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Preface

This handbook describes the extensive programming facilities of the Cell Broadband Engine 
(Cell/B.E.) and IBM PowerXCell™ 8i processors, which are collectively called Cell Broadband 
Engine Architecture processors (CBEA processors). The Cell Broadband Engine Architecture 
(CBEA) was developed jointly by Sony, Toshiba, and IBM; it extends the 64-bit PowerPC Archi-
tecture™. The Cell/B.E. processor is a result of that collaboration between Sony, Toshiba, and 
IBM. It is the first implementation of a multiprocessor family conforming to the CBEA. The 
PowerXCell 8i processor also conforms to the CBEA. It provides a double data rate 2 (DDR2) 
memory interface and improved double-precision, floating-point performance and additional 
double-precision instructions. Both CBEA processors comprise eight Synergistic Processor 
Elements (SPEs) and one PowerPC Processor Element (PPE). 

The handbook contains extended content targeted for programmers who are interested in devel-
oping user applications, libraries, drivers, middleware, compilers, or operating systems for CBEA 
processors. The sections describe all of the facilities unique to the CBEA processors that are 
needed to develop such programs. In general, the sections contain the following topics:

• General hardware and programming-environment overview: Sections 1 through 3.

• Additional hardware overview plus privilege-state (supervisor) programming: Sections 4 
through 16. A few user-programming topics, such as decrementers, are also located in these 
sections. 

• Problem-state (user) programming: Sections 17 through 24, and appendixes.

The handbook assumes that the reader is an experienced C/C++ programmer and familiar with 
basic concepts of single-instruction, multiple-data (SIMD) vector instruction sets such as the IBM 
PowerPC® Architecture vector/SIMD multimedia extensions, AltiVec, Intel® MMX, SSE, 
3DNOW!, x86-64, or VIS instruction sets. The handbook is system-independent; it makes no 
assumptions about development-tool or operating-system environments. 

The handbook provides adequate detail for general software development. Additional specific 
implementation details might be available under nondisclosure agreement from either Sony, 
Toshiba, or IBM. System-specific details should be available from the specific system supplier.
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Conventions and Notation

In this document, standard IBM notation is used, meaning that bits and bytes are numbered in 
ascending order from left to right. Thus, for a 4-byte word, bit 0 is the most-significant (high) bit, 
and bit 31 is the least-significant (low) bit.

Notation for bit encoding is as follows:

• Hexadecimal values are preceded by x and enclosed in single quotation marks. For example: 
x‘0A00’.

SPU Application Binary Interface Specification 1.8 September 2007

SPU Assembly Language Specification 1.6 September 2007

Cell Broadband Engine Registers 1.6 June 2007

PowerPC Compiler Writer’s Guide 1.0 1996

Cell Broadband Engine CMOS SOI 65 nm Hardware Initialization Guide 1.01 June 2007

Linux™ Standard Base Core Specification for PPC 3.0 
(http://www.linuxbase.org/spec) 3.0 2004

64-bit PowerPC ELF Application Binary Interface Supplement 1.7.1 July 2004

Cell Broadband Engine Linux Reference Implementation Application Binary 
Interface Specification. 1.0 November 2005

AltiVec Technology Programming Interface Manual 0 June 1999

IBM Research Hypervisor (rHype) 
(This is available in source form with a general public license (GPL) at the 
following URL: http://www.research.ibm.com/hypervisor/) 

1.3 March 2005

Tool Interface Standard (TIS) Executable and Linking Format (ELF) 
specification. TIS Committee. 1.2 May 1995

SYSTEM V APPLICATION BINARY INTERFACE PowerPC Processor 
Supplement (this document specifies the 32-bit application binary interface 
[ABI]).

September 1995

Advanced Encryption Standard (AES), Federal Information Processing 
Standards Publications, FIPS PUB 197. 2001

Logical Partitions on IBM PowerPC: A Guide to Working with LPAR on Power5 i5 
Servers 
(This paper can be downloaded from the following Web site: 
http://www.redbooks.ibm.com/redbooks.nsf/RedpieceAbstracts/sg248000.html?
Open)

February 2005

Partitioning Implementations for IBM eServer™ p5 Servers
(This paper can be downloaded from the following Web site: 
http://www.redbooks.ibm.com/abstracts/sg247039.html)

February 2005

Advanced Power Virtualization on IBM eServer p5 Servers
(This paper can be downloaded from the following Web site: 
http://www.redbooks.ibm.com/abstracts/sg247940.html?Open)

December 2005

Title Version Date
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• Binary values in sentences appear in single quotation marks. For example: ‘1010’.

The following software documentation conventions are used in this manual:

• Command (or instruction) names are written in bold type. For example: put, get, rdch, wrch, 
rchcnt.

• Variables are written in italic type. Required parameters are enclosed in angle brackets. 
Optional parameters are enclosed in brackets. For example: get<f,b>[s].

• The notation <f,b> indicates that either the tag-specific fence or tag-specific barrier form is 
available for a referenced memory flow controller (MFC) command. 

The following symbols are used in this document:

Referencing Registers, Fields, and Bit Ranges

Registers are referred to by their full name or by their short name (also called the register 
mnemonic). Fields within registers are referred to by their full field name or by their field name. 
The field name or names are enclosed in brackets [ ].The following table describes how registers, 
fields, and bit ranges are referred to in this document and provides examples of the references.

& bitwise AND

| bitwise OR

% modulus

= equal to

! = not equal to

x ≥ greater than or equal to

x ≤ less than or equal to

x >> y shift to the right; for example, 6 >> 2 = 1; least-significant y-bits are dropped

x << y shift to the left; for example, 3 << 2 = 12; least-significant y-bits are replaced by 
zeros

Type of Reference Format Example

Reference to a specific register 
and a specific field using the 
register short name and the 
field names, bit numbers, or bit 
range.

Register_Short_Name[FieldName] MSR[FE0]

Register_Short_Name[Bit_Number] MSR[52]

Register_Short_Name[Field_Name1, Field_Name2] MSR[FE0, FE1]

Register_Short_Name[Bit_Number, Bit_Number] MSR[52, 55]

Register_Short_Name[Starting_Bit_Number:Ending_Bit_Nu
mber] MSR[39:44]

Note:  The register short name is also called the register mnemonic.
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Terminology

In this handbook, a “memory-mapped I/O (MMIO)” register is any internal or external register that 
is accessed through the main-storage space with load and store instructions, whether or not the 
register is associated with an I/O controller or device. 

Reserved Regions of Memory and Registers

Reserved areas of the MMIO-register memory map that are not assigned to any functional unit 
should not be read from or written to. Doing so will cause serious errors in software as follows. 
For reads or writes generated from the Synergistic Processor Element (SPE) to unassigned 
reserved spaces, at least one of the following MFC_FIR[46, 53, 56, 58, 61] bits will be set and in 
most cases will cause a checkstop. For reads or writes generated from the PowerPC Processor 
Element (PPE) to unassigned reserved spaces, at least one of the CIU_FIR[7,8] will be set, and 
a checkstop will occur. For reads or writes generated from the I/O interface controller (IOC) to 
unassigned reserved spaces, the IOC will respond back to the I/O Interface (IOIF) device that 
sourced the address request with an error (ERR) response. No IOC Fault Isolation Register (FIR) 
bits are set.

Reference to a specific register 
and the setting for a specific 
field, bit, or range of bits using 
the register short name and the 
field names, bit numbers, or bit 
range, which is followed by an 
equal sign (=) and a value.

Register_Short_Name[Field_Name] = ‘n’
(where n is a binary value for the bit or bit range)

MSR[FE0] = ‘1’

Register_Short_Name[Field_Name] = x‘n’ 
(where n is a hexadecimal value for the bit or bit range) MSR[FE] = x‘F’

Register_Short_Name[Bit_Number] = ‘n’
(where n is a binary value for the bit or bit range)

MSR[52] = ‘0’

Register_Short_Name[Bit_Number] = x‘n’ 
(where n is a hexadecimal value for the bit or bit range) MSR[52] = x‘F’

Register_Short_Name[Starting_Bit_Number:Ending_Bit_Nu
mber] = ‘n’
(where n is the binary value for the bit or bit range)

MSR[39:43] = ‘10010’

Register_Short_Name[Starting_Bit_Number:Ending_Bit_Nu
mber] = ‘n’
(where n is the hexadecimal value for the field or bits)

MSR[39:43] = x‘11’

Type of Reference Format Example

Note:  The register short name is also called the register mnemonic.
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Revision Log

Each release of this document supersedes all previously released versions. The revision log lists all signifi-
cant changes made to the document since its initial release. In the rest of the document, change bars in the 
margin indicate that the adjacent text was significantly modified from the previous release of this document.

Revision Date Version Contents of Modification

May 12, 2008 1.11

• Revised the Preface on page 29 to indicate that the handbook includes information about the 
PowerXCell 8i processor. 

• Updated Related Publications on page 29. 
• Revised Section 1 Overview of CBEA Processors on page 39 to indicate that the handbook 

includes information about the PowerXCell 8i processor. 
• Revised Figure 1-1 Overview of CBEA Processors on page 40 to illustrate the double data rate 2 

(DDR2) synchronous dynamic random access memory (SDRAM) interface provided by the 
PowerXCell 8i processor. 

• Revised Section 1.2.3 Memory Interface Controller on page 45 to include information about the 
PowerXCell 8i processor. 

• Revised Section 3.1.4 Floating-Point Support on page 70 to include information about the 
PowerXCell 8i processor. 

• Expanded the description of the IOC_IOST_Origin[IOST Size] field (see Section 7.3.2.1 Register 
Layout and Fields on page 166).

• Removed extreme data rate (XDR) from Figure 8-2 Managed Resources and Requesters on 
page 205.

• Revised Section 8.5.5.1 Memory Banks on page 216 to include PowerXCell 8i processors as well 
as Cell/B.E. processors. 

• Changed IOC_BaseAddr1 to IOC_BaseAddrMask1 (see Section 8.7.3 Changing a Requester’s 
Address Map on page 235). 

• Removed XDR from Figure 9-1 Organization of Interrupt Handling on page 243.
• Revised Section 9.7.1 Mediated External Interrupt Architecture on page 276 and Section 9.7.2 

Mediated External Interrupt Implementation on page 279.
• Changed “LPCR[RMI]” to “LPCR[LPES] bit 0” in the SRR1 and HSRR1 rows of Table 9-27 

Registers Altered by an External Interrupt on page 279. 
• Revised some descriptions to make it clear that a PowerPC Processor Element (PPE) is a dual-

instruction dispatch machine (see Section 10.5.3.1 Low Priority Combined with Low Priority on 
page 316, Section 10.5.3.2 Low Priority Combined with Medium Priority on page 316, 
Section 10.5.3.3 Low Priority Combined with High Priority on page 317, Section 10.5.3.4 Medium 
Priority Combined with Medium Priority on page 318, and Section 10.7.2.4 Microcoded Instruction 
on page 323).

• Revised Section 20.1.6.2 SPE-to-PPE Communications on page 585 to correctly describe how to 
ensure ordering, and deleted Section 20.1.6.3 Implementation-Specific Ordering. 

• Revised Section 21.4.4 Multiple Execution Units on page 618 to include PowerXCell 8i 
processors.

• Deleted a sentence fragment (see Table 23-6 Unique SPU-to-Vector/SIMD Multimedia Extension 
Data-Type Mappings on page 689). 

• Revised Section 24.2 SPU Pipelines and Dual-Issue Rules on page 698 and Table 24-1 Pipeline 0 
Instructions and Latencies on page 698 to include information about the PowerXCell 8i processor.

• Corrected Figure A-1 Dual-Issue Combinations on page 761.
• Revised Appendix B.1.2 Instructions on page 771 and Table B-1 SPU Instructions on page 772 to 

include information about the PowerXCell 8i processor and double-precision floating-point 
instructions. 

• Revised Section B.1.3.2 Issue on page 780. Renamed Table B-5 Cell/B.E. SPU Execution 
Pipelines and Result Latency on page 782 and added the double-precision (DP) instruction to 
stage S/7. Added Table B-6 PowerXCell 8i SPU Execution Pipelines and Result Latency on 
page 783 and an explanation of latency on the PowerXCell 8i processor. 

• Added the vector test special value intrinsic to Table B-13 SPU Intrinsics on page 788.
• Added or revised the following terms: CBEA, CBEA processor, Cell/B.E., Cell/B.E. processor, Cell 

Broadband Engine Architecture, DDR2, PowerXCell 8i processor, X2D (see the Glossary on 
page 835). 
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• Changed “local store” to “local storage” throughout. Therefore, changed MFC Local Store 
Address Compare Register to MFC Local Storage Address Compare Register and MFC Local 
Store Compare Results Register to MFC Local Storage Compare Results Register (see 
Section 4.3.7.2 Address-Compare Exceptions on page 120, Section 9.8.3.1 Storage-Protection 
Errors on page 286, and Section 11.3.4.5 Debug and Performance Monitoring on page 350).

• Changed “CBE processor” to “CBEA processor” or “Cell/B.E. processor”, as appropriate, 
throughout. Changed other instances of “CBE” to “Cell/B.E.”

April 24, 2007 1.1

• Updated the list of related publications (see Related Publications on page 29). 
• Corrected the example of the shift to the left symbol (see Conventions and Notation on page 30).
• Moved the revision log to the front of the book and added text introducing the table. Updated a 

section title to reflect the change (see Revision Log on page 33 and Appendixes, Glossary, and 
Index on page 721). 

• Updated Figure 2-2 PPE Functional Units on page 52.
• Corrected the description of address translation (see Section 3.1.1.1 Addressing and Address 

Aliasing on page 66).
• Removed Table 2-2 PowerPC Instruction Summary (see Section 2.4.3 Instructions on page 58) 

and referred the reader to Table A-1 PowerPC Instructions by Execution Unit on page 723, which 
is more complete. 

• Changed byte zero of VT from “A.1” to “A.0” (see Figure 2-6 Byte-Shuffle (Permute) Operation on 
page 60). 

• Removed Table 2-3 Vector/SIMD Multimedia Extension Instruction Summary (see Section 2.5.5 
Instructions on page 62) and referred the reader to Table A-8 Vector/SIMD Multimedia Extension 
Instructions on page 748, which is more complete. 

• Deleted a redundant list of vector register values (see Section 2.6.1 Vector Data Types on 
page 62). 

• Replaced Table 3-2 SPE Floating-Point Support with Table 3-2 Single-Precision (Extended-Range 
Mode) Minimum and Maximum Values on page 71, Table 3-3 Double-Precision (IEEE Mode) 
Minimum and Maximum Values on page 72, and Table 3-4 Single-Precision (IEEE Mode) 
Minimum and Maximum Values on page 72. 

• Removed Table 3-3 SPU Instruction Summary (see Section 3.3.2 Instructions on page 77) and 
referred the reader to Table B-1 SPU Instructions on page 772, which is more complete. 

• Corrected the granularity of the real-mode address boundary (see Section 4.3.6 Real Addressing 
Mode on page 117). 

• Deleted an incorrect sentence (see Section 5.1.3 Reserved Regions of Memory on page 126). 
• Corrected the offsets in Table 5-3 PPE Privileged Memory-Mapped Register Groups on page 126.
• Changed the number of branches needed to clear the ICache from 512 to 256 (see 

Section 6.1.3.6 ICache Invalidation on page 138). 
• Indicated that the PPE can send multiple overlapping independent (rather than dependent) loads 

to the L2 (see Section 6.1.3.7 DCache Load Misses on page 139). 
• Indicated that HID4[enb_force_ci] and HID4[dis_force_ci] work only for load/store instructions and 

affect only the L1 and L2 data caches (see Section 6.1.3.13 L1 Bypass (Inhibit) Configuration on 
page 140). 
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April 24, 2007
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1.1

• Revised the description of the dcbt and dcbtst instructions (see Section 6.1.6.2 Data Cache 
Block Touch on page 147). 

• Updated the memory-allocation and IOIF-allocation percentage equations (see Section 8.5.10.1 
Memory Allocation on page 225 and Section 8.5.10.2 IOIF Allocation on page 225).

• Reworded the description of the MC_COMP_EN configuration-ring register. Added a cross 
reference to Table 8-8 IOIF1_COMP_EN and BE_MMIO_Base Settings on page 233 to the 
description of the IOIF1_COMP_EN configuration-ring register (see Table 8-6 SPE Address-
Range Registers on page 232). 

• Indicated that the TKM registers can only be changed when there are no outstanding requests in 
the token manager and that the Allocation registers must be written to zero before the allocation 
rate is changed (see Section 8.7.6 Changing TKM Registers on page 236).

• Corrected a footnote describing PPE floating-point exceptions (see Section 9.2 Summary of 
Interrupt Architecture on page 240).

• Changed an instance of HID4[en_dcset] to HID4[en_dcway]. Removed a statement indicating 
that, if the DABR match feature is enabled, any non-VMU cacheable (I = ‘0’) load or store 
instruction crossing an 8-byte boundary causes an alignment interrupt. Indicated that the PPE 
does not modify the DSISR when an alignment interrupt is taken (see Section 9.5.8 Alignment 
Interrupt (x‘00..00000600’) on page 255).

• Described software requirements for using the interrupt status and masking registers (see 
Section 9.6.3.1 Status and Masking on page 271). 

• Changed “Vector Multimedia Registers” to “Vector Registers” and “VMR” to “VR” (see 
Section 10.2.1 Registers on page 301).

• Explained how stall conditions are handled when the instruction that caused the stall is dependent 
on a caching-inhibited load instruction (see Section 10.2.3.1 Pipeline Stall Points on page 304). 

• Added a note indicating that MSR[ME] can only be modified by the rfid and hrfid instructions 
while in hypervisor mode (see Section 10.4.1 Machine State Register (MSR) on page 307).

• Added information about the maximum time-base frequency limit (see Section 13.2.3 Time-Base 
Frequency on page 383). 

• Indicated that the lock-line reservation lost event will not be raised when the reservation is reset 
by a matching putllc, putlluc, or putqlluc operation, as opposed to a put operation, which will 
cause the lock-line reservation event. Added a note on how to avoid the starvation of writes and 
low-priority reads (see Section 18.6.4 Procedure for Handling the Lock-Line Reservation Lost 
Event on page 485).

• Corrected certain first level interrupt handler (FLIH) code samples to enable proper handling of 
the Link Register (see Section 18.7.2 FLIH Design on page 496, Section 18.8.2 FLIH Design for 
Nested Interrupts on page 502, and Section 18.9 Using a Dedicated Interrupt Stack on page 504).

• Indicated that, for naturally aligned 1, 2, 4, and 8-byte transfers, the source and destination 
addresses must have the same 4 least significant bits (see Section 19.2.1 DMA Commands on 
page 516). 

• Corrected the putlb row in Table 19-4 MFC DMA Put Commands on page 516. The PPE cannot 
initiate the putlb command.

• Added a footnote indicating that 64-bit access to an address range that includes a 32-bit MMIO 
register is not allowed unless otherwise explicitly specified (see Section 19.3.1 MFC Command 
Issue on page 523).

• Corrected the description of how the Cell Broadband Engine handles DMA list element transfers 
that cross the 4 GB area defined by the EAH (see Section 19.4.4.2 Initiating the Transfers 
Specified in the List on page 537). 

• Removed extraneous eieio instructions from three code examples (see Section 19.6.5.4 PPE 
Side on page 546, Section 19.6.6.2 PPE Side on page 547, and Section 19.7.6.1 From the PPE 
on page 553). 

• Corrected the effect of sync, dsync, and syncc instructions issued by an SPU on the LS domain 
(see Table 20-1 Effects of Synchronization on Address and Communication Domains1 on 
page 563). 

• Deleted an obsolete paragraph indicating that data transfer only occurs on the first getllar 
instruction (see Section 20.3.1.1 The Get Lock-Line and Reserve Command—getllar on 
page 598).
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• Removed a statement indicating that an SPE external event can be used to determine the status 
of an atomic command (see Section 20.3.2 The MFC Read Atomic Command Status Channel on 
page 599).

• Provided a code example that illustrates the use of sleeping locks (see Section 20.3.3.1 Lock-Line 
Reservation Lost Event on page 600).

• Clarified the third method used for triangle subdivision (see Method 3: Evaluate Four Vertices at a 
Time Using SOA on page 633). 

• Corrected a code example (see Section 22.2.1.7 SIMDization Interaction with Other Optimizations 
on page 650). 

• Removed stores and branch hints from Table 24-2 Pipeline 1 Instructions and Latencies on 
page 699.

• Corrected the statement, “The HBR instruction must be placed within 64 instructions of the branch 
instruction.” The branch instruction is encoded using a split 9-bit field, which is interpreted with 2 
implied zero bits. Therefore, the instruction must be within -256 to +255 instructions (see 
Section 24.3.3.5 Rules for Using Branch Hints on page 704).

• Removed an incorrect bullet describing pipelined instructions (see Appendix A.1.2 PPE 
Instructions on page 723).

• Updated Table A-1 PowerPC Instructions by Execution Unit on page 723.
• Updated Table A-2 Storage Alignment for PowerPC Instructions on page 733.
• Changed the code sequence for mtmsr and mtmsrd (see Table A-3 Unconditionally Microcoded 

Instructions (Except Loads and Stores) on page 735).
• Added tlbsync to the lists of optional PowerPC instructions implemented in the PPE (see 

Appendix A.2.3.2 Book III Optional Instructions Implemented on page 746). 
• Changed the title of a section from “Book II Optional Instructions Implemented” to “Book III 

Optional Instructions Implemented.” In that section, removed the slbie and slbia instructions 
because they are not optional (see Section A.2.3.2 Book III Optional Instructions Implemented on 
page 746). 

• Added the fre(.), frsqrtes(.), and popcntb instructions to the list of instructions not implemented 
in the PPE (see Appendix A.2.4.1 Book I Unimplemented Instructions on page 747). 

• Removed bccbr from the list of obsolete user-mode instructions that are not implemented (this 
instruction is not documented in the latest version of PowerPC User Instruction Set Architecture, 
Book I) (see Appendix A.2.4.1 Book I Unimplemented Instructions on page 747).

• For graphics rounding mode, corrected the value of the logarithm base-2 estimate output when 
the input is +0 (see Section A.3.3.5 Logarithm Base-2 Estimate on page 753). 

• Corrected Figure A-1 Dual-Issue Combinations on page 761.
• Added several recommendations that can be used to help improve performance (see 

Section A.7.4 General Recommendations on page 770).
• Updated Table B-1 SPU Instructions on page 772. 
• Changed “JSRE-compliant compiler” to “compiler compliant with the C/C++ Language Extensions 

for Cell Broadband Engine Architecture specification” (see Section B.2.1 Vector Data Types on 
page 784). 

• Updated Appendix C-2 begining on page 794:
– Added a table note that addresses the functionality restrictions of signal bits 6 and 25 in 

Appendix C.2.1 PPU Instruction Unit on page 797.
– Added a comment regarding the correct use of the shared L2 trace bus in 

Appendix C.3.2 PPSS L2 Cache Controller - Group 1 (NClk/2) on page 800, 
Appendix C.3.3 PPSS L2 Cache Controller - Group 2 (NClk/2) on page 801, and 
Appendix C.3.4 PPSS L2 Cache Controller - Group 3 (NClk/2) on page 802.

– Replaced obsolete terms in Appendix C.4.1 begining on page 804.
– Added bit 63 in Appendix C.4.3 SPU Event (NClk) on page 807.
– Added bit 22 in Appendix C.6.2 EIB Address Concentrator 1 (NClk/2) on page 813.
– Provided clearer meanings to several bit descriptions in Appendix C.6.3 EIB Data Ring Arbi-

ter - Group 1 (NClk/2) on page 814 and Appendix C.6.4 EIB Data Ring Arbiter - Group 2 
(NClk/2) on page 815.

Revision Date Version Contents of Modification



Programming Handbook

 Cell Broadband Engine

Version 1.11
May 12, 2008
 

Revision Log
Page 37 of 884

April 24, 2007
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• Added “architecture,” “Cell Broadband Engine Architecture,” “JSRE”, and “island” to the glossary 
(see Glossary on page 835). 

• Changed “SPU C/C++ Language Extensions” to “C/C++ Language Extensions for Cell Broadband 
Engine Architecture” throughout.

• Changed “L2_RMT_Setup” to “L2_RMT_Data” throughout. 
• Changed “SPU_RdEventStatMask” to “SPU_RdEventMask” throughout. 
• Made other changes to improve the clarity and consistency of the document. 

April 19, 2006 1.0 Initial release
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1. Overview of CBEA Processors

This handbook describes the extensive programming facilities of the Cell Broadband Engine 
(Cell/B.E.) and PowerXCell 8i processors, which are collectively called Cell Broadband Engine 
Architecture processors (CBEA processors). The Cell Broadband Engine Architecture (CBEA) 
was developed jointly by Sony, Toshiba, and IBM; it extends the 64-bit PowerPC Architecture™. 
The Cell/B.E. processor is a result of that collaboration between Sony, Toshiba, and IBM. It is the 
first implementation of a multiprocessor family conforming to the CBEA. The IBM PowerXCell 8i 
processor also conforms to the CBEA. It provides a double data rate 2 (DDR2) memory interface 
and improved double-precision, floating-point performance and additional double-precision 
instructions. Both CBEA processors comprise eight Synergistic Processor Elements (SPEs) and 
one PowerPC Processor Element (PPE). 

Although the Cell/B.E. processor is initially intended for applications in media-rich consumer-
electronics devices such as game consoles and high-definition televisions, the architecture has 
been designed to enable fundamental advances in processor performance. These advances are 
expected to support a broad range of applications in both commercial and scientific fields. 

This handbook is written for the complete range of programmers, including those developing 
applications (user programs), libraries, device drivers, middleware, compilers, and operating 
systems. It assumes that the reader is an experienced C/C++ programmer. It describes and 
presents examples of both basic and advanced programming concepts for single-instruction, 
multiple-data (SIMD) vector applications and the system software that supports such applica-
tions. 

The handbook is system-independent, making no assumptions about development-tool or oper-
ating-system environments, other than the C/C++ language environment. The examples are 
chosen to highlight the general principals required to program the CBEA processors, such that 
an experienced programmer can apply this knowledge to their particular system environment.

Figure 1-1 on page 40 shows a block diagram of the CBEA-processor hardware. This figure is 
referred to later in this section and in subsequent sections. 
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1.1 Background

1.1.1 Motivation

The Cell Broadband Engine Architecture has been designed to support a very broad range of 
applications. The CBEA processors described in this handbook are single-chip multiprocessors 
with nine processor elements operating on a shared, coherent memory, as shown in Figure 1-1. 
In this respect, CBEA processors extend current trends in PC and server processors. The most 
distinguishing feature of the CBEA processors is that, although all processor elements share 
memory, their function is specialized into two types: the PowerPC Processor Element (PPE) and 
the Synergistic Processor Element (SPE). The CBEA processors have one PPE and eight SPEs. 

The first type of processor element, the PPE, contains a 64-bit PowerPC Architecture core. It 
complies with the 64-bit PowerPC Architecture and can run 32-bit and 64-bit operating systems 
and applications. The second type of processor element, the SPE, is optimized for running 
compute-intensive SIMD applications; it is not optimized for running an operating system. The 
SPEs are independent processor elements, each running their own individual application 
programs or threads. Each SPE has full access to coherent shared memory, including the 
memory-mapped I/O space. There is a mutual dependence between the PPE and the SPEs. The 

Figure 1-1. Overview of CBEA Processors  

SPE1 SPE3 SPE5 SPE7

SPE0 SPE2 SPE4 SPE6

EIB B
E

I

IOIF_1

IOIF_0

FlexIO

FlexIOMIC

PPE

XIO
XIO

RAM

RAM

Unit ID

7 8 9 10
11

0

1234

5

6

X2D

DDR2
PowerXCell 8i only

BEI Cell Broadband Engine Interface

DDR2 Double-Data-Rate 2 Synchronous Dynamic 
Random Access Memory (SDRAM) Interface

EIB Element Interconnect Bus

FlexIO Rambus FlexIO Bus

IOIF I/O Interface

MIC Memory Interface Controller

PPE PowerPC Processor Element

RAM Resource Allocation Management

SPE Synergistic Processor Element

X2D XIO to DDR2 logic

XIO Rambus XDR I/O (XIO) Cell



Programming Handbook

 Cell Broadband Engine

Version 1.11
May 12, 2008
 

Overview of CBEA Processors
Page 41 of 884

SPEs depend on the PPE to run the operating system, and, in many cases, the top-level thread 
control for an application. The PPE depends on the SPEs to provide the bulk of the application 
performance. 

The SPEs are designed to be programmed in high-level languages, such as (but certainly not 
limited to) C/C++. They support a rich instruction set that includes extensive SIMD functionality. 
However, like conventional processors with SIMD extensions, use of SIMD data types is 
preferred, not mandatory. For programming convenience, the PPE also supports the standard 
PowerPC Architecture instructions and the vector/SIMD multimedia extensions. 

To an application programmer, the CBEA processors look like 9-way coherent multiprocessors. 
The PPE is more adept than the SPEs at control-intensive tasks and quicker at task switching. 
The SPEs are more adept at compute-intensive tasks and slower than the PPE at task switching. 
However, either processor element is capable of both types of functions. This specialization is a 
significant factor accounting for the order-of-magnitude improvement in peak computational 
performance and chip-area-and-power efficiency that the CBEA processors achieve over 
conventional PC processors.

The more significant difference between the SPE and PPE lies in how they access memory. The 
PPE accesses main storage (the effective-address space) with load and store instructions that 
move data between main storage and a private register file, the contents of which may be 
cached. The SPEs, in contrast, access main storage with direct memory access (DMA) 
commands that move data and instructions between main storage and a private local memory, 
called local storage (LS). An SPE’s instruction-fetches and load and store instructions access its 
private LS rather than shared main storage, and the LS has no associated cache. This 3-level 
organization of storage (register file, LS, main storage), with asynchronous DMA transfers 
between LS and main storage, is a radical break from conventional architecture and program-
ming models, because it explicitly parallelizes computation with the transfers of data and instruc-
tions that feed computation and store the results of computation in main storage.

One of the enabling accomplishments for this radical change is that memory latency, measured 
in processor cycles, has gone up several hundredfold from about the years 1980 to 2000. The 
result is that application performance is, in most cases, limited by memory latency rather than 
peak compute capability or peak bandwidth. When a sequential program on a conventional archi-
tecture performs a load instruction that misses in the caches, program execution comes to a halt 
for several hundred cycles. Compared to this penalty, the few cycles it takes to set up a DMA 
transfer for an SPE are a much better trade-off, especially considering the fact that each of the 
eight SPE’s DMA controller can have up to 16 DMA transfer in flight simultaneously. Conven-
tional processors, even with deep and costly speculation, manage to get, at best, a handful of 
independent memory accesses in flight. 

One of the SPE’s DMA transfer methods supports a list (such as a scatter-gather list) of DMA 
transfers that is constructed in an SPE’s local storage, so that the SPE’s DMA controller can 
process the list asynchronously while the SPE operates on previously transferred data. In several 
cases, this approach to accessing memory has led to application performance exceeding that of 
conventional processors by almost two orders of magnitude—significantly more than one would 
expect from the peak performance ratio (approximately 10x) between the CBEA processors and 
conventional PC processors. The DMA transfers can be set up and controlled by the SPE that is 
sourcing or receiving the data, or by the PPE or another SPE. 



Programming Handbook

Cell Broadband Engine  

Overview of CBEA Processors
Page 42 of 884

Version 1.11
May 12, 2008

1.1.2 Power, Memory, and Frequency

The CBEA processors overcome three important limitations of contemporary microprocessor 
performance—power use, memory use, and clock frequency. 

Microprocessor performance is approaching limits of power dissipation rather than integrated-
circuit resources (transistors and wires). The only way to significantly increase the performance 
of microprocessors in this environment is to improve power efficiency at approximately the same 
rate as the performance increase. The CBEA processors do this by differentiating between the 
PPE, optimized to run an operating system and control-intensive code, and the eight SPEs, opti-
mized to run compute-intensive applications. The control-plane PPE leaves the eight data-plane 
SPEs free to compute data-rich applications. 

On today’s symmetric multiprocessors—even those with integrated memory controllers—latency 
to DRAM memory is approaching 1000 cycles. As a result, program performance is dominated 
by moving data between main storage and the processor. Compilers and application writers must 
manage this data movement explicitly, even though the hardware cache mechanisms are 
supposed to relieve them of this task. In contrast, the CBEA processor mechanisms for dealing 
with memory latencies—the 3-level SPE memory structure (main storage, local storages, and 
large register files), and asynchronous DMA transfers—enable programmers to schedule simul-
taneous data and code transfers to cover long memory latencies. At 16 simultaneous transfers 
per SPE, the CBEA processors can support up to 128 simultaneous transfers between the SPE 
local storages and main storage. This surpasses the bandwidth of conventional processors by a 
factor of almost twenty. 

Conventional processors require increasingly deeper instruction pipelines to achieve higher 
operating frequencies. This technique has reached a point of diminishing returns—and even 
negative returns if power is taken into account. By specializing the PPE for control-intensive 
tasks and the SPEs for compute-intensive tasks, these processing elements run at high frequen-
cies without excessive overhead. The PPE achieves efficiency by executing two threads simulta-
neously rather than by optimizing single-thread performance. Each SPE achieves efficiency by 
using a large register file that supports many simultaneous in-flight instructions without the over-
head of register-renaming or out-of-order processing, and asynchronous DMA transfers, that 
support many concurrent memory operations without the overhead of speculation. 

By distinguishing and separately optimizing control-plane and data-plane processor elements, 
the CBEA processors mitigate the problems posed by power, memory, and frequency limitations. 
The net result is a multiprocessor that, at the power budget of a conventional PC processor, can 
provide approximately ten-fold the peak performance of a conventional processor. Of course, 
actual application performance varies. Some applications may benefit little from the SPEs, 
whereas others show a performance increase well in excess of ten-fold. In general, compute-
intensive applications that use 32-bit or smaller data formats (such as single-precision floating-
point and integer) are excellent candidates for the CBEA processors. 

1.1.3 Scope of this Handbook

As mentioned at the beginning, this handbook is written for the complete range of programmers, 
including those developing applications, libraries, device drivers, middleware, compilers, and 
operating systems. 
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The remainder of this section summarizes highlights of the hardware and programming environ-
ments. The two sections that follow expand on these topics for the CBEA processor program-
ming targets, the PPE and the SPEs. 

This is followed in Sections 4 through 16 with additional hardware overviews and details primarily 
relating to privilege-state (supervisor) programming. A few user programming topics are also 
presented in these sections. The topics covered include virtual-memory management, cache 
management, I/O, resource-allocation management (the management of memory and I/O 
resources), interrupts, multithreading, hypervisors (the highest privilege state), SPE context-
switching, the CBEA processor clocks (time base) and decrementers, object-file formats, and 
power and performance monitoring. 

Problem-state (user) programming topics are covered primarily in Sections 17 through 24, and 
the appendixes. The topics include the SPE channel interface, SPE events, DMA transfers and 
interprocessor communications, shared-storage synchronization, parallel programming tech-
niques, SIMD programming techniques, PPE versus SPE support for vector operations, general 
SPE programming tips, and summaries of the PPE and SPE instruction sets and C/C++ intrin-
sics. A few supervisor-programming and compiler-writer topics are also covered in these 
sections. 

There are many programming examples throughout the handbook, and active hyperlinks provide 
cross-references to relevant topics in various sections. The Glossary on page 835 defines terms 
that have special meanings in the context of the CBEA processors. 
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1.2 Hardware Environment

1.2.1 The Processor Elements

Figure 1-1 on page 40 shows a high-level block diagram of the CBEA processor hardware. There 
is one PPE, and there are eight identical SPEs. All processor elements are connected to each 
other and to the on-chip memory and I/O controllers by the memory-coherent element intercon-
nect bus (EIB). 

The PPE contains a 64-bit, dual-thread PowerPC Architecture RISC core and supports a 
PowerPC virtual-memory subsystem. It has 32 KB level-1 (L1) instruction and data caches and a 
512 KB level-2 (L2) unified (instruction and data) cache. It is intended primarily for control 
processing, running operating systems, managing system resources, and managing SPE 
threads. It can run existing PowerPC Architecture software and is well-suited to executing 
system-control code. The instruction set for the PPE is an extended version of the PowerPC 
instruction set. It includes the vector/SIMD multimedia extensions and associated C/C++ intrinsic 
extensions. 

The eight identical SPEs are single-instruction, multiple-data (SIMD) processor elements that are 
optimized for data-rich operations allocated to them by the PPE. Each SPE contains a RISC 
core, 256 KB software-controlled LS for instructions and data, and a 128-bit, 128-entry unified 
register file. The SPEs support a special SIMD instruction set—the Synergistic Processor Unit 
Instruction Set Architecture—and a unique set of commands for managing DMA transfers and 
interprocessor messaging and control. SPE DMA transfers access main storage using PowerPC 
effective addresses. As in the PPE, SPE address translation is governed by PowerPC Architec-
ture segment and page tables, which are loaded into the SPEs by privileged software running on 
the PPE. The SPEs are not intended to run an operating system. 

An SPE controls DMA transfers and communicates with the system by means of channels that 
are implemented in and managed by the SPE’s memory flow controller (MFC). The channels are 
unidirectional message-passing interfaces. The PPE and other devices in the system, including 
other SPEs, can also access this MFC state through the MFC’s memory-mapped I/O (MMIO) 
registers and queues, which are visible to software in the main-storage address space. 

For more information about the PPE, see Section 2 on page 51. For more information about 
SPEs, see Section 3 on page 65.

1.2.2 Element Interconnect Bus

The element interconnect bus (EIB) is the communication path for commands and data between 
all processor elements on the CBEA processors and the on-chip controllers for memory and I/O. 
The EIB supports full memory-coherent and symmetric multiprocessor (SMP) operations. Thus, 
the CBEA processors are designed to be ganged coherently with other CBEA processors to 
produce a cluster. 

The EIB consists of four 16-byte-wide data rings. Each ring transfers 128 bytes (one PPE cache 
line) at a time. Each processor element has one on-ramp and one off-ramp. Processor elements 
can drive and receive data simultaneously. Figure 1-1 on page 40 shows the unit ID numbers of 
each element and the order in which the elements are connected to the EIB. The connection 
order is important to programmers seeking to minimize the latency of transfers on the EIB: 



Programming Handbook

 Cell Broadband Engine

Version 1.11
May 12, 2008
 

Overview of CBEA Processors
Page 45 of 884

latency is a function of the number of connection hops, such that transfers between adjacent 
elements have the shortest latencies and transfers between elements separated by six hops 
have the longest latencies. 

The EIB’s internal maximum bandwidth is 96 bytes per processor-clock cycle. Multiple transfers 
can be in-process concurrently on each ring, including more than 100 outstanding DMA memory 
requests between main storage and the SPEs. The EIB does not support any particular quality-
of-service (QoS) behavior other than to guarantee forward progress. However, a resource alloca-
tion management (RAM) facility, shown in Figure 1-1 on page 40, resides in the EIB. Privileged 
software can use it to regulate the rate at which resource requesters (the PPE, SPEs, and I/O 
devices) can use memory and I/O resources. 

1.2.3 Memory Interface Controller

The on-chip memory interface controller (MIC) provides the interface between the EIB and phys-
ical memory. It supports one or two Rambus extreme data rate (XDR) memory interfaces, which 
together support between 64 MB and 64 GB of XDR DRAM memory. The PowerXCell 8i 
processor supports one or two 128-bit DDR2 memory channels.

Memory accesses on each interface are 1 to 8, 16, 32, 64, or 128 bytes, with coherent memory-
ordering. Up to 64 reads and 64 writes can be queued. The resource-allocation token manager 
provides feedback about queue levels.

The MIC has multiple software-controlled modes, including fast-path mode (for improved latency 
when command queues are empty), high-priority read (for prioritizing SPE reads in front of all 
other reads), early read (for starting a read before a previous write completes), speculative read, 
and slow mode (for power management). The MIC implements a closed-page controller (bank 
rows are closed after being read, written, or refreshed), memory initialization, and memory scrub-
bing.

The XDR DRAM memory is ECC-protected, with multi-bit error detection and optional single-bit 
error correction. It also supports write-masking, initial and periodic timing calibration, dynamic 
width control, sub-page activation, dynamic clock gating, and 4, 8, or 16 banks. 

The PowerXCell 8i processor incorporates an X2D macro that converts XDR packets to DDR2 
commands. The processor can be configured with one or two DDR2 memory channels, providing 
1 GB to 32 GB of error correction code (ECC) corrected memory.

1.2.4 Cell Broadband Engine Interface Unit

The on-chip Cell Broadband Engine interface (BEI) unit supports I/O interfacing. It includes a bus 
interface controller (BIC), I/O controller (IOC), and internal interrupt controller (IIC), as defined in 
the Cell Broadband Engine Architecture document. It manages data transfers between the EIB 
and I/O devices and provides I/O address translation and command processing. 

The BEI supports two Rambus FlexIO interfaces. One of the two interfaces (IOIF1) supports only 
a noncoherent I/O interface (IOIF) protocol, which is suitable for I/O devices. The other interface 
(IOIF0, also called BIF/IOIF0) is software-selectable between the noncoherent IOIF protocol and 
the memory-coherent Cell Broadband Engine interface (BIF) protocol. The BIF protocol is the 
EIB’s internal protocol. It can be used to coherently extend the EIB, through IOIF0, to another 
memory-coherent device, that can be another CBEA processor. 
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1.3 Programming Environment

CBEA-processor software development in the C/C++ language is supported by a rich set of 
language extensions that define C/C++ data types for SIMD operations and map C/C++ intrinsics 
(which are commands, in the form of function calls) to one or more assembly instructions. These 
language extensions, summarized in Appendix A on page 723 and Appendix B on page 771, 
give C/C++ programmers great control over code performance, without the need for assembly-
language programming. 

1.3.1 Instruction Sets

The instruction set for the PPE is an extended version of the PowerPC Architecture instruction 
set. The extensions consist of the vector/SIMD multimedia extensions, a few additions and 
changes to PowerPC Architecture instructions, and C/C++ intrinsics for the vector/SIMD multi-
media extensions. 

The instruction set for the SPEs is a new SIMD instruction set, the Synergistic Processor Unit 
Instruction Set Architecture, with accompanying C/C++ intrinsics, and a unique set of commands 
for managing DMA transfer, external events, interprocessor messaging, and other functions. The 
instruction set for the SPEs is similar to that of the PPE’s vector/SIMD multimedia extensions, in 
the sense that they operate on SIMD vectors. However, the two vector instruction sets are 
distinct, and programs for the PPE and SPEs are often compiled by different compilers. 

Although most coding for the CBEA processors will probably be done in a high-level language 
like C or C++, an understanding of the PPE and SPE machine instructions adds considerably to 
a software developer’s ability to produce efficient, optimized code. This is particularly true 
because most of the C/C++ intrinsics have a mnemonic that relates directly to the underlying 
assembly-language mnemonic. 

1.3.2 Storage Domains and Interfaces

The CBEA processors have two types of storage domains—one main-storage domain and eight 
SPE local-storage (LS) domains, as shown in Figure 1-2 on page 47. In addition, each SPE has 
a channel interface for communication between its synergistic processor unit (SPU) and its MFC. 
The main-storage domain, which is the entire effective-address space, can be configured by PPE 
privileged software to be shared by all processor elements and memory-mapped devices in the 
system1. An MFC’s state is accessed by its associated SPU through the channel interface, and 
this state can also be accessed by the PPE and other devices (including other SPEs) by means 
of the MFC’s MMIO registers in the main-storage space. An SPU’s LS can also be accessed by 
the PPE and other devices through the main-storage space. The PPE accesses the main-
storage space through its PowerPC processor storage subsystem (PPSS). 

The address-translation mechanisms used in the main-storage domain are described in 
Section 4 Virtual Storage Environment on page 79. The channel domain is described in 
Section 19 DMA Transfers and Interprocessor Communication on page 513.

1. In the PowerPC Architecture, all I/O is memory-mapped. 
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An SPE’s SPU can fetch instructions only from its own LS, and load and store instructions 
executed by the SPU can only access the LS. SPU software uses LS addresses (not main-
storage effective addresses) to do this. Each SPE’s MFC contains a DMA controller. DMA-
transfer requests contain both an LS address and an effective address, thereby facilitating trans-
fers between the domains. 

Data transfers between an SPE’s LS and main storage are performed by the associated SPE, or 
by the PPE or another SPE, using the DMA controller in the MFC associated with the LS. Soft-
ware running on the associated SPE interacts with its own MFC through its channel interface. 
The channels support enqueueing of DMA commands and other facilities, such as mailbox and 
signal-notification messages. Software running on the PPE or another SPE can interact with an 
MFC through MMIO registers, which are associated with the channels and visible in the main-
storage space. 

Figure 1-2. Storage and Domains and Interfaces 
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Each MFC maintains and processes two independent command queues for DMA and other 
commands—one queue for its associated SPU, and another queue for other devices accessing 
the SPE through the main-storage space. Each MFC can process multiple in-progress DMA 
commands. Each MFC can also autonomously manage a sequence of DMA transfers in 
response to a DMA list command from its associated SPU (but not from the PPE or other SPEs). 
Each DMA command is tagged with a tag group ID that allows software to check or wait on the 
completion of commands in a particular tag group.

The MFCs support naturally aligned DMA transfer sizes of 1, 2, 4, or 8 bytes, and multiples of 16 
bytes, with a maximum transfer size of 16 KB per DMA transfer. DMA list commands can initiate 
up to 2048 such DMA transfers. Peak transfer performance is achieved if both the effective 
addresses and the LS addresses are 128-byte aligned and the size of the transfer is an even 
multiple of 128 bytes.

Each MFC has a synergistic memory management (SMM) unit that processes address-transla-
tion and access-permission information supplied by the PPE operating system. To process an 
effective address provided by a DMA command, the SMM uses essentially the same address-
translation and protection mechanism used by the memory management unit (MMU) in the 
PPE’s PowerPC processor storage subsystem (PPSS)2. Thus, DMA transfers are coherent with 
respect to system storage, and the attributes of system storage are governed by the page and 
segment tables of the PowerPC Architecture.

1.3.3 Byte Ordering and Bit Numbering

Storage of data and instructions in the CBEA processors uses big-endian ordering, which has the 
following characteristics:

• Most-significant byte stored at the lowest address, and least-significant byte stored at the 
highest address.

• Bit numbering within a byte goes from most-significant bit (bit 0) to least-significant bit (bit n). 
This differs from some other big-endian processors.

A summary of the byte-ordering and bit-ordering in memory and the bit-numbering conventions is 
shown in Figure 1-3 on page 49. 

2. See Section 4.3.6 on page 117 for the different way in which the SMM translates real addresses, as compared 
with the MMU. 
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Neither the PPE nor the SPEs, including their MFCs, support little-endian byte-ordering. The 
MFC’s DMA transfers are simply byte moves, without regard to the numeric significance of any 
byte. Thus, the big-endian or little-endian issue becomes irrelevant to the actual movement of a 
block of data. The byte-order mapping only becomes significant when data is loaded or inter-
preted by a processor element or an MFC. 

1.3.4 Runtime Environment

The PPE runs PowerPC Architecture applications and operating systems, which can include both 
PowerPC Architecture instructions and vector/SIMD multimedia extension instructions. To use all 
of the CBEA processor features, the PPE requires an operating system that supports these 
features, such as multiprocessing with the SPEs, access to the PPE vector/SIMD multimedia 
extension operations, the interrupt controller, and all the other functions provided by the CBEA 
processors. This handbook is system-independent, in the sense of making no assumptions about 
specific operating-system or development-tool environments. 

It is common to run a main program on the PPE that allocates threads to the SPEs. In such an 
application, the main thread is said to spawn one or more tasks. A task has one or more main 
threads associated with it, along with some number of SPE threads. An SPE thread is a thread 
that is spawned to run on an available SPE. These terms are defined in Table 1-1. The software 
threads are unrelated to the hardware multithreading capability of the PPE. 

Figure 1-3. Big-Endian Byte and Bit Ordering 
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Table 1-1. Definition of Threads and Tasks  

Term Definition

Main Thread A thread running on the PPE.

Task

A task running on the PPE and SPE. Each such task:
• Has one or more main threads and some number of SPE threads.
• All the main threads within the task share the task’s resources, including 

access to the SPE threads.

SPE Thread

A thread running on an SPE. Each such thread:
• Has its own 128 × 128-bit register file, program counter and MFC-DMA 

command queues.
• Can communicate with other execution units (or with main storage through 

the MFC channel interface).
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A main thread can interact directly with an SPE thread through the SPE’s LS. It can interact indi-
rectly through the main-storage space. A thread can poll or sleep, waiting for SPE threads.

The operating system defines the mechanism and policy for selecting an available SPE. It must 
prioritize among all the applications in the system, and it must schedule SPE execution indepen-
dently from regular main threads. The operating system is also responsible for runtime loading, 
passing parameters to SPE programs, notification of SPE events and errors, and debugger 
support.

The next two sections provide an expanded overview of the hardware and programming environ-
ments for the PPE (Section 2 on page 51) and the SPEs (Section 3 on page 65). 
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2. PowerPC Processor Element

The PowerPC Processor Element (PPE) is a general-purpose, dual-threaded, 64-bit RISC 
processor that conforms to the PowerPC Architecture, version 2.02, with the vector/SIMD multi-
media extensions. Programs written for the PowerPC 970 processor, for example, should run 
without modification on the Cell Broadband Engine Architecture (CBEA) processors.1 

The PPE is responsible for overall control of a system. It runs the operating systems for all appli-
cations running on the PPE and Synergistic Processor Elements (SPEs). The PPE consists of 
two main units, the PowerPC processor unit (PPU) and the PowerPC processor storage 
subsystem (PPSS), shown in Figure 2-1. 

The PPU performs instruction execution. Its has a level-1 (L1) instruction cache and data cache 
and six execution units. It can load 32 bytes and store 16 bytes, independently and memory-
coherently, per processor cycle. The PPSS handles memory requests from the PPU and external 
requests to the PPE from SPEs or I/O devices. It has a unified level-2 (L2) instruction and data 
cache. The PPU and the PPSS and their functional units are shown in Figure 2-2 on page 52. 
The sections that follow describe their functions. 

1. The Cell Broadband Engine (Cell/B.E.) and PowerXCell 8i processors are collectively called CBEA processors.

Figure 2-1. PPE Block Diagram 
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2.1 PowerPC Processor Unit

The PPU executes the PowerPC Architecture instruction set and the vector/SIMD multimedia 
extension instructions. It has duplicate sets of the PowerPC and vector user-state register files 
(one set for each thread) plus one set of the following functional units:

• Instruction Unit (IU)—The IU performs the instruction-fetch, decode, dispatch, issue, branch, 
and completion portions of execution. It contains the L1 instruction cache, which is 32 KB, 
2-way set-associative, reload-on-error, and parity protected. The cache-line size is 128 bytes. 

• Load and Store Unit (LSU)—The LSU performs all data accesses, including execution of load 
and store instructions. It contains the L1 data cache, which is 32 KB, 4-way set-associative, 
write-through, and parity protected. The cache-line size is 128 bytes. 

• Vector/Scalar Unit (VSU)—The VSU includes a floating-point unit (FPU) and a 128-bit vec-
tor/SIMD multimedia extension unit (VXU), which together execute floating-point and vec-
tor/SIMD multimedia extension instructions.

Figure 2-2. PPE Functional Units 

PPE

PowerPC Processor Storage Subsystem (PPSS)

PowerPC Processing Unit (PPU)

FPU Floating-Point Unit
VXU Vector Media Extension Unit

32-byte loads
16-byte stores

16-byte loads and stores

Level-2 (L2) Unified Cache

Element Interconnect Bus (EIB)

Register
Files

Load/Store Unit (LSU)

Level-1 (L1) Data Cache

Instruction Unit (IU)

Level-1 (L1) Instruction Cache

Fixed-Point Unit (FXU)

Memory Management Unit
(MMU)

Branch Unit (BRU)

Vector and Scalar Unit (VSU)

FPU + VXU



Programming Handbook

 Cell Broadband Engine

Version 1.11
May 12, 2008
 

PowerPC Processor Element
Page 53 of 884

• Fixed-Point Unit (FXU)—The FXU executes fixed-point (integer) operations, including add, 
multiply, divide, compare, shift, rotate, and logical instructions.

• Memory Management Unit (MMU)—The MMU manages address translation for all memory 
accesses. It has a 64-entry segment lookaside buffer (SLB) and 1024-entry, unified, parity-
protected translation lookaside buffer (TLB). It supports three simultaneous page sizes—
4 KB, plus two sizes selectable from 64 KB, 1 MB, or 16 MB. 

The 128-bit VXU operates concurrently with the FXU and the FPU, as shown Figure 2-3 and 
subject to limitations described in Appendix A.5 on page 760. All vector/SIMD multimedia exten-
sion instructions are designed to be easily pipelined. Parallel execution with the fixed-point and 
floating-point instructions is simplified by the fact that vector/SIMD multimedia extension instruc-
tions do not generate exceptions (other than data-storage interrupts on loads and stores), do not 
support complex functions, and share few resources or communication paths with the other PPE 
execution units. A description of the PPE instructions, the units on which they execute, and their 
latencies is given in Table A-1 PowerPC Instructions by Execution Unit on page 723 and Table 
A-8 Vector/SIMD Multimedia Extension Instructions on page 748. 

The MMU manages virtual-memory address translation and memory protection in compliance 
with the 64-bit PowerPC Architecture. The MMU supports the following address-space sizes:

• Real Address (RA) Space—242 bytes. These are the addresses, in real storage or on an I/O 
device, whose physical addresses have been mapped by privileged PPE software to the RA 
space. Real storage can include on-chip SPE local storage (LS) memory and off-chip mem-
ory and I/O devices. 

• Effective Address (EA) Space—264 bytes. These are the addresses generated by programs. 
Figure 1-2 Storage and Domains and Interfaces on page 47 illustrates the effective address 
space. 

• Virtual Address (VA) Space—265 bytes. These are the addresses used by the MMU in the 
PPE and in the memory flow controller (MFC) of each SPE to translate between EAs and 
RAs. 

Figure 2-3. Concurrent Execution of Fixed-Point, Floating-Point, and Vector Extension Units 
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2.2 PowerPC Processor Storage Subsystem

The PPSS handles all memory accesses by the PPU and memory-coherence (snooping) opera-
tion from the element interconnect bus (EIB). The PPSS has a unified, 512 KB, 8-way set-asso-
ciative, write-back L2 cache with error-correction code (ECC). Like the L1 caches, the cache-line 
size for the L2 is 128 bytes. The cache has a single-port read/write interface to main storage that 
supports eight software-managed data-prefetch streams. It includes the contents of the L1 data 
cache but is not guaranteed to contain the contents of the L1 instruction cache, and it provides 
fully coherent symmetric multiprocessor (SMP) support. 

The PPSS performs data-prefetch for the PPU and bus arbitration and pacing onto the EIB. 
Traffic between the PPU and PPSS is supported by a 32-byte load port (shared by MMU, L1 
instruction cache, and L1 data cache requests), and a 16-byte store port (shared by MMU and L1 
data cache requests). 

The interface between the PPSS and EIB supports 16-byte load and 16-byte store buses. One 
storage access occurs at a time, and all accesses appear to occur in program order. The inter-
face supports resource allocation management (Section 8 on page 203), which allows privileged 
software to control the amount of time allocated to various resource groups. The L2 cache and 
the TLB use replacement management tables (Section 6.3 on page 154), which allow privileged 
software to control the use of the L2 and TLB. This software control over cache and TLB 
resources is especially useful for real-time programming. 

2.3 PPE Registers

The PPE problem-state (user) registers are shown in Figure 2-4 on page 55. All computational 
instructions operate on registers; no computational instructions modify main storage. To use a 
storage operand in a computation and then modify the same or another storage location, the 
contents of the storage operand must be loaded into a register, modified, and then stored back to 
the target location. 
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The PPE registers include:

• General-Purpose Registers (GPRs)—The 32 GPRs are 64 bits wide. Fixed-point instructions 
operate on the full 64 bits. These instructions are mode-independent, except that in 32-bit 
mode2, the processor uses only the low-order 32 bits for determining a memory address and 
the carry, overflow, and record status bits.

• Floating-Point Registers (FPRs)—The 32 FPRs are 64 bits wide. The internal format of float-
ing-point data is the IEEE 754 double-precision format. Single-precision results are main-
tained internally in the double-precision format.

• Link Register (LR)—The 64-bit LR can be used to hold the effective address of a branch tar-
get. Branch instructions with the link bit (LK) set to ‘1’ (that is, subroutine-call instructions) 
copy the next instruction address into the LR. The contents of a GPR can be copied to the LR 
using a move to special-purpose register instruction or from the LR using a move from spe-
cial-purpose register instruction. 

Figure 2-4. PPE User Register Set 
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• Count Register (CTR)—The 64-bit CTR can be used to hold either a loop counter or the 
effective address of a branch target. Some conditional-branch instruction forms decrement 
the CTR and test it for a ‘0’ value. The contents of a GPR can be copied to the CTR using a 
move to special-purpose register instruction or from the CTR using a move from special-pur-
pose register instruction. 

• Fixed-Point Exception Register (XER)—The 64-bit XER contains the carry and overflow bits 
and the byte count for the move-assist instructions. Most arithmetic operations have instruc-
tion forms for setting the carry bit and overflow bit.

• Condition Register (CR)—Conditional comparisons are performed by first setting a condition 
code in the 32-bit CR with a compare instruction or with a recording instruction. The condition 
code is then available as a value or can be tested by a branch instruction to control program 
flow. The CR consists of eight independent 4-bit fields grouped together for convenient save 
or restore during a context switch. Each field can hold status information from a comparison, 
arithmetic, or logical operation. The compiler can schedule CR fields to avoid data hazards in 
the same way that it schedules use of GPRs. Writes to the CR occur only for instructions that 
explicitly request them; most operations have recording and nonrecording instruction forms.

• Floating-Point Status and Control Register (FPSCR)—The processor updates the 32-bit 
FPSCR after every PowerPC (but not vector/SIMD multimedia extension) floating-point oper-
ation to record information about the result and any associated exceptions. The status infor-
mation required by IEEE 754 is included, plus some additional information for exception 
handling.

• Vector Registers (VRs)—There are 32 128-bit-wide VRs. They serve as source and destina-
tion registers for all vector instructions. 

• Vector Status and Control Register (VSCR)—The 32-bit VSCR is read and written in a man-
ner similar to the FPSCR. It has 2 defined bits, a non-Java™ mode bit and a saturation bit; 
the remaining bits are reserved. Special instructions are provided to move the VSCR from 
and to a VR. 

• Vector Save Register (VRSAVE)—The 32-bit VRSAVE register assists user and privileged 
software in saving and restoring the architectural state across context switches. 

The PPE hardware supports two simultaneous threads of execution. All architected and special-
purpose registers are duplicated, except those that deal with system-level resources such as 
logical partitions (Section 11 on page 331), memory, and thread-control (Section 10 on 
page 299). Most nonarchitected resources, such as caches and queues, are shared by both 
threads, except in cases where the resource is small or offers a critical performance improve-
ment to multithreaded applications. Because of this duplication of state, the PPE can be viewed 
as a 2-way multiprocessor with shared dataflow. The two hardware-thread environments appear 
to software as two independent processors. 

For details on the complete set of PPE registers—both problem-state (user) and privilege-state 
(supervisor)—see the following documents:

• Cell Broadband Engine Registers

• PowerPC Microprocessor Family: The Programming Environments for 64-Bit Microproces-
sors

• PowerPC Microprocessor Family: Vector/SIMD Multimedia Extension Technolgy Program-
ming Environments Manual
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2.4 PowerPC Instructions

The PPE’s instruction set is compatible with version 2.0.2 of the PowerPC Architecture instruc-
tion set, with vector/SIMD multimedia extensions, a few new instructions, new meaning for a few 
existing PowerPC Architecture instructions, and implementation of various optional PowerPC 
Architecture instructions. C/C++ intrinsics for the vector/SIMD multimedia extension instructions 
are also provided. 

This section gives a brief overview of the PowerPC Architecture instructions. Section 2.5 on 
page 59 gives an overview of the vector/SIMD multimedia extension instructions, and Section 2.6 
on page 62 gives an overview of the C/C++ intrinsics. Appendix A PPE Instruction Set and Intrin-
sics on page 723 gives a more complete summary of the instructions and intrinsics, including 
details about new instructions, compatibility with PowerPC Architecture instructions, issue rules, 
pipeline stages, and compiler optimizations. 

2.4.1 Data Types

The PowerPC instruction set defines the data types shown in Table 2-1. Additional 128-bit vector 
and scalar data types defined in the vector/SIMD multimedia extensions are described in 
Section 2.5.2 on page 61. For details about alignment and performance characteristics for 
misaligned loads, see Table A-2 Storage Alignment for PowerPC Instructions on page 733.

2.4.2 Addressing Modes

Whenever instruction addresses are presented to the processor, the low-order 2 bits are ignored. 
Similarly, whenever the processor develops an instruction address, the low-order 2 bits are ‘0’. 
The address of either an instruction or a multiple-byte data value is its lowest-numbered byte. 
This address points to the most-significant byte (the big-endian convention). 

All instructions, except branches, generate addresses by incrementing a program counter. For 
load and store instructions that specify a base register, the effective address in memory for a 
data value is calculated relative to the base register in one of three ways:

• Register + Displacement—The displacement (D) forms of the load and store instructions 
form the sum of a displacement specified by the sign-extended 16-bit immediate field of the 
instruction plus the contents of the base register. 

Table 2-1. PowerPC Data Types  

Data Types Width (Bits)

Fixed-Point

Byte (signed and unsigned) 8

Halfword (signed and unsigned) 16

Word (signed and unsigned) 32

Doubleword (signed and unsigned) 64

Floating-Point

Single-precision 32

Double-precision 64
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• Register + Register—The indexed (X) forms of the load and store instructions form the sum 
of the contents of the index register plus the contents of the base register.

• Register—The load string immediate and store string immediate instructions use the unmod-
ified contents of the base register.

Loads and stores can specify an update form that reloads the base register with the computed 
address. Loads and stores also have byte-reverse forms. 

Branches are the only instructions that explicitly specify the address of the next instruction. A 
branch instruction specifies the effective address of the branch target in one of the following 
ways:

• Branch Not Taken—The byte address of the next instruction is the byte address of the current 
instruction, plus 4.

• Absolute—Branch instructions to absolute addresses transfer control to the word address 
given in an immediate field of the branch instruction. 

• Relative—Branch instructions to relative addresses transfer control to the word address 
given by the sum of the immediate field of the branch instruction and the word address of the 
branch instruction itself. 

• Link Register or Count Register—The branch conditional to link register instruction transfers 
control to the effective byte address of the branch target specified in the Link Register; the 
branch conditional to count register instruction transfers control to the effective byte address 
of the branch target specified in the Count Register. 

2.4.3 Instructions

All PowerPC instructions are 4 bytes long and aligned on word (4-byte) boundaries. Most instruc-
tions can have up to three operands. Most computational instructions specify two source oper-
ands and one destination operand. Signed integers are represented in twos-complement form. 

The instructions include the following types:

• Load and Store Instructions—These include fixed-point and floating-point load and store 
instructions, with byte-reverse, multiple, and string options for the fixed-point loads and 
stores. The fixed-point loads and stores support byte, halfword, word, and doubleword oper-
and accesses between storage and the 32 general-purpose registers (GPRs). The floating-
point loads and stores support word and doubleword operand accesses between storage 
and the 32 floating-point registers (FPRs). The byte-reverse forms have the effect of loading 
and storing data in little-endian order, although the CBEA processors do not otherwise sup-
port little-endian order.

• Fixed-Point Instructions—These include arithmetic, compare, logical, and rotate/shift instruc-
tions. They operate on byte, halfword, word, and doubleword operands. 

• Floating-Point Instructions—These include floating-point arithmetic, multiply-add, compare, 
and move instructions, as well as instructions that affect the Floating-Point Status and Con-
trol Register (FPSCR). Floating-point instructions operate on single-precision and double-
precision floating-point operands.

• Memory Synchronization Instructions—These instructions control the order in which memory 
operations are completed with respect to asynchronous events, and the order in which mem-
ory operations are seen by other processors or memory-access mechanisms. The instruction 
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types include load and store with reservation, synchronization, and enforce in-order execu-
tion of I/O. They are especially useful for multiprocessing. For details about synchronization, 
see Section 20 Shared-Storage Synchronization on page 561. 

• Flow Control Instructions—These include branch, Condition-Register logical, trap, and other 
instructions that affect the instruction flow. 

• Processor Control Instructions—These instructions are used for synchronizing memory 
accesses and managing caches, TLBs, segment registers, and other privileged processor 
state. They include move-to/from special-purpose register instructions. 

• Memory and Cache Control Instructions—These instructions control caches, TLBs, and seg-
ment registers.

Table A-1 PowerPC Instructions by Execution Unit on page 723 lists the PowerPC instructions, 
with their latencies, throughputs, and execution units. For details of the instruction pipeline 
stages, see Appendix A.6 Pipeline Stages on page 762. For a complete description of the 
PowerPC instructions, see the PowerPC Microprocessor Family: Programming Environments 
Manual for 64-Bit Microprocessors. 

2.5 Vector/SIMD Multimedia Extension Instructions

Vector/SIMD multimedia extension instructions can be freely mixed with PowerPC instructions in 
a single program. The 128-bit vector/SIMD multimedia extension unit (VXU) operates concur-
rently with the PPU’s 32-bit (or 64-bit in 64-bit mode) fixed-point unit (FXU) and 64-bit floating-
point unit (FPU). Like PowerPC instructions, the vector/SIMD multimedia extension instructions 
are four bytes long and word-aligned. The vector/SIMD multimedia extension instructions support 
simultaneous execution on multiple elements that make up the 128-bit vector operands. 

Vector/SIMD multimedia extension instructions do not generate exceptions (other than data-
storage interrupt exceptions on loads and stores), do not support complex functions, and share 
few resources or communication paths with the other PPE execution units. 

The sections that follow briefly summarize features of the extension. For a more detailed list of 
instructions, see Appendix A.3 on page 748. For a complete description of the vector/SIMD 
instruction set, see PowerPC Microprocessor Family: Vector/SIMD Multimedia Extension Tech-
nolgy Programming Environments Manual.

2.5.1 SIMD Vectorization

A vector is an instruction operand containing a set of data elements packed into a one-dimen-
sional array. The elements can be fixed-point or floating-point values. Most vector/SIMD multi-
media extension and synergistic processor unit (SPU) instructions operate on vector operands. 
Vectors are also called single-instruction, multiple-data (SIMD) operands, or packed operands. 

SIMD processing exploits data-level parallelism. Data-level parallelism means that the opera-
tions required to transform a set of vector elements can be performed on all elements of the 
vector at the same time. That is, a single instruction can be applied to multiple data elements in 
parallel. 
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Support for SIMD operations is pervasive in the CBEA processors. In the PPE, they are 
supported by the vector/SIMD multimedia extension instructions, described in the sections that 
follow. In the SPEs, they are supported by the SPU instruction set, described in Section 3.3 on 
page 76.

In both the PPE and SPEs, vector registers hold multiple data elements as a single vector. The 
data paths and registers supporting SIMD operations are 128 bits wide, corresponding to four full 
32-bit words. This means that four 32-bit words can be loaded into a single register, and, for 
example, added to four other words in a different register in a single operation. Figure 2-5 shows 
such an operation. Similar operations can be performed on vector operands containing 16 bytes, 
8 halfwords, or 2 doublewords.

Figure 2-6 shows another example of a SIMD operation—in this case, a byte-shuffle (permute) 
operation. Here, the bytes selected for the shuffle from the source registers, VA and VB, are 
based on byte entries in the control vector, VC, in which a 0 specifies VA and a 1 specifies VB. 
The result of the shuffle is placed in register VT. The shuffle operation is extremely powerful and 
finds its way into many applications in which data reordering, selection, or merging is required. 

Figure 2-5. Four Concurrent Add Operations 

add VC,VA,VB

VA A.0 A.1 A.2 A.3

VB B.0 B.1 B.2 B.3

VC C.0 C.1 C.2 C.3

+ + + +

Figure 2-6. Byte-Shuffle (Permute) Operation 

VC

VA

VB

VT

00 14 18 10 06 15 19 1A 1C 1C 1C 13 08 1D 1B 0E

A.0 A.1 A.2 A.3 A.4 A.5 A.6 A.7 A.8 A.9 A.A A.B A.C A.D A.E A.F

B.0 B.1 B.2 B.3 B.4 B.5 B.6 B.7 B.8 B.9 B.A B.B B.C B.D B.E B.F

A.0 B.4 B.8 B.0 A.6 B.5 B.9 B.A B.C B.C B.C B.3 A.8 B.D B.B A.E
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The process of preparing a program for use on a vector processor is called vectorization or 
SIMDization. It can be done manually by the programmer, or it can be done by a compiler that 
does auto-vectorization. See Section 22 SIMD Programming on page 629 for details. 

2.5.2 Data Types

The operands for most vector/SIMD multimedia extension instructions are quadword (128-bit) 
vectors. These vectors can contain elements that are (a) fixed-point bytes, halfwords, or words, 
or (b) floating-point words. 

The vector registers are 128 bits wide and can contain:

• Sixteen 8-bit values, signed or unsigned

• Eight 16-bit values, signed or unsigned

• Four 32-bit values, signed or unsigned

• Four single-precision IEEE-754 floating point values

The C/C++ intrinsics for the vector/SIMD multimedia extension define C/C++ language data 
types for vectors, as described in Section 2.6 on page 62. 

2.5.3 Addressing Modes

The PPE supports not only basic load and store operations but also load and store vector left or 
right indexed forms. All vector/SIMD multimedia extension load and store operations use the 
register + register indexed addressing mode, which forms the sum of the contents of an index 
GPR plus the contents of a base-address GPR. This addressing mode is very useful for 
accessing arrays. 

In addition to the load and store operations, the vector/SIMD multimedia extension instructions 
provide a powerful set of element-manipulation instructions—for example, permute (similar to the 
SPEs’ shuffle, Figure 2-6 on page 60), rotate, and shift—to manipulate vector elements into the 
required alignment and arrangement after the vectors have been loaded into vector registers. 

2.5.4 Instruction Types

Most vector/SIMD multimedia extension instructions have three or four 128-bit vector operands—
two or three source operands and one result. Also, most instructions are SIMD in nature. The 
instructions have been chosen for their utility in digital signal processing (DSP) algorithms, 
including 3D graphics. 

The vector/SIMD multimedia extension instructions include the following types:

• Vector Fixed-Point Instructions—Vector arithmetic (including saturating arithmetic), compare, 
logical, rotate, and shift instructions. They operate on byte, halfword, and word vector ele-
ments. 

• Vector Floating-Point Instructions—Floating-point, multiply/add, rounding and conversion, 
compare, and estimate instructions. They operate on single-precision floating-point vector 
elements.
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• Vector Load and Store Instructions—Basic fixed-point and floating-point load and store 
instructions. No update forms of the load and store instruction are provided. They operate on 
128-bit vectors. 

• Vector Permutation and Formatting Instructions—Vector pack, unpack, merge, splat, per-
mute, select, and shift instructions.

• Processor Control Instructions—Instructions that read and write the Vector Status and Con-
trol Register (VSCR). 

• Memory Control Instructions—Instructions for managing caches (user-level and supervisor-
level). These instructions are no-ops on the CBEA processors. 

2.5.5 Instructions

Table A-8 Vector/SIMD Multimedia Extension Instructions on page 748 lists the vector/SIMD 
multimedia extension instructions, with their pipelines, latencies, and throughputs. For a 
complete description of the instructions, see PowerPC Microprocessor Family: Vector/SIMD 
Multimedia Extension Technolgy Programming Environments Manual.

2.5.6 Graphics Rounding Mode

The CBEA processors implement a graphics rounding mode that allows programs written with 
vector/SIMD multimedia extension instructions to produce floating-point results that are equiva-
lent in precision to those written in the SPU instruction set. In this vector/SIMD multimedia exten-
sion mode, as in the SPU environment, the default rounding mode is round-to-zero, denormals 
are treated as zero, and there are no infinities or NaNs. 

For details about the graphics rounding mode, see Section A.3.3 on page 752. 

2.6 Vector/SIMD Multimedia Extension C/C++ Language Intrinsics

Both the vector/SIMD multimedia extension and SPU instructions are supported by C/C++ 
language extensions that define a set of vector data types and vector intrinsics. The intrinsics are 
essentially inline assembly-language instructions in the form of C-language function calls. The 
intrinsics provide explicit control of the underlying assembly instructions without directly 
managing registers and scheduling instructions, as assembly-language programming requires. A 
compiler that supports the C/C++ language extensions for the vector/SIMD multimedia extension 
instructions will emit code optimized for the Vector/SIMD Multimedia Extension Architecture.

Section A.4 on page 754 and the C/C++ Language Extensions for Cell Broadband Engine Archi-
tecture specification provide details about the intrinsics, including a complete list of the intrinsics. 
Although the intrinsics provided by the PPE and SPE instruction sets are similar in function, their 
naming conventions and function-call forms are different. The vector/SIMD multimedia extension 
intrinsics are summarized in this section. The SPE intrinsics are summarized in Section 3.4 on 
page 77. 

2.6.1 Vector Data Types

The vector/SIMD multimedia extension C/C++ language extensions define a set of fundamental 
data types, called vector types. These are summarized in Table A-10 on page 754. 
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Introducing fundamental vector data types permits a compiler to provide stronger type-checking 
and supports overloaded operations on vector types. Because the token, vector, is a keyword in 
the vector/SIMD multimedia extension data types, it is recommended that the term not be used 
elsewhere in the program as, for example, a variable name.

2.6.2 Vector Literals

The vector/SIMD multimedia extension C/C++ language extensions define a set of vector literal 
formats. These are summarized in Table A-11 on page 755. These formats consist of a paren-
thesized vector type followed by a parenthesized set of constant expressions. 

2.6.3 Intrinsics

The vector/SIMD multimedia extension intrinsics are summarized in Table A-13 on page 757. 

2.6.3.1 Classes

The vector/SIMD multimedia extension intrinsics map directly to one or more vector/SIMD multi-
media extension assembly-language instructions. The intrinsics are grouped in the following 
three classes:

• Specific Intrinsics—Intrinsics that have a one-to-one mapping with a single assembly-lan-
guage instruction. The specific intrinsics are rarely used. 

• Generic Intrinsics—Intrinsics that map to one or more assembly-language instructions as a 
function of the type of input parameters. In general, the generic class of intrinsics contains 
the most useful intrinsics. 

• Predicate Intrinsics—Intrinsics that compare values and return an integer that can be used 
directly as a value or as a condition for branching. 

The specific and generic intrinsics use the prefix, “vec_” in front of an assembly-language or 
operation mnemonic; predicate intrinsics use the prefixes “vec_all” and “vec_any”. When 
complied, the intrinsics generate one or more vector/SIMD multimedia extension assembly-
language instructions. 

Vector/SIMD multimedia extension intrinsics can be used anywhere in a C/C++ language 
program. There is no need for setup or to enter a special mode. 

2.6.3.2 Example

The following code example contains two versions of a function that sums an input array of 16 
byte values. In such an array-summing function, one could unroll the scalar code to slightly 
improve the performance or one could use the vector/SIMD multimedia extension intrinsics to 
significantly improve its performance and eliminate the loop entirely. 

The first version follows; it performs 16 iterations of the loop. The second version uses 
vector/SIMD multimedia extension intrinsics to eliminate the loop entirely. 

// 16 iterations of a loop
int rolled_sum(unsigned char bytes[16])
{
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int i;
int sum = 0;
for (i = 0; i < 16; ++i)
{

sum += bytes[i];
}
return sum;

}

// Vectorized for vector/SIMD multimedia extension
int vectorized_sum(unsigned char bytes[16]) 
{
  vector unsigned char vbytes; 
  union { 
    int i[4]; 
    vector signed int v; 
  } sum; 
  vector unsigned int zero = (vector unsigned int){0}; 

  // Perform a misaligned vector load of the 16 bytes. 
  vbytes = vec_perm(vec_ld(0, bytes), vec_ld(16, bytes), vec_lvsl(0, bytes)); 

  // Sum the 16 bytes of the vector 
  sum.v = vec_sums((vector signed int)vec_sum4s(vbytes, zero), 

(vector signed int)zero); 

  // Extract the sum and return the result. 
  return (sum.i[3]); 
} 
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3. Synergistic Processor Elements

The eight Synergistic Processor Elements (SPEs) execute a new single instruction, multiple data 
(SIMD) instruction set—the Synergistic Processor Unit Instruction Set Architecture. Each SPE is 
a 128-bit RISC processor specialized for data-rich, compute-intensive SIMD and scalar applica-
tions. It consists of two main units, the synergistic processor unit (SPU) and the memory flow 
controller (MFC), shown in Figure 3-1. 

In this document, the term “SPU” refers to the instruction set or the unit that executes the instruc-
tion set, and the term “SPE” refers generally to functionality of any part of the SPE processor 
element, including the MFC. 

The SPEs provide a deterministic operating environment. They do not have caches, so cache 
misses are not a factor in their performance. Pipeline-scheduling rules are simple, so it is easy to 
statically determine the performance of code and for software to generate high-quality, static 
schedules.

3.1 Synergistic Processor Unit

The SPU fetches instructions from its unified (instructions and data) 256 KB local storage (LS), 
and it loads and stores data between its LS and its single register file for all data types, which has 
128 registers, each 128 bits wide. The SPU has four execution units, a DMA interface, and a 
channel interface for communicating with its MFC, the PowerPC Processor Element (PPE) and 
other devices (including other SPEs). 

Each SPU is an independent processor element with its own program counter, optimized to run 
SPU programs. The SPU fills its LS by requesting DMA transfers from its MFC, which imple-
ments the DMA transfers using its DMA controller. Then, the SPU fetches and executes instruc-
tions from its LS, and it loads and stores data to and from its LS. 

Figure 3-1. SPE Block Diagram 

Synergistic Processor Element (SPE)

Synergistic Processor Unit (SPU)

Memory Flow Controller (MFC)

Local Store (LS)

DMA Controller
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The main SPU functional units are shown in Figure 3-2. These include the synergistic execution 
unit (SXU), the LS, and the SPU register file unit (SRF). The SXU contains six execution units, 
which are described in Section 3.1.3 on page 70. 

The SPU can issue and complete up to two instructions per cycle, one on each of the two (odd 
and even) execution pipelines. Whether an instruction goes to the odd or even pipeline depends 
on the instruction type. The instruction type is also related to the execution unit that performs the 
function, as summarized in Section 3.3.2 on page 77. 

3.1.1 Local Storage

The LS is a 256 KB, error-correcting code (ECC)-protected, single-ported, noncaching memory. 
It stores all instructions and data used by the SPU. It supports one access per cycle from either 
SPE software or DMA transfers. SPU instruction prefetches are 128 bytes per cycle. SPU data-
access bandwidth is 16 bytes per cycle, quadword aligned. DMA-access bandwidth is 128 bytes 
per cycle. DMA transfers perform a read-modify-write of LS for writes less than a quadword. 

3.1.1.1 Addressing and Address Aliasing

The SPU accesses its LS with load and store instructions, and it performs no address translation 
for such accesses. Privileged software on the PPE can assign effective-address aliases to an LS. 
This enables the PPE and other SPEs to access the LS in the main-storage domain. The PPE 

Figure 3-2. SPU Functional Units 
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performs such accesses with load and store instructions, without the need for DMA transfers. 
However, other SPEs must use DMA transfers to access the LS in the main-storage domain. 
When aliasing is set up by privileged software on the PPE, the SPE that is initiating the request 
performs address translation, as described in Section 3.2 Memory Flow Controller on page 72. 

Figure 3-3 illustrates the methods by which an SPU, the PPE, other SPEs, and I/O devices 
access the SPU’s associated LS, when the LS has been aliased to the main storage domain. 
See Figure 1-2 Storage and Domains and Interfaces on page 47 for an overview of the storage 
domains. For details about how the PPE does this aliasing, see Section 4 Virtual Storage Envi-
ronment on page 79.

3.1.1.2 Coherence and Synchronization

DMA transfers between the LS and main storage are coherent in the system. A pointer to a data 
structure created on the PPE can be passed by the PPE, through the main-storage space, to an 
SPU, and the SPU can use this pointer to issue a DMA command to bring the data structure into 
its LS. Memory-mapped mailboxes or atomic MFC synchronization commands can be used for 
synchronization and mutual exclusion. See Section 19 on page 513 and Section 20 on page 561 
for details. 

Figure 3-3. LS Access Methods 
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3.1.1.3 LS Access Priority

Although the LS is shared between DMA transfers, load and store operations by the associated 
SPU, and instruction prefetches by the associated SPU, DMA operations are buffered and can 
only access the LS at most one of every eight cycles. Instruction prefetches deliver at least 17 
instructions sequentially from the branch target. Thus, the impact of DMA operations on loads 
and stores and program-execution times is, by design, limited. 

When there is competition for access to the LS by loads, stores, DMA reads, DMA writes, and 
instruction fetches, the SPU arbitrates access to the LS according the following priorities (highest 
priority first):

1. DMA reads and writes

2. SPU loads and stores

3. Instruction prefetch

Table 3-1 summarizes the complete LS-arbitration priorities and transfer sizes. Memory-mapped 
I/O (MMIO) accesses and DMA transfers always have highest priority. These operations occupy, 
at most, one of every eight cycles (one of sixteen for DMA reads, and one of sixteen for DMA 
writes) to the LS. Thus, except for highly optimized code, the impact of DMA reads and writes on 
LS availability for loads, stores, and instruction fetches can be ignored. 

After MMIO and DMA accesses, the next-highest priorities are given to ECC scrubbing. This is 
followed by data accesses by SPU load and store instructions and by hint fetches. The rationale 
for giving SPU loads and stores higher priority than inline instruction fetches (sequential instruc-
tion prefetch) is that loads and stores typically help a program’s progress, whereas instruction 
fetches are often speculative. The SPE supports only 16-byte load and store operations that are 
16-byte-aligned. The SPE uses a second instruction (byte shuffle) to place bytes in a different 
order if, for example, the program requires only a 4-byte quantity or a quantity with a different 
data alignment. To store data that is not aligned, use a read-modify-write operation.

Table 3-1. LS-Access Arbitration Priority and Transfer Size 

Transaction Transfer Size (Bytes) Priority
Maximum

LS Occupancy
(SPU Cycle)

Access Path

MMIO1 ≤ 16 1-Highest
1/8 Line Interface

DMA ≤ 128 1

DMA List
Transfer-Element Fetch 128 1 1/4

Quadword InterfaceECC Scrub2 16 2 1/10

SPU Load or Store 16 3 1

Hint Fetch3 128 3 1
Line Interface

Inline Fetch 128 4-Lowest 1/16 for inline code

1. Access to LS contents by the PPE and other devices (including other SPEs) that can execute loads and stores in 
the main-storage space. 

2. The DMA logic has an ECC-scrub state machine. It is initialized when an ECC error is detected during a load 
instruction or DMA read, and it accesses every quadword in LS to find and correct every ECC error.

3. See Section 24.3.3 Branch Hints on page 701. 
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The lowest priority for LS access is given to inline instruction fetches. Instruction fetches load 32 
instructions per SPU request by accessing all banks of the LS simultaneously. Because the LS is 
single-ported, it is important that DMA and instruction-fetch activity transfer as much useful data 
as possible in each LS request. 

3.1.2 Register File

The SPU’s 128-entry, 128-bit register file stores all data types—integer, single-precision and 
double-precision floating-point, scalars, vectors, logicals, bytes, and others. It also stores return 
addresses, results of comparisons, and so forth. All computational instructions operate on regis-
ters—there are no computational instructions that modify storage. The large size of the register 
file and its unified architecture achieve high performance without the use of expensive hardware 
techniques such as out-of-order processing or deep speculation. 

The complete set of SPE problem-state (user) registers is shown in Figure 3-4. These registers 
include:

• General-Purpose Registers (GPRs)—All data types can be stored in the 128-bit GPRs, of 
which there are 128. 

• Floating-Point Status and Control Register (FPSCR)—The processor updates the 128-bit 
FPSCR after every floating-point operation to record information about the result and any 
associated exceptions. 

In addition to the problem-state registers shown in Figure 3-4, the SPU also supports privilege-
state (supervisor) registers that are accessible by privileged software running on the PPE. The 
SPU does not have any special-purpose registers (SPRs). The MFC, independently of the SPU, 
supports many MMIO registers and queues. For a summary, see Section 3.2 on page 72. For 
details of all SPU and MFC registers, see the Cell Broadband Engine Registers specification.

Figure 3-4. SPE Problem-State (User) Register Set 
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3.1.3 Execution Units

The SPU supports dual-issue of instructions to its two execution pipelines, shown in Figure 3-2 
on page 66. The pipelines are referred to as even (pipeline 0) and odd (pipeline 1). The units 
execute the following types of operations:

• SPU Odd Fixed-Point Unit (SFS)—Executes byte granularity shift, rotate mask, and shuffle 
operations on quadwords. 

• SPU Even Fixed-Point Unit (SFX)—Executes arithmetic instructions, logical instructions, 
word SIMD shifts and rotates, floating-point compares, and floating-point reciprocal and 
reciprocal square-root estimates. 

• SPU Floating-Point Unit (SFP)—Executes single-precision and double-precision floating-
point instructions, integer multiplies and conversions, and byte operations. The SPU supports 
only 16-bit multiplies for integers, so 32-bit multiplies are implemented in software using 
16-bit multiplies. For details on floating-point operations, see Section 3.1.4.

• SPU Load and Store Unit (SLS)—Executes load and store instructions and hint for branch 
(HBR) instructions. It also handles DMA requests to the LS.

• SPU Control Unit (SCN)—Fetches and issues instructions to the two pipelines, executes 
branch instructions, arbitrates access to the LS and register file, and performs other control 
functions. 

• SPU Channel and DMA Unit (SSC)—Enables communication, data transfer, and control into 
and out of the SPU. The functions of SSC, and those of the associated DMA controller in the 
MFC, are described in Section 3.2 on page 72. 

The SPU issues all instructions in program order according to the pipeline assignment. Each 
instruction is part of a doubleword-aligned instruction pair called a fetch group. For details about 
the rules for fetching and issuing instructions, see Section B.1.3 on page 779. 

3.1.4 Floating-Point Support

The SPU supports both single-precision and double-precision floating-point operations. Single-
precision instructions are performed in 4-way SIMD fashion. The data formats for single-preci-
sion and double-precision instructions are those defined by IEEE Standard 754, but the results 
calculated by single-precision instructions depart from the IEEE Standard 754 by placing 
emphasis on real-time graphics requirements that are typical of multimedia processing. 

For single-precision operations, the range of normalized numbers is extended beyond the IEEE 
standard. The representable, positive, nonzero numbers range from Smin = 2-126 to Smax = (2 - 
2-23) × 2128. If the exact result overflows (that is, if it is larger in magnitude than Smax), the 
rounded result is set to Smax with the appropriate sign. If the exact result underflows (that is, if it 
is smaller in magnitude than Smin), the rounded result is forced to zero. A zero result is always a 
positive zero. 

Single-precision floating-point operations implement IEEE 754 arithmetic with the following 
extensions and differences:

• Only one rounding mode is supported: round towards zero, also known as truncation.

• Denormal operands are treated as zero, and denormal results are forced to zero.

• Numbers with an exponent of all ones are interpreted as normalized numbers and not as 
infinity or not-a-number (NaN).
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Double-precision operations do not support the IEEE precise trap (exception) mode. If a double-
precision denormal or not-a-number (NaN) result does not conform to IEEE Standard 754, then 
the deviation is recorded in a sticky bit in the FPSCR register, which can be accessed using the 
fscrrd and fscrwr instructions or the spu_mffpscr and spu_mtfpscr intrinsics. 

Double-precision instructions are performed as two double-precision operations in 2-way SIMD 
fashion. However, the SPU on the Cell/B.E. processor is capable of performing only one double-
precision operation per cycle. Thus, the Cell/B.E. SPU executes double-precision instructions by 
breaking up the SIMD operands and executing the two operations in consecutive instruction slots 
in the pipeline. Although double-precision instructions have 13-clock-cycle latencies, on the 
Cell/B.E. processor, only the final seven cycles are pipelined. No other instructions are dual-
issued with double-precision instructions, and no instructions of any kind are issued for six cycles 
after a double-precision instruction is issued. 

The PowerXCell 8i processor is capable of performing two double-precision operations per cycle 
with a 9-clock-cycle latency. The double-precision instructions are dual-issued with pipe 1 
instructions.

Table 3-2, Table 3-3, and Table 3-4 summarize the SPE floating-point support. 

Table 3-2. Single-Precision (Extended-Range Mode) Minimum and Maximum Values 

Number Format Minimum Positive
Magnitude (Smin)

Maximum Positive 
Magnitude (Smax) Notes

Register Value x‘00800000’ x‘7FFFFFFF’

Bit Fields
Sign 8-Bit Biased 

Exponent
Fraction (implied 
[1] and 23 bits) Sign 8-Bit Biased 

Exponent
Fraction (implied 
[1] and 23 bits) 1

0 00000001 [1.]000...000 0 11111111 [1.]111...111

Value in Powers of 2 + 2(1 - 127) 1 + 2(255 - 127) 2 - 2-23 2

Combined Exponent and Fraction 2-126 × (+1) 2128 × (+[2 - 2-23])

Value of Register in Decimal 1.2 × 10-38 6.8 × 1038

Notes:  

1. The exponent field is biased by +127. 

2. The value 2 - 2-23 is one least significant bit (LSb) less than 2.
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3.2 Memory Flow Controller

Each SPU has its own MFC. The MFC serves as the SPU’s interface, by means of the element 
interconnect bus (EIB), to main-storage (Figure 1-2 on page 47) and other processor elements 
and system devices. The MFC’s primary role is to interface its LS-storage domain with the main-
storage domain. It does this by means of a DMA controller that moves instructions and data 
between its LS and main storage. The MFC also supports storage protection on the main-storage 
side of its DMA transfers, synchronization between main storage and the LS, and communication 
functions (such as mailbox and signal-notification messaging) with the PPE and other SPEs and 
devices. 

Table 3-3. Double-Precision (IEEE Mode) Minimum and Maximum Values 

Number Format Minimum Positive
Denormalized Magnitude (Dmin)

Maximum Positive 
Normalized Magnitude (Dmax) Notes

Register Value x‘0000000000000001’ x‘7FEFFFFFFFFFFFFF’

Bit Fields
Sign 11-Bit Biased 

Exponent

Fraction (implied 
[0] and 52 bits 
for denormal-
ized number)

Sign 11-Bit Biased 
Exponent

Fraction (implied 
[1] and 52 bits 
for normalized 

number)

1

0 00000000000 [0.]000...001 0 11111111110 [1.]111...111 2

Value in Powers of 2 + 2(0 + 1 - 1023) 2-52 + 2(2046 - 1023) 2 - 2-52 3, 4

Combined Exponent and Fraction 2-1022 × (+2-52) 21023 × (+[2 - 2-52])

Value of Register in Decimal 4.9 × 10-324 1.8 × 10308

Notes:  

1. The exponent is biased by +1023. 

2. An exponent field of all ones is reserved for not-a-number (NaN) and infinity.

3. The value 2 - 2-52 is one LSb less than 2.

4. An extra 1 is added to the exponent for denormalized numbers.

Table 3-4. Single-Precision (IEEE Mode) Minimum and Maximum Values 

Number Format Minimum Positive
Denormalized Magnitude (Smin)

Maximum Positive 
Magnitude (Smax) Notes

Register Value x‘00000001’ x‘7F7FFFFF’

Bit Fields
Sign 8-Bit Biased 

Exponent
Fraction (implied 
[0] and 23 bits) Sign 8-Bit Biased 

Exponent
Fraction (implied 
[1] and 23 bits) 1

0 00000000 [0.]000..001 0 11111110 [1.]111...111

Value in Powers of 2 + 2(0+1-127) 2-23 + 2(254-127) 2 - 2-23 2

Combined Exponent and Fraction 2-126 × 2-23 2127 × (2 - 2-23)

Value of Register in Decimal 1.4 × 10-45 3.4 × 1038

Notes:  

1. The exponent field is biased by +127.

2. The value 2 - 2-23 is 1 LSb less than 2.
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Figure 3-5 shows a block diagram of the MFC.

Figure 3-5 shows the MFC’s primary special-function interfaces to the SPU and EIB:

• LS Read and Write Interface. This links the LS with the EIB. It is used for DMA transfers 
(Section 3.2.4.1 on page 75), atomic transfers (Section 20.3 on page 597), and snoop 
requests from the EIB. 

• LS DMA List Element Read Interface. This links the LS with the MFC’s channel and SPU 
command queue. It is used to implement efficient transfers of DMA lists (Section 3.2.4.2 on 
page 75). 

• Channel Interface. This links the SXU’s SPU channel and DMA unit (SSC) with the MFC’s 
channel and SPU command queue. See Section 3.2.1 on page 74 for an overview of chan-
nels.

• EIB Command and Data Interfaces. These link the MFC with the EIB. The data interface con-
sists of a 128-bit data-in bus and a 128-bit data-out bus. As an EIB master, the MFC can 
send up to 16 outstanding MFC commands, and it supports atomic requests. As an EIB sub-
ordinate, the MFC supports snoop requests (read and write) of the SPU’s LS memory and 
the MFC’s MMIO registers, and atomic requests. 

Figure 3-5. MFC Block Diagram 
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3.2.1 Channels

SPE software communicates with main storage, the PPE, and other SPEs and devices through 
its channels, shown in Figure 3-5 on page 73 and in Figure 1-2 on page 47. Channels are unidi-
rectional message-passing interfaces that support 32-bit messages and commands. Each SPE 
has its own set of channels. SPE software accesses channels with special channel-read and 
channel-write instructions that enqueue MFC commands (Section 3.2.3). 

Software on the PPE and other SPEs and devices can gain access to most of an SPE’s channel-
interface functions by accessing associated problem-state (user) MMIO registers in the main-
storage space. 

For details about the channel facilities, see Section 17 SPE Channel and Related MMIO Inter-
face on page 447. 

3.2.2 Mailboxes and Signalling

The channel interface in each SPE supports two mailboxes for sending messages from the SPE 
to the PPE. One mailbox is provided for sending messages from the PPE to the SPE. The 
channel interface also supports two signal-notification channels (signals, for short) for inbound 
messages to the SPE. 

The PPE is often used as an application controller, managing and distributing work to the SPEs. 
A large part of this task might involve loading main storage with data to be processed, then noti-
fying an SPE by means of a mailbox or signal message. The SPE can also use its outbound mail-
boxes to inform the PPE that is has finished with a task. 

3.2.3 MFC Commands and Command Queues

Software on the SPE, the PPE, and other SPEs and devices use MFC commands to initiate DMA 
transfers, query DMA status, perform MFC synchronization, perform interprocessor-communica-
tion via mailboxes and signal-notification, and so forth. The MFC commands that implement DMA 
transfers between the LS and main storage are called DMA commands. 

The MFC maintains two separate command queues, shown in Figure 3-5 on page 73—an SPU 
command queue for commands from the MFC’s associated SPU, and a proxy command queue 
for commands from the PPE and other SPEs and devices. The two queues are independent. 

The MFC supports out-of-order execution of DMA commands. DMA commands can be tagged 
with one of 32 tag-group IDs. By doing so, software can determine the status of the entire group 
of commands. Software can, for example, use the tags to wait on the completion of queued 
commands in a group. Commands within a tag group can be synchronized with a fence or barrier 
option. The SPE can also use atomic-update commands that implement uninterrupted updates 
(read followed by write) of a 128-byte cache-line-size storage location.

For details about MFC commands and command queues, see Section 19.2 MFC Commands on 
page 514. 
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3.2.4 Direct Memory Access Controller

The MFC’s DMA controller (DMAC) implements DMA transfers of instructions and data between 
the SPU’s LS and main storage. Programs running on the associated SPU, the PPE, or another 
SPE or device, can issue the DMA commands. (The PPE can also access an LS through the 
main-storage domain using load and store instructions.) 

The MFC executes DMA commands autonomously, which allows the SPU to continue execution 
in parallel with the DMA transfers. Each DMAC can initiate up to 16 independent DMA transfers 
to or from its LS. 

3.2.4.1 DMA Transfers

To initiate a DMA transfer, software on an SPE uses a channel instruction to write the transfer 
parameters to the MFC command-queue channels. Software on the PPE and other SPEs and 
devices performs the comparable function by writing transfer parameters to the main-storage 
addresses of the MMIO registers that correspond to those channels. 

Six parameters need to be written, but a single C/C++ intrinsic can accomplish all of them. 
Special techniques, such as multibuffering, can be used to overlap DMA transfers with SPE 
computation. 

DMA transfers are coherent with respect to main storage. Virtual-memory address-translation 
information is provided to each MFC by the PPE operating system. Attributes of system storage 
(address translation and protection) are governed by the page and segment tables of the 
PowerPC Architecture. Although privileged software on the PPE can map LS addresses and 
certain MFC resources to the main-storage address space, enabling the PPE or other SPUs in 
the system to access these resources, this aliased memory is not coherent in the system.

For details about the DMA transfers, including code examples, see Section 19.2.1 DMA 
Commands on page 516, Section 19.3 PPE-Initiated DMA Transfers on page 523, and 
Section 19.4 SPE-Initiated DMA Transfers on page 529. For examples of using double-buffering 
techniques to overlap DMA transfers with computation on an SPU, see Section 24.1.2 on 
page 692.

3.2.4.2 DMA List Transfers

A DMA list is a sequence of list elements that, together with an initiating DMA list command, 
specifies a sequence of DMA transfers between a single area of LS and possibly discontinuous 
areas in main storage. Such lists are stored in an SPE’s LS, and the sequence of transfers is initi-
ated with a DMA list command. DMA list commands can only be issued by programs running on 
the associated SPE, but the PPE or other devices (including other SPEs) can create and store 
the lists in an SPE’s LS. DMA lists can be used to implement scatter-gather functions between 
main storage and the LS. 

Each list element in the list contains a transfer size, the low half of an effective address, and a 
stall-and-notify bit that can be used to suspend list execution after transferring a list element 
whose stall-and-notify bit is set. Each DMA transfer specified in a list can transfer up to 16 KB of 
data, and the list can have up to 2048 (2 K) list elements. 

For details about the DMA list transfers, including examples, see Section 19.2.2 DMA List 
Commands on page 518 and Section 19.4.4 on page 536. 
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3.2.5 Synergistic Memory Management Unit

The MFC’s synergistic memory management (SMM) unit, shown in Figure 3-5 on page 73, 
provides the address-translation and protection features defined by PowerPC Architecture for 
accesses to main storage. The SMM does this based on address-translation information 
provided to it by privileged PPE software. 

Figure 3-3 on page 67 illustrates the manner in which the PPE, other SPEs, and I/O devices 
access the SPU’s associated LS when the LS has been aliased to main storage. The SMM 
supports address translations for DMA accesses by the associated SPU to main storage. 

The SMM has an 8-entry segment lookaside buffer (SLB) and a 256-entry translation lookaside 
buffer (TLB) that supports 4 KB, 64 KB, 1 MB, and 16 MB page sizes. Neither the SMM nor the 
SPU has direct access to system control facilities, such as page-table entries. For details about 
address translation, see Section 4 Virtual Storage Environment on page 79. 

The following sections introduce the SPU instruction set and its C/C++ intrinsics. These instruc-
tions and intrinsics, together with the MFC’s own command set (described in Section 19.2 on 
page 514), are used to control DMA transfers and other essential aspects of the MFC. 

3.3 SPU Instruction Set

The SPU supports an instruction set, as specified by the Synergistic Processor Unit Instruction 
Set Architecture (ISA), and a set of C/C++ intrinsics, as specified by the C/C++ Language Exten-
sions for Cell Broadband Engine Architecture document. Although most of the coding for Cell 
Broadband Engine Architecture (CBEA) processors1 will be in a high-level language like C or 
C++, an understanding the SPU instruction set adds considerably to a programmer’s ability to 
produce efficient code. This is particularly true because most of the intrinsics have mnemonics 
that relate directly to the underlying assembly-language mnemonics. 

The SPU ISA operates primarily on SIMD vector operands, both fixed-point and floating-point, 
with support for some scalar operands. The PPE and the SPE both execute SIMD instructions, 
but the two processors execute different instruction sets, and programs for the PPE and SPEs 
are often compiled by different compilers. Section 2.5.1 on page 59 introduces and illustrates the 
concept of SIMD operations. 

3.3.1 Data Types

The SPU hardware supports the following data types:

• Byte—8 bits

• Halfword—16 bits

• Word—32 bits

• Doubleword—64 bits

• Quadword—128 bits

1. The Cell Broadband Engine (Cell/B.E.) and PowerXCell 8i processors are collectively called CBEA processors.
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These data types are indicated by shading in Figure 3-6 on page 77. The left-most word (bytes 0, 
1, 2, and 3) of a register is called the preferred slot in the Synergistic Processor Unit Instruction 
Set Architecture, although they are called the preferred scalar slot in the SPU Application Binary 
Interface Specification. When instructions use or produce scalar operands or addresses, the 
values are in the preferred scalar slot. Because the SPU accesses its LS a quadword at a time, 
there is a set of store-assist instructions for insertion of bytes, halfwords, words, and double-
words into a quadword for a subsequent store.

3.3.2 Instructions

The SPU has two pipelines into which it can issue and complete up to two instructions per cycle, 
one in each of the pipelines. If two instructions with latency n and m are issued to the same pipe-
line, n-m cycles apart, the instructions are retired in order, with the later one stalling for one cycle. 
Whether an instruction goes to the even or odd pipeline depends on its instruction type.

Table B-1 SPU Instructions on page 772 lists the SPU instructions, with their latencies and their 
pipeline assignments. For details about the SPU instruction pipeline stages, see 
Appendix B.1.3 Fetch and Issue Rules on page 779. 

3.4 SPU C/C++ Language Intrinsics

A set of C-language extensions, including data types and intrinsics, makes the underlying SPU 
instruction set and hardware features conveniently available to C programmers. The intrinsics 
can be used in place of assembly-language code when writing in the C or C++ languages. 

The intrinsics represent in-line assembly-language instructions in the form of C-language func-
tion calls that are built into a compiler. They provide the programmer with explicit control of the 
SPE SIMD instructions without directly managing registers. A compiler that supports these intrin-
sics will emit efficient code for the SPE Architecture. The techniques used by compilers to 
generate efficient code should typically include: 

Figure 3-6. Register Layout of Data Types and Preferred Scalar Slot 
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• Register coloring

• Instruction scheduling (dual-issue optimization)

• Data loads and stores

• Loop blocking, fusion, unrolling

• Correct up-stream placement of branch hints

• Literal vector construction

For example, a C or C++ compiler should generate a floating-point add instruction (fa rt,ra,rb) for 
the SPU intrinsic t = spu_add(a,b), assuming t, a, and b are vector float variables. The system 
header file, spu_intrinsics.h, available from IBM, defines the SPU language extensions. The 
PPE and SPU instruction sets have similar, but distinct, intrinsics. 

3.4.1 Vector Data Types

The C/C++ language extensions’ vector data types are described in Appendix B.2.1 on 
page 784. 

3.4.2 Vector Literals

The C/C++ language extensions’ vector literals are described in Appendix B.2.2 on page 786. 

3.4.3 Intrinsics

The C/C++ language extension intrinsics are grouped into the following three classes:

• Specific Intrinsics—Intrinsics that have a one-to-one mapping with a single assembly-lan-
guage instruction. Programmers rarely need the specific intrinsics for implementing inline 
assembly code because most instructions are accessible through generic intrinsics. 

• Generic Intrinsics and Built-Ins—Intrinsics that map to one of several assembly-language 
instructions or instruction sequences, depending on the type of operands. 

• Composite Intrinsics—Convenience functions that map to assembly-language instruction 
sequences. A composite intrinsic can be expressed as a sequence of generic intrinsics. 

Intrinsics are not provided for all assembly-language instructions. Some assembly-language 
instructions (for example, branches, branch hints, and interrupt return) are naturally accessible 
through the C/C++ language semantics. 

Section B.2.3 on page 787 lists the most useful intrinsics. The intrinsics are defined fully in the 
C/C++ Language Extensions for Cell Broadband Engine Architecture document. 
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4. Virtual Storage Environment

4.1 Introduction

The Cell Broadband Engine Architecture (CBEA) processors1 implement a virtual-storage envi-
ronment that is compatible with that defined by the PowerPC Operating Environment Architec-
ture, Book III. When virtual addressing is enabled, the combination of CBEA-processor hardware 
and operating-system software supports a virtual-address space that is larger than either the 
effective-address (main-storage) space referenced by programs or the real-address space 
supported by the CBEA processors. 

Programs access memory by means of effective addresses. Programs on the PowerPC 
Processor Element (PPE) do this by executing instructions. Programs on a Synergistic Processor 
Element (SPE) do it by generating memory flow controller (MFC) direct memory access (DMA) 
commands, which contain pairs of addresses—a local storage (LS) address and an effective 
address (EA). The real-address (RA) space is the set of all addressable bytes in physical 
memory and on devices whose physical addresses have been mapped to the RA space—such 
as an SPE’s on-chip LS or an I/O device’s off-chip memory-mapped I/O (MMIO) register or 
queue. The EA space is called the main-storage space and is illustrated in Figure 1-2 on 
page 47. 

The operating system can enable virtual-address translation (also called relocation) indepen-
dently for instructions and data. When it does so, the address-translation mechanism allows each 
program running on the PPE or addressing main storage by means of an SPE’s DMA-transfer 
facility to access up to 264 bytes of EA space. Each program's EA space is a subset of the larger 
265 bytes of virtual-address (VA) space. The memory-management hardware in the PPE and in 
the MFC of each SPE translates EAs to VAs and then to RAs, to access 242 bytes of RA space. 

EAs are translated to VAs by a segmentation mechanism. Segments are protected, nonoverlap-
ping areas of virtual memory that contain 256 MB of contiguous addresses. VAs are translated to 
RAs by a paging mechanism. Pages are protected, nonoverlapping, relocatable areas of real 
memory that contain between 4 KB and 16 MB of contiguous addresses. 

Because the physical memory available in a system is often not large enough to map all virtual 
pages used by all currently executing programs, the operating system can transfer pages from 
disk storage to physical memory as demanded by the programs—a technique called demand-
paging. The PPE performs address translation and demand-paging dynamically, during the 
execution of instructions. The operating system can revise the mapping information to relocate 
programs on the fly, during each demand-paged transfer from disk into memory. The PPE oper-
ating system manages address-mapping by setting up segment-buffer entries and page-table 
entries used by the hardware to locate addresses in the virtual-addressing environment. The 
PPE operating system also provides each MFC with the segment-buffer and page-table entries 
needed by the MFC’s associated SPE for its DMA transfers to and from main storage. 

In PowerPC Architecture paging, page-table entries perform an inverted mapping—from the 
small physical-address space of installed memory into the large (265 bytes) virtual-address 
space. In contrast, conventional methods of paging map from a large virtual-address space to a 
small physical-address space. The inverted method of paging uses an inverted page table, which 

1. The Cell Broadband Engine (Cell/B.E.) and PowerXCell 8i processors are collectively called CBEA processors.
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can be much smaller than conventional page tables. Whereas the size of conventional page 
tables is commensurate with the size of the virtual-address space allocated by the operating 
system, the size of a PowerPC Architecture inverted page table is commensurate with the size of 
installed memory. Lookup time for the inverted page table is reduced by using a hash algorithm. 

In addition to supporting demand-paging, the virtual-address mechanism allows the operating 
system to impose restrictions on access to each segment and page2, such as privilege-level and 
access-type restrictions, and that impose attributes (such as cacheability and memory coher-
ence) on the storage being accessed. 

If the operating system does not enable virtual addressing, the system operates in real 
addressing mode. In this mode (also called real mode), the EAs generated by programs are used 
as RAs3, there is no page table, and there is no demand-paging. The only addressable memory 
is the physically installed memory. 

This section provides an overview of, and several details about, the Cell/B.E. and PowerXCell 8i 
implementation of its virtual-memory environment and the means and techniques for loading and 
maintaining the related hardware resources. For more detail, including that related to the 
PowerPC Architecture in general, see the PowerPC Architecture books, the PowerPC Micropro-
cessor Family: The Programming Environments for 64-Bit Microprocessors, and the Cell Broad-
band Engine Architecture. 

4.2 PPE Memory Management

The PPE’s memory management unit (MMU) controls access by the PPE to main storage, 
including the manner in which EAs are translated to VAs and RAs. 

Address translation is managed in the MMU by the following hardware units:

• Effective-to-Real-Address Translation (ERAT) Buffers—Two 64-entry caches, one for instruc-
tions and one for data. Each ERAT entry contains recent EA-to-RA translations for a 4 KB 
block of main storage, even if this block of storage is translated using a large page 
(Section 4.2.6.3 on page 88).

• Segment Lookaside Buffer (SLB)—Two unified (instruction and data), 64-entry caches, one 
per PPE thread, that provide EA-to-VA translations. The PPE supports up to 237 segments of 
256 MB each. Segments are protected areas of virtual memory. 

• Page Table—A page table is a hardware-accessed data structure in main storage that is 
maintained by the operating system. Page-table entries (PTEs) provide VA-to-RA transla-
tions. Pages are protected areas of real memory. There is one page table per logical partition 
(see Section 11 Logical Partitions and a Hypervisor on page 331). 

• Translation Lookaside Buffer (TLB)—The TLB is a unified, 1024-entry cache that stores 
recently accessed PTEs. A page table in memory is only accessed if a translation cannot be 
found in the TLB (called a TLB miss). 

2. See Section 4.2.5.1 on page 85 for segment protections and Section 4.2.6.2 on page 88 for page protections. 
3. For the PPE, but not the SPEs, RAs can be offset by a base address in real mode, as described in Section 4.2.8 

on page 100.
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4.2.1 Memory Management Unit

Table 4-1 summarizes the features of the PPE’s memory management unit (MMU).

Table 4-1. PPE Memory Management Unit Features  

Parameter PPE Value or Feature

Addresses

Effective Address (EA) Size 64 bits.

Virtual Address (VA) Size 65 bits1. This value is designated “n” in the PowerPC 
Architecture. 

Real Address (RA) Size 42 bits2. This value is designated “m” in the PowerPC 
Architecture. 

ERAT
D-ERAT Entries 64, shared by both threads (2 way × 32).

I-ERAT Entries 64, shared by both threads (2 way × 32).

SLB

SLB Entries 64 per thread. 

Segment Size 256 MB

Number of Segments 237

Segment Protection Segments selectable as execute or no-execute.

SLB Maintenance Special instructions for maintaining the SLB.

Page Table

Page Sizes

4 KB, plus two of the following large-page sizes (p)3:
• 64 KB (p = 16)
• 1 MB (p = 20)
• 16 MB (p = 24)

Number of Page Tables
• With hypervisor4: one page table per logical partition
• Without hypervisor: one page table

Page Table Size (number of 
pages) Determined by SDR1 register.

Table Structure Hashed page tables in memory. Inverted mapping, from small 
real-address space to large virtual-address space. 

Page Protection Page Protection (PP) bits selectable as problem (user) or 
privileged (supervisor) state, and read-write or read-only.

Page History Referenced (R) and Changed (C) bits maintained.

TLB

TLB Entries 1024, shared by both threads. 

TLB Maintenance

• Hardware-managed or software-managed TLB update
• Special instructions for maintaining TLB
• Pseudo least recently used (pseudo-LRU) replacement 

policy
• Replacement management table (RMT) for TLB 

replacement

1. High-order bits above 65 bits in the 80-bit virtual address (VA[0:14]) are not implemented. The hardware always 
treats these bits as ‘0’. Software must not set these bits to any other value than ‘0’ or the results are undefined in 
the PPE.

2. High-order bits above 42 bits in the 64-bit real address (RA[2:21]) are not implemented. The hardware always 
treats these bits as ‘0’. Software must not set these bits to any other value than ‘0’ or the results are undefined in 
the PPE. The two most-significant bits (RA[0:1]) are architecturally reserved and must be ‘0’.

3. The value “p” is a power-of-2 variable in the PowerPC Architecture representing the size of a page.
4. See Section 11 Logical Partitions and a Hypervisor on page 331. 
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4.2.2 Address-Translation Sequence

Figure 4-1 gives an overview of the address-translation sequence. Two basic steps are used to 
convert an EA to an RA:

1. Segmentation—Convert the EA to a VA, using the SLB. 

2. Pagination—Convert the VA to an RA, using a page table. 

The SLB (Section 4.2.5.1 on page 85) is used for the first conversion. The TLB (Section 4.2.7 on 
page 93) caches recently used page-table entries and is used to enhance the performance of the 
second conversion. All EAs are first looked up in one of the two ERAT arrays. This ERAT lookup 
takes place regardless of whether the PPE is operating in virtual or real mode. If the address is 
not found in the ERAT, and address relocation is enabled, the address is sent to the segmenta-
tion and paging functions. If relocation is disabled, the real-mode translation facility is used.

Figure 4-1. PPE Address-Translation Overview 
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4.2.3 Enabling Address Translation

Virtual-address translation is enabled in the PPE by setting either or both of the Relocation bits in 
the Machine State Register (MSR) to ‘1’:

• Instruction Relocation (MSR[IR])

• Data Relocation (MSR[DR])

If either MSR[IR] = ‘0’ or MSR[DR] = ‘0’, PPE accesses to instructions or data (respectively) in main 
storage operate in real mode, as described in Section 4.2.8 Real Addressing Mode on page 100. 

The following sections describe MMU address translation. Additional details are given in the Priv-
ileged-Mode Environment section of the Cell Broadband Engine Architecture, Cell Broadband 
Engine Registers, and the PowerPC Operating Environment Architecture, Book III. 

4.2.4 Effective-to-Real-Address Translation

Recently used EA-to-RA translations are stored in the effective-to-real-address translation 
(ERAT) arrays. There are two such arrays—the instruction ERAT (I-ERAT) array and the data 
ERAT (D-ERAT). 

4.2.4.1 ERAT Functions

The I-ERAT and D-ERAT are both 64-entry, 2-way set-associative arrays. They are not part of 
the normal PowerPC Architecture MMU. They provide faster address-translation information than 
the MMU. All main-storage accesses, regardless of the MSR[IR, DR] settings, pass through one of 
the two ERATs. 

Each ERAT entry holds the EA-to-RA translation for an aligned 4 KB area of memory. When 
using a 4 KB page size, each ERAT entry holds the information for exactly one page. When 
using large pages, each ERAT entry contains a 4 KB section of the page, meaning that large 
pages can occupy several ERAT entries. All EA-to-RA mappings are kept in the ERAT including 
both real-mode and virtual-mode addresses (that is, addresses accessed with MSR[IR] equal to 
‘0’ or ‘1’). The ERATs identify each translation entry with some combination of the MSR[SF, IR, DR, 
PR, and HV] bits, depending on whether the entry is in the I-ERAT or D-ERAT. This allows the 
ERATs to distinguish between translations that are valid for the various modes of operation.

The ERATs are shared by both threads, but all entries are identified by the thread ID that created 
the entry. Each thread maintains its own entries in the ERATs and cannot use the entries created 
for the other thread.

On instruction fetches, the least-significant bits of the EA are used to simultaneously index into 
the L1 ICache, the L1 ICache directory, the I-ERAT, and the branch history table (BHT); see 
Section 6.1 PPE Caches on page 133 for descriptions of the caches and the BHT. Several condi-
tions need to be satisfied to consider the fetch a hit:

• The EA of the instruction must match the EA contained in the I-ERAT entry being indexed, 
and the I-ERAT entry must also be valid. 

• The Instruction Relocate (IR) and Hypervisor State (HV) bits from the MSR must match the cor-
responding bits in the I-ERAT, which were set at the time the I-ERAT entry was loaded.

• The thread performing the fetch must match the thread ID from the I-ERAT entry.
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• The RA from the L1 ICache directory must match the RA provided by the I-ERAT.

• The page-protection bits must allow the access to occur.

If all of these conditions are met, and if no L1 ICache parity errors have occurred, the fetch is a 
hit. If an instruction misses in the I-ERAT, it is held in an ERAT miss queue (there is one miss 
queue for instructions and another for data) while a request is sent to the MMU for translation. 
This invokes an 11-cycle penalty to translate the address in the MMU. The instruction following 
the ERAT miss is flushed, refetched, and held at dispatch while the other thread is given all of the 
dispatch slots. If this translation hits in the TLB, the ERAT entry is reloaded and the fetch is 
attempted again. 

The operation of the D-ERAT is very similar to the I-ERAT. The D-ERAT is accessed in parallel 
with the L1 DCache tags, and a comparison is performed at the end to determine if the access 
was a hit or not. 

4.2.4.2 ERAT Maintenance

One MMIO register field affects use of the ERATs: the ERAT Cache Inhibit (dis_force_ci) bit in 
Hardware Implementation Register 4 (HID4[dis_force_ci]). This bit should be set for normal use 
of the ERATs.

The replacement policy used by the ERATs is a simple 1-bit least recently used (LRU) policy. 
Each ERAT entry is set to the invalid state after power-on reset (POR). Normal ERAT operation 
is maintained by hardware. Any load or store that misses the appropriate ERAT causes all 
subsequent instructions to flush while that ERAT attempts to reload the translation from the 
MMU. However, in a hypervisor-controlled system, the ERAT entries are unique to each logical 
partition (LPAR) such that when a partition is switched by the hypervisor, the ERAT entries must 
be invalidated. 

Each ERAT entry is obtained from a page-table search based on the contents of an SLB entry. 
To maintain consistency with the SLB, the following instructions cause all entries in an ERAT to 
be invalidated:

• slbia (invalidates entries belonging to the same thread only)

• tlbie(l)4 to a large page only (invalidates all entries regardless of thread)

The slbie instruction causes a thread-based invalidation of the ERAT that is sensitive to the SLB 
class (see Section 4.2.5.1 on page 85). That is, it invalidates any entries that have a thread-ID 
and Class bit match with the thread that issued and the segment class indicated by the slbie 
instruction. In addition, the execution of tlbie(l) to a small page (L = ‘0’), or the detection of a 
snooped-tlbie operation from another processor element, causes an index-based invalidate to 
occur in the ERAT. All ERAT entries that have EA bits [47:51] matching the RB[47:51] bits 
provided by the instruction are invalidated.

When operating in real mode (Section 4.2.8 Real Addressing Mode on page 100), the following 
sequence of instructions must be used to clear the ERAT without affecting the TLB:

4. The notation, tlbie(l), indicates either the tlbie or the tlbiel instruction. 
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mtspr RMOR/HRMOR/LPCR/HID6 
isync 
tlbie L = 1, IS = 00, VPN(38:79-p) = nonmapped virtual address 
sync 

This sequence should be executed at the end of all real-mode phases, before enabling virtual-
address translation, because the ERAT is always referenced, be it real or virtual address.

4.2.5 Segmentation

Segmentation is implemented with the segment lookaside buffers (SLBs). The SLBs translate 
EAs to VAs. The PPE contains two unified (instruction and data), 64-entry, fully associative 
SLBs, one per thread. Segments are protected areas of virtual memory. Each 256 MB segment 
can hold 64K pages of 4 KB each (or fewer of larger page sizes). The pages that make up a 
segment can overlap, but they must do so completely, not partially. The operating system can 
concatenate several contiguous segments (segments referenced in contiguous segment regis-
ters) to create very large address spaces. The first byte in a segment is also the first byte in the 
first page of that segment, and the last byte in the segment is the last byte in the last page. 

