available sources. This manufacturer has not tested those products and

cannot confirm the accuracy of performance, compatibility or any other claims

related to products not produced by this manufacturer. Questions on the

capabilities of products not produced by this manufacturer should be addressed to

the suppliers of those products.

All statements regarding the manufacturer’s future direction or intent are subject to

change or withdrawal without notice, and represent goals and objectives only.

The manufacturer’s prices shown are the manufacturer’s suggested retail prices, are

current and are subject to change without notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to

change before the products described become available.

This information contains examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious and any similarity to the names and addresses used by an actual business

enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which

illustrate programming techniques on various operating platforms. You may copy,

modify, and distribute these sample programs in any form without payment to the

manufacturer, for the purposes of developing, using, marketing or distributing

application programs conforming to the application programming interface for the

operating platform for which the sample programs are written. These examples

have not been thoroughly tested under all conditions. The manufacturer, therefore,

cannot guarantee or imply reliability, serviceability, or function of these programs.

CODE LICENSE AND DISCLAIMER INFORMATION:

The manufacturer grants you a nonexclusive copyright license to use all

programming code examples from which you can generate similar function

tailored to your own specific needs.

SUBJECT TO ANY STATUTORY WARRANTIES WHICH CANNOT BE

EXCLUDED, THE MANUFACTURER, ITS PROGRAM DEVELOPERS AND

SUPPLIERS, MAKE NO WARRANTIES OR CONDITIONS EITHER EXPRESS OR

210 DaCS Library for Cell/B.E. and Hybrid Programmer’s Guide and API Reference

IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES

OR CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR

PURPOSE, AND NON-INFRINGEMENT, REGARDING THE PROGRAM OR

TECHNICAL SUPPORT, IF ANY.

UNDER NO CIRCUMSTANCES IS THE MANUFACTURER, ITS PROGRAM

DEVELOPERS OR SUPPLIERS LIABLE FOR ANY OF THE FOLLOWING, EVEN

IF INFORMED OF THEIR POSSIBILITY:

1. LOSS OF, OR DAMAGE TO, DATA;

2. SPECIAL, INCIDENTAL, OR INDIRECT DAMAGES, OR FOR ANY

ECONOMIC CONSEQUENTIAL DAMAGES; OR

3. LOST PROFITS, BUSINESS, REVENUE, GOODWILL, OR ANTICIPATED

SAVINGS.

 SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OR LIMITATION OF

DIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, SO SOME OR ALL

OF THE ABOVE LIMITATIONS OR EXCLUSIONS MAY NOT APPLY TO YOU.

Each copy or any portion of these sample programs or any derivative work, must

include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.

Sample Programs. © Copyright IBM Corp. _enter the year or years_. All rights

reserved.

If you are viewing this information in softcopy, the photographs and color

illustrations may not appear.

Trademarks

The following terms are trademarks of International Business Machines

Corporation in the United States, other countries, or both:

IBM

developerWorks

PowerPC

PowerPC Architecture

Resource Link

Adobe®, Acrobat, Portable Document Format (PDF), and PostScript® are either

registered trademarks or trademarks of Adobe Systems Incorporated in the United

States, other countries, or both.

Cell Broadband Engine™ and Cell/B.E. are trademarks of Sony Computer

Entertainment, Inc., in the United States, other countries, or both and is used under

license therefrom.

Linux® is a trademark of Linus Torvalds in the United States, other countries, or

both.

Other company, product or service names may be trademarks or service marks of

others.

Notices 211

Terms and conditions

Permissions for the use of these publications is granted subject to the following

terms and conditions.

Personal Use: You may reproduce these publications for your personal,

noncommercial use provided that all proprietary notices are preserved. You may

not distribute, display or make derivative works of these publications, or any

portion thereof, without the express consent of the manufacturer.

Commercial Use: You may reproduce, distribute and display these publications

solely within your enterprise provided that all proprietary notices are preserved.

You may not make derivative works of these publications, or reproduce, distribute

or display these publications or any portion thereof outside your enterprise,

without the express consent of the manufacturer.

Except as expressly granted in this permission, no other permissions, licenses or

rights are granted, either express or implied, to the publications or any data,

software or other intellectual property contained therein.

The manufacturer reserves the right to withdraw the permissions granted herein

whenever, in its discretion, the use of the publications is detrimental to its interest

or, as determined by the manufacturer, the above instructions are not being

properly followed.

You may not download, export or re-export this information except in full

compliance with all applicable laws and regulations, including all United States

export laws and regulations.