The small or flat segmentation model is the simplest. It uses a single segment for all instructions, 
data, and stacks. In this model, virtual-address translation is, in effect, implemented entirely with 
paging. Segmentation gives the operating system flexibility in allocating protected address 
spaces to specialized areas of memory. 

Multiple segments can be allocated for use by the instructions, private data, and stack of each 
process. They can also be allocated for shared libraries, shared memory-mapped I/O ports, and 
so forth. The operating system can also map file images from disk into shared segments, 
allowing applications to access file elements by moving a pointer or array index rather than by 
performing reads and writes through an I/O buffer. Two processes can thereby open the same 
file from different program-generated addresses and the accesses can map to the same area in 
the virtual address space. Access to segments can be protected by access-type and privilege 
attributes, so processes and data can be shared without interference from unauthorized 
programs. 

4.2.5.1 Segment Lookaside Buffer

Figure 4-2 on page 86 shows the format for an SLB entry (SLBE). Each entry specifies the 
mapping between an effective segment ID (ESID) and a virtual segment ID (VSID). The ESID 
contains the most-significant bits of the EA; the VSID contains the most-significant bits of the VA. 
The PPE supports up to 237 segments, as specified in the bits 52:88 of the VSID field. The PPE 
supports a 65-bit virtual address, so bits [37:51] of an SLB entry (VSID[0:14]) are always ‘0’.

When hardware searches the SLB, all entries in the SLB are tested for a VA match with the EA. If 
the SLB search fails, an instruction segment or data segment exception occurs, depending on 
whether the effective address is for an instruction fetch or for a data access.
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The other fields in the SLB entry include the Valid (V), Supervisor Key (Ks), Problem Key (Kp), 
No-execute (N), Large Page Indicator (L), Class (C), and Large Page Selector (LP) fields. See 
the Cell Broadband Engine Architecture for definitions of these fields. The PPE adds the Large 
Page (LP) field to the PowerPC Architecture SLB entry (see Section 4.2.6.3 Large Pages on 
page 88). The LP field is shown in Figure 4-2 to be 3 bits wide, as specified in the Cell Broad-
band Engine Architecture. However, the PPE implements only the low-order bit of the LP field. 
For this reason, other LP references in this document describe the LP field as a single bit.

4.2.5.2 SLB Maintenance

Software must ensure that the SLB contains at most one entry that translates a given EA (that is, 
a given ESID must be contained in no more than one SLB entry). Software maintains the SLB 
using the slbmte, slbmfee, slbmfev, slbie, and slbia instructions. All other optional PowerPC 
Architecture instructions (mtsr, mtsrin, mfsr, and mfsrin) provided for 32-bit operating systems 
and for changing the contents of the SLB are not implemented in the PPE.

The SLB-management instructions are implemented as move to or move from special-purpose 
register (SPR) instructions in microcode. Because these are microcoded, process performance 
is degraded when using these instructions. Software should attempt to minimize the number and 
frequency of these instructions.

For all SLB-management instructions, the first 15 bits [0:14] of the VSID field and the first six bits 
[52:57] of the Index field are not implemented. Writing them is ignored and reading them returns 
‘0’.

The PPE adds the LP field to the RS register definition of the slbmte instruction and to the RT 
register definition of the slbmfev instruction. In both cases, this field is added as bits [57:59] of 
the corresponding register. Bits [57:58] are not implemented, so the LP field is treated as a single 
bit [59].

The slbie and slbia instructions clear the Valid bit of the specified SLB entries to ‘0’. The 
remaining contents of the SLB entry are unchanged and can be read for purposes of debugging. 
Therefore, when the hypervisor initiates a process or logical-partition context-switch, the hyper-
visor must set any used SLB entries to ‘0’ to prevent establishing a covert communication 
channel between processes or partitions.

For the effect these instructions have on the ERATs, see Section 4.2.4 Effective-to-Real-Address 
Translation on page 83.

Figure 4-2. SLB Entry Format 
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Information derived from the SLB can be cached in the I-ERAT or the D-ERAT along with infor-
mation from the TLB. As a result, many of the SLB-management instructions have effects on the 
ERATs as well as on the SLB itself. Because the SLB is managed by the operating system, 
multiple entries might be incorrectly set up to provide translations for the same EA. This will result 
in undefined behavior and can result in a checkstop.

4.2.5.3 SLB After POR

All SLB entries and TLB entries are invalidated after power-on reset (POR). 

4.2.6 Paging

Paging is set up by the operating system and can be actively managed by hardware or software, 
as described in Section 4.2.7.1 Enabling Hardware or Software TLB Management on page 93. 
The operating system creates page-table entries (PTEs), and hardware or software loads 
recently accessed PTEs into the translation-lookaside buffer (TLB). A high percentage of paging 
accesses—typically in excess of 95%—hit in the TLB. 

On systems that support disk peripherals, only recently accessed pages are kept in physical 
memory; the remaining pages are stored on disk. If a program attempts to access a page 
containing instructions or data that are not currently in physical memory, a page fault occurs and 
the operating system must load the page from disk and update the page table with the physical 
and virtual addresses of that page. 

4.2.6.1 Page Table

The operating system must provide PTEs in the page table for all of real memory. There is one 
page table per logical partition (see Section 11 Logical Partitions and a Hypervisor on page 331), 
or one page table per system when logical partitions are not used. The operating system places 
PTEs in the page table by using a hashing algorithm. The hashed page table (HTAB) is a vari-
able-sized data structure. Each PTE in the HTAB is a 128-bit data structure that maps one virtual 
page number (VPN) to its currently assigned real page number (RPN), thus specifying a mapping 
between VA and RA. The PTE also provides protection inputs to the memory-protection and 
cache mechanisms.

Each process can have its own segmented address space in the virtual space, but there is only 
one page table that is shared globally by all processes in a logical partition. During context 
switches, segments are changed but the TLB is not necessarily purged and the page table 
remains unchanged. To change a segment, the operating system simply loads a new value into 
the SLB, which is faster than reloading the TLB. A hashing function applied to a VA provides an 
index into the page table. The entire page table needed to map, for example, 1 GB of real 
memory would be a minimum of 2 MB in size (1 GB, times 8 bytes per PTE, divided by 4 KB per 
page). This architectural economy of paging overhead accounts, in part, for the superior perfor-
mance of memory management in PowerPC Architecture processors, as compared with some 
other processor architectures. 
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4.2.6.2 Page Table Entries

Table 4-2 summarizes the implemented bits of a PTE. Software should set all unimplemented 
bits in the page table to ‘0’. Table 4-2 views the PTE as a quadword when giving bit definitions. 
For more information, see the PowerPC Operating Environment Architecture, Book III and the 
Cell Broadband Engine Architecture.
.

4.2.6.3 Large Pages

The page size can be 4 KB or any two of the three Large Page sizes: 64 KB, 1 MB, or 16 MB. 
Large pages reduce page-table size and increase TLB efficiency. They are useful in situations 
that might suffer from demand-paged thrashing, because they minimize the overhead of filling 
real memory if single large pages can be operated on for extended periods of time. 

The selection between the two large page sizes is controlled by the lower bit of the Large Page 
Selector (LP) field of the PTE when the Large Page Mode (L) bit of the PPE Translation Lookaside 
Buffer Virtual-Page Number Register (PPE_TLB_VPN[L]) is set to ‘1’. 

Table 4-2. PTE Fields  

Bits Field Name Description

0:14 Reserved Software must set these bits to ‘0’ or results are undefined. 

15:56 AVPN Abbreviated virtual page number.

57:60 SW Available for software use. 

61 L Large page indicator.

62 H Hash function identifier.

63 V Valid.

64:85 Reserved Software must set these bits to ‘0’ or results are undefined. 

86:115 RPN Real page number (but see bit 115, in the next row).

115 LP Large page selector (last bit of RPN if L = ‘1’).

116:117 Reserved Software must set these bits to ‘0’ or results are undefined.

118 AC Address compare bit.

119 R Reference bit.

120 C Change bit.

121 W Write-through. Hardware always treats this as ‘0’. See Table 4-4 on page 92.

122 I Caching-inhibited bit.

123 M Memory-coherence. Hardware always treats this as ‘1’ if I ‘0’, or ‘0’ if I = ‘1’. See 
Table 4-4 on page 92.

124 G Guarded bit.

125 N No execute bit.

126:127 PP[0:1] Page-protection bits 1:2.
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The address of the real page (that is, the real page number, or RPN) is formed by concatenating 
the PTE’s abbreviated RPN (ARPN) with the upper seven bits of the LP field and a ‘0’. Because the 
RPN must be on a natural page boundary, some bits of the ARPN and LP fields might be required 
to be ‘0’. If the L bit is not set in the PPE_TLB_VPN register, the RPN is formed by concatenating the 
ARPN with the whole LP field, and the page size is 4 KB.

4.2.6.4 Page-Table Organization and Lookups

The Cell Broadband Engine Architecture adds a bit to the PowerPC Architecture definition of the 
Logical Partition Control Register (LPCR)—the TLB Load (TL) bit—that specifies whether TLB 
misses are handled by hardware or software. In the hardware-managed TLB mode, when a 
virtual address is presented to the TLB and no matching TLB entry is found, the hardware 
initiates a reload of the TLB from the page table. In the software-managed TLB mode, a page 
fault is generated immediately following any TLB miss, and the MMU will not attempt to reload 
the TLB. For details on software accessibility and maintenance of the TLB, see Section 4.2.7.4 
on page 95.

Each logical partition can set LPCR[TL] differently. Changes to its value (see Section 4.2.7.1 on 
page 93 and Section 11.2.3 on page 337) must follow all the same synchronization rules as are 
required when changing the logical partition ID (LPID). See Section 20 Shared-Storage Synchro-
nization on page 561 and the PowerPC Operating Environment Architecture, Book III for the 
required synchronization instructions and sequences that must be used by the hypervisor. 
Failure to properly synchronize these changes can lead to inconsistent state and failure of the 
application or hypervisor. 

In general, the MMU does not do speculative table lookups (tablewalks). The only situation in 
which the MMU performs a speculative table lookup is a caching-inhibited store that takes an 
alignment interrupt. Otherwise, the MMU waits to perform the table lookup until the instruction is 
past the point at which any exception can occur.

The PPE always performs page-table lookups and PTE writes in real mode (see Section 4.2.8 on 
page 100). Because the PPE only supports a 42-bit RA, the following restrictions regarding the 
Storage Description Register 1 (SDR1) apply to hardware table lookups:

• Maximum Hash Table Size (HTABSIZE) allowed in SDR1 is 24 (‘11000’).

• Maximum Hash Table Origin (HTABORG) allowed in SDR1 is x‘FFFFFF’.

The 16-byte PTEs are organized in memory as groups of eight entries, called PTE groups 
(PTEGs), each one a full 128-byte cache line. A hardware table lookup consists of searching a 
primary PTEG and then, if necessary, searching a secondary PTEG to find the correct PTE to be 
reloaded into the TLB. The L2 provides the PTEG data two 16-byte PTEs at a time, in a burst of 
32 bytes. These 32 bytes are then run through a 2:1 multiplexer, producing 64 bytes—half of a 
primary or secondary PTEG. Searching of the primary or secondary PTEG is done as follows: 
first, the 64-byte even half (PTEs 0, 2, 4, and 6) is searched; if the PTE is not found here, the 
64-byte odd half (PTEs 1, 3, 5, and 7) is searched. To accomplish two such searches, the data 
must be re-requested from the L2 for the odd half of the PTEG, and the multiplexer must be set to 
look at the appropriate half of the PTEG. 

To summarize, hardware searches PTEGs in the following order:

1. Request the even primary PTEG entries.

2. Search PTE[0], PTE[2], PTE[4], and PTE[6].
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3. Request the odd primary PTEG entries.

4. Search PTE[1], PTE[3], PTE[5], and PTE[7].

5. Repeat steps 1 through 4 with the secondary PTE.

6. If no match occurs, raise a data storage exception.

For best performance, the page table should be constructed to exploit this search order. 

4.2.6.5 Page-Table Match Criteria

The page-table match criteria are described in the Page Table Search section of PowerPC Oper-
ating Environment Architecture, Book III. The PPE also requires that PTE[LP] = SLBE[LP] when-
ever PTE[L] = ‘1’. In other words, the PTE page size must match the SLBE page size exactly for 
a page-table match to occur. If more than one match is found in the page table, then the 
matching entries must all have the same PTE[LP] value, or the results are undefined, as 
explained later in this section. 

To conserve bits in the PTE, the least-significant bit, bit 115, of the PTE[RPN] field doubles as the 
PTE[LP] bit. The PTE[LP] bit exists in the page table only if PTE[L] = ‘1’. When this is true, PTE[LP] 
is no longer part of the PTE[RPN] field and instead serves as the PTE[LP] bit. See Section 4.2.6.6 
on page 90 for details. 

If multiple PTEs match yet differ in any field other than SW, H, AC, R, or C, then the results are unde-
fined. The PPE will either return the first matching entry encountered or it will logically OR the 
multiple matching entries together before storing them in the TLB. This can lead to unpredictable 
address-translation results, and the system might checkstop as a result.

The PPE does not implement PTE[0:15]. Software must zero these bits in all page table entries. 
The PPE will ignore these bits if set, and a match will occur as if PTE[0:15] = x‘0000’.

4.2.6.6 Decoding for Large Page Sizes

The PPE supports two large page sizes concurrently in the system, in addition to the small 4 KB 
page size. Each page can be a different size, but each segment must consist of pages that are all 
of the same size (see Section 4.2.6.5). 

Two large page sizes can be chosen from a selection of three sizes (64 KB, 1 MB, and 16 MB). 
To accomplish this, the PPE defines the LP field in the PTE to override the low-order bit of the RPN 
in the PTE and the low-order bit of the VPN in the tlbie(l) instruction if the large page (L) bit is set 
to ‘1’ for the PTE or tlbie(l) instruction. Whenever L = ‘1’, RPN[51], and VPN[67] are implicitly ‘0’. 
This is why the PPE can override these bits to be a large page selector (LP) whenever L equals 
‘1’.

There are two possible values of the LP field (‘0’ and ‘1’), which allow two different large page 
sizes to be concurrently active in the system. To determine the actual page size, four bits are 
kept in HID6[LB], bits [16:19]. Table 4-3 on page 91 shows how the page size is determined 
given L, LP, and LB, where “x” means that any value is allowed.
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Each logical partition can have a different LB value. Thus, support for large page sizes can be 
selected on a per-partition basis. However, the hypervisor is only permitted to change the LB field 
in HID6 if it is switching to or creating a partition. The partition is not allowed to dynamically 
change this value. The following sequence (or a similar one) must be issued to clean up transla-
tion after changing LB: 

1. Issue slbia for thread 0.

2. Issue slbia for thread 1.

3. For (i = ‘0’; i < 256; i++) 

tlbiel is = 11 rb[44:51] = i; // invalidate the entire TLB by congruence class.

4. sync L = ‘0’.

5. mtspr hid6.

6. sync L = ‘0’.

7. isync.

Note:  The preceding procedure can impact performance negatively and should only be used 
when switching between partitions that use a different set of large page sizes.

4.2.6.7 WIMG-Bit Storage Control Attributes

The PPE supports a weakly consistent shared-storage model, as described in Section 20 
Shared-Storage Synchronization on page 561. Storage consistency between processing 
elements and I/O devices is controlled by privileged software using the following four storage-
control attributes and their associated bits (called the WIMG bits):

• Write-through (W bit)

• Caching-inhibited (I bit)

• Memory coherency (M bit)

• Guarded (G bit)

Table 4-3. Decoding for Large Page Sizes 

L LP LB[0:1] LB[2:3] Page Size

0 x x x 4 KB

1 0 11 x Reserved

1 0 10 x 64 KB

1 0 01 x 1 MB

1 0 00 x 16 MB

1 1 x 11 Reserved

1 1 x 10 64 KB

1 1 x 01 1 MB

1 1 x 00 16 MB
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All PPE instruction accesses and all PPE and SPE data accesses to main storage are performed 
under the control of these storage attributes. The attributes are maintained in each PTE. The W 
and I bits control how the processor element performing an access uses its own cache (in the 
case of the CBEA processors, this applies to the PPE L1 and L2 caches and the SPE atomic 
caches). The M bit ensures that coherency is maintained for all copies of the addressed memory 
location. When an access requires coherency, the processor element performing the access 
informs the coherency mechanisms throughout the system of this requirement. The G bit 
prevents out-of-order loading and prefetching from the addressed location.

Like many PowerPC processors, the PPE supports only three WIMG-bit combinations: ‘0010’, 
‘0100’, and ‘0101’. All other settings are implemented as shown in Table 4-4. In this table, a dash 
(–) represents either a ‘0’ or a ‘1’. If software writes an unimplemented WIMG value to a page-
table or TLB entry, the W and M bits might be implicitly overwritten in that entry, to the value 
shown in Table 4-4, if an update to a Reference or Change bit occurs (see Section 4.2.6.8). 

As Table 4-4 shows, if a storage access is cacheable, then it is also write-back, memory-
coherent, and nonguarded. See Section 4.2.8.2 on page 101 for details about how the storage-
control attributes are set in real mode. For further details about storage control attributes in real 
mode, including those for hypervisor accesses, see the Real Addressing Mode section of the 
PowerPC Operating Environment Architecture, Book III. 

The storage attributes are relevant only when an EA is translated. The attributes are not saved 
along with data in the cache (for cacheable accesses), nor are they associated with subsequent 
accesses made by other processor elements. Memory-mapped I/O operations address main 
storage and are therefore subject to the same WIMG attributes as all other main-storage 
accesses. 

4.2.6.8 Updates to Reference and Change Bits

If a hardware table lookup is performed and a matching PTE entry is found with the Reference 
(R) bit set to ‘0’, the MMU performs a PTE store update, with the R bit set to ‘1’. Therefore, 
because all table lookups are nonspeculative (with the exception of a caching-inhibited 
misaligned store5), the R bit is always updated for any page that has a load or store request, 
regardless of any storage interrupts that might occur. 

If a hardware table lookup is the result of a store operation, a matching PTE is tested to see if the 
Change (C) bit is set to ‘0’. If so, the MMU performs a PTE store update, with the C bit set to ‘1’. 
The only case in which this is not true is a storage exception. The MMU does not update the C bit 
if the storage access (load or store) results in a storage exception, as described in the Storage 
Protection section of PowerPC Operating Environment Architecture, Book III. The PPE performs 
all store operations, including PTE updates, in-order.

Table 4-4. Summary of Implemented WIMG Settings 

WIMG Setting PPE WIMG Implementation

– 0 – – 0 0 1 0

– 1 – 0 0 1 0 0

– 1 – 1 0 1 0 1

5. Misaligned, caching-inhibited stores are speculative because the instruction is not yet committed; an alignment 
interrupt has been taken, and the table lookup has not yet been performed at the time of the store.
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A store operation to a page whose corresponding PTE’s C bit is ‘0’ in the TLB entry causes a 
page fault when in software-managed TLB mode (LPCR[TL] = ‘1’). To avoid this, software can set 
C = ‘1’ on the initial load of a new TLB entry, so that an additional page fault is not incurred during 
the subsequent store operation. 

4.2.7 Translation Lookaside Buffer

The PPE’s translation lookaside buffer (TLB) is a unified (combined both instruction and data), 
1024-entry, 4-way set associative cache that stores recently accessed PTEs. It is shared by both 
PPE threads. A page table in memory is only accessed if a translation cannot be found in the TLB 
(called a TLB miss).

4.2.7.1 Enabling Hardware or Software TLB Management

Translation lookaside buffer (TLB) entries and reloads can be managed either by hardware or by 
hypervisor software. The hardware-managed TLB mode is enabled when the TLB Load (TL) bit of 
the Logical Partition Control Register is cleared to ‘0’ (LPCR[TL] = ‘0’) (this bit is not defined as 
such in the PowerPC Architecture). The software-managed TLB mode is enabled when LPCR[TL] 
= ‘1’. In the software mode, the hypervisor uses MMIO-register accesses to manage the TLB as 
described in Section 4.2.7.4 Software Management of the TLB on page 95.

4.2.7.2 TLB Lookup

The result of an SLB lookup is a VA with segment attributes. This information is passed to the 
TLB to be converted to an RA with page attributes. Figure 4-3 on page 94 shows the VA-to-RA 
conversion performed by a TLB entry in the hardware-managed TLB mode. The VA is split to 
form the Page field, which is input to an index hash function, and the VSID field, which is used as 
a compare tag (Tlb_Tag). The result of the index hash function produces the index 
(PPE_TLB_Index) that chooses among the 256 congruence classes (sets, or rows) and the four 
ways (columns) of the TLB.
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The compare tag (Tlb_Tag) also contains the LPID, Valid (V, set to ‘1’), Large Page (L), and 
Large Page Selector (LP) fields of the PTE. Both L and LP come from the SLB segment 
attributes. The compare tag is compared against the data stored in each way of the indexed 
congruence class. The width of the compare tag changes for each page size, as shown in 
Table 4-5 on page 95. 

Figure 4-3. Mapping a Virtual Address to a Real Address 

Byte

62–p p

0 61–p 62–p 61

62-bit Real Address (RA) 

VSID Page Byte

52 28–p p

0 51 52 79–p 80–p 79

80-bit Virtual Address (VA) Bits [0:14] are ‘0’

Virtual Page Number (VPN)

PPE TLB Index Hash Function:
• 4 KB: (VA[52:55] xor VA[60:63]) || VA[64:67]
• 64 KB: (VA[52:55] xor VA[56:59]) || VA[60:63]
• 1 MB: VA[52:59]
• 16 MB: VA[48:55]

PPE TLB Index 

TLB

PPE_TLB_Index[0:7]

Way A Way B Way C Way D

| |

Tlb_Tag

Cmp Cmp CmpCmp

LPID[27:31]

L || LP
(from SLB Attributes)

Valid

(Bits [0:19] are ‘0’ in the CBEA processors

Congruence Class

Multiplexer

Hash Function
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If a hit results from the compare, the entry for the TLB way (see Figure 4-3 on page 94) is read 
out through the multiplexer. This data contains a previously cached PTE corresponding to the VA 
presented to the TLB, which holds the RPN and page attributes.

If this is an instruction-address translation, the page attributes are checked to ensure that the 
page is not marked Guarded (G = ‘1’) or No-execute (N = ‘1’), plus all other architected checks to 
ensure that access is allowed. If any condition is violated, an instruction storage interrupt is 
generated. Otherwise, if this is a data transaction or if the conditions are not violated, the RPN 
and page attributes are returned to the PPE’s ERAT.

4.2.7.3 TLB Replacement Policy

If a TLB miss results from the preceding compare operation, and hardware replacement is 
enabled (Section 4.2.7.1 on page 93), a pseudo-LRU algorithm is used to replace the TLB entry. 
The replacement policy is a 3-bit pseudo-LRU policy in binary-tree format. It has 256 entries, 
each representing a single congruence class in the TLB. The pseudo-LRU algorithm used for 
PPE TLB replacement is identical to that used for SPE TLB replacement, as described in 
Section 4.3.5.2 Hardware TLB Replacement on page 110. 

The LRU uses the following basic rules:

• The LRU is updated every time an entry in the TLB is hit by a translation. The entry that was 
referenced becomes the most-recently used, and the LRU bits are updated accordingly. 
However, the LRU is not updated when software reads the TLB for debug purposes using 
mfspr PPE_TLB_VPN or mfspr PPE_TLB_RPN.

• On a TLB miss, the update algorithm determines which entry to replace, using the following 
criteria:

– Invalid Entry—Any invalid entry is replaced. If more than one entry is invalid, the left-most 
(lowest-numbered) way is chosen as invalid.

– Valid Entry—The entry that the replacement management table (RMT) determines to be 
both least-recently used and eligible for replacement is replaced.

For a description of the replacement management table facility, see Section 4.2.7.7 TLB 
Replacement Management Table on page 99. 

4.2.7.4 Software Management of the TLB

TLB reloading can operate in either a hardware-managed or software-managed TLB mode (see 
Section 4.2.7.1 on page 93). In the hardware-managed mode, described in the preceding 
sections, software need not keep the TLB consistent with the hardware-accessed page table in 

Table 4-5. TLB Compare-Tag Width  

Page Size Compare Tag (Tlb_Tag)

4 KB VA[0:59] || Valid || L || LP || LPID[27:31]

64 KB VA[0:55] || Valid || L || LP || LPID[27:31]

1 MB VA[0:51] || Valid || L || LP || LPID[27:31]

16 MB VA[0:47] || Valid || L || LP || LPID[27:31]
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main storage. In the software-managed mode, TLB management instructions and MMIO regis-
ters directly specify VA-to-RA translations, without the use of a hardware-accessed page table in 
main storage. 

Software management of the TLB is restricted to the hypervisor, because memory is a system 
resource. Any attempt to execute TLB-management instructions when MSR[PR, HV] are not equal 
to ‘01’ causes an illegal instruction interrupt. 

The PPE implements the following MMIO registers, defined in the Cell Broadband Engine Archi-
tecture, for software management of the TLB:

• PPE Translation Lookaside Buffer Index Hint Register (PPE_TLB_Index_Hint)

• PPE Translation Lookaside Buffer Index Register (PPE_TLB_Index)

• PPE Translation Lookaside Buffer Virtual-Page Number Register (PPE_TLB_VPN)

• PPE Translation Lookaside Buffer Real-Page Number Register (PPE_TLB_RPN)

The PPE does not implement the following registers:

• TLB Invalidate Entry Register (TLB_Invalidate_Entry)

• TLB Invalidate All Register (TLB_Invalidate_All)

Software management of the TLB allows the system-software designer to forego the requirement 
of a hardware-accessible page table and use any page-table format. The format and size of a 
software-managed page table are not restricted by hardware. Software interprets the page table 
to load the TLB in response to a data storage interrupt caused by a TLB miss. Software TLB 
management can also be used in combination with hardware management to preload transla-
tions into the TLB. 

One difference between a hardware and software TLB reload is the point at which the data 
storage interrupt (DSI) or SPE interrupt is presented to the PPE. For a hardware TLB reload, the 
interrupt is generated only after the page table is searched by hardware and a translation is not 
found. For a software TLB reload, the interrupt is generated when a translation is not found in the 
TLB.

In the software-managed TLB mode, all TLB misses result in a page fault leading to a storage 
interrupt. Software can then write a new entry to the TLB using the code sequences and MMIO 
registers shown in Table 4-6 on page 97. Software can also use this facility to preload the TLB 
with translation entries that are anticipated in future code execution. This is useful for avoiding 
TLB misses altogether.

Software should use the tlbie instruction to invalidate entries in the TLB, as described in 
Table 4-6 and Section 4.2.7.6 Software TLB Invalidation on page 98. In Table 4-6, the command 
names in parentheses are recommended compiler mnemonics.
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Writing the PPE_TLB_VPN register causes an atomic write of the TLB with the last-written contents 
of PPE_TLB_RPN and the Lower Virtual Page Number (LVPN) field of PPE_TLB_Index. The TLB entry 
that is written is the entry pointed to the last-written value of PPE_TLB_Index. 

The TLB tags each entry with the PPE logical partition ID (LPID) value at the time the entry is 
written. The hypervisor should set the LPID register to the value it wants to have the TLB entry 
tagged with at the time the entry is written. See Section 4.2.7.8 Logical-Partition ID Tagging of 
TLB Entries on page 99 for details. Software must set bit 56 of the PPE_TLB_VPN register (the low-
order bit of the AVPN field) to ‘0’ when writing a 16 MB TLB entry.

Reading the PPE_TLB_VPN or PPE_TLB_RPN register returns the PTE data associated with the TLB 
entry pointed to by the last-written value of PPE_TLB_Index. Reading the PPE_TLB_Index_Hint 
register returns the location that hardware would have chosen to replace when the last TLB miss 
occurred as a result of a translation for the thread performing the read operation 
(PPE_TLB_Index_Hint is duplicated per thread). If no miss has occurred, the register returns its 
POR value (typically all zeros).

The ability to read the TLB is provided for hypervisor debugging purposes only. The LPID and 
LVPN fields of the TLB entry are not accessible to the hypervisor, because they are not defined in 
the PTE that the PPE_TLB_VPN and PPE_TLB_RPN registers reflect. This makes it impossible to save 
and restore the TLB directly.

Bit 56 of the PPE_TLB_VPN register (the low-order bit of the AVPN field) is undefined when the TLB 
entry is a 1 MB page.

4.2.7.5 Rules for Software TLB Management

When reading or writing the TLB, software must follow these rules:

1. Both threads should not attempt to write the TLB at the same time. Doing so can lead to 
boundedly undefined results, because there is a nonatomic sequence of register updates 
required for TLB writes (even though the write to the TLB itself is atomic). For example, the 
following situation should be avoided: thread 0 writes the PPE_TLB_Index and PPE_TLB_RPN 
registers; then thread 1 writes over the PPE_TLB_Index register; then thread 0 writes the 

Table 4-6. TLB Software Management 

TLB Operation1 Code Sequence

Write an entry (tlbmte)
mtspr PPE_TLB_Index, RB;
mtspr PPE_TLB_RPN, RB;
mtspr PPE_TLB_VPN, RB;

Read from Index Hint (tlbmfih) mfspr RT, PPE_TLB_Index_Hint;

Set the index for writing (tlbmti) mtspr PPE_TLB_Index, RB;

Debug: Read from entry (tlbmfe)
mtspr PPE_TLB_Index, RB;
mfspr RT1, PPE_TLB_VPN;
mfspr RT2, PPE_TLB_RPN;

Invalidate an entry tlbie(l)2

Invalidate all entries See Section 4.2.7.6 Software TLB Invalidation on page 98.

1. Recommended compiler mnemonics are shown in parentheses. 
2. See Section 4.2.7.6 Software TLB Invalidation on page 98. 
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PPE_TLB_VPN register. The result is that the wrong TLB entry is written because thread 1 
caused the PPE_TLB_Index register to point to the wrong location in the TLB. An easy way to 
solve this problem is for the hypervisor to reserve a lock when writing the TLB.

2. Both threads should not attempt to read the TLB at the same time, because reading the TLB 
using the mtspr and mfspr instructions requires first writing the PPE_TLB_Index register, so 
rule 1 applies. In other words, the same hypervisor lock that is used to write the TLB should 
also be acquired to read the TLB using the mtspr and mfspr instructions. This prevents one 
thread from corrupting the PPE_TLB_Index pointer that the other thread is using to read the 
TLB. Failure to acquire a lock can lead to boundedly undefined results. 

Also, because reading the TLB using the mtspr and mfspr instructions is a nonatomic 
sequence, hardware updates of the TLB by the other thread should be prevented. For exam-
ple, the following situation should be avoided: thread 0 reads the PPE_TLB_RPN register; then 
thread 1 performs a hardware table-lookup update of the same TLB entry; then thread 0 
reads the PPE_TLB_VPN register. The PPE_TLB_RPN and PPE_TLB_VPN results will not corre-
spond in this case. Because reading of the TLB using the mtspr and mfspr instructions is 
intended for debug use only, the hypervisor should stop the other thread from accessing the 
TLB while performing this operation.

3. Locking is not required to translate in the TLB. Because writes to the TLB itself are atomic, 
the thread translating in the TLB sees either the previous or the new TLB entry, but never an 
intermediate result. This is analogous to hardware updates of the TLB.

4. The TLB is a noncoherent cache for the page table. If the TLB is completely software-man-
aged, then it is software's responsibility to ensure that all TLB contents are maintained prop-
erly and that coherency with the page table is never violated.

Invalidating a TLB entry requires use of the tlbie or tlbiel instruction (see Section 4.2.7.6). 
This is required so that the ERATs maintain coherency with the TLB. This means, for exam-
ple, that simply writing the Valid bit to ‘0’ for a TLB entry is not sufficient for removing a trans-
lation. Only the tlbie(l) instruction properly snoop-invalidates the ERATs.

5. Software must maintain Reference (R) and Change (C) bits in the page table. See 
Section 4.2.6.8 on page 92 for R and C bit maintenance by the hardware table lookup. If soft-
ware writes a TLB entry with C = ‘0’, a subsequent store operation in the software-managed 
TLB mode takes a page fault. The R bit is ignored by the TLB, so writing R = ‘0’ is ignored 
and treated like R = ‘1’.

Failure of the hypervisor to properly synchronize TLB read and write operations can lead to unde-
fined results throughout the entire system, requiring a system reset.

4.2.7.6 Software TLB Invalidation

Software must use the tlbie or tlbiel instructions to invalidate entries in the TLB. The tlbie 
instruction is broadcast to all processor elements in the system. The architecture requires that 
only one processor element per logical partition can issue a tlbie at a given time.

The PPE supports bits [22:(63 – p)], of the RB source register for tlbie and tlbiel, which results in 
a selective invalidation in the TLB based on VPN[38:(79 – p)] and the page size, p6. In other 
words, any entry in the TLB that matches the VPN[38:(79 – p)] and the page size is invalidated. 

6. The value “p” is a power-of-2 variable in the PowerPC Architecture representing the size of a page.
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The PPE adds new fields to the RB register of the tlbiel instruction that are not currently defined 
in the PowerPC Architecture. These include the Large Page Selector (LP) and Invalidation 
Selector (IS) fields. The IS field is provided in RB[52:53] of the tlbiel instruction. Table 4-7 gives 
details of the IS field. Bit 1 of the IS field is ignored. 

The tlbia instruction is not supported by the PPE. To remove the entire contents of the TLB, the 
hypervisor should perform 256 tlbiel operations with IS set to ‘11’ and RB[44:51] set to increment 
through each TLB congruence class.

4.2.7.7 TLB Replacement Management Table

The PPE provides a method of controlling the TLB replacement policy based on a replacement-
class ID (RclassID). Software can use the replacement management table (RMT) stored in the 
PPE Translation Lookaside Buffer RMT Register (PPE_TLB_RMT) to lock translation entries into the 
TLB by reserving a particular way of the TLB to a specific program EA range. For details, see 
Section 6.3 Replacement Management Tables on page 154. 

4.2.7.8 Logical-Partition ID Tagging of TLB Entries

The TLB supports entries for multiple logical partitions simultaneously. Each entry in the TLB is 
tagged with a 5-bit logical partition ID (LPID), which is specified in the Logical Partition Identity 
Register (LPIDR). This tag is assigned when the TLB entry is updated by either hardware or soft-
ware. 

The LPID tag on each TLB entry is used by hardware for the following purposes:

• To identify a TLB entry as belonging to a given partition. The TLB does not need to be saved, 
invalidated, and restored on a logical-partition switch, thus supporting high-performance par-
tition-switching.

• To determine if a TLB entry is a match for a translation request. To be considered a match, 
the current value of the processor element’s LPID register and the tag in the TLB must be 
equivalent. If not, a TLB miss occurs. 

• To determine if a tlbie should invalidate a given TLB entry. Each processor appends the cur-
rent LPID information to every tlbie sent out to the bus. When a tlbie is received by the TLB, 
the LPID information can be used to selectively invalidate only the TLB entries that corre-
spond to the same partition as the tlbie.

It is possible for one partition to invalidate or discard the TLB entries of another partition by 
issuing a tlbie instruction with IS set to ‘11’. See Section 4.2.7.6 on page 98 for details. 

Table 4-7. Supported Invalidation Selector (IS) Values in the tlbiel Instruction 

IS Value Behavior

‘00’ The TLB is as selective as possible when invalidating TLB entries. The invalidation match 
criteria is VPN[38:79-p], L, LP, and LPID.

‘01’ Reserved. Implemented the same as IS = ‘00’. 

‘10’ Reserved. Implemented the same as IS = ‘11’.

‘11’ The TLB does a congruence-class (index-based) invalidate. All entries in the TLB matching 
the index of the virtual page number (VPN) supplied will be invalidated. 
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Software can read TLB entries, but software cannot read the value of a TLB entry’s LPID tag. 
Theoretically, this allows one partition to read the TLB entries of another partition, but it does not 
allow the partition to know which partition owns the TLB entry. However, reading from the TLB is 
restricted to the hypervisor, so the hypervisor should not provide a service that allows operating 
systems or applications to read the TLB-entry values. Reading TLB entries is not atomic, is low 
performance, and can cause a security risk. It is intended for hypervisor software debugging 
only.

Processor elements ignore tlbie instructions that do not have an LPID value matching the 
processor element’s current LPIDR value. Because of this, when moving a partition from one 
processor element to another, software must invalidate all TLB entries on the current processor 
element before changing the LPIDR. The LPID tagging only benefits partition-switching on a single 
processor element, not switching a partition between multiple processor elements. The Invalida-
tion Selector (IS) field of the tlbiel instruction can be used to override this behavior. If IS = ‘11’, 
then the TLB performs a congruence-class invalidation of the TLB without regard to the LPID 
value supplied.

The LPID is ignored by the TLB replacement logic when performing a hardware table lookup.

4.2.8 Real Addressing Mode

If the PPE operating system does not enable virtual addressing, as described in Section 4.2.3 
Enabling Address Translation on page 83, the system operates in real addressing mode (also 
called real mode). In this mode, EAs of application programs running on the PPE are used as 
RAs (possibly offset by an Real Mode Offset Register [RMOR] or Hypervisor Real Mode Offset 
Register [HRMOR] base address) and there is no page table or paging. In contrast to this PPE 
behavior, real-mode addresses generated by an SPE’s MFC are never offset by RMOR or HRMOR 
base-address registers and they do not use the MSR[HV] and LPCR[LPES] fields and the RMLR 
register, as described in Section 4.3.6 on page 117.

All real-mode accesses are treated as if they belong to a 4 KB page. If a PPE system has a 
smaller physical-address range than a program’s EA range, the extra high-order bits of the EA 
are ignored (treated as if they were zeros) in the generation of the RA.

4.2.8.1 Types of Real Addressing Modes

The contents of the following registers affect the real addressing mode, including real-mode 
accesses for page-table lookups:

• Real Mode Offset Register (RMOR)

• Hypervisor Real Mode Offset Register (HRMOR)

• The Real Mode Limit Select (RMLS), Real-Mode Caching Inhibited (RMI), and Logical Parti-
tioning Environment Selector (LPES) (bit 1) fields of the Logical Partition Control Register 
(LPCR) 

• The Real-Mode Storage Control (RMSC) field of the Hardware Implementation Register 6 
(HID6)
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Table 4-8 on page 101 summarizes how the RA is determined from the EA in real mode. An 
address-translation fault causes an instruction storage or data storage interrupt. For further 
details, see the Real Addressing Mode section of the PowerPC Operating Environment Architec-
ture, Book III. 

For details on how the WIMG bits are set in real mode, see Section 4.2.6.7 WIMG-Bit Storage 
Control Attributes on page 91. Other attribute bits are set in real mode as shown in Table 4-9.

4.2.8.2 Real-Mode Storage Control Facility

The PPE supports a real-mode storage control (RMSC) facility. This facility allows for altering the 
storage-control attributes in real mode based on a boundary in the real-address space. The value 
in the 4-bit RMSC field stored in HID6[26:29] determines the boundary as shown in Table 4-10. 

Table 4-8. Summary of Real Addressing Modes 

Mode Name Mode Bits Real-Address Calculation

Hypervisor Offset Mode
MSR[HV] = ‘1’
EA(0) = ‘0’

RA = (EA[22:43] | HRMOR[22:43]) || EA[44:63]

Hypervisor Real Mode
MSR[HV] = ‘1’
EA(0) = ‘1’

RA = EA[22:63]

Real Offset Mode
MSR[HV] = ‘0’
LPCR[LPES] bit 1 = ‘1’

RA = (EA[22:43] | RMOR[22:43]) || EA[44:63]

Mode Fault
MSR[HV] = ‘0’
LPCR[LPES] bit 1 = ‘0’

LPAR Error (Interrupt)

Table 4-9. Summary of Real-Mode Attributes 

Attribute Bit Value Attribute Description

L 0 Large Page

LP 0 Large Page Selector

Ks 0 Supervisor State Storage Key

Kp 0 Problem State Protection Key

CL 0 Class

AC 0 Address Compare

PP[0:1] 10 Page Protection

C 1 Change

N 0 No Execute

Table 4-10. Real-Mode Storage Control Values (Sheet 1 of 2) 

Value in HID6[RMSC] Register Field Real-Address Boundary

0000 0

0001 256 MB

0010 512 MB

0011 1 GB

0100 2 GB
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Figure 4-4 demonstrates how the I (caching-inhibited) and G (guarded) real-mode storage-
attribute bits are set according to the location of the Real Address of the storage access relative 
to the boundary. “RMI” is the Real-Mode Caching Inhibited bit in LPCR[62].

4.2.8.3 Real-Mode Maintenance

Real-mode translations are kept in the ERAT, so software must issue the following sequence 
when changing any of the RMOR, HRMOR, LPCR, or HID6 registers:

• mtspr for RMOR, or HRMOR, or LPCR[RMLS, RMI, LPES bit 1], or HID6[RMSC]

• isync

• tlbiel L = ‘1’, IS = ‘00’, RB = ‘0’

• sync L = ‘1’

This form of tlbie causes all ERAT entries to be invalidated without affecting the TLB.

Changing any of these registers changes the context of all real-mode translations, so care must 
be taken to ensure that any previous real-mode translations are completed from a storage 
perspective and are invalidated from the ERAT. The preceding sequence should also be followed 

0101 4 GB

0110 8 GB

0111 16 GB

1000 32 GB

1001 64 GB

1010 128 GB

1011 256 GB

1100 512 GB

1101 1 TB

1110 2 TB

1111 4 TB

Table 4-10. Real-Mode Storage Control Values (Sheet 2 of 2) 

Value in HID6[RMSC] Register Field Real-Address Boundary

Figure 4-4. Real-Mode I and G Bit Settings 

Real Address Space Instruction Fetch Data Fetch

G
0

242 – 1

Boundary
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when multiple registers are to be changed at once—for example, when switching between logical 
partitions, the RMOR, RMLS, and LPIDR register need to by changed at once. When changing any of 
these register values, software must not cause an implicit branch, as described in the Implicit 
Branch section of PowerPC Operating Environment Architecture, Book III.

4.2.9 Effective Addresses in 32-Bit Mode

The PPE supports both the 64-bit and 32-bit memory management models defined by the 
PowerPC Operating Environment Architecture, Book III. The PowerPC Architecture also defines 
a 32-bit mode of operation for 64-bit implementations, which the PPE supports. 

In this 32-bit mode (MSR[SF] = ‘0’), the 64-bit EA is first calculated as usual, and then the high-
order 32 bits of the EA are treated as ‘0’ for the purposes of addressing memory. This occurs for 
both instruction and data accesses, and it occurs independently from the setting of the 
MSR[IR]bit, which enables instruction address translation, and the MSR[DR] bit, which enables 
data address translation. The truncation of the EA is the only way in which memory accesses are 
affected by the 32-bit mode of operation. 

4.3 SPE Memory Management

All information in main storage is addressable by EAs generated by programs running on the 
PPE, SPEs, and I/O devices. An SPE program accesses main storage by issuing a DMA 
command, with the appropriate EA and LS addresses. The EA part of the DMA-transfer address-
pair references main storage. Each SPE’s MFC has two command queues with associated 
control and status registers. One queue—the MFC synergistic processor unit (SPU) command 
queue—can only be used by its associated SPE. The other queue—the MFC proxy command 
queue—can be mapped to the EA address space so that the PPE and other SPEs and devices 
can initiate DMA operations involving the LS of the associated SPE.

When virtual addressing is enabled by privileged software on the PPE, the MFC of an SPE uses 
its synergistic memory management (SMM) unit to translate EAs from an SPE program into RAs 
for access to main storage. The SMM’s functions are similar to those of the PPE’s MMU 
described in Section 4.2 PPE Memory Management on page 80, except that the PPE provides 
an SMM with segment-buffer and page-table information needed for address translation. This 
section describes the differences between the SPE’s SMM and the PPE’s MMU. 

4.3.1 Synergistic Memory Management Unit

Address translation is managed in the SMM by the following hardware units:

• Segment Lookaside Buffer (SLB)—A unified (instruction and data), 8-entry array that pro-
vides EA-to-VA translations. The SLB is mapped to main storage as MMIO registers. The 
SPE supports up to 237 segments of 256 MB each. 

• Translation Lookaside Buffer (TLB)—The TLB is a 256-entry, 4-way set-associative cache 
that stores recently accessed PTEs supplied by the PPE operating system. 

Table 4-11 on page 104 summarizes the features of the SMM unit. 
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4.3.2 Enabling Address Translation

Virtual-address translation is enabled in an SPE by setting the Relocate (R) bit in the MFC State 
Register 1 (MFC_SR1[R]) to ‘1’. When this is done, the SLB, TLB, and page table facilities in the 
MFC are used to translate EAs in MFC commands to VAs, and then to a RAs. 

If MFC_SR1[R]= ‘0’, the main-storage side of MFC accesses operates in real mode. In this mode, 
EAs are used as RAs, but unlike PowerPC real addresses, the MFC real addresses are never 
offset by an RMOR or HRMOR base address. In addition, a page table is not used in real mode, 
and there is no demand-paging, as described in Section 4.2.8 Real Addressing Mode on 
page 100.

The following sections describe details of SMM address translation. Additional details are given 
in the Privileged-Mode Environment section of the Cell Broadband Engine Architecture, Cell 
Broadband Engine Registers, and the PowerPC Operating Environment Architecture, Book III. 

Table 4-11. SPE Synergistic Memory Management Unit Features  

Parameter SPE Implemented Value or Feature

Addresses

Effective Address (EA) Size

Same as PPE.Virtual Address (VA) Size

Real Address (RA) Size

SLB

SLB Entries 8

Segment Size 256 MB

Number of Segments 237

Segment Protection None. The Class (C) and No-Execute (N) bits are stored in the 
SLB but are not used within the SMM.

SLB Maintenance Maintained by accesses to MMIO registers. 

Page Table

Number of Page Tables

The SMM uses page-table entries supplied by the PPE.
Table Structure

Page Protection

Page History

Page Sizes

4 KB, plus two of the following Large Page Sizes:
• 64 KB (p = 16)
• 1 MB (p = 20)
• 16 MB (p = 24)

Number of Pages
Determined by MFC_SDR[HTABSIZE] register field. Page 
sizes specified in this field must agree with the PPE 
SDR1[HTABSIZE] register field for the same page table.

TLB

TLB Entries 256

TLB Maintenance

• Hardware-managed or software-managed TLB update
• Maintained by accesses to MMIO registers
• Pseudo-LRU replacement policy
• Replacement management table (RMT) for TLB 

replacement
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4.3.3 Segmentation

The SMM implements an 8-entry SLB. The SLB translates effective segment IDs (ESIDs) to 
virtual segment IDs (VSIDs)—which also translates EAs to VAs. The SMM has a set of MMIO 
registers for management of its SLB. These registers provide the same functionality for the SMM 
as do PowerPC instructions for the PPE’s MMU, described in Section 4.2.5 Segmentation on 
page 85.

The SLB’s Virtual Segment ID (VSID) field implements 37 bits of the architecture-defined 52-bit 
VSID. The Class (C) and No-execute (N) bits are stored in the SLB array but are not used within 
the SMM. All portions of the SLB, except the ESID and Valid bit, are protected by parity. Parity 
generation and checking can be disabled in the SMM_HID register. 

Unlike the PPE’s MMU, the SMM uses only a direct-mapped TLB—thus, all pages of the same 
size use the same virtual-address bits to obtain the TLB index for TLB lookups. Due to timing 
constraints, TLB-index selection occurs within the SLB array. Page-size encoding is saved in a 
separate 4-bit field of the SLB. The SMM uses six SLBs of the virtual page number (VPN) 
selected by the encoded page size to select a TLB entry. The page size is set and stored in the 
array on a write to the SLB Virtual Segment ID Register (SLB_VSID), and it is determined by the L 
and LP bits in the SLB_VSID data and the page-size encodings in the SMM Hardware Implementa-
tion Dependent Register (SMM_HID). See Table 4-13 on page 113 for information about setting the 
page size. Figure 4-5 on page 106 illustrates the EA-to-VA mapping and TLB index selection.
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4.3.3.1 SLB Registers

The SMM has a set of MMIO registers for SLB management. These registers provide the same 
functionality for the SMM that is provided by the PowerPC Architecture instructions (slbie, slbia, 
slbmte, slbmfev, and slbmfee) for managing the PPE’s SLB. The SLB-management registers 
include:

• SLB Index Register (SLB_Index)

• SLB Effective Segment ID Register (SLB_ESID)

• SLB Virtual Segment ID Register (SLB_VSID)

Figure 4-5. SPE Effective- to Virtual-Address Mapping and TLB-Index Selection 

VSID Page Index Byte Index

37 28–p p

15 51 52 79–p 80–p 79

64-bit Effective Address (EA) (Provided by DMAC for translation)
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• SLB Invalidate Entry Register (SLB_Invalidate_Entry)

• SLB Invalidate All Register (SLB_Invalidate_All)

Section 4.3.3.2 provides details. See the Cell Broadband Engine Registers document for the 
implemented bits of these Cell Broadband Engine Architecture registers.

4.3.3.2 SLB-Entry Replacement

The SLB requires a write sequence, similar to the one required for the TLB, to properly load the 
SLB with data. The SLB MMIO registers must be accessed by privileged PPE software with 
storage attributes of caching-inhibited and guarded. 

First, the index must be written to specify the entry for loading. The VSID and ESID fields must be 
written independently, unlike the TLB writes, but the SLB_VSID write should follow the index. The 
SLB_ESID data is written last because it contains the Valid bit, and the entry should not be valid 
until all data is loaded. The SLB_Index register is write-only. The SLB_ESID and SLB_VSID registers 
are both read-write; however, MMIO reads retrieve data from the array instead of the architected 
register. 

The sequence to replace an SLB entry is:

1. For each entry to be replaced:
a. Set the index of the SLB entry to be replaced.
b. Use the SLB_Invalidate_Entry register to invalidate the SLB entry.

2. Set the new contents for the VSID portion of the SLB entry.

3. Set the new contents for the ESID portion of the SLB entry along with the valid bit.

The contents of an SLB entry are accessed by using the SLB_ESID and SLB_VSID registers. The 
SLB_Index register points to the SLB entry to be accessed by the SLB_ESID and SLB_VSID regis-
ters. 

4.3.3.3 SLB Mappings and Interrupts

Software must maintain a one-to-one mapping between ESID and VSID entries, because 
multiple hit-detection is not supported by the SLB. The bits in the VSID are ANDed together if 
there are multiple matching ESIDs, and the results are unpredictable. If an SLB lookup fails due 
to an EA mismatch or cleared Valid bit, the SMM asserts a segment interrupt. All other DMA 
translation-request interrupts on a single translation are masked by a segment interrupt. 

The SMM has a nonblocking, hit-under-miss pipeline architecture. The SMM can handle further 
DMA-translation hits under a pre-existing interrupt. Any subsequent interrupts are masked, and 
that translation is returned as a miss to the direct memory access controller (DMAC) until the 
original interrupt is cleared. After the original interrupt is cleared, the subsequent interrupt can be 
seen.
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4.3.3.4 SLB Invalidation

Software must use the SLB_Invalidate_Entry register to maintain the SLB and update entries. 
However, SLB invalidations occur by writing an EA in the SLB_Invalidate_Entry register that 
matches the ESID data in the entry to be replaced. Entries are invalidated by clearing the Valid bit 
in the ESID field. The remainder of the ESID and VSID data is untouched for register-readout 
debugging purposes.

SLB_Invalidate_Entry EA data is written into the SLB_ESID register because they share EA 
format data. The SLB_Invalidate_Entry register is write-only, and the SLB_Invalidate_Entry 
data cannot be retrieved because SLB_ESID reads return data from the SLB array and not the 
architected register. Reads from this register return ‘0’ data. 

No data is retained for writes to the SLB_Invalidate_All register. The write action prompts the 
SLB array to clear all eight Valid bits in the array and, therefore, invalidate all registers. This is a 
write-only register. Reads from this register return ‘0’ data. 

4.3.3.5 SLB after POR

All SLB entries and TLB entries are invalidated after power-on reset (POR). 

4.3.4 Paging

4.3.4.1 Page Table

An SPE has no direct access to system-control facilities, such as the page table or page table 
entries (PTEs) for a logical partition. This restriction is enforced by PPE privileged software. The 
SPE’s atomic (ATO) unit provides PPE-generated PTE data to the SMM for hardware table 
lookups, as needed. 

4.3.4.2 Large Pages

The page size can be 4 KB or any two of the three Large Page Sizes: 64 KB, 1 MB, or 16 MB. 
The selection between the two large page sizes is controlled by:

• Page Size Decode (Pg_Sz_Dcd) field of the SMM Hardware Implementation Dependent Reg-
ister (SMM_HID). See SMM_HID Register on page 113. 

• Large Page (L) bit of the MFC TLB Virtual-Page Number Register (MFC_TLB_VPN[L]).

• Large Page (LP) field of the MFC TLB Real Page Number Register (MFC_TLB_RPN[LP]).

• Large Page (L) bit and Large Page-Size (LP) bit of the SLB Effective Segment ID Register 
(SLB_ESID[L, LP]).

See Table 4-13 on page 113 for large-page-size decoding.

4.3.5 Translation Lookaside Buffer

The TLB is a 256-entry, 4-way, set-associative cache that holds most-recently used PTEs that 
are provided by the PPE. There are 64 congruence classes (sets), each requiring six bits for the 
TLB index. When a translation is not found in the TLB, the SMM permits either a hardware or 
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software TLB reload, as specified in the MFC State Register 1 (MFC_SR1). The TLB array is parity 
protected. Parity generation and checking can be disabled in the SMM_HID register. Figure 4-6 
illustrates the VA-to-RA mapping.

The 6-bit TLB index selects four PTE entries (ways) in a congruence class. The four VPN fields 
(the TLB Compare Tags) of the selected entries are compared to the VPN field obtained from SLB 
lookup (the SLB Compare Tag). Table 4-12 on page 110 shows the SLB and TLB Compare Tag 
definitions for each page size. The TLB VPN data is a concatenation of MFC_TLB_VPN and 
MFC_TLB_Index register data during MMIO TLB writes. The TLB RPN data is a concatenation of the 
MFC_TLB_RPN[ARPN] and MFC_TLB_RPN[LP] register fields. 

For large pages in which the L bit is set to ‘1’, the RPN field concatenates the ARPN range with the 
upper seven bits of the LP field and a value of ‘0’. The lower bit of the LP field is used to select 
between the two large pages indicated by the SMM_HID register. The lower bit of the LP field is also 

Figure 4-6. SMM Virtual- to Real-Address Mapping 
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used as part of the TLB compare tag, as shown in Table 4-12. If the L bit is not set to ‘1’, the RPN 
field is formed by concatenating the ARPN field with the whole LP field. See MFC_TLB_Index, 
MFC_TLB_RPN, and MFC_TLB_VPN Registers on page 114 for more information.

4.3.5.1 Enabling Hardware or Software TLB Replacement

Hardware or software can be used to replace the TLB entry. The mode is selected by the TL bit of 
MFC State Register 1 (MFC_SR1). 

4.3.5.2 Hardware TLB Replacement 

When there is a TLB-lookup miss, the SMM determines which TLB entry to replace by using a 
pseudo-LRU algorithm and a replacement management table (RMT), as described in TLB 
Replacement Policy on page 111. That data is saved in the MFC_TLB_Index_Hint register. 

Replacement Method

If hardware replacement is selected, the SMM performs a hardware table lookup to find the 
replacement data and write the TLB at the location indicated by the MFC_TLB_Index_Hint register. 
A PTE request from the SMM is basically a store request. See Section 6.2 SPE Caches on 
page 151 for background information about an SPE’s TLB and atomic cache.

If the cache line containing the PTE is in the MFC’s atomic cache, which allocates a maximum of 
one line for PTEs, and the line is in the modified or exclusive cache state, the PTE is sent to the 
SMM. If the SMM requests an update for Reference (R) or Change (C) bits in the PTE, the atomic 
unit executes the store and updates those bits. 

If the cache line containing the PTE is in the MFC’s atomic cache, and in a state other than modi-
fied or exclusive, a bus request is sent to invalidate copies of the data in other processor 
elements, and the PTE is sent to the SMM. If the SMM requests an update for R or C bits in the 
PTE, the atomic unit executes the store and updates those bits. 

If the cache line containing the PTE is not in the atomic unit, a bus request is sent to invalidate 
copies of the data in other caches and to read the data. If the atomic cache is full, the same 
castout scenario applies here as with the putllc or putlluc requests (see Section 6.2.2 Atomic 
Unit and Cache on page 151 for more information). That is, the PTE is sent to the SMM. If the 
SMM requests an update for R or C bits in the PTE, the atomic unit executes the store and 
updates those bits.

It is a software error if the PTE is used by the semaphore atomic unit operation as a locked line.

Table 4-12. SLB and TLB Compare Tags  

Page Size SLB Compare Tag TLB Compare Tag

4 K VA[15:61] || Valid || L || LP VPN[15:61] || Valid || L || LP

64 K VA[15:57] || Valid || L || LP VPN[15:57] || Valid || L || LP

1 M VA[15:53] || Valid || L || LP VPN[15:53] || Valid || L || LP

16 M VA[15:49] || Valid || L || LP VPN[15:49] || Valid || L || LP
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TLB Replacement Policy

The SMM uses a 3-bit, binary-tree pseudo-LRU algorithm to select a TLB entry for replacement 
after a TLB miss. There are 64 TLB congruence classes, each containing four (ways), thus 256 
TLB entries as shown in Figure 4-6 on page 109. A replacement management table (RMT) can 
be used to lock entries and prevent their replacement, as described in Section 6.3.3 SPE TLB 
Replacement Management Table on page 158. 

The following rules govern LRU use and TLB-entry replacement:

1. The LRU is updated every time an entry in the TLB is hit by a translation operation. The entry 
that was referenced becomes the most-recently used, and the LRU bits are updated accord-
ingly. The LRU is not updated if that TLB entry is locked by the RMT.

2. On a TLB miss, the update algorithm determines which entry to replace, using the following 
priority:

a. Replace the entry that hit in the TLB, but was a put command and the Change (C) bit 
was ‘0’.

b. Replace the first entry (way) in the congruence class that was invalid (Valid bit was ‘0’).

c. Replace the least-recently used entry, indicated by the pseudo-LRU algorithm, that is not 
locked by the RMT.

After a TLB entry is chosen for replacement using these rules, the TLB replacement index, which 
specifies TLB entries as a congruence class and way, is saved in the MFC_TLB_Index_Hint 
register (see MFC_TLB_Index_Hint Register on page 114). The last four bits of the 
TLB_Index_Hint register are a one-hot vector to indicate the entry to be replaced. The bits repre-
sent the four TLB ways within a congruence class like the four bits on an RMT entry, described in 
Section 6.3.3 SPE TLB Replacement Management Table on page 158. The MFC_TLB_Index_Hint 
vector can only indicate the congruence-class way that is selected for replacement, whereas the 
RMT entry indicates all ways in the congruence class that are available for replacement.

Figure 4-7 shows the 3-bit pseudo-LRU binary tree. For each pseudo-LRU bit, a ‘0’ value moves 
to the left and a ‘1’ moves to the right. Only two bits are needed to determine one of the four 
congruence-class ways.

Take, for example, an address translation with RClassID equal to x‘2’ that misses in the TLB at 
index x‘34’. The LRU is then read at index x‘34’ to retrieve the three pseudo-LRU bits. If LRU(0) 
equals ‘1’, we follow the tree to the right, and if LRU(2) equals ‘0’, we follow the tree to the left 
and way C is chosen for replacement. 

Figure 4-7. Pseudo-LRU Binary Tree for SPE TLB 
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The RMT must be checked to see if way C has been locked by software. The RClassID value 
selects RMT entry 2. If the RMT entry equals ‘1110’, then way C is unlocked and can be 
replaced. If the RMT entry equals ‘1100’, however, LRU(0) and LRU(2) are overridden by the 
RMT, and LRU(1) chooses either way A or way B for replacement. If LRU(1) equals ‘1’, way B is 
chosen for replacement, the MFC_TLB_Index_Hint register is written with index x‘34’, and way B is 
written as follows: MFC_TLB_Index_Hint[54:63] equals ‘11_0100_0100’.

Interrupt Conditions

The SMM contains logic to detect and report interrupt conditions associated with TLB data, 
including atomic access to caching-inhibited pages (real mode and virtual mode), page-protec-
tion (PP) violations, data address compares (DACs), TLB page faults (hardware-managed and 
software-managed modes), and parity errors during DMA and MMIO-register accesses. Real-
mode translation caching-inhibited errors are detected by the DMAC and reported to the SMM for 
data storage interrupt (DSI) assertion. These errors are summarized in Section 4.3.7 Exception 
Handling and Storage Protection on page 118.

4.3.5.3 Software TLB Replacement

As an alternative to the hardware-managed TLB mode (Section 4.3.5.1 Enabling Hardware or 
Software TLB Replacement on page 110), most SMM maintenance can be performed by PPE 
software accessing MMIO registers. If software replacement is enabled, privileged PPE software 
searches the PPE’s page table and provides a replacement using access to MMIO registers in 
the SMM. Software can use the MFC_TLB_Index_Hint data or choose another location within the 
TLB. 

The SMM contains only privilege 1 (hypervisor) and privilege 2 (operating system) registers. 

The TLB-management registers include:

• SMM Hardware Implementation Dependent Register (SMM_HID)

• MFC TLB Invalidate Entry Register (MFC_TLB_Invalidate_Entry)

• MFC TLB Replacement Management Table Data Register (MFC_TLB_RMT_Data)

• MFC Storage Description Register (MFC_SDR)

• MFC Address Compare Control Register (MFC_ACCR)

• MFC TLB Index Hint Register (MFC_TLB_Index_Hint)

• MFC Data-Storage Interrupt Status Register (MFC_DSISR)

• MFC TLB Index Register (MFC_TLB_Index)

• MFC TLB Real Page Number Register (MFC_TLB_RPN)

• MFC TLB Virtual-Page Number Register (MFC_TLB_VPN)

• MFC Data Address Register (MFC_DAR)

Descriptions of these registers are given in the following sections. See the Cell Broadband 
Engine Registers document for complete descriptions of the implemented portions of the MFC 
TLB MMIO registers defined in the Cell Broadband Engine Architecture. Writes to invalid register-
offset addresses in the assigned SMM range are ignored. Reads to invalid addresses return ‘0’ 
data. The same applies to nonimplemented bits. 
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The synergistic bus interface (SBI) unit retrieves all register requests from the element intercon-
nect bus (EIB) and formats the requests for the MFC. All valid SMM requests are formatted for 
64-bit data. The MFC_DSISR register can be addressed as a 32-bit register, but the SBI converts it 
to a 64-bit format. 

SMM_HID Register

The SMM Hardware Implementation Dependent Register (SMM_HID) contains configuration bits 
that control many essential functions of the SMM. This register should be written before the SMM 
performs any translations and before the arrays are loaded with data. 

The Pg_Sz_Dcd bits are the most important field in this register. These bits, along with the LP bit in 
the SLB_VSID register, determine the supported large-page sizes for each array entry when the L 
bit in SLB_VSID is '1', enabling large-page mode. The large-page (LP) sizes are determined during 
a write to the SLB_VSID register. See Table 4-13 for large-page size decoding. By default, the 
SMM_HID register is cleared to ‘0’, so 16 MB pages are decoded. There are two sets of 2-bit HID 
values to support the two concurrent large-page sizes. This portion of the SMM_HID register should 
be written before any SMM activity occurs, and it can only change with a context switch.

Table 4-13 is applicable for MFC_TLB_Invalidate_Entry purposes as well. The 
MFC_TLB_Invalidate_Entry[L, LS] bits are used with SMM_HID[0:3] to select an MFC_TLB_Index 
for invalidation. See the MFC TLB Invalidate Entry MMIO register in Cell Broadband Engine 
Registers for more information. SMM page sizes must agree with PPE page sizes for the same 
page table.

Parity bits in the SLB are generated during a write to the SLB_VSID register. Parity-generation can 
be disabled by setting SMM_HID[SPGEN_Dsbl] to ‘1’. The parity bits are checked during address 
translation and reads from the SLB_VSID register. Parity-checking can be disabled by setting 
SMM_HID[SPCHK_Dsbl] to ‘1’. 

Similarly, parity bits are generated for the TLB entries during writes to the TLB and upon entry 
reloads by the table-lookup mechanism. TLB parity-generation can be disabled by setting 
SMM_HID[TPGEN_Dsbl] to ‘1’. Parity-checking occurs during address translation and reads from 
the MFC_TLB_VPN or MFC_TLB_RPN registers. The checking can be disabled by setting 

Table 4-13. SMM_HID Page-Size Decoding  

L SLB[LP] or TLBIE[LS] SMM_HID[0:1] SMM_HID[2:3] Page Size

0 — — — 4 KB

1 0 00 — 16 MB

1 0 01 — 1 MB

1 0 10 — 64 KB

1 0 11 — Reserved

1 1 — 00 16 MB

1 1 — 01 1 MB

1 1 — 10 64 KB

1 1 — 11 Reserved
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SMM_HID[TPCHK_Dsbl] to ‘1’. Enabling of parity-generation and disabling parity-checking causes 
data error (DERR) interrupts; see Table 4-15 Translation, MMIO, and Address Match-Generated 
Exceptions on page 118 for more about DERR interrupts. 

RMT functionality in the SMM can be disabled by setting SMM_HID[RMT_Dsbl] to ‘1’.

With SMM_HID[Stall_DMA_Issue] equal to '0' (the default setting), a pending TLBIE condition 
stalls the DMAC from issuing new requests to the atomic and SBI units. When 
SMM_HID[Stall_DMA_Issue] is set to '1', a pending TLBIE condition does not cause the DMAC to 
stall. With SMM_HID[ATO_TLBIE_Comp] equal to '0' (the default setting) and one of three livelock 
conditions (set by read and claim [RC], castout, or PTE fetch) detected, the atomic unit does not 
force a pending TLBIE to complete. When SMM_HID[ATO_TLBIE_Comp] is set to '1', a detected live-
lock condition forces a TLBIE completion.

MFC_SDR Register

The MFC Storage Description Register (MFC_SDR) contains the page-table origin and size. The 
function of this register is identical to that of the PPE_SDR1 register. 

MFC_TLB_Index_Hint Register

The function of the MFC_TLB_Index_Hint register is identical to that of the PPE_TLB_Index_Hint 
register, except that the SMM version has only one thread and implements a 6-bit index in 
bits[53:59]. 

MFC_TLB_Index, MFC_TLB_RPN, and MFC_TLB_VPN Registers

To write a new entry into the TLB, software must write the following registers, in the following 
order:

• MFC TLB Index (MFC_TLB_Index)

• MFC TLB Real-Page Number (MFC_TLB_RPN)

• MFC TLB Virtual-Page Number (MFC_TLB_VPN)

After this is done, hardware writes the entire TLB entry. Because an MMIO write to the 
MFC_TLB_VPN register sets off an automatic hardware write to the MFC_TLB_VPN and MFC_TLB_RPN 
register fields, whether the Index and RPN were previously written or not, the RPN data must be 
written after the index, as in the preceding list.

The complete MFC TLB VPN tag is created by concatenating the MFC_TLB_VPN[AVPN] and 
MFC_TLB_Index[LVPN] fields, as shown in Figure 4-8 on page 115. This is the complete tag stored 
in the TLB during MMIO writes and used for comparison with the VA during TLB lookup.
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For TLB reads, the Index should be written first, as with the writes, but only bits [54:63]. MMIO 
VPN reads must occur in two separate MMIO reads. Reading the MFC_TLB_VPN register returns 
the register data just as it was written, and it also updates the LVPN field in the MFC_TLB_Index 
register. A separate MFC_TLB_Index register read must be done to retrieve the LVPN data. 
MFC_TLB_RPN register reads can occur independently and use the Index field of the MFC_TLB_Index 
register to select the entry to read.

The W bit of the MFC_TLB_RPN register is not implemented by the Cell/B.E. and PowerXCell 8i 
processors. The R and M bits are not retained in the TLB array, but they are returned as ‘1’ 
during an MMIO read of the MFC_TLB_RPN register. 

MFC_TLB_Invalidate_Entry Register

Writes to the MFC_TLB_Invalidate_Entry register invalidate all four ways within a TLB congru-
ence class. To invalidate the entire array, this MMIO request must be executed 64 times for each 
index position.

To invalidate an entry, a 6-bit index must be selected from the VPN and LP fields. The correct 
range to select is determined from the L and LS bits in conjunction with the SMM_HID[0:3] bits. If L 
equals ‘0’, then the small-page (4 KB) index range is selected. When L equals ‘1’, the page size 
is determined as shown in Table 4-14.

Figure 4-8. MFC TLB VPN Tag 

TLB Attributes

15 56 57 63

AVPN

140

Index

16 54 63

LVPN

0

MMIO MFC_TLB_VPN Register
(AVPN bits [0:14] are 0 in this implementation)

MMIO MFC_TLB_Index Register
(LVPN bits [21:26] are not implemented)

2120 26

62-bit MFC TLB VPN Tag
(VPN bits [0:14] are 0 in this implementation)

VPN [0:56] VPN [57:61]

Table 4-14. MFC_TLB_Invalidate_Entry Index Selection 

Page Size MFC_TLB_Invalidate_Entry Index Range

4 KB MFC_TLB_Invalidate_Entry[56:61]

64 KB MFC_TLB_Invalidate_Entry[52:57]

1 MB MFC_TLB_Invalidate_Entry[48:53]

16 MB MFC_TLB_Invalidate_Entry[44:49]
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The MFC_TLB_Invalidate_Entry data is actually written into the MFC_TLB_VPN register because 
these two registers share VPN format data. There is no conflict in using the MFC_TLB_VPN register 
for both functions. The MFC_TLB_Invalidate_Entry register is write-only. The MFC_TLB_VPN 
register reads data retrieved from the array and not the MFC_TLB_VPN register. Reads from the 
MFC_TLB_Invalidate_Entry MMIO register return ‘0’ data.

MFC_TLB_Invalidate_All Register

The MFC_TLB_Invalidate_All register defined by the Cell Broadband Engine Architecture is not 
implemented in the Cell/B.E. and PowerXCell 8i processors.

MFC_ACCR Register

The MFC Address Compare Control Register (MFC_ACCR) implements a data address compare 
(DAC) mechanism that allows the detection of a DMAC access to either a virtual page with the 
Address Compare (AC) bit in the PTE set to ‘1’, or to a range of addresses within the LS. See the 
Cell Broadband Engine Architecture for the DAC-detection algorithm. 

MFC_DSISR Register

The MFC Data-Storage Interrupt Status Register (MFC_DSISR) contains status bits relating to the 
last data-storage interrupt (DSI) generated by the SMM. As DSIs are generated by the SMM, the 
status bits are written to this register in the middle of a translation request. If software attempts to 
write this register at the same time that the SMM is writing the register, the SMM hardware data 
overrides the software-written data (this makes the interrupt information available for software 
debug). 

The MFC_DSISR register is used in this way, whether the SMM is operating in virtual addressing 
mode or real addressing mode. The SMM only writes to this register when a DSI is asserted. The 
register is locked until the Restart bit, MFC_CNTL[R], is set to ‘1’. The register is never cleared; it is 
only overwritten with new DSI information. 

MFC_DAR Register

The MFC Data Address Register (MFC_DAR) contains the 64-bit EA from a DMA command. The 
MFC_DAR register is writable both by the SMM hardware and by software. During translation, the 
SMM stores the EA in this register for every DMA command until a potential error is discovered. 
Then, the register becomes locked until the potential error passes or a previously reported error 
is cleared by setting the Restart bit, MFC_CNTL[R], to ‘1’. 

If SMM hardware and software attempt to write the MFC_DAR register simultaneously, the SMM 
hardware data overrides the software-written data (this makes the interrupt information available 
for software debug). This register is used for both virtual and real addressing modes. The EA is 
stored in this register for all SMM errors and interrupts, except parity errors on MMIO array reads. 



Programming Handbook

 Cell Broadband Engine

Version 1.11
May 12, 2008
 

Virtual Storage Environment
Page 117 of 884

4.3.5.4 Storage Coherency

The TLB maintains storage coherency by means of snooped TLBIE requests. The TLBIE 
requests are broadcast over the EIB and collected by the SBI unit. The SBI unit checks the 
logical partition ID (LPID) for the request to see if the TLBIE is targeted for its partition. If so, the 
request is sent to the atomic unit in the MFC. The atomic unit generates the TLBIE request for 
the SMM. 

4.3.5.5 TLB After POR

All TLB entries and SLB entries are invalidated after power-on reset (POR). 

4.3.6 Real Addressing Mode

If PPE privileged software has set MFC_SR1[R]= ‘0’, the main-storage side of MFC accesses oper-
ates in real-addressing mode. In this mode, EAs provided to the MFC by programs are used as 
RAs. However, unlike the PPE’s real-addressing mode, described in Section 4.2.8 on page 100, 
the SPE’s real-addressing mode does not use the RMOR or HRMOR base-address registers, or 
the MSR[HV] and LPCR[LPES] fields and the RMLR register. 

The MFC supports a real-mode address boundary facility, specified by the 4-bit MFC_RMAB[RMB] 
register field. The RMB field is used to control caching-inhibited (I) and guarded (G) storage-
control attributes when the MFC is running in real mode. The field sets a boundary, illustrated in 
Figure 4-9 on page 118, between storage that is considered well-behaved and cacheable and 
storage that is not. The granularity of this boundary is a power of 2 from 256 MB up to 4 TB for 1 
≤ n ≤ 15. 

Specifically, when in real-addressing mode, if MFC_RMAB[RMB] is set to a value of ‘n’ (for 1 ≤ n ≤ 
15), only those accesses within the first 2n+27 bytes of the real-address space are considered 
cacheable and well-behaved (that is, load-load or load-store ordering can be assumed). All 
accesses outside the first 2n+27 bytes are considered neither cacheable nor well-behaved. If 
MFC_RMAB[RMB] = x‘0’, no accesses are considered well-behaved and cacheable. 

The RMB field has no effect when the MFC is running with translation on (MFC_SR1[R]= ‘1’). PPE 
privileged software must suspend all MFC operations before modifying the contents of 
MFC_RMAB[RMB] field. 



Programming Handbook

Cell Broadband Engine  

Virtual Storage Environment
Page 118 of 884

Version 1.11
May 12, 2008

4.3.7 Exception Handling and Storage Protection

The SMM checks for storage-protection errors during both virtual-mode and real-mode address 
translation, although real-mode checking is very limited. The DMAC also checks for LS-address 
compares. Table 4-15 describes translation, address-compare, and parity errors detected and 
reported by the SMM and DMAC. These exceptions are reported in the following MMIO registers:

• Class 1 Interrupt Status Register (INT_Stat_class1)

• MFC Data-Storage Interrupt Status Register (MFC_DSISR)

• MFC Fault Isolation Register (MFC_FIR)

See the Cell Broadband Engine Registers document for a description of the seven Fault Isolation 
Registers (FIRs), including MFC Fault Isolation Register (MFC_FIR), MFC Fault Isolation Register 
Error Mask (MFC_FIR_Err), and MFC Fault Isolation Register Checkstop Enable 
(MFC_FIR_ChkStpEnbl) registers.

Figure 4-9. Real-Mode Storage Boundary 

Real Address 
Space

0

2n+27 - 1

2n+27

242 - 1

All DMA Transfers

I-bit G-bit

0 0

1 1

Table 4-15. Translation, MMIO, and Address Match-Generated Exceptions  (Sheet 1 of 2)

Exception Name

INT_Stat_class1 Register

MFC_DSISR 
Register

DMAC 
Suspend

Data 
Error 

(DERR)

MFC_FIR 
RegisterLP or LG

Bits[60:61]

MF 
(DSI)
Bit[62]

SF 
Bit[63]

SLB Segment Fault X

Atomic access to caching-
inhibited page when 
address relocation is 
enabled

X
A

bit[37]
X

Atomic access to caching-
inhibited page when 
address relocation is 
disabled (real mode)

X
A

bit[37]
X

Page protection violation 
(PP) X

P
bit[36]
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4.3.7.1 Address-Translation Exceptions

For all translation exceptions reported by the SMM, except parity errors detected on SLB or TLB 
MMIO reads, the 64-bit EA is saved to the MFC_DAR register. If a DSI exception occurs, informa-
tion about which kind of DSI error and other related information is written into the MFC_DSISR 
register, and the MFC Command Queue Error ID Register (MFC_CMDQ_Err_ID) entry index is 
saved to the MFC Data-Storage Interrupt Pointer Register (MFC_DSIPR). The MFC_DAR, MFC_DSIPR, 
and MFC_DSISR registers are locked to the value of the current outstanding exception or miss. 

The SMM supports only one outstanding translation miss or exception, excluding MMIO-read 
parity errors. The SMM has the ability to serve hits under one outstanding translation miss or 
exception. After the first outstanding miss or exception is detected by the SMM, any subsequent 
exception or miss of an MFC-command translation is reported back to the DMAC as a miss. The 
DMAC sets the dependency bit associated with the MFC command and stalls the command until 
the dependency bit is cleared. 

When the outstanding miss or exception condition is cleared, all 24 dependency bits are cleared 
(16 for the MFC SPU command queue and 8 for the MFC proxy command queue), and the 
DMAC resends the oldest MFC command to the SMM for translation. Exceptions are cleared by 
setting the Restart bit, MFC_CNTL[R], to ‘1’. Setting MFC_CNTL[R] to ‘1’ also unlocks the MFC_DAR 
and MFC_DSISR registers and allows the SMM to report a new exception. The MFC_CNTL[Sc] bit 
should be cleared to ‘0’ to unsuspend the MFC command queues only after all exception condi-
tions have been cleared. The MFC_DSIPR register is unlocked by reading the register or purging 
the MFC command queues.

Local-storage address 
compare 
(reported by DMAC and 
not reported as SMM 
exception)

X X

Data address compare 
(DAC) X

C
bit[41]

X

TLB page fault (hardware 
or software) X

M
bit[33]

Parity error detected 
during SLB/TLB translation 
operation

X
SLB or 

TLB bits 
[43:44}

Parity error detected 
during MMIO read to SLB 
or TLB array (only reported 
through DERR bit attached 
to the MMIO data returned 
to the requester)

X

Table 4-15. Translation, MMIO, and Address Match-Generated Exceptions  (Sheet 2 of 2)

Exception Name

INT_Stat_class1 Register

MFC_DSISR 
Register

DMAC 
Suspend

Data 
Error 

(DERR)

MFC_FIR 
RegisterLP or LG

Bits[60:61]

MF 
(DSI)
Bit[62]

SF 
Bit[63]
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4.3.7.2 Address-Compare Exceptions

LS-address-compare exceptions occur when the LS is accessed within the address range speci-
fied in the MFC Local Storage Address Compare Register (MFC_LSACR). The DMAC writes the 
MFC Local Storage Compare Results Register (MFC_LSCRR) with the LS address that met the 
compare conditions set in the MFC_LSACR register, along with the MFC command-queue index and 
the DMA command type. This exception causes the DMAC to suspend. To clear the error, the LP 
or LG bits in the INT_Stat_class1 register should be cleared to ‘0’, and the MFC_CNTL[Sc] bit 
should be cleared to ‘0’ to unsuspend the MFC command queues. See the MFC Local Storage 
Compare Results (MFC_LSCRR) MMIO register and the MFC Local Storage Address Compare 
(MFC_LSACR) MMIO register in Cell Broadband Engine Registers for more information.

4.3.7.3 Segment Exceptions

SLB segment faults occur when there is no matching ESID in the SLB for the EA in the transla-
tion request, or the Valid bit is not set in the SLB for the matching ESID entry. When this fault 
occurs, the MFC_DAR register contains the 64-bit EA, as described in Section 4.3.7.1 Address-
Translation Exceptions on page 119. The MFC_DAR register and the SLB can be read to determine 
which entry to replace in the SLB. Then, the entry should be invalidated with a write to the 
SLB_Invalidate_Entry or SLB_Invalidate_All register, followed by writes to the SLB_Index, 
SLB_ESID, and SLB_VSID registers to put the proper entry into the SLB. The INT_Stat_class1[SF] 
should then be cleared to ‘0’, and the MFC_CNTL[R] bit should be set to ‘1’ to resume normal SMM 
and DMAC operation.

4.3.7.4 Data-Storage Exceptions

All DSI exceptions are defined in the PowerPC Operating Environment Architecture, Book III. 
When these exceptions occur, the SMM writes the 64-bit EA to the MFC_DAR register and records 
the DSI exception type in the MFC_DSISR register, as shown in Table 4-15 on page 118. That table 
also shows which DSI exceptions cause the DMAC to suspend. MFC_DSISR[S] is also set to ‘1’ if 
the DMAC translation request was a put[rlfs], putll[u]c, or sdcrz operation. The SMM reports 
the DSI to the SBI to set the INT_Stat_class1[MF] bit to ‘1’. Software can read the MFC_DAR and 
MFC_DSISR registers and the SLB and TLB arrays to determine the type of DSI fault and the 
method for fixing it. After the error condition has been fixed, the INT_Stat_class1[MF] bit should 
be cleared to ‘0’, and the MFC_CNTL[R] bit should be set to ‘1’.

4.3.7.5 Parity Exceptions

Software might be able to recover from an SLB or TLB parity errors by writing over the faulty 
entry. Parity errors detected during address translation set bits in the MFC_FIR register as shown 
in Table 4-15 on page 118. Only parity errors detected on an address translation cause the 
MFC_DAR to be locked with the EA value captured in it. After the error has been fixed, the MFC_FIR 
bits should be cleared and the MFC_DSIPR register written to restart the SMM and unsuspend the 
DMAC. Parity errors detected during MMIO reads on the SLB or TLB cause the DERR bit to be 
set on the EIB when the MMIO data is returned to the requester. The SMM can support an unlim-
ited number of MMIO-read parity errors because they do not lock the SMM or DMAC interrupt 
registers or affect address translation.
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5. Memory Map

Section 4 Virtual Storage Environment on page 79 describes how memory addresses are trans-
lated (mapped) between virtual-address, effective-address, and real-address forms. This section 
describes how real addresses are mapped to the real-address space, which includes physical 
memory, memory-mapped registers, and the Synergistic Processor Element (SPE) local storage 
(LS) areas. 

5.1 Introduction

Figure 5-1 on page 122 shows the real-address space memory map of the Cell Broadband 
Engine Architecture (CBEA) processors1. The locations in the map are indicated by the sum of 
two values—an explicit offset added to a base real address. For example, “x‘1E 0000’ + SPE3 
BE_MMIO_Base” means that the offset x‘1E 0000’ is added to the real address contained in the 
SPE3 BE_MMIO_Base base-address register. The region marked “Available to Software” can be 
used by software for any purpose if it is known to be populated with memory chips or external 
memory-mapped I/O (MMIO) registers. 

Although the Cell Broadband Engine Architecture (CBEA) defines only one base register 
(BP_Base) for relocating all of this address space, the CBEA processors implement multiple base 
registers for this relocation, each associated with one of the main logic groups—PowerPC 
Processor Element (PPE), Synergistic Processor Elements (SPEs), Cell Broadband Engine 
interface (BEI) unit, memory interface controller (MIC), and pervasive logic (PRV). The base-
register values are initialized from the configuration ring during power-on reset (POR), as 
described in the Cell Broadband Engine CMOS SOI 65 nm Hardware Initialization Guide. System 
developers should use the same address for all eight SPE base addresses. Table 5-2 on 
page 124 provides details about the allocated regions of memory. 

Areas of memory that are marked as reserved in Figure 5-1 on page 122 are not assigned to any 
functional unit and should not be read from or written to: doing so will cause serious errors in soft-
ware.2 Areas of memory that are not identified as allocated in Figure 5-1, and that are known to 
be populated with memory devices, are available to software for any purpose. 

When accessing memory that is shared by the PPE, SPEs, or I/O devices, it might be necessary 
to synchronize storage accesses. The facilities for doing so are described in Section 20 Shared-
Storage Synchronization on page 561. Loading cooperative PPE and SPE programs into 
memory requires loading the PPE and SPE programs into distinct memory spaces. The proce-
dures for doing so are described in Section 14 Objects, Executables, and SPE Loading on 
page 397. Additional information regarding stack frames and other software conventions for the 
use of memory are given in the SPU Application Binary Interface Specification. 

The documentation for the CBEA processors defines an MMIO register as any internal or 
external register that is accessed through the main-storage space with load and store instruc-
tions, whether or not the register is associated with an I/O device. 

1. The Cell Broadband Engine (Cell/B.E.) and PowerXCell 8i processors are collectively called CBEA processors.
2. See Reserved Regions of Memory and Registers on page 32 for further details.
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Figure 5-1. CBEA Processor Memory Map 
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Local Storage (LS)
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SPE2
Problem State (PS)

Local Storage (LS)

Privilege State 2 (P2)

SPE3
Problem State (PS)

Local Storage (LS)

Privilege State 2 (P2)

SPE4
Problem State (PS)

Local Storage (LS)

Privilege State 2 (P2)

SPE5
Problem State (PS)

Local Storage (LS)

Privilege State 2 (P2)

SPE6
Problem State (PS)

Local Storage (LS)

Privilege State 2 (P2)

Privilege State 1 (P1)SPE0:7

BClk BIC Clock
BIC Bus Interface Controller
EIB Element Interconnect Bus
IIC Internal Interrupt Controller
IOC I/O Interface Controller
MIC Memory Interface Controller
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Addresses shown here are
real addresses. 

The CBEA "BP_Base" register is
implemented in the CBEA processor 
as several "xxx BE_MMIO_Base"
registers, shown here. System
developers should use the same
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5.1.1 Configuration-Ring Initialization

Table 5-1 shows the memory-base registers for each of the main logic groups. These base regis-
ters are initialized from the configuration ring during power-on reset (POR), as described in the 
Cell Broadband Engine CMOS SOI 65 nm Hardware Initialization Guide. 

The bit-fields for the base registers in the configuration ring correspond to the most-significant 
bits of the 42-bit real address implemented in the CBEA processors. The most-significant 19 bits 
of all these configuration-ring fields should be set to the same value. If a configuration-ring field 
has more than 19 bits, the additional bits should be set to a value consistent with the settings in 
Table 5-2 on page 124 for the starting address of that area of memory. Although each SPE has 
its own BE_MMIO_Base register field in the configuration ring, all such fields should be initialized 
with the same value. 

5.1.2 Allocated Regions of Memory

Table 5-2 on page 124 provides details about the allocated regions of memory. 

Table 5-1. Memory-Base Registers Loaded by Configuration Ring  

Memory-Base Register Logic Group
Number of Bits in 

Configuration-
Ring Field

Section of 
Configuration 

Ring

SPE0 BE_MMIO_BASE
SPE1 BE_MMIO_BASE
SPE2 BE_MMIO_BASE
SPE3 BE_MMIO_BASE
SPE4 BE_MMIO_BASE
SPE5 BE_MMIO_BASE
SPE6 BE_MMIO_BASE
SPE7 BE_MMIO_BASE

• SPE0:7
– Local Storage (LS)
– Problem State (PS)
– Privilege State 2 (P2)
– Privilege State 1 (P1)

19
for each SPE

MFC

PPE BE_MMIO_BASE

• PPE

30

PowerPC 
Processor 
Storage 

Subsystem 
(PPSS)

BEI BE_MMIO_BASE

• Cell Broadband Engine Interface (BEI) Unit:
– Element Interconnect Bus (EIB)
– Internal Interrupt Controller (IIC)
– I/O Controller (IOC) I/O-Address 

Translation
– I/O Controller (IOC) I/O Commands
– Bus Interface Controller (BIC)

22 IOC

MIC BE_MMIO_BASE • Memory Interface Controller (MIC) 30 MIC

PRV BE_MMIO_BASE • Pervasive Logic (PRV)1 30 MIC

1. Pervasive logic includes power management, thermal management, clock control, software-performance monitor-
ing, trace analysis, and so forth. 
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Table 5-2. CBEA Processor Memory Map (Sheet 1 of 2) 

Base Register from 
Configuration Ring

Offset From Base Register
Area1 Size in 

HexadecimalStart End

SPE0 BE_MMIO_Base

x‘00 0000’ x‘03 FFFF’

SPE0

Local Storage x‘4 0000’

x‘04 0000’ x‘05 FFFF’ Problem State x‘2 0000’

x‘06 0000’ x‘07 FFFF’ Privilege 2 Area x‘2 0000’

SPE1 BE_MMIO_Base

x‘08 0000’ x‘0B FFFF’

SPE1

Local Storage x‘4 0000’

x‘0C 0000’ x‘0D FFFF’ Problem State x‘2 0000’

x‘0E 0000’ x‘0F FFFF’ Privilege 2 Area x‘2 0000’

SPE2 BE_MMIO_Base

x‘10 0000’ x‘13 FFFF’

SPE2

Local Storage x‘4 0000’

x‘14 0000’ x‘15 FFFF’ Problem State x‘2 0000’

x‘16 0000’ x‘17 FFFF’ Privilege 2 Area x‘2 0000’

SPE3 BE_MMIO_Base

x‘18 0000’ x‘1B FFFF’

SPE3

Local Storage x‘4 0000’

x‘1C 0000’ x‘1D FFFF’ Problem State x‘2 0000’

x‘1E 0000’ x‘1F FFFF’ Privilege 2 Area x‘2 0000’

SPE4 BE_MMIO_Base

x‘20 0000’ x‘23 FFFF’

SPE4

Local Storage x‘4 0000’

x‘24 0000’ x‘25 FFFF’ Problem State x‘2 0000’

x‘26 0000’ x‘27 FFFF’ Privilege 2 Area x‘2 0000’

SPE5 BE_MMIO_Base

x‘28 0000’ x‘2B FFFF’

SPE5

Local Storage x‘4 0000’

x‘2C 0000’ x‘2D FFFF’ Problem State x‘2 0000’

x‘2E 0000’ x‘2F FFFF’ Privilege 2 Area x‘2 0000’

SPE6 BE_MMIO_Base

x‘30 0000’ x‘33FFFF’

SPE6

Local Storage x‘4 0000’

x‘34 0000’ x‘35 FFFF’ Problem State x‘2 0000’

x‘36 0000’ x‘37 FFFF’ Privilege 2 Area x‘2 0000’

SPE7 BE_MMIO_Base

x‘38 0000’ x‘3B FFFF’

SPE7

Local Storage x‘4 0000’

x‘3C 0000’ x‘3D FFFF’ Problem State x‘2 0000’

x‘3E 0000’ x‘3F FFFF’ Privilege 2 Area x‘2 0000’

BClk: BIC Clock 
BIC: Bus Interface Controller
EIB: Element Interconnect Bus

IIC: Internal Interrupt Controller
IOC: I/O Interface Controller
NClk: Core Clock
PRV: Pervasive Logic

1. See Section 11.3.1 Access Privilege on page 346 for definitions of SPE privilege 1 and privilege 2. 
2. Areas of memory that are marked as reserved are not assigned to any functional unit and should not be read from 

or written to: doing so will cause serious errors in software.
3. Areas of memory that are not identified as allocated in Figure 5-1 on page 122, and that are known to be populated 

with memory chips or external MMIO registers, are available to software for any purpose. 
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SPE0 BE_MMIO_Base x‘40 0000’ x‘40 1FFF’ SPE0

Privilege 1 Area

x‘2000’

SPE1 BE_MMIO_Base x‘40 2000’ x‘40 3FFF’ SPE1 x‘2000’

SPE2 BE_MMIO_Base x‘40 4000’ x‘40 5FFF’ SPE2 x‘2000’

SPE3 BE_MMIO_Base x‘40 6000’ x‘40 7FFF’ SPE3 x‘2000’

SPE4 BE_MMIO_Base x‘40 8000’ x‘40 9FFF’ SPE4 x‘2000’

SPE5 BE_MMIO_Base x‘40 A000’ x‘40 BFFF’ SPE5 x‘2000’

SPE6 BE_MMIO_Base x‘40 C000’ x‘40 DFFF’ SPE6 x‘2000’

SPE7 BE_MMIO_Base x‘40 E000’ x‘40 FFFF’ SPE7 x‘2000’

x‘41 1000’ x‘4F FFFF’ Reserved2

PPE BE_MMIO_Base x‘50 0000’ x‘50 0FFF’ PPE Privilege Area x‘1000’

x‘50 1000’ x‘50 7FFF’ Reserved2

BEI BE_MMIO_Base x‘50 8000’ x‘50 8FFF’ IIC x‘1000’

x‘50 9000’ x‘50 93FF’ Reserved2

PRV BE_MMIO_Base

x‘50 9400’ x‘50 97FF’

PRV

Performance Monitor x‘0400’

x‘50 9800’ x‘50 9BFF’ Thermal
and Power Management x‘0400’

x‘50 9C00’ x‘50 9FFF’ Reliability, Availability, 
Serviceability (RAS) x‘0400’

MIC BE_MMIO_Base x‘50 A000’ x‘50 AFFF’ MIC and TKM x‘1000’

x‘50 B000’ x‘50 FFFF’ Reserved2

BEI BE_MMIO_Base

x‘51 0000’ x‘51 0FFF’ IOC I/O Address Translation x‘1000’

x‘51 1000’ x‘51 13FF’
BIC

BIC0 NClk x‘0400’

x‘51 1400’ x‘51 17FF’ BIC1 NClk x‘0400’

x‘51 1800’ x‘51 1BFF’ EIB x‘0400’

x‘51 1C00’ x‘51 1FFF’ IOC I/O Commands x‘0400’

x‘51 2000’ x‘51 2FFF’
BIC

BIC0 BClk x‘1000’

x‘51 3000’ x‘51 3FFF’ BIC1 BClk x‘1000’

x‘51 4000’ x‘7F FFFF Reserved2

x‘80 0000’ System 
Maximum Available to Software3

Table 5-2. CBEA Processor Memory Map (Sheet 2 of 2) 

Base Register from 
Configuration Ring

Offset From Base Register
Area1 Size in 

HexadecimalStart End

BClk: BIC Clock 
BIC: Bus Interface Controller
EIB: Element Interconnect Bus

IIC: Internal Interrupt Controller
IOC: I/O Interface Controller
NClk: Core Clock
PRV: Pervasive Logic

1. See Section 11.3.1 Access Privilege on page 346 for definitions of SPE privilege 1 and privilege 2. 
2. Areas of memory that are marked as reserved are not assigned to any functional unit and should not be read from 

or written to: doing so will cause serious errors in software.
3. Areas of memory that are not identified as allocated in Figure 5-1 on page 122, and that are known to be populated 

with memory chips or external MMIO registers, are available to software for any purpose. 
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5.1.3 Reserved Regions of Memory

Reserved areas are not assigned to any unit and should not be read from or written to; doing so 
will cause serious errors in software as follows. For reads or writes generated from the SPE to 
unassigned reserved spaces, at least one of the following MFC_FIR[46,53,56,58,61] bits will be 
set and in most cases will cause a checkstop. For reads or writes generated from the PPE to 
unassigned reserved spaces, at least one of the CIU_FIR[7,8] will be set and a checkstop will 
occur. For reads or writes generated from the IOC to unassigned reserved spaces, the IOC will 
respond back to the I/O interface (IOIF) device that sourced the address request with an error 
(ERR) response. No IOC Fault Isolation Register (FIR) bits are set.

5.1.4 The Guarded Attribute

If some areas of real memory are not fully populated with memory devices, privileged software 
might want to give the pages that map these areas the guarded attribute, as described in 
Section 4 Virtual Storage Environment on page 79. The guarded attribute can protect the system 
from undesired accesses caused by out-of-order load operations or instruction prefetches that 
might lead to the generation of a machine check exception. Also, the guarded attribute can be 
used to prevent out-of-order (speculative) load operations or prefetches from occurring to I/O 
devices that produce undesired results when accessed in this way. However, the guarded 
attribute can result in lower performance than is the case with unguarded storage. 

5.2 PPE Memory Map

5.2.1 PPE Memory-Mapped Registers

Figure 5-1 on page 122 and Table 5-1 on page 123 show the PPE memory area and its offset 
from the value in the PPE BE_MMIO_Base register that is filled by the configuration ring at POR. All 
locations within this area that are not populated as described in this section are reserved. 

Table 5-3 lists the groups of PPE MMIO registers in this memory area. All registers in this area 
can only be accessed by privileged software. For details about the registers in these groups, see 
the Cell Broadband Engine Registers document and the PowerPC Operating Environment Archi-
tecture, Book III. 

Table 5-3. PPE Privileged Memory-Mapped Register Groups  

x‘50 0000’ + Offset From Base Register
Register Group

Start End

x‘0310’ x‘0870’ Level 2 (L2) MMIO Registers

x‘0938’ x‘0948’ Core Interface Unit (CIU) MMIO Registers

x‘0A48’ x‘0A48’ Noncacheable Unit (NCU) MMIO Registers

x‘0B48’ x‘0B78’ Bus Interface Unit (BIU) MMIO Registers
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5.2.2 Predefined Real-Address Locations

There are four areas of the PPE real-address space3 that have predefined uses, as shown in 
Table 5-4. The first 256 bytes are reserved for operating-system use. The remainder of the 4 KB 
page beginning at address x‘0000’ is used for exception vectors. The two contiguous 4 KB pages 
beginning at real address x‘1000’ are reserved for implementation-specific purposes. A contig-
uous sequence of real pages beginning at the real address specified by Storage Description 
Register 1 (SDR1) contains the page table. See the PowerPC Operating Environment Architec-
ture, Book III for information about the SDR1 register. 

5.3 SPE Memory Map

Each SPE is allocated an area of memory for the following purposes:

• LS, if aliased to main-storage space (see Section 5.3.1 on page 128)

• Problem State MMIO Registers

• Privilege State 2 MMIO Registers

• Privilege State 1 MMIO Registers

Figure 1-2 on page 47 shows the relationship between an SPE’s LS and main storage. SPE soft-
ware accesses its LS directly, by fetching instructions and loading and storing data using an LS 
address (LSA). SPE software has no direct access to main storage; instead, it must use the 
memory flow controller (MFC) DMA facilities to move data between the LS and the effective-
address (EA) space. 

Access, by an SPE, to its channels that are associated with its MMIO registers can be done 
through the use of read channel (rdch) and write channel (wrch) instructions. See Section 17 
SPE Channel and Related MMIO Interface on page 447 and Section 19 DMA Transfers and 
Interprocessor Communication on page 513 for details. 

Access to an SPE’s MMIO registers by the PPE and other SPEs and devices that can generate 
EAs is done through the EA space. As indicated, the SPE’s MMIO registers are divided into three 
groups, based on privilege:

3. In the real addressing mode for the PPE, accesses to main storage are performed in a manner that depends on 
the contents of the MSR[HV] bit, the LPCR[LPES] field, and the HRMOR, RMLR, and RMOR registers. For 
details, see Section 4.2.8 Real Addressing Mode on page 100, Section 11 Logical Partitions and a Hypervisor on 
page 331, and PowerPC Operating Environment Architecture, Book III.

Table 5-4. Predefined Real-Address Locations  

Real Address
Predefined Use

Start End

x‘0000’ x‘00FF’ Operating system

x‘0100’  x‘0FFF’ Exception vectors1

x‘1000’ x‘2FFF’ Implementation-specific use

Software-specified in Storage Description Register 1 (SDR1) Page table

1. See Section 9 PPE Interrupts on page 239 for the assignment of the exception-vector offsets.
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• Privilege State 1 (most privileged)—Used by a hypervisor (Section 11 on page 331) to man-
age an SPE on behalf of a logical partition or, if there is no hypervisor, used by the operating 
system. 

• Privilege State 2—Used by the operating system in a logical partition to manage the SPE 
within the partition or, if there is no hypervisor, used by the operating system. 

• Problem State (Privilege 3, least privileged)—Used by Problem State (user, or application) 
software, if direct access to the SPE from user space is supported by the operating system. 

5.3.1 SPE Local-Storage Memory Map

The LS area for each SPE is 256 KB in size. If these LS areas are aliased into the EA space, 
they begin at the real address (RA) offsets shown in Table 5-2 on page 124. 

5.3.1.1 LS Aliasing to Main Storage

Privileged software on the PPE can alias an SPE’s LS address space to the main-storage EA 
space. The aliasing is done by setting the LS Real-Address Decode (D) bit of the MFC State 
Register One (MFC_SR1) to ‘1’. This aliasing allows the PPE, other SPEs, and external I/O devices 
to physically address an LS through a translation method supported by the PPE or SPE, or, for 
I/O devices, through a translation method supported by the EIB (Section 7.4 on page 176). 

When aliasing is implemented, each LS address (LSA) is assigned an RA within the effective-
address (EA) space. Privileged software can, for example, map an LSA space into the EA space 
of an application to allow DMA transfers between the LS of one synergistic processor unit (SPU) 
and the LS of another SPU. Data transfers that use the LS area aliased in main storage should 
do so as caching-inhibited storage, because these accesses are not coherent with the SPU LS 
accesses (that is, SPU load, store, instruction fetch) in its LS domain. 

Each SPE has its own MFC_SR1 register, located in the privilege 1 memory-map area (Figure 5-1 
on page 122) for that SPE. When an SPE’s MFC_SR1[D] bit is set to ‘1’, the MFC associated with 
that SPE decodes RAs into LSAs.

As an alternative to aliasing, privileged software can use the MFC_SR1[D] bit to prevent the LS 
from being addressed using RAs. This can be done to facilitate a more isolated SPU program 
environment. 

The value of the MFC_SR1[D] bit has no effect on LS access by MFC DMA commands or on SPU 
loads and stores from LS, both of which use LSAs to access the LS.

5.3.1.2 Coherence

All SPE memory areas are architecturally defined as noncoherent. Privileged software on the 
PPE should access aliased pages of LS through the main-storage domain. The pages must 
either have the caching-inhibited attribute (Section 4 Virtual Storage Environment on page 79), or 
software must explicitly manage the coherency of LS with other system caches.



Programming Handbook

 Cell Broadband Engine

Version 1.11
May 12, 2008
 

Memory Map
Page 129 of 884

5.3.1.3 Data-Transfer Performance

Because aliased LS must be treated as noncacheable, transferring a large amount of data using 
the PPE load and store instructions can result in poor performance. Data transfers between the 
LS domain and the main-storage domain should use the MFC DMA commands to avoid stalls.

5.3.1.4 LS-Access Errors

MFC commands that access an EA range that maps to its own LS can produce an error or unpre-
dictable results. If the two address ranges of a DMA transfer (translated EA and LSA) overlap 
and the source is a lower address than the destination, the DMA transfer results in the corruption 
of the source data. Address overlap is not detectable and does not generate an exception. There-
fore, it is software's responsibility to avoid an unintended overlap.

5.3.2 SPE Memory-Mapped Registers

Figure 5-1 on page 122 and Table 5-1 on page 123 show the SPE memory areas and their 
offsets from the value in the SPE BE_MMIO_Base registers that are filled by the configuration ring at 
POR. All locations within this area that are not populated as described in this section are 
reserved. 

Table 5-5 lists the groups of SPE problem-state registers, using SPE0 as an example for address 
offsets (see Table 5-2 on page 124 for details). Table 5-6 lists the groups of SPE privilege state 2 
registers, using SPE0 as an example. Table 5-6 lists the groups of SPE privilege state 1 regis-
ters, using SPE0 as an example. For details about the registers in these groups, see the Cell 
Broadband Engine Registers document. 

Table 5-5. SPE Problem-State Memory-Mapped Register Groups  

Offset From Base Register + x‘4000’
Register Group

Start End

x‘0000’ x‘2FFF’ SPE Multisource Sync Register

x‘3004’ x‘3017’ MFC Command Parameter Registers

x‘3104’1 x‘322F’ MFC Command Queue Control Registers

x‘4004’ x‘4038’ SPU Control Registers

x‘1 400C’ x‘1 FFFF’ SPU Signal Notification Registers

1. This address is shared by multiple registers. See Table 17-2 on page 450 for details. 

Table 5-6. SPE Privilege-State-2 Memory-Mapped Register Groups  (Sheet 1 of 2) 

Offset From Base Register + x‘6000’
Register Group

Start End

x‘1100’ x‘1FFF’ Segment Lookaside Buffer (SLB) Management Registers

x‘2000’ x‘2FFF’ Context Save and Restore Register

x‘3000’ x‘3FFF’ MFC Control Register
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5.4 BEI Memory-Mapped Registers

The Cell Broadband Engine interface (BEI) unit memory space contains registers for the 
following functional units:

• Element Interconnect Bus (EIB)

• Internal Interrupt Controller (IIC)

• I/O Controller (IOC) I/O-Address Translation

• I/O Controller (IOC) I/O Commands

• Bus Interface Controller (BIC)

x‘4000’ x‘4008’ Interrupt Mailbox Register

x‘4040’ x‘4FFF’ SPU Control Registers

x‘5000’ x‘1 FFFF’ Context Save and Restore Registers

Table 5-7. SPE Privilege-State-1 Memory-Mapped Register Groups  

Offset From Base Register + x‘40 0000’
Register Group

Start End

x‘0000’ x‘00FF’ MFC Registers

x‘0100’ x‘01FF’ Interrupt Registers

x‘0200’ x‘028F’ Atomic Unit Control Registers

x‘0290’ x‘03B7’ Fault Isolation Registers

x‘03B8’ x‘03C7’ Miscellaneous Registers

x‘03C8’ x‘03FF’ Reserved

x‘0400’ x‘0547’ MFC Translation Lookaside Buffer (TLB) Management 
Registers

x‘0580’ x‘0587’ Memory Management Register

x‘0600’ x‘06FF’ MFC Status and Control Registers

x‘0710’ x‘07FF’ Replacement Management Table (RMT) Registers

x‘0800’ x‘087F’ MFC Command Data-Storage Interrupt Registers

x‘0880’ x‘08FF’ DMAC Unit Performance Monitor Control Register

x‘0900’ x‘0BFF’ Real-Mode Support Registers

x‘0C00’ x‘0FFF’ MFC Command Error Register

x‘1000’ x‘101F’ SPU ECC and Error Mask Registers

x‘1028’ x‘13FF’ SPU Performance Monitor Control Registers

x‘1400’ x‘1FFF’ Performance Monitor Register

Table 5-6. SPE Privilege-State-2 Memory-Mapped Register Groups  (Sheet 2 of 2) 

Offset From Base Register + x‘6000’
Register Group

Start End



Programming Handbook

 Cell Broadband Engine

Version 1.11
May 12, 2008
 

Memory Map
Page 131 of 884

For details about these registers, see the Cell Broadband Engine Registers document. For 
details about I/O functions performed by these units, see Section 7 I/O Architecture on page 161. 

5.4.1 I/O

The IOC command (IOCmd) unit handles commands that originate from the EIB and go to IOIF0 
or IOIF1. The IOCmd unit also acts as a proxy for commands that originate from IOIF0 or IOIF1 
and go to the EIB. Commands that originate from IOIF0 or IOIF1 are sent with an I/O address. If 
I/O-address translation is enabled by setting IOC_IOCmd_Cfg[16] = ‘1’, the IOCmd unit provides 
buffering while the I/O addresses are being translated into RAs. 

The IOCmd unit accepts commands from the EIB for which the addresses match the RA ranges 
specified for each IOIF, using the following registers:

• IOC Base Address Register 0 (IOC_BaseAddr0)

• IOC Base Address Register 1 (IOC_BaseAddr1)

• IOC Base Address Mask Register 0 (IOC_BaseAddrMask0)

• IOC Base Address Mask Register 1 (IOC_BaseAddrMask1)

These IOC base-address registers are filled, in part, by configuration ring fields at POR. Specifi-
cally, hardware copies the following Configuration-Ring fields into the IOC base-address regis-
ters:

• Configuration-Ring IOIF0 Base Address and Replacement field is copied to 
IOC_BaseAddr0[22:32,53:63]. 

• Configuration-Ring IOIF1 Base Address and Replacement field is copied to 
IOC_BaseAddr1[22:32,53:63]. 

• Configuration-Ring IOIF0 Base Address Mask field is copied to 
IOC_BaseAddrMask0[0,22:32]. 

• Configuration-Ring IOIF1 Base Address Mask field is copied to 
IOC_BaseAddrMask1[0,22:32]. 

The IOC base-address registers are writable by privileged software, so that the I/O portion of the 
memory map can be relocated after POR. 
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6. Cache Management

The Cell Broadband Engine Architecture (CBEA) processors1 have several types of caches. 
Primary among them are the PowerPC Processor Element (PPE) level-1 (L1) instruction and 
data caches, and its unified level-2 (L2) cache. The contents of these caches are maintained 
coherently with the contents of main storage on a 128-byte cache-line basis, and the PowerPC 
Architecture cache-control instructions support user-level operations on cache lines. In addition 
to the L1 and L2 caches, the PPE and the SPEs have other caches, queues, and arrays that 
enhance performance and can be controlled by software. 

The basic PPE cache architecture is described in the PowerPC Virtual Environment Architecture, 
Book II, PowerPC Operating Environment Architecture, Book III, and PowerPC Microprocessor 
Family: The Programming Environments for 64-Bit Microprocessors. Features of the Synergistic 
Processor Element (SPE) caches are described later in this section. For detailed descriptions of 
the caches used in memory management, see Section 4 Virtual Storage Environment on 
page 79.

6.1 PPE Caches

In addition to the L1 and L2 caches, the PPE also has other caches, queues, and arrays that 
support memory management and act as predecessors and extensions to the L1 and L2 caches. 
For example, the PPE contains store queues for holding data that is in flight between the load 
and store units and the L2 cache, and castout queues for holding modified data that has been 
pushed out of the L2 cache. All of the L1 and L2 caches and some of the other storage structures 
are shared between PPE threads, but some storage structures are duplicated for each thread. 

Both PPE threads share the execution units, microcode engine, instruction-fetch control, 
PowerPC processor storage subsystem (PPSS), plus the following caches, arrays, queues, and 
other storage structures:

• Effective-address-to-real-address translation arrays (ERATs)—I-ERAT (instructions) and D-
ERAT (data) and their associated ERAT miss queues

• Translation lookaside buffer (TLB)

• L1 caches (ICache and DCache)

• L2 cache

• Instruction prefetch request queue (IPFQ)

• Load-miss queue (LMQ)

• Core interface unit (CIU) store queue 

• Noncacheable unit (NCU) store queue

• L2 store queue

Each PPE thread has its own copy of the following arrays and queues, so that each thread can 
use that resource independently from the other thread:

• Segment lookaside buffer (SLB)
• Branch history table (BHT), with global branch history

1. The Cell Broadband Engine (Cell/B.E.) and PowerXCell 8i processors are collectively called CBEA processors.
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• Instruction buffer (IBuf)
• Link stack

6.1.1 Configuration

Of the PPE’s storage structures, most can be configured by software to some extent using the 
following registers:

• Hardware Implementation Registers 1 and 4 (HID1, HID4)

• CIU Mode Setup Register (CIU_ModeSetup)

• NCU Mode Setup Register (NCU_ModeSetup)

However, software management of the following structures can be more extensive, as described 
later in this section:

• L1 caches

• L2 cache, and its read-and-claim (RC) queues and replacement management table (RMT) 

• ERATs

• TLB and its RMT

• Instruction prefetch queue

• Load-miss queue 

All of the instructions for managing the L1 and L2 caches are accessible by problem-state (user) 
software, but RMTs (Section 6.3 on page 154) are only accessible by privilege-2-state (super-
visor) software, and ERATs (Section 6.1.7 on page 150) are only accessible by privilege-1-state 
(hypervisor) software. 

6.1.2 Overview of PPE Cache

The PPE’s several storage structures are distributed throughout its PowerPC processor unit 
(PPU) and its PowerPC processor storage subsystem (PPSS), as shown in Figure 6-1 on 
page 135. This figure differentiates the structures according to their speed with respect to the full 
core clock speed. 

6.1.2.1 PowerPC Processor Unit

The major blocks of the PPU that support caches, arrays, queues, and other storage structures 
are the instruction unit (IU), load and store unit (LSU), and memory management unit (MMU): 

• The IU contains the L1 ICache (32 KB), I-ERAT (64 entries), two BHTs (4096 × 2-bit entries 
and 6 bits of global branch history, per thread), two link stacks (4 entries, per thread), and 
two instruction buffers (IBufs, 4 instructions × 5 entries, per thread). 

• The LSU contains the L1 DCache (32 KB), D-ERAT (64 entries), and load-miss queue (LMQ, 
8 entries). 

• The MMU contains two SLBs (64 entries, per thread), and the TLB (1024 entries). 

Section 4 Virtual Storage Environment on page 79 describes the workings of MMU caches. The 
PPU and all its subunits operate at the full frequency of the core clock. 
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Figure 6-1. PPE Cache 
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6.1.2.2 PowerPC Processor Storage Subsystem

The major blocks of the PPSS, shown in Figure 6-1 on page 135, are the core interface unit 
(CIU), the noncacheable unit (NCU), and L2 cache. 

The CIU contains load, store, and reload subunits, which—with the exception of a load-hit-store 
comparison—work independently of the each other. In the CIU:

• The load subunit contains the instruction prefetch request queue (IPFQ, 2 entries), demand 
instruction request queue (DFQ, 2 entries), data prefetch engine (DPFE, 8 dcbt instructions), 
demand data load request queue (DLQ, 8 entries), and MMU translate request queue (XLAT, 
1 entry). 

• The store subunit contains a store queue (STQ, 8 × 16-byte entries). 

• The reload/snoop subunit contains a reload/snoop block (RLD/SNP) that performs 2:1 clock-
frequency conversion and multiplexing of data from the L2 to the 32-byte reload bus that is 
shared by the LSU, IU, and MMU. A cache line is sent over four subsequent full-speed cycles 
totaling 128 bytes. Noncacheable data is sent in one cycle totaling 32 bytes. The 
reload/snoop subunit also performs 2:1 frequency conversion for the snoop bus.

The NCU has a store queue (STQ, 4 × 64-byte entries), and the L2 has a store queue (STQ, 8 × 
64-byte entries). The L2 also has a reload miss queue (RMQ, 6 × 128-byte cache-line entries). 
The CIU accesses the NCU or L2 based on the Caching-Inhibited (I) storage-attribute bit in the 
page table entry (PTE). 

6.1.3 L1 Caches

The PPE has level-1 (L1) instruction and data caches that support the PowerPC Architecture 
cache-control instructions. Cacheability of main-storage accesses (loads, stores, and instruction 
fetches) can be controlled by the caching-inhibited (I) bit in the page-table entry (PTE) for the 
accessed page. To be cacheable, the I bit must be cleared to ‘0’. 

6.1.3.1 Features

• L1 Instruction Cache (ICache): 

– 32 KB, 2-way set-associative

– Read-only 

– 128-byte cache-line size

– 5-entry, 4-instruction-wide instruction buffer, duplicated for each thread

– Out-of-order completion of cache-miss load instructions (otherwise in-order execution)

– Effective-addressed index, real-addressed tags

– One read port, one write port (one read or write per cycle)

– Does not support snoop operations 

– Contents not guaranteed to be included in the L2 cache 

– Cache bypass (inhibit) configuration options 



Programming Handbook

 Cell Broadband Engine

Version 1.11
May 12, 2008
 

Cache Management
Page 137 of 884

• L1 Data (DCache): 

– 32 KB, 4-way set-associative

– Write-through

– Not write-allocate 

– 128-byte cache-line size

– 8-entry load-miss queue, shared between threads

– 16-entry store queue, shared between threads

– Nonblocking (hit under miss)

– Supports back-invalidation for snooping

– Effective-addressed index, real-addressed tags

– One read port, one write port (one read or write per cycle)

– Contents fully included in the L2 cache 

– Cache bypass (inhibit) configuration options 

Both L1 caches are dynamically shared by the two PPE threads; a cache block can be loaded by 
one thread and used by the other thread. The coherence block, like the cache-line size, is 128 
bytes for all caches. The L1 ICache is an integral part of the PPE’s instruction unit (IU), and the 
L1 DCache is an integral part of the PPE’s load/store unit (LSU), as shown in Figure 2-2 PPE 
Functional Units on page 52. Accesses by the processing units to the L1 caches occur at the full 
frequency of the core clock. 

The L1 caches support the PowerPC Architecture cache-management instructions. These 
perform operations such as write-back, invalidate, flush (write-back and invalidate), clear the 
contents to zeros, touch (which can be used by the compiler to speculatively load the cache line), 
and hint (that the cache line will probably be accessed soon). See Section 6.1.6 Instructions for 
Managing the L1 and L2 Caches on page 146 for a description. All are problem-state (user) 
instructions. 

6.1.3.2 ICache Instruction Prefetch

The PPE uses speculative instruction prefetching (including branch targets) for the L1 ICache 
and instruction prefetching for the L2 cache. Because the PPE can fetch up to four instructions 
per cycle and can execute up to two instructions per cycle, the IU will often have several instruc-
tions queued in the instruction buffers. Letting the IU speculatively fetch ahead of execution 
means that L1 ICache misses can be detected early and fetched while the processor remains 
busy with instructions in the instruction buffers.

In the event of an L1 ICache miss, a request for the required line is sent to the L2. In addition, the 
L1 ICache is also checked to see if it contains the next sequential cache line. If it does not, a 
prefetch request is made to the L2 to bring this next line into the L2 (but not into the L1, to avoid 
L1 ICache pollution). This prefetch occurs only if the original cache miss is committed (that is, all 
older instructions must have passed the execution-pipeline point—called the flush point—at 
which point their results can be written back to architectural registers). This is especially benefi-
cial when a program jumps to a new or infrequently used section of code, or following a task 
switch, because prefetching the next sequential line into the L2 hides a portion of the main-
storage access latency. 
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Prefetch requests are not made when a page boundary may potentially be crossed, meaning that 
the next sequential cache line is on a different aligned 4 KB boundary. Prefetching is also not 
performed on caching-inhibited instructions (I = ‘1’ in the PTE).

6.1.3.3 ICache Fetch Misses

When an L1 ICache miss occurs, a request is made to the L2 for the cache line. This is called a 
demand fetch. To improve performance, the first beat2 of data returned by the L2 contains the 
fetch group with the address that was requested, and so returns the data critical-sector first. To 
reduce the latency of an L1 miss, this critical sector of the cache line is sent directly to the instruc-
tion pipeline, instead of first writing it into the L1 cache and then rereading it (this is termed 
bypassing the cache).

Each PPE thread can have up to one instruction demand-fetch and one instruction prefetch 
outstanding to the L2 at a time. This means that in multithread mode, up to four total instruction 
requests can be pending simultaneously. In multithreading mode, an L1 ICache miss for one 
thread does not disturb the other thread.

6.1.3.4 ICache Replacement Algorithm

The L1 ICache uses a true binary least recently used (LRU) replacement policy, without replace-
ment management table (Section 6.3 on page 154) locking. 

6.1.3.5 ICache Aliasing

The ICache is 2-way set associative, so a line that is loaded can be put into one of two ways of a 
congruence class (set). The smallest page size for the 32 KB L1 ICache is 4 KB, so the same 
real address can map up to four different locations in the L1 ICache (four congruence classes). 
This condition is referred to as aliasing. Because the ICache is read-only, no particular hazards 
exist as a result of this. However, the effectiveness of the L1 ICache might be lessened if a great 
deal of localized aliasing occurs, which is not common in most cases. 

Aliasing in the L1 DCache is treated differently, as described in Section 6.1.3.9 on page 139. 

6.1.3.6 ICache Invalidation

To help invalidate the contents of the ICache efficiently, the PPE implements a special mode of 
operation for the icbi instruction. This mode can be selected with the Enable Forced icbi Match 
(en_icbi) bit in the Hardware Implementation Register 1 (HID1). In this mode, all directory 
lookups on behalf of an icbi act as though there were a real-address match, so that all cache 
lines looked at by the icbi are invalidated. As a result, the entire L1 ICache can be invalidated by 
issuing a series of icbi instructions that step through each congruence class of the ICache.

Another way to clear the ICache is to fill it with a set of known values by executing code that 
touches each cache line. One way to write this code is to have a series of 256 branches to 
branches whose EAs are sequentially separated by 128 bytes (the line size of the ICache). 

The entire ICache can also be invalidated by first clearing the HID1[flush_ic] bit to ‘0’ and then 
setting the same bit to ‘1’. 

2. A data beat is the data sent in one L2 clock cycle, which is two core-clock cycles. 
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6.1.3.7 DCache Load Misses

Loads that miss the L1 DCache enter a load-miss queue for processing by the L2 cache and 
main storage. Data is returned from the L2 in 32-byte beats on four consecutive cycles. The first 
cycle contains the critical section of data, which is sent directly to the register file. The DCache is 
occupied for two consecutive cycles while the reload is written to the DCache, half a line at a 
time. The DCache tag array is then updated on the next cycle, and all instruction issue is stalled 
for these three cycles. In addition, no instructions can be recycled during this time. The load-miss 
queue entry can then be used seven cycles after the last beat of data returns from the L2 to 
handle another request.

Instructions that are dependent on a load are issued speculatively, assuming a load hit. If it is 
later determined that the load missed the L1 DCache, any instructions that are dependent on the 
load are flushed, refetched, and held at dispatch until the load data has been returned. This 
behavior allows the PPE to send multiple overlapping loads to the L2 without stalling if they are 
independent. In multithreading mode, this behavior allows load misses from one thread to occur 
without stalling the other thread.

In general, write-after-write (WAW) hazards do not cause penalties in the PPE. However, if the 
target register for an instruction is the same as the target register for an outstanding load miss, 
the new instruction will be flushed, refetched, and held at dispatch until the older load writes its 
result to the register file, to avoid having stale values written back to the register file. 

Some old software performs prefetching by executing load instructions to bring cache lines into 
the DCache, and the results of the loads are discarded into a “garbage” general purpose register 
(GPR). This is not effective on the PPE, because this WAW condition effectively serializes the 
prefetch. This serialization is not a problem if dcbt instructions are used instead.

6.1.3.8 DCache Replacement Algorithm

The L1 DCache uses a pseudo least recently used (p-LRU) replacement policy. It is a 4-way 
policy, comparable to the L2 pseudo-LRU 8-way policy described in Section 6.1.5.3 on page 143, 
but without replacement management table (Section 6.3 on page 154) locking. The policy is 
updated whenever a line is read in the cache. The L1 DCache never needs to cast out data 
because it uses a write-through scheme (stores are sent to the L2 as well as the L1 DCache).

6.1.3.9 DCache Indexing

The DCache is indexed with effective addresses. The data array and cache directory both have a 
single read and write port (one read or write per cycle). The data and tag arrays operate indepen-
dently, giving the cache some of the features of having dual ports. Specifically, the cache allows 
a store to check the directory tags while a previous store writes into the data array. 

The DCache tags and the D-ERAT are checked in parallel, similar to the way the ICache is 
accessed. 

6.1.3.10 DCache Aliasing

DCache aliasing occurs when separate translation entries have the same real address (RA) 
mapped from different effective addresses (EAs). Data can be in any of four ways at each of two 
congruence classes. If the data is not at the congruence class determined by EA[51], but there is 
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a hit in the cache, the data is found at the other congruence class, addressed by the NOT EA[51]. 
That line is invalidated and the data is brought in from the L2 and placed at the congruence class 
determined by EA[51]. 

If shared memory is used for communication between simultaneously running threads or two 
processes on the same PPE thread, mapping the shared memory area to the same effective 
address (EA) in both threads will prevent unnecessary cache invalidations.

6.1.3.11 DCache Write-Back and Invalidation

The L1 DCache is a write-through design, so that it never holds data in a modified state. As a 
result, to perform a write-back of the L1 DCache, the only instruction required is a sync, which 
will force any pending stores in the store queue above the L1 cache to become globally coherent 
before the sync is allowed to complete.

A sticky mode bit is provided in the Hardware Implementation Register 4 (HID4) to invalidate the 
entire contents of the L1 DCache. To invalidate the cache, software must clear the 
HID4[l1dc_flsh] bit to ‘0’, then set the same bit to ‘1’, then execute a sync instruction.

6.1.3.12 DCache Boundary-Crossing

The L1 DCache is physically implemented with 32-byte sectors. Thus, conditionally microcoded 
load or store instructions (Table A-1 PowerPC Instructions by Execution Unit on page 723) that 
attempt to perform a L1 DCache access that crosses a 32-byte boundary must be split into 
several instructions. When one of these misaligned loads or stores first attempts to access the L1 
DCache, the misalignment is detected and the pipeline is flushed. The flushed load or store is 
then refetched, converted to microcode at the decode stage, and split into the appropriate loads 
or stores, as well as any instructions needed to merge the values together into a single register. 

Doubleword integer loads that cross a 32-byte alignment boundary are first attempted as two 
word-sized loads or stores. If these still cross the 32-byte boundary, they are flushed and 
attempted again at byte granularity. The word and halfword integer loads behave similarly.

Doubleword floating-point loads and stores that are aligned to a word boundary, but not to a 
doubleword boundary, are handled in microcode. If these loads or stores are not word aligned, or 
if they cross a virtual page boundary, an alignment interrupt is taken.

Integer loads and stores that are misaligned but do not cross a 32-byte boundary are not 
converted into microcode and have the same performance characteristics as aligned loads and 
stores.

The load string instruction first attempts to use load word instructions to move the data. If the 
access would cross a 32-byte boundary when it accesses the L1 DCache, the load is flushed and 
refetched, and it proceeds byte-by-byte. The store string instruction behaves similarly. 

6.1.3.13 L1 Bypass (Inhibit) Configuration

To bypass the L1 and L2 data caches (that is, to inhibit their use for load/store instructions), set 
the HID4[enb_force_ci] bit to ‘1’ and the HID4[dis_force_ci] bit to ‘0’. 
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6.1.4 Branch History Table and Link Stack

The PPE’s instruction unit (IU) is shown in Figure 6-1 on page 135. For each thread, the IU has a 
branch history table (BHT) with 4096 × 2-bit entries and 6 bits of global branch history, and a 4-
entry link stack. The link stack is used to predict the target address of branch-to-link instructions. 
The following mode bits enable these functions:

• Branch History Table: Hardware Implementation Register 1, HID1[bht_pm] bit 

• Global Branch History: Hardware Implementation Register 1, HID1[dis_gshare] bit 

• Link Stack: Hardware Implementation Register 1, HID1[en_ls] bit 

Static branch prediction can reduce pollution in the BHT, improving accuracy on branches else-
where in the code. The BHT is accessed in parallel with the L1 ICache. The global branch history 
is constantly updated with the latest speculatively-predicted history value. In the event of a pipe-
line flush including branch misprediction, the correct history state is restored. Using two bits for 
each BHT entry allows the processor to store weakly and strongly taken or not taken states. 

Only instructions that relied on the BHT to predict their direction will ever cause an update to the 
BHT, meaning that unconditional branches (including conditional branches with BO = 1z1zz), 
and statically predicted conditional branches do not update the BHT. 

Some conditional branches are known ahead of time to be almost always unidirectional. Soft-
ware can communicate this to the processor by setting the “a” bit in the BO field of the branch 
instruction. If the “a” bit is ‘0’, then the branch is predicted dynamically, using the BHT as 
described in the preceding paragraphs. If the “a” bit is ‘1’ in the branch, the BHT is not used, and 
the BHT will not be updated if this branch is mispredicted. The direction of the static prediction is 
in the “t” bit of the BO field, which is set to ‘1’ for taken and ‘0’ for not-taken. Software is expected 
to use this feature for conditional branches for which it believes that the static prediction will be at 
least as good as the hardware branch prediction. See PowerPC User Instruction Set Architec-
ture, Book I for additional details. 

6.1.5 L2 Cache

The PPE contains a 512 KB unified level-2 (L2) cache. The L2 supports the PowerPC Architec-
ture cache-control instructions and it controls cacheability with the caching-inhibited (I) bit in 
PTEs. 

6.1.5.1 Features

• 512 KB, 8-way set-associative or direct-mapped3

• Unified instruction and data caching 

• Inclusive of L1 DCache. Not inclusive of L1 ICache

• Write-back (copy-back)

• 128-byte cache-line size

• 128-byte coherence granularity

• Allocation on store miss

3. See Section 6.1.5.2 on page 142 for configuring the L2 cache to operate in direct-mapped mode. 
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• Choice of replacement algorithms: True binary LRU, pseudo-LRU with replacement manage-
ment table (RMT) locking4, or direct-mapped 

• Hardware coherency (modified, exclusive, recent, shared, invalid [MERSI] plus unsolicited 
modified [Mu] and tagged [T]), with separate directory for snoops

• Critical quadword-forwarding on data loads and instruction fetches

• 6-entry, 128-byte reload/store-miss queue (read-and-claim queues)

• 6-entry, 128-byte castout queue 

• 8-entry, 64-byte fully associative store queue

• 4-entry, 128-byte snoop intervention/push queue

• Store-gathering

• Nonblocking L1 DCache invalidations 

• Real-address index and tags

• One read port, one write port (one read or write per cycle) 

• Separate snoop directory for all system bus snoops

• Bypass (inhibit) configuration option 

• Error correction code (ECC) on data 

• Parity on directory tags (recoverable using redundant directories)

• Global and dynamic power management

The L2 maintains full cache-line coherency within the system and can supply data to other 
processor elements. Logically, the L2 is an inline cache. It is a write-back cache that includes all 
of the L1 DCache contents but is not guaranteed to include the L1 ICache contents. The L2 is 
dynamically shared by the two PPE execution threads; a cache block can be loaded by one 
thread and used by the other thread. 

The L2 cache handles all cacheable loads and stores (including lwarx, ldarx, stwcx., and stdcx. 
instructions), data prefetches, instruction fetches, instruction prefetches, cache operations, and 
barrier operations. The L2 cache supports the same cache-management instructions as are 
supported by the L1 caches, as described in Section 6.1.6 Instructions for Managing the L1 and 
L2 Caches on page 146.

6.1.5.2 Cache Configuration

The basic L2 cache operation can be configured in the following registers:

• As an alternative to the 8-way set-associative configuration, the L2 cache can be configured 
to operate in direct-mapped mode by setting the L2_ModeSetup1[RMT_Mode] register field to 
‘11’. 

• L2 cache replacement algorithm can be configured in the L2_ModeSetup1[RMT_Mode] register 
field. See Section 6.1.5.3 Replacement Algorithm on page 143. 

4. See Section 6.3.2 on page 157 for a description of RMT.



Programming Handbook

 Cell Broadband Engine

Version 1.11
May 12, 2008
 

Cache Management
Page 143 of 884

• L2 cache operation during errors can be configured in the 
L2_ModeSetup1[L2_Stop_Data_Derr_En], L2_ModeSetup1[L2_Stop_Ins_Derr_Dis], and 
L2_ModeSetup1[L2_Stop_TO_Dis] register bits. 

• The L1 and L2 caches can be disabled using the HID4[dis_force_ci] and 
HID4[enb_force_ci] register bits. 

6.1.5.3 Replacement Algorithm

One of three L2 cache-replacement algorithms can be selected by the L2_ModeSetup1[RMT_Mode] 
field: 

• Binary Least-Recently Used (LRU) Mode—This algorithm is based on the binary tree 
scheme. 

• Pseudo LRU (p-LRU) Mode—This algorithm is described in the next paragraph.

• Direct-Mapped Mode—This algorithm uses three tag address bits to map an address to one 
of eight congruence-class members.

The pseudo LRU (p-LRU) mode uses software-configurable address range registers and a 
replacement management table (Section 6.3.1.3 Address Range Registers on page 155 and 
Section 6.3 Replacement Management Tables on page 154) to lock cache ways to a particular 
Replacement Class Identifier (RclassID). The other two modes cannot use these facilities. 

The p-LRU mode supports the following features:

• Multiple Cache-Line Locking—The L2 LRU replacement requirement is used to perform 
cache-line replacement with the normal LRU method and with cache ways locked by the 
RMT. 

• RclassID from PPU to LRU Controller—The LRU controller uses the RclassID from the PPU 
to determine which way or ways are locked by the RMT.

• Cache-Line Replacement Involves RMT in the LRU Controller—The LRU controller must look 
up the LRU value for the corresponding cache line and then update the LRU value based on 
the look-up value from the RMT, as described in Section 6.3.2 PPE L2 Replacement Man-
agement Table on page 157. 

• Updating LRU Data (Pointer) for Unlocked Cache Lines—The LRU controller also must 
update the least-recently-used pointer to the next cache line that is unlocked by the RMT.

Figure 6-2 on page 144 shows an example of Pseudo LRU replacement. In this figure, if the way 
replacement value in the RMT is ‘0101 1110’, then:

• Ways A, C, and H are locked from replacement by the value in the RMT. 

• The RMT value overrides the following LRU data: LRU(3) = ‘1’, LRU(4) = ‘1’, LRU(6) = ‘0’ 
(The left arrows correspond to ‘0’ and the right arrows correspond to ‘1’). 

• The LRU control must apply pseudo-LRU replacement only on ways B, D, E, F, and G in a 
miss, or if there is a hit on any unlocked way.

• For a hit on a locked way, the LRU controller does not perform an LRU update, and only the 
way that is hit is replaced.
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6.1.5.4 Cache Writeback

The following procedure writes back the entire L2 cache to main storage by means of software. 
The other thread should be quiesced or guaranteed not to be performing cacheable operations. 

1. Set the L2_ModeSetup1 register mode bits to direct-mapped mode (L2_ModeSetup1[RMT_Mode] 
= ‘11’). Switching between LRU mode and direct-mapped mode can be done at any time. 
Data integrity is maintained, although performance might be affected. 

2. Pick a 4 MB region of main storage to hit all eight ways in direct-mapped mode. 

3. Execute one load, store, or dcbz instruction to bytes in each 128-byte cache line in the cho-
sen main-storage region. This fills the L2 with the contents of the chosen region and forces 
out all other data contained in the cache. However, if the address range of the current con-
tents of the L2 cache is unknown, and the L2 cache needs to be written back to memory as 
is, then use only a load instruction (not a store or dcbz).

4. Execute one dcbf instruction for each 128-byte cache line in the specified main-storage 
region. This writes back and invalidates the specified region. If the contents of the region 
were resident and modified in the L2, the dcbf operation ensures that the data is copied back 
to main storage. Instruction fetches can cause the L2 cache to retain some valid data even 
after the dcbf operation is performed. 

6.1.5.5 Cache Queues

The 512 KB L2 cache is physically implemented as four quadrants, each quadrant containing 32 
bytes of the 128-byte cache line. The cache contains the following queues:

• CIU Load Queue

– I-demand queue (2 entries)

– I-prefetch queue (2 entries)

– Translate queue (1 entry)

– D-demand queue (8 entries)

– D-prefetch queue (8 entries)

• CIU store queue: 8 × 16 bytes

• L2 store queue: 8 × 64 bytes, gather enable

Figure 6-2. Pseudo-LRU Binary Tree for L2-Cache LRU Binary Tree with Locked Ways A, C, and H 

LRU(0)

LRU(1)  LRU(2)

LRU(3) LRU(4)

Way A Way B Way C Way D Way E Way F Way G Way H

LRU(5) LRU(6)

‘0’ ‘1’

‘0’ ‘1’ ‘0’ ‘1’

‘0’ ‘1’‘0’ ‘1’‘0’ ‘1’‘0’ ‘1’
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• L2 RC reload queue: 6 × 128 bytes

• L2 snoop queue: 4 × 128 bytes

• L2 castout queue: 6 × 128 bytes

A cache-line read from the L2 requires two data beats (two L2 clock cycles, which is four core-
clock cycles) and returns 16 bytes of data per beat from each quadrant. The L2 then sends two 
64-byte beats to the CIU data-reload bus. A cache-line read request that misses the L2 is sent to 
the element interconnect bus (EIB). Reload data coming from the EIB is received in eight back-
to-back 16-byte data beats. Because all reload data is sent back-to-back, the L2 must wait for all 
missed data from the EIB before sending data to the PPU. The L2 allows the PPU to request 
which quadword it wants to receive first from the L2 (called the critical quadword). A cache-line 
write requires two write accesses to the L2 cache, performing a 64-byte write for each access.

6.1.5.6 Read-and-Claim State Machines

The L2 cache has six read-and-claim (RC) state machines, with corresponding address and data 
queues. They manipulate data in and out of the L2 cache in response to PPU or snoop requests. 
These queues have the following features:

• Configuration—The number of RC state machines used for prefetches can be configured in 
the Prefetch Outstanding Request Limit (PR) field of the CIU Mode Setup Register 
(CIU_ModeSetup). When the RC state-machine resource that is servicing data or instruction 
prefetches reaches a threshold, the data and instruction prefetches are temporarily sus-
pended until the RC state-machine resources become available again. This threshold and 
other parameters of prefetching can be set in the CIU_ModeSetup register. See Section 6.1.9 
on page 150 for more information. 

• Congruence Classes—Two RC state machines never simultaneously work on the same L2 
congruence class. This prevents LRU victim conflicts where both RC state machines have 
chosen the same victim.

• Castouts—If an RC state machine starts on a miss and the victim is valid, the castout (CO) 
state machine must be available for the RC state machine to process the access. If the CO 
state machine is busy working on a prior castout, the RC state machine does not acknowl-
edge the access if it is a miss (it will be reissued by the CIU). If it is a miss and the CO state 
machine is available to process the castout, the RC state machine accepts the access 
(acknowledge the CIU request). After the RC state machine has finished, it can process a 
new access that results in a hit, even though the CO state machine is still processing a 
castout from a prior access.

6.1.5.7 Store Queue

The L2 store queue consists of eight fully associative 64-byte sectors. Each sector is byte writ-
able, so gathering occurs at the point the buffer is written. This is effectively a store cache with 
the following features:

• Store Gathering Logic—Gathering is supported for nonatomic, cacheable stores. Gathering 
of nonstore opcodes is not supported (for example, a request that involves a dcbz, PTE 
update, or atomic stores is not gathered). Gathering is done into any of the store queue 
entries, to any 64-byte combination within an entry, for any store operation, assuming no bar-
rier operations prevent gathering to a previously stored entry.
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• Store Queue—A request from the CIU store queue is sent in two consecutive cycles 
(address, then data) to the L2 and is stored in one of the eight 64-byte store queue entries. 
Unloading of the eight entries in the store queue is done in a first-in-first-out (FIFO) manner.

• Store Queue Request by Read-and-Claim (RC) State Machine—No two RC state machines 
(Section 6.1.5.6 on page 145) are simultaneously active to the same L2 congruence class. 
Therefore, the store queue sometimes does not dispatch until a previous store is completed 
by an RC state machine, even if another RC state machine is available.

If the store queue detects and sends a full-line store indication with its request, the RC state 
machines handle back-to-back writes to the same cache line. This completes a cache-line write 
in 13 cycles (12 cycles for the normal 64-byte write, plus one cycle for the adjacent 64-byte data). 
Only one directory update is necessary because this is a single cache line.

Store-queue data parity and other errors can be read in the L2 Cache Fault Isolation Register 
(L2_FIR). 

6.1.5.8 Reservations

The L2 cache supports two reservation bits (one per thread) to handle a load and reserve 
request by each thread. The snoop logic compares against both reservation addresses, but this 
is not a thread-based comparison.

6.1.5.9 L2 Bypass (Inhibit) Configuration

To bypass the L1 and L2 caches (that is, to inhibit their use), set the HID4[enb_force_ci] bit to ‘1’ 
and clear the HID1[en_if_cach] bit to ‘0’. 

6.1.6 Instructions for Managing the L1 and L2 Caches

The PPE supports six PowerPC Architecture instructions for management of the L1 and L2 
caches. All are problem-state (user) instructions. They are described in the sections that follow. 

The PowerPC Architecture provides cache management instructions that allow user programs to: 

• Invalidate an ICache line (icbi)

• Hint that a program will probably access a specified DCache line soon (dcbt, dcbtst)

• Set the contents of a DCache line to zeros (dcbz)

• Copy a modified DCache line to main storage (dcbst)

• Copy a modified DCache line to main storage and invalidate the copy in the DCache (dcbf)

The cache-management instructions are useful in optimizing the use of main-storage bandwidth 
in such applications as graphics and numerically intensive computing. The functions performed 
by these instructions depend on the storage-control attributes associated with the specified 
storage location (see Section 4.2.6.7 WIMG-Bit Storage Control Attributes on page 91). Cache 
management is also needed when a program generates or modifies code that will be executed 
(that is, when the program modifies data in storage and then attempts to execute the modified 
data as instructions). 
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6.1.6.1 Instruction Cache Block Invalidate

The L1 ICache line size for the icbi instruction is 128 bytes. The L1 ICache does not support a 
snoop operation. Because of this, the L1 ICache is not necessarily consistent with modifications 
to those storage locations. 

The effective address of the icbi instruction is translated as a data address by the load store unit 
(LSU). Because of this, data-address translation rules are used, and any exception that results is 
handled as a data storage exception. The address translation is done using the D-ERAT, not the 
I-ERAT (see Section 4.2.4 Effective-to-Real-Address Translation on page 83). Because this 
instruction invalidates cache lines based on real addresses, it must search and invalidate up to 
eight cache lines in the L1 ICache to account for the potential aliasing conditions described in 
Section 6.1.3.4 on page 138. Two passes are done to invalidate the entries, one to generate a 
vector containing the lines that will be invalidated, and another pass to do the actual invalidation.

In addition to checking and invalidating lines L1 ICache lines, the icbi instruction and the real 
address of the line to be invalidated are broadcast to all PPEs in the system. This PPE must also 
accept icbi instructions from other PPE processors.

6.1.6.2 Data Cache Block Touch

The DCache line size for the dcbt and dcbtst instructions is 128 bytes. The behavior of dcbtst is 
the same as the behavior of dcbt with the Touch Hint (TH) field equal to ‘0000’, as described in 
the rest of this section.

These instructions act like a load instruction from the viewpoint of the cache hierarchy and the 
TLB, with the following exceptions:

• If data translation is enabled (MSR[DR] = ‘1’), and a segment or page fault results, the instruc-
tion is cancelled and no exception occurs. 

• If a TLB miss results and LPCR[TL] = ‘0’ (hardware table-lookup mode), the TLB is reloaded 
and the corresponding reference bit is set if a matching PTE is found. 

• If the page-protection attributes prohibit access, the page is marked caching-inhibited (I = 
‘1’), LPCR[TL] = ‘1’ (software table-lookup mode), or the page is marked guarded (G = ‘1’), the 
instruction is cancelled and does not reload the cache. 

The instructions check the state of the L1 data cache. If the data requested is not present, a 
reload request is sent to the L2 cache. If the data is not present in the L2 cache, then the L2 
cache requests the data from memory. Only the L2 cache is reloaded (the data is not forwarded 
to the L1 cache) unless TH = ‘0000’ in which case the L1 cache is reloaded as well. Similarly, if 
the data is in the L2 cache already, data is not forwarded to the L1 cache unless TH = ‘0000’ in 
which case the L1 cache is reloaded. If the dcbt or dcbtst instruction reloads a cache line, the 
replacement attributes for the cache (for example, the least-recently used information) are 
updated. 

The PPE implements the optional form of the dcbt instruction defined in the PowerPC Virtual 
Environment Architecture, Book II. This form of the instruction can set up a data stream. Each 
data stream is managed independently. There are eight streams available in total. These are split 
into four streams for each thread. The Touch Hint (TH) field of the instruction has the following 
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implementation-specific characteristics:

• The PPE implements the TH = ‘0000’, ‘1000’, and ‘1010’ forms. 

• All other TH(0) = ‘0’ forms are not supported and are implemented the same as TH = ‘0000’. 

• All other TH(0) = ‘1’ forms are not supported and are ignored.

• For the TH = ‘1010’ form, the Transient field (bit 57 of the effective address) is ignored.

The PPE’s data-prefetch engine (DPFE) implements the dcbt and dcbst instructions. The 
prefetch engine services all active streams simultaneously in a round-robin fashion. Each time a 
stream is serviced, a prefetch request is generated for the stream and issued to the L2 cache. 
One cache line is requested at a time. By default, data prefetch has the lowest priority of any 
queue in the PPE’s load subunit. This default behavior can be changed. See Section 6.1.10 Load 
Subunit Management on page 150.

The basic function of the dcbt and dcbtst instructions can be changed in the following ways:

• Force all load instructions to be treated as loading to guarded storage (thus causing data 
cache touch instructions, such as dcbt, to be treated as nop instructions) using the 
HID4[force_geq1] register bit. 

• Force the x-form of the dcbt and dcbtst instructions to be treated as nop instructions using 
the HID4[tch_nop] register bit. 

6.1.6.3 Data Streams

As described in Section 6.1.6.2 on page 147, the PPE implements the optional data stream form 
of the dcbt and dcbtst instructions. To improve prefetch efficiency, the L2 notifies the CIU, 
Section 6.1.2.2 on page 136, when it detects that a demand load to the same prefetch address is 
being serviced by the L2. In this case, the demand load is ahead of the data prefetch and the 
prefetch is terminated. The CIU does not terminate the stream, but it can then send another load 
request.

Stopping a stream terminates the stream and relinquishes its data prefetch engine (DPFE) queue 
entry. The following conditions can terminate a stream:

• When software issues an all stop command (dcbt or dcbtst instruction TH field = ‘1010’, GO 
= ‘0’, Stop = ‘11’), all active streams for the issuing thread are terminated.

• When software issues a single stop command (TH = ‘1010’, GO = ‘0’, Stop = ‘10’) to a spe-
cific stream, the specified stream is terminated.

• When software issues a dcbt instruction with either TH = ‘1000’ or TH = ‘1010’ that has the 
same stream ID as an already active stream, the active stream is terminated and restarted 
with the state indicated by the new instruction.

• When a stream set up with TH = ‘1010’ reaches the UNITCNT (number of units in data 
stream), it is terminated.

• When a stream reaches its page boundary, the stream is terminated. For pages larger than 
64 KB, the stream is nonetheless terminated at each 64 KB boundary.

• When a thread enters real-mode operation (MSR[DR] = ‘0’), all streams for the thread are ter-
minated.
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• When a thread is no longer enabled, all streams for the thread are terminated.

• When a tlbie instruction or a snooped TLBIE bus command is issued, all streams for both 
threads are terminated.

6.1.6.4 Data Cache Block Zero

In the CBEA processors, the DCache line size for the dcbz instruction is 128 bytes. The function 
of dcbz is performed in the L2 cache. If the line addressed by the dcbz is present in the L1 
DCache, the line is invalidated before the operation is sent to the L2 cache. The L2 cache gains 
exclusive access to the line, without actually reading the old data, and performs the zeroing func-
tion in a broadside manner. That is, all bits in the cache line are cleared to ‘0’, which means the 
data cannot be discovered by another process. The dcbz instruction is handled like a store and is 
performed in the appropriate storage-model order. It does not bypass any of the store queues. In 
general, the performance of dcbz is better than a sequence of 8-byte stores, because it zeros 
128-bytes at a time.

Regardless of whether the cache line specified by the dcbz instruction contains an error (even 
one that is not correctable with ECC), the contents of the line are cleared to ‘0’ in the L2 cache. If 
the line addressed by the dcbz instruction is in a memory region marked caching-inhibited (I = 
‘1’), or if the L1 DCache is disabled (HID4[en_dcway] = ‘0000’), the instruction causes an align-
ment interrupt. 

6.1.6.5 Data Cache Block Flush and Data Cache Block Store

The L1 DCache line size for the dcbf and dcbst instructions is 128 bytes. A dcbf instruction 
causes all caches for all processor elements in the system to write modified contents back to 
main storage and invalidate the data in the cache for the line containing the byte addressed by 
the instruction. A dcbst behaves the same, except that the data in the cache remains valid (if 
present).

The dcbf and dcbst instructions will probably complete before the operation they cause has 
completed. A context-synchronizing instruction (see Section 20 Shared-Storage Synchronization 
on page 561) ensures that the effects of these instructions are complete for the processor 
element issuing the synchronizing instruction.

6.1.6.6 Vector/SIMD Multimedia Extension Intrinsics 

The following instructions defined in the AltiVec Technology Programming Interface Manual are 
deprecated and are implemented as nops on the CBEA processors:

• vec_dss(a)—Vector Data Stream Stop

• vec_dssall()—Vector Stream Stop All

• vec_dst(a,b,c)—Vector Data Stream Touch

• vec_dstst(a,b,c)—Vector Data Stream Touch for Store

• vec_dststt(a,b,c)—Vector Data Stream Touch for Store Transient

• vec_dstt(a,b,c)—Vector Data Stream Touch Transient

Software should use the PPE the dcbt and dcbtst instructions for stream control.
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6.1.7 Effective-to-Real-Address Translation Arrays

The PPE contains two 64-entry, 2-way set-associative, effective-to-real-address translation 
(ERAT) arrays: an instruction ERAT (I-ERAT) and a data ERAT (D-ERAT). Both are shared by 
both threads. The ERATs store recently used EA-to-RA translations, and ERAT operation is 
maintained by hardware, as described in Section 4.2.4 Effective-to-Real-Address Translation on 
page 83. 

6.1.8 Translation Lookaside Buffer

The PPE’s memory management unit (MMU) contains a1024-entry, 4-way set associative TLB 
cache that holds most-recently used page table entries (PTEs). There are 256 congruence 
classes (sets), each requiring eight bits for the TLB index. Hardware or software can be used to 
replace the TLB entry. Privileged PPE software can maintain the TLB based on searches of the 
PPE’s page table, using access to memory-mapped I/O (MMIO) registers in the MMU. For 
details, see Section 4.2.7 Translation Lookaside Buffer on page 93. 

6.1.9 Instruction-Prefetch Queue Management

The instruction unit (IU) hardware examines each committed instruction fetch and checks to see 
if the next instruction is in the L1 ICache. If not, it issues a prefetch request. 

When the L2 cache is available for a request, and no higher-priority request exists (see 
Section 6.1.10), the instruction prefetch queue forwards the prefetch request to the L2. The L2 
loads the line from main storage, if necessary. There is no subsequent reload for this transaction, 
and data is not loaded into the L1.

When the L2 read-and-claim (RC) state machine (Section 6.1.5.6 on page 145) resource that is 
servicing data prefetches or instruction prefetches reaches a threshold, the data and instruction 
prefetch are temporarily suspended until the RC state machine resources become available 
again. This threshold and other parameters of prefetching can be set in the CIU_ModeSetup 
register. 

6.1.10 Load Subunit Management

The load subunit in the CIU (Figure 6-1 on page 135) employs a two-level arbitration scheme. 
The first level of arbitration is within each separate subqueue of the load subunit. This arbitration 
is always from oldest entry to youngest entry. The second level of arbitration enforces a priority 
among queues. The default priority order is: 

• Translate request queue (XLAT)

• Demand data load request queue (DLQ)

• Demand instruction request queue (DFQ)

• Instruction prefetch request queue (IPFQ)

• Data prefetch engine (DPFE) 

This second-level priority scheme can be programmed in the CIU_ModeSetup register as follows 
(both settings are independent of the other):
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• The priority of DLQ and DFQ can be swapped to change the order to: XLAT, DFQ, DLQ, 
IPFQ, DPFE.

• To prevent starvation, the DPFE priority can be raised to the second priority: XLAT, DPFE, 
DLQ, DFQ, IPFQ. Alternatively, the DPFE priority can be periodically toggled from second to 
fifth priority after 32 load requests are issued to the L2.

6.2 SPE Caches

Each SPE’s memory flow controller (MFC) has the following caches, both of which can be 
managed by privileged PPE software:

• Translation lookaside buffer (TLB) 

• Atomic (ATO) unit cache, called the atomic cache 

6.2.1 Translation Lookaside Buffer

Each SPE’s synergistic memory management (SMM) unit, in the MFC, contains an 256-entry, 
4-way, set-associative TLB cache that holds most-recently used PTEs. There are 64 congruence 
classes (sets), each requiring six bits for the TLB index. The TLB array is parity protected. Parity 
generation and checking can be disabled in the SMM_HID register. Hardware or software can be 
used to replace the TLB entry. For details, see Section 4.3.5 Translation Lookaside Buffer on 
page 108. 

6.2.2 Atomic Unit and Cache

Each SPE’s MFC contains an atomic unit that handles semaphore operations for the synergistic 
processor unit (SPU) and provides PTE data to the SMM. More specifically, the atomic unit:

• Provides atomic operations for the getllar, putllc, putlluc, and putqlluc MFC atomic com-
mands.

• Provides PTEs to the SMM for hardware table lookups and updates to the Reference (R) or 
Change (C) bits in PTEs (called an RC update).

• Maintains cache coherency by supporting snoop operations.

The atomic cache stores six 128-byte cache lines of data. Four of those cache lines support 
semaphore operations, one cache line supports PTE accesses, and one cache line supports 
reloading data from cache-miss loads like getllar. 

MFC atomic commands are issued from the DMA controller (DMAC) to the atomic unit. These 
requests are executed one at a time. The atomic unit can have up to two outstanding requests: 
one immediate-form command (getllar, putllc, or putlluc) and one queued-form command 
(putqlluc). The SMM’s PTE request can occur at the same time as MFC atomic requests. 
However, the atomic unit handles this situation by alternating SMM requests and MFC atomic 
requests.
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6.2.2.1 Atomic Unit Operations

The atomic unit accepts MFC atomic requests, SMM requests, and snoop requests. The MFC 
atomic requests are getllar, putllc, and putlluc. The SMM request is for a PPE page-table 
lookup with RC update. These requests are executed in the atomic unit RC machine. Each of 
these requests can come at any time. Two MFC atomic requests can be queued in the atomic 
unit while the first request executes. Only one SMM request can be pending at a time. Snoop 
requests can come every two cycles, at most. 

The get lock line and reserve command, getllar, is similar to the PowerPC Architecture lwarx 
instruction. A 128-byte cache line of atomic data is loaded into the local storage (LS) and sets a 
reservation in the atomic unit. Only one reservation is allowed at a time in the atomic unit. In the 
case of a getllar miss with the atomic cache full, room is created for this load by casting out LRU 
data. Looping on the getllar MFC atomic command is not necessary, because software can look 
for the reservation lost event in the MFC_RdAtomicStat channel’s lock-line command status.

The put lock line conditional command, putllc, is similar to the PowerPC Architecture stwcx 
instruction. This is a store command with a condition on reservation active. If the putllc data is a 
cache hit, the atomic unit executes the store by sending store data to the atomic cache from the 
LS. In addition, it resets the reservation and sends success status to the DMAC, which, in turn, is 
routed to the SPU. 

The put lock-line unconditional command, putlluc, is a store command without any condition on 
the reservation. The atomic unit executes this request as it does putllc, except that it does not 
send any status to the DMAC. Also, the atomic unit executes the store, regardless of the reserva-
tion flag.

The put queued lock-line unconditional command, putqlluc, is issued to the atomic unit as a 
putlluc MFC atomic request. The atomic unit can have up to two outstanding requests: one 
immediate form command (getllar, putllc, or putlluc) and one queued form command 
(putqlluc). 

6.2.2.2 Lock Acquisition Sequence and its Cache Effects

Significant performance improvement is realized by using the putlluc command to release locks. 
Using the putlluc command rather than a DMA put command results in the modification of the 
data in the atomic cache. There is no need to invalidate the cache and update main storage if the 
lock-line block is still in the cache. 

Because the SPE does not implement an SPU Level 1 (SL1) cache, the putlluc command 
results in a direct store to the referenced real memory and the invalidation of all other caches that 
contain the affected line. The getllar, putllc, and putlluc commands support high-performance 
lock acquisition and release between SPEs and the PPE by performing direct cache-to-cache 
transfers that never leave the CBEA processors. 

The possible atomic-cache state transitions based on a typical lock code sequence are:

1. Issue getllar command.

2. Read the MFC_RdAtomicStat channel to see if getllar done.

3. Compare (check for active lock).

4. Branch if not equal (If the lock is still set, go to the step 1).
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5. Issue putllc (attempt to set lock).

6. Check to see if the putllc is done.

7. Branch if not equal (If the put conditional is not successful, go to step 1).

8. Critical code.

9. Issue putlluc (release lock).

10. Check if putlluc is done (for future atomic command issue).

6.2.2.3 Reservation Lost Events and their Cache Effects

A reservation can be lost (cleared) in any of the following situations; some of these situations 
affect the state of the atomic cache: 

• One getllar request (getllar A) of atomic unit 1 sets the reservation. Before the first putllc 
request (putllc A) is issued by atomic unit 1, another getllar request (getllar B) is received in 
atomic unit 1 to clear the reservation of getllar A and set a new reservation for a second 
getllar request (getllar B).

• A putllc request is received for a different storage location for which the previous getllar 
established a reservation. This scenario occurs only if getllar A is executed, a reservation is 
set, and software is interrupted inside the interrupt routine. A putllc request to a different 
storage location resets the reservation, but the store is not performed. If there is no interrupt, 
a scenario in which a getllar and putllc pair does not address the same storage location is a 
software error.

• SPU1 issued getllar command A and got the reservation. Processor Element 2 wants to per-
form a store that hits a Shared line in its Processor Element 2’s cache. The SPU1 copy is 
invalidated before the putllc instruction is issued and performed. 

See the PowerPC Virtual Environment Architecture, Book II for more details on reservations.

6.2.2.4 Atomic-Cache Commands

The Cell Broadband Engine Architecture defines an SL1 cache for DMA transfers between LS 
and main storage. The architecture also defines five MFC commands for the SL1 cache: sdcrt, 
sdcrtst, sdcrz, sdcrst, and sdcrf. However, the CBEA processors do not implement an SL1 
cache. The sdcrt and sdcrtst commands are implemented in the SPE as nops, but three of the 
commands—sdcrz, sdcrst, and sdcrf—affect the SPE atomic cache, as shown in Table 6-1:

Table 6-1. Atomic-Unit Commands 

CBEA SL1
Command

SPE Atomic-Unit
Command Definition

sdcrf sdcrf Atomic-cache range write-back and invalidate.

sdcrt nop Undefined.

sdcrtst nop Undefined.

sdcrst sdcrst Atomic-cache range store.

sdcrz sdcrz Atomic-cache range cleared to ‘0’.
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6.2.2.5 Atomic-Cache Flush

Setting the Flush (F) bit of the MFC_Atomic_Flush register activates an atomic-cache flush that 
copies cache lines in the Modified state back to main storage. The RC machine executes an 
atomic-cache flush by dispatching the castout machine six times to copy all six entries of the 
atomic cache back to main storage. 

While the atomic unit performs a cache flush, the SPU must suspend the DMAC so that no 
DMAC atomic or SMM requests can enter the atomic unit. Otherwise, the atomic unit flags a 
hardware error called ATO flush collision, reported in the MFC Fault Isolation (MFC_FIR) register. 
See the Cell Broadband Engine Registers for details.

6.3 Replacement Management Tables

The PPE and SPEs provide a method for supervisor-state software to control L2 and TLB cache 
replacements, based on a replacement class ID (RclassID). This class ID is used as an index 
into a replacement management table (RMT), which is used to lock entries in the L2 and TLB 
caches. The locking function of the RMTs modifies the way in which the L2 and TLB pseudo-LRU 
algorithms operate. 

The PPE has an RMT for managing its TLB, described in Section 6.3.1, and for its L2 cache, 
described in Section 6.3.2 on page 157. Each SPE also has an RMT for managing its TLB, 
described in Section 6.3.3 on page 158. 

The RMTs are useful when a small set of pages is frequently accessed by application software 
and need to be locked in the L2 or TLB or both to prevent misses—for example, in real-time 
applications (see Section 11.2.3.2 on page 342 for more detail). They are also useful for 
preventing streaming data from casting out other data. However, overlocking resources can 
negatively impact performance.

6.3.1 PPE TLB Replacement Management Table

The PPE’s TLB RMT is stored in the PPE Translation Lookaside Buffer RMT Register 
(PPE_TLB_RMT). This RMT can lock translation entries into the TLB by reserving particular ways of 
the TLB for specific EA ranges in a program. TLB replacement management applies only to the 
hardware-managed TLB mode, as described in Section 4.2.7.1 Enabling Hardware or Software 
TLB Management on page 93 and Section 4.2.7.3 TLB Replacement Policy on page 95. In the 
software-managed TLB mode, software controls TLB-entry replacement.

6.3.1.1 RClassID Generation

In the PPE, a 3-bit replacement class ID (RclassID) is generated from the effective address spec-
ified by instruction fetches or by data loads or stores. Instruction fetches include fetches for 
sequential execution, speculative and nonspeculative branch targets, prefetches, and interrupts. 

The Address Range Registers, described in Section 6.3.1.3 on page 155, are used together with 
the RclassIDs defined in the following registers (two pairs, one for each PPE thread) to identify 
addresses covered by the RMT:
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• Instruction Class ID Register 0 (ICIDR0)

• Instruction Class ID Register 1 (ICIDR1)

• Data Class ID Register 0 (DCIDR0)

• Data Class ID Register 1 (DCIDR1) 

Cache management instructions (Section 6.1.6 on page 146) are treated like load or store 
instructions with respect to RClassID. 

6.3.1.2 Index and Table Structure

The PPE’s TLB RMT is implemented by the PPE_TLB_RMT register, and the 3-bit RClassID is used 
as an index into this 8-entry RMT. For each RclassID, the PPE_TLB_RMT defines which ways of the 
TLB are eligible to be replaced when a TLB miss occurs. The high-order 32 bits of this register 
are not implemented and are reserved for future use. The low-order 32 bits are divided into eight 
4-bit RMT entries, corresponding to eight RclassIDs. 

Each of the eight 4-bit RMT entries has a one-to-one correspondence to the four ways in the 
TLB. For each RMT-entry bit with a value of ‘1’, the table-lookup algorithm can replace an entry in 
that way if a TLB miss occurs in the EA range that maps to the RclassID for that RMT entry. If 
multiple ways are indicated, they are replaced in priority order beginning with invalid entries first, 
and then valid entries according to the pseudo-LRU policy described in Section 4.3.5.2 Hardware 
TLB Replacement on page 110. 

For example, if a translation with an RclassID of 5 is requested, that class corresponds to the 
RMT5 field of the PPE_TLB_RMT register, which has a value of ‘1001’. If a TLB miss occurs, TLB 
ways 0 and 3 are valid candidates for replacement (pseudo-LRU initially chooses way 0 and then 
points to way 3 when another miss occurs). If all bits in an RMT field are written by software with 
zero (‘0000’), then the hardware treats this RMT field as if it had been set to ‘1111’, therefore 
allowing replacement to any way. (This corresponds to the method used for SPE TLB replace-
ment described in Section 6.3.3 on page 158.)

The RMT0 field of the PPE_TLB_RMT register is the default entry and should be used by software to 
specify the replacement policy for any EA range that is not mapped by the Address Range Regis-
ters. 

6.3.1.3 Address Range Registers

The PPE has a set of Address Range Registers for supporting the pseudo-LRU TLB replacement 
algorithm (the registers are also used for L2 replacement). An address range is a naturally-
aligned range that is a power-of-2 size between 4 KB and 4 GB, inclusive. An address range is 
defined by two types of registers; a Range Start Register (RSR) and a Range Mask Register 
(RMR). For each address range, there is an associated ClassID Register (CIDR) that specifies 
the RclassID. The names RSR, RMR, and CIDR are generic labels for groups of registers that 
are differentiated according to instructions or data (I or D prefix). 

As shown in Table 6-2 on page 156, for each PPE thread there are two sets of RSRs, RMRs, and 
CIDRs for load/store data accesses and two sets for instruction fetches. The Address Range 
Registers are accessible by the mtspr and mfspr privileged instructions. 
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If all the following conditions are met, the particular address range defined by an RSR and RMR 
pair applies to a given EA and a range hit is said to have occurred: 

• RSR[63] = ‘1’

• RSR[0:51] = EA[0:31] || (EA[32:51] & RMR[32:51])

– If the operation is a load or store, then 

• RSR[62] = MSR[DR] and

• The RSR and RMR pair used in these conditions must be DRSR0 and DRMR0 or 
DRSR1 and DRMR1

– else (the operation is an instruction fetch)

• RSR[62] = MSR[IR] and

• The RSR and RMR pair used in these conditions must be IRSR0 and IRMR0 or 
IRSR1 and IRMR1

If there is no range hit for a given EA, the RclassID has a value of ‘0’. In effect, RMR defines the 
size of the range by selecting the bits of an EA used to compare with the RSR. The upper bits of 
an RSR contain the starting address of the range and the lower bits contain a relocation mode 
(real or virtual) and a valid bit. The size of the range must be a power-of-2. The starting address 
of the range must be a range-size boundary. 

Table 6-2. Address Range Registers (One per PPE Thread)  

Type of 
Operation

Address Range Replacement ClassID
(RclassID)Range Start Registers Range Mask Registers

Data Access

Data Address Range Start 
Register 0 (DRSR0)

Data Address Mask Register 0 
(DRMR0)

Data Class ID Register 0 
(DCIDR0)

Data Address Range Start 
Register 1 (DRSR1)

Data Address Mask Register 1 
(DRMR1)

Data Class ID Register 1 
(DCIDR1)

Instruction Fetch

Instruction Range Start Register 
0 (IRSR0)

Instruction Range Mask Register 0 
(IRMR0)

Instruction Class ID Register 0 
(ICIDR0)

Instruction Range Start Register 
1 (IRSR1)

Instruction Range Mask Register 1 
(IRMR1)

Instruction Class ID Register 1 
(ICIDR1)
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To avoid confusion about the RclassID value, it is recommended that software ensure that data-
address ranges 0 and 1 do not overlap such that both have a simultaneous range hit. Likewise, it 
is recommended that software ensure that instruction-address ranges 0 and 1 do not overlap 
such that both have a simultaneous range hit.

6.3.2 PPE L2 Replacement Management Table

The PPE supports an 8-entry RMT for the 8-way set associative L2 cache. It is implemented by 
the L2 RMT Setup Register (L2_RMT_Data). The L2 RMT uses the same Address Range Regis-
ters that are used by the TLB RMT (see Section 6.3.1.3 on page 155). The L2 pseudo-LRU 
replacement algorithm, for which these registers are used, is described in Section 6.1.5.3 
Replacement Algorithm on page 143. For each RclassID, the L2 RMT defines which ways of the 
L2 cache are eligible to be replaced when an L2-cache miss occurs.

The L2-cache replacement policy is controlled by a replacement management table analogous to 
that used for the PPE TLB (Section 6.3.1 PPE TLB Replacement Management Table on 
page 154) when the L2 cache is not in direct-mapped mode (see Section 6.1.5.3 Replacement 
Algorithm on page 143). The RMT and LRU functions of the L2 cache can be configured in the L2 
Mode Setup Register 1 (L2_ModeSetup1). 

Figure 6-3. Generation of RclassID from the Address Range Registers for Each PPE Thread 
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The workings of the L2 RMT are analogous to those of the TLB RMT, described in 
Section 6.3.1.2 Index and Table Structure on page 155, except that the L2 cache has eight ways 
instead of four ways. The 3-bit RclassID is used as an index into the L2_RMT_Data register to 
select one of the RMT entries. Each entry of the RMT contains a replacement-enable bit for each 
of the eight ways in the L2 cache. The RclassID selects one of the eight fields in this register. 

Each of the eight bits of an RMT entry has a one-to-one correspondence to the eight ways in the 
L2 cache. For each RMT-entry bit with a value of ‘1’, the L2 replacement algorithm can replace 
an entry in that way if a miss occurs in the EA range that maps to the RclassID for that RMT 
entry. A bit value of ‘0’ indicates that the entry is locked and cannot be replaced. If multiple ways 
are indicated, they are replaced in priority order beginning with invalid entries first, and then valid 
entries. If all bits in an RMT field are zero (‘0000 0000’), then the hardware treats this RMT field 
as if it had been set to ‘1111 1111’, therefore allowing replacement to any way. The replacement 
method is analogous to that used by the pseudo-LRU policy for TLB replacement, described in 
Section 4.3.5.2 Hardware TLB Replacement on page 110. 

The L2 RMT can be used by software to achieve various results, including:

• Lock an address range into the cache so that an access to a cache line always gets an L2 
cache hit. The address range is locked into the L2 cache by first making it valid in the L2 
cache and then configuring the L2 RMT to prevent the cache line from being displaced from 
the L2 cache.

• Limit an address ranges to one or more ways of the L2 cache without locking these locations 
and without prohibiting accesses for other data from replacing those ways. This is useful for 
some kinds of accesses over large data structures to prevent such accesses from flushing a 
large portion of the L2 cache.

• Allow an application to only use a limited number of ways of the L2 cache while reserving 
other ways for other applications. This can be useful to ensure a certain performance level for 
applications, and that performance is dependent on the L2-miss rate. Limiting an application 
to a subset of the L2 cache prevents the application from displacing all data cached by 
another application. Such data is not necessarily locked into the L2 cache, but can simply be 
the latest set of data used by the other application.

6.3.3 SPE TLB Replacement Management Table

The synergistic memory management (SMM) unit of each SPE supports a 4-entry RMT that can 
be used to lock TLB entries and prevent their replacement. The SPE’s TLB RMT is analogous to 
that of the PPE’s, described in Section 6.3.1 PPE TLB Replacement Management Table on 
page 154. 

The SPE RMT is enabled with the SMM_HID[RMT_Dsbl] bit. The RMT entries are stored in the MFC 
TLB Replacement Management Table Data Register (MFC_TLB_RMT_Data)5. A 2-bit RClassID is 
provided as a parameter in MFC commands. RMT-entry selection is specified by the RClassID 
given to the SMM by the DMAC during a translation request. The RClassID is defined in the MFC 
Class ID or Command Opcode (MFC_ClassID_Cmd) register; unlike the PPE RMTs, the SPE RMT 
does not use the system of Address Range Registers described in Section 6.3.1.3 Address 
Range Registers on page 155.

5. The Cell/B.E. and PowerXCell processors do not implement the RMT Data Register (RMT_Data) defined in the 
Cell Broadband Engine Architecture. Instead, the SMM uses the implementation-dependent MFC TLB Replace-
ment Management Table Data Register (MFC_TLB_RMT_Data). 
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Each 4-bit RMT entry represents one of the four TLB ways in a congruence class (see Figure 4-6 
SMM Virtual- to Real-Address Mapping on page 109 for an illustration of the TLB structure). A bit 
value of ‘1’ indicates that the corresponding TLB way can be replaced. A bit value of ‘0’ indicates 
that the way is locked and cannot be replaced. If an entire RMT entry is enabled (‘1111’), then all 
TLB ways in the congruence class represented by the RMT entry are available for replacement, 
and the LRU algorithm chooses the replacement set, as described in Section  TLB Replacement 
Policy on page 111. If all bits in an RMT field are written by software with zero (‘0000’), then the 
hardware treats this RMT field as if it had been set to ‘1111’, therefore allowing replacement to 
any way. This corresponds to the method used for PPE TLB replacement described in 
Section 6.3.1.2 on page 155. 

6.4 I/O Address-Translation Caches

For a description of the caches used in I/O address-translation, and their management, see 
Section 7.4 I/O Address Translation on page 176 and Section 7.6 I/O Address-Translation 
Caches on page 181. 
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7. I/O Architecture

7.1 Overview

7.1.1 I/O Interfaces

The Cell Broadband Engine interface (BEI) unit, shown in Figure 7-1, manages data transfers 
between the processor elements on the element interconnect bus (EIB) and I/O devices. The BEI 
supports two Rambus FlexIO I/O bus interfaces, FlexIO_0 and FlexIO_1. FlexIO_0 is also called 
IOIF0; FlexIO_1 is also called IOIF1. 

The input and output bandwidth (number of transmitters and receivers) of each I/O interface 
(IOIF) is software-configurable during the Cell Broadband Engine Architecture (CBEA) 
processor1 power-on reset (POR) sequence, (For a description of the sequence, see the Cell 
Broadband Engine CMOS SOI 65 nm Hardware Initialization Guide.) The FlexIO_0 interface can 
be configured at higher input and output bandwidths than the FlexIO_1 interface. The FlexIO_0 
interface can also be configured with either the noncoherent IOIF protocol or the fully coherent 
Cell Broadband Engine interface (BIF) protocol, which is the EIB’s internal protocol. The 
FlexIO_1 interface supports only the noncoherent IOIF protocol. Each IOIF-protocol interface has 
four virtual channels. 

Both the IOIF and BIF protocols provide fully pipelined, packet-transaction interconnection using 
credit-based flow control. The noncoherent IOIF protocol can interface to I/O devices, 
noncoherent memory subsystems, switches, or bridges. The coherent BIF protocol, which 
supports memory coherency and data synchronization, can be connected to another CBEA 
processor or coherent memory subsystem, as well as a compatible switch or bridge. 

Figure 7-1. BEI and its Two I/O Interfaces 

PPE

MIC

IOIF_1

IOIF_0

SPE0

SPE1

SPE2

SPE3

SPE4

SPE5

SPE6

SPE7

EIB

FlexIO_0: IOIF or BIF Protocol
1234

5

6

0

11

10987

FlexIO_1: IOIF Protocol

BEI Cell Broadband Engine Interface Unit
BIF Cell Broadband Engine Interface Protocol
EIB Element Interconnect Bus
FlexIO Rambus FlexIO Bus

IOIF I/O Interface, or I/O Interface Protocol
MIC Memory Interface Controller
PPE PowerPC Processor Element
SPE Synergistic Processor Element

B
E

I

Unit ID

1. The Cell Broadband Engine (Cell/B.E.) and PowerXCell 8i processors are collectively called CBEA processors.
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The POR configuration bits are not visible to software after POR—except in system designs in 
which the external system controller chip makes them visible—but several related parameters of 
the configuration can be modified by software after initialization2. 

The BEI has an I/O interface controller (IOC) that supports the two IOIFs with I/O-command 
processing, I/O-address translation, I/O-interrupt control, programmable memory-mapped I/O 
(MMIO) registers, and, in general, implements the I/O facilities. Both IOIFs use the same bus 
address space—a 42-bit real-address space. The BEI also adds a paging mechanism for 
addresses from I/O devices that is independent of the standard PowerPC Architecture memory-
paging mechanism. The PowerPC Processor Element (PPE) controls the system-management 
resources used for both memory paging and I/O paging. It is possible to extend a current kernel’s 
I/O architecture to support this addition of I/O paging without having to re-architect the kernel. 

Use of the IOIFs can be controlled using tokens that are allocated by the resource allocation 
manager (RAM), as described in Section 8 Resource Allocation Management on page 203.

7.1.2 System Configurations

Figure 7-2 on page 163 shows two possible system configurations. At the top is a system with a 
single CBEA processor that connects to coherent I/O devices and noncoherent I/O devices. At 
the bottom is a system with two CBEA processors that connect together, forming a coherent 
symmetric multiprocessor (SMP) system, with each CBEA processor also connecting to nonco-
herent I/O devices. 

Figure 7-3 on page 164 shows a 4-way configuration, which requires a BIF-protocol switch to 
connect the four CBEA processors. This figure does not necessarily represent future system-
product plans. 

2. The coherency protocol for the FlexIO_0 interface is software-selectable only at power-on reset (POR). However, 
if an I/O interface is known to use the IOIF protocol, an I/O device on that interface can access memory pages 
coherently by setting the M bit in an I/O page table (IOPT) entry.
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Figure 7-2. Single and Dual CBEA Processor System Configurations 
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7.1.3 I/O Addressing

The CBEA processors support I/O-address translation on interfaces configured for the IOIF 
protocol (but not for the BIF protocol). An I/O address is an address passed from an I/O device to 
a CBEA processor when the I/O device attempts to perform an access to the CBEA processor 
real-address space—for example, to an MMIO register, to the local storage (LS) of a Synergistic 
Processor Element (SPE), or to the memory attached to a CBEA processor. For I/O accesses 
coming into the CBEA processors on an I/O interface, the CBEA processors provide two modes 
for handling the incoming address. If I/O-address translation is disabled, the I/O address is used 
as a real address. If I/O-address translation is enabled, the address is converted from an I/O 
address into a real address, as shown in Figure 7-4 on page 165.

Figure 7-3. Quad CBEA Processor System Configuration 
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I/O operations often involve multiple, noncontiguous real pages. The I/O address-translation 
mechanism supports the use of a contiguous I/O address range assigned to noncontiguous real 
pages. Each I/O device can be assigned a separate range of I/O addresses, either statically or 
dynamically. 

I/O devices can only access pages that have been set up in an I/O page table with their I/O iden-
tifier (IOID). This identifier must be passed on the IOIF bus to the CBEA processor, along with the 
I/O address, during the I/O access. If the identifier from the I/O interface does not match the 
value in the CBEA processor’s I/O page table entry corresponding to the I/O address, an I/O 
exception occurs. Thus, a form of storage protection is enforced. Pages can also be protected 
according to their read/write attributes, and pages can be assigned memory-coherence and 
storage-order attributes. 

In some systems, such rigid protection between all I/O devices might not be required. For 
example, if all I/O devices on a certain I/O bus in the I/O subsystem are only used by one logical 
partition, it might be satisfactory for the I/O subsystem to group these I/O devices into one identi-
fier. 

7.2 Data and Access Types

7.2.1 Data Lengths and Alignments

The following data lengths and alignments are supported for read and write transfers across an 
IOIF:

• Read and write transfers of 1, 2, 4, 8, and 16 bytes that are naturally aligned. (An I/O device, 
but not the CBEA processors, can also perform read and write transfers of 3, 5, 7, 9, 10, 11, 
12, 13, 14, and 15 bytes, if they do not cross a 16-byte boundary.) 

• Read and write transfers of q-times-16 bytes, where q is an integer from 1 to 8, that are quad-
word-aligned and do not cross a 128-byte boundary.

SPEs and I/O devices can perform DMA transfers of data lengths and alignments that differ from 
the above by splitting the accesses into multiple transfers across the IOIF. 

Figure 7-4. Use of I/O Addresses by an I/O Device  
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7.2.2 Atomic Accesses

Atomic IOIF accesses are supported for naturally aligned 1, 2, 4, and 16-bytes transfers. These 
read and write transfers are fully serialized and complete before the next transfer is initiated. For 
example, suppose a naturally aligned 2-byte memory location initially contains x'0000'. If an I/O 
device writes x'1111' to this location, a PPE or SPE doing a halfword read of this location will load 
either x'0000' or x'1111'. It will never load x'0011' or x'1100'. 

7.3 Registers and Data Structures

The IOC supports several registers and data structures used for I/O-address translation 
(Section 7.4 I/O Address Translation on page 176) and related purposes. The bit fields and 
values for these registers are described in the Cell Broadband Engine Registers specification, 
although in some cases the descriptions in this section have additional detail. 

7.3.1 IOCmd Configuration Register

The IOCmd Configuration Register (IOC_IOCmd_Cfg) configures basic settings for the IOC. These 
settings include the IOID for each I/O interface, I/O address-translation enable, token parame-
ters, timeout, read intervention, and others. 

7.3.2 I/O Segment Table Origin Register

The 64-bit I/O Segment Table Origin Register (IOC_IOST_Origin) enables I/O-address translation, 
specifies the origin and size of the I/O segment table (IOST), specifies the hint-or-lock function of 
the Hint bit in IOST and I/O page table (IOPT) entries, and enables hardware cache-miss 
handling for the IOST and IOPT caches. 

The IOC_IOST_Origin register should be initially configured at boot time, before there are any I/O 
accesses, and it can be modified after boot. If a hypervisor is implemented (see Section 11 on 
page 331), software typically maps the IOC_IOST_Origin register using a page that is only acces-
sible to the hypervisor or firmware. 

7.3.2.1 Register Layout and Fields

E Reserved IOST_Origin

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

IOST_Origin H
W HL Reserved

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
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7.3.2.2 Register Functions

I/O-Address Translation

The IOC_IOST_Origin register’s E bit enables I/O-address translation on interfaces configured for 
the IOIF (but not BIF) protocol. It determines whether addresses generated by I/O units will be 
used as real addresses (untranslated) or whether the translation mechanism will produce the real 
address based on the IOST and IOPT. The primary advantages of enabling I/O-address transla-
tion include:

• Identity-matching of the IOID and the real address in the IOPT 

• Read/write protection of the main-storage space during accesses by I/O units

• Memory coherence and storage ordering of I/O accesses

• Hardware control of misses in the IOST and IOPT caches

• Sizing of the IOST and its pages 

Unlike PowerPC virtual-memory address translation, the use of I/O-address translation does not 
include access to a larger address space; in fact, the translated address space is smaller (235 
bytes) than the untranslated real-address space (242 bytes). 

Bits Field Name Description

0 E

I/O-Address Translation Enable:
0 Disabled (default). I/O addresses are treated as real addresses, and the I/O-

address translation unit is disabled to save power. The only IOC address 
translation MMIO register that can be accessed is this register. 

1 Enabled. I/O addresses are translated using the IOST and IOPTs.
The IOC_IOCmd_Cfg[TE] bit must be set to the same value as this E bit.

1:21 Reserved Bits are not implemented; all bits read back as ‘0’. 

22:51 IOST Origin
The real page number (RPN) of the IOST. The IOST must be integrally aligned and must 
be aligned on a 4 KB page. These are the 30 high-order bits of the 42-bit real address of 
the IOST. 

52 HW
Hardware Cache-Miss Handling Enable for IOST and IOPT caches:
0 Hardware miss handling is disabled. 
1 Hardware miss handling is enabled.

53 HL

Hint or Lock for IOST and IOPT caches:
0 The Hint bit for an IOST cache entry or IOPT cache entry is treated as just a hint 

for valid entries. If there are no invalid entries in the applicable congruence class, 
hardware miss handling should replace an entry whose Hint bit is '0' instead of an 
entry whose Hint bit is '1'. If there are no invalid entries in the congruence class 
and all entries in the congruence class have Hint bits equal to '1', hardware miss 
handling will replace a cache entry whose Hint bit is '1'. 

1 The Hint bit is treated as a lock. If hardware miss handling is enabled and an IOST 
or IOPT cache miss occurs, hardware must not replace a cache entry whose Hint 
bit is '1', even if the valid (V) bit in the entry is '0'.

54:57 Reserved

58:63 IOST Size

This is the base-2 logarithm of the number of entries in the IOST.
Both the first implementation of the CBEA, the Cell/B.E. processor, and the PowerXCell 8i 
processor treat this field as a fixed value of 7, so that the IOST has 128 entries. 
Any value set in the IOST Size field is ignored. When this field is read, it returns zero. 
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IOST Origin

The IOST_Origin field is architected to contain up to 50 high-order bits of the 62-bit real address 
of the IOST. However, the CBEA processors support 42-bit real addresses, and only the right-
most (low-order) 30 bits (bits 22:51) of the IOST_Origin field are used; the upper 20 bits of the 
field are reserved and treated as zeros. 

Hardware Cache-Miss Handling

The hardware cache-miss (HW) bit enables or disables hardware handling of misses in the IOST 
cache (Section 7.6.1 on page 181) and IOPT cache (Section 7.6.2 on page 183). When HW = ‘1’, 
the Hint or Lock (HL) bit indicates to hardware whether IOPT entries with their Hint (H) bit = '1' 
(Section 7.3.4 on page 171) can be replaced. 

If HL = '1', hardware miss handling avoids loading an IOPT-cache entry whose H = '1' in the 
IOPT. In this case, hardware will select an entry using the following criteria order if there is a 
cache miss:

1. An entry in the applicable congruence class (cache index) whose valid (V) bit in the IOPT and 
Hint (H) bit are '0'.

2. An entry in the applicable congruence class whose Hint (H) bit is '0'. A pseudo-LRU algorithm 
is used in conjunction with this criterion to select an entry among those that meet the criteria.

If no entry is found based on the preceding criteria, and if a cache miss occurs in that congruence 
class, an I/O segment fault (Section 9.6.4.4 on page 274) occurs, instead of an I/O page fault, 
even if the entry exists in the IOST. Likewise, if all the H bits in the applicable congruence class 
of an IOPT cache are '1', and if a cache miss occurs in that congruence class, an I/O page fault 
(Section 9.6.4.4 on page 274) occurs even if the entry exists in the IOPT.

If HL = '0', hardware miss handling will select an entry using the following criteria order:

1. An entry in the applicable congruence class whose V bit is '0'.

2. An entry in the applicable congruence class whose H bit is '0'. 

3. An entry in the applicable congruence class whose H bit is '1'. 

A pseudo-LRU algorithm is used in conjunction with criteria 2 and 3 to select an entry among 
those that meet the criteria.

See Section 7.6.1.3 on page 183 for further details about hardware and software cache-miss 
handling. 

IOST Size

The IOST Size field in the CBEA processor is treated by the hardware as if the value is always 7. 
Thus, the IOST has 128 entries. The corresponding bits in the IOC_IOST_Origin are not imple-
mented. 
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7.3.2.3 Register Modifications

Software must ensure that there are no I/O accesses occurring when it modifies the 
IOC_IOST_Origin register. Also, the IOC_IOCmd_Cfg[TE] and IOC_IOST_Origin[E] bits must both 
be set to the same value. 

To guarantee that the new value of a store to IOC_IOST_Origin register is used on future I/O-
address translations, software should load from the IOC_IOST_Origin register and ensure that the 
load has completed before a subsequent store that might cause the new IOC_IOST_Origin value 
to be used. A synchronization instruction or command (Section 20 on page 561) that orders a 
load from storage that is both caching-inhibited and guarded versus the subsequent store can be 
used for this purpose.

7.3.3 I/O Segment Table

The IOST is a variable-sized data structure in memory that defines the first phase of the transla-
tion of an I/O address to a real address. For each I/O segment, the table contains an entry that 
points to a page table that is used to complete the translation. There are 27 segments, each one 
containing 228 bytes, for a total translated address space of 235 bytes. 

7.3.3.1 Table-Entry Layout and Fields

V H IOPT Base RPN

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

IOPT Base RPN NPPT R
es

er
ve

d

PS

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Description

0 V
Valid
0 The IOST entry is not valid. 
1 The IOST entry is valid.

1 H

Hint 
1 Not valid in the CBEA processors. (Architecturally, if IOC_IOST_Origin[HL] = '0', 

this is a hint to the IOST cache to retain this entry if possible. If 
IOC_IOST_Origin[HL] = '1', this entry is never displaced from an IOST cache by 
hardware when handling an IOST cache miss.)

0 The IOST Hint bit is treated as a ‘0’ in the CBEA processors. No cache hint. 

2:51 IOPT Base RPN

IOPT-base real page number
This is the RPN of the first entry in the IOPT for this I/O segment. Only the right-most 30 
bits of the IOPT Base RPN are implemented. The upper 20 bits of the IOPT Base RPN are 
treated as zeros.

52:58 NPPT

Number of 4 KB pages (minus one) in the page table for this I/O segment. 
For IOPT format 1 (Section 7.3.4 on page 171), the number of IOPT entries for the 
segment is equal to 512 times the sum of the NPPT plus 1. The IOPT entries are for the 
lowest-numbered pages in the segment. (IOPT format 2 is not supported in the CBEA 
processors).

59 Reserved
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7.3.3.2 Table-Entry Functions

IOST entries specify the properties of a segment and its page tables, including the validity of the 
IOST entry, the RPN of the first page table in this I/O segment, the number of pages in a page 
table, and the page size. 

The IOST can contain up to 128 64-bit entries. The IOST must start on a 4 KB boundary, at a 
minimum, and it must be naturally aligned.

Validity

Software can control access to pages in a segment by writing the IOST entry’s valid (V) bit. If an 
I/O translation attempts to use an IOST entry that has V = ‘0’, an I/O segment-fault type of I/O 
exception occurs. 

Cache Hint

In the CBEA processors, the IOST Hint (H) bit is always treated as a ‘0’. Thus, hints or locks for 
the IOST cache (Section 7.6.1 on page 181) are not supported, irrespective of the value of the 
IOC_IOST_Origin[HL] bit. 

Page Size

The IOST page-size (PS) field defines the size of the pages in the I/O segment. Four page sizes 
are supported—4 KB, 64 KB, 1 MB, and 16 MB. However, because it is possible to disable I/O-
address translation and use an external I/O address-translation mechanism, the page sizes 
supported by an external I/O-address translation mechanism might differ from those supported 
by the PPE and SPEs. 

7.3.3.3 Table-Entry Modifications

An IOST entry should only be modified when there is no simultaneous I/O access that uses the 
IOST entry; if this condition is not met, it is unpredictable whether the I/O access will use the old 
or new value of the IOST entry. If software chooses to stop simultaneous I/O accesses, such 
accesses must be stopped at the I/O unit. To prevent an I/O-address-translation access of the 
IOST from getting part of an old value and part of a new value when there is a simultaneous I/O 
access using the entry, software should take either of the following actions:

• Use a doubleword atomic store to the IOST entry. According to PowerPC Architecture, this is 
a single-register doubleword store that is naturally aligned.

• Use an atomic store to set the IOST valid (V) bit to ‘0’, execute an eieio, lwsync, or sync 
instruction, and then store to other bytes in the IOST entry. After making the updates, exe-

60:63 PS

Page size of the pages in this I/O segment. The page size is 4PS KB. PS values are:
• 0001 = 4 KB page size
• 0011 = 64 KB page size
• 0101 = 1 MB page size
• 0111 = 16 MB page size

All four page sizes can be used, regardless of the page sizes used by the PPE and SPEs.

Bits Field Name Description
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cute an eieio, lwsync, or sync instruction, and then execute an atomic store to set the IOST 
V bit to ‘1’. The lwsync instruction can only be used for this purpose if the IOST is in storage 
that is not caching-inhibited. The eieio and sync instructions are unnecessary if the IOST is 
in storage that is both caching-inhibited and guarded.

7.3.4 I/O Page Table

The IOPT is a variable-sized data structure in memory. This table defines the second phase of 
the translation of an I/O address to a real address. For each I/O page, the table can contain an 
entry that specifies the corresponding real page number. The IOPT must start on a 4 KB 
boundary.

7.3.4.1 Table-Entry Layout and Fields (Format 1)

PP M SO RPN

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

RPN H IOID

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Description

0:1 PP

Page Protection 
00 No access. (This can also be used to designate an invalid entry.) 
01 Read access only.
10 Write access only.
11 Read and write access.

2 M
Coherence Required 
0 Memory coherence not required. 
1 Memory coherence required. 

3:4 SO

Storage Ordering for accesses performed on one IOIF with the same IOID and virtual 
channel. 
00 Previous reads and writes are not necessarily performed before a write. 
01 Reserved. 
10 Previous writes are performed before a write.
11 Previous reads and writes are performed before a read or write. 

5:51 RPN

Real Page Number of the translated I/O address:
• For 64 KB page sizes, the 4 least-significant bits of the RPN must be cleared to ‘0’. 
• For 1 MB page sizes, the 8 least-significant bits of the RPN must be cleared to ‘0’. 
• For 16 MB page sizes, the 12 least-significant bits of the RPN must be cleared to ‘0’.

The real address supported has only 42 bits; therefore, bits[0:16] of the RPN field must be 
zeros in IOPT entry format 1. 

52 H

Hint 
1 If IOC_IOST_Origin[HL] = '0', this is a hint to the IOPT cache to retain this entry if 

possible. If IOC_IOST_Origin[HL] = '1', this entry is never displaced from an IOPT 
cache by hardware when handling an IOPT cache miss.

0 No cache hint. 

53:63 IOID I/O Device Identifier. Only the I/O device specified can have its I/O address translated using 
this IOPT entry.
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7.3.4.2 Table-Entry Functions

The entries in this table specify the properties of an I/O page, including its read-write protection, 
memory coherence, storage-ordering, RPN of the page’s translated I/O address, hint for entry-
caching, and the IOID of the devices to which this page applies. This format is called format 1 for 
IOPTs; it is the only format supported in the CBEA processors. 

Generally, software should not create IOPT entries that give I/O devices access to the IOST or 
IOPT, because this allows the I/O device to circumvent I/O-address translation storage protec-
tion.

Page Protection

The page protection (PP) bits in the IOPT entry define the type of access allowed for the I/O unit. 
If PP = ‘00’, no access is allowed. If PP = ‘01’ or ‘11’, an I/O read of the page is permitted. If PP = 
‘10’ or ‘11’, an I/O write of the page is permitted. If the access is attempted but not permitted, an 
I/O page-fault type of I/O exception occurs. Software can set PP = ‘00’ to mark invalid entries.

Memory Coherence

The IOPT M bit is similar to the PowerPC memory-coherence-required storage attribute. If M = ‘1’ 
and the IOIF C bit = ‘1’ (Section 7.7.1 on page 188), memory coherence is maintained by hard-
ware. If M = ‘0’ or if the IOIF C bit = ‘0’, memory coherence is not maintained by hardware. For 
storage that does not have the memory-coherence-required attribute, software must explicitly 
manage memory coherence to the extent required for the program to run correctly. See 
PowerPC Virtual Environment Architecture, Book II for a detailed definition of the memory-coher-
ence-required storage attribute.

Storage Order

The Storage Ordering (SO) bits define the storage order rules that apply to reads and writes from 
one IOIF with the same virtual channel and same IOID, unless the IOIF S bit (Section 7.7.2.2 on 
page 190) allows a more relaxed ordering. Previous writes on the same IOIF with the same 
virtual channel and the same IOID will be performed before a write with a corresponding SO = 
‘10’ or ‘11’ and with the IOIF S bit = ‘1’. Previous reads and writes on the same IOIF with the 
same virtual channel and same IOID will be performed before a read or write with a corre-
sponding SO = ‘11’ and with the IOIF S bit = ‘1’. 

If SO = '00' or the IOIF S bit = ‘0’, the CBEA processors do not order the access relative to 
previous accesses. See Section 7.7.2.2 on page 190 for additional details, including complexities 
associated with locations that do not have the memory-coherence-required storage attribute. 

Real Page Number

An I/O access will read or write the RPN of the translated I/O address if the page-protection (PP) 
bits allow the access for the specified I/O device. If 2p bytes is the page size (as specified in the 
IOST PS field, Section 7.3.3 on page 169), and p is greater than 12 (page size greater than 
4 KB), then the least-significant (p - 12) bits of the RPN must be ‘0’. The CBEA processors 
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support 42 real address bits; bits 0 through 16 of the RPN field must be zeros in IOPT entry. The 
I/O address is checked to ensure that it does not access a page beyond the number of pages in 
the segment, as defined by the NPPT field of the IOST. 

Assume a page size of 2p bytes is specified in the IOST PS field. If the value of the most-signifi-
cant (28 - p) bits of the 28 least-significant I/O address bits is greater than 512 times the NPPT, 
an I/O page fault (Section 9.6.4.4 on page 274) occurs. 

Cache Hint

Depending on the IOC_IOST_Origin[HL] bit (Section 7.3.2 on page 166), the IOPT Hint (H) bit is 
treated as either a hint or a lock. If H = ‘1’, it is a hint to the hardware to retain a valid IOPT-cache 
entry, if possible; if H = ‘1’ and IOC_IOST_Origin[HL] = ‘1’, the IOPT entry is never displaced by 
hardware during an IOPT cache miss. 

The IOPT cache (Section 7.6.2 on page 183) is 4-way associative with 64 congruence classes. 
For a given congruence class, if no valid IOPT entries have H = ‘1’ and IOC_IOST_Origin[HW]  
= ‘1’, then an IOPT-cache miss in this congruence class causes hardware to select one of the 
four ways in the congruence class, based on a pseudo-least-recently-used (LRU) algorithm. For 
an IOPT-cache miss in a second congruence class with two valid entries having H = ‘1’ and two 
entries having H = ‘0’, the IOPT entry will be placed in one of the cache entries having H = ‘0’. For 
an IOPT-cache miss in a third class with three valid entries having H = ‘1’ and one entry having H 
= ‘0’, the IOPT entry will be placed in the cache way with the entry having H = ‘0’. 

I/O Device Identifier

The IOID bits specify the I/O device identifier. Inbound accesses from an I/O unit to the EIB 
contain an IOID as part of their access command, and hardware compares this access-command 
IOID to the IOID in the IOPT. Only the I/O device with this IOID can have its I/O address trans-
lated using the IOPT entry. If other I/O devices attempt translation using this IOPT entry, it will 
result in an I/O exception.

Looped-Back Operations

The CBEA processors do not support looped-back operations from an I/O device.

Architecturally, however, support for looped-back operations is optional for each implementation 
of the CBEA. When supported, commands that are received by the CBEA processors from an 
IOIF device that are routed back out the same IOIF are called looped-back operations. To 
prevent IOIF looped-back operations when I/O-address translation is enabled, one option is to 
ensure that the RPNs in the IOPT are not in the range of real addresses mapped to an IOIF. If 
direct accesses from one IOIF to another IOIF are required, the RPNs corresponding to the 
second IOIF need to be in the IOPT. In this case, looped-back operations from this second IOIF 
can be prevented by using IOIDs for the IOIF-to-IOIF accesses that are different from IOIDs used 
on the second IOIF.
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7.3.4.3 Table-Entry Modifications

An IOPT entry should only be modified when there is no simultaneous I/O access that uses the 
IOPT entry; if this condition is not met, it is unpredictable whether the I/O access will use the old 
or new value of the IOPT entry. If software chooses to stop simultaneous I/O accesses, such 
accesses must be stopped at the I/O unit. To prevent an I/O-address translation access of the 
IOPT from getting part of an old value and part of a new value when there is a simultaneous I/O 
access using the entry, software should take one of the following actions:

• Use a doubleword atomic store to the IOPT entry. According to PowerPC Architecture, this is 
a single-register doubleword store that is naturally aligned.

• Use an atomic store to set the IOPT valid (V) bit to ‘0’, execute an eieio, lwsync, or sync 
instruction, and then store to other bytes in the IOPT entry. After making the updates, exe-
cute an eieio, lwsync, or sync instruction, and then execute an atomic store to set the IOPT 
V bit to ‘1’. The lwsync instruction can only be used for this purpose if the IOPT is in storage 
that is not caching-inhibited (but see Section 7.7.1 on page 188). The eieio and sync 
instructions are unnecessary if the IOPT is in storage that is both caching-inhibited and 
guarded.

• Invalidate the IOPT cache to ensure that the new IOPT entry is read into the cache. 

7.3.5 IOC Base Address Registers

The IOC accepts commands from the EIB in which the address of the command matches the 
real-address ranges specified for each IOIF in the following MMIO registers:

• IOC Base Address Register 0 (IOC_BaseAddr0)

• IOC Base Address Register 1 (IOC_BaseAddr1)

• IOC Base Address Mask Register 0 (IOC_BaseAddrMask0)

• IOC Base Address Mask Register 1 (IOC_BaseAddrMask1)

The IOC_BaseAddrn and IOC_BaseAddrMaskn together identify the range of real addresses to be 
routed to IOIFn, where the value of n is ‘0’ or ‘1’ and is equal to the number of the I/O Interface. 
The IOC supports two IOIF buses, two IOC_BaseAddr registers, and two IOC_BaseAddrMask regis-
ters. 

Because the CBEA processors support only 42-bits of real address, only the least-significant 11 
bits of the IOC_BaseAddrn registers’ Base Real Address and Base Replacement Address fields 
are implemented. Likewise, only the least-significant 11 bits of the IOC_BaseAddrMaskn registers’ 
mask fields are implemented.

Valid values in the mask field and the corresponding address range routed to an IOIF are shown 
in the Table 7-1.

Table 7-1. IOIF Mask and Size of Address Range (Sheet 1 of 2) 

Mask in IOC_BaseAddrMaskn Registers Size of Address Range

x‘000007FF’ 2 GB

x‘000007FE’ 4 GB

x‘000007FC’ 8 GB

x‘000007F8’ 16 GB
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When modifying IOC_BaseAddrn or IOC_BaseAddrMaskn, software should ensure that no accesses 
to the previous or new address range occur by using the following procedure:

1. Ensure that pages for the old and new address ranges have the guarded storage attribute.

2. Ensure that SPE accesses do not occur while these registers are modified, for example, by 
suspending memory flow controller (MFC) DMA transfers using the MFC_CNTL register. 

3. Ensure that previous PPE accesses are performed before storing to IOC_BaseAddrn or 
IOC_BaseAddrMaskn by using one of the synchronization facilities described in Section 20 on 
page 561 (for example, the sync instruction).

4. Ensure that read and write commands from IOIFn are performed on the EIB before storing to 
IOC_BaseAddrn or IOC_BaseAddrMaskn. One potential option is to stop such accesses at the 
IOIF device or I/O device, if such a facility is provided (an I/O device, here, means a device 
that is connected to an IOIF indirectly by an IOIF device). If the IOIF device or I/O device sup-
ports a facility to send an interrupt after its last access, then reception of the external interrupt 
by the PPE is a guarantee that the previous command from the IOIF has been performed on 
the EIB. Although this does not guarantee the data transfer has completed, it is sufficient to 
ensure that the command phase has completed. Alternatively, if reads and writes from the 
IOIF are translated by the IOC (IOC_IOCmd_Cfg[TE] = ‘1’ and IOC_IOST_Origin[0] = ‘1’), then 
the pages corresponding to the range specified by IOC_BaseAddrn and IOC_BaseAddrMaskn 
can be invalidated in the IOST (Section 7.3.3 on page 169) or IOPT (Section 7.3.4 on 
page 171) and IOST cache (Section 7.6.1 on page 181) or IOPT cache (Section 7.6.2 on 
page 183), and, if the IOIF device or I/O device supports a facility to send an interrupt after 
this invalidation, reception of this external interrupt by the PPE is a guarantee that the previ-
ous command from the IOIF has been performed on the EIB.

5. Disable accesses to the IOIF by setting IOC_BaseAddrMaskn[E] = ‘0’.

6. Store to IOC_BaseAddrn with the new value.

7. Store to IOC_BaseAddrMaskn with the new value, setting IOC_BaseAddrMaskn[E] = ‘1’.

8. Load from IOC_BaseAddrMaskn to ensure the effect of the previous store to 
IOC_BaseAddrMaskn.

9. Execute a sync instruction to ensure the completion of the previous load before subsequent 
accesses. 

x‘000007F0’ 32 GB

x‘000007E0’ 64 GB

x‘000007C0’ 128 GB

x‘00000780’ 256 GB

x‘00000700’ 512 GB

x‘00000600’ 1 TB

x‘00000400’ 2 TB

x‘00000000’ 4 TB

Table 7-1. IOIF Mask and Size of Address Range (Sheet 2 of 2) 

Mask in IOC_BaseAddrMaskn Registers Size of Address Range
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7.3.6 I/O Exception Status Register

The I/O Exception Status Register (IOC_IO_ExcpStat) captures error information for an I/O 
exception. This register is described in Section 7.5 I/O Exceptions on page 180. 

7.4 I/O Address Translation

7.4.1 Translation Overview

I/O address translation is available as an option on interfaces configured for the IOIF (but not 
BIF) protocol. If I/O address translation is enabled, the IOC supports an I/O address space of 235 
bytes, which is translated into a 42-bit real addresses. In this case, the IOC uses the least-signif-
icant 35 bits of the IOIF address field and ignores the remaining most-significant bits3. 

The I/O address space is divided into segments. Each segment has 228 bytes, and there are 27 
segments. The supported I/O page sizes are 4 KB, 64 KB, 1 MB, and 16 MB. One of the four 
page sizes can be selected for each I/O segment. One, two, three or four of these pages sizes 
can be used concurrently in the system. 

The IOC supports an IOST cache (Section 7.6.1 on page 181) and an IOPT cache (Section 7.6.2 
on page 183), which can be loaded by hardware or software. Multiple coherency and ordering 
modes support both optimized performance for I/O accesses to memory as well as coherent 
accesses with strong ordering when needed.

All I/O accesses by the CBEA processors are big-endian accesses. If an I/O access is to a little-
endian device, such as a little-endian MMIO register, software must reorder the bytes into big-
endian order. 

Figure 7-5 on page 177 shows an overview of the translation process in accessing the IOST and 
IOPT. For each of the four possible page sizes, this figure shows which bits of the I/O address 
are used in the CBEA processors to select the IOST entry and IOPT entry. The OR operation on 
the IOC_IOST_Origin and the 7-bit segment values is equivalent to an add operation because 
IOC_IOST_Origin is naturally aligned to 4 KB boundaries. 

3. Bit numbering of I/O addresses in this section is based on a 42-bit I/O address with bit 0 being the most-signifi-
cant and bit 41 being the least-significant.
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Figure 7-5. I/O-Address Translation Overview 
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7.4.2 Translation Steps

Figure 7-6 shows a detailed view of the I/O translation process, including details about the IOST 
cache and IOPT cache.

Figure 7-6. I/O-Address Translation Using Cache 
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I/O-address translation is enabled if IOC_IOST_Origin[E] = ‘1’ and IOC_IOCmd_Cfg[TE] = ‘1’. I/O-
address translation is disabled if IOC_IOST_Origin[E] = ‘0’ and IOC_IOCmd_Cfg[TE] = ‘0’. In either 
case, the IOC_IOCmd_Cfg[TE] bit must be set to a value consistent with IOC_IOST_Origin[E]. 

If I/O-address translation is disabled, the I/O address from the IOIF is treated as a real address. 
In this case, the IOC uses the least-significant 42 bits of the IOIF address and ignores the most-
significant 22 bits.

If I/O-address translation is enabled, the following steps are taken by the I/O address-translation 
mechanism if there are misses in the IOST or IOPT cache: 

1. If an IOST-cache miss occurs and IOC_IOST_Origin[HW] = ‘0’, an I/O segment-fault type of 
I/O exception occurs (Section 7.5 on page 180), and I/O-address translation stops. If 
IOC_IOST_Origin[HW] = ‘1’, the IOST entry (Section 7.3.3 on page 169) is loaded using the 
I/O address, the IOST origin field in the IOC_IOST_Origin register, and an index based on the 
IOST size field in the IOC_IOST_Origin register. Concatenating forms the real address of the 
IOST entry, as follows: 

• The most-significant (50 - S) bits of the IOST origin, where S is equal to the maximum of 
0 and (IOST size - 9)

• n ‘0’ bits, where n is equal to the maximum of 0 and (9 - IOST size)

• t least-significant bits of the I/O address-segment bits, where t equals the value of the 
IOST size field

• Three ‘0’ bits

2. If the IOST-entry valid bit is ‘0’, an I/O segment-fault type of I/O exception occurs and I/O-
address translation stops. If the IOST-entry-valid bit is ‘1’, the I/O translation process contin-
ues with the following step. 

3. The I/O address is checked to ensure that it does not access a page beyond the number of 
pages in the segment as defined by the NPPT field of the IOST. A page size of 2p is specified 
in the IOST page-size field. For format 1 (the only format supported in the CBEA processors), 
if the value of the most-significant (28 - p) bits of the 28 least-significant I/O address bits is 
greater than 512 times the NPPT, an I/O page-fault type of I/O exception occurs and I/O-
address translation stops. If an IOPT-cache miss occurs and IOC_IOST_Origin[HW] = ‘0’, an 
I/O page-fault type of I/O exception occurs and the I/O-address translation stops. 

4. A real address is formed and used to access the IOPT entry (Section 7.3.4 on page 171). 
The real address is formed by adding the following two values: 

• The IOPT-base RPN concatenated with x‘000’.

• The most-significant (28 - p) bits of the 28 least-significant I/O address bits concatenated 
with ‘000’, where 2p is the page size specified in the IOST page-size field.

5. If any of the following apply, an I/O page-fault type of I/O exception occurs and I/O-address 
translation stops: 

• The IOPT PP bits are ‘0’. 

• The IOPT PP bits are ‘01’ (read only), and the I/O access was a write operation. 

• The IOPT PP bits are ‘10’ (write only), and the I/O access was a read operation. 

• The IOID does not match the I/O device. 

6. If the access is permitted by the IOPT PP bits, a real address is formed to use for the I/O 
access. For IOPT format 1, the real address is formed by concatenating bits 0 through (58 - 
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p) of the IOPT RPN with the least-significant p bits of the I/O address. The page size speci-
fied in the IOST is 2p. 

7.5 I/O Exceptions

7.5.1 I/O Exception Causes

If I/O-address translation is enabled (IOC_IOST_Origin[E] = ‘1’ and IOC_IOCmd_Cfg[TE] = ‘1’), an 
I/O exception (Section 9.6.4.4 I/O Address Translation on page 274) can occur due to one of the 
following events: 

• An I/O segment fault occurs in the following cases when a translation is attempted for an I/O 
address:

– IOC_IOST_Origin[HW] = ‘0’, and an IOST cache miss occurs.

– IOC_IOST_Origin[HW] = ‘1’, an IOST cache miss occurs, and there is no corresponding 
entry in the IOST.

• An I/O page fault occurs in the following cases when a translation is attempted for an I/O 
address and there is no I/O segment fault:

– IOC_IOST_Origin[HW] = ‘0’ and an IOPT cache miss occurs.

– IOC_IOST_Origin[HW] = ‘1’, an IOPT cache miss occurs, and there is no corresponding 
entry in the IOPT.

– IOC_IOST_Origin[HW] = ‘1’, IOC_IOST_Origin[HL] = ‘1’, an IOPT cache miss occurs and 
all 4 entries for the IOPT cache congruence class have the H bit equal to ‘1’.

• An I/O access that is either translated or not translated and that accesses an invalid real 
address.

• A CBEA processor access to an invalid location in the range of addresses mapped to an IOIF 
bus.

An I/O exception results in an external interrupt (Section 9.6 Direct External Interrupts on 
page 265). I/O exceptions caused by I/O accesses are reported to the I/O subsystem that 
attempted the I/O-address translation. If any of the events in the preceding list are reported as an 
I/O exception, system error interrupt, or machine-check interrupt, and if the access is an SPE 
DMA get or a PPE load, the data returned contains all ones. If reported as an I/O exception, 
system error interrupt, or machine-check interrupt, and if the access is an SPE DMA put or a PPE 
store, the data is discarded. When an I/O exception occurs on an I/O access, additional informa-
tion is captured in the I/O Exception Status Register (IOC_IO_ExcpStat); see Section 7.5.2 on 
page 181. 

Note:  Software should avoid I/O exceptions. If I/O exceptions occur, they should only be a result 
of a software bug or a result of hardware associated with an IOIF that is not working. Whether 
software can or should continue operation after an I/O operation causes an I/O exception is up to 
the programmer or the system designer.

http://www-3.ibm.com/chips/techlib/techlib.nsf/products/PowerPC_970_Microprocessor
http://www-106.ibm.com/developerworks/articles/archguild.html
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7.5.2 I/O Exception Status Register

The I/O Exception Status Register (IOC_IO_ExcpStat) captures error information for an I/O 
exception. The bit fields and values for this register are described in the Cell Broadband Engine 
Registers specification. 

An IOIF device is a device that is directly connected to a CBEA processor’s IOIF port. When an 
I/O exception occurs on an I/O access, an Error response is sent to the IOIF device, and the 
following information related to the fault is captured in the IOC_IO_ExcpStat register:

• I/O address[7:29].

• Access type (read or write).

• I/O device ID. (An I/O device, in this context, is a device that is indirectly connected to a 
CBEA processor’s IOIF by an IOIF device.)

7.5.3 I/O Exception Mask Register

The IOC_IO_ExcpMask[1:2] bits are ANDed with associated I/O segment fault and I/O page fault 
conditions to set IIC_ISR[61], but these mask bits do not gate the setting of the IOC_IO_ExcpStat 
bits. See Section 9 PPE Interrupts on page 239 for information about when an external interrupt 
signal to the PPE is asserted based on these bits.

7.5.4 I/O-Exception Response

Unlike PowerPC page tables, software should normally not expect to set up an IOST or IOPT 
entry after an I/O exception. There is no hardware support to allow an IOIF command to be 
suspended at the point of an I/O exception and later restarted. 

For many types of I/O operations, overruns and underruns occur if there is significant delay asso-
ciated with an I/O exception. Also, the I/O reads and writes to one page might be delayed by the 
I/O exception while subsequent I/O reads, writes, and interrupt operations might complete, 
thereby violating any applicable ordering requirements and potentially giving software an erro-
neous indication that some I/O operation has successfully completed. 

7.6 I/O Address-Translation Caches

To improve performance, the IOC supports an IOST cache and an IOPT cache, shown in 
Figure 7-6 on page 178. These caches can be loaded by hardware or software. Both software 
and hardware can control the contents of these caches as described in the following sections. 

7.6.1 IOST Cache

The IOST cache is direct-mapped and has 32 entries, indexed by I/O address bits [9:13]. These 
address bits correspond to the least-significant five bits of the I/O segment number. If 
IOC_IOST_Origin[HW] = ‘1’, a valid IOST cache entry for the I/O address does not exist, and a 
valid IOST entry for the I/O address exists, the IOST cache is loaded automatically by hardware. 
If IOC_IOST_Origin[HW] = ‘0’ and a valid IOST cache entry for the I/O address does not exist, an 
I/O segment fault occurs.
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7.6.1.1 IOST Cache Access by Software

A doubleword load or store can be used to access each IOST cache entry in the MMIO memory 
map. For information about this map, see the Cell Broadband Engine Registers specification, 
which includes the offset range at which the IOST cache is accessible in the IOC address-trans-
lation MMIO memory map. For a specific 42-bit I/O address, the corresponding IOST cache-entry 
offset in this range is formed by using I/O address[9:13] concatenated with ‘000’. 

The fields in the IOST cache entry have the same meaning as the corresponding fields in the 
IOST, except for the following differences:

• The H bit is not implemented and is treated as a ‘0’.

• Only the least-significant 30 bits of the IOPT Base RPN are implemented.

• Only the least-significant 3 bits of the PS field are implemented.

• There is an additional valid bit and tag field.

The IOST cache-entry valid bit and tag field correspond to values that are typically stored in a 
cache directory. The IOST cache-entry valid bit indicates that the IOST cache entry is valid, 
whereas an IOST valid bit indicates that the IOST entry is valid. There is no tag field in an IOST 
entry. For a given 42-bit I/O address with a corresponding valid entry in the IOST cache, the 
IOST cache-entry tag field has the same value as I/O address[7:8]. The valid bit should be set to 
‘1’ to allow I/O-address translation to use the entry for translating I/O accesses.

After a store to the IOST cache, to guarantee that the new value of the IOST cache entry is used 
on future I/O-address translations, software should load from any IOST cache entry and ensure 
the load has completed before a subsequent store that might cause the new value to be used. 
See Section 7.6.1.3 Simultaneous Hardware and Software Reload of IOST Cache on page 183 
for other considerations when IOC_IOST_Origin[HW] = ‘1’.

Software should ensure that, for IOST cache entries that software reloads, it does not attempt to 
have two or more valid entries in the IOST with the same value in the least-significant 5 bits of the 
I/O segment number, because the IOST cache is direct-mapped and has only 32 entries indexed 
by I/O address[9:13].

If software fails to pre-load an IOST cache entry, and either the hardware IOST cache-miss 
handling is disabled (IOC_IOST_Origin[HW] = ‘0’) or the IOST table does not contain the corre-
sponding entry, an I/O segment fault occurs when an I/O device attempts to read or write the 
location with the corresponding the missing entry.

7.6.1.2 IOST Cache Invalidation by Software

An MMIO store to the IOST Cache Invalidate Register (IOC_IOST_CacheInvd) invalidates one 
entry in the IOST cache. The I/O segment to be invalidated is defined by 
IOC_IOST_CacheInvd[29:35]. Because the IOST cache is direct-mapped, the least-significant 5 
bits of IOC_IOST_CacheInvd[29:35] specify the index of the IOST cache entry. Software must set 
IOC_IOST_CacheInvd[B] to ‘1’ when storing to the IOST Cache Invalidate Register; otherwise, the 
result of the store is undefined. 

When the specified I/O segment has been invalidated in the IOST cache, hardware sets 
IOC_IOST_CacheInvd[B] to ‘0’. Software must only store to the IOST Cache Invalidate Register 
when IOC_IOST_CacheInvd[B] is ‘0’; otherwise, the results of the previous store and current store 



Programming Handbook

 Cell Broadband Engine

Version 1.11
May 12, 2008
 

I/O Architecture
Page 183 of 884

to the IOST Cache Invalidate Register are undefined. When IOC_IOST_CacheInvd[B] is set to ‘0’ 
by the IOC, this guarantees that I/O accesses no longer use the old cached IOST value. 
However, it does not guarantee that all previous I/O accesses that used the old cached IOST 
value have been performed. Typically, software can depend on other facilities to know that these 
I/O accesses have been performed—for example, notification by the I/O device by means of an 
external interrupt. 

Software must ensure that the IOST cache invalidation has completed (IOC_IOST_CacheInvd[B] = 
‘0’) before writing to the IOC_IOST_CacheInvd register, IOPT cache, IOC_IOPT_CacheDir register, 
IOST cache, or IOST cache directory. Software must also ensure that a store to the IOPT cache, 
IOC_IOPT_CacheDir, IOST cache, or IOST cache directory completes before storing to 
IOC_IOST_CacheInvd by executing a sync instruction between the last store to one of these 
arrays and the store to IOC_IOST_CacheInvd.

When IOC_IOST_Origin[HW] = ‘1’, software typically modifies IOST entries before invalidating the 
IOST cache; otherwise, the I/O-address translation facility would reload the old values if needed 
by an I/O access. To ensure the last store to the IOST is performed before the store to 
IOC_IOST_CacheInvd, software should use PowerPC memory-barrier instructions, such as sync, 
or should write the IOST using the storage attributes of both caching-inhibited and guarded.

Note:  Due to the asynchronous nature of DMA transfers, it is important to ensure that DMA 
transfers have completed before removing an IOST-cache or IOPT-cache invalidation. Other-
wise, an I/O exception might occur.

7.6.1.3 Simultaneous Hardware and Software Reload of IOST Cache

If IOC_IOST_Origin[HW] and IOC_IOST_Origin[HL] are both '1', both software and the I/O 
address-translation hardware can load the IOST cache when a miss occurs. This might result in 
hardware and software writing the same IOST cache entries. 

To prevent hardware from overwriting an entry written by software, software can ensure that, for 
any IOST cache entry that software reloads, there are no valid entries in the IOST with the same 
cache congruence class. If there ever were any such entries since boot, and if software wants to 
start using the IOST entry with the same congruence class, software must first make these 
entries in the IOST invalid, execute an enforce in-order execution of I/O (eieio) instruction or a 
synchronize (sync) instruction, invalidate the IOST cache, and wait for invalidation to complete 
before writing the IOST entry.

Software can modify an IOST cache entry when there are no outstanding I/O accesses. How 
software ensures that there are no outstanding I/O accesses is application-dependent.

7.6.2 IOPT Cache

The IOPT cache is 4-way set-associative and has 256 entries, indexed by a 6-bit hash formed 
from the I/O address, as shown in Figure 7-7 on page 185. For each index (congruence class), a 
pseudo-LRU algorithm is used to determine which entry is to be replaced when hardware cache-
miss handling is enabled (that is, when IOC_IOST_Origin[HW] = ‘1’). If IOC_IOST_Origin[HL] = ‘0’ 
and any entry in the congruence class has its Hint (H) bit or Valid (V) bit set to ‘0’, this pseudo-
LRU algorithm avoids replacing a valid entry that has its H bit set to ‘1’. If IOC_IOST_Origin[HL] = 
‘1’, this pseudo LRU algorithm does not replace an entry that has its H bit set to ‘1’, even if the 
valid bit for the IOPT cache entry is ‘0’.
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7.6.2.1 IOPT Cache Access by Software

Doubleword loads or stores can be used to access the IOPT cache directory 
(IOC_IOPT_CacheDir) register in the MMIO memory map. A load of IOC_IOPT_CacheDir simulta-
neously causes the corresponding IOPT cache entry to be read into the IOPT Cache Register 
(IOC_IOPT_Cache). Similarly, a store to IOC_IOPT_CacheDir simultaneously causes the corre-
sponding IOPT cache entry to be written from IOC_IOPT_Cache. 

As shown in the Cell Broadband Engine Registers specification, IOC_IOPT_CacheDir register is 
accessible at a set of offset ranges in the IOC address-translation MMIO memory map. Each way 
of IOC_IOPT_CacheDir is accessed using a different 512-byte range. For a specific 42-bit I/O 
address, the corresponding IOC_IOPT_CacheDir entry offset in this range is formed by adding of 
two quantities:

• x‘0200’ times 1 minus the number of the way of IOC_IOPT_CacheDir

• 6 bits of the IOPT cache hash concatenated with ‘000’

Software can read an entry in the IOPT cache by:

1. Performing a doubleword load from the IOC_IOPT_CacheDir entry. This simultaneously 
causes the corresponding IOPT cache entry to be read into IOC_IOPT_Cache. 

2. Performing a doubleword load from IOC_IOPT_Cache.

Software can write an entry in the IOPT cache by:

1. Storing a doubleword to IOC_IOPT_Cache. This store does not cause an IOPT cache entry to 
be updated.

2. Storing a doubleword to the IOC_IOPT_CacheDir entry. This store causes IOC_IOPT_CacheDir 
to be loaded with the store data and causes the IOPT cache to be simultaneously loaded 
with the value in IOC_IOPT_Cache. Hardware-generated parity bits are also automatically 
loaded. The tag, as determined in Section 7.6.2.2 IOPT Cache Hash and IOPT Cache Direc-
tory Tag on page 185, should be written into the tag field of IOC_IOPT_CacheDir entry and the 
valid bit should be set to ‘1’ to allow I/O-address translation to use this new entry for translat-
ing I/O accesses. 

Note:  Software must not store to the IOPT Cache Invalidate (IOC_IOPT_CacheInvd) register 
between the preceding steps 1 and 2 of the read or write sequence; otherwise, the result of step 
2 is undefined.

After a store to IOC_IOPT_CacheDir, to guarantee that the new value of the IOPT cache entry is 
used on future I/O-address translations, software should load from any IOC_IOPT_CacheDir entry 
and ensure the load has completed before a subsequent store that might cause the new value to 
be used. See Section 7.6.2.4 Simultaneous Hardware and Software Reload of IOPT Cache on 
page 187 for other considerations when IOC_IOST_Origin[HW] = ‘1’.

Software must not write two or more ways of the IOC_IOPT_CacheDir for the same congruence 
class with valid entries having the same tag value; otherwise, the results of subsequent I/O-
address translations are undefined.
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7.6.2.2 IOPT Cache Hash and IOPT Cache Directory Tag

If hardware I/O-address translation is enabled, software must know how the IOPT cache hash is 
created to avoid setting too many bits in the same congruence class. The 6-bit IOPT cache hash 
is used by the hardware to select the IOPT cache congruence class for hardware reloads. The 
generation of this hash value is shown in Figure 7-7. 

The generation of the hash value in Figure 7-7 is based on the following steps:

1. Select 4, 8, 9, or 9 bits of the page number from the I/O address, based on the page size of 
16 MB, 1 MB, 64 KB, or 4 KB, respectively. The page size is defined by the IOST entry PS 
field.

2. Select the most-significant 0, 0, 3, or 7 bits of the page number from the I/O address, based 
on the page size of 16 MB, 1 MB, 64 KB, or 4 KB, respectively.

3. Add the value selected in step 2 to the 30-bit IOPT Base RPN from the IOST entry.

4. Select the least-significant 6 bits of the result from the previous step.

5. Put these bits in reverse order; that is, swap bits 0 and 5, swap bits 1 and 4, and swap bits 2 
and 3.

Figure 7-7. IOPT Cache Hash and IOPT Cache Directory Tag 
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6. From the bits selected in step 1, select the least-significant 4, 6, 6, or 6 bits, based on the 
page size of 16 MB, 1 MB, 64 KB, or 4 KB, respectively. 

7. If the page size is 16 MB, create a 6-bit value from two ‘0’ bits concatenated with the 4 bits 
from the previous step; otherwise, create a 6-bit value equivalent to the value created in the 
previous step.

8. Exclusive-OR the 6 bit value from step 5 with the 6-bit value from the previous step.

The result of the exclusive-OR in step 8 is the IOPT cache hash.

The IOC_IOPT_CacheDir tag is determined by the following additional steps:

a. Create a 9-bit value by padding as many ‘0’ bits as necessary to the left of the bits from 
step 1.

b. Form a 33-bit IOC_IOPT_CacheDir tag by concatenating the most-significant 24 bits from 
the addition result in step 3 with the 9-bit value from the previous step.

7.6.2.3 IOPT Cache Invalidation by Software

An MMIO store to IOC_IOPT_CacheInvd invalidates IOPT cache entries corresponding to a 
number of IOPT entries. The value in the Number of Entries (NE) field in IOC_IOPT_CacheInvd is 
equal to one less than the number of IOPT entries to be invalidated in the IOPT cache. The 
MMIO store invalidates all IOPT cache entries corresponding to IOPT entries located at the 
doubleword addresses between (IOPTE_DRA || ‘000’) and ((IOPTE_DRA + NE) || ‘000’), inclu-
sive. The IOPTE_DRA field in IOC_IOPT_CacheInvd specifies the I/O Page Table Entry Double-
word Real Address, where (IOPTE_DRA || ‘000’) is the real address of the first IOPT entry to be 
invalidated. Software must set IOC_IOPT_CacheInvd[B] to ‘1’ when storing to IOC_IOPT_CacheInvd; 
otherwise, the result of the store is undefined. 

When the IOPT cache entries have been invalidated for the specified IOPT entries, hardware 
sets the busy bit, IOC_IOPT_CacheInvd[B], to ‘0’. Software must only store to the IOPT Cache 
Invalidate Register when IOC_IOPT_CacheInvd[B] is ‘0’; otherwise, the results of the previous 
store and current store to IOC_IOPT_CacheInvd are undefined. When IOC_IOPT_CacheInvd[B] is 
set to ‘0’ by the IOC, this guarantees that I/O accesses no longer use the old cached IOPT value. 
However, it does not guarantee that all previous I/O accesses that used the old cached IOPT 
value have been performed. Typically, software can depend on other facilities to know that these 
I/O accesses have been performed—for example, notification by the I/O device by means of an 
external interrupt. 

An invalidation of an IOPT cache entry does not change the value of the H bit in the cache. 

If the I/O-address translation facility already has an outstanding load of an IOPT entry when soft-
ware does an IOPT cache invalidation that includes that IOPT entry, then hardware will not set 
IOC_IOPT_CacheInvd[B] to ‘0’ until the outstanding load completes and either the reloaded IOPT 
cache entry is invalidated or the reload is somehow aborted.

Software must ensure that the IOPT cache invalidation has completed (IOC_IOPT_CacheInvd[B] = 
‘0’) before writing IOC_IOST_CacheInvd, IOPT cache, IOC_IOPT_CacheDir, IOST cache, or IOST 
cache directory. Software must ensure that a store to the IOPT cache, IOC_IOPT_CacheDir, IOST 
cache, or IOST cache directory completes before storing to IOC_IOPT_CacheInvd by executing a 
sync instruction between the last store to one of these arrays and the store to 
IOC_IOPT_CacheInvd.
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When IOC_IOST_Origin[HW] = ‘1’, software typically modifies IOPT entries before invalidating the 
IOPT cache; otherwise, the I/O-address translation facility would reload the old values if needed 
by an I/O access. Software should use PowerPC memory-barrier instructions, such as sync, to 
ensure that the last store to the IOPT is performed before the store to IOC_IOPT_CacheInvd or 
software should write the IOPT using the storage attributes of both caching-inhibited and 
guarded.

7.6.2.4 Simultaneous Hardware and Software Reload of IOPT Cache

If IOC_IOST_Origin[HW] and IOC_IOST_Origin[HL] are both '1', both software and the I/O 
address-translation hardware can load the IOPT cache when a miss occurs. This might result in 
hardware and software writing the same IOPT cache entries.

To prevent hardware from overwriting an entry written by software, software must set the H bits 
in the IOPT cache to ‘1’. To prevent hardware from writing an entry that software is changing at 
the time, software must only modify IOPT cache entries that already have the H bit equal to ‘1’. At 
boot time, if both software and hardware reloads are to be used, software should reserve a 
number of entries in each congruence class by setting their H bits to ‘1’ before setting 
IOC_IOST_Origin[HW] to ‘1’. 

Software should only modify an IOPT cache entry for which the H bit is a ‘0’ when there are no 
outstanding I/O accesses. How software ensures that there are no outstanding I/O accesses is 
application-dependent. If there is an outstanding IOPT cache miss at the time software writes the 
H = ‘0’ entry, hardware cache-miss handling might overwrite the entry that software modified 
even though software set the H bit to ‘1’.

Alternatively, software can use the techniques described in Section 7.6.1.3 on page 183 for IOST 
cache loading.

Invalidation of an IOPT cache entry will not change the value of the H bit in the cache. This allows 
software to use the hardware-invalidation mechanisms and still retain the ability to later load the 
entries that were reserved for software use (that is, entries with H = ‘1’).

Software can also preload the IOPT cache even when IOC_IOST_Origin[HL] = ‘0’. However, if 
IOC_IOST_Origin[HW] = ‘1’ and there is a simultaneous I/O access that has an IOPT cache miss 
in the same congruence class, then hardware miss handling might cause the software entry to be 
overwritten. If an IOPT cache miss occurred just before software wrote the entry, hardware miss 
handling might have already selected the entry to be written when the IOPT data arrives from 
memory. At the time hardware detects an IOPT cache miss, hardware selects an entry in the 
congruence class, using the first entry to meet certain criteria according to the following order 
and criteria:

1. An entry with the valid bit equal to ‘0’.

2. An entry with the H bit equal to ‘0’, using the pseudo-LRU algorithm among such entries.

3. An entry with the H bit equal to ‘1’, using the pseudo-LRU algorithm among such entries.

If hardware selects an entry that software subsequently writes before hardware updates the entry 
from the IOPT, the entry that software writes is overwritten when the IOPT data arrives from 
memory.
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7.7 I/O Storage Model

The PowerPC Architecture and the Cell Broadband Engine Architecture (CBEA) define the order 
of storage operations by the PPE and SPEs within the processor coherence domain (all CBEA 
processor elements and all interfaces to main storage). These documents also define the order 
of storage operations by the PPE and SPEs relative to I/O mechanisms. This section clarifies the 
order of storage operations by the PPE and SPEs relative to an IOIF, because ordering opera-
tions defined by the PowerPC Architecture (such as, sync) have no corresponding equivalent on 
the IOIFs. 

This section also describes the order of operations on an IOIF and its relationship to the order in 
which the operations are performed within the processor coherence domain or on another IOIF. 
Accesses to locations outside the processor coherence domain are considered by the coherence 
domain to be performed when they are considered performed on the IOIF. From the perspective 
of the CBEA, these accesses are performed coherently in the coherence domain of the I/O 
subsystem in the same order as they are performed on the IOIF. However, an I/O subsystem 
might have a different perspective. It is the responsibility of the I/O subsystem that attaches to 
the IOIF to define ordering rules for the completion of IOIF operations in the coherence domain of 
the I/O subsystem.

The processor systems map I/O units to main storage. Storage operations that cross the 
processor coherence-domain boundary are referred to as I/O operations. These accesses can 
be initiated either internally in the CBEA processor (called outbound accesses) or externally 
(called inbound accesses). An access initiated externally is called an I/O access, and the units 
that initiate them are called I/O units. An I/O unit can be one or more physical I/O devices, I/O 
bridges, or other functional units attached to an IOIF, in which one value of the IOID described in 
the IOPT is used for all accesses by these physical entities.

A physical IOIF can be divided into several virtual IOIFs called virtual channels. An access on 
one virtual channel must be allowed to pass accesses for other virtual channels so that a slower 
virtual channel does not block a faster virtual channel. (See the Hardware Initialization Guide for 
a description of I/O virtual channels.)

7.7.1 Memory Coherence

I/O accesses—inbound accesses from an I/O unit to the CBEA processor’s element interconnect 
bus (EIB)—can be treated as either memory-coherence-required or not, depending on the 
following control bits: 

• IOC TE Bit—This is the enable bit for I/O-address translation. It is located in the IOCmd Con-
figuration Register (IOC_IOCmd_Cfg). Translation is enabled when TE = ‘1’. See the Cell 
Broadband Engine Registers specification for details. 

• IOIF C Bit—This is the memory-coherence bit sent with each command on the IOIF. Memory 
coherence is required on any read or write when C = ‘1’, and memory coherence is not 
required when C = ‘0’. 

• IOPT M Bit—This is the memory-coherence bit from the IOPT entry or IOPT-cache entry cor-
responding to the accessed location, as described in Section 7.3.4 on page 171. Memory 
coherence is required when M = ‘1’, and memory coherence is not required when M = ‘0’. 
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Table 7-2 summarizes the effects on memory coherence of I/O accesses for the various combi-
nations of control bits. If either C = ‘0’ or M = ‘0’, the access is performed on the EIB as not 
coherent. For incoming I/O addresses that are not translated, the IOIF C bit is used to determine 
coherence requirements. If this bit is ‘0’, the access is performed on the EIB as not coherent. The 
access is also performed on the EIB as not coherent if the address is in the range defined by the 
EIB Local Base Address Register 0 (EIB_LBAR0) and the EIB Local Base Address Mask Register 
0 (EIB_LBAMR0)—or by the EIB_LBAR1 and EIB_LBAMR1 registers.
.

There is no hardware support for maintaining I/O-subsystem memory coherence relative to 
caches in the processors. Any data in the I/O subsystem must be accessed with the storage 
attribute of caching-inhibited, or software must manage its coherency. For storage that does not 
have the memory-coherence-required attribute, software must manage memory coherence to 
the extent required for the program to run correctly. The operations required to do this can be 
system-dependent. Because the memory-coherence-required attribute for a given storage loca-
tion is of little use unless the PPE, all SPEs, and all I/O units that access the location do so 
coherently, statements about memory-coherence-required storage elsewhere in this section 
generally assume that the storage has the memory-coherence-required attribute for all the PPE, 
SPEs, and I/O units that access it.

7.7.2 Storage-Access Ordering

The following sections describe both outbound and inbound ordering of storage accesses 
between the EIB and the IOIFs. For background about storage ordering, see Section 20.1 
Shared-Storage Ordering on page 561. 

7.7.2.1 Outbound (EIB to IOIF) Accesses

All outbound read and write accesses to I/O locations mapped to main storage locations are 
performed in program order. The IOIF C bit (Section 7.7.1 on page 188) and the IOIF S bit 
(Section 7.7.2.2 on page 190) are driven to indicate memory-coherence-required on all accesses 
by the PPE or SPEs. Outbound write data associated with write accesses is sent on the IOIF in 
the order in which acknowledgment responses are received from the I/O unit on the IOIF.

To be more specific, processor outbound accesses are performed on the IOIF in a weakly 
consistent storage order, except as ordered by one of the following rules:

• Accesses performed by a PPE or SPE to the same location beyond the IOIF are performed in 
a strongly ordered manner on the IOIF. (The “same location” is defined as any byte locations 
that match.) Thus, the same locations might be accessed even if the initial addresses used 
for the accesses do not match. 

Table 7-2. Memory Coherence Requirements for I/O Accesses  

Control Bit Combination1
Memory-Coherence-Required Attribute 

Used for the I/O AccessTE C M

x 0 x Not coherent

0 1 x Memory-coherence-required

1 1 0 Not coherent

1 1 1 Memory-coherence-required

1. An “x” indicates don’t care or not applicable.
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• If a PPE performs two stores to different locations across the same IOIF, and those storage 
locations are both caching-inhibited and guarded, the stores are performed on the IOIF in 
program order.

• If an SPE performs two writes to different locations across the same IOIF, if the locations are 
caching-inhibited, and if the writes are ordered by a fence or barrier, the writes are per-
formed on the IOIF in program order. The SPE writes can be DMA transfers or send-signal 
instructions with fence or barrier options (sndsig<f,b>). See the Cell Broadband Engine 
Architecture for details on which writes are ordered by a fence or barrier, details on tag-spe-
cific ordering, and details on SPE read ordering. Because reads are necessarily completed 
on the IOIF before they can be completed in the CBEA processors, Cell Broadband Engine 
Architecture ordering rules are sufficient to establish read order on the IOIF.

• When a PPE executes a sync or eieio instruction, a memory barrier is created which orders 
applicable storage accesses pairwise as defined by the PowerPC Architecture. The ordering 
defined by the PowerPC Architecture applies to the order in which the applicable storage 
accesses are performed on the IOIF. 

• When an SPE executes an MFC synchronize (mfcsync) or MFC enforce in-order execution 
of I/O (mfceieio) command, a memory barrier is created for DMA transfers within the same 
DMA tag group4. This orders applicable storage accesses pairwise as defined by the Cell 
Broadband Engine Architecture and PowerPC Architecture. The ordering defined by these 
architectures applies to the order in which the applicable storage accesses are performed on 
the IOIF.

• If an interrupt is transmitted by a PPE or an SPE to a unit on the IOIF, previous loads, stores, 
or DMA transfers by that PPE or SPE to locations beyond the same IOIF are performed on 
the IOIF before the interrupt is transmitted on the IOIF.

In general, nonoverlapping accesses caused by different PPE load instructions that specify loca-
tions in caching-inhibited storage can be combined into one access. Nonoverlapping accesses 
caused by separate store instructions that specify locations in caching-inhibited storage can also 
be combined into one access. Such combining does not occur if the load or store instructions are 
separated by a sync instruction, or by an eieio instruction if the storage is also guarded. Such 
combining does not occur for SPE accesses to locations beyond the IOIF that are ordered by a 
barrier, mfceieio, or mfcsync command, or by another MFC command that has a barrier or 
fence option.

For ordering accesses, the IOC makes no distinction between a specific PPE or SPE. All EIB 
read and write commands to the IOIF are transmitted on the IOIF in the order in which they are 
performed on the EIB, regardless of the unit initiating the access. If eieio instructions are config-
ured to be propagated to an IOIF, all eieio, read, and write commands from the EIB are trans-
mitted on the IOIF in the order in which they are performed on the EIB. An I/O device can use 
eieio to determine which read and write commands need to be ordered instead of performing all 
read and write commands in the order in which they are received.

7.7.2.2 Inbound (IOIF to EIB) Accesses

The ordering of inbound storage accesses is determined by the following control bits:

• IOC TE Bit—See Section 7.7.1 on page 188. 

4. The Cell Broadband Engine Architecture specifies that the mfcsync and mfceieio commands are tag-specific, 
but the CBEA processors treat all three barrier command identically, having no tag-specific effects.
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• IOIF S Bit—This is the strict-ordering bit sent with each command on the IOIF. Strict ordering 
is required on any read or write when S = ‘1’, unless the SO bits (see the next list item) over-
ride this requirement. Weak ordering is permitted when S = ‘0’.

• IOPT SO Bits—These are the storage-ordering bits from the IOPT entry or IOPT-cache entry 
corresponding to the accessed location, described in Section 7.3.4 on page 171. 

Table 7-3 summarizes the effects on inbound read and write storage order for the various combi-
nations of control bit. The table assumes that the accesses are from one I/O unit on one virtual 
channel on one IOIF. Inbound data transfers from the IOIF to the EIB that are associated with 
these commands are kept in the order in which they are received by the EIB. 

Table 7-4 on page 192 differs from Table 7-3 in that the accesses are (a) only from different I/O 
addresses, (b) to locations that are either not cached by the PPE or have the memory-coher-
ence-required attribute, and (c) made with no assumption about whether the previous access 
was or was not a write. 