THE MANUFACTURER MAKES NO GUARANTEE ABOUT THE CONTENT OF

THESE PUBLICATIONS. THESE PUBLICATIONS ARE PROVIDED ″AS-IS″ AND

WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,

INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF

MERCHANTABILITY, NON-INFRINGEMENT, AND FITNESS FOR A

PARTICULAR PURPOSE.

212 DaCS Library for Cell/B.E. and Hybrid Programmer’s Guide and API Reference

Related documentation

This topic helps you find related information.

Document location

Links to documentation for the SDK are provided on the IBM developerWorks®

Web site located at:

http://www.ibm.com/developerworks/power/cell/

Click the Docs tab.

The following documents are available, organized by category:

Architecture

v Cell Broadband Engine Architecture

v Cell Broadband Engine Registers

v SPU Instruction Set Architecture

Standards

v C/C++ Language Extensions for Cell Broadband Engine Architecture

v Cell Broadband Engine Linux Reference Implementation Application Binary Interface

Specification

v SIMD Math Library Specification for Cell Broadband Engine Architecture

v SPU Application Binary Interface Specification

v SPU Assembly Language Specification

Programming

v Cell Broadband Engine Programmer’s Guide

v Cell Broadband Engine Programming Handbook

v Cell Broadband Engine Programming Tutorial

Library

v Accelerated Library Framework for Cell Broadband Engine Programmer’s Guide and

API Reference

v Basic Linear Algebra Subprograms Programmer’s Guide and API Reference

v Data Communication and Synchronization for Cell Broadband Engine Programmer’s

Guide and API Reference

v Example Library API Reference

v Fast Fourier Transform Library Programmer’s Guide and API Reference

v LAPACK (Linear Algebra Package) Programmer’s Guide and API Reference

v Mathematical Acceleration Subsystem (MASS)

v Monte Carlo Library Programmer’s Guide and API Reference

v SDK 3.0 SIMD Math Library API Reference

v SPE Runtime Management Library

v SPE Runtime Management Library Version 1 to Version 2 Migration Guide

v SPU Runtime Extensions Library Programmer’s Guide and API Reference

© Copyright IBM Corp. 2007, 2008 213

http://www.ibm.com/developerworks/power/cell/

v Three dimensional FFT Prototype Library Programmer’s Guide and API Reference

Installation

v SDK for Multicore Acceleration Version 3.1 Installation Guide

Tools

v Getting Started - XL C/C++ for Multicore Acceleration for Linux

v Compiler Reference - XL C/C++ for Multicore Acceleration for Linux

v Language Reference - XL C/C++ for Multicore Acceleration for Linux

v Programming Guide - XL C/C++ for Multicore Acceleration for Linux

v Installation Guide - XL C/C++ for Multicore Acceleration for Linux

v Getting Started - XL Fortran for Multicore Acceleration for Linux

v Compiler Reference - XL Fortran for Multicore Acceleration for Linux

v Language Reference - XL Fortran for Multicore Acceleration for Linux

v Optimization and Programming Guide - XL Fortran for Multicore Acceleration for

Linux

v Installation Guide - XL Fortran for Multicore Acceleration for Linux

v Performance Analysis with the IBM Full-System Simulator

v IBM Full-System Simulator User’s Guide

v IBM Visual Performance Analyzer User’s Guide

IBM PowerPC® Base

v IBM PowerPC Architecture™ Book

– Book I: PowerPC User Instruction Set Architecture

– Book II: PowerPC Virtual Environment Architecture

– Book III: PowerPC Operating Environment Architecture

v IBM PowerPC Microprocessor Family: Vector/SIMD Multimedia Extension Technology

Programming Environments Manual

214 DaCS Library for Cell/B.E. and Hybrid Programmer’s Guide and API Reference

Glossary

Accelerator

General or special purpose processing element in

a hybrid system. DaCS elements which have a

parent (host) element are considered accelerators.

An accelerator elements can be a host as well, if it

has children (other accelerators) attached.

AE

See Accelerator.

DaCS Element

A general or special purpose processing element

in a topology. This refers specifically to the

physical unit in the topology. A DE can serve as a

Host or an Accelerator.

DE

See DaCS element.

de_id

A unique number assigned by the DaCS

application at runtime to a physical processing

element in a topology.

group

A group construct specifies a collection of DaCS

DEs and processes in a system. A group is also

used to define the participants in a barrier

operation.

handle

A handle is an abstraction of a data object;

usually a pointer to a structure.

HE

See Host.

Host

A general purpose processing element, acting as a

supervisor, control or master processor. This type

of element usually runs a full operating system

and manages jobs running on other DEs. This is

referred to as a Host Element (HE).

Hybrid

A 64 bit x86 system using a Cell BE as an

accelerator.

node

A node is a functional unit in the system

topology, consisting of one host together with all

the accelerators connected as children in the

topology (this includes any children of

accelerators).

parent

The parent of a DE is the DE that resides

immediately above it in the topology tree. A

parent DE is always a Host Element.

PPE

PowerPC Processor Element. The general-purpose

processor in the Cell/B.E. processor.

process

A process is a standard UNIX-type process with

an individual address space.

SIMD

Single Instruction Multiple Data. Processing in

which a single instruction operates on multiple

data elements that make up a vector data-type.

Also known as vector processing. This style of

programming implements data-level parallelism.

© Copyright IBM Corp. 2007, 2008 215

SPE

Synergistic Processor Element. Extends the

PowerPC 64 architecture by acting as cooperative

offload processors (synergistic processors), with

the direct memory access (DMA) and

synchronization mechanisms to communicate

with them (memory flow control), and with

enhancements for real-time management. There

are 8 SPEs on each Cell/B.E. processor.

SPU

Synergistic Processor Unit. The part of an SPE

that executes instructions from its local store (LS).

System X

This is a project-neutral description of the

supervising system for a node.

thread

A sequence of instructions executed within the

global context (shared memory space and other

global resources) of a process that has created

(spawned) the thread. Multiple threads (including

multiple instances of the same sequence of

instructions) can run simultaneously if each

thread has its own architectural state (registers,

program counter, flags, and other program-visible

state). Each SPE can support only a single thread

at any one time. Multiple SPEs can

simultaneously support multiple threads. The PPE

supports two threads at any one time, without the

need for software to create the threads. It does

this by duplicating the architectural state. A

thread is typically created by the pthreads library.

topology

A topology is a configuration of DaCS elements in

a system. The topology specifies how the different

processing elements in a system are related to

each other. DaCS assumes a tree topology: each

DE has at most one parent.

216 DaCS Library for Cell/B.E. and Hybrid Programmer’s Guide and API Reference

Index

D
dacs_barrier_wait 75

dacs_de_kill 63

dacs_de_start 54

dacs_de_test 59

dacs_de_wait 61

dacs_errhandler_reg 170

dacs_error_code 174

dacs_error_de 176

dacs_error_num 173

dacs_error_pid 177

dacs_error_str 175

dacs_exit 37

dacs_get 138

dacs_get_list 144

dacs_get_num_avail_children 43

dacs_group_accept 73

dacs_group_add_member 69

dacs_group_close 71

dacs_group_destroy 72

dacs_group_init 68

dacs_group_leave 74

dacs_init 35

dacs_mailbox_read 156

dacs_mailbox_test 158

dacs_mailbox_write 154

dacs_mem_accept 100

dacs_mem_create 96

dacs_mem_deregister 105

dacs_mem_destroy 107

dacs_mem_get 108

dacs_mem_get_list 112

dacs_mem_limts_query 118

dacs_mem_put 110

dacs_mem_put_list 115

dacs_mem_query 120

dacs_mem_register 103

dacs_mem_release 102

dacs_mem_share 98

dacs_mutex_accept 83

dacs_mutex_destroy 82

dacs_mutex_init 79

dacs_mutex_lock 85

dacs_mutex_release 84

dacs_mutex_share 80

dacs_mutex_try_lock 86

dacs_mutex_unlock 87

dacs_num_processes_running 53

dacs_num_processes_supported 51

dacs_put 136

dacs_put_list 140

dacs_recv 151

dacs_release_de_list 47

dacs_remote_mem_accept 130

dacs_remote_mem_create 126

dacs_remote_mem_destroy 133

dacs_remote_mem_query 134

dacs_remote_mem_release 132

dacs_remote_mem_share 128

dacs_reserve_children 45

dacs_runtime_exit 39

dacs_runtime_init 38

dacs_send 149

dacs_strerror 172

dacs_test 164

dacs_wait 165

dacs_wid_release 162

dacs_wid_reserve 161

dacsf_makeptr 180

dacsf_makevoid 181

documentation 213

E
environment variables 195

error handler 170

M
mutex owner functions 76

mutex synchronization 77

R
Remote Direct Memory Access 90

S
SDK documentation 213

SIGTERM 167

© Copyright IBM Corp. 2007, 2008 217

218 DaCS Library for Cell/B.E. and Hybrid Programmer’s Guide and API Reference

����

Printed in USA

SC33-8408-01

	Contents
	About this publication
	What's new in this release
	Conventions
	Related information
	How to send your comments

	Part 1. Overview of DaCS
	Chapter 1. Services
	Chapter 2. DaCS implementations
	DaCS for Cell/B.E.
	DaCS for Hybrid
	Coexistence