Table 7-3. Ordering of Inbound I/O Accesses from Same or Different I/O Addresses  

Control Bit Combination1

Same IOID2 and VC3, 
Same I/O Address

Same IOID and VC, 
Different I/O Address, 
Previous Command 

Was a Write

Same IOID and VC, 
Different I/O Address, 
Previous Command 

Was Not a Write
TE S SO

0 0 x Ordered Not Ordered Not Ordered

0 1 x Ordered Ordered Ordered

1 0 00 Ordered Not Ordered Not Ordered

1 0 01 Undefined (SO = ‘01’ is reserved)

1 0 10 Ordered Not Ordered Not Ordered

1 0 11 Ordered Not Ordered Not Ordered

1 1 00 Ordered Not Ordered Not Ordered

1 1 01 Undefined (SO = ‘01’ is reserved)

1 1 10 Ordered Ordered Not Ordered

1 1 11 Ordered Ordered Ordered

1. An “x” indicates don’t care or not applicable. 
2. IOID = I/O identifier. 
3. VC = I/O virtual channel. See the Hardware Initialization Guide for a description of I/O virtual channels.
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If either S = ‘0’ or SO = ‘00’, the access on the EIB may be performed out of order relative to a 
preceding access, unless the address, IOID, and I/O virtual channel (VC) of both accesses 
match. For incoming I/O addresses that are not translated, the IOIF S bit is used to determine 
ordering requirements. 

Aside from interrupt commands, only read or write commands that have the same IOID and VC 
are ordered. Interrupts are ordered behind all previous writes from the same IOIF interface. Inter-
rupt-reissue commands are intercepted before they reach the EIB, and therefore have no 
ordering properties.

I/O accesses to the EIB from an IOIF are ordered based on the implicit storage ordering for real 
addresses if the I/O address is not translated, or are ordered based on the SO bits if the I/O 
address is translated. This ordering can be further relaxed if S = ‘0’. 

Ordering Rules

Inbound I/O accesses are unordered relative to the PPE and SPEs, except in the following 
cases; the SO value shown in these exceptions is either the implicit SO for real addresses, if the 
I/O address is not translated, or the IOPT SO bits if the I/O address is translated:

• Accesses by a specific I/O unit on one IOIF virtual channel, to the same location in the CBEA 
processor, are performed (with respect to the PPE and SPEs) in the order in which they are 
initiated on the IOIF if the location has the storage attribute of memory-coherence-required or 
if the location is not in a CBEA processor cache. The address is used to determine whether 
the “same location” that is accessed is the I/O address passed on the IOIF. (The “same loca-
tion” is defined as any byte locations that match.) 

Note:  If an I/O device reads from a system memory location using one I/O address, and an 
I/O device writes to the same system memory location using a different address, these oper-
ations need not be kept in order. To have these operations performed in the expected I/O 
order, the system architect must use the same virtual channel and the same IOID on the IOIF 
for all I/O devices on an I/O bus with a shared-memory address space, such as PCI Express. 

• An I/O unit write, with corresponding SO = ‘10’ and S = ‘1’, will be performed with respect to 
the PPE and SPEs after all previous writes by the same I/O unit on the same IOIF virtual 

Table 7-4. Ordering of Inbound I/O Accesses from Different I/O Addresses  

Control Bit Combination1

Ordering of I/O Accesses2

TE S SO

x 0 x Previous reads and writes NOT necessarily performed before this access.

0 1 x Previous reads and writes performed before this access.

1 1 00 Previous reads and writes NOT necessarily performed before this access.

1 1 01 Undefined (SO = ‘01’ is reserved).

1 1 10 Previous writes performed before this access.

1 1 11 Previous reads and writes performed before this access.

1. An “x” indicates don’t care or not applicable. 
2. Assumes accesses are reads or writes from different I/O addresses, accesses are from one IOIF bus with the same 

IOID and virtual channel, and addressed locations either have the storage attribute of memory-coherence-required 
or are not in a PPE cache.
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channel have been performed with respect to the PPE and SPEs. This is true only for previ-
ous writes to locations that have the storage attribute of memory-coherence-required, or that 
are not in a PPE cache. This is true regardless of the SO values of the previous writes. 

• An I/O unit read or write, with a corresponding SO = ‘11’ and S = ‘1’, will be performed with 
respect to the PPE and SPEs after all previous reads and writes on the same IOIF virtual 
channel by the same I/O unit. This is true only for previous accesses to locations that have 
the storage attribute of memory-coherence-required or that are not in a PPE cache. This is 
true regardless of the SO values of the previous accesses. 

• Data from an I/O read must be allowed to pass on the IOIF before a CBEA-processor access 
that has been previously queued in the IOC, to prevent a possible deadlock. For example, 
read data from an SPE’s LS must be allowed to pass to the IOIF before a write command that 
is queued in the IOC waiting for a command credit.

• Data from an I/O write must be allowed to pass on the IOIF to system memory before another 
I/O access to the same coherency block is performed on the internal system interconnect 
bus, to prevent a possible deadlock. For example, an I/O device might send two write com-
mands to the SPU Signal Notification Register 1. Until data for the first write is received, the 
second write might never get a response on the IOIF. After the SPE receives the data for the 
first write, the second write command gets acknowledged on the IOIF. Thus data for the first 
write must be sent without waiting for a response for the second write command. A coher-
ency block is a collection of memory bytes corresponding to a cache line.

• Typically, software is notified of the completion of an I/O operation by means of an interrupt 
transmitted on the IOIF after the last I/O read or write required by the I/O operation. 

– Software must ensure that, after the interrupt, software sees the effect of the previous I/O 
writes performed by the I/O unit assuming that all writes and the interrupt are transmitted 
on the same IOIF virtual channel. If the I/O subsystem does not ensure that previous I/O 
writes have occurred on the IOIF before a subsequent interrupt is transmitted on the 
IOIF, additional system-specific or I/O-subsystem-specific methods might be required to 
ensure that software sees the effect of previous I/O writes.

– The I/O unit must not transmit an interrupt on the IOIF until the last I/O read associated 
with the interrupt has been performed on the IOIF.

The preceding ordering rules do not apply to an access that causes an I/O exception. Other 
preceding and subsequent accesses are still ordered according to these rules.

Read or write accesses from an IOIF to a CBEA processor are never combined into one access.

Cache Writebacks

Before an I/O write is performed to a storage location that does not have the memory-coherence-
required attribute, software must ensure that modified versions of the memory location in any 
PPE cache or SPE atomic cache5 are written to memory by using PPE cache-management 
instructions or SPE synchronization instructions or MFC commands. Otherwise, if the cached 
copy is modified, the modified line might subsequently be written to memory, overlaying the 
memory copy written by the I/O device. After the modified cache copies are written to memory, 

5. Four cache lines are available in each SPE for atomic operations.
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software must ensure that a cached copy does not become modified until after the I/O write is 
performed. If deemed necessary, privileged software can use the following methods to ensure 
this:

• Software can assign the location the storage attribute of caching-inhibited.

• Software can remove the corresponding valid entry from the page table and translation 
lookaside buffers (TLBs).

• Software can use the page protection bits to prevent writes to the location.

See the PowerPC Architecture for details about caching-inhibited, page table, TLB, and page 
protection bits.

Interrupts

Regardless of the virtual channel and IOID, interrupt commands from an IOIF are not performed 
on the EIB until all previous writes from the IOIF are successfully performed on the EIB. 
“Successfully performed” means the writes have obtained a combined response of acknowl-
edged and not retry. This does not guarantee the data transfer for a previous write has 
completed. However, if the PPE accesses such a location after reading the corresponding inter-
rupt information by means of the MMIO register IIC_IPP0 or IIC_IPP1, this PPE access is 
performed after the previous IOIF write. Thus, if this PPE access to such a location is a load, the 
load returns the data written by the previous IOIF write, assuming there is no intervening write to 
the location.

Because the data transfer for a write from the IOIF is not guaranteed to be completed when the 
subsequent interrupt is presented to the PPE, and because the SPEs do not operate in the EIB 
coherence domain, and because the interrupt does not have a cumulative ordering property, if a 
subsequent SPE access to its LS is a result of a subsequent PPE store, the SPE access can still 
occur before the data transfer for the write from the IOIF. For example, if the PPE stores to a 
synergistic processor unit (SPU) signal-notification register after receiving the interrupt, and the 
SPE accesses LS after the signal notification event, the SPE access might occur before the data 
transfer for the write from the IOIF. As described in the Section 20.1.5 on page 577, the MFC 
multisource synchronization facility can be used to ensure that such previous data transfers have 
completed.

7.7.3 I/O Accesses to Other I/O Units through an IOIF

Note:  The following description conforms to the I/O architecture. However, unlike the I/O archi-
tecture, the CBEA processors do not support operations from an IOIF that access the same IOIF. 

An I/O access from an IOIF may access the same or a different IOIF. The IOIF on which the I/O 
command occurred is called the incoming IOIF, or the IOIF in bus. The IOIF that is the target of 
the I/O command is called the outgoing IOIF, or the IOIF out bus. 

I/O accesses from an IOIF to a different IOIF are ordered based on the implicit SO for real 
addresses, if the I/O address is not translated, or based on the IOPT SO, if the I/O address is 
translated. This ordering can be further relaxed if the S bit = ‘0’. I/O accesses from an IOIF to a 
different IOIF are generally unordered on the outgoing IOIF, except in the following cases:

• Accesses by a specific I/O unit on one IOIF virtual channel that access the same location 
beyond the outgoing IOIF are performed on the outgoing IOIF in the order they are initiated 
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on the incoming IOIF. For I/O accesses, the address used to determine whether the “same 
location” is accessed is the I/O address passed on the IOIF. (The “same location” is defined 
as any byte locations that match.)

• An I/O-unit write with a corresponding SO = ‘10’ and S = ‘1’ will be performed on the outgoing 
IOIF after all previous writes by the same I/O unit on the same IOIF virtual channel have 
been performed on the outgoing IOIF, regardless of the storage attribute of memory-coher-
ence-required or the SO values of the previous writes. 

• An I/O-unit read or write with a corresponding SO = ‘11’ and an S = ‘1’ will be performed on 
the outgoing IOIF after all preceding reads and writes on the same IOIF virtual channel by 
the same I/O unit, regardless of the storage attribute of memory-coherence-required or the 
SO values of the previous accesses.

• An I/O-unit interrupt will be performed on the outgoing IOIF after all previous writes by the 
same I/O unit on the same IOIF virtual channel have been performed on the outgoing IOIF, 
regardless of the storage attribute of memory-coherence-required or the SO values of the 
previous writes. 

– If the I/O subsystem does not ensure that previous I/O writes have occurred on the IOIF 
before a subsequent interrupt packet is transmitted on the IOIF, additional system-spe-
cific or I/O subsystem-specific methods might be required to ensure that software in the 
destination IOIF sees the effect of previous I/O writes.

– The I/O unit must not transmit an interrupt on the IOIF until the last I/O read associated 
with the interrupt has been performed on the IOIF.

Read or write accesses from an IOIF to a different IOIF are never combined into one access.

7.7.4 Examples 

The examples in this section reference combinations of the following control bits:

• IOIF C Bit—This is the memory-coherence bit sent with a command on the IOIF. Memory 
coherence is required on any read or write when C = ‘1’, and memory coherence is not 
required when C = ‘0’. 

• TLB I Bit—This is the caching-inhibited bit from the TLB Real Page Number Register 
(TLB_RPN), as described in the Cell Broadband Engine Registers specification. Caching is 
inhibited when I = ‘1’, and caching is permitted when I = ‘0’. 

• IOPT M Bit—This is the memory-coherence bit from the IOPT entry or IOPT-cache entry cor-
responding to the accessed location, as described in Section 7.3.4 on page 171. Memory 
coherence is required when M = ‘1’, and memory coherence is not required when M = ‘0’. 

• IOIF S Bit—This is the strict-ordering bit sent with a command on the IOIF. Strict ordering is 
required on any read or write when S = ‘1’, unless the SO bits (see the next list item) override 
this requirement. Weak ordering is permitted when S = ‘0’.

• IOPT SO Bits—These are the storage-ordering bits from the IOPT entry or IOPT-cache entry 
corresponding to the accessed location, described in Section 7.3.4 on page 171. 

In the first example that follows, the ordering of an outgoing DMA transfer with respect to a 
subsequent send-signal is described. The subsequent examples demonstrate the order of 
commands originating externally on an IOIF relative to commands originating inside the CBEA 
processor. Unless otherwise stated, locations A and B in these examples refer to memory that is 
in the processor coherence domain.
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7.7.4.1 Example 1

Consider the following example of an SPE initiating an outbound DMA transfer to an I/O device, 
followed by the SPE sending a signal notification to a different location on that I/O device. On all 
outgoing I/O accesses, the C and S bits are set to ‘1’ by hardware; in this example, the I bit in the 
TLB is assumed to be ‘1’:

1. DMA transfer to location A in the I/O device.

2. sndsig <f,b> to location B in the I/O device.

The write command to location A is performed on the IOIF before the write command to location 
B is performed on the IOIF. There is no guarantee that the data is transferred on the IOIF by the 
time that the write command to location B is performed. However, the data is transmitted on the 
IOIF in the order the commands are acknowledged on the IOIF. In some cases the write to loca-
tion B might cause some operation to be initiated in an I/O bridge or I/O device, and this opera-
tion might have a dependency on the data for location A. In this case, the I/O bridge or I/O device 
must ensure the data for location A has arrived at the necessary destination point before initiating 
the operation triggered by the write to location B.

7.7.4.2 Example 2

Software must ensure that PPE thread 0 does not have a modified copy of location A in its cache 
when the write to location A is performed. If PPE thread 0 might have an unmodified copy of loca-
tion A, then software must execute a dcbf instruction to the location to ensure that PPE thread 0 
loads data from memory. For IOIF1 virtual channel 3, C and S are the IOIF address-modifier bits; 
SO and M are bits from the IOPT entries corresponding to the locations A and B. For PPE thread 
0, the loads use translated addresses and use M bits from the PowerPC Architecture page table 
entry (PTE) corresponding to locations A and B. M = ‘1’ means the access has a storage attribute 
of memory-coherence-required.

If PPE thread 0 loads the new value of location B, it must also load the new value of A. On behalf 
of IOIF1, the IOC performs the write to memory location A before performing the write to location 
B.

7.7.4.3 Example 3

Location A is a memory location that has the caching-inhibited attribute and is therefore not in 
any cache. For PPE thread 0, the load uses a translated address and uses an I bit from the 
PowerPC Architecture page table entry corresponding to location A. Location A is in the nonco-
herent range defined by EIB_LBAR1 and EIB_LBAMR1 so the M bit used for both the IOIF1 and PPE 
thread 0 is forced to indicate the location is not coherent.

IOIF1 Virtual Channel 3 PPE Thread 0

1. Write location A (IOPT[M] = ‘0’) 1. Load location B (PTE[M] = ‘1’)

2. Any type of serialization facility that orders these loads.

2. Write location B(IOPT[M] = ‘1’, C = ‘1’, SO = ‘10’, S = ‘1’) 3. Load location A (PTE[M] = ‘1’)
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After the interrupt, PPE thread 0 loads the new value of A from memory. 

7.7.4.4 Example 4

For IOIF1 virtual channel 3, C is an IOIF address-modifier bit, M is the bit from the IOPT entry 
corresponding to locations A. For PPE thread 0, the load uses a translated address and uses an 
M bit from the PowerPC Architecture page table entry corresponding to location A.

After the interrupt, the lwsync or sync ensures that if location A was initially in the cache, the 
cache line invalidation due to the I/O write occurred before the load by PPE thread 0. Thus, PPE 
thread 0 loads the new value of A from memory.

7.7.4.5 Example 5

When IOPT SO equals ‘10’ or '11' and the IOIF S bit is '1' for an I/O write to memory in the CBEA 
processor, a previous I/O write to memory in the CBEA processor must be performed in order, 
with respect to loads performed by a PPE. 

Typically, I/O writes will not be separated by an eieio or sync instruction. This requires special 
consideration in the system-hardware design if cache-invalidate operations due to snoops are 
delayed. For example, if an I/O write hits a valid cache line in the PPE—which requires the cache 
entry to be invalidated—and the PPE delays invalidating the line, the PPE must be able to handle 
any future operations that hit the same line while the invalidation is still pending.

If the PPE loads the new value of location B, it must also load the new value of location A. 
Suppose location A is in the PPE’s L1 or L2 cache, but location B is not. The PPE loads the new 
value of B from memory. The PPE must not load the old value of A from its cache. This implies a 
guarantee that the cache line containing B must be invalidated before the load of A.

IOIF1 Virtual Channel 3 PPE Thread 0

1. Write location A (IOPT[M] = ‘0’) 1. External interrupt occurs

2. Send interrupt 2. Load location A (IOPT[M] = ‘0’, IOPT[I] = ‘1’)

IOIF1 Virtual Channel 3 PPE Thread 0

1. Write location A (IOPT[M] = ‘1’, IOPT[C] = ‘1’) 1. External interrupt occurs 

2. Send interrupt 2. lwsync or sync

3. Load location A (IOPT[M] = ‘1’)

IOIF1 Virtual Channel 3 IOID 9 PPE Thread 0

1. Write location A 
(M = ‘1’, C = ‘1’, SO = ‘00’, S = ‘0’). 1. Load location B (M = ‘1’).

2. Use any synchronization mechanism that causes these 
loads to be performed in order (see Section 20 Shared-
Storage Synchronization on page 561).

2. Write location B
(M = ‘1’, C = ‘1’, SO = ‘10’, S = ‘1’). 3. Load location A (M = ‘1’).
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Several methods follow that describe using PowerPC assembler code for serializing loads to 
cacheable, coherent memory. In these methods, r1, r2, r3, and r4 are GPR locations, r2 contains 
the address of location B, and r1 contains the address of location A.

Method 1 (lwsync):

lwz r3,0(r2)
lwsync
lwz r4,0(r1)

Method 2 (sync):

lwz r3,0(r2)
sync
lwz r4,0(r1)

Method 3 (dependent branch and isync):

lwz r3,0(r2)
xor. r4,r3,r3
bne $-4       #branch never taken 
isync
lwz r4,0(r1)

Method 4 (dependent operand address)

lwz r3,0(r2)
xor r4,r3,r3
lwz r4,r4,r1

7.7.4.6 Example 6

Even if the PPE loads the new value of location B, it may load either the new or old value of A. 
The IOC can perform the write to memory location A after performing the write to location B.

IOIF1 Virtual Channel 3 IOID 9 PPE Thread 0

1. Write location A
(M = ‘1’, C = ‘1’, SO = ‘11’, S = ‘1’). 1. Load location B (M = ‘1’).

2. Use any serialization mechanism that orders these 
loads.

2. Write location B 
(M = ‘1’, C = ‘1’, SO = ‘00’). 
The value of the S bit is irrelevant in this instance. 

3. Load location A (M = ‘1’).
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7.7.4.7 Example 7

If the read of A returns the new value of location A, the read of B must return the new location of 
B. 

Any of the following PowerPC instructions can be used to serialize stores to cacheable, coherent 
memory: lwsync, eieio, sync.

7.7.4.8 Example 8

If the SPE 0 DMA gets the new value of location B, its other DMA must get the new value of A. 

7.7.4.9 Example 9

If SPE 0 loads the new value of Signal-Notification Register 1, it must also load the new value of 
A. 

IOIF1 Virtual Channel 3 IOID 9 PPE Thread 0

1. Read location A
(M = ‘1’, C = ‘1’, SO = ‘00’, S = ‘0’). 1. Store to location B (M = ‘1’).

2. Use any serialization mechanism that causes these 
stores to be performed in order.

2. Read location B 
(M = ‘1’, C = ‘1’, SO = ‘11’, S = ‘1’). 3. Store to location A (M = ‘1’).

IOIF1 Virtual Channel 3 IOID 9 SPE 0

1. Write location A
(M = ‘1’, C = ‘1’). 1. DMA from location B (M = ‘1’).

2. Use any serialization mechanism that causes these DMA 
transfers to be performed in order (see the Cell Broadband 
Engine Architecture).

2. Write location B
(M = ‘1’, C = ‘1’, SO = ‘10’, S = ‘1’). 3. DMA from location A (M = ‘1’).

IOIF1 Virtual Channel 3 IOID 9 SPE 0

1. Write location A in SPE 0 LS 
(SO = ‘00’, S = ‘0’).

1. Read channel for SPE 0’s SPU Signal-Notification 
Register 1.

2. Write SPE 0’s SPU Signal-Notification Register 1
(SO = ‘10’, S = ‘1’). 2. Load from location A in SPE 0 LS.
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7.7.4.10 Example 10

Location A is assumed to be in a caching-inhibited page in memory. Thus, there is no copy of 
memory location A in any cache when the write to location A occurs. If SPE 0 loads the new 
value of Signal-Notification Register 1, SPE 0 must also load the new value of A. 

7.7.4.11 Example 11

Even if SPE 0 DMA-transfers the new value of location B, it may transfer either the new or old 
value of A. The IOC may perform the write to memory location A after performing the write to 
location B.

7.7.4.12 Example 12

If the read of A returns the new value of location A, the read of B must return the new value of B. 

7.7.4.13 Example 13

If SPE 0 loads the new value of location B, it must also load the new value of A. 

IOIF1 Virtual Channel 3 IOID 9 SPE 0

1. Write location A 
(M = ‘0’, C = ‘0’, SO = ‘00’, S = ‘0’).

1. Read channel for SPE 0’s SPU Signal-Notification 
Register 1.

2. Write SPE 0’s SPU Signal-Notification Register 1
(M = ‘0’, C = ‘0’, SO = ‘10’, S = ‘1’). 2. DMA from location A.

IOIF1 Virtual Channel 3 IOID 9 SPE 0

1. Write location A 
(M = ‘1’, C = ‘1’, SO = ‘11’, S = ‘1’). 1. DMA from location B (M = ‘1’).

2. Use any serialization mechanism that causes these DMA 
transfers to be performed in order.

2. Write location B 
(M = ‘1’, C = ‘1’, SO = ‘00’). 3. DMA from location A (M = ‘1’).

IOIF1 Virtual Channel 3 IOID 9 SPE 0

1. Read location A
(M = ‘1’, C = ‘1’, SO = ‘00’, S = ‘0’). 1. DMA write to location B (M = ‘1’).

2. Use any serialization mechanism that causes these DMA 
transfers to be performed in order.

2. Read location B 
(M = ‘1’, C = ‘1’, SO = ‘11’, S = ‘1’). 3. DMA write to location A (M = ‘1’).

IOIF1 Virtual Channel 3 IOID 9 SPE 0

1. Write location A in SPE 0 LS
(M = ‘0’, C = ‘0’, SO = ‘00’, S = ‘0’). 1. Load from location B in SPE 0 LS.

2. Write location B in SPE 0 LS
(M = ‘0’, C = ‘0’, SO = ‘10’, S = ‘1’). 2. Load from location A in SPE 0 LS.
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7.7.4.14 Example 14

If the read of A returns the new value of location A, the read of B must return the new value of B. 

7.7.4.15 Example 15

A value of x‘1’ in location B indicates to an I/O device when to perform an I/O operation. The I/O 
device polls this location. Initially, location B has a ‘0’ value.

There is no guarantee that the I/O device will receive the most recent data for location A. There is 
no guaranteed ordering of reads from one end of the IOIF versus writes from the other end of the 
IOIF.

IOIF1 Virtual Channel 3 IOID 9 SPE 0

1. Read location A in SPE 0 LS
(M = ‘0’, C = ‘0’, SO = ‘00’, S = ‘0’). 1. Store to location B in SPE 0 LS.

2. Read location B in SPE 0 LS
(M = ‘0’, C = ‘0’, SO = ‘11’, S = ‘1’). 2. sync

3. Store to location A in SPE 0 LS. 

PPE I/O Device

1. MMIO store to location A in I/O device.
1. Read from location B.
If the I/O device received a new data value from location B, 
it performs step 2.

2. sync

3. Store x‘1’ to location B. 2. Perform I/O operation, assuming it has new data for A.
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8. Resource Allocation Management

8.1 Introduction

The Cell Broadband Engine Architecture (CBEA) processors1 resource allocation management 
(RAM) facility can allocate time portions of managed resources (memory banks and I/O inter-
faces) to requesters (PowerPC Processor Element [PPE], Synergistic Processor Elements 
[SPEs], or I/O devices). The requesters can be assigned to one of four resource allocation 
groups (RAGs). A portion of a resource's time is represented by a token. The RAM facility’s token 
manager (TKM) manages the amount of each resource’s time that is allocated to each RAG by 
controlling the generation of tokens for a RAG at a programmable rate and the granting of gener-
ated tokens to a requester. To access a resource, a requester must first acquire a corresponding 
token from the TKM.

Figure 8-1 on page 204 shows an overview of the RAM facility. Here, I/O resources are repre-
sented by the I/O interface controller (IOC) command queue that supports the two I/O interfaces 
(IOIFs), and memory resources are represented by the memory interface controller (MIC) 
command queue. Before performing a read or write operation on the element interconnect bus 
(EIB) that accesses a managed resource, requesters request a token for that particular resource 
from the TKM. The TKM generates tokens and can retain a limited number of available tokens for 
brief amount of time. If a token request arrives when the corresponding token is available, the 
token is granted, unless (for SPE and I/O requesters only) there is feedback from the MIC (for a 
memory bank token) or IOC (for an IOIF token) command queue to block the grant. After a token 
is granted, the requester can access the resource on the EIB. 

1. The Cell Broadband Engine (Cell/B.E.) and PowerXCell 8i processors are collectively called CBEA processors. 
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PPE token requests are somewhat different than shown in Figure 8-1, as described in 
Section 8.4 on page 208. Figure 8-2 on page 205 shows a more detailed view of the requesters 
and resources. The SPE local storages (LSs), EIB, and the processor internal arrays and regis-
ters in memory-mapped address spaces are unmanaged resources.

Figure 8-1. Resource Allocation Overview 

* Feedback from the IOC command queue only occurs when the IOIF (not the BIF) protocol is used. 
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Figure 8-2. Managed Resources and Requesters 
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8.2 Requesters

The resource allocation groups (RAGs) are groups of zero or more requesters. These requesters 
are physical or virtual units that can initiate load or store requests or DMA read or write accesses. 
There are 17 requesters, as shown in Figure 8-2 on page 205:

• One PPE (both threads)

• Eight SPEs.

• Four virtual I/O channels for physical interface IOIF0

• Four virtual I/O channels for physical interface IOIF1

Table 8-5 on page 231 lists the configuration registers used to assign requesters to RAGs. 

8.2.1 PPE and SPEs

When resource allocation is enabled, each requester belongs to one and only one RAG at any 
given time. However, the RAG assigned to a requester can be changed by software over the 
course of time. Each RAG is identified by its resource allocation group ID (RAID). The PPE and 
each SPE are assigned a RAID by software, as described in Section 8.6 on page 229 and 
Section 8.7 on page 233.

8.2.2 I/O

Each IOIF interface has four virtual channels, one for each of the four RAGs. For each IOIF, RAM 
virtual channel r is associated with RAID r, for r = 0 to 3. An external bridge or I/O device must 
be able to identify the virtual channel associated with each physical transfer on the IOIF. A virtual 
channel can be used for both reads and writes. This information is passed to the CBEA 
processor with the address and command. The IOC acts as the agent on behalf of the virtual 
channels associated with incoming commands. The static or dynamic assignment of an I/O 
device to a RAG is the responsibility of the external bridge or I/O device.

8.2.2.1 Virtual Channel Configuration

As described in Cell Broadband Engine Registers specification, the memory-mapped I/O (MMIO) 
IOCmd Configuration Register(IOC_IOCmd_Cfg) defines which outgoing virtual channel is used for 
outgoing accesses—that is, read or write commands to the IOIF from the PPE, an SPE, or the 
other IOIF interface. The IOC_IOCmd_Cfg[CVCID0] field specifies the virtual channel for outgoing 
commands on IOIF0 and the IOC_IOCmd_Cfg[CVCID1] field specifies the virtual channel for 
outgoing commands on IOIF1. The outgoing virtual channel has no significance with respect to 
the RAM unit in the CBEA processor where the command originated. However, if two CBEA 
processors are connected by means of an IOIF, the outgoing virtual channel on one CBEA 
processor becomes an incoming virtual channel on the other CBEA processor. The incoming 
virtual channel is associated with a RAG in the CBEA processor that is the target of the incoming 
command.

For an access from one IOIF to another IOIF, the virtual channel used for the incoming access on 
one IOIF is independent of the virtual channel used for the outgoing command on the other IOIF.
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8.2.2.2 Interchannel Delay

Delays occur when outbound and inbound requests are competing for the same resource. For 
example, accesses from two virtual channels might contend for the same memory bank token; 
because there is only one physical link, accesses on the link are serialized even if they are to 
different virtual channels.

Accesses on different virtual channels might delay each other due to:

• EIB-address or data contention

• SPE LS contention

• A miss in the I/O-address translation cache for one virtual channel

• IOIF contention 

The last type of contention (IOIF) should be minimal because the IOIF resource is managed by 
the RAM facility. 

8.3 Managed Resources

As shown in Figure 8-2 on page 205, the RAM facility can manage up to the following 20 
resources:

• Memory banks 0 through 15—For the PPE, both L2-cache and noncacheable unit (NCU) 
loads and stores. 

• IOIF0 In Bus—IOIF or Cell Broadband Engine interface (BIF) protocol. For the IOIF protocol 
on the PPE, only noncacheable loads; for BIF protocol on the PPE, both cacheable and non-
cacheable loads. 

• IOIF0 Out Bus—IOIF or BIF protocol. For the IOIF protocol on the PPE, only noncacheable 
stores; for BIF protocol on the PPE, both cacheable and noncacheable stores. 

• IOIF1 In Bus—IOIF protocol. For the PPE, only noncacheable loads. 

• IOIF1 Out Bus—IOIF protocol. For the PPE, only noncacheable stores. 

The RAM facility allocates resources’ time over long time periods. As the time period decreases, 
there is less certainty about allocation effects. RAM is not a solution for queueing effects when 
resources are highly used—in which case, latency increases. Although RAM is expected to be 
used for bandwidth management, RAM does not guarantee that the RAGs will get the allocated 
bandwidths. 

RAM allocates the time that a resource is available for a RAG, without regard to whether the allo-
cated time is actually used for requested data transfers. RAM allocates the time of resources, but 
does not guarantee the use by a RAG of the allocated time if this allocation exceeds the capabil-
ities of units in the RAG or exceeds the use of the resource by the software. It is up to software to 
use the time of a resource in an optimal manner to achieve a required bandwidth. 

The following types of actions might help achieve optimal bandwidth:

• Writing 128 bytes in a naturally aligned 128-byte block.

• Sequential accesses that read or write equal amounts of data to all memory banks.

• Limited use of the caching-inhibited storage attribute for memory.
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• Infrequent translation lookaside buffer (TLB) misses; that is, maintain locality in loads, stores, 
and DMA transfers, or pin the TLB entries using the replacement management table (RMT).

• Updating a cache line before it is displaced from the PPE L2 cache.

• Limiting the sharing of data among the PPE and SPEs or I/O devices.

8.4 Tokens

Managed resources are allocated on the basis of portions of time, represented by tokens. Before 
using a managed resource, a requester obtains a token for the resource, as shown in Figure 8-1 
on page 204. One token is obtained for every read or write access, of up to 128 bytes, that is 
wholly contained within a naturally aligned 128 bytes. Tokens are consumed when the command 
that required the token has been successfully transferred on the EIB. 

A requester may have only one outstanding token requests per resource, with the exception that 
an SPE and IOC may have two outstanding token requests for the IOIF0 In and Out buses. The 
token manager (TKM) grants tokens at a programmable rate for each RAG.

8.4.1 Tokens Required for Single-CBEA-Processor Systems

A requester might need multiple tokens for a single data transfer, one for each resource that its 
access uses. For example, an I/O device on the IOIF0 interface needs two tokens to transfer 
data to memory, one for the specific memory bank stored to and one for the IOIF0 In data bus. 
Table 8-1 shows combinations of tokens that must be obtained for operations on the EIB and 
IOIF interfaces in a single-CBEA-processor system.

Table 8-1. Tokens Needed for EIB or IOIF Operations in Single-CBEA-Processor Systems  
(Sheet 1 of 3)

Requester and Operation

Tokens Required

Target 
Memory 

Bank
(1 of 16)

IOIF0 In IOIF0 Out IOIF1 In IOIF1 Out

PPE

Memory write of 128 bytes 1

Memory write of 1 to 16 bytes 1 or 22

PPE or SPE

Read from memory of 1 to 128 bytes 1

1. The IOC requests memory-write tokens according to the following modes, configured by means of IOC_IOCmd_Cfg:

– One token regardless of the write length (1 to 128 bytes)
– Two tokens for lengths less than 16 bytes and one token for 16 to 128 bytes (mode for memory error-correcting 

code [ECC] and Extreme Data Rate [XDR] DRAMs with write-masked)
– Two tokens for lengths less than 128 bytes and one token for 128 bytes (mode for XDR DRAMs that does not 

support write-masked)
2. For caching-inhibited writes to memory, the PPE requests 1 or 2 tokens, as specified by the bus interface unit (BIU) 

configuration ring bit “2 Token Decode for NCU Store” at power-on reset (POR). If this bit is ‘0’, one token is 
obtained; if this bit is ‘1’, two tokens are obtained. Also see the IOC_IOCmd_Cfg[SXT] bit. 
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1 to 128 byte read from I/O bridge or I/O device attached to 
IOIF0 1

1 to 128 byte write to I/O bridge or I/O device attached to 
IOIF0 1

1 to 128 byte read from I/O bridge or I/O device attached to 
IOIF1 1

1 to 128 byte write to I/O bridge or I/O device attached to 
IOIF1 1

 SPE

Memory write of 16 to 128 bytes 1

Memory write of 1 to 8 bytes 2

 IOC as Agent for I/O Device on IOIF0

Write to LS or CBEA processor memory-mapped registers 1

Read from LS or CBEA processor memory-mapped registers 1

Write to memory of 1 to 16, 32, 48, 64, 80, 96, or 112 bytes 1 or 21 1

Write to memory of 128 bytes 1 1

Read of 1 to 128 bytes that does not cross a 128-byte 
boundary 1 1

Write to I/O bridge or I/O device attached to IOIF1 1 1

Read from I/O bridge or I/O device attached to IOIF1 1 1

Read or write to I/O bridge or I/O device attached to IOIF0 1 1

 IOC as Agent for I/O Device on IOIF1

Write to LS or CBEA processor memory-mapped registers 1

Read from LS or CBEA processor memory-mapped registers 1

Write to memory of 1 to 16, 32, 48, 64, 80, 96, or 112 bytes 1 or 21 1

Write to memory of 128 bytes 1 1

Read from memory of 1 to 128 bytes that does not cross a 
128-byte boundary 1 1

Table 8-1. Tokens Needed for EIB or IOIF Operations in Single-CBEA-Processor Systems  
(Sheet 2 of 3)

Requester and Operation

Tokens Required

Target 
Memory 

Bank
(1 of 16)

IOIF0 In IOIF0 Out IOIF1 In IOIF1 Out

1. The IOC requests memory-write tokens according to the following modes, configured by means of IOC_IOCmd_Cfg:

– One token regardless of the write length (1 to 128 bytes)
– Two tokens for lengths less than 16 bytes and one token for 16 to 128 bytes (mode for memory error-correcting 

code [ECC] and Extreme Data Rate [XDR] DRAMs with write-masked)
– Two tokens for lengths less than 128 bytes and one token for 128 bytes (mode for XDR DRAMs that does not 

support write-masked)
2. For caching-inhibited writes to memory, the PPE requests 1 or 2 tokens, as specified by the bus interface unit (BIU) 

configuration ring bit “2 Token Decode for NCU Store” at power-on reset (POR). If this bit is ‘0’, one token is 
obtained; if this bit is ‘1’, two tokens are obtained. Also see the IOC_IOCmd_Cfg[SXT] bit. 
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8.4.1.1 PPE Access Considerations

The PPE has a cache with 128-byte cache lines. When software executes a load, store, dcbt, or 
dcbtst that is not caching-inhibited, the PPE only performs a memory read operation on the EIB 
if an L2 miss occurs. Any L2 miss can also cause a castout of a modified cache line, which 
results in a 128-byte memory write. These L2-miss memory read and write operations require a 
128-byte EIB operation. 

An instruction fetch can also cause an L2 miss. A load, store, or instruction fetch for which the 
address is translated might have a TLB miss. An L2 miss can also occur if hardware sets the 
page-table Change bit for a store or searches the page table for the TLB miss and the page-table 
entry is not in the L2 cache. A castout can also occur due to a dcbf instruction. 

When software executes a load or a store that is caching-inhibited, the PPE does an EIB opera-
tion to memory, to an IOIF, or to the MMIO register space, depending on the destination address. 
The length of the load or store operation is defined by the instruction. 

When software executes a store that is caching-inhibited and not guarded, the PPE can combine 
multiple stores to the same quadword into one store operation on the EIB. The length of this store 
operation can be 1, 2, 4, 8, or 16 bytes, aligned to the operand size, depending on the number of 
stores combined. 

8.4.1.2 SPE Access Considerations

An SPE maintains a 6-cache-line buffer (the memory flow controller’s [MFC’s] atomic cache). 
Some buffer entries are used for atomic commands and some for page-table accesses. Page-
table accesses are needed when a page-table Change bit must be set or a hardware page-table 
search is needed for a TLB miss. When the target of an atomic command or page-table access is 

Write to I/O bridge or I/O device attached to IOIF0 1 1

Read from I/O bridge or I/O device attached to IOIF0 1 1

Read or write to I/O bridge or I/O device attached to IOIF1 1 1

Table 8-1. Tokens Needed for EIB or IOIF Operations in Single-CBEA-Processor Systems  
(Sheet 3 of 3)

Requester and Operation

Tokens Required

Target 
Memory 

Bank
(1 of 16)

IOIF0 In IOIF0 Out IOIF1 In IOIF1 Out

1. The IOC requests memory-write tokens according to the following modes, configured by means of IOC_IOCmd_Cfg:

– One token regardless of the write length (1 to 128 bytes)
– Two tokens for lengths less than 16 bytes and one token for 16 to 128 bytes (mode for memory error-correcting 

code [ECC] and Extreme Data Rate [XDR] DRAMs with write-masked)
– Two tokens for lengths less than 128 bytes and one token for 128 bytes (mode for XDR DRAMs that does not 

support write-masked)
2. For caching-inhibited writes to memory, the PPE requests 1 or 2 tokens, as specified by the bus interface unit (BIU) 

configuration ring bit “2 Token Decode for NCU Store” at power-on reset (POR). If this bit is ‘0’, one token is 
obtained; if this bit is ‘1’, two tokens are obtained. Also see the IOC_IOCmd_Cfg[SXT] bit. 
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in this buffer, there is no read operation on the EIB. But when the target is not in this buffer, a 
128-byte memory read operation occurs on the EIB. When this buffer-miss occurs, a castout of 
another buffer entry might occur, resulting in a 128-byte write operation on the EIB. 

MFC DMA operations might need to be split into multiple EIB operations because the EIB only 
supports operations of 1 to 15 bytes without crossing a quadword boundary, and it only supports 
quadword integer multiples without crossing a 128-byte boundary.

8.4.1.3 I/O Access Considerations

An IOIF device can initiate read and write operations on the IOIF interface. All real-mode IOIF 
reads and writes and successfully translated IOIF reads and writes result in EIB operations. The 
IOIF device operations might need to be split into multiple IOIF operations because the IOIF 
interface and the EIB only support operations of 1 to 15 bytes without crossing a quadword 
boundary and integer multiples of quadwords without crossing a 128-byte boundary.

8.4.1.4 Multiple Token Requests

Some operations at the software level or I/O-device level might result in multiple token requests. 
For example:

• Writes to memory that are less than 16 bytes in size require a read-modify-write operation in 
the MIC, and this results in two token requests from the requester—one for read and one for 
write.

• SPE 128-byte DMA writes to aligned caching-inhibited storage memory locations using a 
translated address that gets a TLB miss, which is handled by a search of the hardware page 
table. In this case, one or two tokens are needed for the page-table access (one for the pri-
mary hash and, potentially, one for the secondary hash) and one token is needed for the 
memory write. 

• PPE writes to memory that experience an instruction TLB miss (up to 2 tokens), an ICache or 
L2 miss of the instruction (1 token), a write-address data TLB miss (up to 2 tokens), and a 
read (1 token). In this case, up to 6 tokens are needed. Read latency becomes long when all 
memory accesses are to the same memory bank. 

Because the TLB miss is not known when the access is initially attempted, and the final target 
resource of a DMA transfer is not known until the translation is successful, the tokens are 
obtained one at a time, as needed, until the real address is known. When the real address is 
known, at least one token is obtained, per resource used by an EIB operation, before initiating 
the access on the EIB. 

8.4.1.5 PPE Replacement Tokens

PPE token requests are treated as high-priority requests by the TKM. With the exception of the 
PPE, tokens are not requested before the requester has a specific access to make. When the 
CBEA processor is powered up, the PPE resets to a state where it has one token for each of the 
20 possible resources at boot time. The PPE requests a replacement token in parallel with the 
EIB access that uses the same resource. This allows the PPE to bank one token for each 
resource before there is a specific access that needs the token. This reduces latency for TLB 
misses and L2 cache misses. If the access requires two memory tokens, the PPE might need to 
obtain the second token before performing the operation.
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In the case of a TLB miss that requires a search of the hardware page table using the secondary 
hash, the accesses to the primary and secondary page-table entry group (PTEG) might occur 
immediately if the PPE already has tokens for these or if one of the PTEGs is in the L2 cache. 
However, if the page-table accesses for both hashes are to the same memory bank, the second 
access can only be made after the PPE has replaced the token used on the first access.

If the target is a managed resource, tokens are required for the following EIB operations: read, 
read with intent to modify, read with no intent to cache, write, write with kill, write with clean, and 
write with flush (see the Glossary on page 835). A memory token is consumed even though the 
EIB operation was satisfied by intervention and the memory bank might not actually be 
accessed. If speculative-read mode is enabled (MIC_Ctl_Cnfg_0[1] = ‘0’), a memory read might 
occur even though intervention occurs or the EIB command receives a retry response.

8.4.2 Operations Requiring No Token

In general, a token must be obtained by a requester for every use of memory. However, there are 
some exceptions to this rule. The amount of total resource time allocated should be less than the 
theoretical maximum resource time to allow for accesses that do not request tokens.

Operations that do not require tokens include:

• L2 cache writes back a modified cache line to memory in response to another requester 
doing one of the following operations:

– EIB Write with Flush operation that hits a modified cache line (partial cache-line write 
due to small SPE DMA or a small or unaligned I/O device access to memory)

– EIB reads of fewer than 128 bytes that hit a modified cache line (partial cache-line reads 
due to SPE DMA or I/O device access to memory; intervention on the EIB is not sup-
ported for these)

– EIB Flush (dcbf) operation that hits a modified cache line

– EIB Clean (dcbst) operation that hits a modified cache line

For the preceding cases, the L2 cache writes back the modified cache line to memory with-
out obtaining a token because there is no facility in the EIB for the PPE to obtain the RAID of 
the requester causing the cache line to be written back to memory. If software and I/O 
devices infrequently cause these situations, the effect on the accuracy of the RAM facility is 
small.

• The IOC performs memory accesses for I/O-address translation. If software carefully man-
ages the I/O segment table (IOST) cache and I/O page table (IOPT) cache either by using 
the hint bits or by preloading these caches, the number of misses might be small and the 
effect introduced by this exception can be minimized.

• DMA transfer between the LSs of two SPEs (the LS is an unmanaged resource). 

• Accesses to memory-mapped registers within the CBEA processor. 

• All EIB requests that do not require a data transfer, including sync, tlbie, tlbsync, eieio, and 
larx. 
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8.4.3 Tokens Required for Multi-CBEA-Processor Systems

The RAM facility is supported in a limited manner for multiple CBEA processors connected 
through the IOIF0 interface using the BIF protocol. In a multi-CBEA-processor system, the use of 
resources in or attached to the CBEA processor (also referred to as the local CBEA processor) 
are managed by the TKM within that CBEA processor for accesses by requesters within that 
CBEA processor. The use of memory and IOIF1 resources in or attached to the CBEA processor 
by requesters in the other CBEA processor are not directly managed. Such resources use can 
only be indirectly managed by managing the use of the BIF protocol. Resource allocations for 
IOIF0 effectively become allocations for the BIF protocol, although configuration bits in the PPE, 
SPEs, and IOC can be set so these units do not depend on obtaining tokens.

The PPE, SPEs, and IOC have configuration registers that recognize the real addresses corre-
sponding to:

• Memory in the local CBEA processor

• IOIF1 attached to the local CBEA processor

• 8 MB MMIO register space within the local CBEA processor 

Addresses associated with IOIF0 or the BIF protocol are addresses that do not correspond to 
one of these three local spaces. In a multi-CBEA-processor environment, this allows all 
addresses associated with resources in or attached to the other the CBEA processor to be iden-
tified as using the BIF protocol. Because the BIF-protocol IOIF resource is used by these 
accesses, by the command and response phase of any coherent read or write, and by command-
only transactions, the availability of the IOIF resource for read and write data cannot be defini-
tively stated. However, an IOIF0 token is required for BIF-protocol reads and writes that might 
cause data to be transferred. 

8.5 Token Manager

The token manager (TKM) is shown in Figure 8-1 on page 204 It receives token requests, gener-
ates tokens at a software-programmable rate, and grants tokens to requesters when the tokens 
are available. In each clock cycle, each physical requester might request a token. Token 
requests are latched by the TKM and potentially granted at a later time. 

8.5.1 Request Tracking

The TKM tracks 17 virtual requesters (Section 8.2 on page 206), each with up to 20 resource 
targets. The TKM also tracks the priority of requests for the SPEs. For PPE and SPE requests, 
the TKM records the RAID for the RAG. Internally, the TKM keeps track of requests by RAG. For 
each RAG, the TKM records nine high-priority requests (PPE and SPE 0:7) for each resource 
and 10 low-priority requests (SPE 0:7 and IOC 0:1) for each resource. The TKM allows both IOIF 
and memory token requests on both IOC0 and IOC1.The TKM uses round-robin pointers for 
selecting among the high-priority and low-priority requests within each RAG. For more informa-
tion, see Section 8.5.5.4 Memory-Token Grant Algorithm on page 219 and Section 8.5.6 I/O 
Tokens on page 220.
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8.5.2 Token Granting

Figure 8-3 on page 215 shows the organization of the TKM with respect to token granting. For 
each RAG, the TKM uses Allocation Registers and rate decrementers to determine how often 
and exactly when to grant tokens, and it uses Token-Available Latches to record when tokens 
are available for the RAG. It has round-robin pointers per priority, per resource, and per RAG to 
track which of multiple requesters in a RAG should be granted a token. For tokens that are not 
used by a RAG and that may be granted to other requesters in other RAGs—the Unallocated 
RAG (RAG U) described in Section 8.5.3 on page 215—the TKM Priority Register (TKM_PR) 
defines the priority of other RAGs in obtaining these unused available tokens.

TKM_CR[44:47] enables the granting of tokens to RAG 0:3, respectively. When the bit for a RAG 
is disabled, no tokens are granted for requesters assigned to the RAG. If a particular RAG is not 
used, software can disable the RAG to save power by clearing the RAG-enable in 
TKM_CR[44:47]. However, disabling the RAG does not prevent token-generation within the RAG; 
token generation is disabled by disabling the rate decrementer, which is done by clearing the 
appropriate bit in TKM_CR[55:58] for the required RAG. TKM_CR[54] controls token generation for 
RAG U (see Section 8.5.3 on page 215). Any token generated by a RAG but not granted to a 
requester can eventually be classified as unused, as described in Section 8.5.7 Unused Tokens 
on page 220. Unused tokens can be shared and granted to another RAG if enabled by 
TKM_CR[51]. 

To grant tokens at a programmable rate, the Allocation Registers define the period of time 
between token-generation for a RAG. The TKM uses the TKM Memory Bank Allocation 
(TKM_MBAR), TKM IOIF0 Allocation (TKM_IOIF0_AR), and TKM IOIF1 Allocation (TKM_IOIF1_AR) 
MMIO registers for this purpose. The rate decrementers track the periods of time. Rate decre-
menters cannot be directly loaded by software. These decrementers are decremented at a rate 
specific to the resource and at a rate established by a programmable prescaler specified by an 
Allocation Register. When a rate decrementer is ‘0’ and is to be decremented again, the rate 
decrementer expires. Not only must the rate decrementer reach ‘0’, it also must be decremented 
again, at which time it is loaded again, based on the allocation.

When a rate decrementer for memory expires, a token becomes available for the associated RAG 
and the 3-bit interval value from the appropriate Allocation Register field is loaded into the rate 
decrementer. The most-significant bit of the interval value loaded into a rate decrementer is an 
implied '1', with the following exception for memory: when TKM_MBAR[33] = ‘0’ and a RAG's pres-
caler value for memory is '0', a '0' is loaded into the RAG's rate decrementer for memory. 



Programming Handbook

 Cell Broadband Engine

Version 1.11
May 12, 2008
 

Resource Allocation Management
Page 215 of 884

8.5.3 Unallocated RAG

In addition to RAGs 0:3, there is a RAG called Unallocated, or RAG U. There are no requesters 
in this RAG. Tokens are generated for this RAG using a rate decrementer and an Allocation 
Register similar to other RAGs. Because there are no RAG U requesters, all tokens generated 
for RAG U become unused tokens that can be granted to other requesters in other RAGs. The 
TKM_PR register defines the other RAGs’ priority in obtaining Unallocated tokens. See 
Section 8.5.7 Unused Tokens on page 220 for an explanation of the unused tokens. 

Figure 8-3. Token Manager 
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RAG U can take care of occasional spikes in token request rates—for example, if RAG 0 typically 
needs only 10% of memory bandwidth but occasionally needs 20% for a brief time. In such a 
case, it might be best to allocate only 10% to RAG 0, but allow RAG U tokens be given to RAG 0 
to cover the occasional difference. RAG U is also a buffer that is taken from circulation because 
the MIC queues might fill up due to random-access patterns from RAGs. Unallocated tokens are 
sensitive to feedback that represents the use of a resource. See Section 8.5.12 Feedback from 
Resources to Token Manager on page 228. RAG U can also be used to allocate resource time 
that is more likely to be used by multiple RAGs. 

An Unallocated token is only given to a RAG that has an outstanding request at the instant the 
token is generated, whereas a token generated for RAG 0:3 is made available to the RAG for 
which it is generated if there is no such token already available for the same resource.

8.5.4 High-Priority Token Requests

SPEs indicate priority along with their token requests. High-priority requests by the SPE are only 
used for memory accesses. All PPE token requests have an implicit high priority, even though 
the PPE does not drive the high-priority signal. PPE token requests have high priority for IOIF0 In 
and Out, IOIF1 In and Out, and memory tokens. SPE high-priority token requests are only 
enabled if the Priority Enable bit, TKM_CR[PE], is ‘1’. However, if TKM_CR[PE] is '0', all SPE token 
requests are treated as low-priority. 

Except for TKM_CR[PE], software has no control on high-priority requests. Instead, hardware 
controls which token requests are high-priority. If there are multiple high-priority requests for a 
resource from requesters in a RAG, their requests are granted tokens on a round-robin basis. 
Low-priority requests from requesters in a RAG are only granted tokens when there are no high-
priority requests from requesters in the RAG for the same resource. If there are no high-priority 
requests from requesters in a RAG for a resource and there are multiple low-priority requests 
from requesters in the RAG for the resource, their requests are granted tokens on a round-robin 
basis. 

An SPE drives the priority signal high when it requests a token for any of the following reasons:

• The getllar, putllc, or putlluc MFC atomic update commands

• A TLB miss

• A memory write of a modified cache line

If a requester already has a low-priority token request for a resource outstanding, and it has 
another access to the same resource that warrants high priority, the requester cannot issue 
another token request for the same resource. 

8.5.5 Memory Tokens

8.5.5.1 Memory Banks

Inside each memory device, there are independent memory banks. Each memory bank can 
handle only one operation at a time. The operations they handle are reads, writes, and refreshes. 
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The MIC supports 4, 8, and 16 memory banks on each channel. Because the memory interfaces 
are independent, the number of effective memory banks supported is double the number each 
memory device contains when both channels are used. Figure 8-4 illustrates the differences 
between rows, columns, and banks. Two banks are shown in this logical representation of the 
internal organization of a DRAM. One row of Bank 0 is highlighted.

If there are 16 memory banks, real addresses are interleaved across the 16 memory banks on a 
naturally aligned 128-byte basis. Bank 0 holds the first 128-byte block and every sixteenth 128-
byte block after the first. Bank 1 holds the second 128-byte block and every sixteenth 128-byte 
block after the second, and so forth. If there are eight memory banks, real addresses are inter-
leaved across the eight memory banks on a naturally aligned 128-byte basis. Thus, regardless of 
the actual number of memory banks, memory accesses are managed as if there are 16 logical 
banks. If there are only eight banks, each physical bank is treated as two logical banks from a 
RAM-facility perspective. 

When a memory device is busy doing an access to a bank, other accesses to the same bank are 
delayed until that access is complete. The MIC starts accesses to other banks if there are 
commands for those banks queued inside the MIC and those banks are free. Therefore, to maxi-
mize performance, addresses should be spread across all banks. The RAM facility understands 
memory banks and allocates tokens based on this same definition. The more banks available, 
the more parallel memory operations can occur at the same time.

Figure 8-4. Banks, Rows, and Columns 
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8.5.5.2 Memory-Bank Tokens

A pair of memory-bank tokens, one even and one odd, are generated when the rate decrementer 
would decrement below the value of ‘0’. These generated bank tokens become available to be 
granted to requesters in the RAG for which they are generated. The choice of banks for which a 
token becomes available is based on the value of the bank incrementer of a RAG. In the same 
clock cycle in which a bank token is generated, the bank incrementer is incremented by one.

8.5.5.3 Memory-Channel Tokens

When there have been no requests for tokens for a long period of time, the TKM can accumulate 
up to one token for each managed resource, thus up to 16 tokens for all memory banks. To 
reduce the rate at which memory tokens are granted if there is a sudden burst of requests for the 
available bank tokens, the TKM also maintains internal memory-channel 0 tokens and memory-
channel 1 tokens. These memory-channel tokens represent XDR DRAM bus time and are used 
to pace the rate at which bank tokens are granted. 

Memory-channel tokens also allow accesses to be concentrated in a subset of the banks while 
preventing the XDR DRAM bus from being overused. For example, for certain XDR DRAM tRC 
values, memory bandwidth might be fully used even though all the accesses went to half the 
banks. The memory-channel tokens are maintained internal to the TKM and are not tokens that 
are requested or granted to requesters. The TKM only grants a bank token if both a bank token 
and a corresponding memory-channel token are available. For even-numbered banks, a memory 
channel 0 token is needed. For odd-numbered banks, a memory channel 1 token is needed.

See the memory interface controller (MIC) MMIO registers section in the Cell Broadband Engine 
Registers document for configuration information about XDR DRAM tRC. To allow for different 
XDR DRAM tRC values, the Mode for Token-Generation bit, TKM_CR[MT], defines the relative rate 
at which memory-channel tokens are generated versus memory-bank tokens. Three rates are 
possible:

• When TKM_CR[MT] = ‘00’, memory-channel tokens are made available at the same rate that 
bank tokens are made available. In this case maximum memory bandwidth can be achieved 
only if all the banks are equally accessed. 

• When TKM_CR[MT] = ‘01’, memory-channel tokens are made available at 75% of the rate that 
bank tokens are made available. Thus maximum memory bandwidth can be achieved even if 
only three quarters of the banks are accessed. 

• When TKM_CR[MT] = ‘10’, memory-channel tokens are made available at half the rate that 
bank tokens are made available. When TKM_CR[MT] = ‘11’, operation of the TKM is undefined. 

Table 8-2 summarizes when memory bank and memory-channel tokens become available for 
the modes defined by TKM_CR[MT].
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Although the memory-channel tokens prevent bank tokens from being granted in big bursts, it 
also implicitly requires that tokens be requested at a more steady rate. For example, if the PPE 
was alone in one RAG with 100% allocation of memory, a pair of memory-channel tokens are 
made available every interval of time as defined by the TKM_MBAR register. An even-bank and odd-
bank token must be requested in every such interval, or some of these tokens become unused.

Memory-bank tokens are made available for banks in increasing order. If software fetches data 
structures from memory in this order, the result might be better use of available tokens.

8.5.5.4 Memory-Token Grant Algorithm

The following description of memory-token granting applies to one RAG, the requests in the 
RAG, and the round-robin pointers in that RAG:

For each memory bank and for each RAG, there is a round-robin pointer to select the next high-
priority request in the RAG for the bank, if there is more than one high-priority request active. 
Likewise, there is a round-robin pointer to select the next low-priority request in the RAG for the 
bank, if there is more than one low-priority request active. A request is only eligible to be granted 
a token if the round-robin pointer points to the request.

Tokens for odd banks are granted in a manner similar to even banks, except that a memory-
channel 1 token must be available and odd-bank pointers are used to select the bank and 
requester.

Table 8-2. Memory Tokens Available Based on TKM_CR[MT]  

Bank 
Incrementer

Memory Tokens That Become Available When Rate Decrementer Decrements Below 0

Bank
Tokens

Memory Channel 0 and Memory Channel 1 Tokens

MT = ‘00’ MT = ‘01’ MT = ‘10’ MT = ‘11’

0 0 and 1 memory channel 0, and 
memory channel 1 Undefined

1 2 and 3 memory channel 0, and 
memory channel 1

memory channel 0, and 
memory channel 1

memory channel 0, and 
memory channel 1 Undefined

2 4 and 5 memory channel 0, and 
memory channel 1

memory channel 0, and 
memory channel 1 Undefined

3 6 and 7 memory channel 0, and 
memory channel 1

memory channel 0, and 
memory channel 1

memory channel 0, and 
memory channel 1 Undefined

4 8 and 9 memory channel 0, and 
memory channel 1 Undefined

5 10 and 11 memory channel 0, and 
memory channel 1

memory channel 0, and 
memory channel 1

memory channel 0, and 
memory channel 1 Undefined

6 12 and 13 memory channel 0, and 
memory channel 1

memory channel 0, and 
memory channel 1 Undefined

7 14 and 15 memory channel 0, and 
memory channel 1

memory channel 0, and 
memory channel 1

memory channel 0, and 
memory channel 1 Undefined
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8.5.6 I/O Tokens

For each RAG 0:3 and RAG U, there are separate rate decrementers for each IOIF bus direction, 
in and out. This is necessary because each IOIF and each direction can have different bus 
widths. When an IOIF0 in rate decrementer, IOIF0 out rate decrementer, IOIF1 in rate decre-
menter, or an IOIF1 out rate decrementer of a RAG is ‘0’ and is about to be decremented again, 
a token becomes available for the corresponding bus. 

The following description applies to one RAG, the requests in the RAG, and the round-robin 
pointers in that RAG:

The token-grant facilities for all IOIF buses (IOIF0 In, IOIF0 Out, IOIF1 In, and IOIF1 Out) are 
alike. The PPE is the only high-priority requester for IOIF buses. For each IOIF bus and for each 
RAG, there is a round-robin pointer to select the next low-priority request in the RAG for the IOIF 
bus, if there is more than one low-priority request active. A request is only eligible to be granted a 
token if the round-robin pointer points to the request.

If an IOIF bus token is available and there is either a high or low-priority eligible request for the 
IOIF bus, the IOIF bus token is granted in the following manner. 

• If there is a high-priority PPE request for the token, the IOIF bus token is granted to the PPE.

• If there is no high-priority eligible request, the IOIF bus token is granted to the requester 
whose request is pointed to by the low-priority request round-robin pointer for the IOIF bus.

• The Token-Available Latch for the IOIF bus is reset. The request latch corresponding to the 
requester granted the token is reset.

8.5.7 Unused Tokens

If there is no token for a resource already available for a RAG 0:3 whose rate decrementer gener-
ates a token, the new token is made available only to that RAG and remains available until the 
token is granted to the RAG. If there is a token for the resource already available to that RAG, the 
new token is called an unused token. 

This unused token is available to other RAGs that have outstanding requests for the resource, if 
this function is enabled by the Unused Enable bit, TKM_CR[UE]. Only RAGs with outstanding 
requests are eligible for an unused token. If there are multiple RAGs with outstanding requests, 
the token is given to the RAG with the highest priority, per the TKM_PR register, for the specific 
RAG with the unused token. 

Tokens issued from the staging buffer are ready to be used. The tokens can be granted if an 
outstanding token request exists for that resource, retained in the Token-Available Latch for that 
resource if there is no existing token, or shared with another RAG as an unused token under the 
guidelines given in this section. 

8.5.8 Memory Banks, IOIF Allocation Rates, and Unused Tokens

Tokens for memory banks are described in Section 8.5.5 on page 216, tokens for I/O tokens are 
described in Section 8.5.6 on page 220, and unused tokens are described in Section 8.5.7 on 
page 220. Section 8.5.10.1 Memory Allocation on page 225 and Section 8.5.10.2 IOIF Allocation 
on page 225 describe the calculation of allocation rates for memory and IOIF. 
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The sum of all RAGs’ allocation rates for any given resource should not exceed 100% of the 
resource. Otherwise, tokens might be lost in the token generator and the resource might be over-
committed. If the resource is overcommitted, the exact amount of the resource that can be used 
by any given RAG is unpredictable. 

8.5.9 Token Request and Grant Example

Figure 8-5 on page 222 shows an example of token requests and grants when TKM_CR[MT] = ‘10’. 
Bold vertical lines indicate the TKM clock cycles when the RAG 0 rate decrementer has a value 
of ‘0’. 
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Figure 8-5. Memory-Token Example for TKM_CR[MT] = ‘10’ 
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For the example in Figure 8-5 on page 222, the prescaler for RAG 0 (P0) field of the TKM 
Memory Bank Allocation Register (TKM_MBAR) is ‘1’, so the RAG 0 rate decrementer contains a ‘0’ 
value for two NClk/2 cycles. After two cycles, the RAG 0 rate decrementer, instead of being 
decremented, is reloaded from the Interval value for RAG 0 (I0) field of the TKM_MBAR register, 
and the RAG 0 bank incrementer is incremented. 

With TKM_CR[MT] = ‘10’, tokens for memory channel 0 and 1 become available when the RAG 0 
bank incrementer changes from an odd value to an even value. In the cycle when the RAG 0 rate 
decrementer is reloaded from the TKM_MBAR register, a token becomes available for two banks 
based on the RAG 0 bank incrementer value. When the bank incrementer value changes from i 
to i+1, tokens for banks 2i and 2i + 1 become available. For this example, TKM_CR[UE] = ‘1’ to 
allow sharing of unused tokens. 

The following explanation is divided into time periods that correspond to the RAG 0 bank incre-
menter value:

• RAG 0 Bank Incrementer = 1:

– When RAG 0 bank incrementer changes from 0 to 1, a token for Bank 1 is generated and 
the Token-Available Latch is set for this bank. Although not shown in Figure 8-5, a token 
for Bank 0 also becomes available.

– During this period, there is a RAG 0 request for Bank 2. The tokens for Bank 2 and mem-
ory channel 0 are not available. Therefore, a token for Bank 2 cannot be immediately 
granted.

– During this period, there is also a RAG 0 request for Bank 5. The tokens for Bank 5 and 
memory channel 1 are not available. Therefore, a token for Bank 5 cannot be immedi-
ately granted.

• RAG 0 Bank Incrementer = 2:

– When RAG 0 bank incrementer changes from 1 to 2, tokens for Bank 2, memory channel 
0 and memory channel 1 are generated, and the Token-Available Latches are set for 
Bank 2, memory channel 0, and memory channel 1. Although not shown in Figure 8-5, a 
token for Bank 3 also becomes available.

– Because tokens for both Bank 2 and memory channel 0 are now available, a token for 
Bank 2 is granted to satisfy the outstanding RAG 0 request from the previous period, and 
the RAG 0 tokens for Bank 2 and memory channel 0 are no longer available for further 
grants until the TKM generates new tokens for these resources, based on the RAG 0 
bank incrementer and rate decrementer. The token for memory channel 0 is not explicitly 
granted, but the available token is internally consumed by the TKM as a prerequisite for 
granting a token for Bank 2.

– Tokens for both Bank 1 and memory channel 1 are available, so a token for Bank 1 is 
granted as soon as a RAG 0 requester requests this token in the period of time when the 
RAG 0 bank incrementer is 2. The Token-Available Latches for Bank 1 and memory 
channel 1 are reset.

• RAG 0 Bank Incrementer = 3:

– When the RAG 0 bank incrementer changes to 3, a token for Bank 5 becomes available. 
Although not shown in Figure 8-5, a token for Bank 4 also becomes available.
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– Although the token for Bank 5 is available and there is an outstanding request from the 
previous period, a token for Bank 5 cannot be granted because there is no available 
token for memory channel 1.

– During this period, there is an RAG 0 request for Bank 1. Because the tokens for Bank 1 
and memory channel 1 are not available, the request cannot be immediately granted.

• RAG 0 Bank Incrementer = 4:

– When the RAG 0 bank incrementer changes to 4, tokens for Bank 6, memory channel 0 
and memory channel 1 become available. Although not shown in Figure 8-5, a token for 
Bank 7 also becomes available. 

– Because the tokens for both memory channel 1 and Bank 5 are now available, the out-
standing RAG 0 request for Bank 5 (from period 1) is granted a token for Bank 5.

– Because the token for Bank 6 was already available, this newer token (unused token) 
becomes available for another RAG with an outstanding request for Bank 6. 

• RAG 0 Bank Incrementer = 5: 

– When the RAG 0 bank incrementer changes to 5, although not shown in Figure 8-5, 
tokens for banks 8 and 9 become available at this time. 

• RAG 0 Bank Incrementer = 6:

– When the RAG 0 bank incrementer changes to 6, tokens for memory channel 0 and 1 
become available. Although not shown in Figure 8-5, tokens for Banks 10 and 11 
become available at this time. 

– Because the token for memory channel 0 was already available, this newer token 
becomes available for another RAG with an outstanding request needing a token for 
memory channel 0. 

– When a RAG 0 request for a token for Bank 6 occurs, the token is immediately granted 
because tokens for both Bank 6 and memory channel 0 are available.

• RAG 0 Bank Incrementer = 7: 

– When the RAG 0 bank incrementer changes to 7, although not shown in Figure 8-5, 
tokens for Banks 12 and 13 become available at this time. 

• RAG 0 Bank Incrementer = 0: 

– When the RAG 0 bank incrementer changes to 0, tokens for memory channel 0 and 1 
become available. Although not shown in Figure 8-5, tokens for Banks 14 and 15 also 
become available. 

– Because the token for memory channel1 was already available, this newer token 
becomes available for another RAG with an outstanding request needing a token for 
memory channel 1. 

• RAG 0 Bank Incrementer = 1: 

– When the RAG 0 bank incrementer changes to 1, a token for Bank 1 becomes available. 
Although not shown in Figure 8-5, a token for Bank 0 also becomes available. 

– Because there are available tokens for both Bank 1 and memory channel 1, the out-
standing request for Bank 1 (from period 3) is granted a token for Bank 1.



Programming Handbook

 Cell Broadband Engine

Version 1.11
May 12, 2008
 

Resource Allocation Management
Page 225 of 884

8.5.10 Allocation Percentages

8.5.10.1 Memory Allocation

The total memory-allocation percentage equals the sum of percentages of all RAGs. The 
percentage of memory-resource time allocated to a single RAG can be calculated using the 
following equations, in which the I and P variables are the Interval and Prescaler values from the 
appropriate fields of the TKM_MBAR register, and MT is the Mode-for-Token-generation field in the 
TKM_CR register. 

These equations assume that TKM_CR[MT] is configured consistently with XDR DRAM tRC. The 
maximum value of the tRC for reads and writes must be used in this calculation. CFM and CFMN 
are differential input clock signals to the CBEA processor. See the Rambus XDR Architecture 
(DL-0161) document for more information about the clock from master (CFM) signals. The 
number of memory channels in the equations is the number of memory channels in the Cell/B.E. 
processor that are used to attach XDR DRAM. 

NClk is the core clock. The EIB, TKM, and portions of MIC and Cell Broadband Engine interface 
(BEI) unit run at half this frequency (NClk/2). See Section 13 Time Base and Decrementers on 
page 381.

The equations are:

Allocated bandwidth capability = 

(128 bytes/memory channel token) × 
(((4-MT) / 2) memory channel tokens/decrementer expiration) × 
(1 decrementer expiration / (NClk/2 period × (I + 1 + 8 ×
((P>0) OR TKM_MBAR[33]) × 2P)))

= 64 bytes × (4-MT) × NClk/2 frequency / (I + 1 + 8 × ((P>0) OR TKM_MBAR[33]) × 2P)

8.5.10.2 IOIF Allocation

The total IOIF-allocation percentage equals the sum of percentages of all RAGs. The percentage 
of IOIF-bus resource time allocated to a single RAG can be calculated using the following equa-
tions, in which the I and P variables are the Interval and Prescaler values from the appropriate 
fields of the TKM_IOIF0_AR or TKM_IOIF1_AR registers. The IOIF0 and IOIF1 allocation percent-
ages are different for the same values of I and P. 

The equations are:

Allocated% = 100 × allocated bandwidth capability / available bandwidth

IOIF0 allocated bandwidth capability 

= (128 bytes / token) × (1 token per decrementer expiration) × (1 decrementer 
expiration / (NClk/2 period × (9 + I) × 2p))

= 128 bytes × NClk/2 frequency / ((9 + I) × 2p)
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IOIF1 allocated bandwidth capability = 128 bytes × NClk/2 frequency / ((9 + I) × 2p+2)

8.5.11 Efficient Determination of TKM Priority Register Values

A method is described here for calculating the TKM Priority Register (TKM_PR) fields using the 
PowerPC Architecture instructions. 

There are enables in the TKM_PR register for each RAG to obtain tokens from every other RAG. 
For example, the TKM_PR register has four enables for obtaining unused tokens from RAG U—
one enable for each of RAG 0:3. There are three enables for obtaining unused tokens from RAG 
0—one each for RAG 1:3. 

The values for the TKM_PR fields can be calculated without a large number of instructions and 
without calculating each individual bit as a separate calculation. An example is used to explain 
the algorithm for determining priorities for RAGs 0:3 in obtaining unused tokens from RAG U. For 
this example, the priority for getting RAG U tokens is given as the following order, from highest-
priority to lowest-priority:

RAG1 > RAG0 > RAG3 > RAG2 

RAG1 has highest priority and RAG2 has lowest priority. 

Table 8-3 shows the universal set of binary OR and AND values for all RAG priorities. These 
values are used in the algorithm steps that follow. The values are also used every time priority is 
determined, not only for this example but for all RAG priorities. However, the values are used by 
the algorithm steps in a different order; the order is based on the relative priority of the various 
RAGs. 

This 3-step algorithm is used for determining priority for RAGs 0:3 in obtaining RAG U unused 
tokens (with all 6 digits necessary), and for determining the priority for one RAG obtaining 
unused tokens from another RAG (with only the last three digits used). When the steps are used 
for determining priority for unused tokens from RAG 0:3, the number of RAGs used in step 2 is 
one fewer, and only a 3-bit value is produced in the least-significant bits of general-purpose 
register (GPR) r by steps 1 and 2. Similar to step 3, this 3-bit value should be rotated and 

Table 8-3. OR and AND Values for All RAG Priorities  

Binary Value Set Priority OR and AND value

111000 RAG 0 set priority OR_value

111111 RAG 0 set priority AND_value

000110 RAG 1 set priority OR_value

011111 RAG 1 set priority AND_value

000001 RAG 2 set priority OR_value

101011 RAG 2 set priority AND_value

000000 RAG 3 set priority OR_value

110100 RAG 3 set priority AND_value
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inserted into the 3 bit positions in TKM_PR for the appropriate RAG's Unused tokens. Thus, for 
RAG 0 unused tokens, the 3-bit value should be rotated to bits 43:45 of the data value to be 
stored to TKM_PR. 

The steps for determining priority are: 

1. Clear a GPR r in the PPE to hold the results for the RAG U priority fields, where the least-sig-
nificant 6 bits of the GPR will eventually hold the 6-bit value corresponding to TKM_PR[34:39].

2. For each of three RAGs, starting with the next-to-last RAG in the priority order (that is, the 
second from lowest priority) and working backward to the RAG with the highest priority order: 

a. Logically OR GPR r with the OR_value for the RAG.

b. Logically AND GPR r with the AND_value for the RAG.

3. GPR r now has the value of the priority fields for RAG U, so rotate and insert this value into a 
GPR that will hold the data value to be stored to TKM_PR register. 

Applying these three steps to the example:

1. Clear the GPR r bits. The least-significant 6 bits of this GPR, corresponding to the priority 
fields, have the following values:

0     0     0     0     0     0 

2. Apply this step for 3 RAGs:

a. GPR r least-significant 6 bits after RAG 3 values are ORed and ANDed:

0     0     0     0     0     0 

b. GPR r least-significant 6 bits after RAG 0 values are ORed and ANDed: 

1     1     1     0     0     0 

c. GPR r least-significant 6 bits after RAG 1 values are ORed and ANDed:

0     1     1     1     1     0

3. GPR r now has the value to be rotated and inserted into a GPR that holds the data value to 
be stored to TKM_PR register. 

The 6-bit value being determined for RAG U unused-token priorities encompasses three distinct 
fields of the TKM_PR register—RU0Vr, RU1Vr, and RU2V3. When the algorithm is used to find the 3-
bit values for determining priorities from unused tokens from RAG 0:3, those three bits encom-
pass two distinct fields of the TKM_PR register.

The following PowerPC Architecture instructions are used to determine the values to be loaded 
into the RU0Vr, RU1Vr, and RU2V3 fields of the TKM_PR register for this example. GPR 1 is used 
for calculating the value to be rotated/inserted into GPR 2, which can be used to collect values 
calculated for other fields before GPR 2 is finally written to the TKM_PR register.

xor 1,1,1 * clear GPR 1
ori 1,1,b'000000' * logically OR GPR 1 with RAG 3 OR_value
andi. 1,1,b'110100' * logically AND GPR 1 with RAG 3 AND_value
ori 1,1,b'111000' * logically OR GPR 1 with RAG 0 OR_value
andi. 1,1,b'111111' * logically AND GPR 1 with RAG 0 AND_value
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ori 1,1,b'000110' * logically OR GPR 1 with RAG 1 OR_value
andi. 1,1,b'011111' * logically AND GPR 1 with RAG 1 AND_value
rldimi 2,1,24,34 * rotate GPR 1 value and insert into GPR 2

* to align it with fields in TKM_PR register

8.5.12 Feedback from Resources to Token Manager

The MIC and IOC (when configured for the IOIF protocol) provide feedback to the TKM about the 
state of their command queues, as shown in Figure 8-1 on page 204. The MIC and IOC have 
registers to hold programmable thresholds. The feedback describes command-queue levels rela-
tive to these programmable thresholds, except that when an IOIF interface is configured for the 
BIF protocol, no such feedback is provided. 

The command-queue levels, shown in Figure 8-6 on page 228, are defined as follows, relative to 
the number of entries in the command queue:

• Level 0: number entries < Queue Threshold 1 field.

• Level 1: Queue Threshold 1 field ≤ number entries < Queue Threshold 2 field.

• Level 2: Queue Threshold 2 field ≤ number entries < Queue Threshold 3 field.

• Level 3: Queue Threshold 3 field ≤ number entries.

If TKM_CR[FE] enables the use of this queue-level feedback, the TKM grants tokens based on the 
queue-level feedback shown in Table 8-4. Ideally, feedback primarily limits the number of unallo-
cated tokens granted and, secondarily, limits the sharing of unused tokens. If the feedback 
reaches Level 3, a TKM_ISR bit is set for the resource. If a TKM_ISR bit is '1' and the corresponding 
interrupt-enable bit in TKM_CR enables the interrupt, an external interrupt condition is reported to 
the internal interrupt controller (IIC). See Section 9 PPE Interrupts on page 239 for more informa-
tion about IIC external interrupt exceptions and how an external interrupt to the PPE can occur 
based on TKM_ISR. 

Figure 8-6. Threshold and Queue Levels 
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8.5.12.1 MIC Feedback to Token Manager

For each memory channel, the MIC has a command queue for reads and a command queue for 
writes. The MIC maintains counts for valid entries in these queues. These counts are compared 
to programmable threshold values in the MIC token manager Threshold Levels Register 
(MIC_TM_Threshold_n [n  =  ‘0’,’1’]). The results of these comparisons are reported by the MIC to 
the TKM and used by the TKM as indicated in Table 8-4. 

The highest-level information for any of these counts is reported by the MIC to the TKM. For 
example, if the command queue for reads has more entries than indicated by the value of the 
read-threshold-level 2 field in MIC_TM_Threshold_n, but fewer than the value of the read-
threshold-level 3 field, and the command queue for writes has fewer entries than the value of the 
write-threshold-level 1 field, then the level reported to the TKM is level 2.

8.5.12.2 IOC Feedback to Token Manager

The IOC has logically separate command queues for each of the two IOIF buses, and for each 
bus there are separate queues for the commands received from the EIB and the IOIF. The 
commands remain in these queues until data is transferred on the IOIF bus. Thus, these queue 
entries represent the amount of outstanding data traffic for which a token has already been 
granted. 

There is separate feedback to the TKM for each IOIF bus. For each IOIF bus, combined counts 
of the commands from the EIB and IOIF are used for the feedback, and the commands in the 
IOIF queue are only counted when a token has been obtained for their use of the IOIF bus. For 
commands in these queues, the IOC determines the number of commands that transfer data on 
the In bus and commands that transfer data on the Out bus. The IOIF0 counts are compared to 
programmable threshold values in the IOIF0 Queue Threshold Register (IOC_IOIF0_QueThshld) 
and the IOIF1 counts are compared to programmable threshold values in the IOIF1 Queue 
Threshold Register (IOC_IOIF1_QueThshld). The results of these comparisons are reported by the 
IOC to the TKM and used by the TKM as indicated in Table 8-4 on page 229.

8.6 Configuration of PPE, SPEs, MIC, and IOC

8.6.1 Configuration Register Summary

Table 8-5 on page 231 shows the configuration registers or bits in the PPE, SPEs, MIC, and IOC 
units for controlling functions related to resource allocation. This table does not include all config-
uration registers that affect resource bandwidth. It only lists those related to resource allocation. 

Table 8-4. Token Allocation Actions Per Resource Queue Level  

Token Allocation Actions
Queue Level for the Resource

0 1 2 3

Unallocated tokens are given out when available. Yes No No No

Unused tokens from one RAG are given to another RAG when the 
Allocation Decrementer is 0. Yes Yes No No

Tokens are generated for a RAG. Yes Yes Yes No
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The Configuration Purpose column in Table 8-5 shows the following functions that are controlled 
by these configuration registers:

• Token-Request Enable or Override—Configuration values shown in this row are reset to a 
state in which they do not require tokens. A configuration bit allows software to enable their 
dependency on obtaining tokens. Memory-mapped configuration registers holding these bits 
are in 4 KB pages with other registers that only need to be accessed by the hypervisor. 

• RAID Assignment—The PPE and SPEs each have a configuration register that identifies the 
resource allocation group ID (RAID) of the RAG associated with a resource access. The IOC 
has a configuration register that specifies the virtual-channel ID for outbound commands—
that is, commands initiated by the PPE or an SPE. This virtual-channel ID can be associated 
with a RAID by the IOIF device, if that device implements Resource Allocation Management. 

• Address Map for Resources—These registers provide a simplified view of the memory-map 
sufficient to recognize the addresses that access memory and IOIF1. The address ranges 
are defined either by MMIO registers accessible to software, or by nonmapped registers 
accessible only by the configuration ring bits at power-on reset (POR), as described in the 
Cell Broadband Engine CMOS SOI 65 nm Hardware Initialization Guide. 

If MMIO configuration registers are implemented, these registers are in 4 KB pages with 
other registers that only need to be accessed by the hypervisor (see Section 11 on 
page 331). Addresses associated with IOIF0 or the BIF protocol are assumed to be 
addresses that do not correspond to one of the three local address spaces (memory, IOIF1, 
or MMIO registers). In a multi-CBEA-processor environment, this allows all addresses asso-
ciated with resources in or attached to the other CBEA processor to be identified as using the 
BIF protocol. 

See Section 8.6.2 on page 231 for details about the SPE mapping of addresses to 
resources. Like the SPE, the PPE has a similar coupling of IOIF1 address space to the 
CBEA processor MMIO address space.

• Multiple Tokens for Short Writes—For memory-write operations shorter than 128 bytes, 
these configuration settings define whether multiple tokens are required for the PPE and 
IOC. The SPE always obtains two tokens for memory writes of 8 bytes or less.

• Feedback Thresholds—Configuration registers for the MIC and IOC that define the thresh-
olds for reporting feedback to the TKM.
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8.6.2 SPE Address-Range Checking

Each SPE has a defined real-address range for resources managed by the RAM facility. Before 
an SPE requests a token from the TKM, it checks the address range of the accessed resource. If 
the address falls into the SPE’s defined range for a resource managed by the RAM facility, the 
SPE requests a token. 

Table 8-5. Configuration Bits in the PPE, SPEs, IOC, and MIC  

Purpose
Configuration Bits

PPE SPEs IOC MIC

Token 
Request 
Enable or 
Override

BIU Configuration Ring:1

• Resource Allocation 
Override

MMIO Register:
• BIU Mode Setup 1 

(BIU_ModeSetup1[1])

SPE Configuration 
Ring:1

• Resource 
Allocation 
Override

MMIO Register:
• Resource 

Allocation Enable 
(RA_Enable[63])

MMIO Register:
• IOCmd Configuration 

(IOC_IOCmd_Cfg[17])

Not applicable (the MIC is 
not a requester). 

RAID 
Assignment

MMIO Register:
• BIU Mode Setup 1 

(BIU_ModeSetup1[2:3])

MMIO Register:
• RAID 

(RA_Group_ID[62
:63])

MMIO Register:
• Virtual Channel For 

Outbound Accesses: 
IOCmd Configuration 
(IOC_IOCmd_Cfg[32:34] 
and 
IOC_IOCmd_Cfg[49:51])

Address 
Map for 
Resources

BIU Configuration Ring:1

• MMIO Base Address
MMIO Registers:

• for memory: BIU Mode 
Setup Register 1 
(BIU_ModeSetup1[46:60] 
and 
BIU_ModeSetup1[14:28])

• for IOIF1: BIU Mode Setup 
Register 2 
(BIU_ModeSetup2[22:31])

SPE Configuration 
Ring:1,2

• MC_BASE
• MC_COMP_EN
• IOIF1_COMP_EN
• BE_MMIO_Base

Configuration Ring:1

• BEI Base Address
• IOIF1 Base Address
• IOIF1 Base Address Mask

MMIO Registers:
• Memory Base Address 

(IOC_MemBaseAddr)
• IOC Base Address 1 

(IOC_BaseAddr1)
• IOC Base Address Mask 1 

(IOC_BaseAddrMask1)

Multiple 
Tokens for 
Short 
Writes

BIU Configuration Ring:1

• Two-token decode for 
noncacheable unit (NCU) 
store

Not applicable

MMIO Register:
• IOCmd Configuration 

(IOC_IOCmd_Cfg[18] and 
IOC_IOCmd_Cfg[19])

Feedback 
Thresholds Not applicable

MMIO Register:
• IOIF0 Queue Threshold 

(IOC_IOIF0_QueThshld)
• IOIF1 Queue Threshold 

(IOC_IOIF1_QueThshld)

MMIO Register:
• Token Manager 

Threshold Levels n 
[n = 0,1] 
(MIC_TM_Threshold_n 
[n = 0,1])

1. For details about the configuration ring bits and the power-on reset (POR) sequence, see the Cell Broadband Engine CMOS SOI 
65 nm Hardware Initialization Guide.

2. See Section 8.6.2 on page 231. 
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The range is defined in four registers that are written by the configuration ring bits. These regis-
ters, listed in Table 8-6, are not memory-mapped, but are only accessible by means of the config-
uration ring. The registers and the configuration ring bits are described in the Cell Broadband 
Engine CMOS SOI 65 nm Hardware Initialization Guide.

The MC_COMP_EN register is assigned for system memory that belongs to the on-chip MIC. 
Table 8-7 specifies the size of the MC_COMP_EN.

The IOIF1 range must start from the aligned address set by the IOIF1_COMP_EN register, and it is 
adjacent to BE_MMIO_Base. To guarantee that BE_MMIO_Base and the IOIF1 range do not touch 
each other, use the settings shown in Table 8-8 on page 233. The IOIF0 range and IOIF1 range 
cannot be set independently. The IOIF0 range is the remaining address space (from the 42-bit 
real address [RA]) not defined by BE_MMIO_Base, IOIF1 range, and MC_COMP_EN. 

Table 8-6. SPE Address-Range Registers  

Configuration-Ring Register Description

BE_MMIO_Base 19-bit register that defines the BE_MMIO_Base starting address.

MC_BASE 15-bit register that defines the starting address of the MIC external memory.

MC_COMP_EN
15-bit register used to specify the memory controller size. If ((RA(0:14) AND 
MC_COMP_EN) equal (MC_BASE AND MC_COMP_EN), then the RA is in the 
memory controller (MC) range. See Table 8-7. 

IOIF1_COMP_EN 10-bit register used to specify the IOIF1 size. See Table 8-8 on page 233.

Table 8-7. MC_COMP_EN Setting  

MC_COMP_EN Memory Size

x‘4000’ 2 TB

x‘6000’ 1 TB

x‘7000’ 512 GB 

x‘7800’ 256 GB

x‘7C00’ 128 GB

x‘7E00’ 64 GB

x‘7f00’ 32 GB

x‘7f80’ 16 GB

x‘7FC0’ 8 GB

x‘7FE0’ 4 GB

x‘7FF0’ 2 GB

x‘7FF8’ 1 GB

x‘7FFC’ 512 MB

x‘7FFE’ 256 MB

x‘7FFF’ 128 MB
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8.7 Changing Resource-Management Registers with MMIO Stores

In some situations, it is not necessary to ensure the exact time at which a change to a resource-
allocation facility has occurred and the side effects of changing such a facility occur. If there is a 
need to synchronize such changes or limit the amount of variability of the side effects, PPE soft-
ware can use the procedures described in this section.

8.7.1 Changes to the RAID

When a PPE context switch is to be made from one application to another application, or from 
one operating system to another operating system, it might be necessary to change the RAID 
used by the PPE or an SPE. (When an SPE context switch is to be made, use the procedures 
described in Section 12 SPE Context Switching on page 357.)

When a PPE context switch is made, the following sequence can be used to change the RAID:

1. Read the PPE’s BIU_ModeSetup1 register, and save this as part of the state.

2. After saving state, execute a sync instruction to ensure previous storage accesses are per-
formed before the RAID change in the following step. (This sync is only useful if more pre-
cise use of the RAID is required.)

3. Store the new RAID in the PPE’s BIU_ModeSetup1 register. 

4. Execute a sync instruction to ensure the store to change the RAID is performed before sub-
sequent storage accesses. (This sync is only useful if more precise use of the RAID is 
required.)

5. Do memory accesses to restore the state of the next task.

This sequence assumes that the resource used up to the step in which the RAID is modified is 
attributed to the previous RAID, and the resource used after this step is attributed to the new 
RAID. This sequence does not guarantee that resource use is attributed to the correct RAG with 
100% accuracy, because the PPE uses an implied token for each resource. Complete accuracy 
might be unimportant, because resource usage by the privileged software doing the context 

Table 8-8. IOIF1_COMP_EN and BE_MMIO_Base Settings  

IOIF1_COMP_EN Size of IOIF1 BE_MMIO_Base IOIF1 Start

1111111111 2 GB be_mmio_base(10)= 0 be_mmio_base(0:9)|1 | 31’0

1111111110 4 GB be_mmio_base(9) = 0 be_mmio_base(0:8)|1 | 32’0

1111111100 8 GB be_mmio_base(8) = 0 be_mmio_base(0:7)|1 | 33’0

1111111000 16 GB be_mmio_base(7) = 0 be_mmio_base(0:6)|1 | 34’0

1111110000 32 GB be_mmio_base(6) = 0 be_mmio_base(0:5)|1 | 35’0

1111100000 64 GB be_mmio_base(5) = 0 be_mmio_base(0:4)|1 | 36’0

1111000000 128 GB be_mmio_base(4) = 0 be_mmio_base(0:3)|1 | 37’0

1110000000 256 GB be_mmio_base(3) = 0 be_mmio_base(0:2)|1 | 38’0

1100000000 512 GB be_mmio_base(2) = 0 be_mmio_base(0:1)|1 | 39’0

1000000000 1 TB be_mmio_base(1) = 0 be_mmio_base(0)|1 | 40’0
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switch and handling interrupts cannot be accurately attributed either. If complete accuracy is 
required, software can use the more lengthy sequence defined in Section 8.7.6.1 Changes 
Involving Zero Allocation on page 236.

8.7.2 Changing a Requester’s Token-Request Enable 

Table 8-5 on page 231 shows the configuration registers that control whether a requester 
requires a token. To synchronize the side effects of a store to such a configuration register, soft-
ware should subsequently load from the register and synchronize that load using a synchroniza-
tion instruction such as a sync. 

Before enabling token requests of a requester, software should configure the TKM_CR, TKM_MBAR, 
TKM_IOIF0_AR, and TKM_IOIF1_AR registers so that there are tokens granted to the RAG of the 
requester. Failure to do this might cause the requester to request a token that will not be granted, 
potentially resulting in a timeout and checkstop. 

8.7.2.1 Changing PPE Token-Request Enable

Software cannot turn off the PPE's token request after it is enabled. Software must only change 
BIU_ModeSetup1[ResAllocEn] when BIU_ModeSetup1[ResAllocEn] = ‘0’. If 
BIU_ModeSetup1[ResAllocEn] = ‘1’, software must not change BIU_ModeSetup1[ResAllocEn]; 
otherwise, an outstanding storage access might timeout and a checkstop might occur. To ensure 
that the PPE uses the new value for accesses, software should load from BIU_ModeSetup1 after 
storing to it and software should synchronize that load using a synchronization instruction such 
as a sync.

8.7.2.2 Changing SPE Token-Request Enable

Software can change the RA_Enable register to enable SPE token requests at any time. Token-
issue can be enabled by setting the Resource Allocation Enable bit, RA_Enable[M], to ‘1’ and the 
Resource Allocation Override bit, RA_Enable[C], to ‘1’. The RA_Enable[C] field is read-only; its 
state can only be set by means of the Configuration-Ring load at POR, as described in the Cell 
Broadband Engine CMOS SOI 65 nm Hardware Initialization Guide.

Resource-allocation override is set by the configuration ring. RA_Enable[M] is cleared to ‘0’ after 
POR. Software must set this bit to ‘1’ to enable token-request. After RA_Enable[M] is set to ‘1’, 
software should not reset this register unless all direct memory access controller (DMAC) and 
atomic commands are complete. If there are any outstanding DMAC or atomic commands and 
RA_Enable[M] is ‘0’, the behavior of the SPE is unpredictable. 

Software must only change the RA_Enable register to disable SPE token requests when SPE 
accesses that require tokens are not occurring. To disable SPE token requests, PPE software 
can use the following sequence:

1. Perform an MMIO write of the MFC_CNTL register with the suspend DMA-queue (Sc) bit set to 
‘1’.

2. Poll the MFC_CNTL register using an MMIO read until the MFC suspension requested in the 
previous step is complete.

3. Flush the contents of the MFC atomic unit to prevent a push from occurring while changing 
RA_Enable. The contents of the atomic unit can be flushed by writing a ‘1’ to 
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MFC_Atomic_Flush[F] and then polling MFC_Atomic_Flush using an MMIO read until ‘0’ is 
returned.

4. Perform an MMIO write of the RA_Enable register to disable SPE token requests.

5. Perform an MMIO read of the RA_Enable register to ensure that the SPE uses the new value 
of RA_Enable for accesses.

6. To resume normal MFC operations, perform a MMIO write of the MFC_CNTL register with the 
restart MFC command (R) bit set to '1'. 

8.7.2.3 Changing I/O Token-Request Enable

Software can change IOC_IOCmd_Cfg[TK] to ‘1’ at any time. However, this change only affects the 
token requests for new I/O accesses. I/O accesses that are queued in the IOC waiting for tokens 
are not affected by the change. To ensure that the IOC uses the new value for new reads and 
writes from the IOIF, software should load from IOC_IOCmd_Cfg after storing to it and synchronize 
that load using a synchronization instruction such as a sync.

Software must only change IOC_IOCmd_Cfg[TK] to ‘0’ when there are no concurrent or 
outstanding accesses from IOIF0 or IOIF1. Changing IOC_IOCmd_Cfg[TK] to ‘0’ when there is a 
read or write from an IOIF might cause the access to timeout because the read or write does not 
get the token that the IOC previously detected was needed.

8.7.3 Changing a Requester’s Address Map

Table 8-5 on page 231 shows the configuration registers that controls the address map for 
resources. The CBEA processor MMIO address map and the SPEs can only be configured by 
means of the configuration ring, so its configuration must be established at power-on reset. 

To ensure that any side-effect of changing an IOC MMIO configuration register that controls the 
address map for resources has occurred, software should load from the last register modified 
and synchronize that load using a synchronization instruction such as a sync (the sync is 
needed after the read because these are pipelined registers). This change only affects the 
memory map for new I/O accesses. I/O accesses that are queued in the IOC waiting for tokens 
are not affected by the changing address map. Because the address map for IOIF1 is controlled 
by two registers, it is not possible to change both at the same instant. As a result, software 
should only change the IOC_BaseAddr1 register or the IOC_BaseAddrMask1 register when either 
IOC_IOCmd_Cfg[TK] is ‘0’ or there are no concurrent or outstanding accesses to IOIF1 from IOIF0 
while the IOC_BaseAddr1 register or IOC_BaseAddrMask1 register is being modified. 

Changing the PPE address map for resources might require changing both the BIU_ModeSetup1 
register and the BIU_ModeSetup2 register. After changing one of these registers, software must 
avoid having a temporary memory map that has a single address mapped to two resources. To 
ensure that any side-effect of changing either the BIU_ModeSetup1 register or the BIU_ModeSetup2 
register has occurred, software should load from the modified register after storing to it and 
synchronize that load using a synchronization instruction such as a sync. If modifying both of 
these registers, software only needs to load from the register modified last and then synchronize 
that load.
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8.7.4 Changing a Requester’s Use of Multiple Tokens per Access 

For some period of time after performing a store to change IOC_IOCmd_Cfg[RMW:SXT], the IOC 
token requests can be based on either the new or old value of IOC_IOCmd_Cfg[RMW:SXT]. If soft-
ware needs to ensure the new value is used, software can load from the modified register and 
synchronize that load using a synchronization instruction such as a sync. This change only 
affects the token requests for new I/O accesses. I/O accesses that are queued in the IOC waiting 
for tokens are not affected by the change.

8.7.5 Changing Feedback to the TKM

After a store to MIC_TM_Threshold_n [n = ‘0’,’1’], IOC_IOIF0_QueThshld, or 
IOC_IOIF1_QueThshld, to ensure that the new values for these registers are used for feedback to 
the TKM, software can load from a modified register and synchronize that load using a synchro-
nization instruction such as a sync.

8.7.6 Changing TKM Registers

Before changing TKM_CR, TKM_MBAR, TKM_IOIF0_AR, TKM_IOIF1_AR, or TKM_PR, software must 
ensure that there are no outstanding requests in the token manager. Furthermore, the allocation 
registers (TKM_IOIF0_AR and TKM_IOIF1_AR) must be written with zeros before a new alloca-
tion rate is set. To ensure that the new register values are used after a store to the TKM_CR, 
TKM_PR, or TKM_PMCR registers, software can load from a modified register and synchronize that 
load using a synchronization instruction such as a sync. 

After a store to the TKM_MBAR, TKM_IOIF0_AR, or TKM_IOIF1_AR registers, the TKM uses the new 
allocation rate after the corresponding RAG rate decrementer expires. To ensure that the new 
values for these registers are used, software can load from a modified register, synchronize that 
load using a synchronization instruction such as a sync.

8.7.6.1 Changes Involving Zero Allocation

Before changing the TKM_CR, TKM_MBAR, TKM_IOIF0_AR, or TKM_IOIF1_AR registers so that a RAG is 
no longer allocated some resource, software must ensure that there are no outstanding token 
requests for that resource from that RAG and that there will be no such future requests. 
Requesters in such a RAG for such a resource are not granted tokens and might time-out, poten-
tially resulting in a checkstop. 

Software can ensure that this is the case for SPEs by using the sequences in the Section 12 SPE 
Context Switching on page 357. For some value r, if RAG r is no longer going to be allocated 
some resource, then during the restore sequence software loads a value other than r into the 
RAID field of the SPE RA_Group_ID register. 

Ensuring that the PPE has no outstanding request for RAG r is more complicated, because the 
PPE uses an implied token for each resource. Ensuring that previous storage accesses are 
performed does not guarantee that replacement tokens have been obtained. The following 
sequence should be executed from the PPE before changing the TKM_CR, TKM_MBAR, 
TKM_IOIF0_AR, or TKM_IOIF1_AR registers to eliminate a resource allocation for RAG r: 

1. Store the new RAID, where this RAID is not r, in the PPE’s BIU_ModeSetup1 register.

2. Read the BIU_ModeSetup1 register.
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3. Execute a sync instruction to ensure the read has been performed before subsequent stor-
age accesses. 

4. If RAG r is no longer allocated a memory resource, then, for each memory bank, execute a 
dcbf instruction and a load instruction where both instructions use the same operand 
address corresponding to the memory bank. Software controls whether a RAG is allocated 
tokens for a memory resource. For example, setting any of the TKM_CR[Ei] bits[44:47] to ‘0’ is 
one way to stop granting tokens to the corresponding RAG.

5. If RAG r is no longer allocated an IOIF Out data bus resource, then store to a location 
attached to the IOIF.

6. If RAG r is no longer allocated an IOIF In data bus resource, then load from a location 
attached to the IOIF.

7. Execute a sync instruction to ensure that accesses in the preceding steps have been per-
formed.

8.8 Latency Between Token Requests and Token Grants

Enabling Resource Allocation Management adds latency because of the time required to request 
and grant tokens. If a token is already available and there are no other requests in the same RAG 
for the same resource, there is a 6 NClk/2 cycle latency in the TKM from request to grant. If the 
token is not already available, there might be additional latency due to the wait time in the TKM 
request queue. There is also latency in each requester, delay in transferring the request from the 
requester to the TKM, and delay in transferring the grant from the TKM to the requester. 

8.9 Hypervisor Interfaces

The CBEA processor hypervisor facility is described in Section 11 Logical Partitions and a Hyper-
visor on page 331. Hypervisor software might find it useful to define a few hypervisor function 
calls that manage the relationship between the RAM facility’s RAG allocations and the hyper-
visor’s logical-partitioning facility. This might be useful, for example, when quality of service 
(QoS) must be guaranteed for specific resources used by a specific logical partition. 

For example, hypervisor function calls might perform the following functions:

• Acquire a RAG—This function acquires a RAG for a logical partition. Function arguments 
might include the logical-partition ID, minimum acceptable memory-access allocation, and 
minimum acceptable I/O-access allocation. Return values might include the allocated RAID 
(or more detailed RAG descriptor) and various success or failure indicators. All resource 
requesters belonging to that logical partition become a member of the new RAG. When asso-
ciating a RAG with a logical partition that is currently able to run, the partition should be 
immediately removed from an unallocated RAG and placed into the new RAG. The acquisi-
tion of a new RAG in this manner requires some initial allocation for memory and I/O 
resources, or the partition does not make forward progress.

• Allocate a RAG—This function assigns a portion of resource’s time that a RAG can use the 
resource. Function arguments might include the RAID or descriptor of the RAG that was 
acquired by calling the Acquire a RAG function, the resource to be allocated, and the portion 
of the resource’s time to allocate. Return values might include the remaining portion of the 
resource’s time, after successful allocation, and various success or failure indicators. 
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• Release a RAG—This function releases a RAG associated with a logical partition. Function 
arguments include the RAID or descriptor of the RAG to release. Return values might include 
various success or failure indicators. Any requester owned by the logical partition associated 
with this RAG has its resources allocated by the Unallocated RAG. 

See Section 11.5.1 Combining Logical Partitions with Resource Allocation on page 352 for a 
short overview of how these two facilities can be used together. 
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9. PPE Interrupts

This section describes all interrupts that are handled by the PowerPC Processor Element (PPE), 
or by an external interrupt controller. Additional interrupts caused by Synergistic Processor 
Element (SPE) events, such as signal-notification events, are handled locally by each SPE as 
described in Section 18.3 SPU Interrupt Facility on page 476. 

9.1 Introduction

Exceptions and interrupts are closely related. The PowerPC Architecture and the PowerPC 
Compiler Writer’s Guide define an exception as an error, external event, or other condition 
requiring attention, such as an instruction that cannot be executed, the assertion of an external 
signal, or a timer event. An exception can set status information in a register, indicating the 
nature of the exception, and it can cause a corresponding interrupt, if a corresponding interrupt is 
enabled and (if applicable) unmasked. It is possible for a single instruction to cause multiple 
exceptions and for multiple exceptions to cause a single interrupt. By masking interrupts, soft-
ware can also support polling as an alternative to interrupts. 

An interrupt is handled by an interrupt handler (sometimes called an interrupt service routine, 
error handler, or an exception handler)—a privileged program that determines the nature of the 
exception and decides how to respond. Interrupts are thus the mechanisms by which a processor 
identifies the exception and passes control to the interrupt handler. 

Because they are closely related, the terms exception and interrupt are sometimes used inter-
changeably—either one meaning what the other was originally intended to mean in the PowerPC 
Architecture. For example, the PowerPC Microprocessor Family: The Programming Environ-
ments for 64-Bit Microprocessors document uses the term exception to mean what the PowerPC 
Architecture distinguishes as exception and interrupt. That PEM document also uses the term 
interrupt to mean an asynchronous exception. The original meanings, which are used in this 
section, are that one term (exception) names the cause of an event, and the other term (interrupt) 
names the response to that event. 

In the Cell Broadband Engine Architecture (CBEA) processors1, exceptions can arise due to the 
execution of PPE instructions or from the occurrence of external events, including the execution 
of synergistic processor unit (SPU) instructions or memory flow controller (MFC) commands or 
from an I/O or memory device. All interrupts, except those resulting from SPE events (Section 18 
SPE Events on page 471), are directed to and handled by the PPE or an external interrupt 
controller. 

The CBEA processors provide facilities for: 

• Routing interrupts and interrupt-status information to the PPE or to an external interrupt con-
troller attached to one of the two I/O interfaces 

• Prioritizing interrupts presented to the PPE or to an external interrupt controller 

• Generating interprocessor interrupts between one PPE thread and another

1. The Cell Broadband Engine (Cell/B.E.) and PowerXCell 8i processors are collectively called CBEA processors.
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The PPE is supported by two internal interrupt controllers (IICs), one for each PPE thread. The 
IICs generate, route, and maintain interrupt information for the PPE threads. Each SPE has a set 
of interrupt registers for masking interrupt conditions, holding the status of interrupt conditions, 
and routing interrupts.

The PowerPC Operating Environment Architecture, Book III and the PowerPC Microprocessor 
Family: The Programming Environments for 64-Bit Microprocessors documents describe 
PowerPC exception ordering, interrupt definitions, interrupt priorities, interrupt synchronization, 
and interrupt processing. Similar details regarding CBEA-processor-specific exceptions and 
interrupts can be found in the Cell Broadband Engine Architecture document. 

9.2 Summary of Interrupt Architecture

The PowerPC Architecture defines two classes of interrupts: 

• Instruction-Caused—Interrupts caused by the execution of a PowerPC instruction, and thus 
synchronous with the PowerPC instruction pipeline. In the CBEA processors, these include 
the execution of all PPE instructions. 

• System-Caused—Interrupts caused by an event external to the PowerPC instruction pipeline, 
or otherwise not synchronous with the execution of PowerPC instructions. From the viewpoint 
of the PPE, interrupts caused by the execution of an SPU instruction or an MFC command 
are system-caused. 

In addition, the PowerPC Architecture defines two kinds of interrupts caused by instructions: 

• Precise—These are interrupts in which the architecturally visible processor state (in the 
CBEA processors, this is the PPE state) is known at the time of the exception that caused 
the interrupt. After a precise interrupt is handled, execution can be resumed where it left off. 
A precise interrupt is caused by an exception that was generated when the instruction was 
fetched or executed. 

• Imprecise—These are interrupts in which the architecturally visible processor state (PPE 
state) is not guaranteed to be known at the time of the exception that caused the interrupt. 

The PPE exception and interrupt architecture is consistent with these PowerPC Architecture defi-
nitions. In the CBEA processors, instruction-caused (synchronous) interrupts are precise with 
respect to the PPE2, and system-caused (asynchronous) interrupts are imprecise with respect to 
the PPE3. 

Table 9-1 on page 242 summarizes the characteristics of interrupts supported by the PPE:

• Precise—As defined. For consistency across all interrupts, this parameter is identified in 
Table 9-1 for both instruction-caused and system-caused interrupts. 

• Maskable—With an interrupt-mask bit and a corresponding exception-status bit that can be 
read by polling, as an alternative to taking an interrupt when an exception occurs. Software 
can delay the generation of these interrupts by masking them. 

• Can Be Disabled—Prevented from generating an exception or a corresponding interrupt.

2. In the PowerPC Architecture, certain floating-point exceptions can be imprecise, based on mode settings. How-
ever, in the PPE, floating-point exceptions are always precise. 

3. But see Section 9.5.2 on page 249 for details about the precise form of the machine check interrupt. 



Programming Handbook

 Cell Broadband Engine

Version 1.11
May 12, 2008
 

PPE Interrupts
Page 241 of 884

• Context-Synchronizing—Previously issued instructions are completed before continuing with 
program execution. Context-synchronizing instructions empty (flush) the instruction-prefetch 
queue and start instruction fetching in the context established after all preceding instructions 
have completed execution. See Section 20.1.2.4 on page 566 for details about context-syn-
chronization of PPE interrupts. 

In Table 9-1 on page 242, the ability to mask and disable interrupts assumes that the underlying 
function that can cause such an interrupt is enabled. For example, floating-point unavailable 
interrupts can be prevented by disabling the underlying function of executing any floating-point 
instructions (MSR[FP] = ‘0’); however, Table 9-1 assumes that these functions are enabled. 
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Table 9-1. PPE Interrupts  
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Reference

Instruction-
Caused 
(Synchronous)

Data Storage

Yes
No

No

Yes

Section 9.5.3 on page 251

Data Segment Section 9.5.4 on page 252

Instruction Storage Section 9.5.5 on page 253

Instruction Segment Section 9.5.6 on page 254

Alignment Section 9.5.8 on page 255

Program Section 9.5.9 on page 256

Floating-Point Unavailable Section 9.5.10 on page 257

System Call Section 9.5.13 on page 258

Trace

Yes

Section 9.5.14 on page 259

VXU Unavailable Section 9.5.15 on page 260

Maintenance (instruction-caused) Yes Section 9.5.17 on page 261

System-
Caused 
(Asynchronous)

System Reset No1

No
No2 Yes Section 9.5.1 on page 248

Machine Check Yes3

Yes
Yes3 Section 9.5.2 on page 249

System Error No1

Yes

Yes

Section 9.5.16 on page 260

Decrementer Yes4 Section 9.5.11 on page 257

Hypervisor Decrementer No

Yes

Section 9.5.12 on page 258

Thermal Management Yes Section 9.5.18 on page 263

Maintenance (system-caused)5 No Section 9.5.17 on page 261

External 
(direct and 
mediated)6

SPU Instructions
Yes7,8

Yes4

Section 9.6.3 on page 271
MFC Commands

Memory Interface 
Controller (MIC) Auxiliary 
Trace Buffer Full

Yes Section 9.6.4.2 on page 273

I/O devices (IOIF0, IOIF1) Yes8,9 Yes4,8 Section 9.6.4.3 on page 273

I/O-Address Translation

Yes8

Yes4

Section 9.6.4.4 on page 274

Element Interconnect Bus 
(EIB) Possible Livelock 
Detection

Section 9.6.4.5 on page 275

Token Manager Section 9.6.4.6 on page 276

Performance Monitor Yes7,8 Section 9.6.4.7 on page 276

Software Interrupt10 Yes8 Section 9.6.2.4 on page 270

1. These interrupts are recoverable.
2. But one of the several sources for this interrupt can be disabled. 
3. See Section 9.5.2 on page 249. 
4. The interrupt can be disabled with MSR[EE], but it cannot be independently disabled without also disabling all Exter-

nal interrupts. 
5. A system-caused maintenance interrupt cannot occur without an appropriate boundary-scan debug tool. 
6. See Section 9.5.7 on page 254 for the difference between direct and mediated external interrupts.
7. By means of specific mask and status registers. 
8. By the minimum-priority mechanism of the IIC_CPL0 and IIC_CPL1 registers (Section 9.6.2 on page 266). 
9. A Southbridge (I/O interface chip) can support enabling and masking. 

10. An interrupt to one of the PPE threads using an interrupt generation port (IGP), IIC_IGP0 or IIC_IGP1. Also called 
an Interprocessor Interrupt (IPI). There is no corresponding exception, and software can disable such interrupts by 
simply not issuing them. 
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Figure 9-1 illustrates the organization of interrupt handling, assuming that the PPE (rather than 
an external interrupt controller attached to an I/O interface) handles interrupts. The CBEA 
processors have two internal interrupt controllers (IICs), one for each PPE thread. These control-
lers service all system-caused (asynchronous) interrupts, including external interrupts. 

The only interrupts shown in Figure 9-1 that are not handled by the PPE are those arising from 
local SPE events. These are shown as “SPE Event Interrupts” in Figure 9-1, and they are 
handled locally by each SPE as described in Section 18.3 SPU Interrupt Facility on page 476. 

Figure 9-1. Organization of Interrupt Handling 
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9.3 Interrupt Registers

Table 9-2 summarizes the interrupt-related registers in the PPE. The interrupt registers allow 
privileged software on the PPE to select which PPE exceptions are allowed to generate an inter-
rupt to the PPE. For details, see the PowerPC Operating Environment Architecture, Book III, the 
PowerPC Microprocessor Family: The Programming Environments for 64-Bit Microprocessors 
document, and the Cell Broadband Engine Registers document. 

Table 9-2. PPE Interrupt Register Summary (Sheet 1 of 2) 

Register Name Mnemonic Description Read/
Write

Thread-Dependent Registers1 (PowerPC Architected Registers)

Machine State Register MSR

Defines the state of the processor. When an 
exception occurs, the contents of MSR are 
saved in SRR1, and a new set of bits are loaded 
into MSR as determined by the exception. 

R/W

Machine Status Save/Restore Register 0 SRR0

For nonhypervisor interrupts, records the 
effective address (EA) at which an interrupt 
occurs, and provides the return address to the 
interrupted program when an rfid (or rfi) 
instruction is executed. It also holds the EA for 
the instruction that follows a System Call (sc) 
instruction.

R/W

Machine Status Save/Restore Register 1 SRR1
For nonhypervisor interrupts, records the 
exception status and the contents of the MSR 
when an rfid (or rfi) instruction is executed. 

R/W

Hypervisor Machine Status Save/Restore 
Register 0 HSRR0

For hypervisor interrupts, records the EA at 
which an interrupt occurs, and provides the 
return address to the interrupted program when 
an hrfid instruction is executed. 

R/W

Hypervisor Machine Status Save/Restore 
Register 1 HSRR1

For hypervisor interrupts, records the exception 
status and the contents of the MSR when an 
hrfid instruction is executed. 

R/W

Floating-Point Status and Control Register FPSCR

Enables floating-point interrupts. Records 
exceptions generated by floating-point 
operations and the type of result produced by a 
floating-point operation. 

R/W

Data Storage Interrupt Status Register DSISR Records the cause of data-storage interrupt 
(DSI) and alignment exceptions. R/W

Decrementer DEC Causes a decrementer exception after a 
programmable delay. R/W

Data Address Register DAR

Records the effective address generated by a 
memory-access instruction if the access causes
an exception (for example, an alignment 
exception). 

R/W

Data Address Breakpoint Register
DABR
DABRX

Specifies an EA for load and store accesses to 
generate a data-address breakpoint interrupt. R/W

Address Compare Control Register ACCR Specifies a Data Address Compare match for 
instruction storage interrupts. R/W

1. These registers are duplicated, one for each PPE thread. 
2. These registers serve interrupt-handling for both PPE threads. 
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9.4 Interrupt Handling

PPE interrupts are handled according to the rules defined in PowerPC Operating Environment 
Architecture, Book III. The interrupts are handled in either privileged (supervisor) or hypervisor 
mode, depending on the interrupt. In this section, the phrase the interrupt is taken refers to the 
PowerPC Architecture interrupt facility. 

Upon entering the privileged state, a small portion of the processor’s current state is saved in the 
Machine Status Save/Restore Registers (SRR0, SRR1, HSRR0, and HSRR1). The Machine State 
Register (MSR) is updated, and instruction fetch and execution resumes at the real address asso-
ciated with the interrupt (called the interrupt vector). Because the Machine Status Save/Restore 

Thread-Dependent Registers1 (Implementation-specific Registers)

Logical Partition Control Register LPCR

Controls logical (hypervisor) partitioning. 
Enables mediated external exceptions. Controls 
whether external interrupts set MSR[HV] to ‘1’ or 
leave it unchanged. 
The LPCR is a partially shared between the two 
PPE threads. 

R/W

Thread Status Register Local TSRL Specifies thread priority, and reports forward-
progress timer. 
When a thread reads its own Thread Status 
Register (TSR), this register is called the Thread 
Status Register Local (TSRL). When a thread 
reads the TSR for the other thread, this register 
is called the Thread Status Register Remote 
(TSRR).

R/W
Thread Status Register Remote TSRR

Thread-Independent Registers2 (PowerPC Architected Registers)

Hypervisor Decrementer HDEC

Provides a means for the hypervisor to manage 
timing functions independently of the 
decrementer, which is managed by virtual 
partitions.

R/W

Control Register CTRL Control and status for threads. R/W

Thread-Independent Registers2 (Implementation-specific Registers)

Hardware Implementation Dependent 
Register 0 HID0

Enables thermal management interrupt, system 
error interrupt, extended external interrupt, 
precise or imprecise form of the machine check 
interrupt, and attention instruction. 

R/W

Hardware Implementation Dependent 
Register 1 HID1

Enables configuration ring system reset interrupt 
address register. Forces instruction-cache parity 
error. Controls trace bus. 

R/W

Thread Switch Control Register TSCR Enables decrementer wakeup, priority boost for 
system-caused interrupts. R/W

Thread Switch Time-Out Register TTR Specifies thread time-out flush values. R/W

Table 9-2. PPE Interrupt Register Summary (Sheet 2 of 2) 

Register Name Mnemonic Description Read/
Write

1. These registers are duplicated, one for each PPE thread. 
2. These registers serve interrupt-handling for both PPE threads. 
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Registers are serially reused by the PPE, all interrupts except System Reset and Machine Check 
are ordered as defined in the PowerPC Architecture. The save/restore registers are described in 
the Cell Broadband Engine Registers specification.

Either the SRR0 or the HSRR0 register is set to the effective address of the instruction where 
processing should resume when returning from the interrupt handler. Depending on the interrupt 
type, the effective address might be the address of the instruction that caused the exception or 
the next instruction the processor would have executed if the exception did not exist. All inter-
rupts, except the imprecise form of the machine check interrupt, are context-synchronizing as 
defined in PowerPC Operating Environment Architecture, Book III. Essentially, all instructions in 
the program flow preceding the instruction pointed to by SRR0 or HSRR0 have completed execution 
and no subsequent instruction has begun execution when the interrupt is taken. The program 
restarts from the address of SRR0 or HSRR0 when returning from an interrupt (the execution of an 
rfid or hrfid instruction). 

Because the MSR setting is modified by hardware when an interrupt is taken, the SRR1 or the HSRR1 
register is used to save the current MSR state and information pertaining to the interrupt. Bits 
[33:36] and [42:47] of the SRR1 or HSRR1 registers are loaded with information specific to the inter-
rupt type. The remaining bits in the SRR1 or the HSRR1 register (bits [0:32], [37:41], and [48:63]) are 
loaded with a copy of the corresponding bits in the MSR. The MSR bits saved in the SRR1 or HSRR1 
registers are restored when returning from an interrupt (the execution of a hrfid or rfid instruc-
tion).

Each PPE thread is viewed as an independent processor complete with separate exceptions and 
interrupt handling. Exceptions can occur simultaneously for each thread. The PPE supports 
concurrent handling of interrupts on both threads by duplicating some registers defined by the 
PowerPC Architecture. The registers associated with Interrupt handling are summarized in 
Table 9-2 on page 244. See Table 9-38 on page 291 for the tread targets of various interrupt 
types. 

See Section 9.6 Direct External Interrupts on page 265 for further details about handling external 
interrupts.

For details about PowerPC interrupt handling, see the PowerPC Operating Environment Archi-
tecture, Book III and the PowerPC Microprocessor Family: The Programming Environments for 
64-Bit Microprocessors documents. For details about CBEA-specific interrupt handling, see the 
Cell Broadband Engine Architecture document. 

9.5 Interrupt Vectors and Definitions

Table 9-1 on page 242 lists the types of interrupts caused by PPE instructions and system condi-
tions. Table 9-3 on page 247 provides references to interrupt vectors and the detailed subsec-
tions that describe the PPE interrupt causes and behaviors. 

The PPE does not implement the optional performance monitor interrupt defined in the PowerPC 
Architecture (although the CBEA processors do implement an unrelated performance monitor 
interrupt). In addition, the PPE does not implement the optional example extensions to the trace 
facility as outlined in an appendix to the PowerPC Operating Environment Architecture, Book III. 
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Further descriptions of the PowerPC interrupts and their causes are given in the PowerPC Archi-
tecture, Book I and Book III and the PowerPC Microprocessor Family: The Programming Envi-
ronments for 64-Bit Microprocessors document. For a list identifying PowerPC and CBEA 
processor interrupt differences, see Section 9.17 Relationship Between CBEA Processor and 
PowerPC Interrupts on page 296. 

Table 9-3. Interrupt Vector and Exception Conditions  

Interrupt Type Interrupt Vector 
Effective Address Causing Conditions (Exceptions)

System Reset Selectable, based on 
HID1[dis_sysrst_reg] See Section 9.5.1 on page 248.

Machine Check x‘00..00000200’ See Section 9.5.2 on page 249.

Data Storage x‘00..00000300’ See Section 9.5.3 on page 251.

Data Segment x‘00..00000380’ See Section 9.5.4 on page 252.

Instruction Storage x‘00..00000400’ See Section 9.5.5 on page 253.

Instruction Segment x‘00..00000480’ See Section 9.5.6 on page 254.

External x‘00..00000500’ See Section 9.5.7 on page 254.

Alignment x‘00..00000600’ See Section 9.5.8 on page 255.

Program x‘00..00000700’ See Section 9.5.9 on page 256.

Floating-Point Unavailable x‘00..00000800’ See Section 9.5.10 on page 257.

Decrementer x‘00..00000900’ See Section 9.5.11 on page 257.

Hypervisor Decrementer x‘00..00000980’ See Section 9.5.12 on page 258.

System Call x‘00..00000C00’ See Section 9.5.13 on page 258.

Trace x‘00..00000D00’ See Section 9.5.14 on page 259.

Performance Monitor x‘00..00000F00’
This exception is optional in the PowerPC 
Architecture. It is not implemented by the 
PPE.

VXU Unavailable x‘00..00000F20’ See Section 9.5.15 on page 260.

System Error x‘00..00001200’

See Section 9.5.16 on page 260.
This exception is not defined in the PowerPC 
Architecture; it is specific to the processor 
implementation.

Maintenance x‘00..00001600’

See Section 9.5.17 on page 261.
This exception is not defined in the PowerPC 
Architecture; it is specific to the processor 
implementation.

Thermal Management x‘00..00001800’

See Section 9.5.18 on page 263.
This exception is not defined in the PowerPC 
Architecture; it is specific to the processor 
implementation.

Note:  Interrupt vectors not listed in this table are reserved.
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9.5.1 System Reset Interrupt (Selectable or x‘00..00000100’)

The system reset interrupt can be used for power-on reset (POR), to restart a running processor, 
and to resume a suspended thread. A system reset interrupt is caused by the assertion of one of 
the system reset interrupt signals from the internal logic or if an exception occurs for a 
suspended thread. 

On a system reset interrupt, the PPE starts thread 0 from the address specified in the PPE 
SReset Vector field of the configuration ring (see the Cell Broadband Engine CMOS SOI 65 nm 
Hardware Initialization Guide). As a result of the system reset interrupt, the Hypervisor and 64-
Bit-Mode bits, MSR[HV] and MSR[SF], are both set to ‘1’, so that the PPE comes up in hypervisor 
mode. 

A system reset interrupt is generated for a suspended thread if a thermal management, system 
error, external, or decrementer interrupt exception exists, or if a thread is enabled by a write to 
the Control Register (CTRL). The system reset interrupt vector’s real address for thread 0 is 
selected based on the setting of HID1[dis_sysrst_reg]. If HID1[dis_sysrst_reg] is set to ‘1’, the 
interrupt vector is x‘000..0100’. If HID1[dis_sysrst_reg] = ‘0’, bits [22:61] of the interrupt vector 
are defined by the configuration ring and bits [0:21] and bits [62:63] are set to ‘0’. The interrupt 
vector for thread 1 is fixed at x‘000..0100’. For details on configuration-ring settings, see Cell 
Broadband Engine CMOS SOI 65 nm Hardware Initialization Guide.

When a thread is resumed, the PPE sets the corresponding Thread Enable bit in the CTRL 
register to ‘1’. Resuming a thread due to external and decrementer interrupts is maskable by 
TSCR[WEXT] plus TSCR[WDEC0] for thread 0 or TSCR[WDEC1] for thread 1. Resuming a thread due to 
a system error is maskable by HID0[syserr_wakeup]; resuming a thread due to a thermal 
management interrupt is maskable by HID0[therm_wakeup].

The PPE treats the system reset interrupt conditions as a context-synchronizing operation as 
defined in the PowerPC Architecture. When the PPE takes a system reset interrupt, the thread’s 
priority is set to High, the register state is altered as defined in Table 9-4 on page 249, and 
instruction fetch and execution resume at the effective address specified in Table 9-3 on 
page 247.
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9.5.2 Machine Check Interrupt (x‘00..00000200’)

A machine check interrupt occurs when no higher-priority interrupts exist and a machine check 
condition occurs. In the PPE, there is one possible source for a machine check interrupt—a data 
error on a caching-inhibited load (such as a nonexistent memory address). If two Machine 
Checks occur too close together, a checkstop can occur (if there is not enough time to bring 
down a partition). A checkstop is a full-stop of the processor that requires a System Reset to 
recover. If either thread has Machine Checks disabled (MSR[ME] = ‘0’) and a Machine Check 
occurs, the PPE also enters a checkstop condition. The PPE does not modify the Data Storage 
Interrupt Status Register (DSISR) or Data Address Register (DAR) when a machine check inter-
rupt is taken.

The PowerPC Architecture defines the machine check interrupt as a system-caused interrupt. In 
the CBEA processors:

• If HID0[en_prec_mchk] = ‘1’ (“precise”), only the thread that causes a machine check inter-
rupt—that is, thread issuing the offending caching-inhibited load instruction—will take the 
interrupt, and the interrupt will appear to be instruction-caused (synchronous) from the view-
point of that thread (at the expense of PPE performance), and the interrupt will be context-
synchronizing, and the interrupt will be recoverable. 

Table 9-4. Registers Altered by a System Reset Interrupt 

Register Bits Setting Description

Thread-Dependent Registers

SRR0 0:63 Set to the effective address of the instruction that the processor would have attempted to 
execute next if no exception condition were present. 

SRR1

0:41
45:63

These bits of SRR1 are set as defined in the PowerPC Architecture.
SRR1[62] is always a copy of the MSR[RI] bit at the time of the interrupt.

42:44

System Reset Reason Code
000 Reserved
001 Reserved
010 System Reset due to a thermal management interrupt to a suspended thread

(HID0[therm_wakeup] must be set to ‘1’)
011 System Reset due to a decrementer interrupt to a suspended thread 

(TSCR[WDEC0] for thread0 or TSCR[WDEC1] for thread1 must be set to ‘1’)
100 System Reset due to an external interrupt to a suspended thread 

(TSCR[WEXT] must be set to ‘1’)
101 Thread resumed due to 1) a System Reset due to a power-on reset (POR) or 2) a 

write to the Control Register (CTRL) with the thread enable bit set. Software can 
check HID0 and HID1 to see if they are set to all zeros to determine if condition 1 
occurred. If HID0 and HID1 are not all zeros, then condition 2 occurred.

110 Thread resumed due to a System Error
(HID0[syserr_wakeup] must be set to ‘1’)

111 Reserved

MSR 0:63 See Table 9-40 Machine State Register Bit Settings Due to Interrupts on page 294.

TSRL 11:12 11 High thread priority

Thread-Independent Register

CTRL 8:9 Bit 8 is the thread enable for thread0, and bit 9 is the thread enable for thread1. Depending 
on which thread took the interrupt, the corresponding thread enable bit will be set.
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• If HID0[en_prec_mchk] = ‘0’ (“imprecise”), both threads will take a machine check interrupt, 
and the interrupt will appear to be system-caused (asynchronous) to both threads, and the 
interrupt will not be context-synchronizing, and the interrupt will not be recoverable. 

However, the interrupt—in either its precise or imprecise form—is system-dependent in the 
sense that it reflects the configuration of the system; thus, the same code sequence on a 
different system might not cause a machine check interrupt. 

The advantage of a precise machine check is that a software-defined interrupt handler can 
potentially recover from the interrupt with predictable results. An imprecise machine check has 
the advantage of yielding better hardware performance (for caching-inhibited loads) with the risk 
of nonrecoverability if a machine check occurs. Precise machine check interrupts are enabled 
depending on the setting of HID0[en_prec_mchk]. If HID0[en_prec_mchk] = ‘0’, then the processor 
is in normal operation and machine checks are imprecise and have the potential to cause a 
checkstop if multiple loads outstanding can cause a machine check. Otherwise, if 
HID0[en_prec_mchk] = ‘1’, then the processor will flush all instructions after any caching-inhibited 
load is issued and block them at dispatch until the load completes so that machine checks can be 
precise.

Software running in imprecise mode that depends on the return of a data error (DERR) on a 
caching-inhibited load—and thus the imprecise Machine Check—to indicate the existence of a 
device should perform the load with only a single thread active. If the load is performed while 
both threads are active, it is possible to receive the interrupt when the other thread is in an unre-
coverable state resulting in a checkstop condition. In precise mode, software can run with both 
threads enabled to poll devices that return a DERR.

The PPE treats the precise machine check interrupt condition as a context-synchronizing opera-
tion as defined in the PowerPC Architecture. Imprecise machine checks are not context synchro-
nizing. To guarantee the exception when machine checks are imprecise, a sync (L=0) instruction 
is needed after the caching-inhibited load. 

When a condition exists for an imprecise machine check, both threads of the PPE, if active, take 
the imprecise machine check interrupt. For the thread that issues the imprecise machine-check-
causing load, the interrupt appears to be instruction-caused; on the other thread, the interrupt is 
system-caused.

When the PPE takes a machine check interrupt, the register state is altered as defined in 
Table 9-5 on page 251, and instruction fetch and execution resume at the effective address 
specified in Table 9-3 on page 247.
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9.5.3 Data Storage Interrupt (x‘00..00000300’)

A data storage interrupt occurs when no higher-priority interrupts exist and an exception condi-
tion related to a data access occurs. Data storage interrupts are precise and are not maskable. 
The data storage interrupt is implemented as defined in the PowerPC Architecture. The following 
conditions cause a data storage exception:

• When any byte of the storage location specified by a load, store, icbi, dcbz, dcbst, or dcbf 
instruction cannot be translated from a virtual address to a real address. Data translation 
must be enabled for this exception to occur (MSR[DR] set to ‘1’).

• When the data access violates the storage protection as defined in the PowerPC Architec-
ture. The storage protection is based on the [Ks] and [Kp] bits in the segment lookaside buffer 
(SLB), and the [PP] bits in the page table entry (PTE) when MSR[DR] is set to ‘1’. When 
MSR[DR] is set to ‘0’, a data storage protection violation occurs if LPCR[LPES] bit 1 = ‘0’ and 
MSR[HV] = ‘0’ or if LPCR[LPES] bit 1 = ‘1’ and the data effective address is greater than or 
equal to the LPCR[RMLS].

• When a data address compare or data address breakpoint match occurs.

The PowerPC Architecture describes the processor behavior for the following situation as imple-
mentation-specific: a data storage interrupt is generated because an stwcx. or stdcx. instruction 
is executed, storage is not updated, and there is a data storage exception. For this case, the PPE 
produces a data storage interrupt, regardless of the condition for update of storage.

A data storage interrupt in the PPE can occur at two points during the translation of a virtual 
address to a real address, depending on the translation lookaside buffer (TLB) management 
mode. For software TLB management, the data storage interrupt occurs if the translation is not 
found in the TLB. Software TLB management is controlled by the LPCR[TL] bit. For hardware TLB 
management, the interrupt occurs after an unsuccessful search of the page table. 

The PPE treats the data storage interrupt conditions as a context-synchronizing operation as 
defined in the PowerPC Architecture. When the PPE takes a data storage interrupt, the register 
state is altered as defined in Table 9-6 on page 252, and instruction fetch and execution resume 
at the effective address specified in Table 9-3 Interrupt Vector and Exception Conditions on 
page 247.

Table 9-5. Registers Altered by a Machine Check Interrupt 

Register Bits Setting Description

SRR0 0:63 Set to the effective address of the instruction that the processor would have attempted to 
execute next if no exception condition were present.

SRR1 0:63

All bits cleared to ‘0’ except those set by the MSR.
SRR1 Specifics:
[33:36] = 0
[42:47] = 0
[0:32], [37:41], [48:61], [63] = MSR values.
SRR1[62] is set to ‘0’ for an imprecise Machine Check. For a precise Machine Checks, 
SRR1[62] is set to the MSR value.

MSR 0:63 See Table 9-40 Machine State Register Bit Settings Due to Interrupts on page 294.
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9.5.3.1 Data Address Breakpoint Exception

The PPE supports the optional data address breakpoint facility as defined in PowerPC Operating 
Environment Architecture, Book III. This facility is controlled by the Data Address Breakpoint 
Register (DABR) and the Data Address Breakpoint Register Extension (DABRX). A data address 
breakpoint match occurs if any byte accessed matches the doubleword address specified in the 
upper 61 bits of the DABR. The lower three bits of the DABR and the DABRX control the condi-
tions under which a data address breakpoint exception occurs. Each thread has an independent 
DABR. See PowerPC Operating Environment Architecture, Book III for more information about 
the data address breakpoint facility.

For nonmicrocoded instructions, the PPE does not alter or access any bytes of storage when a 
DABR match occurs.

In this processor implementation, a DABR match occurs for an stwcx. or stdcx. instruction 
regardless of the reservation.

9.5.4 Data Segment Interrupt (x‘00..00000380’)

A data segment interrupt occurs when no higher-priority interrupts exist and the effective address 
of the data access cannot be translated to a virtual address. Data segment interrupts are precise 
and are not maskable. The data segment interrupt is implemented as defined in the PowerPC 
Architecture with one exception. The data segment interrupt modifies the DSISR.

The PowerPC Architecture describes the processor behavior for the following situation as imple-
mentation-specific: an stwcx. or stdcx. instruction is executed and a data segment exception is 
generated. For this case, storage is not updated and the processor will take the data segment 
interrupt.

The PPE treats the data segment interrupt conditions as a context-synchronizing operation as 
defined in the PowerPC Architecture. When the PPE takes a data segment interrupt, the register 
state is altered as defined in Table 9-7 on page 253, and instruction fetch and execution resume 
at the effective address specified in Table 9-3 Interrupt Vector and Exception Conditions on 
page 247.

Table 9-6. Registers Altered by a Data Storage Interrupt 

Register Bits Setting Description

SRR0 0:63 Set to the effective address of the instruction that caused the exception condition.

SRR1 0:63 Set as defined in the PowerPC Architecture.

MSR 0:63 See Table 9-40 Machine State Register Bit Settings Due to Interrupts on page 294.

DSISR 0:31 Set as defined in the PowerPC Architecture.

DAR 0:63 Set as defined in the PowerPC Architecture.
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9.5.5 Instruction Storage Interrupt (x‘00..00000400’)

An instruction storage interrupt (ISI) occurs when no higher-priority exception exists and the next 
instruction cannot be fetched. ISIs are precise and are not maskable. The ISI is implemented as 
it is defined by the PowerPC Architecture. In general, an instruction storage exception is caused 
by the following conditions:

• When the virtual address of the next instruction cannot be translated to a real address

• When an instruction fetch violates the storage protection as defined in the PowerPC Operat-
ing Environment Architecture, Book III.

The storage protection is based on the [Ks] and [Kp] bits in the SLB, and the [PP] bits in the 
PTE when MSR[IR] is set to ‘1’. When MSR[IR] is set to ‘0’, an instruction storage protection 
violation occurs if either:

– LPCR[LPES] bit 1 = ‘0’ and MSR[HV] = ‘0’

– LPCR[LPES] bit 1 = ‘1’, MSR[HV] = ‘0’, and the instruction effective address is greater than 
or equal to the LPCR[RMLS]

• When an instruction fetch is attempted from a no-execute page (PTE[N] = ‘1’)

• When an instruction fetch is attempted with translation on (MSR[IR] = ‘1’) from a guarded 
page (PTE[G] = ‘1’)

• When an instruction is fetched from a no-execute segment (SLBE[N] = ‘1’)

The PPE treats the instruction storage interrupt conditions as a context-synchronizing operation 
as defined in the PowerPC Architecture. When the PPE takes an instruction storage interrupt, the 
register state is altered as defined in Table 9-8 on page 254, and instruction fetch and execution 
resume at the effective address specified in Table 9-3 Interrupt Vector and Exception Conditions 
on page 247.

Table 9-7. Registers Altered by a Data Segment Interrupt 

Register Bits Setting Description

SRR0 0:63 Set to the effective address of the instruction that caused the exception condition.

SRR1 0:63 Set as defined in the PowerPC Architecture.

MSR 0:63 See Table 9-40 Machine State Register Bit Settings Due to Interrupts on page 294.

DSISR

0:5 Set to ‘0’.

6 Set to ‘1’ on any store or dcbz instruction.

7:9 Set to ‘0’.

10 Set to ‘1’.

11:31 Set to ‘0’.

DAR 0:63 Set as defined in the PowerPC Architecture.
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9.5.6 Instruction Segment Interrupt (x‘00..00000480’)

An instruction segment interrupt (ISEG) occurs when no higher-priority exception exists and the 
fetch the next instruction cannot be performed. Instruction segment interrupts are precise and are 
not maskable. The ISEG is implemented as defined by the PowerPC Architecture. In general, an 
ISEG is caused when the effective address of the next instruction cannot be translated to a 
virtual address.

The PPE treats the ISEG conditions as a context-synchronizing operation as defined in the 
PowerPC Architecture. When the PPE takes an ISEG, the register state is altered as defined in 
Table 9-8, and instruction fetch and execution resume at the effective address specified in Table 
9-3 Interrupt Vector and Exception Conditions on page 247.

9.5.7 External Interrupt (x‘00..00000500’)

An external interrupt occurs when higher-priority interrupts do not exist, an external interrupt 
signal is asserted for one of the two execution threads, and external interrupts are enabled. 
External interrupts are system-caused and can be masked. 

The PPE supports two kinds of external interrupts—direct and mediated. Details about these 
interrupts are given in the following sections:

• Section 9.6 Direct External Interrupts on page 265 

• Section 9.7 Mediated External Interrupts on page 276 

• Section 9.8 SPU and MFC Interrupts Routed to the PPE on page 280

Table 9-8. Registers Altered by an Instruction Storage Interrupt 

Register Bits Setting Description

SRR0 0:63
Set to the effective address of the instruction that the processor would have attempted to 
execute next if no exception condition were present. If the interrupt occurs due to a branch 
target fetch, SRR0 is set to the branch target.

SRR1 0:63 Set as defined in the PowerPC Architecture.

MSR 0:63 See Table 9-40 Machine State Register Bit Settings Due to Interrupts on page 294.

DSISR 0:31 Set as defined in the PowerPC Architecture.

Table 9-9. Registers Altered by an Instruction Segment Interrupt 

Register Bits Setting Description

SRR0 0:63
Set to the effective address of the instruction that the processor would have attempted to 
execute next if no exception condition were present. If the interrupt occurs due to a branch 
target fetch, SRR0 is set to the branch target.

SRR1 0:63 Set as defined in the PowerPC Architecture.

MSR 0:63 See Table 9-40 Machine State Register Bit Settings Due to Interrupts on page 294.
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9.5.8 Alignment Interrupt (x‘00..00000600’)

An alignment interrupt occurs when no higher-priority interrupts exist and a data access cannot 
be performed for one of the following reasons:

• The operand of a floating-point load or store is not aligned, or crosses a virtual page bound-
ary.

• The instruction is lfd, lfdx, lfdu, lfdux, stfd, stfdx, stfdu, or stfdux, and the operand is in 
storage that is caching-inhibited, and the operand is word-aligned but not doubleword-
aligned.

• The operand of lmw, stmw, lwarx, ldarx, stwcx., or stdcx. is not aligned.

• The instruction is lmw, stmw, lswi, lswx, stswi, or stswx, and the operand is in storage that 
is caching-inhibited.

• The operand of a load or store is not aligned and is in storage that is caching-inhibited.

• The operand of lwarx, ldarx, stwcx., or stdcx. is in storage that is caching-inhibited.

• The instruction is lha, lhau, lhaux, lhax, lwa, lwaux, or lwax, and the operand is in storage 
that is caching-inhibited.

• The instruction is dcbz and the operand is in storage that is caching-inhibited or the L1 data 
cache is disabled by means of HID4[en_dcway] = ‘0000’.

Any load or store instruction that does not cause an alignment interrupt, but crosses a virtual 
page boundary is flushed and sent to microcode. This lowers the performance of such instruc-
tions. However, misalignments that are handled by microcode can be forced to cause an align-
ment interrupt by setting HID4[force_ai] to ‘1’. This rule applies to the following cases: 

• Cacheable (I = ‘0’) load/store instruction crossing a 32-byte boundary

• Cacheable (I = ‘0’) floating-point doubleword that is load/store word aligned, but not double-
word aligned

• Cacheable (I = ‘0’) load/store instruction that crosses a virtual page boundary

The PPE treats the alignment interrupt condition as a context-synchronizing operation as defined 
in the PowerPC Architecture. When the PPE takes an alignment interrupt, the register state is 
altered as defined in Table 9-10, and instruction fetch and execution resume at the effective 
address specified in Table 9-3 Interrupt Vector and Exception Conditions on page 247. The PPE 
does not modify the DSISR when an alignment interrupt is taken.

Table 9-10. Registers Altered by an Alignment Interrupt 

Register Bits Setting Description

SRR0 0:63 Set to the effective address of the instruction that caused the exception condition.

SRR1 0:63 SRR1 is set as defined in the PowerPC Architecture.

MSR 0:63 See Table 9-40 Machine State Register Bit Settings Due to Interrupts on page 294

DAR 0:63 Set as defined in the PowerPC Architecture.
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9.5.9 Program Interrupt (x‘00..00000700’)

A program interrupt occurs when no higher-priority interrupts exist and one of the following condi-
tions exists (as defined in the PowerPC Architecture):

• Floating-point enabled exception

• Illegal instruction

• Privileged instruction

• Trap

The PPE treats all floating-point exception modes, if enabled, as precise. 

The PPE invokes the Illegal Instruction type of program interrupt when it detects any instruction 
from the illegal instruction class, defined in PowerPC User Instruction Set Architecture, Book I. 
An mtspr or mfspr instruction with a reserved special purpose register (SPR) selected causes 
an Illegal Instruction type of program interrupt. In addition to these conditions, the PPE can be 
configured using the hardware implementation dependent (HID) registers to cause an Illegal 
Instruction type of program interrupt for the following condition:

• If HID0[en_attn] = ‘0’, the attn instruction causes an illegal instruction type of program inter-
rupt.

The following cases list other implementation-specific causes of the illegal instruction type of 
program interrupt (in addition to the cases listed in the architecture):

• If instructions are stored into the instruction stream (for example, self-modifying code), it is 
possible for an application error to cause a nonmicrocoded instruction to be sent to the 
microcode engine.

• Load or Store with Update invalid forms (when RA = ‘0’ or RA = RT).

• Load Multiple invalid forms (when RA is in the range of registers to be loaded or when RA = 
‘0’).

• Load String invalid forms (when RA or RB is in the range of registers to be loaded, including 
the case in which RA = ‘0’, or when RT = RA or RT = RB).

Note:  For the invalid forms where RA is in the range of registers to be loaded, the PPE com-
pletes the load up unto the point at which the range collision occurs. The interrupt is then 
taken at the point of collision.

• Load or Store Floating-Point with Update invalid forms (when RA = ‘0’).

• bcctr[l] invalid form (BO[2] = ‘0’).

The PPE invokes the privileged instruction type of program interrupt for the following cases (in 
addition to any cases listed in the architecture):

• A read or write is performed in problem state to a supervisor or hypervisor special purpose 
register.

• A read or write is performed in problem or supervisor state to a hypervisor special purpose 
register.

• A privileged instruction such as rfid or hrfid is executed without proper privileges.
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The PPE treats the program interrupt conditions as a context-synchronizing operation as defined 
in the PowerPC Architecture. When the PPE takes a program interrupt, the register state is 
altered as defined in Table 9-11, and instruction fetch and execution resume at the effective 
address specified in Table 9-3 Interrupt Vector and Exception Conditions on page 247.

9.5.10 Floating-Point Unavailable Interrupt (x‘00..00000800’)

The floating-point unavailable interrupt is implemented as defined in the PowerPC Architecture.

The PPE treats the floating-point interrupt as a context-synchronizing operation as defined in the 
PowerPC Architecture. When the PPE takes a floating-point unavailable interrupt, the register 
state is altered as defined in Table 9-12, and instruction fetch and execution resume at the effec-
tive address specified in Table 9-3 Interrupt Vector and Exception Conditions on page 247.

9.5.11 Decrementer Interrupt (x‘00..00000900’)

The decrementer interrupt is implemented as defined by the PowerPC Architecture. Decrementer 
interrupts are system-caused. A decrementer exception condition exists if the most-significant bit 
of the decrementer is set to ‘1’. A decrementer interrupt is taken if the decrementer interrupt is 
enabled (MSR[EE] = ‘1’).

The PPE treats the decrementer interrupt as a context-synchronizing operation as defined in the 
PowerPC Architecture. When the PPE takes a decrementer interrupt, the register state is altered 
as defined in Table 9-13, and instruction fetch and execution resume at the effective address 
specified in Table 9-3 Interrupt Vector and Exception Conditions on page 247.

Table 9-11. Registers Altered by a Program Interrupt 

Register Bits Setting Description

SRR0 0:63 SRR0 is set as defined in the PowerPC Architecture.

SRR1 0:63 SRR1 is set as defined in the PowerPC Architecture.

MSR 0:63 See Table 9-40 Machine State Register Bit Settings Due to Interrupts on page 294.

Table 9-12. Registers by a Floating-Point Unavailable Interrupt 

Register Bits Setting Description

SRR0 0:63 Set to the effective address of the instruction that caused the exception condition.

SRR1 0:63 SRR1 is set as defined in the PowerPC Architecture.

MSR 0:63 See Table 9-40 Machine State Register Bit Settings Due to Interrupts on page 294.

Table 9-13. Registers Altered by a Decrementer Interrupt 

Register Bits Setting Description

SRR0 0:63 Set to the effective address of the instruction that the processor would have attempted to 
execute next if no exception conditions were present.

SRR1 0:63 Set as defined in the PowerPC Architecture.

MSR 0:63 See Table 9-40 Machine State Register Bit Settings Due to Interrupts on page 294.
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9.5.12 Hypervisor Decrementer Interrupt (x‘00..00000980’)

The PPE implements a hypervisor decrementer that is shared for both threads and a corre-
sponding hypervisor decrementer interrupt. These facilities are part of the basic logical parti-
tioning (LPAR) extension to the PowerPC Architecture. A hypervisor decrementer interrupt 
occurs when no higher-priority exception exists, a hypervisor decrementer exception condition 
exists, and hypervisor decrementer interrupts are enabled. Hypervisor interrupts are enabled 
when the following expression is equal to ‘1’:

(MSR[EE] | NOT(MSR[HV])) & LPCR[HDICE]

A hypervisor decrementer exception condition exists if the most-significant bit of the hypervisor 
decrementer is set to ‘1’. Hypervisor decrementer interrupts are system-caused and are 
maskable. If a thread is suspended, it will not be resumed by a hypervisor decrementer excep-
tion. If both threads are active and have interrupts enabled, then both threads will take the hyper-
visor decrementer interrupt.

The PPE treats the hypervisor decrementer interrupt as a context-synchronizing operation as 
defined in the PowerPC Architecture. When the PPE takes a hypervisor decrementer interrupt, 
the register state is altered as defined in Table 9-14, and instruction fetch and execution resume 
at the effective address specified in Table 9-3 Interrupt Vector and Exception Conditions on 
page 247.

9.5.13 System Call Interrupt (x‘00..00000C00’)

The system call interrupt is implemented as defined in the PowerPC Architecture. System call 
interrupts are caused by the sc instruction; they are precise and cannot be masked.

The PPE treats the execution of the sc instruction, which is the condition for the interrupt, as a 
context-synchronizing operation as defined in the PowerPC Architecture. When the PPE takes a 
system call interrupt, the register state is altered as defined in Table 9-15 on page 259, and 
instruction fetch and execution resume at the effective address specified in Table 9-3 Interrupt 
Vector and Exception Conditions on page 247.

The sc instruction has a LEV bit which, when set to ‘1’, causes the Hypervisor bit, MSR[HV], to be 
set to ‘1’ so that the CBEA processor runs in hypervisor mode. 

Table 9-14. Registers Altered by a Hypervisor Decrementer Interrupt 

Register Bits Setting Description

HSRR0 0:63 Set to the effective address of the instruction that the processor would have attempted to 
execute next if no exception conditions were present.

HSRR1 0:63

HSRR1[33] is set to ‘1’.
Note:  Setting HSRR1[33] to ‘1’ for this interrupt is a deviation from the PowerPC Architec-
ture for this implementation.

HSRR1[34:36] and [42:47] are set to ‘0’. 
All other bits are set to the corresponding value in the MSR.

MSR 0:63 See Table 9-40 Machine State Register Bit Settings Due to Interrupts on page 294.
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9.5.14 Trace Interrupt (x‘00..00000D00’)

A trace interrupt occurs when no higher-priority interrupts exist, and any instruction except rfid, 
hrfid, sc, or attn completes successfully, and MSR[SE] is set to ‘1’; or a branch instruction 
completes successfully and MSR[BE] is set to ‘1’. The trace interrupt is implemented as defined in 
the PowerPC Architecture. Trace interrupts are instruction-caused, precise, and cannot be 
masked. The PPE does not implement the example extensions (optional) to the trace facility as 
outlined in the Example Trace Extensions (Optional) section of PowerPC Operating Environment 
Architecture, Book III.

The PPE generates a trace interrupt when an mtmsrd instruction sets MSR[SE] to ‘1’. In this case, 
SRR0 is set to the effective address of the mtmsrd instruction instead of the next instruction that 
the processor would have attempted to execute if no exception condition were present. This 
occurs only if the prior state of MSR[SE] was set to ‘0’. If an mtmsrd instruction changes the 
MSR[SE] bit from ‘1’ to ‘0’, the PPE does not generate a trace interrupt on the mtmsrd instruction.

The architecture specifies that the value of the MSR[SE] bit before an mtmsrd is executed is used 
to determine if a trace interrupt is taken after the mtmsrd instruction is executed. This implemen-
tation does the opposite; the value after the mtmsrd instruction executes is used to determine if 
a trace interrupt is taken after the mtmsrd instruction.

If trace interrupts are enabled and an mtctrl instruction that disables a thread is issued, then the 
thread will be disabled and the value of SRR0 is undefined.

The PPE treats the trace interrupt conditions as a context-synchronizing operation as defined in 
the PowerPC Architecture. When the PPE takes a trace interrupt, the register state is altered as 
defined in Table 9-16, and instruction fetch and execution resume at the effective address speci-
fied in Table 9-3 Interrupt Vector and Exception Conditions on page 247.

Table 9-15. Registers Altered by a System Call Interrupt 

Register Bits Setting Description

SRR0 0:63 Set to the effective address of the instruction that the processor would have attempted to 
execute next if no exception conditions were present.

SRR1 0:63 Set as defined in the PowerPC Architecture.

MSR 0:63 See Table 9-40 Machine State Register Bit Settings Due to Interrupts on page 294.

Table 9-16. Registers Altered by a Trace Interrupt 

Register Bits Setting Description

SRR0 0:63

Set to the effective address of the instruction that the processor would have attempted to 
execute next if no exception conditions were present. In the case of an mtmsrd instruction 
that causes a trace interrupt by changing the state of MSR[SE] from ‘0’ to ‘1’, SRR0 is set to 
the effective address of the mtmsrd instruction. 

SRR1 0:63
SRR1 bits [33:36], [42], and [44:47] are set to ‘0’.
SRR1 bit [43] is set to ‘1’.
All other bits are set to the corresponding value in the MSR.

MSR 0:63 See Table 9-40 Machine State Register Bit Settings Due to Interrupts on page 294.
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9.5.15 VXU Unavailable Interrupt (x‘00..00000F20’)

A vector/SIMD multimedia extension unit (VXU) unavailable interrupt occurs when a higher-
priority interrupt does not exist, an attempt is made to execute a VXU instruction, and MSR[VXU] 
is set to ‘0’. The VXU unavailable interrupt is a PPE-specific interrupt. The interrupt is not defined 
in the PowerPC Architecture, but it is defined in the vector/SIMD multimedia extension to the 
PowerPC Architecture. VXU unavailable interrupts are instruction-caused, precise, and cannot 
be masked.

The PPE treats the VXU unavailable interrupt as a context-synchronizing operation as defined in 
the PowerPC Architecture. When the PPE takes a VXU unavailable interrupt, the register state is 
altered as defined in Table 9-17, and instruction fetch and execution resume at the effective 
address specified in Table 9-3 Interrupt Vector and Exception Conditions on page 247.

For additional information about this interrupt, see the PowerPC Microprocessor Family: 
Vector/SIMD Multimedia Extension Technolgy Programming Environments Manual. 

9.5.16 System Error Interrupt (x‘00..00001200’)

A system error interrupt occurs when no higher-priority interrupts exist, a system error interrupt 
signal is asserted for one of the execution threads, HID0[en_syserr] = ‘1’, and MSR[EE] = ‘1’ or 
MSR[HV] = ‘0’. The system error interrupt is a PPE-specific interrupt. The interrupt is not defined in 
the PowerPC Architecture. System error interrupts are system-caused and are enabled if the 
following expression is equal to ‘1’:

(MSR[EE] | NOT(MSR[HV])) & HID0[en_syserr]

The PPE treats the system error interrupt conditions as a context-synchronizing operation as 
defined in the PowerPC Architecture. When the PPE takes a system error interrupt, the register 
state is altered as defined in Table 9-18, and instruction fetch and execution resume at the effec-
tive address specified in Table 9-3 Interrupt Vector and Exception Conditions on page 247.

Table 9-17. Registers Altered by a VXU Unavailable Interrupt 

Register Bits Setting Description

SRR0 0:63 Set to the effective address of the instruction that the processor would have attempted to 
execute next if no exception condition were present.

SRR1 0:63 SRR1[33:36] and [42:47] are set to ‘0’. All other bits are set to the corresponding value in 
the MSR.

MSR 0:63 See Table 9-40 Machine State Register Bit Settings Due to Interrupts on page 294.

Table 9-18. Registers Altered by a System Error 

Register Bits Setting Description

HSRR0 0:63 Set to the effective address of the instruction that the processor would have attempted to 
execute next if no exception condition were present.

HSRR1 0:63 HSRR1 bit 33 is set to ‘1’ and bits [34:36] and [42:47] are set to ‘0’. All other bits are set to 
the corresponding value in the MSR.

MSR 0:63 See Table 9-40 Machine State Register Bit Settings Due to Interrupts on page 294
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The IOC Fault Isolation Register (IOC_FIR) acts as a collection point for error conditions from 
several sources within the CBEA processors when these errors are external to the PPE. See the 
Cell Broadband Engine Registers document for more information about the IOC_FIR. 

Bits in the IOC_FIR are set as a result of errors detected by the EIB, bus interface controller (BIC), 
and I/O interface controller (IOC). A subset of the bits can cause a system error interrupt in the 
PPE. The following IOC-detected errors can result in a System Error signal being asserted if the 
corresponding IOC Fault Isolation Error Mask Register (IOC_FIR_ErrMask) bit is ‘0’, the corre-
sponding IOC Fault Isolation Checkstop Enable Register (IOC_FIR_ChkStop_en) bit is ‘0’, and the 
corresponding IOC Fault Isolation System Error Enable Register (IOC_SysErrEn) bit is ‘1’:

• The time that a CBEA-processor-originated command to IOIF0 (if 
IOC_FIR_ErrMask[yi5] = ‘0’, IOC_FIR_ChkStop_en[yi5] = ‘0’, and IOC_SysErrEn[Q0] = ‘1’) or 
to IOIF1 (if IOC_FIR_ErrMask[yi11] = ‘0’, IOC_FIR_ChkStop_en[yi11] = ‘0’, and 
IOC_SysErrEn[Q1] = ‘1’) has been in the IOC outbound command queue exceeds the time 
specified in the memory-mapped I/O (MMIO) register, IOCmd Configuration (IOC_IOCmd_Cfg). 
See the Cell Broadband Engine Registers document for more information about 
IOC_IOCmd_Cfg.

• The time that a command from IOIF0 (if IOC_FIR_ErrMask[yi4] = ‘0’, 
IOC_FIR_ChkStop_en[yi4] = ‘0’, and IOC_SysErrEn[A0] = ‘1’) or from IOIF1 (if 
IOC_FIR_ErrMask[yi10] = ‘0’, IOC_FIR_ChkStop_en[yi10] = ‘0’, and IOC_SysErrEn[A1] = ‘1’) 
has been in the IOC inbound command queue exceeds the time specified in IOC_IOCmd_Cfg.

• An ERR response was received on a command from the CBEA processor to IOIF0 (if 
IOC_FIR_ErrMask[yi3] = ‘0’, IOC_FIR_ChkStop_en[yi3] = ‘0’, and IOC_SysErrEn[E0] = ‘1’) or 
from the CBEA processor to IOIF1 (if IOC_FIR_ErrMask[yi9] = ‘0’, 
IOC_FIR_ChkStop_en[yi9] = ‘0’, and IOC_SysErrEn[E1] = ‘1’).

If a system error occurs, both threads are signaled. If the system error is signaled to a PPE 
thread, whether a system reset interrupt occurs first or if a system error interrupt is taken 
depends on the settings of various SPR bits in the PPE. See Section 9.5.1 System Reset Inter-
rupt (Selectable or x‘00..00000100’) on page 248 for more information about interrupts due to an 
external interrupt signal’s being asserted. If a system error interrupt occurs, another system error 
interrupt is not taken until the System Error signal is deasserted and is then asserted again. 

The System Error signal goes through the power management logic to synchronize any change 
in this signal relative to power management state changes. The Pause(0) state is exited when a 
system error interrupt occurs. See Section 15 Power and Thermal Management on page 429 for 
more information about power management.

9.5.17 Maintenance Interrupt (x‘00..00001600’)

The maintenance interrupt is intended for hardware debugging purposes only. This interrupt is 
not intended for normal programming use. The maintenance interrupt is a PPE-specific interrupt. 
The interrupt is not defined in the PowerPC Architecture. System-caused maintenance interrupts 
are enabled if the following expression is equal to ‘1’:

(MSR[EE] | NOT(MSR[HV])

Instruction-caused maintenance interrupts cannot be masked.



Programming Handbook

Cell Broadband Engine  

PPE Interrupts
Page 262 of 884

Version 1.11
May 12, 2008

A system-caused maintenance interrupt cannot occur without an appropriate boundary-scan 
debug tool. A system-caused maintenance interrupt occurs when a higher-priority interrupt does 
not exist, a trace signal is asserted, and system-caused maintenance interrupts are enabled. The 
PPE has two trace signals. Each trace signal can be configured through the hardware-debug 
scan chain to trigger a system-caused maintenance interrupt on one or both threads. 

An instruction-caused maintenance interrupt occurs when a higher-priority interrupt does not 
exist, and the interrupt is triggered by one of the following cases:

1. A completing instruction matches one of two opcode compare and mask registers (opcode 
compare)

2. An internal instruction address breakpoint (IABR) that is accessed by the hardware-debug 
scan chain

3. An internal data address breakpoint (DABR) also accessed by the scan chain. 

The internal hardware data address breakpoints (set using TDABR and TDABRX) are not the 
same as the software data address breakpoints (set using DABR and DABRX) defined in the 
PowerPC Architecture. The facilities are similar in both name and function; however, one is 
meant for software debug and the other is meant for hardware debug. The internal hardware 
instruction address breakpoint facility (set using TIABR and TIABRX) works identically to the 
hardware data address breakpoint except that it is triggered by instruction addresses rather than 
data addresses.

The PPE treats the maintenance interrupt as a context synchronizing operation as defined in the 
PowerPC Architecture. When the PPE takes a maintenance interrupt, the register state is altered 
as defined in Table 9-19 on page 263, and instruction fetch and execution resume at the effective 
address specified in Table 9-3 Interrupt Vector and Exception Conditions on page 247. When a 
maintenance interrupt occurs, HSRR1 reports all conditions that are true for the instruction taking 
the interrupt, not just the condition that caused it.
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9.5.18 Thermal Management Interrupt (x‘00..00001800’)

A thermal management interrupt occurs when no higher-priority interrupts exist, a thermal 
management interrupt signal is asserted for one of the two execution threads, and the thermal 
management interrupts are enabled. Thermal management interrupts are enabled if the following 
expression is equal to ‘1’:

((MSR[EE] | NOT(MSR[HV])) & (HID0[therm_intr_en]))

The thermal management interrupt is a PPE-specific interrupt. This interrupt is not defined in the 
PowerPC Architecture. Thermal management interrupts are system-caused and can be masked. 

Table 9-19. Registers Altered by a Maintenance Interrupt  

Register Bits Setting Description

HSRR0 0:63 Set to the effective address of the instruction that the processor would have attempted to 
execute next if no exception condition were present.

HSRR1

0:32 Set to the corresponding value in the MSR.

33
Source of maintenance interrupt
0 The interrupt is caused by an instruction (also called an instruction-caused interrupt).
1 The interrupt is caused by the system (also called a system-caused interrupt).

34 Set to ‘0’.

35:36

If the interrupt is an instruction-caused interrupt (HSRR1[33] = ‘0’):
10 Opcode 0 Compare
01 Opcode 1 Compare
11 Opcode 0 and Opcode 1 Compare
Note:  If a trace match is set up to cause a maintenance interrupt, and also iabr, dabr, or 
opcode compare is set up, then when a maintenance interrupt caused by an iabr, dabr, or 
opcode compare occurs, the opcode compare bits can be falsely set by a previous mainte-
nance interrupt caused by a trace match.

If the interrupt is a system-caused interrupt (HSRR1[33] = ‘1’):
00 Reserved
01 Trace 0 input asserted
10 Trace 1 input asserted
11 Trace 0 and Trace 1 input asserted

37 Set to ‘0’.

38 Set to the corresponding value in the MSR. 

39:44 Set to ‘0’.

45

Set to ‘1’ for a hardware data address breakpoint (HSRR1[33] is set to ‘0’)
The breakpoint address is loadable only through scan.
Note:  The hardware data address breakpoint reported by this bit is not the same as the 
DABR defined in Section 9.5.3.1 Data Address Breakpoint Exception on page 252.

46
Set to ‘1’ for a hardware instruction address breakpoint. (HSRR1[33] is set to ‘0’)
The breakpoint address is loadable only through scan.

47 Set to ‘0’.

48:63 Set to the corresponding value in the MSR.

MSR 0:63 See Table 9-40 Machine State Register Bit Settings Due to Interrupts on page 294.
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The PPE treats the thermal management interrupt as a context-synchronizing operation as 
defined in the PowerPC Architecture. When the PPE takes a thermal management interrupt, the 
register state is altered as defined in Table 9-20, and instruction fetch and execution resume at 
the effective address specified in Table 9-3 Interrupt Vector and Exception Conditions on 
page 247.

Ten thermal sensors in the CBEA processors are used to detect the temperature of various parts 
of the chip. The thermal management control unit (TMCU) provides software with an interface to 
these sensors. The TMCU can be configured to cause a thermal management interrupt to the 
PPE. There is a set of registers that provides status of the thermal sensors, a set of interrupt 
status registers indicating an interrupt condition, and a set of mask registers for the interrupts.

The Thermal Sensor Current Temperature Status Register One (TS_CTSR1) and Thermal Sensor 
Current Temperature Status Register Two (TS_CTSR2) provide the current temperature informa-
tion using encoded values to represent specific temperature ranges for the ten thermal sensors. 
Larger values indicate higher temperatures. The Thermal Sensor Interrupt Temperature Register 
One (TS_ITR1) and Thermal Sensor Interrupt Temperature Register Two (TS_ITR2) contain the 
corresponding encoding for the temperature that causes a thermal management interrupt to the 
PPE. The Thermal Sensor Global Interrupt Temperature Register (TS_GITR) contains a second 
interrupt temperature level. This register specifies one interrupt temperature level that applies to 
all sensors in the CBEA processors. When the encoded temperature value in the TS_CTSR1 or 
TS_CTSR2 for a sensor is greater than or equal to the corresponding sensor’s interrupt tempera-
ture encoding in the TS_ITR1 and TS_ITR2, the corresponding bit in TS_ISR is set. When the 
temperature encoding in the TS_CTSR1 and TS_CTSR2 register for any sensor is greater than or 
equal to the global interrupt temperature encoding in the TS_GITR, the corresponding status bit in 
TS_ISR is set. If any TS_ISR bit is '1' and the corresponding TS_IMR bit is '1', a thermal manage-
ment interrupt signal is asserted to the PPE.

To clear the interrupt condition, privileged software should set the corresponding mask bits in the 
TS_IMR to '0'. To enable a thermal management interrupt, privileged software should ensure the 
temperature is below the interrupt temperature for the corresponding sensors and then perform 
the following steps. 

1. Write a ‘1’ to the corresponding status bit in the TS_ISR.

2. Write a ‘1’ to the corresponding mask bit in the TS_IMR.

When the temperature is not below the interrupt temperature, enabling the interrupt can result in 
the generation of an immediate management interrupt.

Table 9-20. Registers Altered by a Thermal Management Interrupt 

Register Bits Setting Description

HSRR0 0:63 Set to the effective address of the instruction that the processor would have attempted to 
execute next if no exception condition were present.

HSRR1

0:32 Set to the corresponding value in the MSR.

33 Set to ‘1’.

34:47 Set to ‘0’.

48:63 Set to the corresponding values in the MSR.

MSR 0:63 See Table 9-40 Machine State Register Bit Settings Due to Interrupts on page 294.
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See Section 15 Power and Thermal Management on page 429 for additional details on thermal 
management interrupts.

9.6 Direct External Interrupts

This section describes the direct external interrupts supported by the PPE. 

As shown in Table 9-1 on page 242, the sources or causes of direct external interrupts include:

• SPU Instructions—Section 9.6.3 on page 271

• MFC Commands—Section 9.6.3 on page 271

• Memory Interface Controller (MIC) Auxiliary Trace Buffer Full—Section 9.6.4.2 on page 273

• I/O Devices (IOIF0, IOIF1)—Section 9.6.4.3 on page 273

• I/O-Address Translation—Section 9.6.4.4 on page 274

• Element Interconnect Bus (EIB) Possible Livelock Detection—Section 9.6.4.5 on page 275

• Token Manager—Section 9.6.4.6 on page 276

• Performance Monitor—Section 9.6.4.7 on page 276

• Software Interrupt, also called interprocessor interrupt (IPI)—Section 9.6.2.4 on page 270

The PPE receives these interrupts from:

• An IIC, by means of the EIB, from:

– An SPU or MFC (all such packets are actually sent by the MFC)

– An I/O device by means of the IOIF0 or IOIF1 interface

– The IIC, due to an event recorded by the MIC, EIB, token manager, I/O-address transla-
tion logic, or performance monitor

• Software interrupts from one PPE thread to another PPE thread. They are generated by an 
MMIO write to an Interrupt Generation Port Register (IGP), IIC_IGP0 or IIC_IGP1, in the IIC. 

As shown in Figure 9-1 on page 243, the IICs receive and route these interrupts and interrupt 
status information to the PPE. The sections that follow describe the organization and handling of 
the Interrupts.

9.6.1 Interrupt Presentation

Interrupts generated by an SPU or MFC are sent to the IICs (or an external interrupt controller) 
as interrupt packets or dedicated signals on the EIB. External I/O devices send interrupts to the 
CBEA processors using either interrupt packets or dedicated signals on an I/O interface (IOIF). 
When an IIC receives an interrupt packet it signals an external interrupt to a PPE thread. If an 
external interrupt controller is used, the SPEs can be individually configured to send specific 
classes of interrupts to this external controller. 

An IIC receives interrupt packets and signals an external interrupt to the appropriate PPE thread. 
These IIC signals go through the power management logic to synchronize any changes in these 
signals relative to power-management state changes. The power management logic also detects 
that the PPE Pause(0) power management state should be exited when an external interrupt 
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occurs. When an external interrupt is signaled to a PPE thread, the type of interrupt taken 
depends on the settings of the special-purpose register (SPR) bits in the PPE. See Section 15 
Power and Thermal Management on page 429 for more information about power management.

An incoming interrupt packet—generated within the CBEA processor or external to it—destined 
for a PPE thread will have a unit ID of x‘E’ or x‘F’, as shown in Table 9-21. 

The registers related to external interrupt generation, routing, and presentation are summarized 
in Section 9.6.2.1 IIC Register Summary on page 266 and Section 9.6.4 Other External Inter-
rupts on page 272. The Current Priority (IIC_CPL0 and IIC_CPL1), Interrupt Pending Port 
(IIC_IPP0 and IIC_IPP1), Interrupt Generation Port (IIC_IGP0 and IIC_IGP1), IIC Interrupt 
Routing (IIC_IRR), and IIC Interrupt Status Register (IIC_ISR) are the most important. For 
details, see the Cell Broadband Engine Registers specification and the Cell Broadband Engine 
Architecture document. 

9.6.2 IIC Interrupt Registers

9.6.2.1 IIC Register Summary

Table 9-22 summarizes the interrupt-related registers—one for each PPE thread—in the IICs, 
which themselves are part of the I/O interface controller (IOC). For details, see the Cell Broad-
band Engine Registers document and the Cell Broadband Engine Architecture document. 

Table 9-21. Interrupt-Destination Unit ID  

Destination Unit Unit ID

PPE Thread 0 x‘E’

PPE Thread 1 x‘F’

External interrupt controller attached to IOIF1, if any x‘B’

External interrupt controller attached to IOIF0, if any x‘0’

Table 9-22. IOC Interrupt Register Summary (Sheet 1 of 2) 

Register Name Mnemonic Description Read/
Write

Interrupt Registers (Implementation-specific Registers)

IIC Thread 0 Interrupt Pending Port 
(nondestructive)

IIC_IPP0

Allows software to read the interrupt source and 
other information about pending interrupts. This 
register is sometimes referred to as the interrupt 
pending port (IPP). 
After software reads this register destructively or 
nondestructively, the next highest interrupt is 
loaded into the register. When reading IIC_IPP0 
nondestructively, the value of the associated 
IIC_CPL0 register is not updated with the 
interrupt in IIC_IPP0. When reading IIC_IPP0 
destructively, the IIC_CPL0 register takes on the 
priority of the interrupt in IIC_IPP0.
If a nondestructive read of the interrupt pending 
port that returns a valid interrupt is followed by 
another read of the interrupt pending port 
(destructive or nondestructive), the IIC returns 
the same data value unless another interrupt of 
a higher priority has been received by the IIC. 

R

IIC Thread 0 Interrupt Pending Port 
(destructive) R
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9.6.2.2 Current Priority Level

There is one current priority level (CPL) register for each PPE thread in a CBEA processor. 
IIC_CPL0 holds the current priority level for thread 0, and IIC_CPL1 holds the current priority level 
for thread 1. The registers are intended to hold the priority level at which software is currently 
operating. The lower the numeric value of the priority field, the higher the priority level (highest 
priority corresponds to a numeric value of ‘0’). If the priority of an interrupt is numerically less than 
the priority in the CPL register, the interrupt is signaled to the PPE. 

IIC Thread 0 Interrupt Generation Port IIC_IGP0 Allows privileged software to generate interrupts 
to PPE thread 0. W

IIC Thread 0 Current Priority Level IIC_CPL0

Allows software to mask interrupts of a specified 
priority for PPE thread 0. 
Software directly loads the current priority level 
(CPL) by means of an MMIO write of the register 
or indirectly by means of destructive read of 
IIC_IPP0. When executing a destructive read of 
IIC_IPP0, the priority of the interrupt in IIC_IPP0 
is written to the CPL if that interrupt is valid. 
Otherwise, the content is unchanged.

R/W

IIC Thread 1 Interrupt Pending Port 
(nondestructive)

IIC_IPP1 Same as IIC_IPP0, except for PPE thread 1. 

R

IIC Thread 1 Interrupt Pending Port 
(destructive) R

IIC Thread 1 Interrupt Generation Port IIC_IGP1 Same as IIC_IGP0, except for PPE thread 1. W

IIC Thread 1 Current Priority Level IIC_CPL1 Same as IIC_CPL0, except for PPE thread 1. R/W

IIC Interrupt Routing IIC_IRR Configures the priority and destination of certain 
interrupts reported in the IIC_ISR. R/W

IIC_Interrupt Status IIC_ISR

Records interrupt conditions from the memory 
interface, I/O interface, element interconnect 
bus (EIB), performance monitor, and token 
manager. 
If the IIC_ISR is nonzero, the IIC creates a class 
1 interrupt to either the EIB, IIC_IPP0, or 
IIC_IPP1, depending on how the IIC_IRR is 
configured. 
After resetting the interrupt condition in the 
source unit, software can reset the interrupt by 
writing ‘1’ to the corresponding bit in the 
IIC_ISR. Writing this register must occur to 
confirm handling of interrupts in the IIC_ISR.

R/W

Fault Isolation Registers (Implementation-specific Registers)

IOC Fault Isolation IOC_FIR

Records, sets, resets, and masks IOC faults. 
Enables checkstop interrupt for faults. 
IOC_FIR_SysErrEnbl is not part of other fault 
isolation registers (FIRs); it is used to generate 
an enable for the system error interrupt.

R/W

IOC Fault Isolation Register Set IOC_FIR_Set R/W

IOC Fault Isolation Register Reset IOC_FIR_Reset R/W

IOC Fault Isolation Error Mask IOC_FIR_ErrMask R/W

IOC Checkstop Enable IOC_FIR_ChkStpEnbl R/W

IOC System Error Enable IOC_FIR_SysErrEnbl R/W

Table 9-22. IOC Interrupt Register Summary (Sheet 2 of 2) 

Register Name Mnemonic Description Read/
Write
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The priority-level value can be written explicitly by software to the CPL registers or indirectly by 
software doing a destructive read of a valid interrupt in the Interrupt Pending Port Register (IPP). 
Only the most-significant 5 bits of the CPL register priority field are implemented. Unimplemented 
bits of the interrupt pending port are read as ‘0’. This implies that IIC_CPL0[Priority[0:3]] is set 
to IIC_IPP0[Priority[0:3]], and IIC_CPL0[Priority[4]] is set to ‘0’ when software performs a 
destructive read of a valid interrupt from IIC_IPP0. Likewise, IIC_CPL1[Priority[0:3]] is set to 
IIC_IPP1[Priority[0:3]], and IIC_CPL1[Priority[4]] is set to ‘0’ when software performs a 
destructive read of a valid interrupt from IIC_IPP1.

Although the CPL registers have five bits, the IPP registers have only four bits. This extra bit in 
the CPL registers allows software to set the current priority level lower than any pending interrupt 
in the IPP registers. This allows for 16 priority levels to be used for these interrupts, whereas only 
15 priority levels could be used if the CPL registers had only four bits. If a CPL register had four 
bits, the lowest priority (highest numeric value) in this register is all ones, and this masks an inter-
rupt in the corresponding IPP register with the same priority value.

9.6.2.3 Interrupt Pending Port

The interrupt pending port (IPP) registers allow software to read the interrupt packet data and 
other information about the highest priority interrupt pending for each PPE thread. The Thread 0 
Interrupt Pending Port Register is IIC_IPP0 and the Thread 1 Interrupt Pending Port Register is 
IIC_IPP1. Table 9-23 shows the bit fields the registers (reserved fields are not shown).

The interrupt source (ISRC) of an external interrupt is designated as the two 4-bit fields, bits 
48:55, shown in Table 9-24.

Table 9-23. IIC_IPP0 and IIC_IPP1 Interrupt Pending Port Bit Fields  

Bits Name Description

32 V
Interrupt Valid:
0 No interrupt pending.
1 Interrupt pending.

33 T
Interrupt Type:
0 SPE, external device, or external interrupt controller.
1 Thread 0 interrupt generation port.

46:47 Class Interrupt Class. Returns zeros when T = ‘1’.

48:51 Src_Node_ID Interrupt Source Node ID. Returns zeros when T = ‘1’.

52:55 Src_Unit_ID Interrupt Source Unit ID. Returns zeros when T = ‘1’.

56:59 Priority Interrupt Priority.

Table 9-24. Values for Interrupt Source (Sheet 1 of 2) 

Interrupt Source
Most-Significant Four Bits
of Interrupt Source (ISRC)

(BIF Node ID)

Least-Significant Four Bits
of Interrupt Source (ISRC)

(BIF Unit ID)

SPU(0) x‘4’ x‘4’

SPU(1) x‘7’ x‘7’

SPU(2) x‘3’ x‘3’

SPU(3) x‘8’ x‘8’
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There are two types of read, one is nondestructive and the other is destructive. The destructive-
read register is located at a doubleword offset to the nondestructive read address. Because of 
the IICs’ priority system, lower-priority interrupts will not be realized until the status is cleared 
(that is, reading the status by means of destructive reads). 

The following description applies to interrupts for one PPE thread and that thread’s IPP register, 
CPL register, and IGP register.

The interrupt priority is 8 bits in the Cell Broadband Engine Architecture. The CBEA processors 
implement the 4 most-significant bits of interrupt priority and ignores the 4 least-significant bits of 
interrupt priority in the IPP register. There are 16 interrupt priorities decoded from these four bits. 
The IIC implements one interrupt-queue entry for each of the 16 priorities for each thread. In 
addition, for interrupts created by the MMIO writes to the IGP register, the IIC implements one 
queue entry for each of the 16 priorities.

When the priority of the highest-priority, valid interrupt in the interrupt-pending queue is higher 
(lower numeric value) than the priority in the current priority level, the External Interrupt signal to 
the PPE thread is activated. When the priority of the highest-priority, valid interrupt in the inter-
rupt-pending queue is the same or lower (equal or higher numeric value) than the priority in the 
CPL register, the External Interrupt signal to the PPE thread is deactivated. If the PPE does not 
take an interrupt immediately because the external interrupt is disabled or the interrupt is blocked 
because its priority is not higher than the priority in the CPL register, the interrupt is not lost. In 
this case, the interrupt is simply deferred until the external interrupt is enabled and the priority in 
the CPL register is lowered. 

After a destructive read of the IPP register, the IIC performs an interrupt-reissue transaction on 
the EIB if the IIC responded to an EIB interrupt command with a retry snoop response since the 
last interrupt-reissue transaction that the IIC performed. This means that the number of interrupt-
reissue transactions might be less than the number of interrupt transactions that have been 
retried.

The IIC ignores priority in determining whether an interrupt-reissue transaction should be 
performed. Thus, the IIC can perform an interrupt-reissue transaction even when the priority of 
the interrupt that was given a retry response is different from the priority read from the interrupt 
pending port. In determining whether an interrupt-reissue transaction should be performed, the 
IIC also ignores the thread destination of the retried interrupt versus the thread whose interrupt 
pending port was read. 

SPU(4) x‘2’ x‘2’

SPU(5) x‘9’ x‘9’

SPU(6) x‘1’ x‘1’

SPU(7) x‘A’ x‘A’

IOC-IOIF1 x‘B’ x‘B’

IOC-IOIF0 x‘0’ x‘0’

IIC not applicable x‘E’

Table 9-24. Values for Interrupt Source (Sheet 2 of 2) 

Interrupt Source
Most-Significant Four Bits
of Interrupt Source (ISRC)

(BIF Node ID)

Least-Significant Four Bits
of Interrupt Source (ISRC)

(BIF Unit ID)
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The IIC makes its determination of when an interrupt-reissue transaction occurred at a different 
point in an EIB transaction than when it determines its retry response for an interrupt command. 
The result is that more interrupt-reissue transactions might occur than necessary; however, there 
is not an interrupt transaction that received a retry response without a subsequent interrupt-
reissue transaction on the EIB if there is no valid entry in the interrupt pending queue for the 
same priority as the retried interrupt.

The CBEA processors do not support the Cell Broadband Engine Architecture optional interrupt-
packet data field in the IPP. 

The four most-significant bits of the interrupt source (ISRC) have the same value as the Cell 
Broadband Engine interface (BIF) node ID of the interrupt source. The four least-significant bits 
have the same value as the BIF unit ID of the interrupt source in most cases; however, for inter-
rupts that the IIC generates by means of its Interrupt Routing Register (IRR), the least-significant 
four bits of the ISRC are not related to a BIF unit ID, as shown in Table 9-24 on page 268.

For interrupt packets from an IOIF, the IOC adjusts the source information when forwarding the 
interrupt packet to the EIB so that the IOC unit ID for that IOIF appears to be the source. Thus, an 
IPP register with an ISRC corresponding to IOC-IOIF0 in a specific BIF node represents an inter-
rupt from a device on the IOIF0 connected to that IOC. An IPP value with an ISRC corresponding 
to IOC-IOIF1 in a specific BIF node represents an interrupt from a device on the IOIF1 connected 
to that IOC. When the MFC sends the interrupt packet on the internal EIB, the MFC inserts the 
ISRC that corresponds to itself.

9.6.2.4 Interrupt Generation Port

The interrupt generation port (IGP) registers allows privileged software to generate an interrupt 
packet to a PPE thread. There is one IGP register for each PPE thread—Thread 0 Interrupt 
Generation Port Register (IIC_IGP0) and Thread 1 Interrupt Generation Port Register (IIC_IGP1). 
Software can generate an interrupt packet to a PPE thread by storing to the PPE thread’s IGP 
register. When the interrupt packet is read by means of the appropriate Interrupt Pending Port 
Register (IIC_IPP0 or IIC_IPP1), the interrupt packet data, class information, and ISRC are read 
as zeros. This interrupt packet does not need to be transmitted on the internal EIB because the 
IGP register and the destination of the interrupt packet are both in the same IIC. The least-signif-
icant 8 bits written to this register contain the interrupt priority; however, only the most-significant 
4 bits of priority are implemented. For each priority level, a latch is used to represent a pending 
interrupt. A second store to the IGP with the same priority as a pending IGP interrupt results in no 
state change and, effectively, the interrupts are merged.

An IGP interrupt is treated like any other PPE external interrupt, including the interrupt priority. 
Unlike other external interrupts, however, this interrupt cannot be routed outside the CBEA 
processor. For a multi-CBEA-processor system, the registers can be memory mapped, and 
accessing the appropriate register will interrupt the required PPE thread.

The IIC_IGP0 and IIC_IGP1 are write-only MMIO registers. The only field is the priority field, as 
shown in Table 9-25 on page 271. Because this interrupt is meant to be a quick way to communi-
cate with the other thread, it is recommended that the external interrupt handler check this status 
before others.



Programming Handbook

 Cell Broadband Engine

Version 1.11
May 12, 2008
 

PPE Interrupts
Page 271 of 884

9.6.3 SPU and MFC Interrupts

Interrupt packets from the SPUs and MFCs are routed to the PPE by each MFC’s Interrupt 
Routing Register (INT_Route). There are no implementation-dependent MFC interrupts; only the 
interrupts defined in the Cell Broadband Engine Architecture are supported. This section gives an 
overview of the status, masking, and routing of SPU and MFC interrupts. For details about these 
interrupts, see Section 9.8 SPU and MFC Interrupts Routed to the PPE on page 280. 

The SPU and MFC interrupts routed to the PPE are independent from and unrelated to the event 
interrupts local to each SPE, which are described in Section 18.3 SPU Interrupt Facility on 
page 476. 

9.6.3.1 Status and Masking

There are three interrupt status registers (INT_Stat_class0, INT_Stat_class1, and 
INT_Stat_class2) and three interrupt mask registers (INT_Mask_class0, INT_Mask_class1, and 
INT_Mask_class2) in each MFC. Thus, there is an interrupt status register and an interrupt mask 
register for each class of interrupt (error, translation, and application). 

When using these registers, software must adhere to these requirements:

1. When multiple CBEA processors are connected through the BIF and an external interrupt 
occurs due to a nonzero MFC Interrupt Status Register (INT_Stat_class0, INT_Stat_class1, 
or INT_Stat_class2), then software must issue a sync or eieio instruction before a write to 
the MFC Interrupt Status Register.

2. In both a single-CBEA-processor or multiple-CBEA-processor configuration, if software per-
forms writes to the MFC Interrupt Status Register at any time other than during the external 
interrupt handling after an external interrupt, then an additional test and another operation 
are needed. After all writes to the MFC Interrupt Status Register are completed, software 
must read the MFC Interrupt Status Register and perform a bit-wise AND masking of the sta-
tus with the contents of the MFC Interrupt Mask Register. If the result is nonzero, software 
must issue a sync or eieio instruction and write the MFC Interrupt Status Register again. In 
such a situation, it is unpredictable whether the correct number of external interrupts required 
by the Cell Broadband Engine Architecture were triggered. Software should take appropriate 
actions for the interrupt conditions indicated by the status read and should not assume that 
an external interrupt occurred for all the status conditions.

If software writes the MFC Interrupt Status Register in more than one place in the external 
interrupt handler and cannot guarantee that one of these writes is the first since the external 
interrupt, then the second requirement applies.

Table 9-25. IIC_IGP0 and IIC_IGP1 Interrupt Generation Port Bit Field  

Bits Names Descriptions

56:59 Priority Interrupt Priority.
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9.6.3.2 Routing

The MFC Interrupt Routing Register (INT_Route), described in Section 9.8.2.3 Interrupt Routing 
Register on page 285, allows privileged software to select the PPE thread or external interrupt 
controller that is to service an interrupt. For each class of interrupt, the register contains a priority 
and interrupt destination. 

Only the most-significant four bits of interrupt priority are implemented. The interrupt destination 
indicates which logical PPE thread or external interrupt controller is to receive interrupt packets 
for MFC interrupts of the corresponding interrupt class. The four most-significant bits of the inter-
rupt destination have the same value as the BIF node ID of the interrupt destination. See 
Table 9-21 on page 266 for the least-significant four bit values of the required destination. This 
table shows both the MFC setting of the destination IDs and the IIC interpretation of the destina-
tion IDs. When the MFC sends the interrupt packet on the internal EIB, the MFC inserts the inter-
rupt source (ISRC) that corresponds to itself. 

9.6.4 Other External Interrupts

The IIC Status Register (IIC_ISR) acts as a collection point for interrupt conditions from the MIC, 
EIB, token manager, I/O address translation, and performance monitor. There are internal 
signals from the MIC, EIB, token manager, I/O address translation logic, and performance 
monitor, and these signals indicate the corresponding interrupt conditions to the IIC. When one of 
these interrupt signals is asserted, the corresponding bit in the IIC_ISR register is set to a ‘1’. 
When IIC_ISR becomes nonzero, the IIC creates a class 1 interrupt packet. 

After resetting the interrupt condition in the MIC, EIB_Int, TKM_ISR, IOC_IO_ExcpStat, or the 
Performance Monitor Status/Interrupt Mask Register (pm_status), software can reset IIC_ISR by 
writing a ‘1’ to the corresponding bit position in IIC_ISR.

The MIC Auxiliary Trace Buffer Full interrupt condition can be reset by either: 

• Setting MIC_Ctl_Cnfg2[8] = '0'

• If MIC_CTL_CNFG2[7] = '1', waiting for auxiliary trace current address to wrap so that it is no 
longer equal to the auxiliary trace max address

• If MIC_CTL_CNFG2[7] = '0', writing the auxiliary trace current address so that it is no longer 
equal to the Auxiliary trace max address

Writing a ‘0’ to the corresponding bit has no effect on that bit.

9.6.4.1 Routing

The IIC_IRR register provides the priority and destination of the interrupt. The 4-bit priority field in 
the IIC_IRR register corresponds to the four bits of the priority field implemented in the IIC_IPP0 
and IIC_IPP1 registers. If the interrupt is routed to the PPE thread in the same chip as the IIC, 
then the interrupt is placed in the appropriate interrupt pending queue for the thread indicated by 
the IIC_IRR register. If the interrupt is routed to some other destination, an interrupt is sent on the 
internal EIB. When the IIC sends the interrupt packet on the internal EIB, the IIC inserts the ISRC 
that corresponds to itself. The IIC’s unit ID in this ISRC is x‘E’, as shown in Table 9-24 on 
page 268. If the IIC_IRR register destination node ID specifies some other node, then the inter-
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rupt packet is sent to that node across the BIF protocol. The unit ID specifies a destination within 
a node or to an IOIF attached to the node, according to Table 9-21 on page 266. If the destina-
tion is an external interrupt controller, the interrupt packet is sent across the appropriate IOIF.

The programmable fields in the IIC_IRR are shown in Table 9-26. 

9.6.4.2 MIC Auxiliary Trace Buffer Full

The performance monitor (PM) facility provides a means of tracing various events and counts. 
The MIC provides a facility to store this trace in a region of memory. The memory trace region is 
considered full when the Auxiliary Trace Current Address Register is equal to the Auxiliary Trace 
Max Address. If the memory trace region is full and the MMIO register MIC_Ctl_Cnfg2[8] = ‘1’, an 
MIC Auxiliary Trace Buffer Full signal to the IIC is asserted. When the MIC Auxiliary Trace Buffer 
Full signal is asserted, IIC_ISR[60] is set to ‘1’.

9.6.4.3 I/O Devices

I/O devices attached to the IOIF0 or IOIF1 interfaces can initiate and receive interrupts, and 
those interrupts can also be reissued. There are two types of interrupt transactions defined for 
the IOIF interfaces: Interrupt and Interrupt-reissue. 

Interrupt transactions are initiated by sending an interrupt packet on the EIB. Table 9-37 on 
page 290 shows the format of the I/O interrupt packet. After receiving such a packet, the IIC 
asserts the External Interrupt signal to the appropriate PPE thread. The first-level interrupt 
handler (FLIH) in that PPE thread then reads the Interrupt Pending Port Register (IIC_IPP0 or 
IIC_IPP1) to determine the interrupting device. 

If the target device cannot accept the interrupt, the interrupt command gets a retry response. The 
interrupting device must hold this interrupt pending until it sees an interrupt-reissue transaction. 
When an interrupt-reissue occurs, pending interrupts that received a retry since the last interrupt-
reissue must be retransmitted if the BIF node ID field in the I/O identifier of the interrupt-reissue 
command sent by the CBEA processor matches the destination BIF node ID of the pending inter-
rupts. 

For additional information about the I/O architecture in general, see Section 7 I/O Architecture on 
page 161. 

Table 9-26. IIC_IRR Routing Fields  

Bits Names Descriptions

48:51 Priority Interrupt Priority.

56:59 Dst_Node_ID Destination node ID for interrupts in the IIC_ISR.

60:63 Dst_Unit_ID

Destination unit ID for interrupts in the IIC_ISR. Interrupt packets routed to IOIF0 have the 
same destination unit ID as IOC0. Those that are routed to IOIF1 have the same 
destination unit ID as IOC1. The valid values are:
x‘0’ IOC 0 (IOIF0).
x‘B’ IOC 1 (IOIF1).
x‘E’ PPE thread 0.
x‘F’ PPE thread 1.
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9.6.4.4 I/O Address Translation

An I/O address translation exception can occur due to either an I/O segment fault or I/O page 
fault. An I/O segment fault type of I/O exception occurs for the following reason:

• There is an I/O translation that attempts to use an I/O segment table entry (IOSTE) that is not 
valid.

An I/O page fault type of I/O exception occurs for the following reasons when an external device 
attempts a read or write on the IOIF with translation enabled:

• Assume a page size of 2p is specified in IOSTE[PS]. The CBEA processors support I/O 
page-table (IOPT) entry format 1. SeeSection 7.4 I/O Address Translation on page 176 for 
details of the I/O segment table (IOST) and IOPT. If the value of the most-significant bits (28 
- p) of the 28 least-significant I/O address bits is greater than 512 times the IOSTE[NPPT], an 
I/O page-fault type of I/O exception occurs.

• The I/O address is translated using an I/O page-table entry whose I/O Identifier (IOID) field 
does not match the IOID of the I/O device.

• The I/O address is translated using an I/O page-table entry whose page protection (PP) bits 
equal ‘00’, or whose PP bits equal ‘01’ and the IOIF transaction is a write, or whose PP bits 
equal ‘10’ and the IOIF transaction is a read.

When an I/O exception occurs on an I/O access, the following information related to the fault is 
captured in the I/O Exception Status Register (IOC_IO_ExcpStat):

• I/O Segment and I/O Page Number Address bits

• Access type (read or write)

• I/O device ID

Once an I/O exception occurs, IOC_IO_ExcpStat[V] is set to ‘1’. When IOC_IO_ExcpStat[V]=‘1’, 
errors that occur are not captured. After handling an I/O exception, software should set the valid 
bit to ‘0’ to enable capturing of error information about a subsequent I/O exception. 

If an I/O segment fault occurs and IOC_IO_ExcpMask[1]=‘1’, IIC_ISR[61] is set to ‘1’. If an I/O 
page fault occurs and IOC_IO_ExcpMask[2]=‘1’, IIC_ISR[61] is set to ‘1’. After handling an I/O 
address translation exception, software should write IOC_IO_ExcpStat[0] to '0' and write a ‘1’ to 
IIC_ISR[61] to reset this bit, It is recommended that software store to IOC_IO_ExcpStat to reset 
it first, store to IIC_ISR next, execute an eieio instruction, and then read IOC_IO_ExcpStat again 
to verify that another I/O Address Translation did not occur between the two stores. Assuming 
stores to these registers are Caching Inhibited and Guarded, the register bits are reset in 
program order.

IOC_IO_ExcpMask[1:2] is ANDed with associated fault conditions to set IIC_ISR[61], but these 
mask bits do not gate the setting of the I/O Exception Status bits. As a result, if software were to 
set one mask bit to 1 and the other mask bit to 0, the MMIO register IOC_IO_ExcpStat might be 
set by the masked fault. In this case, as expected, software is not alerted to the occurrence. 
IOC_IO_ExcpStat captures and retains the exception status information for this masked fault. 
Typically, software uses the same value for both mask bits. When only one mask bit in 
IOC_IO_ExcpMask is set to '1', it is recommended that software frequently poll and reset 
IOC_IO_ExcpStat to avoid losing the exception status information for the enabled fault.
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For additional details about I/O and I/O-address translation, see Section 7 I/O Architecture on 
page 161. 

9.6.4.5 EIB Possible Livelock Detection

The EIB possible livelock detection interrupt detects a condition that might cause a livelock. It is a 
useful tool for programmers to use to detect whether they have created an unexpected bottle-
neck in their code during development. During normal running, this interrupt can hinder perfor-
mance and should be disabled or masked. The EIB possible livelock detection interrupt signals 
that a possible livelock condition has been detected on the EIB due to over-utilization of the 
previous adjacent address match (PAAM) wait buffer. This can occur due to bad or malicious 
software or to frequent accesses by multiple units to common locations. Global commands that 
have a PAAM collision with an outstanding command are placed in the PAAM wait buffer. When 
this outstanding command gets its combined response, one command from the wait buffer that 
had a PAAM collision gets reflected on the EIB. 

After the PAAM wait buffer completely fills, various things can happen, depending on how the 
MMIO register bits EIB_AC0_CTL[13:15], the Livelock Avoidance Operating Mode field, are 
configured. When the wait buffer is full, the default mode ('110') is to allow the EIB command pipe 
to continue issuing EIB commands, but to force all commands that get a PAAM hit to receive a 
combined snoop response or retry. 

When a wait buffer entry becomes available, a command that gets a PAAM hit is again placed in 
the wait buffer. There is logic that counts commands that exit the wait buffer and re-enter it due to 
yet another PAAM hit. This happens when multiple commands get a PAAM hit against the same 
cache line address within the same PAAM window. This is called a loopback. EIB_AC0_CTL[4:5], 
the AC0 Wait Buffer Flush Delay field, defines an encoded threshold for these loopbacks. For 
example, when the default threshold of 64 loopbacks is hit, the command pipe is frozen until all 
the wait buffer commands are reflected and the wait buffer is empty. Then, normal operation 
resumes.

EIB_AC0_CTL[10:11] specifies threshold criteria for the wait buffer’s becoming full again since it 
was last full. If the wait buffer completely fills again and the number of commands with the 
address modifier M bit = ‘1’ that have occurred is less than the threshold, EIB_Int[0] is set to '1', 
provided that EIB_AC0_CTL[13:16] specifies that this interrupt is not disabled. EIB_Int[0] is not 
set to '1' if EIB_AC0_CTL[13:15] = ‘011’, ‘100’, ‘101’, or ‘111’. If EIB_Int[0] changes from '0' to '1' 
and EIB_AC0_CTL[16] is set to ‘0’, then IIC_ISR[59] is set to '1'. 

When the EIB possible livelock detection interrupt occurs, privileged software should determine 
the cause of the interrupt and take appropriate action. Also, if EIB_AC0_CTL[13:15] is set to '010', 
privileged software must reset the MMIO register EIB_Int[0] for hardware to resume its use of 
the PAAM wait buffer. 

Using the PAAM wait buffer will probably result in better performance for most applications. 
Overuse of the PAAM wait buffer is typically caused by poorly written or malicious software that 
creates a situation in which multiple devices simultaneously try to access the same 128-byte 
cache line.
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9.6.4.6 Token Manager

The MIC and IOC provide feedback to the token manager on their command queues. The MIC 
and IOC have registers to hold programmable thresholds. The MIC and IOC provide the token 
manager information about the command queue levels relative to these programmable thresh-
olds. The IOC provides this information for each IOIF. These queue levels are defined as follows, 
relative to the number of entries in the command queue: If feedback for a managed resource 
reaches Level 3, the corresponding Token Management (TKM) Interrupt Status bit is set. When-
ever the MMIO register TKM Interrupt Status (TKM_ISR) has a nonzero bit and the corre-
sponding enable bit in the MMIO register TKM_CR[59:63] enables the interrupt, an exception 
signal from the TKM to the IIC is asserted. When this signal is asserted, IIC_ISR[TMI] is set to 
‘1’.

9.6.4.7 Performance Monitor

The performance monitor (PM) facility (an entirely different facility from the performance monitor 
facility described in the PowerPC Architecture) allows acquisition of performance information 
from multiple logic islands. It can be used to acquire a number of programmable counts. The PM 
facility provides four 32-bit event counters, which can alternatively be configured as eight 16-bit 
event counters. Up to 8 events from up to 8 different logic islands can be counted simulta-
neously. A 32-bit interval timer is also provided.

A performance monitor exception can be caused by the trace buffer being full, the interval timer 
overflow, or an overflow of any of the eight event counters. The Performance Monitor 
Status/Interrupt Mask Register (pm_status) is a dual function register. Writes to this address 
store data in the PM Interrupt Mask Register. Reads from this address return PM Status Register 
data and reset all PM Status Register bits. Software can read the PM Status Register to deter-
mine which exception occurred since the last read. The occurrence of a subsequent exception 
causes the corresponding bit of the PM Status Register to be set to ‘1’. The PM Interrupt Mask 
Register provides the ability to individually mask any one or more of these 10 conditions. If the 
logical AND of the PM Status Register and the PM Interrupt Mask Register is a nonzero value, 
and PM Control bit [0] is ‘1’, the PM interrupt signal to the IIC is asserted; otherwise, the PM inter-
rupt signal to the IIC is deasserted. When the PM interrupt signal is asserted, IIC_ISR[PMI] is set 
to ‘1’.

9.7 Mediated External Interrupts

9.7.1 Mediated External Interrupt Architecture

The PPE implements a mediated external interrupt extension to the PowerPC Architecture for 
external interrupts. On a shared processor (that is, a processor on which virtual partitions are 
dispatched), these external interrupt enhancements can reduce interrupt latency. The new kind 
of external exception is called a mediated external exception. An external interrupt that is caused 
by a mediated external exception is called a mediated external interrupt. This section defines the 
extension; page 279 provides implementation details.

Bit 52 of the Logical Partition Control Register (LPCR) is defined as the “Mediated External 
Exception Request” [MER] bit. The value ‘1’ means that a mediated external exception is 
requested. The value ‘0’ means that a mediated external exception is not requested. 
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On a shared processor, the hypervisor sets bit zero of the logical partitioning environment 
selector to ‘0’ (LPCR[LPES] bit 0 = ‘0’) to cause external interrupts to go to the hypervisor. In the 
current architecture, external interrupts are disabled if MSR[EE] = ‘0’, and MSR[EE] can be altered 
by the operating system. Thus, by running with MSR[EE] = ‘0’, an operating system can delay the 
presentation of external interrupts to the hypervisor for nontrivial periods of time.

On a shared processor with LPCR[LPES] bit 0 set to ‘0’, when redispatching a partition if an 
external interrupt has occurred for the partition and has not yet been presented to the partition 
(by passing control to the operating system’s external interrupt handler as described later), the 
hypervisor proceeds as follows: 

• If the external interrupt was direct and the partition has MSR[EE] = ‘1’, 

– Set registers (MSR and SRR0/1, and the external interrupt hardware registers as appro-
priate) to emulate the external interrupt. 

– Restore the partition's LPCR[MER]. 

– Return to the operating system’s external interrupt handler. 

• If the external interrupt was direct but the partition has MSR[EE] = ‘0’, 

– Set LPCR[MER] to ‘1’. 

– Return to the partition at the instruction at which it was interrupted. 

• If the external interrupt was mediated and the partition now has MSR[EE] = ‘1’), 

– Set registers (MSR and SRR0/1, and external interrupt hardware registers as appropri-
ate) to emulate the original direct external interrupt. 

– Restore the partition's LPCR[MER]. 

– Return to the operating system’s external interrupt handler. 

– When the operating system interrupt handler calls the hypervisor to obtain the interrupt-
ing condition/status, set LPCR[MER] to ‘0’ if all external interrupts (for the partition) now 
have been presented to the partition. Otherwise, restore the partition's LPCR[MER]. 
Return from the hypervisor call with the interrupting condition/status.

In all three cases, the partition is redispatched with MSR[EE] = ‘0’. When the partition is to be 
redispatched at the operating system’s external interrupt handler (as in the first and third cases), 
the hypervisor sets the MSR and SRR0/1 as if the original direct external interrupt occurred when 
LPCR[LPES] bit 0 was set to ‘1’ and the partition was executing. In particular, no indication is 
provided to the operating system (for example, in an SRR1 bit) regarding whether the external 
interrupt that is now being presented to the partition was direct (first case) or mediated (third 
case). 

The MER bit has the same relationship to the existence of a mediated external exception as bit 
zero of the decrementer (DEC[0]) or hypervisor decrementer (HDEC[0]) has to the existence of a 
decrementer or hypervisor decrementer exception—a value of ‘1’ indicates an exception. (See 
PowerPC Architecture, Book III for more information.) The exception effects of LPCR[MER] are 
considered consistent with the contents of LPCR[MER] if one of the following statements is true. 

• LPCR[MER] = ‘1’ and a mediated external exception exists. 

• LPCR[MER] = ‘0’ and a mediated external exception does not exist. 
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A context synchronizing instruction or event that is executed or occurs when LPCR[MER] equals ‘0’ 
ensures that the exception effects of LPCR[MER] are consistent with the contents of LPCR[MER]. 
Otherwise, when an instruction changes the contents of LPCR[MER], the exception effects of 
LPCR[MER] become consistent with the new contents of LPCR[MER] reasonably soon after the 
change. 

The following changes are made in the description of the external interrupt.

• Direct external interrupts are enabled if the value of this expression is ‘1’:

       MSR[EE] | (^(LPCR[LPES] bit 0) & (^(MSR[HV]) | MSR[PR])) 

In particular, if LPCR[LPES] bit 0 = ‘0’ (directing external interrupts to the hypervisor), direct 
external interrupts are enabled if the processor is not in hypervisor state. 

Note:  Because the value of MSR[EE] is always ‘1’ when the processor is in problem state, the 
simpler expression: MSR[EE] | ^(LPCR[LPES] bit 0 | MSR[HV]) is equivalent to the preced-
ing expression. 

Mediated external interrupts are enabled if the value of this expression is ‘1’:

      MSR[EE] & (^(MSR[HV]) | MSR[PR]) 

In particular, mediated external interrupts are disabled if the processor is in hypervisor state. 

• There is no relative priority between direct and mediated external exceptions. If an external 
interrupt occurs when both kinds of external exceptions exist and are enabled, the exception 
that actually caused the interrupt can be either. 

• When an external interrupt occurs, the state is saved in HSRR[0 and 1] if LPCR[LPES] bit 0 = 
‘0’, and in SRR[0 or 1] if LPCR[LPES] bit 0 = ‘1’. The state that is saved is independent of the 
contents of LPCR[LPES] bit 0 except as described in the next bullet (that is, the setting 
described for SRR0/1 in the current architecture continues to apply to SRR0/1 if LPCR[LPES] 
bit 0 = ‘1’, and applies instead to HSRR[0 or 1]if LPCR[LPES] bit 0 = ‘0’ except as modified as 
described in the next bullet). 

Similarly, the hypervisor external interrupt handler uses the Hypervisor Software-Use Spe-
cial-Purpose Registers (HSPRGs) as scratch registers if LPCR[LPES] bit 0 = ‘0’, and uses the 
Software-Use Special-Purpose Registers (SPRGs) if LPCR[LPES] bit 0 = ‘1’. 

• If LPCR[LPES] bit 0 = ‘0’, when an external interrupt occurs HSRR1[42] is set to ‘1’ for a medi-
ated external interrupt; otherwise it set to ‘0’. (If LPCR[LPES] bit 0 = ‘1’, when an external inter-
rupt occurs SRR1[42] is set to ‘0’ as in the current architecture.) 

• The hypervisor must ensure that mediated external interrupts do not occur when LPCR[LPES] 
bit 0 = ‘1’. The hypervisor can accomplish this by setting LPCR[MER] to ‘0’ whenever it sets 
LPCR[LPES] bit 0 to ‘1’. (Mediated external interrupts are disabled when the processor is in 
hypervisor state, and leaving hypervisor state is necessarily accomplished by means of a 
context synchronizing instruction, which, if LPCR[MER] = ‘0’, ensures that no mediated exter-
nal exception exists.) If the hypervisor violates this requirement the results are undefined.
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9.7.2 Mediated External Interrupt Implementation

The mediated external interrupt extension allows external interrupts to be serviced by hypervisor 
software even when external interrupts are disabled (MSR[EE] = ‘0’). This feature reduces the 
external interrupt latency for applications running in a partitioned system. 

This extension defines two conditions that cause an external interrupt—the assertion of an 
External Interrupt signal or the hypervisor setting a mediated external interrupt request (by 
setting LPCR[MER] = ‘1’). An external interrupt caused by the assertion of an External Interrupt 
signal is called a direct external interrupt. An external interrupt caused by setting LPCR[MER] = ‘1’ 
is called a mediated external interrupt. Each of these conditions can be masked by the following 
equations:

• A mediated external interrupt is taken if the following expression is equal to ‘1’:

MSR[EE] & (NOT(MSR[HV]) | MSR[PR]) & HID0[extr_hsrr]

• A direct external interrupt is taken if the following expression is equal to ‘1’:

MSR[EE] | ((NOT(LPCR[LPES] bit 0) & (NOT(MSR[HV]) | MSR[PR])) & HID0[extr_hsrr])

For direct external interrupts, the External Interrupt signals must remain asserted until the inter-
rupting condition has been reset by the interrupt handler. Deasserting an External Interrupt signal 
before the PPE interrupt handler resets the interrupt condition can lead to undefined results. After 
the PPE accepts the interrupt by reading and resetting the interrupting condition or status, the 
External Interrupt signal can be deasserted.

This “level” type of direct external interrupt behavior, where the External Interrupt signal must 
remain asserted until the software has reset the interrupt condition, should also be applied to 
Mediated External interrupts. Deasserting a Mediated External Interrupt signal (by setting 
LPCR[MER] = ‘0’) before the PPE interrupt handler resets the interrupting condition can lead to 
undefined results. After the PPE accepts the interrupt by reading and resetting the interrupting 
condition or status, the Mediated External Interrupt signal can be deasserted by software setting 
LPCR[MER] = ‘0’. 

The PPE treats the external interrupt conditions as a context-synchronizing operation as defined 
in the PowerPC Architecture. When the PPE takes an external interrupt, the register state is 
altered as defined in Table 9-27, and instruction fetch and execution resume at the effective 
address specified in Table 9-3 Interrupt Vector and Exception Conditions on page 247.

Table 9-27. Registers Altered by an External Interrupt  (Sheet 1 of 2)

Register Bits Setting Description

SRR0 0:63
Set to the effective address of the instruction that the processor would have attempted to 
execute next if exception conditions were not present. 
SRR0 is updated if LPCR[LPES] bit 0 = ‘1’ or HID0[extr_hsrr] = ‘0’.

HSRR0 0:63
Set to the effective address of the instruction that the processor would have attempted to 
execute next if exception conditions were not present. 
HSRR0 is updated if LPCR[LPES] bit 0 = ‘0’ and HID0[extr_hsrr] = ‘1’.
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9.8 SPU and MFC Interrupts Routed to the PPE

This section describes the External interrupts (Section 9.6.3 SPU and MFC Interrupts on 
page 271) caused by SPU instructions and MFC commands and routed by each SPE, to either 
the PPE or an external interrupt controller. Interrupts caused by SPU events are handled locally 
by each SPU and are described in Section 18.3 SPU Interrupt Facility on page 476. 

9.8.1 Interrupt Types and Classes

Table 9-28 summarizes the SPU and MFC interrupt types and classes. All SPU and MFC inter-
rupts share the same PowerPC External interrupt vector, defined in Section 9.5.7 External Inter-
rupt (x‘00..00000500’) on page 254. 

SRR1 0:63
If LPCR[LPES] bit 0 = ‘1’ or HID0[extr_hsrr] = ‘0’, SRR1 is set as defined in the PowerPC 
Architecture.
Otherwise, SRR1 is not altered.

HSRR1 0:63

If LPCR[LPES] bit 0 = ‘0’ and HID0[extr_hsrr] = ‘1’, HSRR1[42] is set to ‘1’ if the external 
interrupt is caused by LPCR[MER].
Otherwise, HSRR1[42] is set to ‘0’.
HSRR1[33] is set to ‘1’.
Note:  Setting HSRR1[33] to ‘1’ for this interrupt is a deviation from the PowerPC Architec-
ture for this implementation.

All other HSRR1 bits are set as defined in the PowerPC Architecture for SRR1.

MSR 0:63 See Table 9-40 Machine State Register Bit Settings Due to Interrupts on page 294.

Table 9-27. Registers Altered by an External Interrupt  (Sheet 2 of 2)

Register Bits Setting Description
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Table 9-28. SPU and MFC External Interrupt Definitions  

Class1 Interrupt Type Description
Enabling 

and Status 
Bit2

0

SPU Error
(SPU_Error)

The SPU has encountered an error condition. These conditions 
include:

• Invalid SPU instruction
• Illegal channel instruction 
• Uncorrectable error-correcting code (ECC) error 

SE

Invalid DMA Command
(Invalid_DMACmd)

Software attempted to execute an MFC command with an invalid 
opcode, an MFC command not supported for the specific queue 
(for example, MFC atomic commands in the MFC proxy 
command queue), or an invalid form of an MFC command.

C

DMA Alignment Error 
(DMA_Alignment)

Software attempted to execute a DMA command that is not 
aligned to a 128-byte boundary A

MFC Fault Isolation Register 
Interrupt 
(MFC_FIR)

MFC Fault Isolation Register (FIR) interrupt (see Section 9.8.3.2 
on page 288). MF3

1

MFC Data Segment Error
(Data_Segment_Interrupt)

A DMA effective address cannot be translated to a virtual 
address. (segment fault) SF

MFC Data Storage Error
(Data_Storage_Interrupt)

A DMA effective address cannot be translated to a real address. 
(mapping fault) MF4

MFC Local Storage Address 
Compare Suspend on get
(Local-Storage Addr Comp 
Susp on get)

A DMA local storage (LS) address-compare stop from an LS 
write has occurred. LG

MFC Local Storage Address 
Compare Suspend on put
(Local-Storage Addr Comp 
Susp on put)

A DMA LS address-compare stop from an LS read has occurred. LP

2

Mailbox An SPU writes to an SPU Write Outbound Interrupt Mailbox 
channel (SPU_WrOutIntrMbox). M

SPU Stop-and-Signal 
Instruction Trap
(SPU_Pgm_Stop)

An SPU executes a stop-and-signal (stop) instruction. S

SPU Halt Instruction Trap
(SPU_Trapped)

An SPU executes a halt conditional instruction, and the condition 
is met. H

Tag-Group Completion
(Tag_group_completion)

A DMA command for a tag group has completed.
The interrupt generation is dependent on the Proxy Tag-Group 
Query Mask Register (Prxy_QueryMask) and theProxy Tag-
Group Query Type Register (Prxy_QueryType). 

T

SPU Inbound Mailbox 
Threshold
(SPU_mailbox_threshold)

The number of valid entries in the SPU inbound mailbox queue 
has dropped from 1 to 0. See Section 17 on page 447 for details. B

1. The Cell Broadband Engine Architecture also names the classes as 0 = Error, 1 = Translation, 2 = Application. In 
the CBEA processors, however, the MFC_FIR interrupt is moved from CBEA class 1 to CBEA processor class 0. 
There are also differences in interrupt causes between the CBEA and CBEA processor versions. 

2. The bit field in the INT_Mask_class and INT_Stat_class registers (Table 9-29 on page 282). 
3. This is the MF bit in the INT_Stat_class0 and INT_Mask_class0 registers. 
4. This is the MF bit in the INT_Stat_class1 and INT_Mask_class1 registers. 
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9.8.2 Interrupt Registers

Table 9-29 on page 282 summarizes the interrupt-related registers in each SPE. The interrupt 
registers allow privileged software on the PPE to select which MFC and SPU exceptions are 
allowed to generate an external interrupt to the PPE. There are three interrupt mask and interrupt 
status registers, one for each class of interrupt (details of class membership are listed in 
Table 9-28 on page 281). There are also fault-isolation registers and other registers that report 
details on specific types of interrupts. 

For details about these registers, see the Cell Broadband Engine Registers document and the 
Cell Broadband Engine Architecture document. 

Table 9-29. SPE Interrupt Register Summary (Sheet 1 of 3) 

Register Name Mnemonic Description Read/
Write

Interrupt Registers (Cell Broadband Engine Architecture Registers)

Class 0 Interrupt Mask Register INT_Mask_class0

Enables the following interrupts:
• MFC_FIR (MF)
• SPU error (SE)
• Invalid DMA command (C)
• MFC DMA alignment (A)

R/W

Class 1 Interrupt Mask Register INT_Mask_class1

Enables the following interrupts:
• MFC local-storage address compare 

suspend on put (LP)
• MFC local storage address compare 

suspend on get (LG)
• MFC data-storage interrupt—mapping fault 

(MF)
• MFC data segment interrupt—segment 

fault (SF)

R/W

Class 2 Interrupt Mask Register INT_Mask_class2

Enables the following interrupts:
• SPU mailbox threshold (B)
• Tag-group completion (T)
• SPU Halt instruction trap (H)
• SPU Stop-and-Signal instruction trap (S)
• Mailbox (M)

R/W

Class 0 Interrupt Status Register INT_Stat_class0

Records status of the following interrupts:
• MFC_FIR (MF)
• SPU error (SE)
• Invalid DMA command (C)
• MFC DMA alignment (A)

R/W

Class 1 Interrupt Status Register INT_Stat_class1

Records status of the following interrupts:
• MFC local-storage address compare 

suspend on put (LP)
• MFC local storage address compare 

suspend on get (LG)
• MFC data-storage interrupt—mapping fault 

(MF)
• MFC data segment interrupt—segment 

fault (SF)

R/W
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Class 2 Interrupt Status Register INT_Stat_class2

Records status of the following interrupts:
• SPU Mailbox threshold (B)
• Tag-group completion (T)
• SPU Halt instruction trap (H)
• SPU Stop-and-signal instruction trap (S)
• Mailbox (M)

R/W

Interrupt Routing Register INT_Route
Configures the priority and destination of class 
0, 1, and 2 interrupts. Interrupts can be routed to 
either PPE thread or either IOIF interface. 

R/W

Fault Isolation Registers (Implementation-specific Registers)

MFC Fault Isolation MFC_FIR

Records, sets, resets, and masks MFC faults. 
Enables checkstop interrupt for faults. 

R/W

MFC Fault Isolation Set MFC_FIR_Set R/W

MFC Fault Isolation Reset MFC_FIR_Reset R/W

MFC Fault Isolation Error Mask MFC_FIR_Err R/W

MFC Fault Isolation Error Set Mask MFC_FIR_Err_Set R/W

MFC Fault Isolation Error Reset Mask MFC_FIR_Err_Reset R/W

MFC Checkstop Enable MFC_FIR_ChkStpEnbl R/W

Miscellaneous Registers (Implementation-specific Registers)

MFC SBI Data Error Address MFC_SBI_Derr_Addr

Records the destination address (as a 
subordinate device) when the SPE receives data 
that has an error and the error is recorded in 
MFC_FIR register

R

MFC Command Queue Error ID MFC_CMDQ_Err_ID
Records the MFC command queue entry index 
number that caused a DMA bus transaction 
request error

R

MFC Status and Control Registers (Cell Broadband Engine Architecture Registers)

MFC Address Compare Control MFC_ACCR

Allows the detection of DMA access to a virtual 
page with the address compare (AC) bit set in 
the page-table entry (PTE) and a range within 
the LS.

R/W

MFC Data-Storage Interrupt Status MFC_DSISR
Records status relating to data-storage 
interrupts (DSIs) generated by the synergistic 
memory management unit (SMM).

R/W

MFC Data Address MFC_DAR Records the 64-bit EA from a DMA command. R/W

MFC Command Data-Storage Interrupt Registers (Implementation-specific Registers)

MFC Data-Storage Interrupt Pointer MFC_DSIPR

Records the index (pointer) to the command that 
has an MFC data-storage interrupt (DSI) or an 
MFC data-segment interrupt. The cause of an 
MFC data-storage interrupt is identified in the 
MFC_DSISR register.

R

MFC Local Storage Address Compare MFC_LSACR
Records the LS address and LS-address mask 
to be used in the LS address compare operation 
selected by the MFC_ACCR register

R/W

MFC Local Storage Compare Results MFC_LSCRR

Records the LS address that triggered the 
compare, as well as the MFC command queue 
index of the DMA command that triggered the 
compare stop.

R

Table 9-29. SPE Interrupt Register Summary (Sheet 2 of 3) 

Register Name Mnemonic Description Read/
Write
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9.8.2.1 Interrupt Mask Registers

Table 9-29 lists three Interrupt Mask Registers (INT_Mask_class0, INT_Mask_class1, and 
INT_Mask_class2), one for each class of interrupts. Class 0 interrupts can be masked by means 
of the INT_Mask_class0 register, as shown in Table 9-30. 

The INT_Mask_class0[SE] bit, shown in Table 9-30, can be individually masked by means of 
SPU_ERR_Mask[I] bit, as shown in Table 9-31. 

Class 1 interrupts can be masked by means of the INT_Mask_class1 register, as shown in 
Table 9-32 on page 285. 

MFC Transfer Class ID MFC_TClassID Enables transfer class ID and specifies issue 
quota and slot alternation. R/W

MFC Command Error Register (Cell Broadband Engine Architecture Registers)

MFC Command Error MFC_CER

Records the MFC command-queue-entry index 
of the command that generated the invalid DMA-
command interrupt or the DMA-alignment 
interrupt.

R

SPU Error Mask Registers (Implementation-specific Registers)

SPU Error Mask SPU_ERR_Mask
Enables SPU invalid-instruction interrupt. 
(Illegal-operation detection and SPU halting are 
always enabled.)

R/W

MFC Control Register (Cell Broadband Engine Architecture Registers)

MFC Control MFC_CNTL Controls and reports decrementer status, and 
MFC command and command-queue status, R/W

Table 9-30. INT_Mask_class0 Bit Fields  

Bits Names Descriptions

31 MF1 Enable for MFC_FIR interrupt.

61 SE Enable for SPU error Interrupt.

62 C Enable for invalid DMA command interrupt.

63 A Enable for MFC DMA alignment interrupt.

1. This is the MF bit in the INT_Stat_class0 and INT_Mask_class0 registers, which is different than the MF bit in the 
INT_Stat_class1 and INT_Mask_class1 registers. 

Table 9-31. SPU_ERR_Mask Bit Fields  

Bits Name Description

63 I

Invalid instruction interrupt enable:
0 Invalid instruction interrupt generation disabled.
1 Invalid instruction interrupt generation enabled. Generates a class 0 SPU 

error interrupt in INT_Stat_class0[61].
Illegal operation detection and SPU halting are always enabled. 

Table 9-29. SPE Interrupt Register Summary (Sheet 3 of 3) 

Register Name Mnemonic Description Read/
Write
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Class 2 interrupts can be masked by means of the INT_Mask_class2 register, as shown in 
Table 9-33. 

9.8.2.2 Interrupt Status Registers

Each SPE has three Interrupt Status Registers (INT_Stat_class0, INT_Stat_class1, and 
INT_Stat_class2), which represent the status of the interrupts in the same bit position as the 
corresponding mask registers. A status-register bit that is set to ‘1’ represents an interrupt that is 
pending. 

9.8.2.3 Interrupt Routing Register

SPE interrupts can be prioritized and routed using the INT_Route register, as shown in 
Table 9-34. 

Table 9-32. INT_Mask_class1 Bit Fields  

Bits Names Descriptions

60 LP Enable for MFC local-storage compare suspend on put interrupt.

61 LG Enable for MFC local-storage compare suspend on get interrupt.

62 MF1 Enable for MFC data-storage interrupt (mapping fault).

63 SF Enable for MFC data-segment interrupt (segment fault).

1. This is the MF bit in the INT_Stat_class1 and INT_Mask_class1 registers, which is different than the MF bit in the 
INT_Stat_class0 and INT_Mask_class0 registers. 

Table 9-33. INT_Mask_class2 Bit Fields  

Bits Names Descriptions

59 B Enable for SPU mailbox threshold interrupt.

60 T Enable for DMA tag group completion interrupt.

61 H Enable for SPU halt instruction trap or single instruction step complete.

62 S Enable for SPU stop-and-signal instruction trap.

63 M Enable for mailbox interrupt.

Table 9-34. INT_Route Bit Fields  

Bits Names Descriptions

0:3 Class 0 priority Priority for class 0 interrupts.

8:15 Class 0 destination Destination ID for class 0 interrupts.

16:19 Class 1 priority Priority for class 1 interrupts.

24:31 Class 1 destination Destination ID for class 1 interrupts.

32:35 Class 2 priority Priority for class 2 interrupts.

40:47 Class 2 destination Destination ID for class 2 interrupts.
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Each class priority is four bits (the highest priority is 0, and the lowest priority is 15). The destina-
tion consists of two values: the 4 most-significant bits are the BIF node ID of the interrupt destina-
tion, and the 4 least-significant bits specify the destination ID of the target unit, as shown in 
Table 9-35. 

9.8.3 Interrupt Definitions

The following sections give details on Interrupts related to storage protection and MFC Fault-
Isolation Register Interrupts. For details about other SPU and MFC Interrupts and the interrupt-
generation process, see the Cell Broadband Engine Architecture. 

9.8.3.1 Storage-Protection Errors

The SPE’s synergistic memory management unit (SMM) checks for storage protection errors 
during both virtual-mode and real-mode address translation, although real-mode checking is very 
limited. The DMA controller (DMAC) also checks for LS-address compares. Table 9-36 summa-
rizes how the contents of the INT_Stat_class1 and MFC_FIR registers are affected by the results 
of these checks. 

Table 9-35. CBEA Processor Unit Values  

Value Destination ID

x‘0’ External interrupt controller attached to IOIF0, if any.

x‘B’ External interrupt controller attached to IOIF1, if any.

x‘E’ PPE thread 0.

x‘F’ PPE thread 1.

Table 9-36. Exceptions Generated by Translation, MMIO, and Address Matches  (Sheet 1 of 2)

Exception Name

INT_Stat_class1 Register

MFC_DSISR 
Register

DMAC 
Suspend

Data 
Error 

(DERR)

MFC_FIR 
RegisterLP or LG

Bits[60:61]

MF 
(DSI)
Bit[62]

SF 
Bit[63]

SLB Segment Fault X

Atomic access to cache-
inhibited page when 
translation is turned on

X
A

bit[37]
X

Atomic access to cache-
inhibited page when 
translation is turned off (real 
mode)

X
A

bit[37]
X

Page protection violation 
(PP) X

P
bit[36]

LS address compare 
(reported by DMAC and not 
reported as SMM exception)

X X

Data address compare 
(DAC) X

C
bit[41]

X
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For all translation exceptions reported by the SMM, except for parity errors detected on segment 
lookaside buffer (SLB) or translation lookaside buffer (TLB) MMIO reads, the 64-bit EA is saved 
to the MFC_DAR register. If it is a DSI exception, information about which kind of DSI error and 
other related information is written into the MFC_DSISR register, and the MFC command-queue 
index is saved to the MFC Data Storage Interrupt Pointer Register (MFC_DSIPR). The MFC_DAR, 
MFC_DSIPR, and MFC_DSISR are locked to the value of the current outstanding exception or miss. 

The SMM only supports one outstanding translation miss or exception, excluding MMIO read 
parity errors. The SMM has the ability to serve hits under one outstanding translation miss or 
exception. After the first outstanding miss or exception is detected by the SMM, any subsequent 
exception or miss of a DMA translation request is reported back to the DMAC as a miss. The 
DMAC sets the corresponding memory management unit (MMU) dependency bit associated to 
the MFC command and stalls the command until the MMU dependency bit is cleared. When the 
outstanding miss or exception condition is cleared, all 24 (16-entry MFC SPU command queue 
and 8-entry MFC proxy command queue) MMU dependency bits are cleared, and the DMAC re-
sends the oldest MFC command to the SMM for translation. Exceptions are cleared by setting 
the Restart (R) bit in the MFC_CNTL register. Setting MFC_CNTL[R] also unlocks the MFC_DAR and 
MFC_DSISR registers and allows the SMM to report a new exception condition. The MFC_CNTL[SC] 
bit should be cleared by privileged software (after clearing the MFC_CNTL[SM] bit) to unsuspend 
the DMAC only after all exception conditions have been cleared. The MFC_DSIPR register is 
unlocked by reading the register or purging the command queue.

When a 16 KB DMA transfer crosses page boundary and causes a page fault, it is not restarted 
from the beginning; instead, the transfer is resumed where it left off. The DMA controller unrolls 
DMA transfers into cache-line-sized transfers. When a fault occurs, the DMA controller only 
knows which transfers are still outstanding. It does not retain the original transfer request, so is 
can only resume the transfer where it left off.

LS address compare exceptions occur when the LS is accessed within the address range speci-
fied in the MFC_LSACR register. The DMAC writes the MFC_LSCRR register with the LS address that 
met the compare conditions set in the MFC_LSACR register along with the MFC command queue 
index and the DMA command type. This exception causes the DMAC to suspend. To clear the 
error, the LP or LG bit in the INT_Stat_class1 MMIO register should be cleared and the DMAC 

TLB page fault (hardware or 
software) X

M
bit[33]

Parity error detected during 
SLB/TLB translation 
operation

X
SLB or 

TLB bits 
[43:44}

Parity error detected during 
MMIO read to SLB or TLB 
array (only reported through 
DERR bit attached to the 
MMIO data returned to the 
requester)

X

Table 9-36. Exceptions Generated by Translation, MMIO, and Address Matches  (Sheet 2 of 2)

Exception Name

INT_Stat_class1 Register

MFC_DSISR 
Register

DMAC 
Suspend

Data 
Error 

(DERR)

MFC_FIR 
RegisterLP or LG

Bits[60:61]

MF 
(DSI)
Bit[62]

SF 
Bit[63]
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unsuspended. See the MFC Local Storage Compare Results Register (MFC_LSCRR) and the MFC 
Local Storage Address Compare Register (MFC_LSACR) in the Cell Broadband Engine Registers 
document for more information.

SLB segment faults occur when there is no matching effective segment ID (ESID) in the array for 
the given EA from the translation request, or the valid bit is not set in the array for the matching 
ESID entry. When this fault occurs, the MFC_DAR register contains the 64-bit EA, as described 
previously. The MFC_DAR register and the SLB array can be read by means of MMIO to determine 
which entry to replace in the SLB. Then, the entry should be invalidated with an MMIO 
SLB_Invalidate_Entry or SLB_Invalidate_All write, followed by SLB_Index, SLB_ESID, and 
SLB_VSID writes to put the proper entry into the SLB. The INT_Stat_class1[SF] should then be 
cleared and the MFC_CNTL[R] bit set to resume normal SMM and DMAC operation.

All DSI exceptions are defined in the PowerPC Operating Environment Architecture, Book III. 
When these exceptions occur, the SMM writes the 64-bit EA to the MFC_DAR register and records 
the DSI exception type in the MFC_DSISR register, as shown in Table 9-36 on page 286. This table 
also shows which DSI exceptions cause the DMAC to suspend. MFC_DSISR[S] is also set if the 
DMAC translation request was a put[rlfs], putll[u]c, or sdcrz operation. The SMM reports the 
DSI to the synergistic bus interface (SBI) unit to set the INT_Stat_class1[MF] bit. The MFC_DAR 
and MFC_DSISR registers and the SLB and TLB arrays can be read by means of MMIO to deter-
mine the type of DSI fault and the method for fixing it. After the error condition has been fixed, the 
INT_Stat_class1[MF] bit should be cleared and the MFC_CNTL[R] bit set.

SLB and TLB parity errors might be recoverable by replacing the faulty entry by means of MMIO. 
Parity errors detected during address translation set bits in the MFC_FIR register, as shown in 
Table 9-36 on page 286. See the Cell Broadband Engine Registers document for more informa-
tion about FIR registers. Only parity errors detected on an address translation cause the MFC_DAR 
to be locked with the EA value captured in it. After the error has been fixed, the MFC_FIR bits 
should be cleared and the MFC_DSIPR register written to restart the SMM and unsuspend the 
DMAC. Parity errors detected during MMIO reads on the SLB or TLB cause the DERR bit to be set 
on the EIB when the MMIO data is returned to the requester. The SMM can support an unlimited 
number of MMIO read parity errors because they do not lock the SMM or DMAC interrupt regis-
ters or affect address translation.

9.8.3.2 MFC Fault-Isolation Register Interrupts

The MFC Fault Isolation Register (MFC_FIR) Interrupt is controlled by the MF bit in the 
INT_Stat_class0 and INT_Mask_class0 registers. It is generated in the following cases:

• DMA Command Alignment Error:

– Transfer size which is:

• Greater than 16 KB.

• Size neither partial nor quadword.

• sndsig size not 4 bytes.

• Partial check for effective address failed.

– List transfer size which is: 

• Greater than 2 K list elements.

• Bits [13:15] nonzero.
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– LS address (LSA) in which:

• Bits [28:31] are not equal to the effective address.

• Bits [60:63] for put, get, or sndsig are not all zeros for quadword transfers.

– List address in which the lower three bits are nonzero. 

• DMA Command Error:

– Atomic command received while one is still pending in the queue. 

– List or atomic commands present in the MFC proxy command queue. 

– Start modifier present in the MFC SPU command queue. 

– Upper 8 bits of opcode are not all ‘0’. 

– Invalid opcode. 

– Transfer tag (0:10) is nonzero. 

9.8.4 Handling SPU and MFC Interrupts

When an SPE receives an interrupt request from its SPU, DMA controller (DMAC), or synergistic 
memory management unit (SMM), it sends an interrupt packet to an IIC, as shown in Figure 9-1 
on page 243. The SPE sends an address-only transaction. There is no data packet associated 
with the interrupt packet. After receiving such a packet, the IIC asserts the external interrupt 
signal to the appropriate PPE thread. The first-level interrupt handler (FLIH) in that PPE thread 
then reads the Interrupt Pending Port Register (IIC_IPP0 or IIC_IPP1) to determine the interrupt 
class and source. Then, the PPE reads the SPU Interrupt Status Registers for each class of SPU 
interrupt (INT_Stat_class0, INT_Stat_class1, and INT_Stat_class2) to determine the cause of 
the interrupt. 

9.8.4.1 Interrupt Packets

Table 9-37 on page 290 shows the format for an address-only interrupt packet. Bits 24 through 
31 of the interrupt packet’s address field identify the destination of the interrupt. Interrupts should 
not be processed by a device unless bits 24:31 of the interrupt packet’s address field match its 
device ID (that is, its BIF node ID concatenated with its unit ID). The address (bits 0:63) is not 
used for an interrupt-reissue command and is undefined in that case.

Only the target device can reject an interrupt packet. In that case, the BIF device that issued the 
interrupt packet must hold the interrupt pending until the target device issues an interrupt-reissue 
command. All BIF devices must re-send the pending interrupts if the BIF node field in the transfer 
tag of the interrupt-reissue command matches the BIF node of the pending interrupts. Such 
pending interrupts must be resent after the combined snoop response of the interrupt-reissue 
command. Although the resulting performance might be less than optimal, BIF devices can 
optionally resend the pending interrupts even if the BIF node field in the transfer tag of the inter-
rupt-reissue command does not match the BIF node of the pending interrupts. Devices other 
than the target must provide a null snoop response for the interrupt transaction. All devices must 
provide a null or acknowledgment snoop response for the interrupt-reissue transaction. However, 
the master must give an acknowledgment snoop response.
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As with all commands on the BIF, the device that issues an interrupt command uses its device ID 
as part of the transfer tag. The device is also required to put the unit ID of the device that 
requested the interrupt in the transfer size field of the interrupt command. In most cases, the unit 
ID in the size field matches the unit ID in the transfer tag. When the two values are different, the 
device that issues the interrupt command does so on behalf of the device identified by the unit ID 
in the transfer size field. This is referred to as an interrupt proxy. A device can only be an interrupt 
proxy for other devices within its BIF node.

The interrupt class is identified by bits 22:23 of the address. The meaning of the interrupt class is 
defined by the source of the interrupt and is typically provided to software as an indication of the 
type of interrupt. See the Cell Broadband Engine Architecture for the use of the interrupt class.

The interrupt priority is identified by bits 32:39 of the address. The interrupt priority is typically 
used by an interrupt controller to determine if this interrupt should be presented to the processor, 
or to the device, or rejected. See Cell Broadband Engine Architecture for the use of the interrupt 
priority.

For additional information about the I/O architecture in general, see Section 7 I/O Architecture on 
page 161. 

9.8.4.2 Clearing Interrupts

An interrupt status bit that has been set to ‘1’ in the Interrupt Status Registers (INT_Stat_class0, 
INT_Stat_class1, and INT_Stat_class2) must be cleared after the corresponding interrupt is 
handled. The only case in which this is not true is for class 1 interrupts in which the MFC Data-
Storage Interrupt Status Register (MFC_DSISR) needs to be cleared to ‘0’ before any of the status 
register bits for class 1 are cleared. Also, the MFC_CNTL[R] bit needs to be set to ‘1’ to resume 
DMA operation after status-register bits have been cleared.

Software should not clear the source of an interrupt until the Interrupt Status Register 
(INT_Stat_class0, INT_Stat_class1, and INT_Stat_class2) bits are read and cleared. If an Inter-
rupt Status Register is cleared on the same cycle as the interrupt, the source sends a signal to 
the SBI, and this interrupt source can be lost. In the case of a MFC Fault Isolation Register 

Table 9-37. Format for Interrupt Packet 

Bits Width Definition

Address (0:63)

0:21 22 Reserved.

22:23 2 Interrupt class.

24:27 4 Destination BIF node ID.

28:31 4 Destination unit ID.

32:39 8 Interrupt priority.

40:63 24 Data.

Transfer Size (0:5)

0 1 Reserved.

1:4 4 Source unit ID (typically, the same as bits 4 through 7 of the transfer tag).
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(MFC_FIR) class 0 interrupt, software should clear the FIR bits first and then clear the Interrupt 
Status Register. If there is any FIR bit set when the Interrupt Status Register is cleared, the SBI 
sends a new interrupt packet.

9.9 Thread Targets for Interrupts

Table 9-38 summarizes the PPE thread targets of the various interrupt types. The nonrecover-
able checkstop error (which is not an interrupt) is described in Section 9.15 on page 295. 

9.10 Interrupt Priorities

The following exception conditions are ordered from highest to lowest priority.

Table 9-38. PPE-Thread Target for Interrupts  

Exception Type Interrupt Target PPE Thread

Instruction-Caused 
(Synchronous) All instruction-caused interrupts Thread causing interrupt

System-Caused 
(Asynchronous)

System Reset, when a thread is started or restarted Selectable by software

System Reset, at power-on reset (POR) Thread 0

Machine Check1 Both threads

System Error One or both threads, depending 
on the error

Decrementer Thread causing interrupt

Hypervisor Decrementer Both threads

Thermal Management Selectable by software

Maintenance (instruction-caused) One or both threads, depending 
on the error

External Interrupt (direct or mediated)2 Selectable by software

1. If HID0[en_prec_mchk] = ‘1’ (“precise”), only the thread that causes a machine check interrupt will take the interrupt, 
and the interrupt will appear to be instruction-caused (synchronous) from the viewpoint of that thread (see 
Section 9.5.2 on page 249). If HID0[en_prec_mchk] = ‘0’ (“imprecise”), both threads will take a machine check inter-
rupt, and the interrupt will appear to be system-caused (asynchronous) to both threads. A suspended thread will 
not resume. 

2. See Section 9.5.7 on page 254 for the difference between direct and mediated external interrupts.

Table 9-39. Priority Order of Interrupt Conditions (Sheet 1 of 3) 

I. System reset interrupt (highest priority exception)

II. Machine check interrupt

III. Instruction-dependent
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A. Fixed-Point 
Loads and Stores

1. Data storage interrupt (DSI) caused by the DABR
2. Alignment interrupts caused by fixed-point load and store instructions (lwarx, ldarx, 

stwcx., stdcx., lmw, or stmw).
3. DSI caused by a logical partitioning (LPAR) error in real mode (MSR[HV] = ‘0’ and 

LPCR[HDICE] = ‘0’)
4. Data segment interrupt
5. DSI caused by a page fault
6. Alignment interrupts (referencing caching-inhibited storage)

a. Alignment interrupts caused by fixed-point load instructions that reference caching-
inhibited storage.

b. Alignment interrupts caused by fixed-point store instructions that reference caching-
inhibited storage, if the C-bit in the page table entry is set to ‘1’.

7. DSI caused by a page-protection violation
8. Alignment interrupt caused by a fixed-point store instruction referencing caching-inhib-

ited storage, if the C-bit in the page table entry is set to ‘0’.
9. DSI caused by the ACCR
10. Trace interrupt

B. Floating-Point 
Loads and Stores

1. Floating-point unavailable interrupt
2. DSI caused by the DABR
3. Alignment interrupt caused by a floating-point load and store instruction that is not word 

aligned.
4. DSI caused by an LPAR error in real mode (MSR[HV] = ‘0’ and LPCR[HDICE] = ‘0’)
5. Data segment interrupt
6. DSI caused by a page fault
7. Alignment interrupts (referencing caching-inhibited storage)

a. Alignment interrupt caused by a double-precision floating-point load instruction that is 
word-aligned, but not doubleword-aligned, referencing caching-inhibited storage.

b. Alignment interrupt caused by a double-precision floating-point store instruction that is 
word-aligned, but not doubleword-aligned, referencing caching-inhibited storage and 
the C bit in the page table entry is set to ‘1’.

8. DSI caused by a page-protection violation
9. Alignment interrupt caused by a double-precision floating-point store instruction that is 

word-aligned, but not doubleword-aligned, referencing caching-inhibited storage, and 
the C bit in the page table entry is set to ‘0’.

10. DSI caused by the ACCR
11. Trace interrupt

C. Other Floating-
Point Instructions

1. Floating-point unavailable interrupt
2. Precise-mode floating-point enabled exceptions type of program interrupt
3. Trace interrupt

D. VXU Loads 
and Stores

1. VXU unavailable interrupt
2. DSI caused by the DABR
3. DSI caused by an LPAR error in real mode (MSR[HV] = ‘0’ and LPCR[HDICE] = ‘0’)
4. Data segment interrupt
5. DSI caused by a page fault
6. Alignment interrupts (referencing caching-inhibited storage)

a. Alignment interrupts caused by vector scalar unit (VSU) load and store (left or right) 
instructions that reference caching-inhibited storage.

b. Alignment interrupts caused by VSU load and store (left or right) instructions that ref-
erence caching-inhibited storage, if the C-bit in the page table entry is set to ‘1’.

Table 9-39. Priority Order of Interrupt Conditions (Sheet 2 of 3) 
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9.11 Interrupt Latencies

Latencies for taking various interrupts are variable, based on the state of the machine when 
conditions exist for an interrupt to be taken. Instruction dispatch is blocked for both threads when 
the conditions exist for a system-caused exception to be taken. Because microcoded instructions 
must complete, the interrupt latency depends on the current instructions being processed. The 
interrupt is not taken until both threads are flushed, no higher-priority exceptions exist, and the 
exception condition, if enabled, exists.

9.12 Machine State Register Settings Due to Interrupts

Table 9-40 on page 294 shows the settings of Machine State Register (MSR) bits for Hypervisor 
(HV), Machine-Check Enable (ME), and Recoverable Interrupt (RI), relative to the interrupt type. 
Table 9-3 on page 247 list the interrupts supported by the PPE, the effective address of the inter-
rupt handler (interrupt vector), and summarizes the conditions that cause the interrupt.