	Chapter 3. Specified operating environments
	Supported DaCS implementations
	Supported compilers for the DaCS Fortran bindings

	Part 2. Installing and configuring DaCS
	Chapter 4. Installing DaCS
	Chapter 5. Configuring DaCS for Hybrid
	Configuring the topology
	Setting affinity for DaCS for Hybrid
	Verifying user ids on the accelerator
	Configuring when using sockets
	Configuring when using PCIe-Axon

	Configuring the DaCS for Hybrid daemon

	Part 3. Programming with DaCS
	Chapter 6. Building a DaCS application
	Affinity requirements for host applications
	Blocking APIs
	Using the Hybrid library
	Handling API Return codes

	Part 4. API reference
	Chapter 7. Initialization and termination
	Initialization and termination usage scenarios
	dacs_init
	dacs_exit
	dacs_runtime_init (deprecated)
	dacs_runtime_exit (deprecated)

	Chapter 8. Reservation services
	Reservation services usage scenarios
	dacs_get_num_avail_children
	dacs_reserve_children
	dacs_release_de_list

	Chapter 9. Process management
	Process control
	dacs_num_processes_supported
	dacs_num_processes_running
	dacs_de_start
	dacs_de_test
	dacs_de_wait
	dacs_de_kill (prototype)

	Process synchronization
	Groups
	Definitions
	Group design

	Group usage scenarios
	Initialization
	Operation
	Termination

	dacs_group_init
	dacs_group_add_member
	dacs_group_close
	dacs_group_destroy
	dacs_group_accept
	dacs_group_leave
	dacs_barrier_wait
	Mutexes
	Mutex owner functions
	Mutex owner usage scenarios
	Mutex synchronization

	dacs_mutex_init
	dacs_mutex_share
	dacs_mutex_destroy
	dacs_mutex_accept
	dacs_mutex_release
	dacs_mutex_lock
	dacs_mutex_try_lock
	dacs_mutex_unlock

	Chapter 10. Data communication
	Remote Direct Memory Access
	Registered local region functions
	Local memory region usage scenarios

	dacs_mem_create
	dacs_mem_share
	dacs_mem_accept
	dacs_mem_release
	dacs_mem_register
	dacs_mem_deregister
	dacs_mem_destroy
	dacs_mem_get
	dacs_mem_put
	dacs_mem_get_list
	dacs_mem_put_list
	dacs_mem_limits_query
	dacs_mem_query
	Unregistered local region functions
	Remote memory usage scenarios
	Using the Hybrid library

	dacs_remote_mem_create
	dacs_remote_mem_share
	dacs_remote_mem_accept
	dacs_remote_mem_release
	dacs_remote_mem_destroy
	dacs_remote_mem_query
	dacs_put
	dacs_get
	dacs_put_list
	dacs_get_list

	Message passing
	Message passing usage scenarios
	dacs_send
	dacs_recv

	Mailboxes
	Mailbox usage scenario
	dacs_mailbox_write
	dacs_mailbox_read
	dacs_mailbox_test

	Wait identifier management services
	dacs_wid_reserve
	dacs_wid_release

	Transfer completion
	dacs_test
	dacs_wait

	Chapter 11. Error handling
	User error handler example
	Abnormal child termination
	dacs_errhandler_reg
	dacs_strerror
	dacs_error_num
	dacs_error_code
	dacs_error_str
	dacs_error_de
	dacs_error_pid

	Chapter 12. Fortran Address Handling
	dacsf_makeptr
	dacsf_makevoid

	Part 5. Appendixes
	Appendix A. DaCS DE types
	Appendix B. Performance and debug trace
	Trace control

	Appendix C. DaCS trace events
	DaCS API hooks
	DaCS performance hooks

	Appendix D. Error codes
	Appendix E. Environment variables
	Appendix F. DaCS for Hybrid debugging
	Message redirection
	Logging
	DaCS diagnostic tools

	Appendix G. DaCS Fortran bindings
	Overview
	Programming with the Fortran bindings
	Include files
	Subroutines and functions
	Return codes
	Differences in the Fortran Bindings From the DaCS C APIs
	dacs_de_start
	dacs_remote_mem_query and dacs_mem_query
	dacsf_makevoid and dacsf_makeptr

	Data types
	Signed and Unsigned Integers
	Strings and Arrays of strings
	Arrays

	Binding alias names
	dacsf_de_start examples
	DaCS Fortran binding examples

	DaCS APIs not supported on the SPU

	Appendix H. Accessibility features
	Notices
	Trademarks
	Terms and conditions

	Related documentation
	Glossary
	Index