7. DSI caused by a page-protection violation
8. Alignment interrupt caused by a VSU load and store (left or right) instruction referencing 

caching-inhibited storage, if the C-bit in the page table entry is set to ‘0’.
9. DSI caused by the ACCR
10. Trace interrupt

E. Other VXU 
Instructions

1. VXU unavailable interrupt
2. Trace interrupt

F. rfid, hrfid, and 
mtmsr[d]

1. Precise-mode floating-point enabled exceptions type of program interrupt
2. Trace interrupt (for mtmsr[d] only)

G. Other Instructions 1. Exceptions that are mutually exclusive and the same priority:

a. Trap type of program interrupt
b. System call
c. Privileged Instruction type of program interrupt
d. Illegal Instruction type of program interrupt

2. Trace interrupt

H. Instruction segment interrupt

I. Instruction storage interrupt

IV. Thermal management interrupt

V. System error interrupt

VI. Maintenance interrupt

VII. External interrupt

A. Direct

B. Mediated

VIII. Hypervisor decrementer Interrupt

XI. Decrementer Interrupt

Table 9-39. Priority Order of Interrupt Conditions (Sheet 3 of 3) 
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Table 9-40. Machine State Register Bit Settings Due to Interrupts  

Interrupt Type 
MSR Bit1

HV ME RI2

System Reset 1 — 0

Machine Check (imprecise form) 1 0 03

Precise Machine Check 1 0 03

Data Storage m — 0

Data Segment m — 0

Instruction Storage m — 0

Instruction Segment m — 0

External e — 04

Alignment m — 0

Program m — 0

Floating-Point Unavailable m — 0

Decrementer m — 0

Hypervisor Decrementer 1 — —

System Call s — 0

Trace m — 0

System Error 1 — —

Maintenance 1 — —

Thermal Management 1 — —

VXU Unavailable m — 0

Legend:
0 Bit is set to ‘0’.
1 Bit is set to 1.
— Bit is not altered
m MSR[HV] is set to ‘1’ if LPCR[LPES] bit 0 = ‘0’ and LPCR[LPES] bit 1 = ‘0’; otherwise, the state of MSR[HV] is 

not altered.
e MSR[HV] is set to ‘1’ if LPCR[LPES] bit 0 = ‘0’; otherwise, the state of MSR[HV] is not altered.
s MSR[HV] is set to ‘1’ if LEV = ‘1’ or LPCR[LPES] bit 0 = ‘0’ and LPCR[LPES] bit 1= ‘0’; otherwise, the state of 

MSR[HV] is not altered.
Note:  

1. MSR[BE], MSR[EE], MSR[FE0], MSR[FE1], MSR[FP], MSR[PR], MSR[SE], MSR[DR], and MSR[IR] are cleared to 
‘0’, and MSR[SF] is set to ‘1’. 

2. MSR[RI] is not changed for interrupts that use HSRR0 or HSRR1.
3. MSR[RI] is cleared to ‘0’. SRR1[62] is cleared to ‘0’ for an imprecise Machine Check and is not altered for a precise 

Machine Check.
4. MSR[RI] is not altered if LPCR[LPES] bit 0 is set to ‘0’ and HID0[extr_hsrr] is set to ‘1’; otherwise, MSR[RI] is 

cleared to ‘0’.
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9.13 Interrupts and Hypervisor

The hypervisor feature supported by the PPE is described in Section 11 on page 331. This 
section and Table 9-40 on page 294 contain details relating to the requirements for and effects of 
interrupts in hypervisor mode. 

The main setup for interrupt handling is to place code in the interrupt vector offset. Each logical 
partition (LPAR) can have its own interrupt vector using the Real Mode Offset Register (RMOR). This 
register points to the start of the interrupt vector (defaults to 0), so that each LPAR—by means of a 
hypervisor (Section 11 on page 331)—can have its own dedicated vectors. There is also a hyper-
visor-only interrupt vector offset register called HRMOR which points to the interrupt vector when 
MSR[HV] = ‘1’. 

The following areas need to be initialized:

• HRMOR for setting hypervisor interrupt vector area.

• RMOR for pointing to the current supervisor’s interrupt vector area (which should change for 
each LPAR).

• Each enable bit (and any mask bits) listed in Table 10-9 on page 329. 

• External Interrupt settings.

• Interrupt priority settings by means of IIC_CPL0 and IIC_CPL1 (internal interrupt controller 
current priority level for thread 0 and thread 1). Default is 0, which is the highest priority.

9.14 Interrupts and Multithreading

The multithreading features supported by the PPE are described in Section 10 on page 299. For 
details on the entry condition, activated thread, mask condition, and suspended-thread behavior 
for each interrupt type, see Section 10.8.4 Thread Targets and Behavior for Interrupts on 
page 328. 

9.15 Checkstop

A checkstop is a special nonrecoverable condition (rather than an interrupt) in which the PPE and 
the rest of the CBEA processor shut down. There are multiple causes for a checkstop. It can be 
caused, for example, by two successive machine check interrupts occurring close together, with 
the second occurring before the first one completes. It can also be caused by a watchdog timeout 
or a hardware signal from an external device. 

Software cannot accept nor mask a checkstop event. After the CBEA processor hardware 
initiates the checkstop sequence, software has no role until System Reset occurs. See the Cell 
Broadband Engine CMOS SOI 65 nm Hardware Initialization Guide for more information about 
the checkstop. 
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9.16 Use of an External Interrupt Controller

The primary purpose of the IIC is to allow interrupts from SPEs and other components in the 
CBEA processors to be handled internally, without using a external interrupt controller. In a 
system with many I/O devices, however, an external interrupt controller might be desirable. In 
such a configuration, the IICs can function as second-level interrupt controllers, handling all inter-
rupts internal to the CBEA processor or within a multi-CBEA-processor system, while an external 
system interrupt controller handles interrupts external to the CBEA processor or multi-CBEA-
processor system. 

When handling an interrupt in a system with an external main system interrupt controller, PPE 
software must first check the IICs to determine if the interrupt was sourced internally or from an 
external system interrupt controller. 

9.17 Relationship Between CBEA Processor and PowerPC Interrupts

The following differences exist between CBEA processor and PowerPC Architecture interrupts:

• PowerPC Architecture interrupts not supported by the CBEA processors:

– Imprecise-mode floating-point enabled 

– Performance monitor (However, see the unrelated CBEA processor performance monitor 
interrupt later in this section.) 

– Optional example extensions to the trace facility 

• CBEA processor interrupts supported differently than in the PowerPC Architecture:

– In the PowerPC Architecture, the machine check interrupt is implementation-dependent. 
In the CBEA processors, the interrupt is supported in two forms, precise4 and imprecise, 
neither of which are defined in the PowerPC Architecture. 

– In the PowerPC Architecture, external interrupts have a single form. In the CBEA proces-
sors, the interrupts are supported in two forms, direct and mediated, neither of which are 
defined in the PowerPC Architecture. 

• CBEA processor interrupts that are not defined in the PowerPC Architecture or the vec-
tor/SIMD multimedia extension to the PowerPC Architecture:

– System error interrupt

– Maintenance interrupt (instruction-caused)

– Maintenance interrupt (system-caused)

– Thermal management interrupt

– External interrupts:

• SPU instruction interrupt.

• MFC command interrupt.

• MIC auxiliary trace buffer full interrupt.

• EIB possible livelock detection interrupt.

4. The precise machine check interrupt is a system-caused interrupt but appears to be an instruction-caused inter-
rupt from the viewpoint of the PPE thread that causes it (see Section 9.5.2 on page 249). 
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• Token manager interrupt.

• CBEA processor performance monitor interrupt (unrelated to PowerPC performance 
monitor interrupt).

• Software interrupt.
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10. PPE Multithreading

The Cell Broadband Engine Architecture (CBEA) processor1 elements use several implementa-
tion-specific techniques to speed program execution. In the PowerPC Processor Element (PPE), 
simultaneous multithreading is one of the most important techniques. To software, the PPE 
appears to provide two independent instruction-processing units. The threads appear to be inde-
pendent because the PPE provides each thread with a copy of architectural state, such as 
general-purpose registers, but the threads are not completely independent because many execu-
tion resources are shared by the threads to reduce the hardware cost of multithreading.

To software, the PPE implementation of multithreading looks similar to a multiprocessor imple-
mentation, but there are several important differences. Table 10-1 compares the PPE multi-
threading implementation to a conventional dual-core microprocessor.

Because most of the PPE hardware is shared by the two threads of execution, the hardware cost 
of the PPE multithreading implementation is dramatically lower than the cost of replicating the 
entire processor core. The PPE’s dual-threading typically yields approximately one-fifth the 
performance increase of a dual-core implementation, but the PPE achieves this 10%-to-30% 
performance boost at only one-twentieth of the cost of a dual-core implementation.

10.1 Multithreading Guidelines

In the PPE multithreading implementation, the two hardware threads share execution resources. 
Consequently, concurrent threads that tend to use different subsets of the shared resources will 
best exploit the PPE’s multithreading implementation. Pointer chasing and scattered memory 
accesses are an excellent examples of applications in which multithreading really shines, even if 
both threads are running the same type of memory-latency-sensitive application. For example, a 
speedup of 2x is entirely possible when running memory-pointer chases on both threads. 

1. The Cell Broadband Engine (Cell/B.E.) and PowerXCell 8i processors are collectively called CBEA processors.

Table 10-1. PPE Multithreading versus Multi-Core Implementations  

Characteristic PPE Multithreading Multiple Cores on a Single Chip

Hardware cost Low to moderate cost; the processor 
replicates only architectural state.

High cost; the entire processor core and 
caches are replicated.

Performance/Cost
A typical 10% to 30% performance gain 
(application-dependent) for 5% hardware 
cost.

Up to 100% performance gain for 100% 
hardware cost.

Hardware efficiency Execution-unit utilization increased 
compared to single-thread of execution. Execution-unit utilization unchanged.

Software restrictions
Threads must execute in same logical 
partition (must share memory-
management tables, and so forth).

Depending on implementation, threads and 
processes might be able to execute in 
different logical partitions.

Thread competition
Threads can compete for execution 
resources, such as cache residency and 
execution units.

Threads do not compete; they have private, 
replicated execution resources.

System throughput
System throughput improved at possible 
expense of slightly slower single-thread 
latency.

System throughput improved without 
reducing single-thread latency.
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When one thread experiences high miss rates in the L1 or L2 caches, the other execution 
resources in the PPE, such as the fixed-point and floating-point units, will be completely free to 
execute instructions from the other thread. Two examples of typical software functions that are 
likely to incur cache misses on memory references are the process of gathering data from sparse 
or scattered vectors in preparation for single instruction, multiple data (SIMD) processing and the 
pointer chasing performed when searching a linked list. For example, searching a linked list for 
an element of a particular type might be done with a loop like the following example:

ptr = list_head;
while (ptr != NULL)
{

if (ptr->type == desired_type) {
break;

}
ptr = ptr->next;

}

This code accesses list elements in link order, but the physical-memory addresses of adjacent 
list elements might not be adjacent. Consequently, on each iteration of the loop shown in the 
code sample, every execution of the statement ptr = ptr->next is likely to cause a cache miss 
the first time through the loop. If the list is large enough to overwhelm the data caches, it might 
cause cache misses every time a link is accessed.

Floating-point operations also often leave most of the other execution resources sitting idle. 
When one thread makes heavy use of the floating-point execution unit, a second, fixed-point-
intensive thread will be able to execute freely and make significant forward progress when the 
pipeline would otherwise be idle.

Certain types of source code result in instruction sequences that are dominated by serial depen-
dencies (each successive instruction depends on the previous one) and so have little instruction-
level parallelism. Similarly, when compute-intensive applications have loops that cannot be effec-
tively unrolled or that prevent successful software pipelining, the resulting thread of execution will 
not be able to exploit fully the available parallelism in the PPE execution pipeline. In these situa-
tions, when a single thread lacks enough instruction-level parallelism, a second simultaneous 
thread can help increase the use of execution resources and therefore system throughput.

Another specific situation that leaves execution resources idle is a thread that has a lot of 
branches that cannot be successfully predicted by the PPE branch-prediction hardware. A 
mispredicted branch leaves the execution resources idle for many cycles. A second, more-
predictable thread can make good forward progress and increase pipeline use and system 
throughput.

Whenever the overriding goal for an application is to maximize system throughput, multithreading 
should be used. When the overriding goal is to minimize the latency of a particular task, the 
system should be programmed to disable the second thread or to set its priority low enough to 
reduce competition for execution resources. However, setting the second thread's priority low will 
not eliminate latency-inducing effects on the other thread. If the target is minimum guaranteed 
latency, the processor should ideally be in single-thread mode or should not have a second 
thread running at all (that is, the thread context is sleeping), because some operations on the 
low-priority thread—for example, a sync operation—can still cause the entire pipeline to stop.
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PPE multithreading will not typically help code that is tuned precisely to the characteristics of the 
pipeline, because such a thread can probably use all or almost all of the execution resources. 
Even in this case, using multithreading will not necessarily compromise system throughput 
unless performance of the tuned thread also depends on the sizes of the L1 and L2 caches; a 
thread that is tuned to the cache sizes can experience thrashing if a second thread is allowed to 
run and pollute the cache. Cache misses are so expensive that any increase in misses will prob-
ably more than negate the benefit gained from multithreading.2

10.2 Thread Resources

For each thread, the PPE has duplicate copies of all architected state, such as general-purpose 
registers and thread-dependent special-purpose registers (SPRs). Exceptions to this rule are 
registers that deal with system-level resources, such as logical partitions and memory manage-
ment. To software, the PPE appears to offer two separate virtual processors for instruction 
execution.

Resources that are not described in the PowerPC Architecture, such as the hardware execution 
units, are typically shared by the two threads, but nonexposed resources are duplicated in cases 
where the resource is small or offers a performance improvement that is critical to multithreaded 
applications.

The two PPE threads are independent in most aspects, but they share logical-partitioning 
resources. Thus, the threads always execute in the same logical-partition context and share 
structures such as virtual-memory-mapping tables. Threads also share most of the large arrays 
and queues, such as caches, that consume significant amounts of chip area.

10.2.1 Registers

The following architected registers are duplicated for multithreading and used by software 
running in any privilege state (including problem-state):

• General-Purpose Registers (GPRs) (32 entries per thread)

• Floating-Point Unit Registers (FPRs) (32 entries per thread)

• Vector Registers (VRs) (32 entries per thread)

• Condition Register (CR)

• Count Register (CTR)

• Link Register (LR)

• Fixed-Point Exception Register (XER)

• Floating-Point Status and Control Register (FPSCR)

• Vector Status and Control Register (VSCR)

• Decrementer (DEC) 

2. Multithreading might result in fewer cache misses if both threads use the same code, as for example when using 
shared library routines. 
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In addition, see Section 10.4 Thread Control and Status Registers on page 306 for additional 
architected registers that are duplicated for multithreading but used specifically for thread control 
and status monitoring. All memory mapped I/O (MMIO) registers in the PPE deal with aspects of 
the power processor storage system (PPSS) that are shared for both threads, so all MMIO regis-
ters are shared for both threads as well.

10.2.2 Arrays, Queues, and Other Structures

The following arrays, queues, and structures are fully shared between threads running in any 
privilege state:

• L1 instruction cache (ICache), L1 data cache (DCache), and L2 cache

• Instruction and data effective-to-real-address translation tables (I-ERAT and D-ERAT)

• I-ERAT and D-ERAT miss queues

• Translation lookaside buffer (TLB)

• Load miss queue and store queue

• Microcode engine

• Instruction fetch control

• All execution units:

– Branch (BRU)

– Fixed-point integer unit (FXU)

– Load and store unit (LSU)

– Floating-point unit (FPU)

– Vector media extension unit (VXU)

The following arrays and queues are duplicated for each thread.

• Segment lookaside buffer (SLB)

• Branch history table (BHT), with global branch history

• Instruction buffer (IBuf) queue

• Link stack queue

Duplicating the instruction buffer allows each thread to dispatch regardless of any dispatch stall 
in the other thread. Duplicating the SLB is convenient for the implementation because of the 
nature of the PowerPC Architecture instructions that access it and because it is a relatively small 
array.

The instruction-fetch control is shared by both threads because the instruction cache has only 
one read port and so fetching must alternate between threads every cycle. Each thread main-
tains its own BHT and global branch history (GBH) to allow independent and simultaneous 
branch prediction. 
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10.2.3 Pipeline Sharing and Support for Multithreading

Figure 10-1 on page 304 shows a high-level, multithreading view of instruction flow and 
resources in the PPE pipeline. The units shown in this figure include the instruction unit (IU), 
execution unit (XU), fixed-point unit (FXU), load-store unit (LSU), branch unit (BRU), vector scalar 
unit (VSU), floating-point unit (FPU), and vector/SIMD multimedia extension unit (VXU). The 
pipeline stages shown for the execution units at the bottom of this figure are the total number of 
stages through completion; bypass paths are reached in fewer stages. For details on actual 
latency and throughput for each instruction, see Table A-1 PowerPC Instructions by Execution 
Unit on page 723. 

Instruction-fetch hardware autonomously operates and maintains an Instruction-Fetch Address 
Register for each thread (IFAR0 and IFAR1), which are not visible to software. In contrast to 
instruction dispatch, which can repeatedly favor one thread over another, instruction fetching 
strictly alternates on successive cycles. The purpose of instruction fetching is to keep each 
thread’s instruction buffer full with useful instructions that are likely to be needed by the thread. A 
thread’s Instruction Fetch Address Register (IFAR) is distinct from its program counter: the 
program counter tracks actual instruction-execution flow while an IFAR tracks predicted instruc-
tion-execution flow. Instruction fetching is pipelined; starting the fetch of a new sequential stream 
after a predicted-taken branch requires eight cycles. 

The dispatch hardware sends instructions from the instruction buffers to the shared decode, 
dependency-checking, and issue pipeline. The dispatch hardware selects instructions from the 
buffer of a particular thread based on thread priority and other factors such as stall conditions. 
Each pipeline stage beyond the dispatch point contains instructions from one thread only. 



Programming Handbook

Cell Broadband Engine  

PPE Multithreading
Page 304 of 884

Version 1.11
May 12, 2008

10.2.3.1 Pipeline Stall Points

There are three stall points in the pipeline: dispatch (ID1), issue (IS2), and VSU issue (VQ8). The 
dispatch stall point at ID1 (Figure 10-1) is separate for each thread so that one thread can 
dispatch even if the other is stalled.

Figure 10-1. PPE Multithreading Pipeline Flow and Resources 
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The issue and VSU-issue stall points (see Appendix A.5 Issue Rules on page 760 and 
Appendix A.6.2 Vector/Scalar Unit Issue Queue on page 764) are not separate for each thread. 
A stall at IS2 requires both threads to stall, and a stall at VQ8 will stall both threads if and only if 
the stall also results in a stall at IS2. To reduce the number of VQ8 stalls that also stall at IS2, the 
VSU issue queue has a 2-stage buffer that can expand the pipeline length temporarily by two 
stages. When VQ8 stalls and the 2-stage buffer is free, the VSU issue queue can accept up to 
four more instructions (2 entries × 2 instructions) before it must signal IS2 to stall.

Most stalls do not cause flushes, refetches, or dispatch blocking. Almost all stalls just cause the 
stall to occur such that issue is stopped for a few cycles (see Section 10.7 on page 322). 
However, for very long-latency conditions, such as when an instruction is issued that is depen-
dent on an L1 cache miss or on a divide that is being computed, stall conditions might cause the 
following sequence of actions in the pipeline:

• Instructions younger than the stalled instruction are flushed from the pipeline.

• Instructions starting with the stalled instruction are refetched.

• The thread is stalled at the dispatch (ID1) stage until the stall condition is removed.

When an instruction is dependent on an older caching-inhibited load instruction that has not 
completed, stall conditions cause the following sequence of actions in the pipeline: 

• The dependent instruction and all younger instructions for the same thread are flushed. The 
flush takes place 10 cycles after the dependent instruction is issued from the IS2 point. 

• The flushed instructions are refetched. 

• The thread is stalled at the ID1 stage until the caching-inhibited load is complete.

10.3 Thread States

The operating state of each thread has several properties that affect instruction dispatch, 
including:

• The thread’s privilege state

• Whether the thread is suspended or enabled

• Whether or not the thread is blocked by a stall condition not related to its priority

• The thread’s priority

10.3.1 Privilege States

A thread can run in any of three privilege states: hypervisor state, privileged state (supervisor), 
and problem (user) state. Hypervisor state is the most privileged, and some system operations 
require the initiating thread to be in hypervisor state. Hypervisor state exists to run a meta-oper-
ating system that manages logical partitions in which multiple operating system instances can 
run. Supervisor state is the state in which an operating system instance is intended to run when 
multiple instances are supported. User state (problem state) is for running application programs. 
Table 10-2 on page 306 summarizes the Machine State Register (MSR) bit settings needed for 
each state.
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As shown in the table, when MSR[PR] is set to ‘1’, the user state (problem state) is active, regard-
less of the state of the hypervisor bit in the MSR register.

After power-on reset (POR), the Problem State Change Thread Priority Enable bit, (TSCR[UCP]) 
and the Privileged But Not Hypervisor State Change Thread Priority Enable bit (TSCR[PSCTP]) are 
cleared to ‘0’, so thread priority can be changed only in hypervisor state. See Section 10.4.6 on 
page 312. 

10.3.2 Suspended or Enabled State

A thread can be in the suspended state if its Thread Enable bit is cleared to ‘0’ in the Control 
Register (CTRL[TE0] or CTRL[TE1]). A thread can suspend only itself (a thread cannot suspend 
the other thread), and a thread can only write to the Control Register (CTRL) to change a thread-
enable bit when the thread is in hypervisor state (MSR[PR,HV] = 0,1).

10.3.3 Blocked or Stalled State

In general, blocking occurs at the instruction-dispatch stage and stops only one of the two 
threads, whereas stalling occur at the instruction-issue stage and stop both threads. A thread can 
be blocked or stalled for any one of several conditions, including the following conditions:

• The thread executes one of a set of special nop instructions that block instruction dispatch 
for a specific number of cycles (see Table 10-4 on page 314).

• The pipeline blocks the thread at instruction dispatch because the combination of thread pri-
orities puts in force an instruction-dispatch policy that selects the other thread for dispatch 
(see Section 10.5 on page 313).

• The pipeline is forced to stall instruction progress due to dependencies.

• A context-synchronizing event or instruction occurs.

• The HID0[issue_serialize] bit is set to ‘1’.

10.4 Thread Control and Status Registers

Section 10.2.1 on page 301 lists the architected registers that are duplicated, per thread, and 
used by software running in any privilege state (including problem state). This section describes 
the primary control and status registers that affect and monitor the behavior of the multithreading 
facilities in the PPE. These registers allow software to enable threads, set relative thread priori-
ties, set the duty cycle for threads of unequal priority, determine thread response to interrupts, 
and set timer values so that system software will be informed when a thread is starved of execu-
tion resources.

Table 10-2. Privilege States  

MSR[HV] MSR[PR] Privilege State

1 0 Hypervisor

0 0 Privileged State (also called Supervisor)

Don’t care 1 Problem State (also called User)
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Each thread is viewed as an independent processor, complete with separate exceptions and 
interrupt handling. The threads can generate exceptions simultaneously, and the PPE supports 
concurrent handling of interrupts on both threads by duplicating some registers defined by the 
PowerPC Architecture.

The following registers associated with exceptions and interrupt handling are duplicated or are 
thread-dependent:

• Machine State Register (MSR)

• Machine Status Save/Restore Registers (SRR0 and SRR1)

• Hypervisor Machine Status Save/Restore Registers (HSRR0 and HSRR1)

• Floating-Point Status and Control Register (FPSCR)

• Data Storage Interrupt Status Register (DSISR)

• Decrementer (DEC)

• Logical Partition Control Register (LPCR)

• Data Address Register (DAR)

• Data Address Breakpoint Register (DABR and DABRX)

• Address Compare Control Register (ACCR)

• Thread Status Register Local (TSRL)

• Thread Status Register Remote (TSRR)

In addition, the following thread-independent registers also are associated with exceptions and 
interrupt handling on both threads:

• Hypervisor Decrementer (HDEC)

• Control Register (CTRL)

• Hardware Implementation Dependent Registers 0 and 1 (HID0 and HID1)

• Thread Switch Control Register (TSCR)

• Thread Switch Time-Out Register (TTR)

The following sections describe processor registers that play a central role in controlling and 
monitoring multithreading activity. The tables that describe register fields have been edited for 
brevity and clarity (for example, the reserved fields and fields not relevant to multithreading are 
not described). For complete register descriptions, see the Cell Broadband Engine Registers 
specification.

10.4.1 Machine State Register (MSR)

The Machine State Register (MSR) contains the hypervisor-state and problem-state (user-state) 
bits for setting the privilege state of a thread. See Section 9.5.7 on page 254 for how external 
interrupts are masked when MSR[EE] is cleared to ‘0’. When MSR[ME] is set to ‘1’, the thread can 
take a machine-check interrupt. See Section 11.2.1 on page 336 for how the MSR[HV] bit is set to 
enable hypervisor state. 
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10.4.2 Hardware Implementation Register 0 (HID0)

The Hardware Implementation Register 0 (HID0) holds several bits that determine whether a 
thread will take an interrupt in response to some exceptions and a bit to set issue-serialize mode. 
Issue-serialize mode, which is enabled with the issue_serialize bit is set to ‘1’, causes the 
processor to wait until all previous instructions have completed before issuing the next instruc-
tion; this mode also prevents dual instruction issue.
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10.4.3 Logical Partition Control Register (LPCR)

The Logical Partition Control Register (LPCR) holds several partition-related processor control 
bits. LPCR is a partially shared register: the LPCR[RMLS], LPCR[TL], and LPCR[LPES] fields are 
shared between threads; the LPCR[MER], LPCR[RMI], and LPCR[HDICE] fields are duplicated per 
thread.

Bits Field Name Description

3 issue_serialize

Issue Serialize mode
0 Normal operation
1 Next instruction is not issued until all previous instructions have completed (no dual-issue 

either).

22 therm_wakeup
Enable thermal management interrupt to wake up suspended thread
Note:  Wakeup occurs even if HID0[therm_intr_en] = ‘0’.

24  syserr_wakeup

Enable system error interrupt to wakeup suspended thread 
Allows the system error interrupt to wake up either thread if it is dormant. When a system error 
interrupt is received, if this bit is enabled the interrupt wakes up the thread that the interrupt was for 
(can be both threads). For example. if thread 0 is dormant, thread 1 is active, syserr_wakeup is set, 
and the interrupt is for thread 0, then thread 0 is awakened (the active thread [thread1] is unaffected 
because it is already awake). If both threads are dormant and if syserr_wakeup is set, the interrupt 
awakens both threads.
Note:  Wakeup occurs even if HID0[en_syserr] = ‘0’.

26 en_prec_mchk
Enable precise Machine Check
Note:  All loads to caching-inhibited (I = ‘1’) space cause the instructions after the load to be 
flushed, and the thread to be blocked, at dispatch until data is returned for the load.

29 therm_intr_en

Master thermal management interrupt enable
Clearing this bit disables all thermal management interrupts regardless of MSR state. 
0 Disables all thermal management interrupts regardless of MSR state
1 Enabled

30 en_syserr
Enable system errors generated from outside the PPE.
0 Disabled
1 Enabled
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10.4.4 Control Register (CTRL)

The Control Register (CTRL) holds basic thread status and control bits. Software can use the TE0 
and TE1 bits to suspend and resume threads. Hypervisor software executing in one thread can:

• Suspend the present thread

• Resume the other thread, but cannot suspend the other thread

Table 10-3 shows the effect on thread state when thread 1 or thread 0 sets the thread enable 
(TE) field. In this table, “—” means the setting has no effect. 

Bits Field Name Shared or Duplicated Description

34:37 RMLS Shared by all threads Real mode limit selector

52 MER Duplicated for each thread Mediate external exception request (interrupt enable)

53 TL Shared by all threads
TLB load
0 TLB loaded by processor
1 TLB loaded by software

60:61 LPES Shared by all threads Logical partitioning (environment selector)

62 RMI Duplicated for each thread Real-mode caching (caching inhibited)

63 HDICE Duplicated for each thread Hypervisor decrementer interrupt control enable

Table 10-3. Effect of Setting the CTRL[TE0] and CTRL[TE1] Bits  

CTRL[TE0] CTRL[TE1]
If thread 0 sets TE bits If thread 1 sets TE bits

Thread 0 Thread 1 Thread 0 Thread 1

0 0 Suspend — — Suspend

0 1 Suspend Resume — —

1 0 — — Resume Suspend

1 1 — Resume Resume —
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10.4.5 Thread Status Register Local and Remote (TSRL and TSRR)

Each thread has a Thread Status Register Local (TSRL) and a Thread Status Register Remote 
(TSRR). For each thread, the TSRR is a read-only copy of the other thread’s TSRL. A thread uses its 
TSRL to set its priority; a thread uses the TSRR to read the other thread’s priority.

Bits Field Name Description

0:1 CT

Current thread active (Read Only)
These read-only bits contain the current thread bits for threads 0 and 1. Software can read these 
bits to determine which thread they are operating on. Only one current thread bit is set at a time.
00 Reserved
01 Thread 1 is reading CTRL
10 Thread 0 is reading CTRL
11 Reserved

8:9 TE
Thread enable bits (Read/Write); see Table 10-3 on page 310.
Note:  Software should not disable a thread when in trace mode (MSR[SE] or MSR[BE] set to ‘1’). 
Doing so causes SRR0 to be undefined and can cause a system livelock hang condition.

16:17 TH

Thread history (Read only)
If thread A writes CTRL[RUN] then CTRL[16] is set; otherwise if thread B writes CTRL[31] then 
CTRL[17] is set.
These bits cannot be set directly by writing bits 16 or 17 with a mtctrl instruction. They are only set 
when a thread writes CTRL[RUN].

31 RUN Run state bit.

Reserved TP Reserved

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Reserved FWDP

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Description

11:12 TP

Thread priority (read/write); see Table 10-6 on page 320.
00 Disabled
01 Low
10 Medium
11 High

44:63 FWDP Forward progress timer (Read Only); see Section 10.6.3 on page 321.
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10.4.6 Thread Switch Control Register (TSCR)

The Thread Switch Control Register (TSCR) has bits to control the thread’s response to interrupts, 
determine its duty cycle in multithreading mode, and so on.
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Bits Field Name Description

0:4 DISP_CNT Thread dispatch count; see Section 10.5 on page 313.

9 WDEC0

Decrementer wakeup enable for thread 0
0 Disabled
1 If a decrementer exception exists, and the corresponding thread is suspended, then the 

thread is activated.

10 WDEC1

Decrementer wakeup enable for thread 1
0 Disabled
1 If a decrementer exception exists, and the corresponding thread is suspended, then the 

thread is activated.

11 WEXT

External interrupt wakeup enable
0 Disabled
1 If an external exception exists, and the corresponding thread is suspended, then the thread 

is activated.

12 PBUMP

Thread priority boost enable
0 Disabled
1 If a system-caused exception is presented, the corresponding interrupt is not masked, and 

the priority of the corresponding thread is less than medium, sets the priority of the thread 
to medium.
The hardware internally boosts the priority level to medium when the interrupt is pending. 
This does not change the value in the TSRL[TP] bits for the affected thread. The internal 
priority remains boosted to medium until an mttsrl or priority changing nop instruction 
occurs.

13 FPCF

Forward progress count flush enable
This bit only enables or disables the flush from occurring. The forward progress timer does not stop 
decrementing when set to zero. During normal operation, this bit should be set to '1'.
If set to ‘1’, the nonstarved thread will be blocked at dispatch until one instruction completes from 
the starved thread. See TTR[TTIM] and TSRL[FWDP] and Section 10.6.3 on page 321 for more 
information.

15 PSCTP

Privileged but not hypervisor state change thread priority enable; See Section 10.6.2.1 on 
page 319.
Enables the privileged state (MSR[HV, PR] = ‘00’) to change priority with “or Rx, Rx, Rx” nop 
instructions or writes to TSRL[TP]. 
0 The ability of the privileged state to change thread priority is determined by TSCR[UCP].
1 The privileged state can change thread priority to low, medium and high.

16 UCP

Problem state change thread priority enable; see Section 10.6.2.1 on page 319.
Enables the problem state to change priority with “or Rx, Rx, Rx” nop instructions or writes to 
TSRL[TP]. 
0 The problem state cannot change thread priority.
1 The problem state can change thread priority to low and medium only.
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10.4.7 Thread Switch Time-Out Register (TTR)

The Thread Switch Time-Out Register (TTR) has a single field, TTIM. The value in TTIM is copied 
into the TSRL[FWDP] field every time an instruction from the corresponding thread completes. 
Thus, with each instruction completion, the forward-progress timer is reset.

10.5 Thread Priority

Each thread has an instruction-dispatch priority determined by the value of the TSRL[TP] field. 
This 2-bit field can encode four possibilities:

• Thread disabled

• Low priority

• Medium priority

• High priority

Software, in particular operating-system software, sets thread priorities to cause hardware to 
allocate instruction-dispatch bandwidth according to the throughput requirements of the 
programs running in the threads. For example, software can set thread priorities to cause hard-
ware to favor a foreground thread over a background thread when allocating instruction-dispatch 
slots (see Table 10-5 on page 315).

10.5.1 Thread-Priority Combinations

Table 10-4 on page 314 lists all possible combinations of thread priorities and values of 
TSCR[DISP_CNT] and describes the instruction-dispatch policy that results from each combination. 
For some combinations of thread priorities, the value in TSCR[DISP_CNT] allows software to set 
the duty cycles of instruction dispatching for the two threads.

Though the effects of some of the priority combinations are subtle, there are some basic 
concepts governing the response of hardware to thread priority settings:

• When the threads have equal priorities, hardware uses fair, round-robin scheduling.

• Dispatch is attempted every cycle except when both threads are set at low priority and the 
TSCR[DISP_CNT] field is not equal to one.

Reserved

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Reserved TTIM

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Description

44:63 TTIM Thread time-out flush value; see Section 10.6.3 on page 321 for more information.
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• When the threads have unequal priorities, the lower-priority thread can be prevented from 
dispatching any instructions for long periods of time when TSCR[DISP_CNT] is equal to one or 
when one thread is set to high priority and the other is set to low priority. See Section 10.6.3 
Preventing Starvation: Forward-Progress Monitoring on page 321 for details. 

There are two special cases for the value of TSCR[DISP_CNT]. When the actual value is cleared to 
‘0’, hardware uses a dispatch count of 32, the maximum value. When TSCR[DISP_CNT] is set to 
‘1’, the higher-priority thread always gets the dispatch slot if it can use it, otherwise the lower-
priority thread gets the slot; there is no blocking.

10.5.2 Choosing Useful Thread Priorities

This section describes thread priorities from a high-level perspective. A full description of priori-
ties, including low-level details, is given in Section 10.5 beginning on page 313 and 
Section 10.6.2 beginning on page 319.

Each thread can be given one of three priorities: low, medium, or high. Thread priority is normally 
determined by the value in the Thread Priority field of the Thread Status Register Local 
(TSRL[TP]). For certain combinations of thread priorities, the Dispatch Count field in the Thread 
Switch Control Register (TSCR[DISP_CNT]) sets the duty cycle of instruction dispatch for the 
threads. See Section 10.5.3 on page 316 for examples of setting TSCR[DISP_CNT].

Together with the value of the TSCR[DISP_CNT] field, there are many possible combinations of 
thread priorities (see Table 10-4 on page 314). In practice, thread priorities will most often be set 
to one of three useful combinations, as shown in Table 10-5.

Table 10-4. Relative Thread Priorities and Instruction-Dispatch Policies  

TSCR[DISP_CNT] Thread 0
Priority

Thread 1
Priority

Attempt to
Dispatch Dispatch Policy Description

== 1 Same Every 
Cycle

Even priority; a round-robin algorithm is used to choose a thread for 
dispatch.

== 1 Different Every 
Cycle

Uneven priority; the higher-priority thread always gets the dispatch 
slot if it can use it; otherwise, the lower-priority thread can use the 
dispatch slot.

!= 1 Low Low

Once 
every 

DISP_CNT 
cycles

Dispatch attempted once in TSCR[DISP_CNT] cycles; no dispatch is 
attempted on the other TSCR[DISP_CNT]–1 cycles. Even priority; a 
round-robin algorithm is used to choose a thread for dispatch; if the 
chosen thread in a given cycle cannot dispatch for other reasons 
(for example, instruction buffer empty), the other thread is allowed 
to dispatch (priority can toggle between threads). 

!= 1 Low Medium

Every 
Cycle 

Out of every TSCR[DISP_CNT] cycles, one dispatch cycle is given to 
the lower-priority thread. The other TSCR[DISP_CNT]–1 dispatch 
cycles are given to the higher priority thread.

!= 1 Medium Low

!= 1 Medium High

!= 1 High Medium

!= 1 Low High
Every 
Cycle 

Out of every TSCR[DISP_CNT] cycles, one dispatch cycle is given to 
the lower priority thread only if the higher-priority thread cannot 
dispatch during that cycle. The other TSCR[DISP_CNT]–1 dispatch 
cycles are given to the higher priority thread.

!= 1 High Low

!= 1 Medium Medium
Every 
Cycle

Even priority; a round-robin algorithm is used to choose a thread for 
dispatch. If dispatch is stalled for the chosen thread in a cycle, no 
dispatch occurs in that cycle (priority does not toggle between 
threads).

!= 1 High High
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The first combination sets both threads to medium priority. This combination causes the PPE to 
attempt to use all available dispatch opportunities and use a fair, round-robin scheduling algo-
rithm. When a thread needs a temporary boost in priority to, for example, execute a time-critical 
interrupt handler, it can assume high priority to cause the PPE to choose it for most dispatch 
opportunities.

The second combination sets one thread at medium priority and one to low. This combination 
causes the PPE to attempt to use almost all available dispatch opportunities for the medium-
priority thread; thus, this combination is appropriate to run a low-priority program in the back-
ground during otherwise normal operation. The background program will get some execution 
time, but it will minimally hinder the foreground thread’s progress.

The third combination sets both threads at low priority. This combination causes the PPE to 
attempt dispatch only once every TSCR[DISP_CNT] cycles with a fair, round-robin scheduling algo-
rithm. With a high value in TSCR[DISP_CNT], the PPE will be mostly idle, which will reduce power 
consumption and heat production while keeping the two threads alive and responsive to changes 
in system conditions.

One combination that might cause problems—and therefore is not explicitly supported—is a 
high-priority thread plus a low-priority thread. In such a case, the PPE would never dispatch 
instructions from the low-priority thread unless the cycle was the TSCR[DISP_CNT] cycle and the 
high-priority thread was unable to dispatch. The low priority thread would thus starve for dispatch 
opportunities. Because of this, the combination of high-priority plus low-priority is explicitly not 
supported. 

The PPE has a completion-count time-out feature to catch the extreme cases of thread starvation 
that can result from using this combination. See Figure 10-4 on page 317 for an illustration of 
how this combination can cause starvation. See Section 10.6.1 on page 319 for a description of 
how to prevent starvation.

Table 10-5. Three Useful Thread Priority Combinations  

Purpose Thread 0 
Priority

Thread 1 
Priority TSCR[DISP_CNT] Comment

Two Foreground Threads 
(normal operation) Medium Medium Don’t care

PPE attempts to dispatch on every cycle; 
threads alternate dispatch on each attempt. 
Software can boost a thread to high when 
minimum latency is important.

One Foreground Thread 
One Background Thread

Medium Low
Higher value puts 

Low thread farther in 
the background

PPE attempts to dispatch on every cycle; 
medium-priority thread gets most dispatch 
attempts; low-priority thread gets one 
dispatch attempt out of every 
TSCR[DISP_CNT] cycles.

Low Medium

Two Background Threads
(save power)

Low Low
Higher value 

decreases power 
consumption

PPE attempts to dispatch only once every 
TSCR[DISP_CNT] cycles; threads alternate 
dispatch on each attempt.
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10.5.3 Examples of Priority Combinations on Instruction Scheduling

10.5.3.1 Low Priority Combined with Low Priority

Figure 10-2 illustrates nominal instruction-dispatch activity when both threads are set at low 
priority. Because the threads have equal priority, the scheduling is fair, with each thread getting 
an equal chance to dispatch. The result of this combination is that instructions from thread 0 are 
dispatched only once every ten cycles; similarly, instructions from thread 1 are dispatched only 
once every ten cycles.

The duty cycle, which is the value in TSCR[DISP_CNT], is set at five. With both threads set at low 
priority, the processor only dispatches up to two instructions once every five cycles; for this 
combination, the duty-cycle value describes the ratio of cycles spent attempting to dispatch to 
cycles spent idling. A given attempt to dispatch an instruction might not succeed if the threads 
are blocked for other reasons.

The dispatch stall signal from the priority logic releases the dispatch logic only every fifth cycle, 
and it releases the stall for both threads. If one thread cannot dispatch for other reasons, the 
other thread will be allowed to dispatch even if it was selected for dispatch on the previous 
attempt.

10.5.3.2 Low Priority Combined with Medium Priority

Figure 10-3 on page 317 illustrates nominal instruction-dispatch activity when one thread is set at 
low priority and the other one at medium. Because the threads have unequal priority, the sched-
uling favors the higher-priority thread. The result of this combination is that instructions from 
thread 1 are dispatched on four out of five cycles while instructions from thread 0 are dispatched 
on only one out of five cycles.

Figure 10-2. Thread Priorities and Instruction Dispatch: Low Priority with Low Priority 

Stall

  A   Thread 0 has priority
  B   Thread 1 has priority
  -    Both Threads blocked

Stall

Thread 0

Thread 1

TSRL[TP] = Low

TSRL[TP] = Low

Priority to dispatch:

1

DISP_CNT = 5

0

1

0

A A- - - -- - - - - - - -B - - - - - - - -B
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The duty cycle, TSCR[DISP_CNT], is again set at five. With this combination of priorities, the 
processor dispatches up to two instructions every cycle, and the duty-cycle value describes the 
ratio of cycles spent on attempts to dispatch exclusively from thread 1 (the higher-priority thread) 
to cycles spent giving instructions from thread 0 a chance to dispatch.

The dispatch stall signal from the priority logic for thread 1 is always false; with this combination 
of priorities, instruction dispatch from thread 1 is always allowable. The dispatch stall signal for 
thread 0 is false (dispatch allowed) only one cycle in five. On this cycle, priority is given to thread 
0 if dispatch is not otherwise stalled. If thread 0 is stalled for other reasons, the dispatch logic will 
attempt to dispatch from thread 1.

10.5.3.3 Low Priority Combined with High Priority

Figure 10-4 illustrates nominal instruction-dispatch activity when one thread is set at low priority 
and the other at high. The scheduling favors the higher-priority thread to the exclusion of the low-
priority thread; in the segment of activity shown, instructions from thread 0 are never given a 
opportunity to dispatch.

The duty cycle is again set at five. With this combination of priorities, the processor dispatches up 
to two instructions every cycle, and the duty-cycle value describes the ratio of cycles spent on 
attempts to dispatch exclusively from thread 1 to cycles spent giving instructions from thread 0 a 
chance to dispatch. For this combination, however, dispatch from thread 0 is attempted only if 
thread 1 is unable to dispatch. Consequently, it is possible that no instructions from thread 0 
would ever be dispatched because it is possible that thread 1 will always be ready for dispatch. 
To keep thread 0 from being completely starved in a scenario like this, the PPE can be 
programmed to monitor forward-progress and force a dispatch opportunity for thread 0 when 
starvation exceeds a programmable limit (see Section 10.6.3 on page 321).

Figure 10-3. Example 2 of Thread Priorities and Instruction Dispatch 

  A   Thread 0 has priority
  B   Thread 1 has priority
  -    Both Threads blocked

Thread 0

Thread 1

TSRL[TP] = Low

TSRL[TP] = Medium

DISP_CNT = 5

DISP_CNT − 1

Stall

Stall

Priority to dispatch:

1

0

1

0

A AB B B BB B B B B B B BA B B B B B B B BA

Figure 10-4. Example 3 of Thread Priorities and Instruction Dispatch 

  A   Thread 0 has priority
  B   Thread 1 has priority
  -    Both Threads blocked
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Although the stall signal from the priority logic for thread 0 is false every fifth cycle, no instructions 
from thread 0 are dispatched because, in this example, thread 1 is never stalled for other 
reasons on the cycles when thread 0 is considered for dispatch.

10.5.3.4 Medium Priority Combined with Medium Priority

Figure 10-5 illustrates nominal instruction-dispatch activity when both threads are set at medium 
priority; the same dispatch activity applies when both threads are set to high priority. Because the 
priorities are equal, the scheduling is fair with each thread getting an equal chance for dispatch. 
The result of this combination of priorities is that the dispatch alternates threads so that a given 
thread is allowed to dispatch once every other cycle.

The duty cycle is again five, but with this combination of priorities, the duty cycle value, 
TSCR[DISP_CNT], plays no part in choosing a thread for dispatch consideration. Dispatch is 
attempted on every cycle, and the dispatch logic alternates the thread it chooses for consider-
ation. If the thread under consideration in a given cycle is unable to dispatch any instructions, the 
other thread will be allowed to dispatch even if it was selected for dispatch on the previous 
attempt.

10.5.3.5 Low Priority Combined with Medium Priority and Larger TSCR[DISP_CNT]

Figure 10-6 illustrates nominal instruction-dispatch activity when one thread is set at low priority 
and the other at medium. The situation and resulting dispatch behavior are identical to that 
explained in the second example in Section 10.5.3.2 on page 316, but the duty-cycle value is set 
at ten, which causes the dispatch logic to give an even greater preference to instructions from 
thread 1. The ratio is nine-to-one instead of four-to-one as in the previous example.

Figure 10-5. Example 4 of Thread Priorities and Instruction Dispatch 

  A   Thread 0 has priority
  B   Thread 1 has priority
  -    Both Threads blocked

Thread 0

Thread 1
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Figure 10-6. Example 5 of Thread Priorities and Instruction Dispatch 
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10.6 Thread Control and Configuration

Software can configure and control thread behavior in several ways, including:

• Enabling and suspending a thread

• Setting the instruction-dispatch policy by setting thread priority

• Executing a special nop instruction to cause temporary dispatch stalls

• Setting an appropriate forward-progress timer value to allow hardware to guarantee a mini-
mum amount of execution time

• Switching the state of the processor between single-threaded and multithreaded mode

10.6.1 Resuming and Suspending Threads

The only way software can suspend a thread is to execute an mtspr in hypervisor state that 
clears its corresponding Thread Enable bit to zero in the CTRL register (CTRL[TE0] or CTRL[TE1]). 

Software executing in hypervisor state can resume execution for a suspended thread by setting 
the appropriate Thread Enable bit in the CTRL register (CTRL[TE0] or CTRL[TE1]). Hardware can 
resume a suspended thread with certain enabled interrupts. In either case, when the thread 
resumes, it begins execution at the system reset interrupt vector location. See Section 10.7.2.9 
on page 324 for detailed information about resuming and suspending threads.

10.6.2 Setting the Instruction-Dispatch Policy: Thread Priority and Temporary Stalling

Software running in a thread can influence how hardware dispatches the thread’s instructions 
into the pipeline in two ways:

• The thread can set its priority level to low, medium, or high (depending on privilege state).

• The thread can execute a special nop instruction that suspends instruction dispatch for a 
specific number of processor cycles.

The priority level of one thread relative to the priority level of the other thread determines how the 
processor will allocate instruction dispatch bandwidth to the thread. If the thread has a higher 
priority than then the other thread, the hardware will, in general, dispatch the thread’s instructions 
more frequently than it will dispatch the other thread’s instructions. See Section 10.5 on 
page 313 for a complete description of thread priorities and instruction-dispatch policy. The next 
section explains how a thread can change its priority and what changes are allowed.

A thread can also deliberately stall the dispatch of its instructions by executing a special nop 
instruction, as explained later.

10.6.2.1 Allowed Thread Priority Changes

Table 10-6 on page 320 shows the changes to thread priority that a thread is allowed to make. 
The priority changes that are allowed depend on the privilege state of the thread and the priority-
change bits in the TSCR. A thread must be in hypervisor or supervisor state to set its priority to 
high.
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A thread can attempt to change its priority level in two ways:

• The thread can write to its TSRL[TP] field with the required priority encoding. If the change is 
not allowed, no action is taken. Writing ‘0’ to this field will not disable the thread regardless of 
operating mode; writing ‘0’ is always ignored.

• The thread can execute one of the special nop instructions listed in Table 10-7 on page 320 
that change thread priority as a side-effect.

By default, the hardware initializes the priority-change bits to allow priority changes only in hyper-
visor state. Hypervisor software can set the priority-change bits to allow software in other privi-
lege states to change thread priority.

One thread cannot change the other thread’s priority level. If software attempts this or some 
other priority change that is not allowed, the attempt is silently ignored by the processor.

If the TSCR[PBUMP] bit is set to ‘1’ when an enabled interrupt is pending and not masked as a 
result of a system-caused exception, hardware will temporarily boost the thread’s priority to 
medium if it was less than medium.

10.6.2.2 nop Instructions that Change Thread Priority and Dispatch Policy

In addition to the instruction-dispatch policy set by the combination of thread priorities, a thread 
can execute a special nop instruction to cause the processor hardware to suspend the dispatch 
of the thread’s instructions for a specific number of cycles. Also, a thread can attempt to change 
its priority by executing one of a set of special nop instruction. See Table 10-7.

Table 10-6. Privilege States and Allowed Thread-Priority Changes  

MSR[HV] MSR[PR] Privilege State TSCR[PSC
TP]

TSCR[UC
P] Can Suspend?

Thread Priority Change Allowed

High Medium Low

1 0 Hypervisor Don’t care Don’t care Yes Yes Yes Yes

0 0 Supervisor

0 0 No — — —

0 1 No — Yes Yes

1 Don’t care No Yes Yes Yes

Don’t 
care 1

User
(Problem State)

Don’t care
0 No — — —

1 No — Yes Yes

Table 10-7. nop Instructions to Set Thread Priority and Stall Instruction Dispatch (Sheet 1 of 2) 

OR Form Extended 
Mnemonic Description/Side-Effects

ori 0, 0, 0 nop Preferred form for nop instruction without side-effects.

or 1, 1, 1 cctpl Change current thread priority to low.

or 2, 2, 2 cctpm Change current thread priority to medium.

or 3, 3, 3 cctph Change current thread priority to high.

or 28, 28, 28 db8cyc Cause the current thread to block at dispatch for eight cycles. Used for multithread 
compiler optimizations of long-latency vector/scalar unit (VSU) dependencies.
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10.6.3 Preventing Starvation: Forward-Progress Monitoring

When one thread is assigned high priority and the other low priority, the low-priority thread will be 
given at most one chance out of TSCR[DISP_CNT] cycles to dispatch an instruction, and on that 
cycle, the low-priority thread will be denied the dispatch opportunity if the high-priority thread can 
use the dispatch slot. This situation can lead to complete starvation of the low-priority thread; it 
might make no forward progress for an excessively long time.

To prevent undesirable starvation, the PPE can be programmed to monitor the forward progress 
of each thread and take action when one thread has made no forward progress and the other has 
made more than a pre-set limit. The monitoring hardware uses the TTR[TTIM] field, the 
TSRL[FWDP] field, and the TSCR[FPCF] bit. Each thread has a dedicated set of these resources.

To start the hardware forward-progress monitor for a thread, an instruction sequence like the 
following can be used:

li r10,0x1000 // other thread allowed 4096 instruction completions
mtspr TTR,r10 // Set TTR[TTIM]
li r10,(1<<19) // FPCF bit position
mfspr r11,TSCR // get current TSCR
or r11,r11,r10 // set the FPCF bit position to 1
mtspf TSCR,r11  // set FPCF bit to 1 in TSCR

The forward-progress monitoring hardware will copy the TTR[TTIM] field into the TSRL[FWDP] field 
each time the thread successfully completes an instruction; thus, each time a thread completes 
an instruction, its corresponding forward-progress timer is reset to the initial value. In the 
preceding instruction sequence, when the second li instruction completes, the value in the 
TTR[TTIM] field—4096—will be copied into the TSRL[FWDP] field.

On cycles when the thread does not complete an instruction, the hardware will decrement the 
TSRL[FWDP] field by one if the other thread does complete an instruction; if neither thread 
completes an instruction, the TSRL[FWDP] value does not change. Thus, a thread’s TSRL[FWDP] 
will be exhausted only if that thread completes no instructions while the other thread completes 
enough instructions to reduce the value in the TTR[TTIM] field to one.

or 29, 29, 29 db10cyc Cause the current thread to block at dispatch for 10 cycles. Used for multithread 
compiler optimizations of long-latency VSU dependencies.

or 30, 30, 30 db12cyc Cause the current thread to block at dispatch for 12 cycles. Used for multithread 
compiler optimizations of long-latency VSU dependencies.

or 31, 31, 31 db16cyc Cause the current thread to block at dispatch for 16 cycles. Used for multithread 
compiler optimizations of long-latency VSU dependencies.

ori 1-31, 1-31, 0
or 0, 0, 0
or 4-27, 4-27, 4-27

N/A Nonspecial forms for nop instruction.

Table 10-7. nop Instructions to Set Thread Priority and Stall Instruction Dispatch (Sheet 2 of 2) 

OR Form Extended 
Mnemonic Description/Side-Effects



Programming Handbook

Cell Broadband Engine  

PPE Multithreading
Page 322 of 884

Version 1.11
May 12, 2008

The action taken when the TSRL[FWDP] field reaches one is determined by the TSCR[FPCF] bit: if 
this bit is set to ‘1’, the other thread is flushed after the next instruction completes; if this bit is 
cleared to ‘0’, no action is taken regardless of the value in TSRL[FWDP]. After the other thread is 
flushed, its dispatch is stalled until the starved thread completes an instruction.

The TSCR[FPCF] is only an enable for the hardware flush of the opposite thread; even when 
TSCR[FPCF] is cleared to ‘0’ (flush of opposite thread disabled), the thread’s TSRL[FWDP] field will 
decrement and be reloaded as previously described (assuming the thread is enabled).

10.6.4 Multithreading Operating-State Switch

When software wants to change the operating mode of the PPE from single-threaded to multi-
threaded, or vice versa, a set of events must occur in the proper sequence to guarantee correct 
hardware and software behavior.

10.6.4.1 Changing from Single-Threaded to Multithreaded Operation

The steps, in hypervisor mode, to change the PPE operating mode from single-threaded to multi-
threaded are as follows:

1. Perform a normal context-serializing operation such as isync that waits for all pipelines and 
queues to drain. 

2. Issue the mtspr instruction for the CTRL register to enable the second thread.

10.6.4.2 Changing from Multithreaded to Single-Threaded Operation

The steps, in hypervisor mode, to change the PPE operating mode from multithreaded to single-
threaded are as follows:

1. Perform a normal context-serializing operation such as isync that waits for all pipelines and 
queues to drain. 

2. Disable interrupts and trace mode (MSR[EE], MSR[SE], and MSR[BE] cleared to ‘0’).

3. Issue an mtspr CTRL instruction to disable your thread.

10.7 Pipeline Events and Instruction Dispatch

10.7.1 Instruction-Dispatch Rules

In a single-threaded processor implementation, instruction dispatch is governed by rules that 
consider many conditions in the processor such as:

• The availability of instructions to dispatch 

• The availability of execution units to process instructions ready for dispatch

• Dependencies on previously dispatched instructions

• Branch misprediction

In the multithreaded PPE, instruction dispatch is governed by additional rules that consider 
thread-related conditions such as:
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• Relative thread priority.

• A thread has made insufficient forward progress (forward-progress monitor decrements to a 
count of one).

• A thread experiences a cache miss.

The following sections describe internal conditions that stall instruction dispatch.

10.7.2 Pipeline Events that Stall Instruction Dispatch

10.7.2.1 Dependency on a Load that Misses the DCache

When an instruction is detected that has a dependency on an older load instruction that missed 
the DCache, the dependent instruction and all younger instructions for the same thread are 
flushed (10 cycles after the dependent instruction is issued from the IS2 stage). The flushed 
instructions are refetched, and dispatch for the flushed thread is then stalled until the load data is 
available in the DCache.

10.7.2.2 Dependency on a Store-Conditional Instruction

If an instruction is issued with a dependency on an stdcx. or stwcx. instruction that has not yet 
updated the CR, the dependent instruction and all younger instructions for the same thread are 
flushed (10 cycles after the dependent instruction is issued from the IS2 stage). The flushed 
instructions are refetched, and dispatch for the flushed thread is then stalled until the CR is 
updated.

10.7.2.3 Load or Store Instruction D-ERAT Miss

When a load or store instruction causes a D-ERAT miss, all younger instructions for the same 
thread are flushed once the instruction causing the miss is 10 cycles past the IS2 stage. The 
flushed instructions are refetched, and dispatch for the flushing thread is then stalled until the 
load data is available in the D-ERAT.

Only one outstanding D-ERAT miss from either thread is allowed. If a subsequent D-ERAT miss 
occurs for the other thread, both the instruction causing the miss and all younger instructions for 
the same thread are flushed, and dispatch is then stalled for both threads until the first D-ERAT 
miss is resolved. 

10.7.2.4 Microcoded Instruction

The microcode engine is shared between both threads. When a microcode instruction is 
dispatched, both threads are stalled at dispatch until the microcode sequence is complete. The 
microcode sequence is complete when the last microcode operation is in the ID1 stage. In the 
following cycle, instructions from the other (nonmicrocode) thread can be dispatched and placed 
into ID1. Therefore, invoking microcode will cause a performance penalty on both threads.
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10.7.2.5 System-Caused Interrupt Pending

When a system-caused interrupt is pending and not masked, dispatch for both threads is stalled 
until the interrupt is masked or serviced. The processor waits for the current instructions that are 
already committed to finish. Once it has been determined whether or not the committed instruc-
tions take an interrupt that masks the system-caused interrupt, or the instructions finish cleanly 
and the system-caused interrupt is taken, the dispatch stall is removed.

10.7.2.6 Forward-Progress Timer Timeout

The forward-progress monitoring facility is described in Section 10.6.3 on page 321.

When the TSRL[FWDP] count becomes one, the monitoring logic records that a forward-progress 
timeout condition has occurred. The TSRL[FWDP] counter continues to decrement while committed 
instructions of the opposite thread complete; the TSRL[FWDP] counter stops decrementing when it 
reaches x‘00001’. When the already committed instructions complete, the opposite thread will be 
flushed and dispatch will be blocked until the starved thread completes an instruction. 

10.7.2.7 Caching-Inhibited Load Issued with Precise Machine Check Interrupts Enabled

If precise machine check interrupts are enabled (HID0[en_prec_mchk] = 1) and a caching-inhib-
ited (I = 1) load instruction is issued, then all younger instructions for the thread that issued the 
load are flushed, refetched, and then stalled at dispatch. The stall is released when the caching-
inhibited load instruction completes.

10.7.2.8 Thermal Throttling

When the thermal sensors indicate the chip is overheating, or to save power, the processor can 
detect and signal a thermal throttling condition. When signalled, dispatch is blocked for one or 
both threads.

10.7.2.9 FPU Busy

When the FPU is executing a long-latency floating point instruction (fdiv or fsqrt) or any floating 
point instruction whose operand is denormalized number, the PPE recycles the operation in the 
FPU issue queue, which causes a stall that might propagate back to dispatch. 

10.7.2.10 Sync

A sync (L = 0 or 1) instruction blocks both threads until the sync instruction completes. The eieio 
and tlbsync instructions do not cause threads to stall. The isync instruction stalls both threads 
until all previous instructions complete, then the isync causes a flush and refetch on its own 
thread. The instructions from the other thread that are already fetched or dispatched are not 
refetched after the isync completes. 
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10.8 Suspending and Resuming Threads

By adjusting thread priorities and other instruction-dispatch controls, software can reduce the 
rate of forward progress of a thread so that it is active but nearly disabled. To disable a thread 
completely, software can clear to ‘0’ the thread’s CTRL[TE0] or CTRL[TE1]. When a thread is 
disabled, the fetch hardware will not fetch instructions into its instruction buffer, and the instruc-
tion-dispatch logic will not consider it for priority when making decisions for instruction dispatch. 
This means that the other, enabled thread (if not in low priority) will be granted all available 
instruction-fetch and instruction-dispatch bandwidth.

10.8.1 Suspending a Thread

The only way software can suspend a thread is to execute the mtctrl instruction with an operand 
that leaves the thread’s Thread Enable bit cleared to ‘0’.

A write to CTRL[TE0] or CTRL[TE1] will succeed only when the thread is executing in hypervisor 
state (MSR[PR,HV] == 0,1). If the write is attempted in supervisor or problem state, the write is 
ignored silently. Attempting to clear the Thread Enable bit for the thread that is not executing the 
mtctrl instruction will be ignored, regardless of the thread’s privilege state.

If a thread suspends itself and the other thread remains active, the thread suspension will be 
treated as a context-synchronizing event for the active thread.

10.8.2 Resuming a Thread

The actions taken to resume a suspended thread are essentially the same as the actions taken 
to start the initial thread after the POR sequence completes. In both cases, the thread resumes 
execution at the system reset interrupt vector location. The system reset interrupt handler can 
determine whether the System Reset handler is running because of a POR event or a normal 
thread-resuming event and handle the event appropriately. The handler makes the determination 
based on the values in the Save and Restore Registers.

10.8.2.1 Thread-Resuming Events

A previously suspended thread can be resumed by any of the following events:

• A thread executing in hypervisor state (MSR[PR,HV] == 0,1) can resume the other thread by 
setting to one the corresponding Thread-Enable bit (CTRL[TE0] or CTRL[TE1]) with the mtctrl 
instruction.

• The occurrence of a thermal management interrupt can resume a thread if the 
HID0[therm_wakeup] bit is set to ‘1’.

• The occurrence of a system error interrupt can resume a thread if the HID0[syserr_wakeup] 
bit is set to ‘1’.

• The occurrence of an external interrupt can resume a thread if the TSCR[WEXT] bit is set to ‘1’.

• The occurrence of a decrementer interrupt for the suspended thread can resume the thread if 
the corresponding Decrementer Wakeup Enable bit (TSCR[WDEC0] or TSCR[WDEC1])is set to 
‘1’.

A machine-check interrupt cannot occur for a suspended thread, and while a hypervisor decre-
menter interrupt can occur for a thread, it does not resume a suspended thread.



Programming Handbook

Cell Broadband Engine  

PPE Multithreading
Page 326 of 884

Version 1.11
May 12, 2008

When a system-caused exception occurs, the thread resumes even if the interrupt that corre-
sponds to the exception is masked.

After POR, the following interrupt mask bits are set to mask interrupts:

• HID0[therm_wakeup,syserr_wakeup] = ‘00’

• TSCR[WDEC0,WDEC1] = ‘00’

• TSCR[WEXT] = ‘0’

With these mask bits cleared to ‘0’, a suspended thread will not resume on any of the corre-
sponding exceptions.

10.8.2.2 Hardware Resume Process

A resumed thread starts execution at the system reset interrupt vector location. Hardware sets 
the TSRL[TP] field to ‘11’, which sets the thread priority to high. The thread priority is set to high 
regardless of the condition that caused the thread to resume.

When the resumed thread begins executing at the system reset interrupt vector location, the 
System Reset Reason Code field of the Machine Status Save Restore Register 1 (SRR1[42:44]) 
is set to one of the thread resume reason codes shown in Table 10-8.

If multiple reasons exist for the thread to resume, the reason code reported in SRR1[42:44] will 
respond to one of the reasons that caused the wakeup (there is no predetermined priority). 

The fields in SRR1 other than the System Reset Reason Code field contain values from the MSR as 
if the thread had never been suspended. The Machine Status Save/Restore Register 0 (SRR0) 
similarly contains the address of the instruction that would have been executed next if the thread 
had not been suspended.

The system reset interrupt handler can use the information in SRR0 and SRR1 to resume the 
suspended thread properly. Because the same reason code is used for both System Reset 
resume and a software-initiated mtctrl resume, the system reset interrupt handler must examine 
the value of HID0 or HID1 to determine the cause of the thread resume action.

Because a system reset event can happen only at POR, if software finds HID0 or HID1 set to its 
default POR values, software knows the thread resume was the result of a system reset event. If 
software finds that the values in the Hardware-Implementation Dependent (HID) registers differ 
from their POR default values, software knows the thread resume was the result of a mtctrl 
instruction.

Table 10-8. Thread Resume Reason Code  

SRR1[42:44] Resume Reason Condition

101 System Reset Write to CTRL[TE] field

010 Thermal Management HID0[therm_wakeup]

110 System Error HID0[syserr_wakeup]

100 External TSCR[WEXT]

011 Decrementer TSCR[WDEC]
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10.8.2.3 Accepting Interrupts after Resuming a Thread

When a thread is resumed by a thermal management, system error, external, or decrementer 
interrupt, the resuming interrupt is then masked because MSR[EE,HV] will be set to ‘01’ when the 
resumed thread is started at the system reset interrupt vector location. If software later enables 
the interrupt by changing the MSR settings and the exception is still pending, the interrupt that 
caused the thread to be resumed will be taken. In other words, a resuming interrupt will cause a 
suspended thread to resume but will not cause the resumed thread to take the resuming interrupt 
until the resumed thread enabled interrupts.

When two threads are resumed in the same clock cycle (a rare event), it is indeterminate which 
thread is resumed first, but both threads will resume properly. When one thread is active and the 
other is inactive and the inactive thread is resumed, the active thread will view the thread 
resumption as a context-synchronizing event.

Between the time the thread is resumed and the time the thread enables interrupts, additional 
exceptions can occur. The interrupt that will be taken after the thread enables interrupts is not 
necessarily the interrupt that caused the thread to resume; the interrupt taken by the thread will 
be determined according to the interrupts pending and the interrupt priorities at the time the inter-
rupt is taken. 

10.8.3 Exception and Interrupt Interactions With a Suspended Thread

The following thread-dependent interrupts are handled by the thread that causes the exception. 
These interrupts are enabled for both threads as shown below:

• External enabled by TSCR[WEXT]

• Precise Machine Check enabled by HID0[en_prec_mchk]

• System Reset enabled by HID0[en_syserr]

• Thermal Management enabled by HID0[therm_wakeup]

• System Error enabled by HID0[syserr_wakeup]

10.8.3.1 Decrementer Interrupt

Each thread has a separate Decrementer Register that creates a separate decrementer interrupt 
for the corresponding thread. TSCR[WDEC0] or TSCR[WDEC1] enables waking up a suspended 
thread due to a decrementer interrupt.

10.8.3.2 Hypervisor Decrementer Interrupt

The single Hypervisor Decrementer Register is shared by both threads. A hypervisor decre-
menter interrupt does not resume a suspended thread.
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10.8.3.3 Imprecise Machine Check Interrupt

Imprecise machine check interrupts do not have thread information associated with them. All 
enabled threads take an imprecise machine check interrupt regardless of which thread caused 
the exception. The MSR[ME] bit must be set to ‘1’ for both threads (even suspended threads) to 
avoid causing a checkstop. An imprecise machine check interrupt does not resume a suspended 
thread. If the thread is later resumed, it will not take an imprecise machine check interrupt.

10.8.3.4 Maintenance Interrupt

An instruction-caused maintenance interrupt is thread-dependent and is handled by the thread 
that caused the exception. A system-caused maintenance interrupt is shared by both threads 
and occurs when one or both of the two trace input signals, which are shared by both threads, is 
asserted. The system-caused maintenance interrupt is handled by the thread that enables the 
interrupt.

10.8.3.5 Floating-Point Enabled Exceptions

When either floating-point exception mode bit (MSR[FE0] and MSR[FE1]) is set for either thread (it 
does not matter which thread is executing), the PowerPC processor unit (PPU) switches into a 
single-instruction-issue mode. In this mode, only one instruction is active in execute at a time, 
and all other instruction from either thread are held at issue until the previous instruction 
completes.

10.8.3.6 Other Interrupts

All other interrupt are thread-dependent and are handled by the thread that caused the excep-
tion. For details, see Section 9 PPE Interrupts on page 239. 

10.8.4 Thread Targets and Behavior for Interrupts

When an exception is signalled or an interrupt is taken, the PPE interrupt logic selects a thread to 
handle the event. The chosen thread depends on the exception type and the interrupt type if the 
exception results in an interrupt. Table 9-38 on page 291 shows the target threads for each 
exception and interrupt type. 

The thread that the interrupt logic selects as the target can be in the suspended state or enabled 
state. If the thread is enabled, it will take the interrupt normally. If the thread is suspended, it will 
either be resumed or allowed to remain suspended.

Table 10-9 on page 329 shows the entry condition, activated thread, mask condition, and 
suspended-thread behavior for each interrupt type. For example, a machine-check interrupt will 
target both threads, but it will be recognized only by the threads that are enabled; suspended 
threads are not resumed by machine-check interrupts. In this table, a “—” symbol means “not 
applicable”. 
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Table 10-9. Interrupt Entry, Masking, and Multithreading Behavior (Sheet 1 of 2) 

Interrupt Type Entry Condition Activated Thread Mask Condition Suspended Thread Behavior

System Reset

POR thread 0 — If SRR1[42:44] = ‘101’, thread 
resumed due to system reset.

wakeup specific thread —

This exception is where 
suspended thread resumes by 
means of a write to CTRL[TE01] 
and SRR1[42:44] = ‘101’

Machine Check MC interrupt all active threads MSR[ME] Remain suspended.

Data Storage 
Interrupt memory access specific thread — —

Data Segment 
Interrupt memory access specific thread — —

Instruction Storage 
Interrupt memory access specific thread — —

Instruction Segment 
Interrupt memory access specific thread — —

External Direct external interrupt if 
HID0[extr_hsrr] = ‘0’ programmable MSR[EE]

If TSCR[WEXT] = ‘1’, wake up at 
System Reset and set 
SRR1[42:44] = ‘100’.

External Direct 
(Mediated mode)

external interrupt if 
HID0[extr_hsrr] = ‘1’ programmable

MSR[EE] | 
(LPCR[LPES] bit 0 = 
‘0’ & MSR[HV] = ‘0’) 
| MSR[SV]

If TSCR[WEXT] = ‘1’, wake up at 
System Reset and set 
SRR1[42:44] = ‘100’.

External Mediated HID0[extr_hsrr] = ‘1’ 
& LPCR[MER] = ‘1’ programmable

MSR[EE] & 
(!MSR[HV] | 
MSR[PR])

If TSCR[WEXT] = ‘1’, wake up at 
System Reset and set 
SRR1[42:44] = ‘100’.

Alignment misaligned access specific thread — —

Program Invalid operation specific thread — —

Floating-Point 
Unavailable

any floating 
operation if MSR[FP] 
= ‘0’

specific thread — —

Decrementer decrementer timeout specific thread MSR[EE]
If TSCR[WDEC] = ‘1’, wake up 
at System Reset and set 
SRR1[42:44] = ‘011’.

Hypervisor 
Decrementer

hypervisor 
decrementer timeout all active threads

MSR[EE] | 
!MSR[HV] & 
LPCR[HDICE]

remain suspended

System Call sc instruction specific thread — —

Trace
any operation if 
MSR[SE] = ‘1’ or 
MSR[BE] = ‘1’

specific thread — —

VXU Unavailable VXU operation if 
MSR[VXU] = ‘0’ specific thread — —

System Error
Machine Check 
outside PPE if HID0 
[en_mchk] = ‘1’

all active threads MSR[EE] & 
!MSR[HV]

If HID0[syserr_wakeup] = ‘1’, 
wake up at System Reset and 
set SRR1[42:44] = ‘110’.
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Maintenance instruction caused 
(HSRR1[33] = ‘0’) specific thread — —

Maintenance system (trace sig) 
(HSRR1[33] = ‘1’) all threads MSR[EE] & 

!MSR[HV] —

Thermal 
Management thermal condition all active threads HID0[therm_intr_en]

If HID0[therm_wakeup] = ‘1’, 
wake up at System Reset and 
set SRR1[42:44] = ‘010’.

Table 10-9. Interrupt Entry, Masking, and Multithreading Behavior (Sheet 2 of 2) 

Interrupt Type Entry Condition Activated Thread Mask Condition Suspended Thread Behavior
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11. Logical Partitions and a Hypervisor

11.1 Introduction

Logical partitioning refers to the capability to logically subdivide a single system into multiple 
partitions, each capable of running its own operating system and user environment such that a 
program executing in one partition cannot interfere with any program executing in a different 
partition. Figure 11-1 illustrates the concept of logical partitioning and the hypervisor partition-
management software that controls it.

Logical partitioning can be useful for several purposes, including:

• In software-production systems, to temporarily dedicate system resources to a testing effort 
for new software or applications before bringing them fully online in mission-critical environ-
ments. 

• In business environments to reduce cost by means of system consolidation; the consolida-
tion involves moving workloads from many systems to a single system that is logically parti-
tioned to mimic the environment of the many systems. 

• In consumer-electronic and embedded systems, to support environments such as a real-time 
operating system executing in one partition, a conventional operating system executing in 
another partition, and a security subsystem executing in a third partition. 

• In aggregated computer centers, Internet service providers, and application-service provid-
ers, where fractional provisioning of computing and other system resources can support 
many different and perhaps competing workloads. 

• In mission-critical applications, to support a complete hot-plug architecture, including hot-
plug replacement of DRAM modules and I/O devices without the operating system being 
involved or even knowing what happened. 

In these environments, separation of applications and data must be maintained while the 
required performance and system resources are provided for each partition. Reduced cost 
through logical partitioning can be realized, because hardware resources can be supplied to 

Figure 11-1. Overview of Logical Partitions 
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each partition, and dynamic provisioning can be used to efficiently move resources from lightly-
used partitions to those that are experiencing high or peak demand. This kind of resource alloca-
tion reduces a system’s requirement to over-provision to meet all worst-case loads. 

11.1.1 The Hypervisor and the Operating Systems

In a logically-partitioned system, partition-management software—called a hypervisor—creates 
the partitions by assigning portions of the total system resources (processor-element execution 
time, real memory, and I/O devices) to each partition. The hypervisor executes at a more-privi-
leged level than an operating system in a partition. 

Separate instances of an operating system, or different operating systems, can execute in each 
partition. The hypervisor, with hardware assistance, ensures that the operating system and appli-
cations in one partition have no knowledge of, or access to, the resources of another partition, 
unless specifically granted by the hypervisor. Exceptions to this rule can be made in which the 
hypervisor brokers a communication between partitions, or one partition publishes services that 
can be used by other partitions. 

11.1.2 Partitioning Resources

System resources are typically statically assigned by a primary partition to other partitions or by 
an administrator’s use of a hardware management console (typically a serial port). In these envi-
ronments, the policy of how many partitions to create, and with what resources, is separated from 
the mechanism for partitioning. For consumer-electronic or embedded-system applications, for 
example, a primary partition can first be created by the hypervisor. This partition can then use 
hypervisor interfaces to create and allocate resources for other partitions. Dynamic-provisioning 
techniques can move resources from one partition to another, based on demand and the need to 
meet user-level requirements, such as interactive or real-time response guarantees. 

The hypervisor is typically implemented in a small executive that is packaged as firmware. It 
provides a newly-created partition with access to resources and it harvests those resources 
when that partition is deleted. 

If the hypervisor is unable to dedicate an entire physical resource to a partition, it can virtualize 
the physical resource into a set of logical resources that are time-shared. For example, if a frac-
tion of the PowerPC Processor Element (PPE) is provided to a partition, the hypervisor can mani-
fest the physical PPE as multiple virtual PPEs that are assigned to the logical partitions in time-
multiplexed fashion—for example, by using hypervisor decrementer (HDEC) interrupts to drive 
the transitions. If an I/O device cannot be logically partitioned, such that each operating system 
has direct access to its assigned I/O, the hypervisor can virtualize the I/O device so that the 
device can be shared, or so that an I/O-hosting partition can own the physical device and host 
other logical partitions’ I/O requirements.

The Cell Broadband Engine Architecture (CBEA) processors1 provide hardware facilities for 
logical partitioning in the PPE, the SPEs, the I/O controller, and the element interconnect bus 
(EIB). The standard PowerPC-based hypervisor logical-partitioning facilities are supported, as 
well as extended facilities for the SPEs, I/O resources, and EIB. The CBEA processors also 
support a resource allocation management (RAM) facility that can be used in conjunction with the 

1. The Cell Broadband Engine (Cell/B.E.) and PowerXCell 8i processors are collectively called CBEA processors.
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logical-partitioning facilities to control the amount of bandwidth allocated to units in partitions 
accessing shared resources. The RAM facility is described in Section 8 Resource Allocation 
Management on page 203. 
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11.1.3 An Example Flowchart

Figure 11-2 on page 335 shows how a hypervisor might boot and manage logical partitions. The 
events shown here cover only the most basic workings of a hypervisor, the primary partition (also 
called an alpha or I/O-hosting partition), and a secondary partition and its applications. Other 
methods of implementing a hypervisor are possible. 

The system reset interrupt can be used for power-on reset (POR). This interrupt sets both the 
Hypervisor bit, MSR[HV], and the 64-bit mode bit, MSR[SF], to ‘1’, so that the CBEA processor 
comes out of POR in hypervisor mode. After loading system firmware, the CBEA processor loads 
the hypervisor firmware. This in turn loads the hardware-managed page table for the first partition 
(the hypervisor maintains such a page table for each partition), the registers used for hypervisor 
control of the partition, the HDEC decrementer, and the HSSR0 and HSSR1 registers that contain 
the program counter and Machine State Register (MSR) values for the first partition. The hyper-
visor then executes a return from interrupt (hrfid) to begin execution of the first partition.

The primary partition is the first partition created by the hypervisor. This partition has a small 
operating system (OS) and its mission is to discover the resources in the system (memory, I/O, 
and so forth), and manage the creation of secondary partitions for the hypervisor. After the 
primary partition has configured the system, it passes control to the OS of a secondary partition. 
This partition’s OS runs its applications until it either needs help from the hypervisor (such as an 
address translation) or until its time-share slice is finished (signaled by the HDEC count of ‘0’). It 
obtains help from the hypervisor by executing a hypervisor call (hcall), which is the sc instruction 
with the LEV bit = ‘1’. When either of these events occurs, the hypervisor loads the necessary 
information (such as address-translation information) and returns control to the partition, again by 
executing a return from interrupt. 



Programming Handbook

 Cell Broadband Engine

Version 1.11
May 12, 2008
 

Logical Partitions and a Hypervisor
Page 335 of 884

Figure 11-2. Flowchart of Hypervisor Management of Logical Partitions 
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11.2 PPE Logical-Partitioning Facilities

The PPE’s standard PowerPC-based logical-partitioning architecture is defined in the PowerPC 
Operating Environment Architecture, Book III. The PPE can be assigned to one partition at a 
given time. If active, both PPE threads execute in the same logical partition. 

11.2.1 Enabling Hypervisor State

The PowerPC Architecture supports three privilege states, which are controlled by MSR[HV] and 
MSR[PR] bits. Memory-mapped I/O (MMIO) registers are classified according to these states. The 
states are designed for the following uses:

• Hypervisor State—MSR[HV] = ‘1’ and MSR[PR] = ‘0’. The most-trusted state, used by the 
hypervisor. Access to all system facilities is provided at this level of privilege. In the PowerPC 
Architecture, this state is occasionally referred to as the “privileged and hypervisor state”; for 
convenience, this document always refers to the state as “hypervisor state”. 

• Privileged State—MSR[HV] = ‘0’ and MSR[PR] = ‘0’. Used by the operating system within a log-
ical partition. In the PowerPC Architecture, this state is occasionally referred to as the “privi-
leged and nonhypervisor state” or “supervisor state”; for convenience, this document always 
refers to the state as “privileged state”. 

• Problem State—MSR[HV] = ‘0’ and MSR[PR] = ‘1’, or MSR[HV] = ‘1’ and MSR[PR] = ‘1’. The least-
trusted state, used by application software in a logical partition. 

The MSR[PR] bit can be set using the mtmsr instruction. Privileged or hypervisor state is entered 
by executing the sc (system call) instruction or as a result of some interrupts. The sc instruction 
has a LEV bit which, when set to ‘1’, causes MSR[HV] to be set to ‘1’. Exiting the privileged or 
hypervisor states is accomplished by executing the rfid or hrfid instruction. For details, see 
Table 9-40 on page 294 and the PowerPC User Instruction Set Architecture, Book I and 
PowerPC Operating Environment Architecture, Book III. 

If no hypervisor exists on the CBEA processor, the entire system is normally run at MSR[HV] = ‘1’, 
and only two privilege states exist, PR = ‘0’ for firmware and operating-system privileged state, 
and PR = ‘1’ for application-software problem state. 

If address-translation is enabled, privileged software can control, by means of page-table entries, 
whether application software is given access to particular problem-state MMIO registers; access 
to the MMIO registers in this mode is not directly enforced by hardware. 

11.2.2 Hypervisor-State Registers

The following registers are used by the hypervisor to configure operations in logical partitions. 
Most of these registers can only be accessed in hypervisor state:

• Logical-Partition Identification Register (LPIDR)—Specifies the logical partition to which the 
PPE (both threads) is currently assigned. Up to 32 partitions can be used. 

• Processor Identification Register (PIR)—Specifies the system-wide processor ID for each 
PPE thread. 

• Hypervisor Status Save and Restore Registers (HSRR0, HSRR1)—Specifies the state of the 
PPE when an interrupt occurs or the state from which the PPE should resume after a hyper-
visor return from interrupt (hrfid). 
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• Storage Description Register 1 (SDR1)—Specifies the real address and size of the hardware-
accessed page table for the current partition. The hypervisor provides each partition with its 
own hardware page table. 

• Real-Mode Offset Register (RMOR)—Specifies the offset from real address x‘0’ at which real-
mode memory begins for nonhypervisor real-mode accesses. See Figure 11-3 on page 340 
for how an OS and the hypervisor view this memory space. 

• Logical-Partitioning Control Register (LPCR)—Specifies the largest effective address that can 
be used by a logical partition in real mode, how storage is accessed and cached in real 
mode, and certain effects of interrupts. See Figure 11-3 on page 340 for how an OS and the 
hypervisor view the real-mode address limit. 

• Hypervisor Real-Mode Offset Register (HRMOR)—Specifies the offset from real address x‘0’ at 
which real-mode memory begins for hypervisor real-mode accesses.

• Hypervisor Decrementer (HDEC)—Provides a means for the hypervisor to manage timing 
functions independently of the Decrementer (DEC) registers, which are managed by user or 
supervisor software running in a partition. Like the DECs, the HDEC provides a means of signal-
ing an interrupt after a specified amount of time has elapsed. This is useful, for example, 
when time-sharing resources. 

• Machine-Check Enable Bit (MSR[ME])—Enables machine check interrupts. 

• Time Base (TB) Register—Specifies the value of the time base. 

• Data-Address Breakpoint Register and Data-Address Breakpoint Extension Register (DABR, 
DABRX)—Specifies the effective address and other conditions of a load or store access at 
which a data storage exception should occur.

• Hypervisor Software-Use Special-Purpose Registers (HSPRG0, HSPRG1)—Available for any use 
by the hypervisor. 

• Hardware-Implementation-Dependent (HID) Registers—Specify a variety of PPE-state and 
debug functions. 

See the Cell Broadband Engine Registers specification for details about these registers. See the 
PowerPC Operating Environment Architecture, Book III and Section 20 Shared-Storage 
Synchronization on page 561 for the required synchronization instructions and sequences that 
must be used by the hypervisor with these facilities. Failure to properly synchronize these 
changes can lead to inconsistent state and failure of the application or hypervisor. 

11.2.3 Controlling Real Memory

When supporting logical partitioning, the hypervisor must itself use some real memory and also 
provide some real memory to each logical partition. The hypervisor must control access to real 
memory so that no logical partition can access another partition’s real memory or the hyper-
visor’s real memory. 

In the Instruction Relocate mode (MSR[IR]) and Data Relocate mode (MSR[DR])—described in the 
Cell Broadband Engine Registers specification and the PowerPC Operating Environment Archi-
tecture, Book III—this access to real memory is controlled by the hypervisor, which is responsible 
for the hardware-accessed page table and translation lookaside buffer (TLB) for each partition. 
This hardware-accessed page table is described by the contents of the Storage Description 
Register 1 (SDR1). The SDR1, the TLB facilities, and the real memory reserved by the hypervisor 
for the hardware page table must be accessible only to the hypervisor. 
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The operating system in a logical partition normally manages the virtual-address (VA) space for 
the logical partition and the mapping between effective-address (EA) space and VA space 
through direct manipulation of its segment lookaside buffer (SLB). However, the relationship 
between the VA space and the real-address (RA) space is managed by the operating system 
indirectly through hypervisor calls. 

The hypervisor typically uses its own real-memory allocation table to manage which blocks of 
real memory have been allocated to a logical partition. As shown in Figure 11-3 on page 340, the 
hypervisor allocates to a partition the real memory that the partition software uses as address 0, 
and this memory appears (to the partition software) contiguous up to the total amount of memory 
allocated to the partition. 

When managing its own real memory, the operating system in a logical partition typically makes 
a hypervisor call to request a page-table update for its VA-to-RA mapping. The hypervisor then 
checks the requested real-page mapping, and if valid for that logical partition, it converts the RA 
supplied by the operating system to the true RA and manages the required changes to the hard-
ware page table and TLBs. 

The PPE and the Synergistic Processor Element (SPE) MMUs support three simultaneous pages 
sizes—4 KB, and two sizes selectable from 64 KB, 1 MB, or 16 MB. Large page sizes are very 
useful in reducing thrashing of TLBs when applications access large amounts of main storage. 
The PPE provides 1,024 TLB entries and each SPE provides 256 TLB entries. 

11.2.3.1 Memory-Management Facilities

The hypervisor typically executes in real mode (MSR[IR] = ‘0’ for instructions, MSR[DR] = ‘0’ for 
data). In this mode, the real-mode (nonrelocate) translation facility is employed. However, some 
hypervisor implementations might choose to have components that operate with instruction relo-
cation (MSR[IR] = ‘1’) or data relocation (MSR[DR] = ‘1’) or both enabled. When relocation is 
enabled, the hypervisor can choose to have VA-to-RA translations supported by the hardware 
page table by setting LPCR[TL] = ‘0’, or it can specify the software-managed TLB mode by setting 
LPCR[TL] = ‘1’. This can be varied on a logical-partition basis. 

Software-Managed TLB Mode

In software-managed TLB mode, software directly manages the TLBs and the hardware memory 
management unit (MMU) never directly accesses a page table in main storage to reload a TLB 
entry. An instruction storage or data storage interrupt is generated immediately following any TLB 
miss by the VA-to-RA translation hardware (see Section 11.2.4 Controlling Interrupts and Envi-
ronment on page 343 and Section 11.3.3 Controlling Interrupts on page 349).

Hypervisor software uses several registers to directly manage the TLBs, including the PPE TLB 
Index Hint Register (PPE_TLB_Index_Hint), PPE TLB Index Register (PPE_TLB_Index), PPE TLB 
Virtual-Page Number Register (PPE_TLB_VPN), and PPE TLB Real Page Number Register 
(PPE_TLB_RPN). In addition to using these registers to reload a TLB entry after a miss, software is 
also able to preload translations directly into the TLB with these registers for improved real-time 
response. 
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The tlbie(l) instruction must be used to invalidate the contents of a TLB entry in both hardware-
managed and software-managed TLB modes. The hypervisor also uses Hardware Implementa-
tion-Dependent Register 6 (HID6) to select the sizes of up to two concurrent large page sizes, if 
large-page translations are to be supported by the hypervisor or provided to one or more parti-
tions. 

Access by Operating Systems to Physical Memory in Real Mode

Many existing operating systems require some access to physical memory in real mode, typically 
an area in low memory for interrupt handling and typically starting at real address x‘0’. Unre-
stricted access to physical memory by a logical partition operating in real mode cannot be 
allowed. This is handled through the use of the real addressing mode (real mode) facility, which 
includes (among other resources) the Real Mode Offset Register (RMOR) and the Real Mode Limit 
Selector field in the Logical-Partitioning Control Register (LPCR[RMLS]) when MSR[HV] = ‘0’ and 
LPCR[LPES] bit 1 = ‘1’. Using these facilities, the hypervisor can provide a logical partition with 
access to a limited amount of physical memory while accessing storage in real mode, as shown 
in Figure 11-3 on page 340. 



Programming Handbook

Cell Broadband Engine  

Logical Partitions and a Hypervisor
Page 340 of 884

Version 1.11
May 12, 2008

Access by Hypervisor to Physical Memory in Real Mode

A similar facility exists, using the Hypervisor Real Mode Offset Register (HRMOR), for the hyper-
visor itself to provide a real-mode offset when accessing storage in real mode with MSR[HV] = ‘1’. 
This can be useful in certain system configurations—such as multiprocessor nonuniform memory 
access (NUMA) environments—in which a copy of hypervisor code or data should be replicated 
for performance or reliability considerations. The HRMOR value is only effective when bit 0 (the 
most-significant bit) of the EA is ‘0’. If bit 0 of the effective address is a ‘1’, bits 2 through 63 of the 
EA are used as the RA for the access.

Figure 11-3. Operating-System and Hypervisor Views of Physical Memory 
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Real-Mode Limit Select

The Real Mode Limit Selector field in the Logical-Partitioning Control Register, LPCR[RMLS], 
controls the size of the partition’s real-mode offset. The Logical Partition Environment Selector 
field, LPCR[LPES] (see Section 11.2.4.1 on page 343), controls how external interrupts and a 
subset of internal interrupts are handled. 

Table 11-1 summarizes the supported Real Mode Limit Select (RMLS) values and the corre-
sponding limits chosen. The CBEA processors support an additional high-order bit of the RMLS 
field not listed in PowerPC Operating Environment Architecture, Book III, for a total of four bits 
rather than three. When in real offset mode and the requested effective address is beyond the 
chosen RMLS limit, an instruction or data storage interrupt occurs, and SRR1[36] is set to ‘1’.

Real-Mode Caching

The Real Mode Caching-Inhibited bit in the LPCR register (LPCR[RMI]) controls whether a real-
mode data access is treated as cacheable or caching-inhibited. When the real mode storage 
control facility (HID6[RMSC]) is used, the LPCR[RMI] bit is only used for real-mode accesses with 
addresses above the address specified in the HID6[RMSC] field. This control is used to avoid a 
cache paradox (the inadvertent caching of noncacheable data) when accessing data storage in 
real mode. 

Table 11-1. Summary of Real Mode Limit Select (RMLS) Values  

LPCR[RMLS] Field Effective Address Limit

0000 256 GB

0001 16 GB

0010 1 GB

0011 64 MB

0100 256 MB

0101 16 MB

0110 8 MB

0111 128 MB

1000 Reserved1

1001 4 MB

1010 2 MB

1011 1 MB

11xx Reserved1

1. All reserved values are treated as 1 MB. 
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Logical Partition Identification Register

The PPE has a Logical Partition Identification Register (LPIDR) that the hypervisor writes to 
assign the PPE to a partition. In a multi-CBEA-processor system, or when the PPE is time-
shared or virtualized so that it can serially support multiple partitions (fractional assignment of the 
PPE), the hypervisor updates the LPIDR register with the identifier of the logical partition to which 
the PPE has been assigned. This value is used by the hardware to avoid unnecessary removal of 
TLB entries. 

The LPIDR register is used by the hardware under three circumstances:

• To tag TLBs with the current logical partition ID (LPID) value when the TLB entry for a page 
translation is loaded by the hardware. 

• To invalidate only TLB entries that match the criteria of the tlbie(l) instruction when the cur-
rent LPIDR contents match the LPID tag value of the matching entries in the TLB. This pre-
vents a previous partition’s TLB entries from being discarded from the TLB unnecessarily by 
the partition currently using the PPE. This also prevents a broadcast tlbie instruction issued 
on a processor element from unnecessarily invalidating TLB entries on another processor 
element that is operating in a different partition. 

• To prevent the hardware from using a TLB entry for translation when the current contents of 
the LPIDR does not match the LPID tag of the TLB entry. This prevents a partition from using 
a different partition’s address translation. It also removes the requirement for the hypervisor 
to invalidate all TLB entries when switching the PPE between partitions. However, the LPID 
tag in the TLB entry does not affect the hardware’s TLB replacement algorithm. 

11.2.3.2 Real-Time Memory Management

In addition to using standard cache-management and TLB-management instructions, the hyper-
visor can also control the replacement policy for cache and TLB sets on behalf of itself or at the 
request of the operating system in a logical partition. Hardware uses a least-recently used (LRU) 
algorithm to determine which cache line or TLB entry to replace. In many real-time applications, 
such replacement can result in nondeterministic behavior or poor performance, due to applica-
tion-specific access patterns. One solution is to use the software-managed TLB mode, described 
in Section 11.2.3.1 Memory-Management Facilities on page 338. Another is the software locking 
of TLB entries, as described in Section 4.2.7.7 TLB Replacement Management Table on 
page 99. 

Data-Address and Instruction-Address Range Registers

The hypervisor has access to the PPE’s Address Range Registers, which support the pseudo-
LRU replacement algorithm for L2 and TLB replacement. An address range is a naturally-aligned 
range that is a power-of-2 size between 4 KB and 4 GB, inclusive. 

Each hardware thread has two sets of Data-Address Range Start Registers (DRSR0 and DRSR1), 
Data-Address Range Mask Registers (DRMR0 and DRMR1), and associated Class ID registers. 
Each hardware thread also has two sets of Instruction Address Range Start Registers (IRSR0 and 
IRSR1), Instruction Address Range Mask Registers (IRMR0 and IRMR1), and associated Class ID 
Registers. 
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These registers define four windows of EA space (two for data accesses and two for instruction 
fetches) in which the accesses can be associated with a replacement-class identifier. This identi-
fier is then used to index into one of two replacement management tables (RMTs)—an L2 
replacement management table or a TLB replacement management table—to control which sets 
within the L2 cache or TLB can be used by the access. This provides software with the ability to 
define an EA region in which data is continuously reused and should be retained or locked in the 
L2 cache and TLBs. Software can also define an EA region in which data is streamed with little to 
no reuse, such that only a small area of the L2 cache and TLB is used and the rest of the L2 
cache and TLB entries are not replaced by reloads due to this streaming data. 

The Address Range Start Registers also provide a real-mode or relocation-mode bit to specify 
whether the address match is a real address or a translated address. Storage accesses that do 
not match any range are assigned to replacement class 0. Eight replacement classes are 
supported (class 0 through 7). 

For further details about the Address Range Registers, see Section 6.3.1.3 Address Range 
Registers on page 155. 

Replacement Management Tables

The hypervisor assigns L2-cache sets or TLB sets or both to each class ID using the replace-
ment management tables, described in Section 6.3 Replacement Management Tables on 
page 154. The PPE MMU supports an 8-entry RMT for the L2 cache and an 8-entry RMT for the 
TLB. A 3-bit class ID is used to index into the table to select one of the RMT entries. Each entry 
of the RMT contains a replacement-enable bit for each way of the cache or TLB. For the L2 
cache, the RMT is set up and controlled through the L2_RMT_Data register and the 
L2_ModeSetup1[RMT_mode] bit. For the TLB, the RMT is setup and controlled through the 
PPE_TLB_RMT register. The PPE_TLB_RMT register is only effective when the hardware-managed 
TLB mode is enabled (LPCR[TL] = ‘0’).

11.2.4 Controlling Interrupts and Environment

11.2.4.1 Logical-Partition Environment Selector

One of the bits in the Logical-Partition Environment Selector field, LPCR[LPES], controls whether 
external interrupts force MSR[HV] to ‘1’ or leave it unmodified. This control is used by the hyper-
visor to determine whether external interrupts are always delivered to the hypervisor or directly to 
the software being interrupted (the hypervisor or the operating system in the logical partition). 
Another LPCR[LPES] control bit is used to determine whether the real mode offset facility is to be 
used by the logical partition, and to direct some of the interrupts to the hypervisor instead of the 
software being interrupted—one bit for both purposes2. The system reset, machine check, 
system error, and hypervisor decrementer (HDEC) interrupts are always presented to the hyper-
visor. 

2. See PowerPC Operating Environment Architecture, Book III for details on the LPCR register.
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11.2.4.2 External Interrupts

External-Interrupt Handling

The hypervisor is typically responsible for managing external interrupts (see Table 9-1 PPE Inter-
rupts on page 242). This can be done in one of two ways:

• The logical partition supplies the first-level interrupt handler (FLIH) and the interrupt vector in 
the real-mode offset (RMO) region.

• The hypervisor supplies the FLIH and interrupt vector in the low real-address range or the 
hypervisor real-mode offset (HRMO) region. 

In the first case, although the logical partition provides the FLIH, it typically will make hypervisor 
calls to determine the interrupting condition, mask interrupts, generate interrupts, and acknowl-
edge interrupts. In either case, the hypervisor must retain direct control over the interrupt masks, 
interrupt status, interrupt routes, interrupt-generation registers, interrupt priorities, and interrupt-
pending registers of the two internal interrupt controllers (IICs), one for each PPE hardware 
thread, or of any external interrupt controllers attached to the I/O interfaces (IOIFs). All external 
interrupts ultimately must be presented to one of the IICs. The IICs, in turn, provide the interrupt 
to the PPE thread. 

Real-Time Processing of External Interrupts

In real-time applications, tasks must be completed within a specific period of time. In particular, 
interrupt processing for high-priority interrupts must be deterministic and worst-case latency of 
interrupt handling must be managed accordingly. In a logically partitioned system, the PPE might 
be currently assigned to one partition when a high-priority interrupt occurs that must be serviced 
by an operating system in another partition. Hypervisors traditionally defer external-interrupt 
processing until the PPE is dispatched on the partition required to handle the external interrupt. 
This can result in extremely long interrupt-processing delays, which are unacceptable to real time 
applications. 

Setting the LPCR[LPES] bit 0 = ‘0’ allows external interrupts to be directly handled by the hyper-
visor, instead of by the operating system in the partition currently executing. However, the 
executing partition retains control over the MSR[EE] which enables or disables external interrupts, 
with the potential to significantly delay the handling of a high-priority external interrupt. 

Mediated External Interrupts

To solve the potential problem described in the preceding paragraph, the PPE supports a medi-
ated external exception mode (see Section 9.5.7 on page 254 for details). This mode is enabled 
by a hardware implementation register (HID0[extr_hsrr] = ‘1’). In this mode, with LPCR[LPES] bit 
0 = ‘0’ to direct external interrupts to the hypervisor, the MSR[EE] state does not inhibit external 
interrupt delivery while the PPE is executing in nonhypervisor state. Instead of saving the inter-
rupting PPE state in the SRR0 and SRR1 registers, the interrupting state is saved in HSRR0 and 
HSRR1 to avoid loss of context. In addition, the hypervisor uses the HSPRG registers for scratch 
registers instead of the SPRG registers. This provides the capability for the hypervisor to respond 
to the reception of a high-priority external interrupt. 
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The hypervisor can preemptively swap the targeted PPE context to the partition that must service 
the interrupt. The hypervisor then generates a mediated external-exception request by setting 
the Mediated External-Exception Request (LPCR[MER]) bit to ‘1’. This mediated external exception 
condition honors the setting of the MSR[EE] state for the logical partition, and it will not provide a 
mediated external interrupt to the partition until MSR[EE] = ‘1’. The occurrence of a mediated 
external interrupt saves the processor-element state in the SRR0 and SRR1 registers. A mediated 
external-exception request is outstanding when LPCR[MER] = ‘1’, however the exception will never 
interrupt the processor element while in hypervisor mode (MER[HV] = ‘1’ and MER[PR] = ‘0’). 

The mediated external interrupt facility is also available when enabled by HID0[extr_hsrr] = ‘1’ 
and LPCR[LPES] bit 0 = ‘1’. In this mode, direct external exceptions are delivered as external inter-
rupts directly to the currently executing environment (hypervisor or the logical-partition software). 
However the interrupted processor-element state is saved in SRR0 and SRR1, and the interrupt 
handler uses the SPRG registers as scratch registers. The setting of MSR[EE] enables or disables 
the external interrupt delivery in both hypervisor and the logical partition. The hypervisor can 
generate a mediated external exception and associated external interrupt by using the LPCR[MER] 
bit. This is particularly useful, for example, when the hypervisor wants to request the addition or 
removal of a resource for dynamic provisioning. 

The LPCR[LPES] setting applies to both PPE threads, whereas the MSR[EE] and the LPCR[MER] are 
per thread. 

For further details about interrupt handling, see Section 9 PPE Interrupts on page 239. 

11.2.4.3 Hypervisor Decrementer Interrupts

To provide periodic maintenance tasks or timeshare resources among partitions, the hypervisor 
can use the hypervisor decrementer (HDEC). This decrementer will interrupt the processor 
element regardless of the MSR[EE] setting when MSR[HV] = ‘0’. An HDEC interrupt will not be 
delivered when MSR[EE]= ‘0’ in hypervisor state. In addition, the LPCR register provides a Hyper-
visor Decrementer Interrupt Conditionally Enable bit (LPCR[HDICE]) to disable the hypervisor 
decrementer in all states. 

11.2.4.4 Machine Check Interrupts

Only the hypervisor has the capability to enable or disable machine check interrupts by altering 
the MSR[ME] bit in the Machine State Register. This bit is used to control whether a subsequent 
machine check event causes a machine check interrupt or a system wide checkstop. 

11.2.4.5 Time Base

The Time Base Register (TB) is readable in all privilege states. However, because the TB is used 
to manage system-wide time, it is only writable in the hypervisor state.
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11.2.4.6 Processor Identification

The Processor Identification Register (PIR) is used by software to distinguish one PPE from 
another in a multi-CBEA-processor system. It is typically used to identify communicators during 
communication between processor-elements and I/O devices. The register can be written only by 
the power-on reset configuration bits, after which it is read-only. (For details about configuration 
bits, see the Cell Broadband Engine CMOS SOI 65 nm Hardware Initialization Guide.)

11.2.4.7 Data Address Breakpoints

The Data Address Breakpoint Register (DABR) and Data Address Breakpoint Register Extended 
(DABRX) are used for system-level debugging and can only be accessed by the hypervisor. This 
prevents unauthorized breakpoints being set in hypervisor data. 

11.3 SPE Logical-Partitioning Facilities

The hypervisor can allocate SPEs among logical partitions. The hypervisor can also dynamically 
reassign an SPE from one partition to another. The SPEs can operate in a partition which does 
not—due to PPE-sharing—currently have a physical PPE assigned to it, until a PPE interrupt is 
generated by an SPE. 

SPE software can only fetch instructions and load and store data directly from its local storage 
(LS) using an LS address (LSA). SPE software has access to a limited set of communications 
and DMA facilities directly through the use of synergistic processor unit (SPU) channel instruc-
tions. Software in the SPU itself has no direct access to main storage. It must use the memory 
flow controller (MFC) DMA facilities to move data between the LS and the effective-address (EA) 
space. Each MFC contains an MMU, very similar to the MMU in the PPE, for EA-to-RA transla-
tion. 

11.3.1 Access Privilege

Accesses to an SPE from all other system units (PPE, other SPEs, and I/O devices) are provided 
through MMIO registers. Therefore, with respect to logical partitions executing on the PPE, an 
SPE can be allocated to the logical partition by the hypervisor granting access to the SPE MMIO 
registers. These registers are divided into three groups, based on privilege, as specified in the 
Cell Broadband Engine Architecture document:

• Privilege 1 Registers (most privileged)—Used by the hypervisor to manage the SPE on 
behalf of a logical partition. 

• Privilege 2 Registers—Used by the operating system in a logical partition to manage the SPE 
within the partition. 

• Privilege 3 Registers (least privileged)—Used by problem-state (application) software, if 
direct access to the SPE from user space is supported by the operating system. 

A hypervisor should not grant logical-partition access to the privileged 1 group of SPE MMIO 
registers. These registers provide control over SPE memory management, interrupt manage-
ment, versioning, SPE cache management, and SPE status and control. 
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11.3.2 Memory-Management Facilities

As with storage access by the PPE, the hypervisor must control storage access by an SPE allo-
cated to a logical partition. The following hypervisor (privilege 1) facilities are replicated for each 
SPE to provide this control:

• MFC Logical Partition ID Register (MFC_LPID)—Identifies the partition to which an SPE is 
assigned.

• MFC State Register 1 (MFC_SR1)—Controls MFC access to storage. 

• MFC TLB Management Registers (MFC_SDR, MFC_TLB_Index_Hint, MFC_TLB_Index, 
MFC_TLB_VPN, MFC_TLB_RPN, and MFC_TLB_Invalidate_Entry)—Specify page-table properties 
and state. 

• MFC TLB Replacement Management Table Data Register (MFC_TLB_RMT_Data)—Enables up 
to four replacement management tables (RMTs). 

The contents of the MFC_SR1 register controls the following functions:

• Software-managed or hardware-managed MFC TLB reload on translation miss

• SPU master run control

• Relocation (translation) of MFC EAs to RAs 

• Problem-state or privileged-state access by MFC

• Ignore or honor PPE-issued tlbie instructions in the same logical partition

• Aliasing of LS space into the main-storage EA space

As in logical partitioning for the PPE, the hypervisor must control an MFC DMA controller’s 
access to physical storage through the use of the hardware page table or TLBs, as described in 
Section 11.2.3 on page 337. Unlike the PPE, the MFCs do not support a real mode offset facility, 
because there is no operating system executing on an SPE and there is no requirement to 
access a low-memory area in real mode. 

The hypervisor should not disable MFC Address Relocation for an SPE assigned to a logical 
partition, because this provides uncontrolled access to all of the EA space. Relocation should 
only be disabled on SPEs that are allocated for hypervisor use, requiring real-mode access.

11.3.2.1 Page Tables

The hypervisor can use the MFC_SR1 to specify that TLB (VA-to-RA) reloads should be handled 
either by a hardware lookup in a hashed page table in main storage or by direct software load of 
a TLB entry. When the hardware TLB reload is used, the MFC Storage Description Register 
(MFC_SDR) must be set by the hypervisor to describe the hardware-accessible page table. This 
page table has the same format as the PPE page table. Hardware page tables can be common 
for all PPE and SPE resources in a logical partition, or they can be separate. When a common 
hardware page table is used, the MFC_SR1 register should be set so that PPE-issued tlbie instruc-
tions are honored by all SPEs in the logical partition. In addition, the MFC_LPID register must be 
set by the hypervisor to the LPID for the logical partition that the SPE is assigned to. The SPE will 
ignore PPE-issued tlbie instructions if the PPE’s LPID does not match the MFC LPID. 

If per-SPE page tables are used, the MFC_SR1 register should be set so that PPE-issued tlbie 
instructions are ignored by the SPEs in the logical partition. 
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11.3.2.2 MFC TLB Management Registers

The hypervisor can use the software TLB-reload mode on one or more of the SPEs by setting 
MFC_SR1[TL] = ‘1’. This can be useful in small-memory configurations to avoid the need for a 
large hardware-accessible page table in main storage. In this mode, when a page-translation 
miss occurs, the PPE is interrupted to load the TLB with the necessary translation and resume 
the operation. The TLB-management registers in the privilege 1 area are used for this purpose. 

When a miss occurs, the MFC TLB Index Hint Register (MFC_TLB_Index_Hint) specifies which 
TLB congruency class needs to be loaded to resolve the miss. An LRU hint is also available in 
this register, indicating which TLB entry in the class is the least-recently used. The MFC TLB 
Invalidate Entry Register (MFC_TLB_Invalidate_Entry) must be used to invalidate the TLB in the 
SPE before reloading a new one3. The MFC TLB Index Register (MFC_TLB_Index) is used to 
specify which TLB entry is read or written by accesses to the MFC TLB VPN (MFC_TLB_VPN) and 
MFC TLB RPN (MFC_TLB_RPN) Registers. 

11.3.2.3 TLB Entries

Unlike the PPE TLB entries, the SPE TLB entries are not tagged with a logical partition ID4, 
because the frequency of switching an SPE between logical partitions should be much lower 
than switching the PPE between logical partitions. Switching an SPE between logical partitions 
requires that all entries in the SPE TLB be invalidated when the SPE is switched from one parti-
tion to another. This is required because each partition manages its own VA space, therefore 
page translations are unique to the partition. 

Like the PPE, in the hardware TLB-reload mode (MFC_SR1[TL] = ‘0’) the MMU hardware uses a 
least-recently used (LRU algorithm) to determine which entry of the 4-way set-associate TLB will 
be replaced during a TLB reload. For finer control of this facility, the MFC MMU also supports a 
TLB replacement management table (RMT), similar to that in the PPE MMU. This table is set up 
by the hypervisor for each SPE, using the MFC TLB Replacement Management Table Data 
Register (MFC_TLB_RMT_Data). This register has four fields, one for each replacement-class ID 
(RClassID), with each field containing four set-enable bits to indicate whether the set is to be 
used for the corresponding class. The RClassID for DMA commands is provided by the applica-
tion program when queuing a DMA command. 

11.3.2.4 Access to Privileged Storage

When assigning the SPE to a logical partition, the hypervisor can also specify whether the SPE is 
to have access to privileged storage as well as problem-state storage. This is specified by a the 
MFC_SR1[PR] bit. Storage-access privilege is specified by the storage key in the segment look 
aside buffers (SLBs) that the operating system controls in the logical partition, in conjunction with 
the storage-protection bits in the hardware page table or TLB entries that the operating system 
specifies and the hypervisor controls. 

3. See Section 4.3.5.3 on page 112 for details.
4. SPE TLB entries are invalidated by writing the MFC_TLB_Invalidate_Entry register, as opposed to the PPE 

method of issuing a tlbie, tlbiel, or tlbia instruction to invalidate PPE TLB entries.
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11.3.2.5 Aliasing LS to Main Storage

To facilitate LS-to-LS DMA transfers, or the capability of an I/O device to access LS, the oper-
ating system can request the hypervisor to alias the allocated SPE’s LS into the real-address 
space available to the logical partition or to the hypervisor. The enabling and disabling of LS 
aliasing is controlled by the MFC_SR1[D] bit. 

11.3.3 Controlling Interrupts

The hypervisor has exclusive access to the SPE interrupt routing, interrupt mask and interrupt 
status registers, described in Section 9.6.3 SPU and MFC Interrupts on page 271. These regis-
ters are replicated for each SPE, and within each SPE there is one for each class of interrupt 
(error, translation, and application):

• Interrupt Routing Register (INT_Route)

• Interrupt Mask Registers (INT_Mask_class0, INT_Mask_class1, and INT_Mask_class2) 

• Interrupt Status Registers (INT_Stat_class0, INT_Stat_class1, and INT_Stat_class2)

• SPU Identification Register (SPU_IDR)

By setting the unit ID in the INT_Route register, SPE-initiated interrupts can be routed to a 
specific PPE thread or to an external interrupt controller attached to the IOIF0 or IOIF1 interface. 
This register allows each of the three classes of SPE-initiated interrupts to be routed to the same 
or different units. This is useful if one unit is to handle error interrupts while a different unit is to 
handle translation or application interrupts. 

As described in Section 11.2.4 on page 343, when SPE interrupts (which are seen as external 
interrupts) are routed to a PPE thread, the hypervisor can handle the interrupts directly or it can 
allow the operating system in the currently executing partition to handle the interrupt. In either 
case, the hypervisor should provide a set of SPE interrupt services to the logical partition. These 
services should include masking an allocated SPE interrupt, querying an SPE’s interrupt status, 
and resetting an SPE interrupting condition. 

11.3.4 Other SPE Management Facilities

The following additional facilities provide the hypervisor with per-SPE information and control:

• MFC and SPU Version Registers

• MFC Cache Management Registers

• MFC and SPU Error Management Registers

• MFC and SPU Debug and Performance Monitor Registers

11.3.4.1 SPU Run Control

The hypervisor can inhibit the operating system or an application in the logical partition from 
starting an SPU that has been allocated to it. This control is provided by the SPU Master Run 
Control bit, MFC_SR1[S]. It can also be used to stop a currently executing SPU that has been allo-
cated. This can be useful in certain high-thermal conditions, or can be used to keep the SPU 
resources allocated to a logical partition for the purposes of retrieving the SPU context, but 
preventing additional tasks being started on the SPU. If an SPU was stopped with the MFC_SR1[S] 
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bit, the SPU will not resume execution until the bit has been enabled and a run request to the 
SPU Run Control Register (SPU_RunCntl) has been initiated by the hypervisor, operating system, 
or application program. 

11.3.4.2 SPE Identification

The SPU Identification Register (SPU_IDR) is set by hardware to a unique value for each physical 
SPE and can be used by the hypervisor to index per-SPE structures. The MFC and SPU Version 
Registers (MFC_VR and SPU_VR) are also set by hardware and are used by the hypervisor to 
manage the features and functions available for a given version. It is suggested that the hyper-
visor propagate this information to the software in the logical partitions as configuration informa-
tion, as required. 

11.3.4.3 Cache Management

Each SPE contains a small cache to support TLB loads from the hardware page table and the 
caching of atomic-update lock lines. The atomic cache can be flushed by the hypervisor using the 
MFC Atomic Flush Register (MFC_Atomic_Flush). This should always be done before putting an 
unallocated SPE into one of the low-power states (see Section 15.1 Power Management on 
page 429) because the contents of the cache can become stale or lost in these states. The 
cache uses real-address tags, so it is not necessary to flush the cache when switching the SPE 
between logical partitions.

11.3.4.4 Error Management

To support error detection, the hypervisor can use the SMM Hardware Implementation Depen-
dent Register (SMM_HID) to enable SLB and TLB parity generation and checking, and to control 
the MFC performance, trace, and trigger settings. In addition, SPU illegal instruction and LS 
error-correcting code (ECC) error detection and correction functions can be enabled and 
controlled through the SPU ECC and Error Mask Registers (SPU_ECC_Cntl, SPU_ECC_Stat, 
SPU_ECC_Addr, SPU_ERR_Mask). In addition, a set of seven MFC Fault Isolation, Error Mask, Check-
stop Enable Registers are provided. 

If a DMA transfer is halted due to an illegal command, an SPU-initiated interrupt is generated and 
the hypervisor can access the MFC Command Error Register (MFC_CER) to determine which DMA 
command in the MFC queue caused the error. 

11.3.4.5 Debug and Performance Monitoring

Several trace, trigger, and event control registers are provided to support debug and perfor-
mance monitoring of all major logic blocks in the SPEs. 

The hypervisor can enable DMA debug facilities through the use of the MFC address-compare 
facilities. The facilities are provided by the MFC Address Compare Control Register (MFC_ACCR), 
the MFC Local Storage Address Compare Register (MFC_LSACR), and the MFC Local Storage 
Compare Result Register (MFC_LSCRR). These registers are replicated for each SPE and allow 
halting of MFC DMA transfers when a specified LS address or main-storage page is read or 
written by a DMA transfer. The MFC Data Storage Interrupt Pointer Register (MFC_DSIPR) 
provides an index to the DMA command in the queue that triggered the address compare. 
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11.4 I/O-Address Translation

When a hypervisor creates logical partitions, it is important to restrict main-storage access by 
bus-mastering I/O devices (that is, I/O devices that can initiate DMA transfers to and from main 
storage), if the I/O devices are to be controlled directly by an operating system within the logical 
partition. Although a hypervisor can support I/O devices directly and it can fully virtualize them to 
software in the logical partition, this adds unacceptable latency and reduced throughput in many 
real-time or high-performance systems. 

11.4.1 IOC Memory Management Units

The I/O interface controller (IOC) has an MMU that provides I/O-address translation and access 
protection for main-storage accesses initiated by I/O devices. The hypervisor must exercise full 
and exclusive control over the IOC’s MMU to ensure that I/O devices supporting a logical parti-
tion cannot access resources in another logical partition. I/O devices access main storage 
through an I/O-address space that is separate from the real-address (RA) space. 

The hypervisor can set up the IOC’s MMU to support translation of I/O addresses to RAs. To do 
this, the hypervisor must enable I/O translation by setting the Enable bit of the I/O Segment Table 
Origin Register (IOC_IOST_Origin[E]) to ‘1’ and the Translate Enable bit of the IOCmd Configura-
tion Register (IOC_IOCmd_Cfg[TE]) to ‘1’. See Section 7.4 I/O Address Translation on page 176 
for details. 

11.4.2 I/O Segment and Page Tables

When an I/O device initiates a DMA transfer, the IOC MMU looks the supplied I/O address up in 
an I/O segment table (IOST), then uses the segment table to look up the RA in an I/O page table 
(IOPT). Unlike PPE MMU and SPE MMU translations, I/O translations must be present in the 
IOST or IOPT cache entries before an I/O device attempts access. The CBEA processors do not 
support the suspension and resumption of an I/O device’s bus-mastering operation in order for 
the hypervisor to dynamically load IOST or IOPT entries for translations. 

The hypervisor can enable the use of an IOST and IOPT in main storage—which the IOC MMU 
will access when an address is not found in the IOST or IOPT cache—by setting the 
IOC_IOST_Origin[HW] bit = ‘1’. If this option is not enabled, the hypervisor must directly manage 
the IOST and IOPT caches and set the IOC_IOST_Origin[SW] bit = ‘1’. Each IOST entry contains 
a real page number (RPN) of the start of the IOPT for the segment, the number of 4 KB pages 
used for the segment’s IOPT, the I/O page size used for all accesses in the segment, a Valid (V) 
bit and a Hint (H) bit. The Hint bit can be used by the hypervisor to keep frequently-used I/O-
segment translations in the IOST cache. 

When a valid IOST entry is found for an I/O address, bits in the I/O address are then used to 
index into the IOPT to look for the corresponding page-table entry (PTE). The PTE contains 
page-protection bits (restricting read and write access), a bit controlling cache coherency for the 
transfer, bits specifying storage-access ordering for the transfer, a Hint bit, an I/O Identifier 
(IOID), and the RPN corresponding to the RA to be used for the transfer. The IOID in each PTE 
prevents one I/O device from using another I/O device’s address translation. This provides the 
necessary protection when I/O devices are allocated to different partitions. These IOIDs are 
normally assigned by the system supplier and are generated by the host bridges attached to the 
I/O Interfaces.
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If an I/O-device access does not find a valid IOST or IOPT entry, or if the access is prohibited by 
the IOPT protection bits, or if the IOID supplied by the device does not match the IOID in the 
IOPT, an I/O-device exception occurs and an external interrupt is presented to the PPE. 

11.5 Resource Allocation Management

The resource allocation management (RAM) facility is described in Section 8 Resource Alloca-
tion Management on page 203. The hypervisor can apply the RAM facility to logical partitions. 
This facility can allocate specific amounts of memory or I/O bandwidth to the requesters (PPE, 
SPEs, or I/O devices) in each logical partition. The combined capabilities of logical partitioning 
and resource allocation management provide a level of resource control that is not typically found 
in conventional logical-partitioning processors. 

11.5.1 Combining Logical Partitions with Resource Allocation

Conventional logical-partitioning processors divide up real memory, processing units, and I/O 
devices among logical partitions. This works well in most environments, but when one or more 
operating environments in the logical partitions must meet real-time deadlines, this type of 
resource allocation is insufficient. 

For example, if partition 1 is allocated 70% of the PPE and five of the eight SPEs, and partition 2 
is allocated 30% of the PPE and three of the eight SPEs, it is possible for applications in partition 
2 to use so much main-storage bandwidth or I/O bandwidth that logical partition 1, which has 
more processing units, cannot meet its real-time schedule because the remaining memory or I/O 
bandwidth is insufficient. To alleviate this problem, the hypervisor can use the EIB resource allo-
cation facility to manage the amount of real memory and I/O capacity the units allocated to a 
logical partition receive. 

11.5.2 Resource Allocation Groups and the Token Manager

In the CBEA processors, the requesters assigned to each logical partition can be assigned to one 
of four managed resource allocation groups (RAGs). The hardware supports a token manager 
that generates tokens for the managed resources at hypervisor-programmed rates for each 
RAG. Section 8.5 on page 213 describes the details. 

Typically, the system supplier provides configuration information to the hypervisor in order for the 
hypervisor to determine maximum usable capacity of the managed resources. The hypervisor 
uses this information to ensure that the token-generation rate for the resource in all concurrently 
active RAGs does not exceed the maximum capacity of the resource. 

Each managed resource also provides a feedback mechanism to the token manager, indicating 
that it is becoming overcommitted. The hypervisor can enable an external interrupt to the PPE 
when a resource becomes overcommitted. The hypervisor programs queue-threshold levels in 
the IOC units (for IOIF0 and IOIF1) and in the memory interface controller (MIC) for the DRAM 
memory banks. 

The hypervisor uses these methods to assign resources to managed logical partitions: 

• PPE—When the hypervisor assigns the PPE to a managed logical partition, the hypervisor 
enables the RAG requester and sets a resource allocation identifier (RAID) for that logical 
partition using the BIU Mode Setup Register 1 (BIU_ModeSetup1). 
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• SPE—When the hypervisor assigns an SPE to a managed logical partition, the hypervisor 
enables the RAG requester and sets an RA Identifier for that logical partition using the 
RA_Enable register and the RA_Group_ID register. 

• I/O—When the hypervisor assigns an IOIF unit to a managed logical partition, the hypervisor 
enables the RAG requester and sets a virtual channel for outbound transfer from that logical 
partition using the IOC_IOCmd_Cfg register. 

For complete details, see Section 8 Resource Allocation Management on page 203. 

11.6 Power Management

The CBEA processors can support multiple power management states, as described in 
Section 15 Power and Thermal Management on page 429. Many of the units in the CBEA 
processors support dynamic power management when the units are not being used, and this 
requires no explicit action on the part of software. However, the CBEA processors do support 
explicit power management for the low-power states—the MFC Pause, SPU Pause, SPE State 
Retained and Isolated (SRI), PPE Pause (0), and Slow states.

11.6.1 Entering Low-Power States

When multiple logical partitions are present, only the hypervisor can determine if conditions are 
right to enter or exit these low-power states. Under certain system-specified conditions, it might 
be advisable to slow the processor core clock (NClk) frequency, as described in Section 13 Time 
Base and Decrementers on page 381. 

When a logical partition yields both of its PPE threads, and no other logical partitions are 
dispatchable (all waiting on external events), the hypervisor can elect to enable the PPE Pause 
(0) state and suspend each thread. Before entering this state, the hypervisor must write a PPE 
control register to designate the conditions under which the PPE Pause (0) state is to be exited. 
Machine check, system error, and thermal interrupts must always exit the PPE Pause (0) state. 
The hypervisor can conditionally enable resumption on a decrementer event or on an external 
interrupt. 

A low-power, system-specific hibernation state might or might not be supported by the system (it 
is not specifically supported by the Cell Broadband Engine Architecture [CBEA]). If hibernation 
state is supported by the system, it requires support from the system controller and system 
designer, as well as the hypervisor and in many cases the I/O devices. Hibernation mode 
consists of saving all volatile states into system DRAM, switching the DRAM to self-timed refresh 
mode, and disabling the power to the CBEA processor. It also requires that an 8 KB block of 
contiguous physical DRAM be left unused by system firmware or software, and dedicated to the 
memory interface controller (MIC) recalibration-pattern buffer. 

11.6.2 Thread State Suspension and Resumption

Unlike previous PowerPC processing units, the PPE retains the full hardware thread state when 
the thread is suspended. When the thread is resumed, it starts executing from the reset vector, 
and the reset interrupt handler can choose to resume the execution at the instruction following 
the instruction that suspended the thread. 
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When the hypervisor has determined that an SPE is no longer being used by a logical partition (it 
has freed the resource), the SPE can be held in a low-power SPU Pause state, with the SPU 
stopped and the MFC suspended. If the hypervisor determines that the SPE will not be used for a 
relatively long period (several seconds or minutes), the hypervisor can place the SPU in the SPE 
State Retained and Isolated (SRI) state. 

11.7 Fault Isolation

Many faults detected by the CBEA processors, including programming errors related to hyper-
visor resources, are nonrecoverable and indicate a significant failure that might compromise data 
integrity. These faults result in a checkstop (see Section 9.5.2 on page 249), which immediately 
halts all CBEA processor elements and must be handled or recorded by a system controller 
external to the CBEA processor. 

However, some faults are recovered by the CBEA processor hardware, are software recover-
able, or might be caused by software errors in the hypervisor or logical partition. Faults detected 
while the PPE is accessing a resource generate a machine check interrupt (also Section 9.5.2 on 
page 249) that must be handled by the hypervisor. Some faults detected by the SPE generate a 
system error interrupt (also Section 9.5.16 on page 260) that also must be handled by the hyper-
visor or logical partition. 

11.8 Code Sample

The following code sample illustrates one method of making an ABI-compliant hypervisor call. In 
particular, it demonstrates making a example (H_EX) request that accepts two input parameters 
(arg1 and arg2) and returns two resulting words. The hypervisor call is invoked by executing the 
system call instruction (sc) with the LEV field of ‘1’. The hypervisor request is specified in 
register 3.

11.8.1 Error Codes and Hypervisor-Call (hcall) Tokens

An example set of error codes and hypervisor call (hcall) tokens: 

#define H_Success;        0
#define H_Hardware;      -1 /* Hardware error */
#define H_Function;      -2 /* Not supported */
#define H_Privilege;     -3 /* Caller not in privileged mode */
#define H_Parameter;     -4 /* Partition violation/conflict. */

11.8.2 C Functions for PowerPC 64-bit ELF Hypervisor Call

Examples of creating C-callable functions that perform a hypervisor call for PowerPC 64-bit ELF:

filename: hcall_ex.s
        .set     H_EX, 0x104     # example hcall token
        .section ".opd","aw"
        .align 3



Programming Handbook

 Cell Broadband Engine

Version 1.11
May 12, 2008
 

Logical Partitions and a Hypervisor
Page 355 of 884

        .globl hcall_ex
hcall_ex:
        .quad .hcall_ex,.TOC.@tocbase, 0
        .previous
        .size hcall_ex,24
        .section ".text"
        .align 2
        .globl .hcall_ex
.hcall_ex:
        std     r3,-8(1)   # r3 (array of values) stored in stack
        li      r3,H_EX    # load r3 with hypervisor code
        sc 1               # Hypervisor Trap
        ld      r12,-8(1)  # reload array into r12
        cmpi    0,12,0     # only store return regs if array is non-NULL
        bne     ret2       # this &hcall; only returns contents of r4,r5
        blr                # return no values

ret8:   std r11,(7 ∗ 8)(r12)
ret7:   std r10,(6 ∗ 8)(r12)
ret6:   std r9,(5 ∗ 8)(r12)
ret5:   std r8,(4 ∗ 8)(r12)
ret4:   std r7,(3 ∗ 8)(r12)
ret3:   std r6,(2 ∗ 8)(r12)
ret2:   std r5,(1 ∗ 8)(r12)
ret1:   std r4,(0 ∗ 8)(r12)
        blr

Example of how to call the preceding assembler code:

filename: ex.c
void example(unsigned long long arg1, unsigned long arg2)
{
        long  rc;
        unsigned long results[2];

        rc = hcall_ex(results, arg1, arg2);
        if (rc != H_Success) {
                ... Failure Case ...
        }
        ...
}
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12. SPE Context Switching

12.1 Introduction

The ability to save and restore the context of a Synergistic Processor Element (SPE) is important 
for two primary reasons: preemptive or cooperative context-switching SPE tasks (programs) for 
virtualization of the SPEs, and debugger access and interaction with an SPE’s execution state.

Saving and restoring an SPE context can be very expensive in terms of both time and system 
resources. The complete SPE context consists of:

• 256 KB of local storage (LS)

• 128 128-bit general purpose registers (GPRs)

• Special purpose registers (SPRs)

• Interrupt masks

• Memory flow controller (MFC) command queues

• SPE channel counts and data

• MFC synergistic memory management (SMM) state

• Other privileged state

In all, the SPE context occupies more than 258 KB of storage space.

A programming model that allocates SPEs in a serially reusable manner—in which an SPE is 
assigned a task until it completes, then it is assigned another task—generally results in more effi-
cient use of SPEs than does a programming model that implements frequent context switches. 
The serially reusable model requires fewer context switches, and less context needs to be saved 
and restored during a context switch. 

A preemptive context switch facilitated by privileged software on the PPE is the most costly form 
of context save and restore, because the context is not known and a worst-case save and restore 
of all context state must be performed. An application-yielding context switch, in which the appli-
cation using the SPE determines the timing and amount of context to be saved and restored, can 
minimize the overhead in terms of cycles and space used to save and restore context.

Note:  If an I/O device interfaces directly to an SPE, the SPE’s physically mapped LS interacts 
with that device. Because the LS is part of the context that is switched, preemptive context 
switching of an SPE that interfaces directly with an I/O device should be avoided, unless the I/O 
device can first be reliably quiesced. 

Several machine resources must be saved and restored when switching an SPE’s context. This 
section provides a basic overview of resources and save-restore sequences for a preemptive 
context switch. The sample sequences assume the SPE is already stopped at context-save time. 
Some operating environments can forgo restoring the context of an SPE that has been stopped, 
especially when stopped on error conditions.
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12.2 Data Structures

The data that must be saved to suspend and later resume execution of an SPE task is stored in 
two related structures. One is in the LS of the SPE being saved or restored; the other is in main 
storage: 

• Local Storage Context Save Area (LSCSA)—A data structure in the SPE’s Local Storage 
(LS). It contains the local problem state that the SPE itself saves to and restores from during 
a context switch. The LSCSA is a temporary data structure that is copied to/from the perma-
nent copy in the CSA.

• Context Save Area (CSA)—A data structure in main storage that contains all of the SPE 
state, both problem state and privileged state. The CSA includes a copy of the LSCSA. 

12.2.1 Local Storage Context Save Area

The LSCSA is the area of LS in which the synergistic processor unit (SPU) temporarily stores 
local problem state—primarily the GPRs, SPRs, and channel state. This is by far the smaller of 
the two data structures, requiring only a few KB of space. 

The SPU saves to the LSCSA as part of a code sequence during a context-save, and it restores 
from the LSCSA as part of another code sequence during a context-restore. During a context-
save, after saving to its LSCSA in the LS, the SPU then saves the LSCSA (along with the high 
240 KB of the LS) to the CSA in main storage. Likewise, during a context-restore, the SPU first 
loads the LSCSA (along with the high 240 KB of the LS) into the LS from the CSA in main 
storage, and then the SPU restores its own local state from the LSCSA in LS. 

Due to DMA-alignment restrictions, the LSCSA memory region should, at a minimum, be aligned 
to a 128-byte boundary. For many environments, it might be more practical to align the region to 
a page boundary.

12.2.2 Context Save Area

The CSA is a main-storage structure that contains the entire SPE context state, including the 
256 KB LS, the 128 GPRs, the SPRs, the state of all status registers, interrupt masks, MFC 
command queues, SPE channel counts and data, MFC SMM state, and other privileged state. 
During save and restore sequences, small parts of the CSA are written and read by the PPE, and 
large parts are written and read by the SPE. 

It might be best to order the CSA data so that the save areas for the LSCSA copy come first, 
followed by the save area for the LS. Otherwise, the SPE context-switch code might need to load 
immediate values for offsets that exceed the size of the LS, and thus require multiple assembly 
instructions to code. 

12.3 Overview of SPE Context-Switch Sequence

This section gives an overview of the steps necessary for a preemptive context switch of an SPE 
task. A preemptive context switch consists of the combination of a context-save (Section 12.3.1 
on page 360) followed by a context-restore (Section 12.3.2 on page 360). A full, detailed sample 
sequence is provided in Section 12.5 on page 365.
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The entire SPE context is not accessible from the PPE. As such a SPE context save or restore 
requires the assistance of specialized SPE code. A pictorial overview of the SPE context switch 
sequence is provided in Figure 12-1.

Figure 12-1. SPE Context-Switch Sequence 
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12.3.1 Save SPE Context

1. Quiesce the SPE (performed by the PPE):

a. Disable SPE interrupts.

b. Disable problem-space access to this SPE (unmap pages).

c. Disable MFC command queues. 

d. Disable SPU execution.

e. Disable all access to this SPE from other SPEs (unmap pages).

f. Handle pending interrupts from this SPE.

2. Save Privileged and Critical Problem State in CSA, Load and initiate SPU Context-Save 
Sequence on the SPU (performed by the PPE):

a. Save MFC command state, including command queues.

b. Save privileged state, including segment lookaside buffer (SLB) entries, resource alloca-
tion masks, and so forth.

c. Save problem state, including mailbox data and SPE channel counts.

d. Purge the MFC command queues.

e. Resume MFC command processing.

f. Invalidate MFC SLB entries, and reload with SLB entry for loading the SPU context-save 
sequence code (step 3).

g. Invalidate MFC translation lookaside buffer (TLB) entries.

h. Reset interrupts.

i. Save the low 16 KB of LS in the CSA. 

j. Place CSA effective-address pointer in SPU Signal Notification Registers.

k. Copy the SPU context-save sequence code into the low 16 KB of LS, and start its execu-
tion.

3. SPU Context-Save Sequence (performed by the SPE):

a. Save the low 16 GPRs in the LSCSA.

b. Read the SPU Signal Notification Registers to obtain effective address of the CSA.

c. Save the SPU accessible channel state in the LSCSA. 

d. Save the high 240 KB of LS in the CSA. 

e. Save the high 112 GPRs in the LSCSA. 

f. Save the LSCSA in the CSA. 

12.3.2 Restore SPE Context

1. Harvest (reset the state of) an SPE (performed by the PPE):

a. Disable SPE interrupts.

b. Disable problem-space access to this SPE (unmap pages).

c. Disable all access to this SPE from other SPEs (unmap pages).
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d. Disable MFC command queues.

e. Disable SPE execution.

f. Invalidate MFC TLB entries. 

g. Handle pending interrupts from this SPE.

h. Purge MFC command queues.

i. Invalidate MFC SLB entries.

j. Reset SPE channel state.

k. Reset interrupts. 

2. Load and initiate SPU Context-Restore Sequence on the SPU (performed by the PPE):

a. Invalidate MFC SLB entries, and reload with entry for SPU context-restore sequence 
code access.

b. Copy mailbox state from the CSA to the CSA’s copy of the LSCSA. 

c. Place CSA effective-address pointer in SPU Signal Notification Registers.

d. Copy the SPU context-restore sequence code into the low 16 KB of LS, and start execu-
tion. 

3. SPU Context-Restore Sequence (performed by the SPE):

e. Read SPU Signal Notification Registers to obtain effective address of the CSA.

a. Restore the high 240 KB of the LS from the CSA.

b. Restore the high 112 GPRs from the LSCSA. 

c. Restore channel and other problem state from the LSCSA. 

d. Restore low 16 GPRs from the LSCSA.

4. Restore Privileged and Remaining Problem State (performed by the PPE):

a. Restore SPU run control state.

b. Restore low 16 KB of LS from the CSA. 

c. Restore interrupt state.

d. Restore MFC command queues from CSA.

e. Restore privileged state from the CSA. 

f. Restore additional problem state from the CSA. 

g. Restore MFC SLB entries from the CSA. 

h. Enable SPU execution.

i. Restore MFC control state from the CSA. 

j. Enable interrupts.
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12.4 Implementation Considerations

12.4.1 Locking

Due to the length of the context-switch sequence, it might be appropriate to use semaphores 
rather than spin locks for access-locking. This allows other operations (for example, context-
switch on other SPEs) to proceed when multiple threads are attempting to exclusively access the 
same SPE during context switch.

12.4.2 Watchdog Timers

Non-real-time systems might not be able to set reasonable time-out values for the entire context-
switch sequence. This is due to the potential for paging activity, unexpected external events (for 
example, network), and so forth. It might be more appropriate to set timers on individual opera-
tions—for example, waiting for a purge of MFC command queues to finish.

12.4.3 Waiting for Events

Non-real-time systems might suffer significantly from excessive busy-polling for SPE context-
switch events. It might be more appropriate to yield or sleep on events, rather than busy-poll. 
Enabling handlers for SPE class 2 interrupts (stop-and-signal, tag-group completion) might be 
useful. See Section 9.6.3 SPU and MFC Interrupts on page 271 for details. For a description of 
SPE events, see Section 18 SPE Events on page 471. 

12.4.4 PPE’s SPU Channel Access Facility

Privileged PPE software has access to the four event-management channels and the hidden 
Pending Event Register (Section 18.2 Events and Event-Management Channels on page 472) 
through the PPE’s SPU channel access facility. The SPU channel access facility can initialize, 
save, and restore the SPU channels. 

The facility consists of three memory-mapped I/O (MMIO) registers: 

• SPU Channel Index Register (SPU_ChnlIndex)

• SPU Channel Count Register (SPU_ChnlCnt)

• SPU Channel Data Register (SPU_ChnlData)

The SPU Channel Index Register is a pointer to the channel whose count is accessed by the 
SPU Channel Count Register and whose data is accessed by the SPU Channel Data Register. 
See the Cell Broadband Engine Architecture document for details about the PPE’s SPU channel 
access facility. 

12.4.5 SPE Interrupts

It is possible to perform a context switch with SPE interrupts disabled. In this case, memory 
regions containing the context-switch program or data should be pinned (locked), and the MFC’s 
SMM should be pre-loaded with the SLB and TLB entries necessary for these memory regions. 
Polling of MMIO registers is necessary to determine the completion status for data transfers, 
SPE execution, and so forth.
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Non-real-time environments might prefer to enable interrupt handlers for address-translation 
(SPE class 1) interrupts, so that code or data can be accessed as virtual memory rather than 
pinned real memory. Handlers for error (SPE class 0) interrupts and application (SPE class 2) 
interrupts can be used to detect potential errors or completion events (for example, tag-group 
complete, stop-and-signal). See Section 9.6.3 SPU and MFC Interrupts on page 271 for details. 

12.4.6 Suspending the MFC DMA Queue

Depending on the operating system (OS), address-translation (SPE class 1) interrupts might be 
processed by a deferred interrupt handler. The use of deferred interrupt handling complicates the 
context-save operation in the way that the MFC command queues are suspended and saved.

In this case, it is not enough for the context-save code to simply disable SPE interrupts. It is also 
necessary to prevent a deferred interrupt handler from restarting an MFC command after the 
queue has been suspended. This can be done by setting a per-SPE save-pending flag, indicating 
to the deferred handler that the MFC command should not be restarted.

12.4.7 SPE Context-Save Sequence and Context-Restore Sequence Code

The SPE’s context-save sequence and context-restore sequence code should probably be 
written in SPE assembly language, so that register and memory use can be carefully controlled. 
The sequence described in Section 12.5 on page 365 assumes the code is written to execute in 
a portion of the low 16 KB of LS and uses only the first 16 GPRs. 

A straight-forward implementation of either the save or restore sequence will typically use less 
than 1 KB for the program text. Because the save and restore sequences have much in common, 
it is possible to write a combined switch program that fits into roughly the same space. A further 
2 KB will be used at run time for saving or restoring registers.

Special stop instruction codes should be reserved for indicating the successful completion of a 
save and a restore.

12.4.8 SPE Parameter Passing

The only parameter needed by the save and restore code is the location of the CSA region in 
main storage. This can be communicated either by having privileged software running on the 
PowerPC Processor Element (PPE) store this address to a known location in LS before starting 
the SPE or by writing this 64-bit address to the 32-bit SPU Signal Notification 1 and 2 Registers 
as is done in Section 12.5 on page 365.

12.4.9 Storage for SPE Context-Save Sequence and Context-Restore Sequence Code

The SPE context-switch code is trusted by the OS and must therefore reside in privileged 
memory. The code must be copied by the PPE from main storage into LS, so it should be, at a 
minimum, aligned to a 128-byte boundary for efficient transfer by the MFC. It might be possible to 
dump the SPE context-switch object code into raw hexadecimal form, so that it can be initialized 
and aligned in memory at compile time, rather than run time.
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12.4.10 Harvesting an SPE

There might be situations in which an SPE context is not immediately restored to the SPE on 
which it was originally executing. This might be the case when the context is executing under 
control of a debugger. There might also be conditions that cause the SPE context-save operation 
to fail (for example, a bad address translation for a save to the CSA in the user-memory region).

In such cases, this or another SPE needs to be harvested. Harvesting means resetting (clearing) 
the state of an SPE, and it allow a subsequent restore operation to be performed to that SPE. 
The steps in the context-restore operation in Section 12.5.2.1 on page 371 describe how an SPE 
can be harvested. 

12.4.11 Scheduling

Sharing SPEs, as opposed to serially reusing SPEs, can be very expensive. A fully preemptive 
SPE context switch can take many μsecs. It might, however, still be desirable for an OS to share 
SPEs among multiple user programs. What an individual SPE gives up in terms of context-switch 
overhead, the Cell Broadband Engine Architecture (CBEA) processors1 can make up for in the 
number of available SPEs. Taken together, overall system interactivity might be considered 
reasonable, even if the latency for an individual SPE switch is somewhat high.

To avoid thrashing, the SPE-switch time should be factored into the time-slice quantum that is 
assigned to an SPE context. Typically, shorter quanta are used for interactive processing, and 
longer quanta are used for batch processing. Selection of time-slice quanta is a always compro-
mise between these two processing goals. The best approach is to use a quantum that is short 
enough to seem interactive, but long enough to allow forward progress. A good rule of thumb for 
minimum quanta on a more traditional processor might be 10 times the switch-time. However, 
given the abundance of SPEs and relatively long switch time, it is probably best to err on the side 
of longer rather than shorter quanta.

12.4.12 Light-Weight SPE Context Save

The sequence outlined in Section 12.5 on page 365 describes a fully preemptive SPE context 
switch. In certain environments, however, it might be desirable to support light-weight context 
switching. This can be implemented in a cooperative manner by having the PPE send a privi-
leged attention event to a program executing on an SPE. If the SPE program responds to the 
event within a fixed time-out—for example, by executing the stop and signal (stop) instruction 
with special return code—then the PPE might perform a simplified context-save sequence. 
Otherwise, the PPE performs a full context save, and might subsequently penalize that program 
by lowering its priority within the system.

To implement such a policy, there would be some cooperation between the OS and SPE applica-
tion code. For example, upon receipt of the privileged attention event, the SPE program might 
wait for all pending MFC commands to complete before executing the stop instruction. This 
allows the PPE to avoid suspending and saving the MFC command queues. 

Another alternative is to support reentrant contexts that are never saved, provided that they 
respond to the privileged attention event within a fixed time-out period. There are several varia-
tions possible between a fully preemptive switch and reentrant contexts.

1. The Cell Broadband Engine (Cell/B.E.) and PowerXCell 8i processors are collectively called CBEA processors.
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12.5 Detailed Steps for SPE Context Switch

Section 12.3 on page 358 gave an overview of the sequence of steps involved in preemptively 
saving and restoring an SPE context. The sequences in this section expand on that overview by 
providing more detail. 

These sequences depict the saving and restoring of SPE context by an OS that is running at both 
privilege 1 and privilege 2 levels—that is, an operating environment without a separate hyper-
visor and without support for logical partitioning (see Section 12.6 Considerations for Hypervisors 
on page 379). The sequences also assume that the OS uses hardware-managed TLBs and a 
common hardware-managed page table, and that it has allocated an area of main storage for the 
CSA, as described in Section 12.2 Data Structures on page 358. 

Although the sequences handle preemptive saving and restoring, they can also handle cases in 
which the SPE is already stopped at context-save time or has stopped itself after context-save 
read its status. Some operating environments might forego restoring the context of an SPE that 
was not running at context-save time (especially when stopped on error conditions). However, 
support for restoring is included in this example for completeness. 

The sequences do not include saving and restoring performance-monitor and trace registers or 
application-debug facilities. Interaction between the context-switching system and the debug and 
performance-monitor subsystems dictate how these registers are dealt with during context 
switch. 

12.5.1 Context-Save Sequence

12.5.1.1 PPE Context-Save Sequence for SPE

This section outlines how to fully save the context of an active SPE:

1. Acquire a software SPE mutual-exclusion lock (if multithreading is being used).

2. If any SPU_Status[E, L, IS] field is set to ‘1’, this SPE is in the isolate state and cannot be 
context-saved at this time:

• If multithreading is being used, release software SPE mutual-exclusion lock.

• If the isolate state is an unexpected condition, harvest an SPE by going to step 1 of the 
PPE Context-Restore Sequence on page 371.

• If the isolate state is allowed, exit the context-save sequence.

3. Disable all interrupts (class 0, 1, and 2) from this SPE:

a. Save the INT_Mask_class0 register in the CSA. Then, write the INT_Mask_class0 register 
with ‘0’.

b. Save the INT_Mask_class1 register in the CSA. Then, write the INT_Mask_class1 register 
with ‘0’.

c. Save the INT_Mask_class2 register in the CSA. Then, write the INT_Mask_class2 register 
with ‘0’.

4. Set a software watchdog timer, specifying the maximum time for a context-save sequence.

5. Inhibit problem-space access to this SPE, if provided, by unmapping the virtual pages 
assigned to the SPE MMIO problem space.



Programming Handbook

Cell Broadband Engine  

SPE Context Switching
Page 366 of 884

Version 1.11
May 12, 2008

6. Read the SPU_Status register again. If any SPU_Status[E, L, IS] fields are active, this SPE 
is isolated and cannot be context-saved at this time. If the isolate state is an expected condi-
tion, the context-save sequence should be exited by skipping to step 74 on page 378. If this 
is an unexpected condition, skip to step 4 on page 371 to reclaim this SPE and restore a con-
text to it. 

7. Set a software Context Switch Pending flag. 

8. Read the MFC_CNTL[Ss] register field: 

• If MFC_CNTL[Ss] is set to ‘01’, poll MFC_CNTL[Ss] until it is set to ‘11’. Then, save the 
MFC_CNTL register in the CSA with MFC_CNTL[Sc] set to ‘1’ and MFC_CNTL[Sm] set to ‘1’.

• If MFC_CNTL[Ss] is set to ‘00’, set MFC_CNTL[Sc] to ‘1’. Then, poll MFC_CNTL[Ss] until it is 
set to ‘11’, and save the MFC_CNTL register in the CSA with MFC_CNTL[Sc] set to ‘0’ and 
MFC_CNTL[Sm] set to ‘0’.

• If MFC_CNTL[Ss] is set to ‘11’, save the MFC_CNTL register in the CSA with MFC_CNTL[Sc] 
set to ‘1’ and MFC_CNTL[Sm] set to ‘1’.

9. Save the SPU_RunCntl register in the CSA. This value contains the Application Desired State.

10. Save the MFC_SR1 register in the CSA.

11. Read the SPU_Status[R] register field:

• If SPU_Status[R] is set to ‘0’, save the SPU_Status register in the CSA.

• If SPU_Status[R] is set to ‘1’:

a. Set SPU_RunCntl[Run] to ‘00’. 

b. Issue a PPE eieio instruction.

c. Poll SPU_Status[R] until it is set to ‘0’. If SPU_Status[I,S,H, and P] are all set to ‘0’, 
write the SPU_Status register in the CSA with the R bit set to ‘1’. Otherwise, write the 
SPU_Status register in the CSA with the R bit reset to ‘0’. 

12. Read the MFC_CNTL[Ds] register field. Then, update the saved copy of this field in the CSA. 

13. Write the MFC_CNTL[Dh] register field to ‘1’ to halt the decrementer.

14. Read the special purpose Time Base Register (TB) and save it in the CSA.

15. Prevent other SPE accesses to this SPE by unmapping this SPE’s pages from their address 
spaces.

16. Write the MFC_MSSync register. Then, poll MFC_MSSync[P] for a value of ‘0’.

17. Write all of the MFC_TLB_Invalidate_Entry[IS,VPN,L,Lp] register fields to ‘0’. Then, issue a 
PPE sync instruction.

18. Handle any pending interrupts from this SPE. This is OS-specific or hypervisor-specific. One 
option is to re-enable interrupts to handle any pending interrupts, with the interrupt handlers 
recognizing the software Context Switch Pending flag, to ensure that SPE execution or the 
MFC command queue is not resumed. 

19. If the MFC_CNTL[Q] register field is set to ‘0’ (MFC command queues not empty), then save 96 
doublewords from the MFC_CQ_SR registers in the CSA.

20. Save the Prxy_QueryMask register in the CSA.

21. Save the Prxy_QueryType register in the CSA.

22. Save the MFC_CSR_TSQ register in the CSA.
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23. Save the MFC_CSR_Cmd1 and MFC_CSR_Cmd2 registers in the CSA.

24. Save the MFC_CSR_ATO register in the CSA. 

25. Save the MFC_TClassID register and in the CSA.

26. Write the MFC_TClassID register with the value x‘10000000’ (T0 Quota = 16).

27. Write the MFC_CNTL[Pc] register field to ‘1’ (purge queue). 

28. Poll the MFC_CNTL[Ps] register field until the value ‘11’ is read (purge complete).

29. If the MFC_SR1[R] register field is set to ‘1’: 

a. Save the SLB_Index register in the CSA.

b. For index = 0 through 7:

1. Write the index value to SLB_Index. Then, issue a PPE eieio instruction.

2. Save the SLB_ESID register in the CSA.

3. Save the SLB_VSID register in the CSA.

30. Write the MFC_SR1 register with MFC_SR1[D] set to ‘0’, MFC_SR1[S] set to ‘1’, and 
MFC_SR1[TL,R,PR, and T] set correctly for the OS-specific environment. 

31. Save the SPU_NPC register in the CSA. 

32. Save the SPU_PrivCntl register in the CSA.

33. Write the SPU_PrivCntl[S,Le,A] register field to ‘0’.

34. Save the SPU_LSLR register in the CSA.

35. Set the SPU_LSLR register to the size of implemented LS, minus one.

36. Save the SPU_Cfg register in the CSA.

37. Save the PM_Trace_Tag_Wait_Mask register in the CSA.

38. Save the RA_Group_ID and RA_Enable registers in the CSA.

39. For the following channels: 

• SPU_RdEventStat (channel index 0)

• SPU_WrEventMask (channel index 1)

• SPU_RdSigNotify1 (channel index 3)

• SPU_RdSigNotify2 (channel index 4)

• MFC_RdTagStat (channel index 24)

• MFC_RdListStallStat (channel index 25)

• MFC_RdAtomicStat (channel index 27)

a. Write the channel index to the SPU_ChnlIndex register. Then, issue a PPE eieio 
instruction.

b. Save the channel data from SPU_ChnlData register in the CSA.

c. Save the channel count from SPU_ChnlCnt register in the CSA.

d. Write ‘0’ to the SPU_ChnlData register.

e. Write ‘0’ to the SPU_ChnlCnt register.

40. Save the SPU_Mbox_Stat register in the CSA. 
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41. Save the SPU_Out_Mbox register in the CSA.

42. Save the SPU_Out_Intr_Mbox register in the CSA.

43. For the SPU_RdInMbox channel:

a. Write the channel index value 29 to the SPU_ChnlIndex register. Then, issue a PPE eieio 
instruction.

b. Save the SPU_ChnlCnt register in the CSA.

c. Save the SPU_ChnlData register in the CSA’s SPU_RdInMbox data0 area.

d. Save the SPU_ChnlData register in the CSA’s SPU_RdInMbox data1 area.

e. Save the SPU_ChnlData register in the CSA’s SPU_RdInMbox data2 area.

f. Save the SPU_ChnlData register in the CSA’s SPU_RdInMbox data3 area.

44. For the MFC_Cmd channel:

a. Write the channel index value 21 to the SPU_ChnlIndex register. Then, issue a PPE eieio 
instruction.

b. Save the SPU_ChnlCnt register in the CSA.

45. For the following channels: 

• MFC_Cmd (channel index 21, count = 16)

• MFC_WrTagUpdate (channel index 23, count = 1)

• SPU_WrOutMbox (channel index 28, count = 1)

• SPU_WrOutIntrMbox (channel index 30, count = 1)

a. Write the channel index to the SPU_ChnlIndex register. Then, issue a PPE eieio 
instruction.

b. Write the count to the SPU_ChnlCnt register.

46. Write the MFC_CNTL[Sc] register field to ‘0’ and MFC_CNTL[Sm] to ‘0’ (resume queue process-
ing).

47. If the MFC_SR1[R] register field is set to ‘1’, write ‘0’ to SLB_Invalidate_All register. Then:

a. Write x‘0’ to the SLB_Index register.

b. Write the SLB_VSID register with the virtual segment ID (VSID) to the SPU context-save 
sequence code.

c. Write the SLB_ESID register with the effective segment ID (ESID) to the SPU context-save 
sequence code.

d. Write x‘1’ to the SLB_Index register.

e. Write the SLB_VSID register with the VSID to the CSA.

f. Write the SLB_ESID register with the ESID to the CSA.

48. Change the software Context Switch Pending flag to Context Switch Active.

49. If the OS is using interrupts instead of polling:

a. Write the INT_Stat_class0 register with -1 to reset all class 0 interrupts.

b. Write the INT_Stat_class1 register with -1 to reset all class 1 interrupts.

c. Write the INT_Stat_class2 register with -1 to reset all class 2 interrupts.
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d. Write the INT_Mask_class0 register with an OS-specific value to re-enable OS-supported 
class 0 interrupts.

e. Write the INT_Mask_class1 register with an OS-specific value to re-enable OS-supported 
class 0 interrupts.

f. Write the INT_Mask_class2 register with an OS-specific value to re-enable OS-supported 
class 0 interrupts.

50. Issue a DMA command to save the low 16 KB of LS in the CSA:

a. Write x‘0000_0000’ to MFC_LSA register.

b. Write the CSA effective-address bits[0:32] to the MFC_EAH register.

c. Write the CSA effective-address bits[33:63] to the MFC_EAL register.

d. Write x‘4000’ (transfer size of 16 KB) to MFC_Size register.

e. Write x‘00’ to MFC_TagID register.

f. Write '0020' to the MFC_ClassID_Cmd register (put command, with TClassID and RClassID 
of '00').

g. Read the MFC_CmdStatus[Rc] register field and, if value is not equal to ‘00’, go back to 
step 50a on page 369. 

51. Write ‘0’ to the SPU_NPC[IE] register field, and write the SPU_NPC[LSA] register field to the LS 
entry-point address of the SPU context-save sequence code2. 

52. Write the SPU_Sig_Notify_1 register with the upper 32 bits of the effective address in the 
CSA where the copy of the LSCSA is stored. (This register is read in step 6 on page 370.) 

53. Write the SPU_Sig_Notify_2 register with the lower 32 bits of the effective address in the CSA 
where the copy of the LSCSA is stored. (This register is read in step 8 on page 370.)

54. Issue a DMA command to the copy the SPU context-save sequence code from main-storage 
to the low 16 KB of the LS and start the SPU:

a. Write the LS beginning address of the SPU context-save sequence code to the MFC_LSA 
register.

b. Write the most-significant word of the main-storage address of the SPU context-save 
sequence code to the MFC_EAH register.

c. Write the least-significant word of the main-storage address of the SPU context-save 
sequence code to the MFC_EAL register.

d. Write the SPU context-save sequence code size to the MFC_Size register.

e. Write x‘00’ to MFC_TagID register.

f. Write '004A' to the MFC_ClassID_Cmd register (getfs command, with TClassID and 
RClassID of '00').

g. Read the MFC_CmdStatus[Rc] register field and, if value is not equal to ‘00’, go back to 
step 54a on page 369.

55. Write the Prxy_QueryMask register to ‘1’ (enable Tag-Group 0). Then, issue a PPE eieio 
instruction.

2. See Section 12.5.1.2 on page 370 for this sequence.
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56. Poll the Prxy_TagStatus[g0] register field until it reads ‘01’ (tag-group 0 complete), or write 
Prxy_QueryType[TS] to ‘01’ and wait for a tag-group complete interrupt. Then, write the 
INT_Stat_class2[T] register field until it reads ‘1’. 

57. Poll the SPU_Status[R] register field until it reads ‘0’, or wait for an SPU class 0 or class 2 
interrupt. Then, reset interrupt conditions by writing the INT_Stat_class0 register with ‘1’ for 
each interrupt handled, and by writing the INT_Stat_class2[T] bit with ‘1’.

58. If the SPU_Status[P] register field is set to ‘1’ and SPU_Status[StopCode] reads Success, the 
context-save has succeeded. Otherwise, the context-save failed. 

59. Proceed to step 26 of the PPE Context-Restore Sequence on page 373. 

12.5.1.2 SPU Context-Save Sequence

The SPU code that performs the following context-save sequence is copied by the PPE into a 
portion of the low 16 KB of the LS and run in step 54 on page 369. This sequence copies the 
remainder of the LS and the contents of the local-storage context save area (LSCSA) into the 
CSA. The LSCSA consists of the GPRs, status registers, and the remaining channel state. 

The SPU Context-Save sequence is:

1. Save the low 16 GPRs, using quadword stores, in the LSCSA. They are saved at this time for 
performance reasons.

2. Read the SPU_RdEventMask channel and save it in the LSCSA.

3. Read the MFC_RdTagMask channel and save it in the LSCSA.

4. Set the SPU_WrEventMask channel to ‘0’ to mask all events.

5. Set the MFC_WrTagMask channel to ‘01’ to unmask only Tag-Group 0.

6. Read the SPU_RdSigNotify1 channel data to obtain the upper 32-bits of the CSA effective 
address.

7. Write the high address from step 6 to the MFC_EAH channel.

8. Read the SPU_RdSigNotify2 channel data to obtain the low 32-bits of the CSA effective 
address.

9. Update the low effective addresses in a predefined, 15-element (16 KB each) DMA list that 
saves the most-significant 240 KB3 of the LS to the CSA.

10. Enqueue a putl (Tag-Group 0) command for the DMA list updated in step 9 on page 370.

11. Save the high 112 GPRs, using quadword stores, in the LSCSA.

12. Issue the floating-point status and control register read instruction (fscrrsd) and save the 
status in the LSCSA.

13. Read and save the SPU_RdDec channel data in the LSCSA. 

14. Read and save the SPU_RdSRR0 channel data in the LSCSA.

15. Enqueue a putllc command, using an effective address in the CSA, to remove any possible 
lock-line reservation.

16. Enqueue a put (Tag-Group 0) command to save the LSCSA to the CSA.

3. The size can differ from 240 KB, depending on the value of the SPU_LSLR register.
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17. Enqueue an mfcsync (Tag-Group 0) command to the MFC_Cmd register.

18. Write the MFC_WrTagUpdate channel with ‘01’ (update tag status on any completion).

19. Read the MFC_RdTagStat channel data. This stalls the SPU until DMA Tag-Group 0 is com-
plete.

20. Read the MFC_RdAtomicStat channel data. This stalls until the putllc command completes.

21. Issue a stop-and-signal (stop) instruction with the status set to a success status. If there is a 
software-detected error in the SPU save-context code, the stop-and-signal status should be 
set to a diagnostic status instead of a success status.

12.5.2 Context-Restore Sequence

12.5.2.1 PPE Context-Restore Sequence for SPE 

This section outlines how to fully restore the context of an SPE.

If the SPE context was successfully saved, as described in Section 12.5.1.1 on page 365, 
proceed to step 26 on page 373. Otherwise, harvest an SPE by performing the following steps:

1. If multithreading is being used, acquire an SPU mutual-exclusion kernel lock.

2. Disable Interrupts from this SPE:

• Write the INT_Mask_class0 register with ‘0’ (disable all class 0 interrupts).

• Write the INT_Mask_class1 register with ‘0’ (disable all class 1 interrupts).

• Write the INT_Mask_class2 register with ‘0’ (disable all class 2 interrupts).

3. Inhibit problem-space access to this SPE, if provided, by unmapping the virtual pages 
assigned to the SPE MMIO problem space.

4. If required, notify the using application that the SPE task has been terminated.

5. Set software Context Switch Pending flag.

6. Remove other SPEs’ access to this SPE by unmapping this SPE’s pages from their address 
spaces.

7. Write the MFC_CNTL[Dh, Sc, Sm] register fields to ‘1’, ‘1’, ‘0’, respectively, to suspend the 
queue and halt the decrementer.

8. Poll the MFC_CNTL[Ss] register field until ‘11’ is returned (queue suspended).

9. If the SPU_Status[R] register field is set to ‘1’ (running):

• If SPU_Status[E] is set to ‘1’, poll SPU_Status[R] until it reads ‘0’ (stopped).

• If SPU_Status[L] is set to ‘1’, or if SPU_Status[IS] is set to ‘1’:

a. Write the SPU_RunCntl[Run] register field to ‘00’ (stop request).

b. issue a PPE eieio instruction. 

c. Poll SPU_Status[R] until it reads ‘0’ (stopped).

d. Write SPU_RunCntl[Run] to ‘10’ (isolate exit request).

e. Issue a PPE eieio instruction

f. Poll SPU_Status[R] until it reads ‘0’ (stopped).
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• If SPU_Status[W] is set to ‘1’:

a. Write SPU_RunCntl[Run] to ‘00’ (stop request). 

b. Issue a PPE eieio instruction. 

c. Poll SPU_Status[R] until it reads ‘0’ (stopped).

• Go to step 11 on page 372.

10. If SPU_Status[R] is set to ‘0’ (stopped):

• If SPU_Status[E] is set to ‘1’:

a. Write MFC_SR1[S] to ‘1’. 

b. Write SPU_RunCntl[Run] to ‘01’(run request).

c. Issue a PPE eieio instruction. 

d. Poll SPU_Status[R] until it reads ‘0’ (stopped).

• If SPU_Status[L] is set to ‘1’, or if SPU_Status[IS] is set to ‘1’:

a. Write MFC_SR1[S] to ‘1’. 

b. Write SPU_RunCntl[Run] to ‘10’ (exit request).

c. Issue a PPE eieio instruction. 

d. Poll SPU_Status[R] until it reads ‘0’ (stopped).

• If there is any other value, no action is needed; the SPU is stopped in a nonisolated 
state.

11. Write the MFC_MSSync register. Then, poll MFC_MSSync[P] for a value of ‘0’.

12. Write all of the MFC_TLB_Invalidate_Entry[IS,VPN,L,Lp] register fields to ‘0’. Then, issue a 
PPE sync instruction. 

13. Handle any pending interrupts from this SPE. This is OS-specific or hypervisor-specific. One 
option is to re-enable interrupts to handle any pending interrupts, with the interrupt handlers 
recognizing the software Context Switch Pending flag, to ensure that the SPE execution or 
MFC command queue is not resumed. 

14. Write the MFC_CNTL[Pc] register field to ‘1’ (purge queue). 

15. Poll MFC_CNTL[Ps] until it reads ‘11’ (purge complete).

16. Write the SPU_PrivCntl[S,Le,A] register fields to ‘0’ (reset).

17. Set the SPU_LSLR register to the size of implemented LS, minus one.

18. Write the MFC_SR1[D] bit to ‘0’, the MFC_SR1[S] bit to ‘1’, and the MFC_SR1[TL,R,PR, and T] 
bits set correctly for the OS environment. 

19. If the MFC_SR1[R] bit is set to ‘1’, write ‘0’ to the SLB_Invalidate_All register.

20. For the following channels: 
• SPU_RdEventStat (channel index 0)
• SPU_WrEventMask (channel index 1)
• SPU_RdSigNotify1 (channel index 3)
• SPU_RdSigNotify2 (channel index 4)
• MFC_RdTagStat (channel index 24)
• MFC_RdListStallStat (channel index 25)
• MFC_RdAtomicStat (channel index 27)
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a. Write the channel index to the SPU_ChnlIndex register. Then, issue an eieio instruc-
tion.

b. Write ‘0’ to the SPU_ChnlData register.

c. Write ‘0’ to the SPU_ChnlCnt register4.

21. For the following channels: 
• MFC_Cmd (channel index 21, count = 16)
• MFC_WrTagUpdate (channel index 23, count = 1)
• SPU_WrOutMbox (channel count 28, count = 1)
• SPU_RdInMbox (channel count 29, count = 0)
• SPU_WrOutIntrMbox (channel count 30, count = 1)

a. Write the channel index to the SPU_ChnlIndex register. Then, issue a PPE eieio 
instruction.

b. Write the count to the SPU_ChnlCnt register.

22. If the OS is using interrupts instead of polling: 

a. Write the INT_Stat_class0 register with -1 (reset all class 0 interrupts).

b. Write the INT_Stat_class1 register with -1 (reset all class 1 interrupts).

c. Write the INT_Stat_class2 register with -1 (reset all class 2 interrupts).

d. Write the INT_Mask_class0 register with OS-specific value (reset OS-supported class 0 
interrupts).

e. Write the INT_Mask_class1 register with OS-specific value (reset OS-supported class 1 
interrupts).

f. Write the INT_Mask_class2 register with OS-specific value (reset OS-supported class 2 
interrupts).

23. Set the software Context Switch Active flag.

24. Write the MFC_TClassID register with the value x‘10000000’ (TClassID0 Quota=16).

25. Write the MFC_CNTL[Sc] register field to ‘0’ and MFC_CNTL[Sm] to ‘0’ (resumes queue process-
ing).

At this point, either the SPE’s context has been saved in the CSA or an SPE has been harvested. 
A context can now be restored from the CSA to the SPE, as described in the following steps:

26. Set a software watchdog timer to the maximum time for the restore sequence.

27. If any of the SPU_Status[I,S,H, P] bits are set to ‘1’ in the CSA, then add the correct instruc-
tion sequence to the end of the SPU context-restore sequence code5, after the context-
restore stop-and-signal (step 22 on page 379) to restore the following values to the 
SPU_Status register:

• SPU_Status[P] set to ‘1’: Stop-and-signal instruction, followed by a branch instruction to 
itself6. 

• SPU_Status[I] set to ‘1’: Illegal instruction, followed by a branch instruction to itself.

4. The channel count need not be restored for the SPU_WrEventMask channel.
5. See Section 12.5.2.2 on page 378. 
6. A branch instruction to itself can be encoded in assembly as “br.”.
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• SPU_Status[H] set to ‘1’: Unconditional halt instruction7 followed by a branch instruction 
to itself.

• SPU_Status[S] set to ‘1’: Two no-op instructions, followed by a branch instruction to itself.

• SPU_Status[S, I] set to ‘1’: Illegal instruction, followed by a branch instruction to itself.

• SPU_Status[S, P] set to ‘1’: Stop-and-Signal instruction with the stop code from the 
saved SPU_Status, followed by a branch instruction to itself.

• SPU_Status[P, H] set to ‘1’: Unconditional halt instruction, followed by a Stop-and-Signal 
instruction with the saved stop code from the saved SPU_Status, followed by a branch 
instruction to itself.

• SPU_Status[P, I] set to ‘1’: Illegal instruction, followed by a Stop-and-Signal instruction 
with the saved stop code from the SPU_Status, followed by a branch instruction to itself.

28. If all the SPU_Status bits[I, S, H, P, R] bits are set to ‘0’ in the CSA (SPU was not execut-
ing), then add a branch instruction to itself to the end of the SPU context-restore sequence 
code, after the context-restore stop-and-signal (step 22 on page 379).

29. Restore the RA_Group_ID and RA_Enable registers from the CSA.

30. If the MFC_SR1[R] register field is set to ‘1’:

a. Write ‘0’ to the SLB_Invalidate_All register.

b. Write x‘0’ to SLB_Index register.

c. Write the SLB_VSID register with the VSID to the SPU context-restore code.

d. Write the SLB_ESID register with the ESID to the SPU context-restore code.

e. Write ‘1’ to SLB_Index register.

f. Write the SLB_VSID register to provide access to the CSA.

g. Write the SLB_ESID register to complete providing access to the CSA.

31. Write the SPU_NPC[IE] register field to ‘0’ and SPU_NPC[LSA] to the LS entry-point address of 
the SPU context-restore code.

32. Write the SPU_Sig_Notify_1 register with the upper 32 bits of the CSA effective address.

33. Write the SPU_Sig_Notify_2 register with the lower 32 bits of the CSA effective address.

34. If the MFC_CNTL[Ds] is set to ‘1’ in the CSA (decrementer was running), adjust the decre-
menter value in the LSCSA copy by the amount of time that elapsed between the context-
save and the context-restore, as follows:

a. Read the Time Base (TB) register value.

b. Subtract the value from the time-base value saved in the CSA during the save sequence. 

c. Subtract that value from the decrementer value in the LSCSA copy.

d. Save the result in the LSCSA copy.

e. Write the software Decrementer Status Running flag in the LSCSA copy.

f. If the updated decrementer value in the LSCSA copy is negative, then set the software 
Decrementer Wrapped flag in the CSA.

35. Copy the SPU_Out_Mbox data from the CSA into the CSA’s copy of the LSCSA.

7. A unconditional halt instruction can be encoded in assembly as “heq r#,r#”, where # is any register.
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36. Copy the SPU_Out_Intr_Mbox data from the CSA into the CSA’s copy of the LSCSA.

37. Issue a DMA command to copy the SPU context-restore sequence code to a portion of the 
low 16 KB of the LS, and start the SPU:

a. Write the beginning LS address of the SPU context-restore sequence to the MFC_LSA reg-
ister.

b. Write the beginning CSA effective-address bits[0:32] of the SPU context-restore 
sequence code to the MFC_EAH register.

c. Write the beginning CSA effective-address bits[33:63] of the SPU context-restore 
sequence code to the MFC_EAL register.

d. Write the size of the SPU context-restore sequence code to the MFC_Size register.

e. Write x‘00’ to the MFC_TagID register.

f. Write '0048' to the MFC_ClassID_Cmd register (gets command, with TClassID and 
RClassID of '00').8

g. Read the MFC_CmdStatus[Rc] register field and, if the value is not ‘00’, go back to step 
37a on page 375.

38. Write the Prxy_QueryMask register to ‘1’ (enable Tag-Group 0), and issue a PPE eieio instruc-
tion.

39. Poll the Prxy_TagStatus[g0] register field until it reads ‘01’ (tag-group 0 complete), or write 
Prxy_QueryType[TS] with ‘01’ and wait for a tag-group complete interrupt. Then, write the 
INT_Stat_class2[T] register field with ‘1’. 

40. Poll the SPU_Status[R] register field until it reads ‘0’, or wait for an SPU class 0 or class 2 
interrupt. Then, reset Interrupt conditions by writing the INT_Stat_class0 register with ‘1’ for 
each interrupt handled, and by writing the INT_Stat_class2[T] bit with ‘1’.

41. If the SPU_Status[P] register field is set to ‘1’ and SPU_Status[StopCode] reads Restore Suc-
cessful, the context-restore succeeded. Otherwise, the context-restore failed, and the 
sequence should be exited.

42. Restore the SPU_PrivCntl register from the CSA.

43. If any of the SPU_Status[I, S, H, P] bits are set to ‘1’ in the CSA, restore the error or single-
step state, as follows:

a. Write the SPU_RunCntl[Run] register field to ‘01’ (run request).

b. Issue a PPE eieio instruction. Then, poll SPU_Status[R] until it is set to ‘0’.

c. Go to step 45 on page 375.

44. If all of the SPU_Status[I, S, H, P, R] bits are set to ‘0’ in the CSA, restore as follows:

a. Write SPU_RunCntl[Run] to ‘01’ (run request).

b. Issue a PPE eieio instruction. Then, poll SPU_Status[R] until it reads ‘1’ (running).

c. Write SPU_RunCntl[Run] to ‘00’ (stop request).

d. Issue a PPE eieio instruction. Then, poll SPU_Status[R] until it reads ‘0’ (stopped).

45. Issue a DMA command to restore the low 16 KB of LS from the CSA:

a. Write x‘0000_0000’ to MFC_LSA register.

8. See Section 12.5.2.2 on page 378 for the sequence to be copied and run.
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b. Write the effective-address bits[0:32] for the beginning of the CSA’s copy of the LS to the 
MFC_EAH register

c. Write the effective-address bits [33:63] for the beginning of the CSA’s copy of the LS to 
the MFC_EAL register.

d. Write the value 16 KB to MFC_Size register.

e. Write x‘00’ to MFC_TagID register.

f. Write '0040' to the MFC_ClassID_Cmd register (get command, with TClassID and RClassID 
of '00').

g. Read the MFC_CmdStatus[Rc] register field. If the value is not equal to ‘00’, go back to 
step 45a on page 375. 

46. Poll the Prxy_TagStatus[g0] register field until it reads ‘01’ (tag-group 0 complete), or write 
the Prxy_QueryType[TS] register field to ‘01’ and wait for tag-group complete interrupt. Then, 
write the INT_Stat_class2[T] register field to ‘1’. 

47. Write the MFC_CNTL[Sc] register field to ‘1’ and the MFC_CNTL[Sm] to ‘0’.

48. Poll MFC_CNTL[Ss] until it reads ‘11’ (queue suspended).

49. Write all of the MFC_TLB_Invalidate_Entry[IS,VPN,L, Lp] register fields to zeros. Then, 
issue a PPE sync instruction. 

50. If the OS is using interrupts instead of polling: 

a. Write the INT_Mask_class0 register with ‘0’ (disable all class 0 interrupts).

b. Write the INT_Mask_class1 register with ‘0’ (disable all class 1 interrupts).

c. Write the INT_Mask_class2 register with ‘0’ (disable all class 2 interrupts).

d. Write the INT_Stat_class0 register with -1 (reset all class 0 interrupts).

e. Write the INT_Stat_class1 register with -1 (reset all class 1 interrupts).

f. Write the INT_Stat_class2 register with -1 (reset all class 2 interrupts).

51. If the MFC_CNTL[Q] bit is set to ‘0’ in the CSA (MFC command queues were not empty), then 
restore 96 doublewords to the MFC_CQ_SR registers from the CSA.

52. Restore the Prxy_QueryMask register from the CSA.

53. Restore the Prxy_QueryType register from the CSA.

54. Restore the MFC_CSR_TSQ register from the CSA.

55. Restore the MFC_CSR_Cmd1 and MFC_CSR_Cmd2 registers from the CSA.

56. Restore the MFC_CSR_ATO register from the CSA. 

57. Restore the MFC_TClassID register from the CSA.

58. Set the lock-line reservation lost event:

a. If SPU_Channel_0_Count is set to ‘0’ in the CSA, and SPU_WrEventMask[Lr] is set to ‘1 in 
the CSA’, and SPU_RdEventStat[Lr] is set to ‘0’ in the CSA, then set 
SPU_RdEventStat_Count to ‘1’ in the CSA.

b. Set the SPU_RdEventStat[Lr] to ‘1’ in the CSA to set lock-line reservation lost event.
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59. If the status of the CSA software Decrementer Wrapped flag is set:

a. If the SPU_Channel_0_Count is set to ‘0’ in the CSA, and the SPU_WrEventMask[Tm] is set 
to ‘1’ in the CSA, and the SPU_RdEventStat [Tm] is set to ‘0’ in the CSA, then set the 
SPU_RdEventStat_Count to ‘1’ in the CSA.

b. Set the SPU_RdEventStat[Tm] to ‘1’ in the CSA to set a decrementer event.

60. For the following channels: 

• SPU_RdEventStat (channel index 0)

• SPU_RdSigNotify1 (channel index 3)

• SPU_RdSigNotify2 (channel index 4)

• MFC_RdTagStat (channel index 24)

• MFC_RdListStallStat (channel index 25)

• MFC_RdAtomicStat (channel index 27)

a. Write the channel index to the SPU_ChnlIndex register, and issue a PPE eieio 
instruction.

b. Restore channel data to the SPU_ChnlData register from the CSA.

c. Restore channel count to the SPU_ChnlCnt register from the CSA.

61. For the following channels: 

• MFC_WrMSSyncReq (channel index 9, count = 1)

• MFC_Cmd, (channel index 21, count from CSA)

• MFC_WrTagUpdate, (channel index 23, count = 1)

a. Write the channel index to the SPU_ChnlIndex register, and issue a PPE eieio 
instruction.

b. Restore the channel count to the SPU_ChnlCnt register from the count.

62. Restore the SPU_LSLR register from the CSA.

63. Restore the SPU_Cfg register from the CSA.

64. Restore the PM_Trace_Tag_Wait_Mask register from the CSA.

65. Restore the SPU_NPC register from the CSA.

66. For the SPU_RdInMbox channel:

a. Write the channel index value 29 to the SPU_ChnlIndex register, and issue a PPE eieio 
instruction.

b. Restore the SPU_ChnlCnt register from the SPU_RdInMbox_Count in the CSA.

c. Restore the SPU_ChnlData register from the CSA’s SPU_RdInMbox data0 area.9

d. Restore the SPU_ChnlData register from the CSA’s SPU_RdInMbox data1 area.

e. Restore the SPU_ChnlData register from the CSA’s SPU_RdInMbox data2 area.

f. Restore the SPU_ChnlData register from the CSA’s SPU_RdInMbox data3 area.

9. This was saved in the CSA in step 43c on page 368. 



Programming Handbook

Cell Broadband Engine  

SPE Context Switching
Page 378 of 884

Version 1.11
May 12, 2008

67. If SPU_Mbox_Stat[P] is set to ‘0’ in the CSA (mailbox empty), read from the SPU_Out_Mbox reg-
ister (discarding the data).

68. If SPU_Mbox_Stat[I] is set to ‘0’ in the CSA (interrupt mailbox empty):

a. Read from the SPU_Out_Intr_Mbox register (discarding the data).

b. Write the INT_Stat_Class2[M] register field to ‘1’ (reset mailbox interrupt status).

69. If MFC_SR1[R] is set to ‘1’ in the CSA:

a. Restore the SLB_Index register from the CSA. 

b. For index=0 through index=7:

1. Write the index value to the SLB_Index register, and issue a PPE eieio instruction.

2. Restore the SLB_ESID register from SLB_ESID[index] in the CSA.

3. Restore the SLB_VSID register from SLB_VSID[index] in the CSA.

c. Restore the SLB_Index register from the CSA.

70. Restore the MFC_SR1 register from the CSA.

71. Restore other SPE mappings to the SPE.

72. If SPU_Status[R] is set to ‘1’ in the CSA (running), write the SPU_RunCntl[Run] register field to 
‘01’. 

73. Restore the MFC_CNTL register from the CSA. 

74. Restore mapping of the PPE-side problem-state access to the SPE resources.

75. Reset the Context Switch Active flag.

76. Re-enable SPE interrupts:

• Restore the INT_Mask_class0 register from the CSA. 

• Restore the INT_Mask_class1 register from the CSA. 

• Restore the INT_Mask_class2 register from the CSA.

77. If multithreading is being used, release software SPU mutual-exclusion lock.

12.5.2.2 SPU Context-Restore Sequence

The following context-restore sequence is copied by the PPE into a portion of the low 16 KB of 
the LS and run in step 37f on page 375:

1. Set the SPU_WrEventMask channel to ‘0’ to mask all events.

2. Set the MFC_WrTagMask channel to ‘01’ to unmask only Tag-Group 0.

3. Read the SPU_RdSigNotify1 channel data to obtain the high address of the CSA effective 
address.

4. Write the high address from step 3 to the MFC_EAH channel.

5. Read the SPU_RdSigNotify2 channel data to obtain the low address of the CSA effective 
address.

6. Update the low effective addresses in a predefined, 15-element (16 KB each) DMA list that 
restores the most-significant 240 KB of the LS from the CSA.
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7. Enqueue a get (Tag-Group 0) command to restore the LSCSA copy from the CSA to the 
LSCSA (in low LS memory). 

8. Enqueue a getl (Tag-Group 0) command for the DMA list updated in step 6 on page 378.

9. Write the MFC_WrTagUpdate channel with a value of ‘01’ to update the tag status on any com-
pletion.

10. Read the MFC_RdTagStat channel data. This stalls the SPU until the DMA Tag-Group 0 
instruction is complete.

11. Issue quadword loads for the high 112 GPRs from the LSCSA.

12. If the LSCSA software Decrementer Running flag is set, then write the SPU_WrDec channel 
with the decrementer value from the LSCSA.

13. Enqueue a putllc command using an effective address in the CSA, to remove any possible 
lock-line reservation.

14. Read the MFC_RdAtomicStat channel data. This stalls the SPU until the putllc completes.

15. Write the SPU_WrOutMbox channel with the SPU_WrOutMbox data from the LSCSA.

16. Write the SPU_WrOutIntrMbox channel with the SPU_WrOutIntrMbox data from the LSCSA.

17. Restore the Floating-Point Status and Control Register (FPSCR) from the LSCSA using the 
fscrwr instruction.

18. Restore the Save and Restore Register 0 (SRR0) data from the LSCSA and write to the 
SPU_WrSSR0 channel. 

19. Read the SPU_RdEventMask data from the LSCSA and write to the SPU_WrEventMask channel.

20. Read the MFC_RdTagMask data from the LSCSA and write to the MFC_WrTagMask channel.

21. Restore the low 16 GPRs from the LSCSA using quadword loads.

22. Issue a stop-and-signal (stop) instruction with a success status.

23. There might be additional instructions placed here to restore the correct stopped state (see 
steps 27 and 28 on page 373).

If there is a software-detected error in the SPU Context-Restore Sequence, the SPU_RdInMbox 
channel can be written with a diagnostic status. A halt conditional instruction should then be 
issued, followed by a branch instruction to itself.

12.6 Considerations for Hypervisors

The preceding sequences assume an OS that is running at both privilege 1 and privilege 2 
levels—that is, an operating environment without a separate hypervisor and without support for 
logical-partition switching. If a hypervisor is used and the SPE to be switched is allocated to a 
logical partition, an additional state might need to be saved, set, and restored. This state might 
include some or all of the following:

• MFC Logical Partition ID Register (MFC_LPID).

• Interrupt Routing Register (INT_Route).

• MFC Storage Description Register (MFC_SDR).

• SMM Hardware Implementation Dependent Register (SMM_HID).
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• MFC Real-Mode Address Boundary Register (MFC_RMAB).

• 256 TLB Entries.

• MFC TLB Index Register (MFC_TLB_Index).

• MFC TLB Real-Page Number Register (MFC_TLB_RPN).

• MFC TLB Virtual-Page Number Register (MFC_TLB_VPN).

• MFC TLB Replacement Management Table Data Register (MFC_TLB_RMT_Data).

• MFC command request order is lost.

• DMA and register lock state for address translation exceptions is lost.

See Section 11 Logical Partitions and a Hypervisor on page 331 for details about these 
resources. 
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13. Time Base and Decrementers

13.1 Introduction

The time-base facility provides the timing functions for the processor core-clock (NClk) domain. 
The facility includes two software-visible 64-bit time-base registers—one for configuration and 
one for counting—and eleven software-visible 32-bit decrementers—three in the PowerPC 
Processor Element (PPE) (two for user software, and one for hypervisor software) and one in 
each of the eight Synergistic Processor Elements (SPEs) (for user software). 

The counting time-base (called the TB register) and decrementer registers count time in ticks, at 
a ticking rate called the time-base frequency, regardless of the Slow-State setting1. The TB 
register and all decrementers are updated at the same time-base frequency. The TB register 
provides a long-period counter; it holds a monotonically increasing value, and it is split into upper 
and lower halves. the 32-bit decrementers support shorter-period counting and most of them 
provide interrupt-signaling after a specified amount of time has elapsed. 

The TB register and the four PPE decrementers are implemented in the Cell Broadband Engine 
Architecture (CBEA) processors2 as PPE Special-Purpose Registers (SPRs). All of these regis-
ters are volatile and must be initialized during startup. The eight SPE decrementers are imple-
mented in the CBEA processors as synergistic processor unit (SPU) channel registers that are 
accessed by SPE software using channel instructions (rdch or wrch). 

13.2 Time-Base Facility

13.2.1 Clock Domains

The CBEA processors have three clock domains, each running asynchronously to the other two 
domains: 

• Processor Core Clock (NClk)—This clock times the PowerPC processor unit (PPU), the 
SPUs, and parts of the PowerPC processor storage subsystem (PPSS) and the memory flow 
controllers (MFCs). The processor core clock (NClk) is occasionally referred to as the core 
clock (CORE_CLK) or core clock frequency (CCF). 

• MIC Clock (MiClk)—This clock times the memory interface controller (MIC). 

• BIC Core Clock (BClk)—This clock times the bus interface controller (BIC), which is part of 
the Cell Broadband Engine interface (BEI) unit to the I/O interface. 

The following logic blocks run at half the processor core clock frequency (NClk/2):

• Element interconnect bus (EIB) and interfaces to the EIB (parts of the PPSS and MFCs)

• I/O Interface controller (IOC) 

• MIC logic that is part of the CBEA processor core

• BIC logic that is part of the CBEA processor core

1. See Section 15.1.1 Slow State on page 430 for information about the Slow State.
2. The Cell Broadband Engine (Cell/B.E.) and PowerXCell 8i processors are collectively called CBEA processors.
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• Pervasive logic, which is the logic that provides power management, thermal management, 
clock control, software-performance monitoring, trace analysis, and so forth 

The time-base and decrementer facilities described in this section fall entirely within the 
processor core clock (NClk) domain. 

13.2.2 Time-Base Registers

There are two registers with the name “Time Base Register” but they have different acronyms:

• Time Base Register (TB)—This SPR register contains the time-base count value, as 
described in Section 13.2.3 on page 383. The physical implementation of this register actu-
ally includes the following SPR registers:

– Time Base Register, Read Only (TB), SPR #268

– Time Base Upper Register, Read Only (TBU), SPR #269

– Time Base Lower Register, Write Only (TBL), SPR #284

– Time Base Upper Register, Write Only (TBU), SPR #285

• Time Base Register (TBR)—This memory-mapped I/O (MMIO) register specifies the time-
base sync mode, as described in Section 13.2.4 on page 384, and the internal reference-
clock divider setting, as described in Section 13.2.3 on page 383. 

For details on the TBR register, see the Cell Broadband Engine Registers specification. 

The TB register, shown in Figure 13-1, is a 64-bit structure that contains a 64-bit unsigned 
integer. The register is divided into two halves, a 32-bit TB Upper Register (TBU) and a 32-bit TB 
Lower Register (TBL). Each tick pulse to the TB register adds ‘1’ to the low-order bit, bit[31], of 
TBL. 

The TB register can be read by user or supervisor software but written only by hypervisor soft-
ware. The register must be software-enabled to allow updates. Set SPR HID6[tb_enable] to 1 to 
enable the time-base facility. Software reads and writes of the TB register are always allowed, 
regardless of SPR HID6[tb_enable]. Writes take precedence over updates (increments). Updates 
are ignored if they collide with a write operation. 

The TB register increments until its value becomes x‘FFFFFFFF_FFFFFFFF’ (264 – 1). At the 
next increment its value becomes x‘00000000_00000000’. There is no exception or explicit indi-
cation when this occurs. If the update frequency of the TB register is constant, the register can be 
used as a source of values that increase at a constant rate, such as for time stamps in trace 
entries. Even if the update frequency is not constant, values read from the TB register are mono-
tonically increasing (except when the value in the TB register wraps from 264 – 1 to 0). If a trace 
entry is recorded each time the update frequency changes, the sequence of TB-register values 
can be postprocessed to become actual time values.

Figure 13-1. Time Base (TB) Register 

0 31 0 31

TBU—Upper 32 bits of time base TBL—Lower 32 bits of time base
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13.2.3 Time-Base Frequency

Each tick pulse to the TB register causes it to increment by one, if it is software-enabled to allow 
updates. There are two modes for updating the TB register:

• Internal Time-Base Sync Mode: In this mode, a phase-locked loop (PLL) reference clock 
(PLL_REFCLK) external input signal and a core clock multiplier (CCM) are used to synchronize 
and increment the TB register. See Section 13.2.4.1 on page 384 for details. 

• External Time-Base Sync Mode: In this mode, the rising edge of the Time-Base Enable 
(TBEN) external input signal is used to synchronize and increment the TB register. See 
Section 13.2.4.3 on page 387 for details. 

In the internal time-base sync mode, the processor core clock (NClk) frequency is:

NClk = PLL_REFCLK × CCM

The maximum time-base frequency is constrained by the following factors:

• PLL reference clock (PLL_REFCLK) frequency.

• Core clock multiplier (CCM), also called the PLL multiplier setting (PLLmultiplier).

• Power-management slow state (called slow mode in parameters described in this section). 
For details, see Section 15.1.1 Slow State on page 430. 

The equations for maximum time-base frequency (Fmax) are:

RefDiv ≥ ⎡MaxSlowModeNclkDivider × 11 / CCM⎤

Fmax (Internal Mode) = PLL_REFCLK / RefDiv

Fmax (External Mode) ≤ PLL_REFCLK / (1 + (11 × MaxSlowModeNclkDivider / CCM))

The preceding equations account for the worst-case Slow State setting, which guarantees that 
the time-base frequency remains constant during Slow State and during transitions between 
Slow States. 

The term MaxSlowModeNClkDivider denotes the maximum processor core clock (NClk) frequency 
divider in Slow State configured by the operating system. The Power Management hardware 
supports eight different Slow-State dividers (also called slow-mode dividers): 0 through 7. The 
MaxSlowModeNClkDivider values for each of these settings are 1, 2, 3, 4, 5, 6, 8, and 10 respec-
tively. The value is set in the Power Management Control Register (PMCR). See PMSR[BE_Slow_n] 
for the current Slow State setting, and see Section 15.1.1 Slow State on page 430 for information 
about how to change power management states.

The standard 3.2 GHz processor core clock (NClk) is configured by specifying the Internal Time-
Base Sync State, a 400 MHz PLL reference clock (PLL_REFCLK) frequency, and a core clock multi-
plier (CCM) of x8. 

If the operating system uses all the Slow State settings—that is to say, the MaxSlowModeNClkDi-
vider is 10—the maximum time-base frequency is 28.57 MHz in internal time-base sync mode 
and 27.11 MHz in external time-base sync mode. The time-base frequency of such a system is 
limited to 200 MHz with Slow State disabled and in internal time-base sync mode.
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The maximum time-base frequency limit guarantees a constant time-base frequency during func-
tional operation of the processor (including during all slow states). The time base should be set to 
a frequency below this limit. The time base should not be changed again in response to changes 
to the slow mode setting. Changes to the time-base frequency affect the operation and frequency 
of all time-base facilities including: the time base, PPE DEC 0, PPE DEC 1, HDEC, WDEC, and 
the SPU decrementers. If it is necessary to change the time-base frequency, all time-base facili-
ties need to be reinitialized.

13.2.4 Time-Base Sync Mode Controls

The SPR HID6[tb_enable] bit enables the time-base facility. After enabling, the time-base sync 
mode (internal or external) can be selected in the Time Base MMIO Register (TBR) using the 
TBR[Timebase_mode] bit. In the internal time-base sync mode, the TB register should be initialized 
and TBR[Timebase_setting] is used to specify the required time-base frequency, up to the 
maximum, Fmax. 

13.2.4.1 Internal Time-Base Sync Mode

In internal time-base sync mode, TBR[Timebase_setting] is set according to the maximum time-
base calculation. The value in TBR[Timebase_setting] can vary from 0 to 255. If it is ‘0’, the 
internal time-base sync mode is disabled and the TB register is not counting. If it is any other 
value, the TBR[Timebase_setting] value is used to determine the RefDiv value, as described in 
Section 13.2.4.2 on page 387. 

Given our previous example of a 400 MHz PLL reference clock (PLL_REFCLK) and x8 core clock 
multiplier, in which all Slow State settings are supported, then:

    RefDiv ≥ ceil(10 × 11 / 8) = 14.
    Fmax = 400 MHz / 14 = 28.57 MHz.

The maximum time-base frequency of 28.57 MHz is configured by setting 
TBR[Timebase_setting] to x‘94’. This value is determined by finding the Timebase_setting entry 
in Table 13-1 on page 385 equal to RefDiv of 14. If a slower time-base is required—for example 
5 MHz (a RefDiv value of 80)—then the TBR[Timebase_setting] register field is set to x‘A7’.

To enable internal time-base sync mode operation, follow these steps:

1. Initialize the TB register.

2. Set TBR[timebase_mode] to ‘1’, and TBR[Timebase_setting] to ‘0’. 

3. Set TBR[timebase_mode] to ‘0’, and TBR[Timebase_setting] to the value corresponding to the 
required RefDiv value (see Table 13-1 on page 385). 

A timing diagram of steps 2 and 3 of this sequence is shown in Figure 13-2 on page 385. In a 
multiple-CBEA-processor system, TBEN can be used to synchronize the start of updates to TB 
registers across all CBEA processors. As shown in Figure 13-2, the time base of each CBEA 
processor does not start until after TBEN becomes ‘1’. In a single-CBEA-processor system, 
TBEN can be tied high and the TB register starts updating after step 2. 
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Figure 13-2. Internal Time-Base Sync Mode Initialization Sequence 

TBR[timebase_setting]

TBR[timebase_mode]

0

0

time base starts counting

0

Required Setting

TBEN

1 0

1

Table 13-1. TBR[Timebase_setting] for Reference Divider (RefDiv) Setting  (Sheet 1 of 3)

RefDiv Timebase_setting RefDiv Timebase_setting RefDiv Timebase_setting RefDiv Timebase_setting

01 00 64 7B 128 86 192 37

1 FF 65 3D 129 43 193 9B

2 7F 66 9E 130 21 194 4D

3 3F 67 CF 131 10 195 26

4 9F 68 67 132 88 196 93

5 4F 69 B3 133 44 197 49

6 27 70 D9 134 A2 198 24

7 13 71 EC 135 D1 199 92

8 09 72 76 136 E8 200 C9

9 84 73 BB 137 74 201 64

10 42 74 DD 138 BA 202 32

11 A1 75 EE 139 5D 203 19

12 50 76 77 140 AE 204 0C

13 28 77 3B 141 D7 205 06

14 94 78 9D 142 EB 206 03

15 CA 79 4E 143 F5 207 81

16 E5 80 A7 144 7A 208 C0

17 F2 81 53 145 BD 209 E0

18 F9 82 A9 146 DE 210 70

19 7C 83 54 147 6F 211 B8

20 BE 84 2A 148 B7 212 5C

21 5F 85 95 149 DB 213 2E

22 AF 86 4A 150 ED 214 97

23 57 87 A5 151 F6 215 4B

24 AB 88 52 152 FB 216 25

1. This setting disables internal time-base sync mode. 



Programming Handbook

Cell Broadband Engine  

Time Base and Decrementers
Page 386 of 884

Version 1.11
May 12, 2008

25 55 89 29 153 7D 217 12

26 AA 90 14 154 3E 218 89

27 D5 91 8A 155 1F 219 C4

28 EA 92 45 156 0F 220 E2

29 75 93 22 157 87 221 71

30 3A 94 91 158 C3 222 38

31 1D 95 48 159 61 223 1C

32 0E 96 A4 160 B0 224 8E

33 07 97 D2 161 58 225 47

34 83 98 69 162 2C 226 23

35 C1 99 B4 163 96 227 11

36 60 100 5A 164 CB 228 08

37 30 101 2D 165 65 229 04

38 18 102 16 166 B2 230 02

39 8C 103 8B 167 59 231 01

40 46 104 C5 168 AC 232 80

41 A3 105 62 169 D6 233 40

42 51 106 31 170 6B 234 A0

43 A8 107 98 171 B5 235 D0

44 D4 108 CC 172 DA 236 68

45 6A 109 E6 173 6D 237 34

46 35 110 73 174 B6 238 1A

47 9A 111 39 175 5B 239 8D

48 CD 112 9C 176 AD 240 C6

49 66 113 CE 177 56 241 E3

50 33 114 E7 178 2B 242 F1

51 99 115 F3 179 15 243 78

52 4C 116 79 180 0A 244 BC

53 A6 117 3C 181 05 245 5E

54 D3 118 1E 182 82 246 2F

55 E9 119 8F 183 41 247 17

56 F4 120 C7 184 20 248 0B

57 FA 121 63 185 90 249 85

58 FD 122 B1 186 C8 250 C2

59 7E 123 D8 187 E4 251 E1

Table 13-1. TBR[Timebase_setting] for Reference Divider (RefDiv) Setting  (Sheet 2 of 3)

RefDiv Timebase_setting RefDiv Timebase_setting RefDiv Timebase_setting RefDiv Timebase_setting

1. This setting disables internal time-base sync mode. 
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13.2.4.2 Determining the System Time-Base Frequency

Assuming the time base is configured as internal time-base sync mode, then the frequency can 
be determined using the following procedure:

1. Verify that the system is configured in internal time-base sync mode by reading the TBR reg-
ister and verifying that the TBR[Timebase_mode] field is '0'.

2. Determine the RefDiv value by doing a inverse table lookup of Table 13-1 using the value 
stored in TBR[Timebase_setting]. For example, if the TBR[Timebase_setting] value is x‘2A’, 
then the RefDiv is 84. If TBR[Timebase_setting] is 0, then the time base is disabled.

3. Compute the time-base frequency by multiplying the PLL_REFCLK and RefDiv.

The number of cycles, either PPE or SPE cycles, per time-base tick is further reduced based 
upon the current Slow State setting, PMSR[BE_Slow_n].

   cycles per time-base tick = PLL_REFCLK × RefDiv / SlowModeFactor.   

where the SlowModeFactor is either 1, 2, 3, 4, 5, 6, 8, or 10 corresponding to the 
PMSR[BE_Slow_n] values of 0 through 7.

Because the time-base registers are accessible only by privileged software, the operating envi-
ronment should provide information about the time-base frequency. Consult system documenta-
tion for specific details.

13.2.4.3 External Time-Base Sync Mode 

To select the external time-base sync mode, set TBR[timebase_mode] to ‘1’. The value of 
TBR[Timebase_setting] has no effect, although the no effect, but the recommended value is 
x‘00’. 

In the external time-base sync mode, the rising edge of the TBEN signal is used to generate the 
TB-register ticks. Similar to internal time-base sync mode, TBEN can be used to synchronize the 
start of the time base across different CBEA processors in a multi-CBEA-processor system. A 
timing diagram is shown in Figure 13-3 on page 388. In a single-CBEA-processor system, TBEN 
can be active before TBR[timebase_mode] is set to ‘1’.

60 BF 124 6C 188 72 252 F0

61 DF 125 36 189 B9 253 F8

62 EF 126 1B 190 DC 254 FC

63 F7 127 0D 191 6E 255 FE

Table 13-1. TBR[Timebase_setting] for Reference Divider (RefDiv) Setting  (Sheet 3 of 3)

RefDiv Timebase_setting RefDiv Timebase_setting RefDiv Timebase_setting RefDiv Timebase_setting

1. This setting disables internal time-base sync mode. 
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13.2.5 Reading and Writing the TB Register

13.2.5.1 Reading the TB Register

Either user or supervisor software can read the contents of the TB register into a general-
purpose register (GPR). To read the contents of the TB register into register rA, execute the 
following instruction:

mftb rA 

The preceding example uses the simplified (extended) mnemonic form of the mftb instruction 
(equivalent to mftb rA,268). Using this instruction copies the entire TB register (TBU || TBL) into 
rA. Reading the TB register has no effect on the value it contains or the periodic incrementing of 
that value. 

If the simplified mnemonic form mftbu rA (equivalent to mftb rA,269) is used, the contents of 
TBU are copied to the low-order 32 bits of rA, and the high-order 32 bits of rA are cleared 
(0 || TBU).

13.2.5.2 Writing the TB Register

Only hypervisor software can write the contents of a GPR into the TB register. The simplified 
(extended) mnemonics, mttbl and mttbu, write the lower and upper halves of the TB register, 
respectively. The simplified mnemonics are for the mtspr instruction. The mtspr, mttbl, and 
mttbu instructions treat TBL and TBU as separate 32-bit registers; setting one leaves the other 
unchanged. It is not possible to write the entire 64-bit TB register in a single instruction. 

The instructions for writing the TB register are not dependent on the implementation or mode. 
Thus, code written to set the TB register on a 32-bit implementation will work correctly on the 
CBEA processors. 

The TB register can be written by a sequence such as:
lwz rx,upper #load 64-bit value for
lwz ry,lower # TB into rx and ry
li rz,0
mttbl rz #force TBL to 0
mttbu rx #set TBU
mttbl ry #set TBL

Figure 13-3. External Time-Base Sync Mode Initialization Sequence 

TBR[timebase_setting]

TBEN

TBR[timebase_mode]

0

0 1

0 0

time base starts counting

11 0
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Provided that no exceptions occur while the last three instructions are being executed, loading 0 
into TBL prevents the possibility of a carry from TBL to TBU while the TB register is being initial-
ized.

13.2.6 Computing Time-of-Day

Because the update frequency of the TB register is system-dependent, the algorithm for 
converting the current value in the TB register to time-of-day is also system-dependent.

In a system in which the update frequency of the TB register can change over time, it is not 
possible to convert an isolated time-base value into time of day. Instead, a time-base value has 
meaning only with respect to the current update frequency and the time of day at which the 
update frequency was last changed. 

Each time the update frequency changes, either the system software is notified of the change by 
means of a decrementer interrupt, or the change was instigated by the system software itself. At 
each such change, the system software must compute the current time of day using the old 
update frequency, compute a new value of ticks-per-second for the new frequency, and save the 
time of day, time-base value, and tick rate. Subsequent calls to compute time of day use the 
current time-base value and the saved data.

A generalized service to compute time-of-day can take the following as input:

• Time-of-day at beginning of current epoch

• Time-base value at beginning of current epoch

• Time-base update frequency

• Time-base value for which time-of-day is required

For a CBEA processor system in which the time-base update frequency does not vary, the first 
three inputs are constant.

13.3 Decrementers

The CBEA processors contain eleven software-visible decrementers, three in the PPE and one in 
each SPE. All decrementers tick at the same frequency as the same time-base frequency, 
subject to control commands which turn them on and off. 

13.3.1 PPE Decrementers

The PPE has three 32-bit software-visible decrementers: 

• Two decrementers (DEC), one per PPE thread, accessible to supervisor software

• One hypervisor decrementer (HDEC), accessible to hypervisor software

Each update tick to the PPE decrementers causes their values to decrease by one, at the time-
base frequency. SPR HID6[tb_enable] must be software-enabled to allow PPE decrementer 
updates.
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The DEC decrementers support short-term counting and provide a means of signaling an inter-
rupt after a specified amount of time has elapsed, unless the decrementer is altered by software 
in the interim, or the time-base frequency changes. 

The HDEC hypervisor decrementer provides a means for hypervisor software to manage timing 
functions independently of the decrementers, which are managed by user or supervisor software 
running in virtual partitions. Similar to the decrementer, the HDEC is a counter that is updated at 
the time-base frequency, and it provides a means of signaling an interrupt after a specified 
amount of time has elapsed. For more about HDEC, see Section 11 Logical Partitions and a 
Hypervisor on page 331.

13.3.1.1 Decrementer Operation

The DEC counts down, causing a decrementer interrupt (unless masked by MSR[EE]) when it 
passes through ‘0’. The DEC satisfies the following requirements:

• The operations of the TB and DEC registers are driven by the same time-base frequency.

• Loading a GPR from the DEC has no effect on the DEC.

• Storing the contents of a GPR to the DEC replaces the value in the DEC with the value in the 
GPR.

• Whenever bit[0] of the DEC is set to ‘1’, a decrementer interrupt is signaled. Multiple decre-
menter interrupts can be received before the first interrupt occurs; however, any additional 
requests are canceled when the interrupt occurs for the first request.

• If the DEC is altered by software and the content of bit [0] is set to ‘1’, a decrementer interrupt 
is signaled.

In systems that change the time-base frequency for purposes such as power management, the 
decrementer input frequency will also change. Software must be aware of this to set interval 
timers. 

13.3.1.2 Writing and Reading the Decrementers

The contents of the DEC can be read or written using the mfspr and mtspr instructions, both of 
which are supervisor instructions when they refer to the DEC. Using a simplified (extended) 
mnemonic for the mtspr instruction, the DEC can be written from GPR rA with the following:

mtdec rA

Using a simplified (extended) mnemonic for the mfspr instruction, the DEC can be read into GPR 
rA with the following:

mfdec rA

13.3.2 SPE Decrementers

13.3.2.1 Decrementer Operation

Each SPU contains one 32-bit decrementer implemented as a down-counter. All decrementers in 
the SPUs and the PPE count down at the same rate. An SPU decrementer is accessed through 
two channels—the SPU Write Decrementer Channel (SPU_WrDec) and the SPU Read Decre-
menter Channel (SPU_RdDec)—as described in Section 17.4 SPU Decrementer on page 454. 
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An SPU decrementer can be run, read, and halted by SPU channel instructions, which can also 
enable or disable decrementer events. A decrementer event becomes pending when the value in 
the decrementer changes from ‘0’ to negative (the most-significant bit changes from ‘0’ to ‘1’). 
See Section 18.6.9 Procedure for Handling the SPU Decrementer Event on page 489 for details 
on event-interrupt handling. 

13.3.2.2 Writing and Reading the Decrementers

The SPU decrementer is accessed by reading and writing SPU channels using the rdch and 
wrch instructions or using the spu_readch and spu_writech intrinsics. The decrementer value 
is read from the SPU Read Decrementer Channel, and the SPU Write Decrementer Channel 
allows the decrementer value to be set. In addition, the SPU Write Event Mask Channel and the 
SPU Write Event Acknowledgment Channel are used to turn the decrementer on and off, and to 
handle decrementer events.

For more information about the SPU decrementer channels, see Section 17 SPE Channel and 
Related MMIO Interface on page 447. 

13.3.3 Using an SPU Decrementer to Monitor SPU Code Performance

The following example demonstrates the use of an SPU decrementer to monitor code perfor-
mance. In the example, profiling macros are inserted into the source code around the sections of 
code to be timed. The resulting timing information is output to the console, but it could instead be 
read and processed by an application program.

13.3.3.1 Sample Performance-Profiling Code

The following sample code illustrates a general approach to performance profiling of the SPEs. 
The sample uses a profile-checkpoint facility which allows timing of code sections. Source code 
to be timed can be instrumented with macros, such as the prof_cp(N) macros shown here 
(where N is a number) that resolve to special no-op instructions that the profiling program inter-
prets as commands to output instruction-count and cycle-count information. The prof_clear(), 
prof_start(), and prof_stop() macros have additional meaning: prof_clear() clears the 
performance information, prof_start() starts recording of performance data, and prof_stop() 
turns off recording of the data.

The following shows the use of the profiling macros:

#include "profile.h"

...
prof_clear();
prof_start();
...
<code to be timed>
...
prof_stop();

Additional prof_cp(N) macros can be inserted in the timed section for finer-grained timing infor-
mation.
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13.3.3.2 Hardware Code Performance

Because the granularity of the decrementer-based profiling implementation is limited by the 
frequency of the SPU decrementer, the code sections to be timed should typically execute 
several thousand SPU cycles to obtain reasonable accuracy. The implementation is not suitable 
for extremely fine-grained timing of SPU code. 

13.3.3.3 SPU Decrementer Profiling

In the following code sample, the total number of elapsed decrementer ticks is kept in a global 
variable called _count (each SPU has its own copy). Another global variable, _count_base, keeps 
track of the last value read from the decrementer. To allow timing to be turned on and off, a 
boolean variable called _counting keeps track of whether or not profiling is enabled. These vari-
ables are defined as:

extern volatile unsigned long long _count

extern volatile unsigned int _count_base

extern volatile _Bool _counting;

In the body of the prof_cp() macro, if profiling is enabled, the decrementer value is read from the 
SPU Read Decrementer Channel, using the spu_readch intrinsic, and subtracted from the 
_count_base. This gives the elapsed number of decrementer ticks since the last profiling-macro 
invocation (the decrementer counts down with each tick). If the decrementer value is greater than 
the _count_base, an underflow condition has occurred; underflow can also occur if end is less 
than _count_base, but ignore that situation for the moment. 

Assuming a single decrementer underflow, the elapsed number of ticks is given by x‘FFFF FFFF’ 
+ _count_base - end. The global _count is incremented by the elapsed ticks calculated previ-
ously, and a message displaying the count is printed to the console output. Finally, to avoid 
counting the time spent in the profiling macro itself, the decrementer is read once again and 
assigned to the _count_base variable.

The following code sample implements the routine described in the preceding paragraphs:

#define DECR_MAX   0xFFFFFFFF
#define DECR_COUNT DECR_MAX

#define prof_cp(cp_num)                                    \
{                                                          \
   if (_counting) {                                        \
     unsigned int end = spu_readch(SPU_RdDec);             \
     _count += (end > _count_base) ?                       \
       (DECR_MAX + _count_base - end) :                    \
       (_count_base - end);                                \
   }                                                       \
   printf("SPU#: CP"#cp_num", %llu\n", _count);            \
   _count_base = spu_readch(SPU_RdDec);                    \
}
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The prof_clear() macro is implemented similarly, except that it also clears the timing informa-
tion after displaying it:

#define prof_clear()                                      \
{                                                         \
   if (_counting) {                                       \
     unsigned int end = spu_readch(SPU_RdDec);            \
     _count += (end > _count_base) ?                      \
       (DECR_MAX + _count_base - end) :                   \
       (_count_base - end);                               \
   }                                                      \
   printf("SPU#: clear, %llu\n", _count);                 \
   _count = 0;                                            \
    _count_base = spu_readch(SPU_RdDec);                  \
}

The prof_start() macro performs the additional work of enabling the decrementer. This is done 
by using an spu_writech intrinsic to write a new decrementer count to the SPU Write Decre-
menter Channel, and another spu_writech to the SPU Write Event Mask Channel to enable 
decrementer events:

#define prof_start()                                      \
{                                                         \
   if (_counting) {                                       \
     unsigned int end = spu_readch(SPU_RdDec);            \
     _count += (end > _count_base) ?                      \
       (DECR_MAX + _count_base - end) :                   \
       (_count_base - end);                               \
   }                                                      \
   printf("SPU#: start, %llu\n", _count);                 \
   spu_writech(SPU_WrDec, DECR_COUNT);                    \
   spu_writech(SPU_WrEventMask, MFC_DECREMENTER_EVENT);   \
   _counting = 1;                                         \
    _count_base = spu_readch(SPU_RdDec);                  \
}

Finally, the prof_stop() macro disables counting by writing the SPU Write Event Mask Channel 
to disable decrementer events, and writing the SPU Write Event Acknowledgment Channel to 
acknowledge pending events and stop the decrementer, again using the spu_writech intrinsic:

#define prof_stop()                                      \
{                                                        \
   if (_counting) {                                      \
     unsigned int end = spu_readch(SPU_RdDec);           \
     _count += (end > _count_base) ?                     \
       (DECR_MAX + _count_base - end) :                  \
       (_count_base - end);                              \
   }                                                     \
   printf("SPU#: stop, %llu\n", _count);                 \
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   _counting = 0;                                        \
   spu_writech(SPU_WrEventMask, 0);                      \
   spu_writech(SPU_WrEventAck, MFC_DECREMENTER_EVENT);   \
   _count_base = spu_readch(SPU_RdDec);                  \
}

Commonality can be exploited by defining shared macros for the global _count and _count_base 
updates that appear in all of the profiling macros and in the interrupt handler.

13.3.3.4 Decrementer Underflow Handling

If the code sections to be profiled are known to execute in less than 232 decrementer ticks, the 
simple implementation shown previously is sufficient for providing timing information. For longer-
running code sections, the profiling implementation needs to handle cases in which the decre-
menter underflows multiple times between profiling-macro invocations. This can be done by 
installing an interrupt handler that executes whenever the decrementer reaches 0, which triggers 
an SPU decrementer event.

In the body of the handler, the handler checks for the SPU decrementer event and increments 
the global _count as shown previously. It then handles the event by clearing the SPU decre-
menter-event bit in the SPU Write Event Mask Channel using the spu_writech intrinsic. An 
spu_writech to the SPU Write Event Acknowledgment Channel acknowledges the decrementer 
event and also causes the decrementer to stop. The decrementer is then restarted by writing a 
new value to the SPU Write Decrementer Count Channel and setting the SPU decrementer 
event bit in the SPU Write Event Mask Channel.

The code for the second-level interrupt handler is:

static unsigned int spu_decr_profile_slih(unsigned int events)
{
 if (events & MFC_DECREMENTER_EVENT) {
   if (_counting) {
     unsigned int end = spu_readch(SPU_RdDec);
     _count += (end > _count_base) ?
       (DECR_MAX + _count_base - end) :
       (_count_base - end);
   }
    events &= ~MFC_DECREMENTER_EVENT;
   spu_writech(SPU_WrEventMask, events);
   spu_writech(SPU_WrEventAck, MFC_DECREMENTER_EVENT);
   spu_writech(SPU_WrDec, DECR_COUNT);
   spu_writech(SPU_WrEventMask, MFC_DECREMENTER_EVENT);
   _count_base = spu_readch(SPU_RdDec);
 }
 return (events);
}
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The handler should be installed as an event-specific handler that is dispatched from a common 
event handler, as described in Section 18.6.9 Procedure for Handling the SPU Decrementer 
Event on page 489. In addition, SPU events must be enabled when profiling is turned on (and 
can be disabled when profiling is turned off). Enabling and disabling of interrupts is done using 
the spu_ienable and spu_idisable intrinsics. The initialization of the handler and enabling of 
interrupts can be inserted into the body of the prof_start() macro (with logic to ensure that the 
handler only gets initialized once), and disabling of interrupts can be added to the prof_stop() 
macro.
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14. Objects, Executables, and SPE Loading 

This section describes processor-specific aspects of object-file formats that are used for program 
linking and loading. Topics described include the PowerPC Processor Element (PPE) and Syner-
gistic Processor Element (SPE) extensions to the standard Executable and Linking Format (ELF) 
object-file formats, runtime loading of programs into an SPE, and the CBEA Embedded SPE 
Object Format (CESOF). 

CESOF allows SPE executable object files to be embedded inside PPE object files. It supports a 
mechanism for linking SPE and PPE object files that access shared system memory objects 
through the globally defined symbols. This section also describes basic operating-system proto-
cols for loading and executing programs from a CESOF object file.

14.1 Introduction

The Cell Broadband Engine Architecture (CBEA) processors1 are heterogeneous multiproces-
sors not only because the SPEs and the PPE have different architectures but also because they 
have disjointed address spaces and different models of memory and resource protection. The 
PPE can run a virtual-memory operating system, so it can manage and access all system 
resources and capabilities. In contrast, the synergistic processor units (SPUs) are not intended to 
run an operating system, and SPE programs can access the main-storage address space, called 
the effective-address (EA) space, only indirectly through the DMA controller in their memory flow 
controller (MFC). The two processor architectures are different enough to require two distinct tool 
chains for software development.

The tool chains for both the PPE and SPE processor elements produce object files in the ELF 
format. ELF is a flexible, portable container for relocatable, executable, and shared object 
(dynamically linkable) output files of assemblers and linkers; this format is described in 
Section 14.2 on page 398. The terms PPE-ELF and SPE-ELF are used to differentiate between 
ELF for the two architectures. CESOF is an application of PPE-ELF that allows PPE executable 
objects to contain SPE executables; this format is described in Section 14.5 on page 408.

To ease the development of combined PPE-SPE multiprocessor programs, the operating-system 
model uses CESOF and provides SPE process-management primitives. Though programmers 
often keep in mind a heterogeneous model of the CBEA processors when dividing an application 
program into concurrent threads, the CESOF format and, for example, the Linux operating-
system thread application programming interfaces (APIs) allow programmers to focus on applica-
tion algorithms instead of managing basic tasks such as SPE process creation and global vari-
able sharing between SPE and PPE threads.

The following sections describe the ELF format for PPE and SPE object and executable files, 
low-level support and requirements for loading SPE programs, the CESOF format for combining 
PPE and SPE object files, and the operating-system model of loading and running concurrent, 
cooperative SPE and PPE programs.

1. The Cell Broadband Engine (Cell/B.E.) and PowerXCell 8i processors are collectively called CBEA processors.
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14.2 ELF Overview and Extensions

14.2.1 Overview

ELF object files are binary representations of programs intended to execute directly on CBEA 
processor elements. To organize the program information in an object file for efficient processing 
by linkers and loaders, ELF defines a simple hierarchy of structures. Object files have an ELF 
header that is used to find a section header or a program header; an object file can have both 
section and program headers. The section header specifies sections in the file for use in linking; 
the program header specifies program segments in the file for use in program loading. Much of 
an object file’s information, such as processor instructions and initialized data, is contained in its 
section and segment data structures, but an object file also contains other data structures such 
as symbol tables.

The section header and the program header provide two different, parallel views of an object 
file’s contents that reflect the different needs of linking and execution. ELF object files can be 
used by a linker to build an executable program object (linking view) and by an operating system 
or loader to build a process image in memory (execution view). Figure 14-1 shows an object file’s 
organization under the two views.

The application binary interface (ABI) specifications for the CBEA processor elements, listed 
below, extend the basic ELF definition. The extensions result in two ELF definitions specific to 
the CBEA processors: PPE-ELF and SPE-ELF. 

For a complete description of the basic ELF definition and the PPE and SPE APIs, see the 
following documents:

• Tool Interface Standard (TIS) Executable and Linking Format (ELF) specification

• Linux Standard Base Core Specification for PPC 3.0 (http://www.linuxbase.org/spec)

• 64-bit PowerPC ELF Application Binary Interface Supplement 1.7.1

Figure 14-1. Object-File Format 
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• SYSTEM V APPLICATION BINARY INTERFACE PowerPC Processor Supplement (This 
document specifies the 32-bit ABI.)

• Cell Broadband Engine Linux Reference Implementation Application Binary Interface Specifi-
cation

• SPU Application Binary Interface Specification

14.2.2 SPE-ELF Extensions

14.2.2.1 ELF Header

The machine-specific information that applies to SPE-ELF objects is shown in Table 14-1.

14.2.2.2 Symbols

Except for the special _EAR_ symbol-name mangling protocol used by programmers and tools to 
build CESOF objects (see Section 14.5.5 on page 413), the global symbols produced by a 
compiler should not be mangled; that is, a symbol should not have any extra prefix or suffix 
added by the tool chain.

14.2.2.3 Sections

Executable SPE-ELF objects can contain the three typical sections and the special .toe section 
as shown in Table 14-2 on page 400.

Table 14-1. SPE-ELF Header Fields 

Field Value Comments

e_ident[EI_CLASS] ELFCLASS32 Specifies that the objects are 32-bit objects.

e_ident[EI_DATA] ELFDATA2MSB Specifies that the objects use big-endian byte addressing.

e_type

ET_NONE The file has no file type.

ET_REL The file is a relocatable file. The file holds code and data suitable for linking with 
objects to create an executable or plug-in file.

ET_EXEC The file is an executable file. The file holds a fully linked program suitable for 
execution.

ET_DYN The file is an SPE plug-in. The plug-in file must contain a SPUNAME note 
section for each named plug-in.

e_machine EM_SPU A value of 23 indicates that the code is to be executed on an SPE processor 
element. 

e_flags 0 No flags have been defined; therefore, this member must contain zero.
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The .toe section is a key part of the CESOF specification and holds an array of effective address 
entry (EAR) structures. Each EAR holds the EA of a shared object in main storage. The SPE 
linker gathers all the .toe sections together into a single loadable toe segment in the linked SPE 
executable. See Section 14.5.2 on page 409 and Figure 14-6 on page 410 for more information 
about CESOF extensions.

14.2.2.4 Program Header

The program header contains the locations of the segment images within the file and other infor-
mation needed to create the memory image for a program. The SPE ABI specifies two program-
header notes, SPE Environment Note and SPE Name Note, which are described next.

SPE Environment Note

SPE objects can contain sections of the SHT_NOTE with corresponding program-header elements 
of type PT_NOTE that define the attributes and runtime environment of an SPE program. 
Table 14-3 provides details about the SPE environment note.

The SPE environment note contains an instance of the spu_env structure in the desc field; entries 
in this structure are shown in Table 14-4 on page 401.

Table 14-2. SPE-ELF Special Sections 

Name Type Attributes Description

.bss SPU_NOBITS SHF_ALLOC + 
SHF_WRITE

This zero-length section specifies uninitialized data that contributes to 
the program’s memory image. By definition, the program loader 
initializes the data with zeros.

.data SPU_PROGBITS SHF_ALLOC + 
SHF_WRITE

This section contains initialized data that contributes to the program’s 
memory image. The data is copied from the executable file to EA space 
and then copied from EA space to an SPE’s local storage (LS) using 
DMA commands.

.text SPU_PROGBITS SHF_ALLOC + 
SHF_EXECINSTR

This section contains a program’s executable instructions, traditionally 
called text. The machine code is copied from the executable file to EA 
space and then copied from EA space to an SPE’s LS using DMA 
commands. 

.toe SPU_PROGBITS SHF_ALLOC

This section contains an array of Effective-Address Reference (EAR) 
structures. Each EAR contains an eight-byte EA and an eight-byte area 
reserved for future use. All sections of the toe type are combined into a 
single segment in the SPE executable, and the SPE loader will 
overwrite the segment in SPE memory with the toe shadow data 
segment from the enclosing PPE executable object.

Table 14-3. SPE-ELF Environment Note 

Field Size (bytes) Value

namesz 4 8

descsz 4 sizeof (spu_env)

type 4 1

name 8 “IBM SPE”

desc sizeof (spu_env) spu_env structure contents
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SPE Name Note

An SPE object must be identified with a lookup name string, and this name must be contained 
within a SHT_NOTE and in corresponding program-header elements of type PT_NOTE. The lookup 
name is used to identify the corresponding SPE plug-in to the operating system.

The plug-in name extracted from the PT_NOTE name note is used by a plug-in management mech-
anism that provides services such as plug-in table construction, plug-in information retrieval, and 
loading plug-in tables and plug-in images to an SPE’s LS. 

14.3 Runtime Initializations and Requirements

The ABI documents for the CBEA processors specify the initial machine state that the loaders 
create for program execution on both the PPE and SPE processors. The specifications spell out 
register initialization, stack frame initialization, and initial arguments passed from the operating 
system. Programming language systems use the initial machine state requirements to establish 
a standard environment for their application programs.

14.3.1 PPE Initial Machine State

14.3.1.1 Operating System Interface for PPE Entry Point

The C-language interface for a PPE program’s entry point is conventionally declared as follows:

extern int main (int argc, char *argv[]; char *envp[]);

Table 14-4. The spu_env Structure 

Type Name Description

Elf32_Word revision Specifies the spu_env structure revision number. The initial revision number is 1. Future 
additions to this structure are added to the end, and the revision number is incremented.

Elf32_Word ls_size
Specifies the size of SPE LS on which the program is targeted to run; this is the required 
Local-Storage Limit Register (SPU_LSLR) setting. A size of zero indicates that the SPU_LSLR 
register must be set to the entire available LS address range.

Elf32_Word stack_size Specifies the SPE runtime stack size. This value is used for software runtime stack 
overflow checking.

Elf32_Word flags One flag is defined: EF_SPU_ENCRYPTED (bit 31). This flag specifies that the SPE ELF 
program is encrypted and must be decrypted and authenticated before being executed.

Table 14-5. SPE-ELF Name Note 

Field Size (bytes) Value

namesz 4 8

descrsz 4 The number of bytes in the desc field. This value must be a multiple of 4.

type 4 1

name 8 “SPUNAME”

desc See the descsz field Contains a null-terminated look-up name string that identifies the object.
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Table 14-6 explains the meaning of the parameters passed by the operating system (OS) on 
behalf of the program that is invoking the application program.

14.3.1.2 Register Initialization

Table 14-7 shows the initial register values required by the ABI specifications for the CBEA 
processors. Registers other than those listed in Table 14-7 may be cleared when loading PPE 
programs, but a program that requires registers to have specific values must set them explicitly; a 
program must not rely on the loader to set any register other than those shown in Table 14-7.

14.3.1.3 Stack Initialization

Before the PPE loader jumps to a PPE application’s entry point, the stack is initialized, but the 
ABI specifications do not define a fixed stack address. A program’s stack can change from one 
system to another and from one process invocation to another. Thus, process initialization code 
must use the stack address provided in R1.

The initial stack frame, shown in Figure 14-2 on page 403, is set up with a NULL back-chain 
pointer (at the address in R1). Above the NULL back-chain pointer are the three areas containing 
explicit and implicit arguments passed by the OS. 

Table 14-6. PPE Program Initial Parameters 

Parameter Value

argc A nonnegative argument count; specifies the number of arguments in the argv array.

argv An array of argument strings; the OS ensures that argv[argc] == 0.

envp An array of environment strings; as with argv, the envp array is terminated by a NULL pointer.

Table 14-7. PPE Initial Register State 

Register Contents

R1 Initial stack pointer. The value in R1 is aligned to a quadword boundary and is a pointer to a word 
containing a NULL pointer. 

R2
Initial TOC (table of contents) pointer. This value is obtained through the function descriptor pointed at by 
the e_entry field in the ELF header and is used by the dynamic linker. See 64-bit PowerPC ELF 
Application Binary Interface Supplement 1.7 for more information.

R3 Contains argc, the number of arguments passed by the OS.

R4 Contains argv, a pointer to the array of pointers to arguments on the stack. The array is immediately 
followed by a NULL pointer; if there are no arguments, R4 points to a NULL pointer.

R5 Contains envp, a pointer to the array of pointers to environment strings on the stack. The array is 
immediately followed by a NULL pointer; if there is no environment, R5 points to a NULL pointer.

R6 Contains a pointer to the auxiliary vector. The auxiliary vector shall have at least one member, a 
terminating entry with an a_type of AT_NULL.

R7 Contains a termination-function pointer. If R7 is not zero, its value represents a function pointer that the 
application should register with atexit(BA_OS). If R7 is zero, no action is required.

fpscr Contains zero, which specifies “round to nearest” rounding mode, IEEE mode, and that floating-point 
exceptions are disabled.
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The first area is an array of pointers to parameter strings. The second area is an array of pointers 
to environment strings. Both of these areas are terminated by a NULL pointer. These areas 
contain parameters passed from the invoking application to the invoked application, and each 
pointer in these areas points to a string in the information block at the top of the stack frame.

The third area is an array of auxiliary information structures; each structure is of type auxv_t. The 
definition of the structure is shown in the following code sample:
typedef struct
{

int a_type;
union
{

long  a_val;
void *a_ptr;
void (*a_fcn)();

} a_un;
} auxv_t;

Figure 14-2. PPE 64-Bit Initial Stack Frame 
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Thus, each entry in the auxiliary vector area consists of a type word and a value, pointer, or func-
tion pointer. The auxiliary vector contains information passed from the OS to the invoked applica-
tion program. See the System V Application Binary Interface PowerPC Processor Supplement 
and 64-bit PowerPC ELF Application Binary Interface Supplement documents for more informa-
tion about the auxiliary vector area.

Figure 14-2 on page 403 shows the layout of the PPE initial stack frame in a 64-bit execution 
environment. The pointers in the argv and envp arrays point into the information block. Any 
pointers that occur in the auxv_t array point into other areas of main storage.

The first application function call and subsequent calls will set up an instance of the standard 
SPE stack frame for a 64-bit execution environment, which is shown in Figure 14-3. If a calling 
function needs more than eight doublewords of arguments, it places the additional arguments in 
its parameter save area. The callee function uses an offset of 48 bytes from the back-chain 
pointer in its stack frame to find the additional arguments in the caller’s stack frame.

Figure 14-3. PPE 64-Bit Standard Stack Frame 
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14.3.2 SPE Initial Machine State for Linux

This section specifies the initial SPE machine state for the Linux operating system environment. 
Other other operating will provide similar operating environments. 

14.3.2.1 Linux-OS Interface for SPE Entry Point

The C-language interface for an SPE program’s entry point is conventionally declared as follows 
in the Linux runtime environment:

extern int
main (unsigned long long spuid, unsigned long long argp, unsigned long long envp);

Table 14-8 explains the meaning of the parameters passed by the OS. This is the interface only 
for the Linux runtime environment. Other systems might have different interfaces. In addition, in 
Linux, stand alone SPU programs2 provide a standard main interface (int argc, char *argv[]), 
where the pointers are LS pointers.

14.3.2.2 Register Initialization

Table 14-9 on page 406 shows the initial register values required by the Cell Broadband Engine 
Linux Reference Implementation Application Binary Interface Specification. Registers other than 
those listed in Table 14-9 may be cleared when loading SPE programs, but a program that 
requires registers to have specific values must set them explicitly; a program must not rely on the 
loader to set any register other than those shown in Table 14-9.

2. A programming model that allows conventional C programs to be compiled and run on an SPE, unmodified. 

Table 14-8. SPE Program Initial Parameters 

Parameter Value

spuid A unique SPU task identifier assigned by the operating system.

argp An EA in main storage to application parameters.

env An EA in main storage to runtime environment information.
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14.3.2.3 Stack Initialization

The stack for an SPU program will be initialized with a single minimal ABI-compliant stack frame 
that contains three quadwords. In most system implementations, the entry function crt0 or an 
equivalent will be responsible for setting up this frame. See Figure 14-4.

Typically, the top of the stack is set to the highest LS quadword memory address; for a 256 KB 
LS, this address is x‘3FFF0’. The quadword at x‘3FFF0’ contains zero, the NULL pointer. The 
quadword at x‘3FFE0’ is the link-register save area for use by the entry function to save R0 when 
it calls a function. The quadword at x‘3FFD0’ contains a back chain pointer to the top of the stack. 
R1 is set to x‘3FFD0’, which is the start of this initial stack frame.

For compliance with the ABI specification, the stack frame shown in Figure 14-4 provides a place 
for the first function call in application code to save the link register. The first application function 
call and subsequent calls will set up an instance of the standard SPE stack frame shown in 
Figure 14-5 on page 407.

Table 14-9. SPE Register Initial Values 

Register Symbolic 
Name Data Type Comment

R1 SP 32-bit unsigned int

Initial stack pointer. crt0 initializes word element 0 of R1 to point to a 
minimal stack frame starting at the highest LS address. For example, 
a system with 256 KB LS initializes the stack pointer to x‘3FFD0’, and 
the initial, minimal stack frame would be as shown in Figure 14-4. 
The 32-bit unsigned integer in word-element 1 of the SP is used to 
establish the Available Stack Space. If the runtime stack size is 0, 
then the value of Available Stack Space is initialized to 
<top_of_stack> through _end (end of text/data linker symbol). 
Otherwise, the Available Stack Space is initialized to <stack_size>. 

R3 spuid 64-bit unsigned int

SPU task identifier. The spuid value is a unique identifier assigned by 
the PPE OS. The spuid allows both the SPE program and the PPE 
program to identify the SPE thread (program instance) within the 
system.

R4 argp 64-bit EA
Pointer into main storage to an array of application-defined program 
parameters passed from the application that spawned the SPE 
thread.

R5 envp 64-bit EA
Pointer into main storage to SPU task environment structure passed 
from the PPE OS. The content of the structure is not defined by the 
SPU ABI specification.

Figure 14-4. SPE Initial Stack Frame 
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Up to 77 quadwords of arguments are passed in SPU registers in R3 through R79. If the calling 
function needs to pass more than 77 quadwords, it must allocate a parameter list area in its stack 
frame large enough to hold the additional arguments.

14.4 Linker Requirements

The extensions in the CESOF specification require some support from the PPE and SPE tool-
chain link editors.

14.4.1 SPE Linker Requirements

The linker in an the SPE tool chain has some special requirements that include:

14.4.1.1 Handling .toe Sections

The SPU linker must recognize and properly handle the .toe section type. An SPE-ELF object 
need not have a .toe section or segment. Each .toe section holds the array of EAR structures 
(see Section 14.5.5 on page 413), and all .toe sections, if any are present, must be grouped into 
a loadable segment in an SPE-ELF executable.

14.4.1.2 Alignment of Loadable Segments

The SPE linker must ensure that the loadable SPU segments in an SPU-ELF object are aligned 
on 16-byte boundaries and padded in length to a multiple of 16 bytes to satisfy the MFC DMA 
size requirement. The linker may further restrict the alignment of the segments to 128-byte 

Figure 14-5. SPE Standard Application Function Stack Frame 
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boundaries for improved transfer performance on some CBEA implementations. These align-
ment and size requirements allow optimal DMA performance when copying SPE-ELF loadable 
segments into an SPE’s LS storage space.

14.4.2 PPE Linker Requirements

The special requirement for the PPE linker is the need to recognize and properly handle the 
sections (for example, .spe.elf or .rodata.speelf) wrapping the SPE-ELF executable image; 
see Section 14.2.2 on page 399. In a PPE executable, such SPE-ELF image sections must be 
included by the linker in a per-system loadable segment, such as the .text segment.

14.5 The CESOF Format

The software-development tool chains for CBEA processor programs conform to three stan-
dards: 

• Tool Interface Standard (TIS) and Execution specification

• Executable and Linking Format (ELF) specifications

• PPE and SPE Application Binary Interface (ABI) specifications

Together, these standards define an extensible, portable object-file format for relocatable and 
executable object files that can be statically or dynamically linked.

Because the PPE and SPE processor-element architectures are significantly different, separate 
tool chains are used for PPE and SPE program development. An important limitation for CBEA 
processor program development is that these TIS, ELF, and ABI specifications define no way to 
resolve references between code and data objects for different architectures.

To exploit the performance potential of CBEA processor systems, applications typically contain 
cooperating PPE and SPE programs that share data variables. Thus, programmers need an 
object definition beyond the base of TIS-ELF. 

The CBEA Embedded SPE Object Format (CESOF) provides three key capabilities for CBEA 
processor programming environments:

• PPE and SPE programs can co-exist in a single PPE-ELF object file. 

• PPE and SPE programs can share global variable references.

• The PPE link editor can accept objects that contain PPE or SPE code.

CESOF uses only the facilities defined in the TIS-ELF standard. Using an embedding approach 
requires the minimum of changes to existing PPE and SPE development tools. Because CESOF 
objects are PPE-ELF objects, they can participate in any program linking and execution process, 
static or dynamic, with other PPE-ELF objects. CESOF files can be archived, linked, and shared 
just like other PPE-ELF object files.
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14.5.1 CESOF Overview

With CESOF, programmers can achieve some of the effects of linking PPE and SPE executa-
bles. The PPE linker can create a single PPE-ELF executable file that contains code and data for 
both PPE and SPE processor elements. An OS can load PPE and SPE programs that run 
concurrently and work cooperatively from an integrated PPE executable image. The CESOF 
specification includes the following mechanisms:

• The .spe.elf section (which can be named differently) to embed SPE-ELF executables in 
PPE-ELF objects.

• The SPE program handle data structure, which is used by an OS runtime to access the 
embedded SPE program and data.

• A reserved “shadow” section to keep the EA-space bindings for the shared global data object 
references of the embedded SPE-ELF executable.

• A runtime requirement that overlays the shadow section onto an SPE executable in LS mem-
ory before the SPE executable begins running.

Each of these mechanisms is described in a following section.

CESOF achieves cross-architecture linking by the following method:

• The SPE-ELF executable object defines a loadable segment that contains a copy of the table 
of effective address references, or TOE (see Section 14.5.5 on page 413). The TOE segment 
collects all the .toe sections from the linked SPE-ELF linkable objects.

• The CESOF-ELF (PPE-ELF) object, that includes the SPE-ELF executable image, defines 
another copy of the TOE, called the TOE shadow, in a .data section (as per-process data). 
The TOE shadow allocates the same space as the previous TOE segment of the embedded 
SPE-ELF executable.

• The PPE-ELF linker binds the references in the TOE shadow to addresses in EA space and 
fills the TOE shadow with the resolved (or bound) addresses.

• At runtime, the SPE loader loads the SPE-ELF image into an SPE’s LS memory and then 
replaces the toe segment in LS with the TOE shadow by copying the shadow over the toe 
segment.

• The running SPE-ELF program uses the bound addresses in its toe segment to reference 
shared data objects in EA main storage (using DMA commands to access the objects).

Thus, because the SPE program references shared data objects with a level of indirection 
through the TOE entries and the loader overwrites the toe segment with PPE-linker bound 
addresses, CESOF achieves the effect of the PPE linker binding PPE addresses into the SPE 
executable, which is not otherwise supported by the ELF specification. Thanks to the CESOF 
mechanisms, the linker can do this without knowing anything about the SPE architecture.

14.5.2 CESOF Use Convention of ELF

CESOF introduces new sections into PPE-ELF and SPE-ELF object respectively.

• PPE-ELF .spe.elf section: a container for an SPE-ELF image in a PPE-ELF object.

• SPE-ELF .toe section: a container for an array of EAR structures; each EAR contains an EA 
pointer to a shared data-object EA space. All .toe sections are concatenated into one toe 
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segment in an SPE-ELF executable. .toe sections and the segment are filled with empty 
EAR structures.

• PPE-ELF TOE shadow section: a copy of the SPE-ELF toe segment is allocated in a PPE-
ELF data section. This matching TOE shadow data section contains initialized EAR struc-
tures containing bound EA pointers instead of the empty EAR structures in the toe segment 
of the SPE executable. 

When the SPE-ELF executable is loaded into an SPE’s LS, the TOE shadow is copied directly 
over the toe segment in the LS. The copying effectively updated the EA addresses to the bound 
values. At run time, the SPE code executes DMA commands that use the bound addresses in 
the TOE in LS to access shared data objects in main storage.

Figure 14-6 shows how the SPE-ELF sections in linkable objects are combined into segments in 
an executable object.

14.5.3 Embedding an SPE-ELF Executable in a PPE-ELF Object: The .spu.elf Section

An SPE program is compiled and linked by the SPE compiler and tool chain into an SPE-ELF 
executable file. Without the support of the mechanisms like those in CESOF, the only way a PPE 
program can use an SPE program is to refer to the name of the SPE-ELF executable object file. 
Because the PPE operating system’s linker and runtime loader know nothing about SPE-ELF 
executables in this case, a PPE program must explicitly copy or memory-map the SPE execut-
able image from a file to main storage and explicitly program an SPE’s DMA controller to move 
the SPE executable to an SPE’s LS.

The process of loading an SPE-ELF image from a file to an SPE’s LS requires tedious program-
ming that distracts a programmer from coding a solution to an application problem. In addition, if 
the SPE executable is shared by several PPE processes, storage is wasted by having a separate 
copy in each PPE process.

A solution to the explicit loading and the storage redundancy is to make the SPE-ELF object part 
of the PPE-ELF object. CESOF accomplishes this by defining a special section in PPE-ELF to 
include the image of the SPE-ELF executable file in the section.

Figure 14-6. Linking SPE-ELF Sections into Loadable Segments in an Executable 
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The CESOF specification suggests that “.spe.elf” is used as the name for such sections. 
However, a tool chain may choose to use any name as long as the SPE-ELF image sections are 
linked and loaded into a per-system segment. The single copy of image can then be shared by 
more than one processes.

In assembler code, the declaration of the PPE-ELF section and file inclusion can be as shown in 
the following example:

.global spu_program

.align 7

.section .spu.elf, “ax”, @progbits
spu_program:

.incbin “spu_program.elf”

In a PPE program, a programmer declares a symbol external to the code module that creates a 
reference to the SPE image:

extern spu_program[];

The result is that the SPE-ELF executable object has been embedded (or wrapped) in the 
.spe.elf section. In an executable object, all the .spe.elf sections may be collected in the per-
system loadable segment, such as the .text segment, so that main storage will contain only one 
copy of an SPE-ELF image shared by multiple processes. The CESOF specification, however, 
still allows the .spu.elf sections to be merged into any segment, such as a data segment, 
depending on the needs of the hosting OS.

The PPE tool-chain linker can link the PPE program’s reference to the global spu_program 
symbol defined in the .spu.elf section. The PPE program can use the spu_program symbol to 
access all the information in the SPE-ELF program image using the image’s ELF header.

The CESOF specification requires the .spe.elf image in the loadable segment in the executable 
to be aligned to a DMA (128-byte) boundary so that the SPE-ELF image can be copied into an 
SPE’s LS with maximum efficiency.

14.5.4 The spe_program_handle Data Structure

Using the simple solution shown in Section 14.5.3 on page 410, a problem arises when the 
included SPE-ELF object is linked into a shared PPE-ELF library object. If a reference is made 
directly from other modules in the shared library, the reference will be absolute, which causes the 
shared library to lose its position independence. Position independence is required to permit a 
shared library to be dynamically linked at a different address for each process that shares the 
library.

To maintain position independence in shared libraries that have embedded SPE-ELF objects, 
CESOF requires a level of indirection through a pointer to the embedded image. The pointer 
holds the absolute address that is determined by the dynamic linker when it binds the shared 
library into an in-memory process image. The pointer is held in an spe_program_handle data 
structure with the following definition:
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typedef struct spe_program_handle {
int handle_size; // sizeof (SPEProgramHandle)
void* elf_image; // pointer to the embedded SPE image
void* toe_shadow; // pointer to the toe overlay image

} SPEProgramHandle;

The spe_program_handle contains a handle_size member so software can determine whether 
the CESOF object was created for a 32-bit or 64-bit environment. The elf_image member holds 
the address of the embedded SPE-ELF image. The toe_shadow member holds the address of the 
TOE shadow overlay for the toe segment in the SPE-ELF image; this overlay will be copied to the 
location in LS memory where the toe segment normally resides. The definition of the toe segment 
and the TOE shadow and their purpose are presented in Section 14.5.5 on page 413.

Illustrated In assembler language, the 32-bit CESOF wrapping layer now looks as follows:

/* per-process section */
.global spe_program_handle

/* new section with pointers for relocatability */
.section .data, “a”, @progbits

spe_program_handle:
.align  2
.int  12
.int _spe_elf_image
.int _spe_toe_shadow

.section .data, “a”, @progbits
.align  7

_spe_toe_shadow:
.extern shared_symbol_name_1

.int0

.int shared_symbol_name_1

.quad 0
.extern shared_symbol_name_2

.int0

.int0 shared_symbol_name_2
.quad 0

/* per-system section */
.section .spe.elf, “ax”, @progbits
.align 7

_spe_elf_image:
.incbin “spe_program.exe”

The spe_program_handle structure becomes part of a per-process loadable segment so that each 
in-memory process image has a private copy of the pointer to the SPE-ELF image. The SPE-ELF 
image is in the .spe.elf section, which becomes part of a single shared segment in physical 
storage through the virtual-memory mapping.
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In the case that the SPE-ELF object spe_program.exe is wrapped into a PPE-ELF shared library 
object, the dynamic linker will initialize and map the PPE process image and load initial segments 
of PPE program text and the shared library into system storage (some or most loading can be 
delayed until it is demanded by the virtual-memory system). At this point, the dynamic linker can 
bind the reference to _spe_elf_image by computing an absolute (virtual) address value and 
storing that in the _spe_elf_image member of the spu_program_handle structure.

Because of the level of indirection through the pointer in the spe_program_handle structure, the 
PPE program code declares a reference to the SPE image as:

extern SPEProgramHandle spe_program_handle;

The preceding example illustrates the CESOF mechanism with assembler-language code, but 
the process of embedding SPE-ELF objects into PPE-ELF files can be automated. CBEA 
processor application programmers can use a few simple utility programs to create PPE-ELF-
compatible CESOF objects. See Section 14.5.5.2 on page 415 and Section 14.5.5.3 on 
page 415.

14.5.5 The TOE: Accessing Symbol Values Defined in EA Space

Global data objects in CBEA-processor-level programs are frequently declared and represented 
by PPE level variables and symbols. These data objects are shared by the interacting PPE and 
SPE programs. The resolved values of the PPE symbols typically represent the addresses of the 
global data objects. These values are useful to the sharing SPE programs for their DMA target 
and source. 

CESOF allows the PPE symbol values to be resolved into SPE programs statically. CESOF 
inserts a level of indirection between the SPE program and the address of the shared variables. 
The level of indirection is an EA variable inside an effective address reference (EAR) structure. 
All EARs in an SPE program are collected into a table of EARs, or TOE. A TOE is declared in a 
special SPE-ELF .toe section.

An EAR is a simple, 16-byte data structure defined as follows:

typedef struct elf_toe_entry
{

ELF64_Addr ea_value;
ELF64_Addr ea_info; // reserved for future use

} EAR __attribute__ ((aligned (16)));

In assembler language, an EAR structure in a .toe section can be declared as follows:

.section .toe

.align 7 # align on 128-byte boundary

.global _EAR_g_mem_obj_1
_EAR_g_mem_obj_1:

.quad 0 # ea_value

.quad 0 # ea_info
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The EAR structures in the SPE-ELF .toe sections (and eventually collected into the loadable toe 
segment) are empty place-holders. They exist so that the SPE linker can bind references to the 
symbol labels of the EAR structures to absolute LS addresses and thus build a fully resolved 
SPE-ELF executable object. At runtime, after the SPE-ELF executable image has been loaded 
into LS memory but before the SPE program is running, the SPE loader copies the TOE shadow 
from the PPE-ELF executable over the toe segment in LS. Thereafter, the EAR structures 
contain valid EAs that have been bound (by the PPE linker) to shared objects in main storage.

Each 16-byte EAR structure is aligned on a 16-byte (quadword) boundary because the entire 
structure will be loaded into an SPU register at run time. The ea_value member is positioned in 
the structure so that it will be loaded into the register’s preferred scalar slot (the most-significant 
doubleword). Because the EA is already in the preferred scalar slot, an SPU program can 
transfer the ea_value address to the MFC command buffer with minimum overhead.

Using the C-language spu_mfcdma64 intrinsic, an SPU programmer can use the following code to 
build a DMA command that copies the shared data object from EA space into LS space:

#include <spu_mfcio.h>

extern EAR _EAR_g_mem_obj_1;       // EAR structure to hold the EA of g_mem_obj_1
int g_mem_obj_1;                   // The SPE local (cached) copy of g_mem_obj_1

spu_mfcdma64((volatile void *)&g_mem_obj,              // destination LS
(unsigned int)(_EAR_g_mem_obj_1.ea_value>>32),     // EA high 32 bits
(unsigned int)(_EAR_g_mem_obj_1.ea_value),         // EA low 32 bits
sizeof(g_mem_obj_1),                               // object size in bytes
0,                                                 // tag id
MFC_GET);                                          // DMA command

14.5.5.1 Symbol-Name Signatures

To separate ordinary SPE symbols from those representing the references to the EA memory 
objects, CESOF defines a special symbol name mangling scheme.

In PPE source code, no special coding guidelines are required for the declaration of a shared 
global data object. In SPE source code, the symbol representing the reference to an EA memory 
object must be given a name that contains a special signature. This signature must be used only 
for this purpose. In this Joint Software Reference Environment (JSRE) implementation, the 
signature is _EAR_. The following is an example of such a declaration:

typedef struct elf_toe_entry
{

ELF64_Addr ea_value;
ELF64_Addr ea_info; // reserved for future use

} EAR __attribute__ ((aligned (16)));

// the SPE symbol representing the reference to PPE g_mem_obj_1 in EA
const EAR _EAR_g_mem_obj_1;
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14.5.5.2 Building the SPE-ELF .toe Section

When a programmer uses this protocol, the symbol table in an SPE-ELF relocatable object will 
contain names that have a unique and easily recognizable signature. Assembly language 
segments can be handcrafted to create this simple array of EAR entries.

Though not provided in the JSRE reference implementation, a simple tool can be built with stan-
dard binutil commands that can extract these names from the object, create an assembler-
language source file for the .toe section needed by the relocatable object, and assemble it into a 
.toe object. The relocatable object and the .toe object can then be linked into a single relocat-
able object.

14.5.5.3 Building a CESOF Object: Embed the SPE Object and Create the TOE Shadow

When the SPE program has been compiled and linked, with the associated .toe sections, into an 
SPE-ELF executable object, it is ready to be embedded into a CESOF object, which can then be 
linked with other PPE-ELF objects to produce an executable suitable for loading and execution 
by the OS.

A programmer can build a CESOF relocatable object from the SPE-ELF executable with a tool 
called “embedspu” in the JSRE reference implementation.

A CESOF object contains three distinct parts:

• The spe_program_handle data structure

• The section containing the embedded SPE-ELF executable object

• The section containing the TOE shadow

Figure 14-7 on page 416 shows the layout of a CESOF relocatable object and how an SPE-ELF 
object is embedded in the .spe.elf section.
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The following shell-language script illustrates how embed_spu can be implemented to construct a 
CESOF object. This version of the tool builds a CESOF object for a 64-bit PPE OS environment.

#!/bin/ksh
# 
if [ "x$3" = "x" ]
then

echo Usage: %0 \<handle_symbol\> \<infile\> \<outfile\>
fi

handle_symbol=$1 # $1 must contain only valid symbol characters

pu-as -o $3 --<<END_xYz
.global ${handle_symbol}
.section .data, "a", @progbits # definition of the SPE program handle
.align 2
${handle_symbol}:

.int 20 # 20 bytes for a 64-bit CESOF object

.quad _spe_elf_image # 64-bit pointer

.quad _spe_toe_shadow # 64-bit pointer

Figure 14-7. CESOF Object Layout 
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.section .spu.elf, "ax", @progbits

.align 7
_spe_elf_image:

.incbin "$2"

.section .data, "a", @progbits

.align 7
_spu_toe_shadow:

`mk_shadow_toe $2`

END_xYz

The embedspu tool builds assembler source code for an spe_program_handle structure, an 
.spe.elf section containing the SPE-ELF executable, and a .data section containing the TOE 
shadow. The TOE shadow assembler source code is built by the mk_shadow_toe tool. The 
following shows the shell-language source code for a 64-bit version of mk_shadow_toe:

#!/bin/ksh
# 1. spu-readelf: dump the symbol table
# 2. egrep: find the symbols with _EAR_ signature
# 3. sort: sort the symbols according to their addresses
# 4. awk: output an EAR entry for each symbol, stripped of signature

spu-readelf -s $1 | egrep '^_EAR_' | sort -k 2 | awk '{ if (index($7, "UND")==0) {\
print ".quad " substr($8, 6, length($8)); \
print ".quad 0"; \

}}'

After the mk_shadow_toe tool creates the TOE shadow code, the embedspu tool passes the 
complete CESOF assembler code to the assembler, which outputs a CESOF relocatable object 
file. This object can be linked with other PPE-ELF objects to build an executable.

When the PPE-ELF executable is linked together, either statically or dynamically, the TOE 
shadow will be filled with the bound addresses of shared global data objects, and the SPE loader 
will write the TOE shadow into LS over the toe segment. 

The JSRE reference implementation comes with a more complete implementation of the 
“embedspu” tool.

14.5.6 Future Software Tool Chain Enhancements for CESOF

The software development process described requires a programmer to declare shared data 
objects in SPE source code with a unique signature and use nonstandard tools to build the 
CESOF structures. There are two key deficiencies of this process:

• The SPE programmer must code explicit DMA operations in SPE programs to copy shared 
global objects into LS and copy them back to main storage.
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• The source-language compiler knows nothing of the DMA transfers to and from main storage 
being performed by the SPE program to cache a shared global object in LS.

One way to overcome these deficiencies is to encode, in an object’s declaration, the fact that it is 
a shared global object. The following syntax might be used for such a declaration:

remote int g_mem_obj_1 __attribute__((section (“.toe”)));
remote double g_mem_obj_2 __attribute__((section (“.toe”)));

In these two declarations, the special section (“.toe”) attribute tells the compiler the following:

• Space in LS must be reserved for the objects—an int and a double—as usual.

• An entry in the special .toe section must be built for each EAR that will contain the EA of a 
shared object in main storage.

• Whenever the program uses an object declared with the section (“.toe”) attribute, the 
value of the object must be made coherent with the value in main storage. Thus, if the pro-
gram uses the object as an r-value (a computation source), the compiler must emit an appro-
priate MFC DMA get command that uses the EA from the object’s corresponding EAR. If the 
program uses the object as an l-value (a computation destination), the compiler must emit an 
appropriate MFC DMA put command.

An unsophisticated compiler will emit DMA get or put commands whenever the object is refer-
enced in the program, but a sophisticated compiler can perform software caching of objects by 
performing live analysis of shared objects and using the synchronization facilities of the MFC, 
such as lock-line reservation, to reduce the number of MFC DMA commands executed at run 
time.

14.6 SPE Runtime Loader

Loading cooperative PPE and SPE programs onto a CBEA processor system, from a combined 
CESOF object or separately, requires loading both PPE and SPE programs into two distinct 
memory spaces. First, the entire program is loaded into the EA main storage space by the PPE 
operating system; second, the SPE program is copied, when needed, from EA space into the LS 
of the SPE that is selected to run the SPE program. 

14.6.1 Runtime Loader Overview

A modern operating system, such as Linux, can use a runtime loader to load a binary program 
into memory for execution. The loader copies or simply maps the program image into the 
address space of memory that is directly accessible by the processor. In the case of CBEA 
processor programs, the runtime loader copies or maps code (.text in an ELF object), initialized 
data (.data in an ELF object), and uninitialized data (.bss in an ELF object) segments into 
memory and initializes the stack for the process that will contain the running program. There can 
be more dynamic linking steps in loading programs linked with dynamic or shared libraries.

After the loader has done its work, it jumps to the entry point of the program in the newly created 
process.
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14.6.2 SPE Runtime Loader Requirements

14.6.2.1 Static Linking

An SPE runtime loader can be significantly simpler than a PPE loader because the SPU ABI 
specifies that programs be statically linked. Static linking results in two major simplifications for 
an SPE runtime loader: the linker can determine at link time that an SPE program will fit into the 
SPE’s LS, and the SPE loader need not support runtime relocations and dynamic symbol resolu-
tion.

14.6.2.2 Resource Conservation

An SPE loader that conforms to the framework defined here should use as few resources as 
possible. The loader should use memory in the LS that can be reclaimed when the loaded SPE 
application starts; no memory should be permanently allocated to the loader. The loader should 
ensure that the registers it uses—and that are not otherwise defined as initialized in the ABI—are 
cleared to ‘0’ before it exits. The loader should take a minimum of execution time.

14.6.2.3 Specific Loader Actions

The SPE runtime loader, either executed by PPE or SPE, must accomplish the following actions:

1. Select an available SPE to execute the program, and perform any needed initialization of its 
memory and access properties.

2. Transfer the SPE program segments, including overlaying the TOE shadow, from EA space 
to the selected SPE’s LS.

3. Initialize the SPU registers according to the requirements of the SPU Application Binary 
Interface Specification.

4. Enable single-step support if needed.

5. Jump to the SPE application program’s entry point (typically crt0 or an equivalent).

Select an Available SPE

This action is handled by the OS running on the PPE or an SPE user-space program. In the latter 
approach, which has been proven to be a more effective way of loading SPE programs, the PPE 
first loads a bootstrap loader into the LS, and the bootstrap loader running on the SPE subse-
quently loads the real SPE program into the LS. 

A primary function of the PPE OS is to assign and manage tasks in the system, including tasks 
for the SPEs. The fundamental responsibilities of the OS for assigning a program to a particular 
SPE are:

1. Select an SPE to run the program based on the current state of the CBEA processor and 
other application-dependent criteria.

2. Initialize SPE access properties; this includes setting up the SPE’s memory management 
unit (MMU) and replacement management table (RMT).

3. Initiate SPE program execution by invoking the SPE bootstrap loader.
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After the SPE starts executing, the PPE OS is responsible for managing and controlling the 
progress of the SPE program.

Transfer Program to LS

The SPE loader runs either on the PPE or SPE using parameters set up by the PPE loader. The 
SPE loader uses these parameters to locate the SPE program segments (code, data, and 
possibly a CESOF toe segment from the TOE shadow area) in EA space and copy them to LS 
space using MFC DMA commands.

Initialize SPE Registers

Certain registers must be initialized before an SPE program is started running. For example, the 
Cell Broadband Engine Linux Reference Implementation Application Binary Interface Specifica-
tion specifies that R1, the stack pointer (SP), is initialized by the standard crt0 program entry 
function to point to the highest quadword address of the SPE’s LS. The LS size is 256 KB, so the 
SP will be initialized to x‘3FFF0’. In other environments, the initialization address might be less 
than x‘3FFF0’ to accommodate parameters, isolation open area, and so forth. 

The Cell Broadband Engine Linux Reference Implementation Application Binary Interface Speci-
fication also specifies a convention for passing arguments to an SPE program. These arguments 
include application arguments and application-environment settings. Table 14-9 on page 406 
shows the registers and their initial values. 

Enable Single-Step

Single-step execution is required when a debugger is controlling and monitoring an SPU 
program. Two mechanisms are defined to support SPU single-step operation:

• A privileged-mode register can be set to enable hardware single-step execution. This method 
is not precise because one or more instructions might be executed before a single-step 
breakpoint is honored, depending on the fetch and issue rules of the SPU.

• Breakpoints can be set with the SPU stopd (stop-and-signal with dependencies) instruction 
that has the special x‘3FFF’ signal type. This is a method defined by the Cell Broadband 
Engine Linux Reference ABI and can be as precise as required by replacing each instruction 
in turn with the stopd instruction. In addition, with this mechanism, breakpoints can be set by 
either the debugger or the programmer.

Begin Execution

After the SPE program has been copied to LS and the execution environment has been initialized 
properly, the SPE loader will set the SPE’s Next Program Counter Register (NPC) to the entry 
point of the program, typically the entry point to crt0, and begin execution. The LS address of the 
entry point is passed to the SPE loader as a parameter (see Table 14-11 on page 422).
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14.6.3 Example SPE Runtime Loader Framework Definition

This section describes one possible example of an extensible framework for an SPU runtime 
loader. This framework uses a small bootstrap loader that runs on the SPU and that copies the 
SPE application program from main storage into LS and initializes the environment according to 
the ABI. Many other loader strategies are possible. 

With this framework, system programmers can build a compatible replacement for the default 
SPE loader. The default loader might need to be replaced to accommodate extensions to, or re-
definitions of, object-file formats, OS environments, and protocols.

The framework described here defines a set of per-binary, per-loader, and per-thread parame-
ters for the SPU loader; each of these parameter sets is described in the following sections. This 
description includes the PPE-initiated and SPE-initiated aspects of the loading process and the 
interactions between the SPE loader and the application’s crt0 entry function.

14.6.3.1 SPE Runtime Loader Parameters

The SPE loader framework defines data structures for representing and passing parameters to 
the SPE loader and application program. All of the EAs for the SPE loader are 64-bit pointers. In 
32-bit environments, the high-order 32 bits of an EA are cleared to ‘0’.

The PPE runtime loader is responsible for copying the SPE loader and its parameters into the 
target SPE’s LS. Thus, when the SPE loader begins execution, all three sets of parameters—
per-loader, per-binary, and per-thread—are available in LS. Under the definitions described in 
the following subsections, the three sets of parameters occupy 112 bytes of LS.

Per-Loader Parameters

The per-loader parameters specify the location and size of the SPE bootstrap loader program 
and the runtime flags the loader should honor. Table 14-10 explains the per-loader parameters, 
all of which are 32-bit values.

Per-Binary Parameters

The per-binary parameters pass information about the location and size of the SPE program in 
main storage and in LS. as well as the LS address of the program’s entry point. Table 14-11 on 
page 422 explains the per-binary parameters; all the parameters are 32-bit values.

Table 14-10. SPE Loader Per-Loader Parameters 

Parameter Data Type Comment

ldr_ea_hi 32-bit unsigned int High-order 32 bits of the EA of the SPE loader in main storage.

ldr_ea_low 32-bit unsigned int Low-order 32 bits of the EA of the SPE loader in main storage.

ldr_size 32-bit unsigned int SPE loader program size in bytes. The maximum value for this parameter is 
currently set at 384 bytes (24 quadwords).

ldr_flags 32-bit unsigned int

Runtime flags for the SPE loader.
SPU_LDR_FLAGS_traced (x‘1’): if set, the loader enables single-step operation.
SPU_LDR_FLAGS_multi_seg (x‘2’): if set, the SPE program consists of multiple 
load segments.
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In the simplest case, the SPE program executable contains a single, combined, loadable 
segment containing the .text, .data, and .bss segments. In this case, the img.ea_hi, 
img.ea_low, and img.size parameters specify the region of main storage to be copied into LS.

In other cases, particularly for an executable using the capabilities of CESOF, the SPE-ELF 
executable will have more than one load segment. For multiple load segments, the img.ea_hi 
and img.ea_low parameters specify the EA of a list in main storage. The img.size parameter 
specifies the number of elements in the list. The SPE loader uses the list to copy each of the 
loadable segments from main storage to LS memory.

In the case of a CESOF executable, the list will contain at least two elements: an element for the 
combined segment that contains the .text, .data, and .bss segments of the SPE program and 
an element for the toe segment. When the PPE loader builds the list elements, it will replace the 
main-storage address of the toe segment with the address of the TOE shadow section. Conse-
quently, the SPE loader will overwrite the toe segment in LS with the TOE shadow. This fulfills 
the CESOF runtime requirement of replacing the .toe with the TOE shadow. 

Because the framework must support even more sophisticated SPE loaders, the EA in main 
storage of the complete SPE-ELF executable image is available in the elf_ea_hi and elf_ea_low 
parameters.

Per-Thread Parameters

The per-thread parameters are arguments passed to the SPE program because the running 
instance of the program is an OS thread. These parameters are passed to satisfy the ABI 
register-initialization requirements described in Section 14.6.2.3 on page 419, and are explained 
in Table 14-9 on page 406.

Table 14-11. SPE Loader Per-Binary Parameters 

Parameter Data Type Comment

img.size 32-bit unsigned int

Image size in bytes. If the SPU_LDR_FLAGS_multi_seg flag is set in the per-loader 
ldr_flags parameter (see Table 14-10 on page 421), img.size indicates the 
number of segments in the list (see img.ea_hi and img.ea_low) to be loaded into 
LS.

img.ea_hi 32-bit unsigned int

High-order 32 bits of EA of program image in main storage. If the 
SPU_LDR_FLAGS_multi_seg flag is set in the per-loader ldr_flags parameter (see 
Table 14-10 on page 421), img.ea_hi contains the high-order 32-bits of the EA 
of the list of segments to be loaded into LS.

img.ea_low 32-bit unsigned int

Low-order 32 bits of EA of program image in main storage. If the 
SPU_LDR_FLAGS_multi_seg flag is set in the per-loader ldr_flags parameter (see 
Table 14-10 on page 421), img.ea_low contains the low-order 32-bits of the EA 
of the list of segments to be loaded into LS.

img.dst_ls 32-bit unsigned int LS destination address for the SPE program image segment.

entry 32-bit unsigned int LS address of the SPE program entry point (typically the start of crt0).

lslr 32-bit unsigned int
LS limit setting; this value is copied from the spu_env structure in the SPU 
Environment Note in the SPE-ELF Program Header; see Section 14.2.2.4 on 
page 400.

elf_ea_hi 32-bit unsigned int High-order 32 bits of the EA of the SPE-ELF executable in main storage.

elf_ea_low 32-bit unsigned int Low-order 32 bits of the EA of the SPE-ELF executable in main storage.
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The spu_lscsa in R6 can be used by the PPE OS when it needs to preempt the SPE thread, or 
the thread itself can use the area to perform a light-weight SPE context save. An SPE thread can 
perform a context save in response to a privileged-attention event raised by the PPE OS (see 
Section 18 on page 471), or the thread can save context as a means to communicate system-call 
parameters from LS or SPU registers to the PPE OS.

14.6.3.2 PPE-Initiated Actions for SPE Loading

The first steps in loading an SPE program into an SPE LS for execution include loading the SPE-
ELF executable image from the CESOF object and loading the SPE loader, called spu_ld.so in 
this description, into main storage. These steps are shown graphically in Figure 14-8.

Figure 14-9 on page 424 shows the location and sizes of the loader and its parameters after they 
have been copied to LS.

Figure 14-8. PPE OS Loads CESOF Object and spu_ld.so into EA Space 

PPE Code

TOE shadow

SPE Code and Data
PPE OS

loads
CESOF

code and
data

PPE Data

PPE Data

PPE Code

SPE Code and Data

spu_ld.so

TOE shadow

spu_ld.so

PPE OS
loads

spu_ld.so

bit 127bit 0

EA-Space Memory

LS Memory of Assigned SPE

Mass Storage  (Disk)

0x0000

0x40000

128-byte
Aligned



Programming Handbook

Cell Broadband Engine  

Objects, Executables, and SPE Loading
Page 424 of 884

Version 1.1
May 12, 2008

Before the PPE loader can copy the SPE loader and set it running, the PPE OS must assign the 
SPE program to an available SPE. The assigned SPE’s state, including its LS and registers, 
must be cleaned (for example, initialized to zero), and the SPE’s access and memory properties 
(such as the contents of the MMU) must be properly initialized. 

If the PPE loader detects that it is loading an SPE program that has a toe segment, it must create 
a list in main storage of loadable segments that will cause the SPE loader to copy the TOE 
shadow from the PPE-ELF wrapper to LS instead of the toe segment from the SPE-ELF execut-
able. Creating the segment list and copying the TOE shadow over the toe segment are the major 
aspects of the runtime support required by the CESOF specification.

Next, the PPE loader sets the SPE’s NPC register to the loader entry point, which, as shown in 
Table 14-12 on page 425, is SPU_LDR_PROG_start with the value (LS_SIZE – 512). Because 
LS_SIZE is 256 KB, the NPC will be set to x‘3FE00’.

The next step is invoking the SPE loader with the proper parameters. The PPE loader copies the 
SPE boot-strap loader and its parameters to LS according to the values shown in Table 14-12 on 
page 425. 

Figure 14-9. PPE OS Loads spu_ld.so and Parameters into SPE LS 
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The PPE loader copies the SPE loader parameters to LS by initiating a DMA get command in the 
SPE’s associated MFC (see Section 19 on page 513 for details on DMA commands). Next, the 
PPE loader copies the SPE loader code to LS by initiating a DMA gets command. The gets 
command copies the code and then, after the DMA transfer has completed, starts the SPE’s SPU 
running at the address in the NPC register, which is set to x‘3FE00’.

At this point, the state of LS is shown in Figure 14-9 on page 424, and the work of the PPE loader 
is finished; the SPE bootstrap loader completes the remaining steps in the loading process. A 
principle advantage of dividing the work of SPE program loading between the PPE loader and 
the SPE loader is the fact that after the PPE loader enqueues the get and gets commands, it 
need not wait for them to complete; the PPE loader can continue with other aspects of the PPE 
loading process or terminate and free the PPE for other tasks.

14.6.3.3 SPE-Initiated Actions for SPE Loading

The SPE bootstrap loader must copy the SPE program segments to LS, initialize registers, 
possibly enable single-step mode (see Section 14.6.2.3 on page 419), and finally start the SPE 
executing the loaded program.

Copy SPE Program Segments to LS

The sizes and locations of the program segments to be copied are contained in the per-binary 
section of the parameter area. The parameters can specify either a single loadable segment or a 
list of segments. If a list of segments is needed to properly load the SPE program, the PPE 
loader is responsible for setting up the list in main storage. See Section 14.6.3.1 on page 421 for 
additional information about per-binary parameters. As summarized in Section  on page 418, 
copying the TOE shadow segment is a key part of CESOF runtime support.

In the case of loading a CESOF executable, the final state of LS—with the SPE application 
loaded and the TOE shadow copied in place of the toe segment—is shown in Figure 14-10 on 
page 426.

Table 14-12. LS Locations and Sizes of SPE Loader and Parameters 

Attribute Value Comment

SPU_LDR_PROG_start LS_SIZE – 512

The SPE loader is copied by the PPE loader into LS at the address of the 
start of the last 512-byte (32-quadword) block of implemented LS 
memory. For the CBEA processors, for which LS_SIZE is x‘40000’, this 
address is x‘3FE00’. 

SPU_LDR_PROG_size 384 The current framework allows the SPE loader to occupy up to 384 bytes 
(24 quadwords) of LS starting at SPU_LDR_PROG_start.

SPU_LDR_PARAMS_start LS_SIZE – 128

The SPE loader parameters are copied by the PPE loader into LS at the 
address of the start of the last 128-byte (8-quadword) block of 
implemented LS memory.For the CBEA processors, for which LS_SIZE is 
x‘40000’, this address is x‘3FF80’.

SPU_LDR_PARAMS_size 128 The current framework allows the SPE loader parameters to occupy up 
to 128 bytes (8 quadwords) of LS starting at SPU_LDR_PARAMS_start.
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Initialize Registers

See Section 14-9 on page 406 for details on how R1 (stack pointer) and R2 (stack size) are set. 
The SPE loader initializes registers R3 through R5 according to the per-thread parameters. See 
Section 14.6.2.3 on page 419 for more information. 

Enable Single Step

This SPE loader framework implements single-stepping and debugger breakpoints with the stop 
instruction. The return code of the stop instruction for a breakpoint is x‘3FFF’.

If the SPU_LDR_FLAGS_traced bit is set to ‘1’ in the per-loader ldr_flags parameter, the SPE 
program will be executed in single-step mode. To support single-step mode, the SPE loader 
must execute the stop instruction just before the loader branches to the SPE program’s entry 
point. When controlling software, such as an SPE debugger, takes control after this breakpoint is 
raised, this software can set additional breakpoints or otherwise modify the SPE program state.

Figure 14-10. spu_ld.so Loads SPE Code and TOE Shadow 
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Begin SPE Program Execution

The last step is to transfer control to the SPE program’s entry point. The address of the entry 
point is found in the entry parameter of the per-binary parameter area. The entry parameter typi-
cally contains the starting address of the program’s crt0 function. If single-step mode is enabled, 
the loader executes a breakpoint stop instruction before it branches to crt0; otherwise it simply 
branches to crt0.

14.6.3.4 SPE Loader Interactions with crt0

The PPE loader clears to zero the assigned SPE’s registers and LS before the SPE loader and 
its parameters are copied to LS. When the SPE loader has completed its work, the SPE applica-
tion program is in LS and registers are initialized according to the ABI requirements.

All other LS regions and SPU registers contain zero, except for the last 512 bytes (32 quad-
words) of LS, which is where the SPE loader and parameters are located. Although crt0 need 
not clear regions of LS that contain uninitialized data segments (the PPE loader already cleared 
all of LS), some systems might be designed to have crt0 clear the 512-byte area used by the 
SPE loader. Explicit clearing of the SPE loader area is probably not necessary, however, 
because crt0 is responsible for initializing the SPE stack pointer to the highest LS memory 
address and setting up the initial stack frame. Consequently, function calls in the SPE application 
will overwrite the SPE loader and parameters. In any case, it is unlikely that spu_ld.so and its 
parameters will contain any sensitive information.

14.7 SPE Execution Environment

This section specifies low-level system information and conventions that are used by the oper-
ating system. Some of these conventions are defined by the ABI and are standard for all 
systems. Others are specific to the Linux operating system environment and are indicated as 
such. For specific additional details, consult the operating-environments documentation for your 
specific operating system.

14.7.1 Signal Types for the SPE Stop-and-Signal Instruction

The stop instruction contains a 14-bit signal-type field. When stop is executed, the signal type is 
written to bits 0 through 13 of the SPE status register. This value is used to indicate why a 
program stopped. The signal-type values have been partitioned by Linux in the following way:

• Signal-type values with the most-significant bit cleared to ‘0’ are reserved for application use.

• Signal-type values with the most-significant bit set to ‘1’ are reserved for runtime or privileged 
services.

Table 14-13 on page 428 describes the reserved signal type values.
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Table 14-13. SPE-ELF Reserved Signal Type Values 

Signal-Type Value Description

x‘0000’ Data executed as an instruction.

x‘2000’..x‘20FF’

Linux return from main() or exit(). Return or exit() status is encoded in the least-significant 
byte of the stop-and-signal value:
exit (EXIT_SUCCESS) == x‘2000’
exit (EXIT_FAILURE) == x‘2001’

x‘2100’..x‘21FF’ Linux PPE assisted library calls. See Cell Broadband Engine Linux Reference Implementation 
Application Binary Interface Specification for additional details.

x‘3FFE’ Stack overflow detected.

x‘3FFF’ Debugger breakpoint.
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15. Power and Thermal Management

The power-management mechanism provides a means for limiting the amount of power dissi-
pated by a component by limiting its degree of activity. There are five states for power manage-
ment. Typically, the more aggressive the power-management state, the more time is required to 
enter and exit the state. These states apply to each of the various processing elements and other 
logic blocks of the Cell Broadband Engine Architecture (CBEA) processors.1 Each component 
can be individually set to a power-management state. The power-management facilities provide 
privileged software with the ability to manage power while meeting the real-time demands of a 
system. The CBEA processors implement a subset of the power-management states defined by 
the Cell Broadband Engine Architecture. 

The digital thermal-management mechanism provides a means for monitoring and controlling the 
temperature within the CBEA processor. During the execution of an application, the temperature 
of areas within the CBEA processor can rise. Left unchecked, the temperature might rise above 
the maximum specified junction temperature leading to improper operation or physical damage. 

Both the power-management and thermal-management facilities are part of the pervasive logic, 
which provides control, monitoring, and debugging functions.

15.1 Power Management

Table 15-1 summarizes the CBEA processor power-management states. Details on each state 
are given later in this section. 

1. The Cell Broadband Engine (Cell/B.E.) and PowerXCell 8i processors are collectively called CBEA processors.

Table 15-1. Power-Management States 

Power Management State Description

Slow State
In Slow state, clock frequency is lowered. A lower clock frequency results in greater 
potential for performance degradation, and lower power consumption. For more 
information, see Section 15.1.1 Slow State on page 430.

PPE Pause (0) State
PowerPC Processor Element (PPE) Pause (0) state is a clock-gating that occurs when 
both PPE threads are shut down. PPE code execution is suspended during this state. 
For more information, see Section 15.1.2 PPE Pause (0) State on page 431.

SPE State Retained and 
Isolated (SRI) State

In Synergistic Processor Element (SPE) SRI state, all access to the component is 
inhibited. The state remaining on the component is retained. The component must be 
prepared by privileged software or hardware to maintain system integrity. The 
component does not make forward progress. For more information, see the security 
documentation, available under nondisclosure agreement (NDA).

SPU Pause State

In synergistic processor unit (SPU) Pause state, SPU code execution can be 
suspended to reduce power and stop forward progress until resumed. Memory-
mapped I/O (MMIO) registers and the local storage (LS) can still be accessed. For 
more information, see Section 15.1.3 SPU Pause State on page 432.

MFC Pause State
In MFC Pause state, memory flow controller (MFC) command queue operations can be 
suspended to reduce power and to stop forward progress until resumed. For more 
information, see Section 15.1.4 MFC Pause State on page 432.

Active State In Active state, no power-management functions are enabled. This is the state of 
maximum performance and maximum power-use.
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15.1.1 Slow State

The main clock (NClk) frequency of the CBEA processors can be changed dynamically in the 
Slow state. The functions of the CBEA processors are not affected in this state; only the perfor-
mance is affected. Certain time-base settings are guaranteed to be invariant over all frequency 
changes. See Section 13 Time Base and Decrementers on page 381 for details. Slow state can 
be run in conjunction with any other power-management state.

15.1.1.1 Configuration-Ring Settings

Slow state has one related configuration-ring setting, slow_mode_delay_setting. The recom-
mended setting is x‘1F’. See the Cell Broadband Engine CMOS SOI 65 nm Hardware Initializa-
tion Guide for a description of the configuration ring. 

15.1.1.2 PLL Start

By default, the CBEA processors start at the maximum frequency. However, if the phase-locked 
loop (PLL) is configured to not start at the maximum frequency, an extra step is required before 
scaling the NClk frequency. This required step is to write the Power Management Control 
Register (PMCR) as follows: PMCR[Override] = ‘1’ and PMCR[Curr_Slow_n] = PLL frequency divi-
sion. This can be done with one MMIO write. Software must not initiate a frequency scale until a 
read of the Power Management Status Register (PMSR[BE_Slow_n]) reflects the PLL frequency 
division.

15.1.1.3 Scaling the Processor Core Clock (NClk) Frequency

Slow state changes the processor core clock (NClk) frequency (see Section 13.2.3 Time-Base 
Frequency on page 383) to a target frequency rate (n). Changing NClk requires a compensating 
factor (command-pacing rate) in the memory interface controller (MIC) unit to prevent buffer 
overruns. This is required because the MIC clock (MiClk) runs separately and does not change 
with this procedure. An initial setting of the MIC_Slow_Fast_Timer_n register sets the command-
pacing rate during the frequency change. This value is constant for all frequencies and needs to 
be set up only once. The MIC_Slow_Next_Timer_n register sets the command pacing rate after the 
frequency change; this value is different for each target frequency (n). After all pacing rates are 
set, a write to the PMCR[Next_Slow_n] register field initiates a frequency change. No writes to 
MIC_Slow_Fast_Timer_n, MIC_Slow_Next_Timer_n, or PMCR[Next_Slow_n] occur until the status of 
PMSR[BE_Slow_n] reflects the target frequency.

To dynamically change to a supported frequency, perform the following steps: 

Note:  If the PLL is not configured to start at the maximum frequency, perform the step 
described in Section 15.1.1.2 before performing these steps.

1. See Table 15-2 on page 431 for the required target frequency and corresponding recom-
mended register values.

2. Software sets MIC_Slow_Fast_Timer_0[8:19] and MIC_Slow_Fast_Timer_1[8:19] to x‘7FC’. 
(Software only has to write these registers once.)

3. Software sets the new MIC_Slow_Next_Timer_0[16:27], and MIC_Slow_Next_Timer_1[16:27] 
to the value indicated in Table 15-2 for the required target frequency.
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4. Software sets the new frequency PMCR[Next_Slow_n] to the value indicated in Table 15-2 for 
the required target frequency.

5. Software waits for a read of PMSR[BE_Slow_n] to reflect the updated frequency change. Status 
must reflect the updated frequency before attempting another frequency change.

Table 15-2 shows the register updates corresponding to required target frequencies for Slow 
state. Some CBEA processors might not be certified for execution in all of the slow-state frequen-
cies shown in Table 15-2. Consult the processor's data sheet for supported frequencies. 

For details about the registers referenced in this section, see the Cell Broadband Engine Regis-
ters document.

15.1.2 PPE Pause (0) State

PPE Pause (0) state requires both PPE threads to be shut down and pause state-control is 
enabled. Cache coherency is maintained during this state. PPE Pause (0) state is exited with 
interrupts, some of which can be masked individually. PPE Pause (0) state can be run in 
conjunction with any other power-management state.

15.1.2.1 Enabling PPE Pause (0) State

Control of PPE Pause (0) is disabled by default. A one-time write to PMCR[PPE_pause] = ‘1’ is 
required to enable the state.

15.1.2.2 Entering PPE Pause (0) State

Each PPE thread must be shut down for the PPE Pause (0) state to be enabled. After both 
threads are shut down, the PPE Pause (0) state is entered if no interrupt is pending. See 
Section 10 PPE Multithreading on page 299 for details about resuming and suspending a thread.

Table 15-2. Register Updates for Slow State 

PMCR[Next_Slow(n)]
[n = 0:7] 

MIC_Slow_Fast_Timer_n[8:19]
[n = 0,1]

MIC_Slow_Next_Timer_n[16:27]
[n = 0,1] 

n = 0 Frequency = Max x‘7FC’ x‘240’

n = 1 Frequency = Max/2 x‘7FC’ x‘268’

n = 2 Frequency = Max/3 x‘7FC’ x‘29C’

n = 3 Frequency = Max/4 x‘7FC’ x‘2D0’

n = 4 Frequency = Max/5 x‘7FC’ x‘300’

n = 5 Frequency = Max/6 x‘7FC’ x‘334’

n = 6 Frequency = Max/8 x‘7FC’ x‘39C’

n = 7 Frequency = Max/10 x‘7FC’ x‘3FC’

Note:  MIC_Slow_Next_Timer_n table data assumes a NCLK/MiClk ratio of 2:1. For an equation with different ratios see 
in the Cell Broadband Engine Registers document.
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15.1.2.3 Exiting Pause State

PPE Pause (0) state exits by one of the following types of interrupts: external, decrementer, 
thermal management, or system error. Pause control masking is possible for external and decre-
menter interrupts. See Section 15.1.2.4 Pause Interrupt Resume Masks for information about 
masking. 

It is possible to exit the PPE Pause (0) state and not wake a thread, because there are separate 
PPE thread controls. See Section 10 PPE Multithreading on page 299 for details about resuming 
and suspending a thread.

Note:  A pending hypervisor decrementer (HDEC) interrupt prevents entering the PPE Pause (0) 
state. However, once the state is activated, an HDEC interrupt does not exit the PPE Pause (0) 
state.

15.1.2.4 Pause Interrupt Resume Masks

The external and decrementer interrupts (per thread) can be selectively masked to determine 
whether they cause an exit from PPE Pause (0) state. The mask must be set before both threads 
are shut down by setting a combination of any mask bits located in the Thread Switch Control 
Register (TSCR) at TSCR[wdec0], TSCR[wdec1], or TSCR[wext]. This mask is only for interrupts to 
exit PPE Pause (0) state; it is possible to exit PPE Pause (0) state and not wake a thread 
because these masks are different. See Section 10 PPE Multithreading on page 299 for details. 

15.1.3 SPU Pause State

SPU Pause state can be run in conjunction with the Slow, PPE Pause (0), and MFC Pause 
states. The MMIO registers and the LS can still be accessed in this state. Cache coherency is 
maintained in this state. 

Software pauses (suspends) an SPU by writing MFC_SR1[S] = ‘0’. Software resumes an SPU by 
writing MFC_SR1[S] = ‘1’.

15.1.4 MFC Pause State

MFC Pause state can be run in conjunction with the Slow, PPE Pause (0), and SPU Pause 
states. The MMIO registers and the LS can still be accessed in this state. 

Software pauses (suspends) an MFC’s command queues by writing MFC_CNTL[Sc] = ‘1’. Cache 
coherency is maintained in this state. Software resumes an MFC’s command queues by writing 
MFC_CNTL[Sc] = ‘0’.

15.2 Thermal Management

The digital thermal-management unit consists of a thermal-management control unit (TMCU) and 
ten distributed Digital Thermal Sensors (DTSs). One sensor is located in each of the eight SPEs, 
one is located in the PPE, and one is adjacent to the linear thermal diode. The linear thermal 
diode is an on-chip diode that calculates temperature. These sensors are adjacent to areas 
within the associated unit that typically experience the greatest rise in temperature during the 
execution of most applications. 
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The TMCU monitors feedback from each of the sensors. If the temperature of a sensor rises 
above a programmable point, the TMCU can be configured to cause an interrupt to the PPE and 
dynamically throttle the execution of the associated PPE or SPE. The throttling is accomplished 
by stopping and running the PPE or SPE for a programmable number of cycles. The interrupt 
allows privileged software to take corrective action while dynamic throttling (a hardware device) 
attempts to keep the temperature below a programmable level without software intervention. 
Privileged software must set the throttling level equal to or below the recommended settings. 

If dynamic throttling or privileged software does not effectively manage the temperature and the 
temperature continues to rise, the CBEA processor clocks are stopped when the temperature 
reaches a thermal overload temperature defined by the configuration ring data. The thermal over-
load feature protects the CBEA processors from physical damage. Recovery from this condition 
requires a hard reset.

Note:  The temperature of the region monitored by the digital thermal sensors is not necessarily 
the hottest point within the associated PPE or SPE. 

15.2.1 Thermal-Management Operation

In the TMCU, each DTS provides a current temperature-detection signal. This signal indicates 
that the temperature is equal to or below the current temperature-detection range set by the 
TMCU. The TMCU uses the state of these signals to continually track the temperature of the 
PPE’s or each SPE’s digital thermal sensor. As the temperature is tracked, the TMCU provides 
the current temperature as a numeric value that represents the temperature within the PPE or 
SPE. The mapping between this numeric value and the temperature is provided in Table 15-3. 
Internal calibration storage is set in manufacturing to calibrate the individual sensors. 

Table 15-3. Digital Temperature-Sensor Encoding (Sheet 1 of 2) 

Thermal-Sensor Temperature Encoding

6-Bit Encode Temperature Range 6-Bit Encode Temperature Range

0 17

1 18

2 19

3 20

4 21

5 22

6 23

7 24

8 25

9 26

10 27

11 28

12 29

13 30

temp 65.0°C< 97.0°C t≤ emp 99.0°C<

65.0°C t≤ emp 67.0°C< 99.0°C t≤ emp 101.0°C<

67.0°C t≤ emp 69.0°C< 101.0°C t≤ emp 103.0°C<

69.0°C t≤ emp 71.0°C< 103.0°C t≤ emp 105.0°C<

71.0°C t≤ emp 73.0°C< 105.0°C t≤ emp 107.0°C<

73.0°C t≤ emp 75.0°C< 107.0°C t≤ emp 109.0°C<

75.0°C t≤ emp 77.0°C< 109.0°C t≤ emp 111.0°C<

77.0°C t≤ emp 79.0°C< 111.0°C t≤ emp 113.0°C<

79.0°C t≤ emp 81.0°C< 113.0°C t≤ emp 115.0°C<

81.0°C t≤ emp 83.0°C< 115.0°C t≤ emp 117.0°C<

83.0°C t≤ emp 85.0°C< 117.0°C t≤ emp 119.0°C<

85.0°C t≤ emp 87.0°C< 119.0°C t≤ emp 121.0°C<

87.0°C t≤ emp 89.0°C< 121.0°C t≤ emp 123.0°C<

89.0°C t≤ emp 91.0°C< 123.0°C t≤ emp 125.0°C<



Programming Handbook

Cell Broadband Engine  

Power and Thermal Management
Page 434 of 884

Version 1.11
May 12, 2008

The TMCU can be configured to cause an interrupt to the PPE and dynamically throttle the 
execution of the PPE or an SPE. The TMCU compares the numeric value representing the 
temperature to a programmable interrupt temperature and a programmable throttle point. If the 
temperature is within the programmed interrupt temperature range, an external interrupt is gener-
ated to the PPE, if enabled. In addition, a second programmable interrupt temperature can cause 
the assertion of an Attention signal to a system controller. See Section 15.2.5 Thermal Sensor 
Interrupt Registers on page 436 for more information about the interrupt capability of the TMCU. 
If the temperature is equal to or above the throttling point, the TMCU throttles the execution of the 
PPE or an SPE by starting and stopping the PPE or SPE dynamically. Software can control the 
ratio and frequency of the throttling using the Dynamic Thermal-Management registers. See 
Section 15.2.6 Dynamic Thermal-Management Registers on page 438 for more information. 

Figure 15-1 illustrates the temperature and the various points at which interrupts and dynamic 
throttling occur. In this figure, the PPE or SPE is running normally; there is no throttling in the 
regions marked with an “N”. When the temperature reaches the throttle point, the TMCU starts 
throttling the execution of the associated PPE or SPE. The regions in which the throttling occurs 
are marked with a “T”. When the temperature of the PPE or SPE drops below the end throttle 
point, the execution returns to normal operation. If, for any reason, the temperature continues to 
rise and reaches a temperature at or above the full throttle point, the PPE or SPE is stopped until 
the temperature drops below the full throttle point. Regions where the PPE or SPE is stopped are 
marked with an “S”. Stopping the PPE or SPEs when the temperature is at or above the full 
throttle point is referred to as the Core Stop Safety. In this illustration, the interrupt temperature is 
set above the throttle point; therefore, software is notified if the PPE or SPE is ever stopped for 
this condition, provided that the Thermal Interrupt Mask Register (TM_ISR) is set to active, 
allowing the PPE or SPE to resume during a pending interrupt.

14 31-63

15

16

Table 15-3. Digital Temperature-Sensor Encoding (Sheet 2 of 2) 

Thermal-Sensor Temperature Encoding

6-Bit Encode Temperature Range 6-Bit Encode Temperature Range

91.0°C t≤ emp 93.0°C< 125.0°C t≤ emp

93.0°C t≤ emp 95.0°C<

95.0°C t≤ emp 97.0°C<

Figure 15-1. Digital Thermal-Sensor Throttling 
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Note:  If dynamic throttling is disabled, privileged software must manage the thermal condition. 
Not managing the thermal condition can result in improper operation of the associated PPE or 
SPE or a thermal shutdown by the thermal-overload function.

15.2.2 Configuration-Ring Settings

Thermal management uses the following Configuration-Ring settings:

• MinStopPPE specifies the minimum stop time for the PPE. Suggested value: x‘8’. 

• MinStopSPE specifies the minimum stop time for the SPEs. Suggested value: x‘8’.

• CFG_TO specifies the temperature which will cause the Thermal Overload signal to be 
asserted and the clocks to be stopped. Suggested value: x‘1F’.

• SenSampTime specifies how often a sensor will be sampled. Suggested value: x‘01’.

• DigFiltDly specifies the delay time for the sensor-output’s digital filter. Suggested value: x‘0’.

For a description of the configuration ring, see the Cell Broadband Engine CMOS SOI 65 nm 
Hardware Initialization Guide. 

15.2.3 Thermal Registers

See the Pervasive MMIO Registers section of the Cell Broadband Engine Registers document 
for bit definitions of the thermal-management MMIO registers mentioned in the following 
sections. See the Cell Broadband Engine CMOS SOI 65 nm Hardware Initialization Guide for a 
description of the configuration ring.

15.2.4 Thermal Sensor Status Registers

The Thermal Sensor Status Registers consist of the Thermal Sensor Current Temperature 
Status Registers (TS_CTSR1 and TS_CTSR2) and the Thermal Sensor Maximum Temperature 
Status Registers (TS_MTSR1 and TS_MTSR2). These registers allow software to read the current 
temperature of each DTS, determine the highest temperature reached during a period of time, 
and cause an interrupt when the temperature reaches a programmable temperature. System 
software should mark the real address pages containing the thermal sensor registers as hyper-
visor privileged.

TS_CTSR1 and TS_CTSR2 contain the encoding for the current temperature of each DTS. TS_MTSR1 
and TS_MTSR2 contain the encoding for the maximum temperature reached for each sensor from 
the time of the last read of these registers. See the Cell Broadband Engine Registers specifica-
tion for a definition of the encoding. The length of a sample period is controlled by the SenSamp-
Time configuration field, as described in the Cell Broadband Engine CMOS SOI 65 nm Hardware 
Initialization Guide.

15.2.5 Thermal Sensor Interrupt Registers

The thermal sensor interrupt registers control the generation of a thermal-management interrupt 
to the PPE. This set of registers consists of the Thermal Sensor Interrupt Temperature Registers 
(TS_ITR1 and TS_ITR2), the Thermal Sensor Interrupt Status Register (TS_ISR), the Thermal 
Sensor Interrupt Mask Register (TS_IMR), and the Thermal Sensor Global Interrupt Temperature 
Register (TS_GITR).



Programming Handbook

Cell Broadband Engine  

Power and Thermal Management
Page 436 of 884

Version 1.11
May 12, 2008

TS_ITR1, TS_ITR2, and TS_GITR contain the encoding for the temperature that causes a thermal-
management interrupt to the PPE. See the Cell Broadband Engine Registers specification for a 
definition of the encoding. 

When the temperature encoding in TS_CTSR1 and TS_CTSR2 for a sensor is greater than or equal 
to the corresponding sensor’s interrupt temperature encoding in TS_ITR1 and TS_ITR2, the corre-
sponding status bit (TS_ISR[Sx]) is set. When the temperature encoding in TS_CTSR1 and 
TS_CTSR2 for any sensor is greater than or equal to the global interrupt temperature encoding in 
TS_GITR, the corresponding status bits (TS_ISR[Gx]) are set. 

If any TS_ISR[Sx] bit is set and the corresponding mask bit (TS_IMR[Mx]) is also set, a thermal-
management interrupt signal is asserted to the PPE. If any TS_ISR[Gx] bit is set and the corre-
sponding mask bit (TS_IMR[Cx]) is also set, a thermal-management interrupt signal is asserted to 
the PPE. To clear the interrupt condition, privileged software should clear any corresponding 
mask bits in TS_IMR to ‘0’. 

To enable a thermal-management interrupt, privileged software must ensure that the tempera-
ture is below the interrupt temperature for the corresponding sensors and then perform the 
following sequence; enabling an interrupt when the temperature is not below the interrupt 
temperature can result in an immediate thermal-management interrupt’s being generated:

1. Write a ‘1’ to the corresponding status bit in TS_ISR.

2. Write a ‘1’ to the corresponding mask bit in TS_IMR.

15.2.5.1 Thermal Sensor Interrupt Temperature Registers

The Thermal Sensor Interrupt Temperature Registers (TS_ITR1 and TS_ITR2) contain the interrupt 
temperature level for the sensors located in the SPEs, PPE, and adjacent to the linear thermal 
diode. The encoded interrupt temperature levels in this register are compared to the corre-
sponding interrupt temperature encoding in TS_CTSR1 and TS_CTSR2. The results of these compar-
isons are used to generate a thermal-management interrupt. Each sensor’s interrupt temperature 
level is independent.

15.2.5.2 Thermal Sensor Global Interrupt Temperature Register 

In addition to the independent interrupt temperature levels set in TS_ITR1 and TS_ITR2, the 
Thermal Sensor Global Interrupt Temperature Register (TS_GITR) contains a second interrupt 
temperature level. This level applies to all sensors in the CBEA processors. The encoded global 
interrupt temperature level in this register is compared to the current temperature encoding for 
each sensor. The results of these comparisons are used to generate a thermal-management 
interrupt.

The intent of the global interrupt temperature is to provide an early indication of a temperature 
rise in the CBEA processors. Privileged software and the system controller can use this informa-
tion to start actions to control the temperature, for example, increasing the fan speed, rebal-
ancing the application software across units, and so on.
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15.2.5.3 Thermal Sensor Interrupt Status Register 

The Thermal Sensor Interrupt Status Register (TS_ISR) identifies which sensors meet the inter-
rupt conditions. An interrupt condition refers to a particular condition that each TS_ISR bit has 
that, when met, makes it possible for an interrupt to occur. An actual interrupt is only presented to 
the PPE if the corresponding mask bit is set in the Thermal Sensor Interrupt Mask Register 
(TS_IMR).

TS_ISR contains three sets of status bits—the Digital Sensor Global Threshold Interrupt status bit 
(TS_ISR[Gx]), the Digital Sensor Threshold Interrupt status bit (TS_ISR[Sx]), and the Digital 
Sensor Global Below Threshold Interrupt status bit (TS_ISR[Gb]).

Hardware sets TS_ISR[Sx] when the temperature encoding for a sensor in TS_CTSR1 and 
TS_CTSR2 is greater than or equal to the corresponding sensor’s interrupt temperature encoding in 
TS_ITR1 and TS_ITR2 and the corresponding direction bit TM_IMR[Bx] = ‘0’. Also, hardware sets 
TS_ISR[Sx] when the temperature encoding for a sensor in TS_CTSR1 and TS_CTSR2 is below the 
corresponding sensor’s interrupt temperature encoding in TS_ITR1 and TS_ITR2 and the corre-
sponding direction bit TM_IMR[Bx] = ‘1’.

Hardware sets TS_ISR[Gx] when any participating sensor’s current temperature is greater than or 
equal to that of TS_GITR and TS_IMR[BG] is cleared to ‘0’. The individual TS_ISR[Gx] bits indicate 
which individual sensors meet these conditions.

Hardware sets TS_ISR[Gb] when all of the participating sensors in TS_IMR[Cx] have a current 
temperature below that of TS_GITR and the TS_IMR[BG] is set to ‘1’. Because all participating 
sensors must have a current temperature below that of TS_GITR, there is only one status bit 
(TS_ISR[Gb]) for a global below-threshold interrupt condition.

Once a status bit (TS_ISR[Sx], [Gx], or [Gb]) is set to ‘1’, this state is maintained until reset to ‘0’ 
by privileged software. Privileged software resets a status bit to ‘0’ by writing a ‘1’ to the corre-
sponding bit in TS_ISR.

15.2.5.4 Thermal Sensor Interrupt Mask Register 

The Thermal Sensor Interrupt Mask Register (TS_IMR) contains two fields for individual sensors 
and multiple fields for global interrupt conditions. An interrupt condition refers to a particular 
condition that each TS_IMR bit has that, when met, makes it possible for an interrupt to occur. An 
actual interrupt is only presented to the PPE if the corresponding mask bit is set.

The two TS_IMR Digital Thermal Threshold Interrupt fields for individual sensors are TS_IMR[Mx] 
and TS_IMR[Bx]. The TS_IMR[Mx] mask bits prevent an interrupt status bit from generating a 
thermal-management interrupt to the PPE. The TS_IMR[Bx] directional bits set the temperature 
direction for the interrupt condition above or below the corresponding temperature in TS_ITR1 and 
TS_ITR2. Setting TS_IMR[Bx] to ‘1’ sets the temperature for the interrupt condition to be below the 
corresponding temperature in TS_ITR1 and TS_ITR2. Clearing TS_IMR[Bx] to ‘0’ sets the tempera-
ture for the interrupt condition to be equal to or above the corresponding temperature in TS_ITR1 
and TS_ITR2. 

The TS_IMR fields for the global interrupt conditions are TS_IMR[Cx], TS_IMR[BG], TS_IMR[Cgb], 
and TS_IMR[A]. The TS_IMR[Cx] mask bits prevent global threshold interrupts and select which 
sensors participate in the global below threshold interrupt condition. The TS_IMR[BG] directional 
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bit selects the temperature direction for the global interrupt condition. The TS_IMR[Cgb] mask bit 
prevents global below threshold interrupts. TS_IMR[A] asserts an attention to the system 
controller. 

Setting TS_IMR[BG] to ‘1’ sets a temperature range for the global interrupt condition to occur when 
the temperatures of all the participating sensors set in TS_IMR[Cx] are below the global interrupt 
temperature level. Clearing TS_IMR[BG] to ‘0’ sets a temperature range for the global interrupt 
condition to occur when the temperature of any of the participating sensors is greater than or 
equal to the corresponding temperature in TS_GITR. If TS_IMR[A] is set to ‘1’, an attention is 
asserted when any TS_IMR[Cx] bit and its corresponding status bit (TS_ISR[Gx]) are both set to 
‘1’. Also, an attention is asserted when TS_IMR[Cgb] and TS_ISR[Gb] are both set to ‘1’.

A thermal-management interrupt is presented to the PPE when any TS_IMR[Mx] bit and its corre-
sponding status bit (TS_ISR[Sx]) are both set to ‘1’. A thermal-management interrupt is also 
generated when any TS_IMR[Cx] bit and its corresponding status bit (TS_ISR[Gx]) are both set to 
‘1’. Also, a thermal-management interrupt is presented to the PPE when TS_IMR[Cgb] and 
TS_ISR[Gb] are both set to ‘1’. 

15.2.6 Dynamic Thermal-Management Registers

The dynamic thermal-management registers contain parameters for controlling the execution 
throttling of the PPE or an SPE. This set of registers contains the Thermal-Management Control 
Registers (TM_CR1 and TM_CR2), the Thermal-Management Throttle Point Register (TM_TPR), the 
Thermal-Management Stop Time Registers (TM_STR1 and TM_STR2), the Thermal-Management 
Throttle Scale Register (TM_TSR), and the Thermal-Management System Interrupt Mask Register 
(TM_SIMR).

TM_TPR sets the throttle point for the sensors. Two independent throttle points can be set in 
TM_TPR[ThrottlePPE/ThrottleSPE]—one for the PPE and one for the SPEs. Also contained in 
this register are temperature points for exiting throttling and stopping the PPE or SPEs. Execu-
tion throttling of the PPE or an SPE starts when the temperature is equal to or above the throttle 
point. Throttling ceases when the temperature drops below the temperature to exit throttling 
(TM_TPR[EndThrottlePPE/EndThrottleSPE]). If the Temperature reaches the full throttle or stop 
temperature (TM_TPR[FullThrottlePPE/FullThrottleSPE]), the execution of the PPE or SPE is 
stopped. TM_CR1 and TM_CR2 are used to control the throttling behavior.

TM_STR1, TM_STR2, and TM_TSR are used to control the frequency and amount of throttling. When 
the temperature reaches the throttle point, the corresponding PPE or SPE is stopped for the 
number of clocks specified by the corresponding scale value in the TM_TSR. The PPE or SPE is 
then allowed to run for the number of clocks specified by the run value in the TM_STR1 and 
TM_STR2 registers times the corresponding scale value. This sequence, shown below, continues 
until the temperature falls below the exit throttling (TM_TPR[EndThrottlePPE/EndThrottleSPE]).

TM_SIMR is used to select which interrupts exit throttling of the PPE while the interrupt is pending. 

A simplified throttling process for the SPEs is illustrated in the following example. The value 
TM_Config[MinStopSPE] comes from the configuration ring. All other values in the example are 
from Thermal-Management MMIO registers.

if (TS_CTSR1[Cur(x)] ≥ TM_TPR[Throttle]) {
/* where x is the PPE or SPE and 0 ≤ x ≤ 7) */
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While (TS_CTSR1[Cur(x)] ≥ TM_TPR[EndThrottleSPE]) {
if (TS_CTSR1[Cur(x)] ≥ TM_TPR[FullThrottleSPE]){

stop SPE(x)
} else {

spcstopunit = (TM_Config[MinStopSPE] ∗ TM_TSR[ScaleSPE])
stop SPE(x) for (spcstopunit ∗ TM_STR1[StopCore(x)]) cycles
run SPE(x) for (spcstopunit ∗ (32 - TM_STR1[StopCore(x)])) cycles

}
}

}
run SPE(x)

The process for throttling the PPE is similar to that for the SPE. The following is the routine for 
PPE throttling:

if (TS_CTSR2[Cur(8)] ≥ TM_TPR[Throttle]) & (No_Interrupts_Pending) {
/* No_Interrupts_Pending depends on the setting of TM_SIMR */

While (TS_CTSR2[Cur(8)] ≥ TM_TPR[EndThrottlePPE]) {
if (TS_CTSR2[Cur(8)] ≥ TM_TPR[FullThrottlePPE]){

/* TM_TPR[FullThrottlePPE] should be set at a high enough temperature to
 * avoid stopping PPE 
 */
stop PPE

} else {
PPEstopunit = (TM_Config[MinStopPPE] ∗ TM_TSR[ScalePPE])
stop PPE for (PPEstopunit ∗ TM_STR2[StopCore(8)]) cycles
run PPE for (PPEstopunit ∗ (32 - TM_STR2[StopCore(8)])) cycles

}
}

}
run PPE

The preceding code sample shows a simplified throttling process. The actual hardware throttling 
implementation must also account for updates of the thermal-management and thermal-sensor 
registers, interrupts, and interface protocols.

Privileged software should set the full throttling temperature TM_TPR[FullThrottlePPE]) high 
enough to avoid the condition where hardware stops the PPE. Stopping the PPE prevents an 
interrupt from being processed.

15.2.6.1 Thermal-Management Control Registers

The Thermal-Management Control Registers (TM_CR1 and TM_CR2) set the throttling mode for the 
PPE or each SPE independently. The control bits are split between two registers. There are five 
different modes that can be set for the PPE or each SPE independently:

• Dynamic throttling is disabled (including the Core Stop Safety).

• Normal operation (dynamic throttling and the Core Stop Safety are enabled).

• PPE or SPE is always throttled (Core Stop Safety is enabled).
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• Core Stop Safety is disabled (dynamic throttling is enabled and the Core Stop Safety is dis-
abled).

• PPE or SPE is always throttled and Core Stop Safety disabled.

Privileged software should set control bits to normal operation for PPE or SPEs that are running 
applications or operating systems. If the PPE or an SPE is not running application code, privi-
leged software should set the control bits to disabled. The “PPE or SPE is always throttled” 
modes are intended for application development. These modes are useful to determine if the 
application can operate under an extreme throttling condition. Allowing the PPE or an SPE to 
execute with either the dynamic throttling or Core Stop Safety disabled should only be permitted 
when privileged software actively manages the thermal events.

15.2.6.2 Thermal-Management System Interrupt Mask Register 

The Thermal-Management System Interrupt Mask Register (TM_SIMR) controls which PPE inter-
rupts cause the thermal-management logic to temporarily stop throttling the PPE. Throttling is 
temporarily suspended for both threads while the interrupt is pending, regardless of the thread 
targeted by the interrupt. When the interrupt is no longer pending, throttling can resume if throttle 
conditions still exist. Throttling of the SPEs is never exited based on a system interrupt condition. 
The PPE interrupt conditions that can override a throttling condition are:

• External

• Decrementer

• Hypervisor Decrementer

• System Error

• Thermal Management

15.2.6.3 Thermal-Management Throttle Point Register

The Thermal-Management Throttle Point Register (TM_TPR) contains the encoded temperature 
points at which execution throttling of the PPE or an SPE begins and ends. This register also 
contains encoded temperature points at which the PPE or SPE execution is fully throttled. 

The values in this register are used to set three temperature points for changing between the 
three thermal-management states: Normal Run (N), PPE or SPE Throttled (T), and PPE or SPE 
Stopped (S). Independent temperature points are supported for the PPE and the SPEs.

When the encoded current temperature of a sensor in TS_CTSR is equal to or greater than the 
throttle temperature (ThrottlePPE/ThrottleSPE), execution throttling of the corresponding PPE 
or SPE begins, if enabled. Execution throttling continues until the encoded current temperature of 
the corresponding sensor is less than the encoded temperature to end throttling 
(EndThrottlePPE/EndThrottleSPE). As a safety measure, if the encoded current temperature is 
equal to or greater than the full throttle point (FullThrottlePPE/FullThrottleSPE), the corre-
sponding PPE or SPE is stopped.
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15.2.6.4 Thermal-Management Stop Time Registers

The Thermal-Management Stop Time Registers (TM_STR1 and TM_STR2) control the amount of 
throttling applied to a specific PPE or SPE in the thermal-management throttled state. The values 
in this register are expressed as a percentage of time that the PPE or an SPE is stopped versus 
the time that it is run (CoreStop(x)/32). The actual number of clocks (NClks) that the PPE or an 
SPE stops and runs is controlled by the Thermal-Management Scale Register (TM_TSR).

15.2.6.5 Thermal-Management Throttle Scale Register

The Thermal-Management Throttle Scale Register (TM_TSR) controls the actual number of cycles 
that the PPE or an SPE stops and runs during the thermal-management throttle state. The values 
in this register are multiples of a Configuration-Ring setting, TM_Config[MinStopSPE]. The actual 
number of stop and run cycles is calculated by the following equation:

SPE Run and Stop Time:
----------------------

SPE_StopTime = (TM_STR1[StopCore(x)] ∗ TM_Config[MinStopSPE]) ∗ TM_TSR[ScaleSPE]
SPE_RunTime = (32 - TM_STR1[StopCore(x)]) ∗ TM_Config[MinStopSPE]) ∗ TM_TSR[ScaleSPE]

PPE Run and Stop Time:
----------------------

PPE_StopTime = (TM_STR2[StopCore(8)] ∗ TM_Config[MinStopPPE]) ∗ TM_TSR[ScalePPE]
PPE_RunTime = (32 - TM_STR2[StopCore(8)]) ∗ TM_Config[MinStopPPE]) ∗ TM_TSR[ScalePPE]

Note:  The run and stop times can be altered by interrupts and privileged software writing various 
thermal-management registers.
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16. Performance Monitoring

The Cell Broadband Engine Architecture (CBEA) processors1 provide extensive performance-
monitoring facilities that assist performance analysis, as well as provide application-optimized 
and system-optimization features that include: 

• Debugging, analyzing, and optimizing processor-architecture features

• Profiling the behavior of the memory hierarchy and the interaction of multiple address 
spaces, as well as tuning system and application algorithms to optimize scheduling, partition-
ing, and structuring for tasks and data 

• Real-time application-tuning by monitoring bandwidth use and other resource-management 
behavior 

The performance-monitoring facilities can count and log data on over 400 types of internal 
events. Up to eight types of events can be monitored concurrently. The facilities support the 
monitoring of classes of instructions selected by an instruction-matching mechanism, the random 
selection of instructions for detailed monitoring, and count start/stop event pairs that exceed a 
selected time-out threshold.

The facilities are designed for tuning a broad range of software, including:

• Numerically intensive floating-point applications 

• Fixed-point applications

• System software

The facilities give clear visibility to the details of instruction execution, loads and stores, the 
behavior of caches throughout the CBEA processors, the entire virtual-memory architecture—
including effective-to-real address translation (ERAT), translation-lookaside buffers (TLBs), data-
prefetch streaming, and the effects of large-page support—and the activity of the element inter-
connect bus (EIB), memory interface controller (MIC), I/O interface controller (IOC), and several 
other CBEA processor components that can have large effects on application performance. 

The performance monitor facility provides eight 16-bit counters. Counters can be paired 
(combined) to function as four 32-bit counters for count values to be collected per measurement 
interval. The interval is timed by a 32-bit programmable interval timer. Performance information 
can be obtained on signals from either a single island or multiple islands. The performance 
monitor has the following notable features:

• Counts the number of cycles active or inactive over an interval, or the number of positive or 
negative transitions over an interval.

• The interval is programmable through an interval timer.

• Performance-monitor signals from the PowerPC Processor Element (PPE) can be masked 
according to the state of the PPE (for example, hypervisor mode). 

• Performance-monitor conditions, such as an interval timeout, can be programmed to cause 
an interrupt.

The performance monitor counters can be frozen until a selected start count qualifier occurs. The 
counters can continue to count up until the occurrence of a stop count qualifier. The counters can 
also be frozen when a counter overflows. An initial count other than ‘0’ can also be applied to the 

1. The Cell Broadband Engine (Cell/B.E.) and PowerXCell 8i processors are collectively called CBEA processors.
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counters to give them a programmable threshold. When the performance monitor counters are 
frozen, the interval timer is also frozen. See the Cell Broadband Engine Registers document for 
additional details.

16.1 How It Works

Access to the registers used in performance monitoring requires hypervisor privilege. The perfor-
mance-counting facilities share most of the resources used for hardware debug of the CBEA 
processors. Because performance monitoring tries to maximize the reuse of the debug 
resources, some debug facilities are reinterpreted for performance-monitoring use. For example, 
the “trigger bus” and the “event bus” have specific meanings for debug, but for performance 
monitoring the two buses are regarded as extra buses that are used to route performance-moni-
toring events. 

The basic flow of performance monitoring goes as follows: Each unit in the processor generates 
various signals (per-event, per-cycle, or both). These signals are selected by writing certain 
memory-mapped I/O (MMIO) registers. Each signal is connected to one or more bus lines. The 
bus lines are routed to individual counters. The counters are then connected to a trace array 
which records the counts periodically.

The debug bus is the transport mechanism for delivering signals from the various CBEA 
processor units to the performance monitor. This bus is shared by the performance monitor and 
the trace-logic analyzer. The performance monitor is disabled when the trace-logic analyzer is 
enabled. Signals to be counted are identified with tags, which indicate whether the signal is 
useful for counting cycles or edges. 

Performance signals are sent to the performance counters by means of the 128-bit debug bus (+ 
11 special bits). The 128-bit bus is divided into four words, and most events can be sent to one of 
two different words of the bus. For example, the signals for a PowerPC processor unit (PPU) 
thread instruction-unit events can go on either word 2 or word 3, the signals for a memory flow 
controller (MFC) L2-cache events can go on word 0 or word 1, and the signals for an IOC event 
can go on word 0 or word 2. Debug-specific signals are reinterpreted for performance monitoring 
and can use the extra 11 bits normally used for debug. 

16.2 Events (Signals)

The performance-monitoring facilities can monitor many types of events from all major units in 
the processor. See Appendix C Performance Monitor Signals on page 793 for the full list of veri-
fied events (also called signals). 

16.3 Performance Counters

There are eight 16-bit counters (which can be combined to make four 32-bit counters) and a 
trace-array collection and storage mechanism. The trace-array mechanism uses both internal 
and external storage resources. The counters can be set up to count events from either PPU 
thread, several of the PowerPC processor storage subsystem (PPSS) internal logic blocks, any 
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of the eight synergistic processor units (SPUs), any of the eight MFCs and their internal logic 
blocks, the element interconnect bus (EIB), the memory interface controller (MIC), the bus inter-
face controller (BIC), and the I/O interface controller (IOC). 

Each counter can monitor one event type at a time, and the events are of three kinds:

• Cycles—The cycles in which an event is active or inactive

• Event Edges—The edge transitions between two event states. The counters can be frozen 
until a specified trigger occurs before they begin counting the required event 

• Event Cycles—The cycles until a specified trigger-event occurs, at which times the counters 
are frozen

One set of counters can be configured as 16-bit count qualifiers, such that the start and stop 
count of the counting can be specified. This makes it possible to control when the counting of an 
event starts or stops. 

After the counters are set up and begin recording events, the counters can be read interactively 
by a user program. For example, a user program running in a logical partition can make a system 
call to its supervisor software, which will then make a hypervisor call that reads the appropriate 
registers and returns the collected data to the user program.

For details, see the documentation for your tools that are layered on the CBEA processor perfor-
mance monitoring features. 

16.4 Trace Array

The trace array contains 1,024 128-bit entries. It is used to store the count values at the end of 
each interval. When the trace array is filled, a PPE interrupt can be set to occur. The data can be 
transferred from the trace array to main storage either by simple PPE MMIO reads (128-bits at a 
time) or by DMA transfers. Count data can also be transferred to external memory to capture 
thousands of intervals worth of performance data. 

Counted events are automatically saved into the trace array according to a specified interval. All 
performance counters are reset to ‘0’ after each trace-array logging interval. A mechanism is 
provided for monitoring the operation of the interval timer. 
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17. SPE Channel and Related MMIO Interface

17.1 Introduction

17.1.1 An SPE’s Use of its Own Channels

A Synergistic Processor Element (SPE) communicates with the PowerPC Processor Element 
(PPE) and other SPEs and devices through its channels. Channels are unidirectional interfaces 
for sending and receiving variable-size (up to 32-bit) messages with the PPE and other SPEs, 
and for sending commands (such as direct memory access [DMA] transfer commands) to the 
SPE’s associated memory flow controller (MFC). Each SPE has its own set of channels. 

SPE software accesses channels with three instructions: read channel (rdch), write channel 
(wrch), and read channel count (rchcnt). These instructions enqueue MFC commands into the 
SPE’s MFC SPU command queue for the purpose of initiating DMA transfers, querying DMA and 
synergistic processor unit (SPU) status, sending mailbox and signal-notification messages for 
synchronization of tasks, and accessing auxiliary resources such as the SPE’s decrementer. 

The channels are architecturally defined as blocking or nonblocking. When SPE software reads 
or writes a nonblocking channel, the operation executes without delay. However, when SPE soft-
ware reads or writes a blocking channel, the SPE might stall for an arbitrary length if the associ-
ated channel count (which is its remaining capacity) is ‘0’. In this case, the SPE will remain 
stalled until the channel count becomes ‘1’ or more, as shown in Figure 17-1, or the SPE is inter-
rupted. The stalling mechanism allows an SPE to minimize the power consumed by message-
based synchronization of tasks, because fewer logic gates are switching during the stall. 

Figure 17-1. SPE Access to Its Own Channels 

Blocking Channel

Read or Write Channel:
rdch <channel_address> or
wrch <channel_address>

Channel Returns or Accepts
32-Bit Data

Non-Blocking Channel

Read or Write Channel:
rdch <channel_address> or
wrch <channel_address>

Channel Returns or Accepts
32-Bit Data

No

YesChannel
Count = '0'

?
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17.1.2 Access to Channel Functions by the PPE and other SPEs

Software on the PPE and other devices (including other SPEs) can gain access to some of the 
facilities an SPU can access through its channel interface—including the passing of mailbox and 
signal-notification messages—by accessing associated memory-mapped I/O (MMIO) registers in 
the main-storage effective address (EA) space. Unlike an SPE’s accesses to its channels, MMIO 
accesses are never blocked. 

MMIO accesses enqueue MFC commands into the SPE’s MFC proxy command queue—a 
different queue than the MFC SPU command queue used by the SPE, and independent thereof. 
Although the PPE can use this means of message-passing for synchronization of tasks, such as 
storage, the PPE more commonly uses memory-barrier instructions (Section 20 on page 561) 
available in the PowerPC Architecture instruction set.

17.1.3 Channel Characteristics

Each SPE channel is either read-only or write-only and is either blocking or nonblocking. Each 
channel has a corresponding capacity (maximum message entries), and count (remaining 
capacity). This channel count decrements whenever a channel instruction (rdch or wrch) is 
issued to the corresponding channel, and the count increments whenever an operation associ-
ated with that channel completes. Thus, a channel count of ‘0’ means “full” for write-only chan-
nels and “empty” for read-only channels. A blocking channel will cause the SPE to stall when the 
SPE reads or writes the channel and the channel count is ‘0’. 

Table 17-1 summarizes the characteristics of the four channel types.

The Synergistic Processor Unit Instruction Set Architecture specifies that a rdch or wrch instruc-
tion to an invalid channel causes the SPE to stop on or after the instruction. However, the 
Cell/B.E. and PowerXCell 8i implementations differ from the SPU ISA in that rdch instructions to 
reserved channels or valid write channels return zeros and wrch instructions to reserved chan-
nels or valid read channels have no effect. 

Table 17-1. SPE Channel Types and Characteristics 

Channel 
Type

Valid
Instructions Blocking Description

Read
rdch
rchcnt

Nonblocking
rdch returns without delay; rdch will never stall.
rchcnt always returns ‘1’.

Blocking
rdch returns only if the channel count is not ‘0’; rdch stalls if queue 
empty.
rchcnt returns number of items waiting in queue.

Write
wrch
rchcnt

Nonblocking
wrch always puts data without delay; wrch will never stall.
rchcnt always returns ‘1’.

Blocking
wrch puts data only if the channel count is not ‘0’; wrch stalls if queue 
is full.
rchcnt returns number of queue entries available to accept data.
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Reading or writing an unimplemented (reserved) channel does not cause an illegal channel 
instruction interrupt. The rchcnt instruction responds differently depending on the type of 
channel it is directed at:

• rchcnt returns ‘0’ when directed to an unimplemented (reserved) channel.

• rchcnt returns ‘1’ when directed to an implemented, nonblocking channel.

• rchcnt returns the capacity (write-only channel) or occupancy (read-only channel) for an 
implemented, blocking channel.

17.1.4 Channel Summary

The key features of the SPE channel operations include:

• All operations on a given channel are unidirectional (they can be only read or write opera-
tions for a given channel, not bidirectional).

• Accesses to channel-interface resources through MMIO addresses do not stall.

• Channel operations are done in program order.

• Channel read operations to reserved channels return zeros.

• Channel write operations to reserved channels have no effect. 

• Reading of channel counts on reserved channels returns ‘0’.

• Channel instructions use the 32-bit preferred slot in a 128-bit transfer.

Table 17-2 on page 450 lists the SPE channels, and their corresponding MMIO registers, that 
each SPE supports. The EA column under the MMIO Register heading gives the offset in hexa-
decimal from the base address for the SPE. For further details, see the Cell Broadband Engine 
Architecture document. 

The function of channels whose channel mnemonic in Table 17-2 begins with the prefix SPU_ is 
confined to the SPE; channels whose channel mnemonic begins with the prefix MFC_ access the 
SPE’s MFC for operations outside the SPE, such as DMA transfers, synchronization, mailbox 
messages, and signal notification.

Most channels are 32 bits wide; only two are 16 bits wide. The C/C++ Language Extensions for 
Cell Broadband Engine Architecture document defines intrinsics for reading and writing channels 
using 32-bit (scalar unsigned int) or 128-bit (vector) operands. When setting a 16-bit channel, 
only the least-significant 16 bits of a 32-bit scalar operand are used. 
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Table 17-2. SPE Channels and Associated MMIO Registers (Sheet 1 of 3) 
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SPU Events

0 SPU Read Event Status SPU_RdEventStat 1 yes R 32 — — — — —

1 SPU Write Event Mask SPU_WrEventMask 1 no W 32 — — — — —

2 SPU Write Event 
Acknowledgment SPU_WrEventAck 1 no W 32 — — — — —

SPU Signal Notification

3 SPU Signal Notification 1 SPU_RdSigNotify1 1 yes R 32 x‘1400C’ SPU_Sig_Notify_1 1 R/W 32

4 SPU Signal Notification 2 SPU_RdSigNotify2 1 yes R 32 x‘1C00C’ SPU_Sig_Notify_2 1 R/W 32

— SPU Configuration2,9 — — — — — x‘04078’ SPU_Cfg 1 R/W 64

5 Reserved — — — — — — — — — —

6 Reserved — — — — — — — — — —

SPU Decrementer

7 SPU Write Decrementer SPU_WrDec 1 no W 32 — — — — —

8 SPU Read Decrementer SPU_RdDec 1 no R 32 — — — — —

MFC Multisource Synchronization

9 MFC Write Multisource 
Synchronization Request MFC_WrMSSyncReq 1 yes W 32 x‘00000’ MFC_MSSync 1 R/W 64

10 Reserved — — — — — — — — — —

SPU and MFC Read Mask

11 SPU Read Event Mask SPU_RdEventMask 1 no R 32 — — — — —

12 MFC Read Tag-Group 
Query Mask MFC_RdTagMask 1 no R 32 — — — — —

SPU State Management

13 SPU Read Machine Status SPU_RdMachStat 1 no R 32 — — — — —

14 SPU Write State Save-and-
Restore SPU_WrSRR0 1 no W 32 — — — — —

15 SPU Read State Save-and-
Restore SPU_RdSRR0 1 no R 32 — — — — —

MFC Command Parameters

16 MFC Local-Storage 
Address MFC_LSA 1 no W 32 x‘03004’ MFC_LSA 1 W 32

17 MFC Effective Address High MFC_EAH 1 no W 32 x‘03008’ MFC_EAH 1 W 32

18 MFC Effective Address Low 
or List Address MFC_EAL 1 no W 32 x‘0300C’ MFC_EAL 1 W 32
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19 MFC Transfer Size or List 
Size MFC_Size 1 no W 163

x‘03010’

MFC_Size 1 W 16 H

20 MFC Command Tag 
Identification MFC_TagID 1 no W 163 MFC_Tag 1 W 16 L

21 MFC Class ID and 
Command Opcode MFC_Cmd 16 yes W 32

x‘03014’

MFC_ClassID_CMD 8 W 32

— MFC Command Status4 — — — — — MFC_CMDStatus 1 R 32

— MFC Queue Status5 — — — — — MFC_QStatus 1 R 32

MFC Tag Status

22 MFC Write Tag-Group 
Query Mask MFC_WrTagMask 1 no W 32 x‘0321C’ Prxy_QueryMask 1 R/W 32

23 MFC Write Tag Status 
Update Request6 MFC_WrTagUpdate 1 yes W 32 — — — — —

— Proxy Tag-Group Query-
Type6 — — — — — x‘03204’ Prxy_QueryType 1 R/W 32

24 MFC Read Tag-Group 
Status MFC_RdTagStat 1 yes R 32 x‘0322C’ Prxy_TagStatus 1 R 32

25 MFC Read List Stall-and-
Notify Tag Status7 MFC_RdListStallStat 1 yes R 32 — — — — —

26
MFC Write List Stall-and-
Notify Tag 
Acknowledgment7

MFC_WrListStallAck 1 no W 32 — — — — —

27 MFC Read Atomic 
Command Status8 MFC_RdAtomicStat 1 yes R 32 — — — — —

SPU Mailboxes

28 SPU Write Outbound 
Mailbox SPU_WrOutMbox 1 yes W 32 x‘04004’ SPU_Out_Mbox 1 R 32

29 SPU Read Inbound Mailbox SPU_RdInMbox 4 yes R 32 x‘0400C’ SPU_In_Mbox 4 W 32

30 SPU Write Outbound 
Interrupt Mailbox9 SPU_WrOutIntrMbox 1 yes W 32 x‘04000’ SPU_Out_Intr_Mbox 1 R 64

Table 17-2. SPE Channels and Associated MMIO Registers (Sheet 2 of 3) 
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17.1.5 Channel Instructions

The SPU instruction set defines three instructions to access channels. Table 17-3 lists the 
assembler instruction mnemonics and their corresponding C-language intrinsics. The assembler 
instructions are described in Table 17-3; the intrinsics are described in Section B.2.3 on 
page 787.

— SPU Mailbox Status10 — — — — — x‘04014’ SPU_Mbox_Stat 1 R 32

31:127 Reserved11 — — — — — — — — — —

1. Because the channel and MMIO command queues are separate queues, a MMIO register has a function that is similar to its corre-
sponding channel, but the MMIO register does not affect the operation of that channel, which is a separate function. 

2. On the MMIO register interface, writing the SPU_Cfg register configures the signal-notification to operate in either OR mode or 
overwrite mode. On the SPU channel interface, no such configuration function is available.

3. When setting a 16-bit channel using a C/C++ Language Extensions for Cell Broadband Engine Architecture intrinsic, only the 
least-significant 16 bits of a 32-bit scalar unsigned int operand are used. 

4. On the MMIO register interface, reading the MFC_CMDStatus register returns information about the success or failure of queuing 
a DMA command. On the SPU channel interface, comparable information can be obtained by writing a command to the MFC_Cmd 
channel, which will block until a queue entry is available.

5. On the MMIO register interface, reading the MFC_QStatus register returns the number of queue entries available. On the SPU 
channel interface, comparable information can be obtained by issuing a channel-count (rchcnt) instruction.

6. The MFC_WrTagUpdate channel controls the circumstances under which the status in the MFC_RdTagStat channel is updated. 
The Prxy_QueryType MMIO register performs a comparable function.

7. Only an SPU can issue a DMA list command.
8. Only an SPU can issue MFC atomic commands.
9. Access to this MMIO register is available only to privileged PPE software.

10. On the MMIO register interface, reading the SPU_Mbox_Stat MMIO register returns the number of available mailbox entries. On 
the SPU channel interface, comparable information can be obtained by issuing a channel-count (rchcnt) instruction.

11. The Synergistic Processor Unit Instruction Set Architecture supports 128 channels, based on the 7-bit field in the channel com-
mand. 

Table 17-2. SPE Channels and Associated MMIO Registers (Sheet 3 of 3) 
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Table 17-3. SPE Channel Instructions 

Function Assembler
Instruction C-Language Intrinsic Description

Read Channel rdch Rt, chnum
d = spu_readch(chnum)
d = spu_readchqw(chnum)

Data from the channel is loaded into the 
general-purpose register (GPR) or C-
language variable.

Write Channel wrch chnum, Ra
(void) spu_writech(chnum, a)
(void) spu_writechqw(chnum, a)

Data from the GPR or C-language 
variable is stored to the channel.

Read Channel Count rchcnt Rt, chnum d = spu_readchcnt(chnum) The channel count is loaded into the 
GPR or C-language variable.
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17.1.6 Channel Capacity and Blocking

For a nonblocking read channel, a read-channel instruction will execute without delay. Similarly, 
for a nonblocking write channel, a write-channel instruction will execute without delay. For a 
blocking channel, however, a read-channel or write-channel instruction can block and cause a 
delay (SPE stall) of arbitrary length. If a read-channel instruction is directed at a channel 
connected to an empty input queue (channel count is ‘0’), the SPE will stall until valid data 
appears in the queue or the SPE is interrupted. Similarly, if a write-channel instruction is directed 
at a channel connected to a full output queue (channel count is ‘0’), the SPE will stall until the 
queue is able to accept the write data or the SPE is interrupted.

An SPE uses channels to interact with producers and consumers of data that are inherently 
asynchronous to SPE software. Stalling on a channel read or write has the benefit of minimizing 
the power consumed by instruction execution, and it also reduces SPE software complexity. This 
might be useful for cases in which SPE software has no other work to perform until the channel 
capacity increases. 

To avoid stalling on access to a blocking channel, SPE software can read the channel count to 
determine the available channel capacity; if the read-channel-count instruction returns ‘0’, a read-
channel or write-channel instruction would stall.

Reading the channel count might be useful when SPE software has work to perform while waiting 
for space on the channel to become available (for channel writes) or data on the channel to 
become available (for channel reads). In this case, SPE software can be structured to intermit-
tently check channel counts (polling) or the SPE interrupt facility can be enabled to implement 
true asynchronous event handling. Many of the channels have a corresponding event that can be 
enabled to cause an asynchronous interrupt, and each event interrupt can be enabled indepen-
dently, as described in Section 18 SPE Events on page 471. 

17.2 SPU Event-Management Channels

There are four SPU event-management channels: 

• SPU Read Event Status (SPU_RdEventStat)—channel 0

• SPU Write Event Mask (SPU_WrEventMask)—channel 1

• SPU Write Event Acknowledgment (SPU_WrEventAck)—channel 2

• SPU Read Event Mask (SPU_RdEventMask)—channel 11

These are used to control and monitor event reporting. The bit assignments and definitions are 
the same for all four channels. In addition, there is an internal Pending Event Register that is 
hidden from SPE software but visible to privileged PPE software. 

For details about the SPU event-management channels, see Section 18.2 Events and Event-
Management Channels on page 472. 
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17.3 SPU Signal-Notification Channels

There are two SPU signal-notification channels, one to read each of the two signal-notification 
registers. A signal is a short message from outside the SPU (that is, from the PPE, another SPE, 
or another system device) that can be from one to 32 bits long.

A device outside the SPU sends a signal-notification message to the SPU by writing to the main-
storage address of an MMIO register in the SPU’s MFC. The signal is latched in the MMIO 
register, and the SPU executes a read-channel (rdch) instruction to get the signal value. An SPU 
can send a signal-notification message to another SPU with its special send-signal instructions 
(for example, sndsig).

For details about the SPU signalling channels, including programming examples, see 
Section 19.7 Signal Notification on page 551. 

17.4 SPU Decrementer 

Each SPU contains a 32-bit decrementer implemented as a down-counter. All decrementers in 
the SPUs and PPE count down at the same rate (Section 13.3.2 SPE Decrementers on 
page 390). An SPU decrementer is accessed through two channels, the SPU Write Decrementer 
Channel (SPU_WrDec) and the SPU Read Decrementer Channel (SPU_RdDec).

A decrementer event becomes pending when the value in the decrementer changes from ‘0’ to 
negative (the most-significant bit changes from ‘0’ to ‘1’); see Section 18 SPE Events on 
page 471 for details. Section 18.10.1 on page 506 gives examples of how a program can use an 
SPU decrementer event. 

The SPU decrementer can run if the Dh (decrementer halt) bit in the privileged MFC Control 
Register (MFC_CNTL) is cleared to ‘0’ by PPE software. To start a stopped decrementer, SPE soft-
ware writes to the SPU Write Decrementer Channel (SPU_WrDec). To stop a running decrementer, 
SPE software acknowledges the decrementer event when the decrementer event is disabled. 
The decrementer can also be stopped by setting the MFC_CNTL[Dh] bit to '1’. For additional details 
and code examples, see Section 13.3.2 SPE Decrementers on page 390.

17.4.1 SPU Write Decrementer Channel

The value written to the SPU Write Decrementer Channel (SPU_WrDec) sets the starting value of 
the 32-bit decrementer. When SPE software writes SPU_WrDec with a write-channel (wrch) instruc-
tion, the decrementer starts running (counting down) if it was not already running. The value 
loaded into the decrementer determines the time lapse between the wrch instruction and the 
decrementer event becoming pending.

The decrementer event becomes pending when the most-significant bit of the decrementer 
changes from a ‘0’ to a ‘1’ (the value changes from ‘0’ to negative). If the value loaded into the 
decrementer causes a change from ‘0’ to ‘1’ in the most-significant bit, the event becomes 
pending immediately. Setting the decrementer to a value of ‘0’ results in an event after a single 
decrementer count.

The field assignments and definitions for SPU write decrementer are shown in the following 
table.
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17.4.2 SPU Read Decrementer Channel

The value read from the SPU Read Decrementer Channel (SPU_RdDec) is the current value of the 
32-bit decrementer. Reading the decrementer count has no effect on the accuracy of the decre-
menter (a read does not affect the count-down rate).

The field assignments and definitions for SPU read decrementer are identical to those of the SPU 
write decrementer (see Section 17.4.1 on page 454).

17.5 MFC Write Multisource Synchronization Request Channel

As described in Section 20.1.5 on page 577, the CBEA processors contain multiple address and 
communication domains, and the MFC multisource synchronization facility must be used to 
ensure cumulative ordering across all address domains. 

The value written to the MFC Write Multisource Synchronization Request Channel 
(MFC_WrMSSyncReq) causes the MFC to start tracking outstanding write transfers to the MFC. The 
value written to MFC_WrMSSyncReq is ignored, but SPE software should write ‘0’ to ensure compat-
ibility with future architectural revisions.

When software writes to MFC_WrMSSyncReq, the channel count is cleared to ‘0’ to indicate an 
outstanding request is active. When the synchronization is complete (all writes to the MFC that 
were started before the multisource synchronization request are done), the channel count is set 
to ‘1’. When the channel count changes from ‘0’ to ‘1’, the multisource synchronization event 
becomes pending (see Section 18 on page 471).

When SPE software writes to this channel and the channel count is ‘0’, the SPU stalls until the 
write transfers being tracked by the currently active multisource synchronization request are 
complete.

The field assignments and definitions for MFC Write Multisource Synchronization Request are 
shown in the following table.

Decrementer Count Value

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description

0:31 Decrementer Count Value Decrementer count value.

Reserved

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description

0:31 Reserved Reserved.
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See Section 20.1.5 MFC Multisource Synchronization Facility on page 577 for a description of 
multisource synchronization. Graphic flowcharts of the possible software sequences are given in 
Figure 20-2 on page 579, Figure 20-3 on page 581, and Figure 20-4 on page 582. 

Section 18.6.2 Procedure for Handling the Multisource Synchronization Event on page 483 
described details for handling a multisource synchronization event. 

17.6 SPU Read Machine Status Channel

The value read from the SPU Read Machine Status Channel (SPU_RdMachStat) contains two 
status bits: the isolation status (IS) and the SPU interrupt-enable status (IE). If the IS bit is set to 
‘1’, the SPU is operating in the isolated state; if the IS bit is ‘0’, the SPU is not isolated. 

If the IE bit is set to ‘1’, any SPU event that is both enabled and pending will cause the SPU to 
take an interrupt. If the IE bit is ‘0’, the SPU will not take an interrupt regardless of event status. 
SPE software can set and clear the IE bit by executing an indirect branch with the E feature bit or 
the D feature bit set, respectively. For more information, see Section 18 on page 471.

The field assignments and definitions for SPU Read Machine Status are shown in the following 
table.

17.7 SPU Write State Save-and-Restore Channel

The value written to the SPU Write State Save-and-Restore Channel (SPU_WrSRR0) sets the return 
address used by the interrupt-return (iret) instruction. The most common reason to write 
SPU_WrSRR0 is to restore interrupt state when nested interrupts are supported by software. For 
more information about interrupts and nested interrupts, see Section 18 on page 471 and 
Section 9 PPE Interrupts on page 239.

SPE software should not write to this channel when interrupts are enabled; doing so can result in 
the contents of SRR0 being indeterminate. After software writes to this channel and before it 
executes any instruction that depends on the SRR0 value (such as an iret instruction), software 
must execute the syncc instruction (sync with the channel feature bit set).

Implementation Dependent Reserved IS IE

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description

0:15 Implementation Dependent

16:29 Reserved Cleared to zeros.

30 IS
Isolation status. 
0 not isolated.
1 isolated.

31 IE
SPU interrupt enable status. 
0 interrupts disabled.
1 interrupts enabled.
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The field assignments and definitions for SPU Write State Save-and-Restore are shown in the 
following table.

17.8 SPU Read State Save-and-Restore Channel

The value read from the SPU Read State Save-and-Restore Channel (SPU_RdSRR0) is the current 
contents of the SRR0 register, which is the return address saved when the SPU takes an inter-
rupt. The most common reason to read SPU_RdSRR0 is to save interrupt state when nested inter-
rupts are supported by software. For more information about interrupts and nested interrupts, see 
Section 18 on page 471 and Section 9 PPE Interrupts on page 239.

The field assignments and definitions for SPU Read State Save-and-Restore are identical to 
those for SPU Write State Save-and-Restore, shown in Section 17.7 on page 456. 

17.9 MFC Command Parameter Channels

The channels used by SPE software to enqueue an MFC command to the MFC SPU command 
queue are described in the following sections. There are six channels involved in setting up an 
MFC command as shown in Table 17-4. 

The first five channels listed in Table 17-4 are referred to as MFC command parameter channels; 
these channels determine the characteristics of an MFC command. If the SPU MFC command 
queue has capacity to accept the command, it is enqueued when the command opcode and 
class ID are written to MFC Command Opcode and MFC Class ID, channel 21. The MFC 
Command Opcode is the low halfword, and the MFC Class ID logical channel is the high half-
word, of a single 32-bit value that is written to channel 21 to complete the command-construction 
sequence.

SRR0 Data

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description

0:31 SRR0 Data State save/restore register 0 data. 

Table 17-4. MFC Command Parameter and Command Opcode Channels 

Channel
Mnemonic

Channel
Number Description

MFC_LSA 16 MFC Local Storage Address

MFC_EAH 17 MFC Effective Address High

MFC_EAL 18 MFC Effective Address Low or List Address

MFC_Size 19 MFC Transfer Size or List Size

MFC_TagID 20 MFC Command Tag Identification

MFC_Cmd 21 MFC Command Opcode and MFC Class ID
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Whenever SPE software writes to MFC Command Opcode, the MFC attempts to enqueue a 
complete MFC command. Thus, the parameter channels must be written before MFC Command 
Opcode is written. The only exception is MFC Effective Address High, which need not be written 
if the default value of ‘0’ is acceptable. SPE software must set all other command parameters 
before it writes MFC Command Opcode; otherwise, improper operation of the MFC command 
queue might result. 

The parameter channels can be written in any order so long as MFC Command Opcode and 
MFC Class ID are written last, and if a parameter channel is written more than once, the last 
value written is used in the queued command.

The MFC command parameter channels (the first five listed in Table 17-4 on page 457) are 
nonblocking and do not have channel counts associated with them. Performing a read channel 
count (rchcnt) instruction on any of these channels returns ‘1’. The MFC Command Opcode 
Channel is blocking and has a maximum channel count of 16. Performing a rchcnt instruction on 
this channel returns the remaining capacity (number of empty queue entries) in the MFC 
command queue.

Figure 17-2 on page 459 shows the sequences in which MFC commands are issued by SPE 
software and by PPE software. For additional details about the MFC commands, including DMA-
command programming steps and example code, see Section 19.2 MFC Commands on 
page 514. 
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17.9.1 MFC Local Storage Address Channel

The value written to the MFC Local Storage Address Channel (MFC_LSA) sets the SPU local 
storage (LS) address (LSA) for the MFC command being formed. This address is used as the 
source (for a put operation) or destination (for a get operation) of the MFC transfer as defined in 
the MFC command. For more information, see Section 19 on page 513.

If the LSA is unaligned, MFC command queue processing is suspended, and an MFC DMA align-
ment interrupt is raised to the PPE. To be considered aligned, the four least significant bits of the 
LS address must match the least-significant four bits of the effective address (MFC Effective 
Address Low or List Address Channel (see page 460)).

Figure 17-2. Sequences for Issuing MFC Commands 

SPEs
(channel access)

Write LS address
to MFC_LSA channel

Write high 32 bits of EA address
to MFC_EAH channel

(only needed for 64-bit EAs)

PPE
(MMIO access)

Write LS address
to MFC_LSA register

Write 64-bit EA address
to MFC_EAH and MFC_EAL registers

Write low 32 bits of EA address
to MFC_EAL channel

Write transfer size and tag-group ID
to MFC_Size and MFC_Tag registers

Write transfer size
to MFC_Size channel

Write class IDs and command opcode
to MFC_ClassID_CMD register

Write class ID and command opcode to 
MFC_ClassID and MFC_CMD registers

Write tag-group ID
to MFC_TagID channel

Write class IDs and command opcode
to MFC_Cmd channel

Read command status from
MFC_CMDStatus register

No

Done

Yes

Done

DMA
Transfer
Failed

?
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For best performance on transfers of 128 or more bytes, the MFC LSA and the MFC Effective 
Address Low (EAL) should have bits 25 through 31 cleared to ‘0’, that is, the address should be 
aligned on a 128-byte boundary.

The field assignments and definitions for MFC LSA are shown in the following table.

17.9.2 MFC Effective Address High Channel

The value written to the MFC Effective Address High Channel (MFC_EAH) sets the most-significant 
32 bits of the 64-bit effective address for the MFC command being formed. If MFC translation is 
enabled by the PPE (Relocate bit in the MFC State Register is set to ‘1’), the MFC translates 
effective addresses into real addresses as described in Book III of the PowerPC Architecture.

MFC Effective Address High defaults to ‘0’; this is the only MFC command parameter channel 
that SPE software need not write before it writes to the MFC Command Opcode Channel. If soft-
ware does not write MFC Effective Address High, the effective address of the queued MFC 
command will be in the lowest 4 GB of the effective address space.

If the address is invalid due to a segment fault, a mapping fault, or other address violation, MFC 
command queue processing is suspended, and an interrupt is raised to the PPE. 

The MFC checks the validity of the effective address during transfers. Partial transfers can be 
performed before the MFC encounters an invalid address and raises the interrupt to the PPE.

The field assignments and definitions for MFC Effective Address High are shown in the following 
table. 

17.9.3 MFC Effective Address Low or List Address Channel

The value written to the MFC Effective Address Low or List Address Channel (MFC_EAL) sets 
either the least-significant 32 bits of the 64-bit effective address for the MFC command being 
formed or the LS address of the list of list elements for the MFC DMA list command being formed. 
If MFC translation is enabled by the PPE (Relocate bit in the MFC State Register is set to ‘1’), the 
MFC translates effective addresses into real addresses as described in Book III of the PowerPC 
Architecture.

MFC Local Storage Address

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description

0:31 MFC Local Storage Address MFC local storage address.

High Word of 64-bit Effective Address (Optional)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description

0:31 High Word of 64-bit Effective Address High word of the 64-bit effective address.
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For transfer sizes less than 16 bytes, the MFC Effective Address Low must be naturally aligned 
(bits 28 through 31 must provide natural alignment based on the transfer size). For transfer sizes 
of 16 bytes or greater, the MFC Effective Address Low must be aligned to at least a 16-byte 
boundary (bits 28 through 31 must be ‘0’).

For best performance on transfers of 128 or more bytes, the MFC Effective Address Low (and 
the MFC Local Storage Address Channel (see page 459)) should have bits 25 through 31 
cleared to ‘0’, that is, the address should be aligned on a 128-byte boundary.

For MFC list commands, the MFC List Address must be aligned on an eight-byte boundary (bits 
29 through 31 of the List Address must be ‘0’).

If the address is invalid due to a segment fault, a mapping fault, or other address violation, MFC 
command queue processing is suspended, and an interrupt is raised to the PPE. The MFC 
checks the validity of the effective address during transfers. Partial transfers can be performed 
before the MFC encounters an invalid address and raises the interrupt to the PPE.

The field assignments and definitions for MFC Effective Address Low or List Address are shown 
in the following table. 

17.9.4 MFC Transfer Size or List Size Channel

The value written to the MFC Transfer Size or List Size Channel (MFC_Size) sets either the size of 
the MFC transfer for the command being formed or the size of the list for an MFC DMA list 
command being formed. In both cases, the value written specifies the number of bytes and 
cannot be larger than 16 KB.

The transfer size can have a value of 1, 2, 4, 8, 16, or a multiple of 16 bytes to a maximum of 16 
KB. The source and destination addresses (MFC Local Storage Address Channel (see page 
459) and MFC Effective Address Low or List Address Channel (see page 460)) must be naturally 
aligned to the transfer size for sizes up to 16 bytes. For sizes greater than 16 bytes, alignment on 
a 16-byte boundary is sufficient.

The List Size of an MFC DMA list command can range from eight bytes up to a maximum of 16 
KB. Because each list element has a size of eight bytes, the list can be from one to 2048 
elements long. The address of the list (MFC Effective Address Low or List Address Channel (see 
page 460)) in LS must be aligned on an eight-byte boundary.

If the size is invalid, MFC command queue processing is suspended and an MFC DMA alignment 
interrupt is raised to the PPE.

Low Word of 64-bit Effective Address or the Local Storage Address of the MFC List

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description

0:31 Low Word of 64-bit Effective Address, or the 
Local Storage Address of the MFC List Low word of the 64-bit effective address or the LS address of the MFC list. 
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Transfers of less than one cache line (128 bytes) should be used sparingly; excessive use of 
short transfers wastes bus and memory bandwidth. Transfers of less than 16 bytes should only 
be used to communicate with an I/O device because the setup cost of the transfer is high and 
bus bandwidth is wasted. When the transfer size is 128 bytes or longer, programmers should 
align the source and destination addresses on 128-byte boundaries.

The field assignments and definitions for MFC Transfer Size or List Size are shown in the 
following table.

17.9.5 MFC Command Tag Identification Channel

The value written to the MFC Command Tag Identification Channel (MFC_TagID) sets the tag 
value for the command being formed. The identification tag can be any value between 0 and 31. 
Identification tags have a purely local scope in the hardware. 

When two or more MFC commands are enqueued with the same tag value, the commands are in 
the same tag group. Any number of MFC commands can be tagged with the same identification 
value.

Tag groups can be formed only within a single MFC command queue. Thus, tags assigned to 
commands in the MFC SPU command queue are independent of the tags assigned to 
commands in the MFC proxy command queue.

If the Reserved field (bits 0 through 10) is not cleared to ‘0’, MFC command queue processing is 
suspended, and an interrupt is raised to the PPE.

The field assignments and definitions for MFC Command Tag Identification are shown in the 
following table. 

R
es

er
ve

d

MFC Transfer/List Size

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Bits Field Name Description

0 Reserved Cleared to ‘0’.

1:15 MFC Transfer/List Size MFC transfer size or list size.

Reserved
MFC Command 

Identification Tag

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Bits Field Name Description

0:10 Reserved Cleared to zeros.

11:15 MFC Command Tag Identification MFC command tag identification.
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17.9.6 MFC Class ID and MFC Command Opcode Channel

The value written to the MFC Class ID and MFC Command Opcode Channel sets the replace-
ment class ID (RclassID), the transfer class ID (TclassID), and the command opcode for the 
MFC command that has been formed by previous writes to the MFC command parameter chan-
nels (see Section 17.9 on page 457). In addition, the write to this channel has the side-effect of 
enqueuing the complete MFC command into the SPU MFC command queue. The write to this 
channel must be the last channel write during MFC command formation.

The RclassID and TclassID are used by the processor and software to improve the overall 
performance and throughput of the system. The RclassID influences L2-cache and translation 
lookaside buffer (TLB) replacement, as described in Section 6.3 Replacement Management 
Tables on page 154. The TclassID influences the allocation of bus bandwidth, as described in 
Section 19.2.7 Replacement Class ID and Transfer Class ID on page 521. 

The MFC Command Opcode determines the operation for the MFC command being formed. If 
the MFC Command Opcode or any of the command parameters is invalid, MFC command-queue 
processing is suspended and an invalid MFC command interrupt is raised to the PPE. See 
Section 19 on page 513 for a complete description of MFC commands.

Software must avoid placing commands in the queue with forward dependencies on newer 
commands placed in the queue. A string of commands with this type of dependency can create a 
deadlock, depending on the number of available slots in the MFC queue. Queue depth depends 
on the CBEA processor version, so software must not be written to require a specific queue 
depth.

Software can read the channel count of MFC_Cmd to determine the number of available queue 
entries. Because a write to MFC_Cmd will stall when the MFC queue is full, software can use the 
channel count to avoid stalling by waiting for the channel count to become greater than ‘0’.

The field assignments and definitions for MFC Class ID and MFC Command Opcode are shown 
in the following table.

17.10 MFC Tag-Group Management Channels

When MFC commands are entered into the command queue, each command is tagged with a 5-
bit tag-group identifier, the MFC command tag identifier. The same identifier can be used for 
multiple MFC commands to create a tag group containing all the commands currently in the 
queue with the same command tag. Software can use the MFC command tag to check the 
completion of all queued commands in a tag group. In addition, the MFC command tag is used by 

TclassID RclassID Reserved MFC Cmd Opcode

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description

0:7 TclassID Transfer class identifier.

8:15 RclassID Replacement class identifier.

16:23 Reserved Should normally be cleared to zeros. Bit 16 set to ‘1’ indicates that the opcode is reserved.

24:31 MFC Cmd Opcode MFC command opcode.
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hardware to inform software that an MFC DMA list command has reached an element with its 
stall-and-notify flag set. Software then uses the command tag to cause the MFC to resume the 
stalled MFC DMA list command. For more information, see Section 19 on page 513.

17.10.1 MFC Write Tag-Group Query Mask Channel

The value written to the MFC Write Tag-Group Query Mask Channel (MFC_WrTagMask) selects the 
tag groups to be included in a query operation. A query (MFC tag status update request) opera-
tion is started by writing to the MFC Write Tag Status Update Request Channel; the status of the 
query is available in the MFC Read Tag-Group Status Channel.

The value written to this channel is retained by the MFC until changed by a subsequent write. 
Therefore, the same value can be used for multiple status queries. If this value is changed by 
software when a query is pending, the results of the query are ambiguous. A pending query 
should always be cancelled before a modification of this mask. Software cancels a query by 
writing ‘0’ to the MFC Write Tag Status Update Request Channel. 

Software can get the current value in this channel by reading the MFC Read Tag-Group Query 
Mask Channel.

The field assignments and definitions for MFC Write Tag-Group Query Mask are shown in the 
following table. 

17.10.2 MFC Read Tag-Group Query Mask Channel

The value read from the MFC Read Tag-Group Query Mask Channel (MFC_RdTagMask) is the 
most recent value written to the MFC Write Tag-Group Query Mask Channel (MFC_WrTagMask). 
Software can read this channel during SPU context save and restore operations and as an alter-
native to keeping shadow copies of the MFC_WrTagMask channel.

The field assignments and definitions for MFC Read Tag-Group Query Mask are identical to 
those for MFC Write Tag-Group Query Mask, shown in Section 17.10.1. 

17.10.3 MFC Write Tag Status Update Request Channel

The value written to the MFC Write Tag Status Update Request Channel (MFC_WrTagUpdate) 
controls when the MFC tag-group status is updated in MFC Read Tag-Group Status. The MFC 
Write Tag-Group Query Mask Channel controls which tag groups participate in the update 
request and therefore which tag groups influence the value read from MFC Read Tag-Group 
Status.

g 1
F

g 1
E

g 1
D

g 1
C

g 1
B

g 1
A

g 1
9

g 1
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g 1
7

g 1
6

g 1
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g 1
4

g 1
3

g 1
2

g 1
1

g 1
0

g F g E g D g C g B g A g 9 g 8 g 7 g 6 g 5 g 4 g 3 g 2 g 1 g 0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description

0:31 gn

Tag group “n” select. 
0 Tag group not in query.
1 Tag group is in query.
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The value written to MFC Write Tag Status Update determines when MFC Read Tag-Group 
Status is updated; three update options are possible:

• Status updated immediately after MFC_WrTagUpdate is written

• Status updated when any enabled tag group completes after MFC_WrTagUpdate is written

• Status updated when all enabled tag groups complete after MFC_WrTagUpdate is written

Software must write MFC Write Tag Status Update Request before it reads MFC Read Tag-
Group Status. 

An MFC Write Tag Status Update request (writing to MFC_WrTagUpdate) should be issued after 
writing a value to MFC Write Tag-Group Query Mask and after enqueuing the MFC commands 
for the tag groups of interest. If the commands for a tag group are completed before issuing the 
MFC Write Tag Status Update request thereby satisfying the update status condition, the status 
is returned without waiting. 

If software reads from MFC Read Tag-Group Status without first writing to MFC Write Tag Status 
Update Request, this results in a software-induced deadlock. 

If software writes to MFC Tag Status Update Request and later needs to cancel the status 
update request, software should execute the following steps:

1. Request an immediate update status by writing ‘0’ to MFC_WrTagUpdate.

2. Read the channel count for MFC_WrTagUpdate until a value of ‘1’ is returned. 

3. Read from the MFC Read Tag Group Status to discard the unwanted query result and reset 
the channel count for MFC Read Tag Group Status to ‘0’.

If software issues two conditional update requests (executes to writes to MFC_WrTagUpdate) 
without an intervening read of the MFC Read Tag Group Status Channel, the value of MFC Read 
Tag Group Status is unpredictable. To avoid the unpredictable status, software should pair every 
write to MFC Write Status Update Request with a read from MFC Read Tag-Group Status. The 
exception is when software cancels a request using the preceding steps.

The field assignments and definitions for MFC Write Tag Status Update Request are shown in 
the following table. 

Reserved TS

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description

0:29 Reserved Reserved.

30:31 TS

Tag-status update condition:
00 MFC_TAG_UPDATE_IMMEDIATE: Update tag status immediately, unconditional.
01 MFC_TAG_UPDATE_ANY: Update tag status if or when any enabled tag group 

completes.
10 MFC_TAG_UPDATE_ALL: Update tag status if or when all enabled tag groups complete.
11 Reserved.
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17.10.4 MFC Read Tag-Group Status Channel

The value read from the MFC Read Tag-Group Status Channel (MFC_RdTagStat) reports the 
status of the tag groups from the last tag-group status update request. Software requests a tag-
group status update by writing to MFC Write Tag Status Update Request, and the status reported 
by MFC Read Tag-Group Status includes only those tag groups enabled by the value that soft-
ware writes to the MFC Write Tag-Group Query Mask Channel. The bits in the status that corre-
spond to tag groups disabled by the value in MFC Write Tag-Group Query Mask will be ‘0’.

Software must write a request value to MFC Write Tag Status Update Request before reading 
from MFC Read Tag-Group Status; failure to do so results in a software-induced deadlock, and 
only privileged software on the PPE can remove the deadlock condition. 

The field assignments and definitions for MFC Read Tag-Group Status are shown in the 
following table.

17.10.5 MFC Read List Stall-and-Notify Tag Status Channel

The value read from MFC Read List Stall-and-Notify Tag Status Channel (MFC_RdListStallStat) 
reports which tag groups have an MFC DMA list command in the stall state due to a list element 
with the stall-and-notify flag set to ‘1’.

List elements for an MFC list command contain a transfer size, the low 32-bits of an effective 
address, and a stall-and-notify flag. If the flag is set on a list element, the MFC completes the 
transfer specified by the list element then stops executing the MFC list command and sets the bit 
in MFC_RdListStallStat corresponding to the tag group of the MFC list command. An MFC list 
command remains stalled until acknowledged by writing the tag value to the MFC Write List Stall-
and-Notify Tag Acknowledgment.

An application program can use the DMA list stall-and-notify capability to monitor the progress of 
a DMA list command. It can also use stall-and-notify capability when it needs to modify the char-
acteristics (transfer sizes or effective addresses) of list elements that follow the stalled list 
element. If an application determines that unprocessed list elements should be skipped, it can 
set the transfer size to ‘0’ in all the elements to be skipped. Software can cancel elements this 
way because MFC DMA hardware is not allowed to prefetch list elements beyond an element 
that has its stall-and-notify flag set to ‘1’.

When software reads MFC Read List Stall-and-Notify Tag Status, all the bits in the status are 
reset to ‘0’ and the channel count is cleared to ‘0’. Between reads of the MFC Read List Stall-
and-Notify Tag Status, the status accumulates the stall-and-notify status of tag groups as they 
occur; the channel count for MFC Read List Stall-and-Notify Tag Status never increments above 
‘1’.
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0 Tag group not complete.
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If software reads from MFC Read List Stall-and-Notify Tag Status when the channel count is ‘0’, 
the SPU will stall until the MFC encounters a list element with the stall-and-notify flag set to ‘1’. 
Thus, software must not read from MFC Read List Stall-and-Notify Tag Status when the channel 
count is ‘0’ (no bits set in the status) and no outstanding list elements for commands in the MFC 
queue have the stall-and-notify flag set to ‘1’; if software violates this rule, a software-induced 
deadlock will occur with the SPU stalled on the read of MFC Read List Stall-and-Notify Tag 
Status.

Software must also use DMA list commands with the fence or barrier feature bit set if one tag 
group contains multiple DMA list commands with elements that have a stall-and-notify flag set to 
‘1’. Without a fence or barrier to enforce ordering, MFC DMA hardware is free to execute MFC 
commands (but not list elements) out of order. Thus, without enforced ordering, software cannot 
be sure which element with the stall-and-notify flag set to ‘1’ has been reached. Software must 
also implement some mechanism (for example, a linked list) to track DMA list commands and list 
elements as stalls occur.

The field assignments and definitions for MFC Read List Stall-and-Notify Tag Status are shown 
in the following table. 

17.10.6 MFC Write List Stall-and-Notify Tag Acknowledgment Channel

The value written to the MFC Write List Stall-and-Notify Tag Acknowledgment Channel 
(MFC_WrListStallAck) is the tag group number for a tag group with a stalled DMA list command; 
writing this tag value to MFC_WrListStallAck restarts (acknowledges) the stalled DMA list 
command in the tag group.

In contrast to most of the other tag group management channels, which have one bit per tag 
group, MFC Write List Stall-and-Notify Tag Acknowledgment accepts a value corresponding to a 
tag group number. A tag group number is computed as (31 – tag-group-bit-position), where tag-
group-bit-position is the tag group’s bit position in the MFC Read Tag Group Status. MFC Write 
List Stall-and-Notify Tag Acknowledgment accepts only one tag group number per write, so each 
write to this channel can restart only one stalled tag group. 

If software writes to this channel to acknowledge a tag group that is not stalled due to a stall-and-
notify condition, MFC Read List Stall-and-Notify Tag Status will contain an invalid status. 

The field assignments and definitions for MFC Write List Stall-and-Notify Tag Acknowledgment 
are shown in the following table.
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17.11 MFC Read Atomic Command Status Channel

The value read from the MFC Read Atomic Command Status Channel (MFC_RdAtomicStat) 
reports the status of the most-recently completed immediate MFC atomic-update command; 
immediate MFC atomic-update commands are getllar, putllc, or putlluc. This channel does 
not report any status for the queued putqlluc MFC atomic-update command. When software 
reads this channel, its contents are reset to ‘0’.

Reading MFC Read Atomic Command Status before issuing one of the immediate MFC atomic-
update commands results in a software-induced deadlock.

Software should always read MFC Read Atomic Command Status after every immediate MFC 
atomic-update command; a read should be paired with each command. If software issues two or 
more immediate MFC atomic-update commands without intervening reads of the MFC Read 
Atomic Command Status Channel, the channel will return an incorrect status.

Software can read the channel count for MFC Read Atomic Command Status to determine if the 
most-recently issued immediate MFC atomic-update command has completed. If the channel 
count is ‘0’, the command has not completed; if the channel count is ‘1’, the command has 
completed.

Completion of a subsequent immediate MFC atomic update command overwrites the status of 
earlier MFC commands. 

The field assignments and definitions for MFC Read Atomic Command Status are shown in the 
following table.

Reserved MFC Tag

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description

0:26 Reserved Reserved.

27:31 MFC Tag Tag ID of stalled group that is to be restarted.

Reserved G U S

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description

0:28 Reserved Reserved.

29 G Set if the get lock-line and reserve (getllar) command completed.

30 U Set if the put lock-line unconditional (putlluc) command completed.

31 S
Put lock-line conditional command (putllc).
1 Put conditional unsuccessful. The reservation was lost. 
0 Put conditional successful.
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17.12 SPU Mailbox Channels

Mailboxes support the sending and buffering of 32-bit messages between an SPE and other 
devices, such as the PPE and other SPEs. Each SPE can access three mailbox channels, each 
of which is connected to a mailbox queue in the SPU’s MFC. Two one-entry mailbox channels—
the SPU Write Outbound Mailbox and the SPU Write Outbound Interrupt Mailbox—are provided 
for sending messages from the SPE to the PPE or other device. One four-entry mailbox 
channel—the SPU Read Inbound Mailbox—is provided for sending messages from the PPE, or 
other SPEs or devices, to the SPE. Each of the two outbound mailbox channels has a corre-
sponding MMIO register. 

An SPE sends a mailbox message by writing the 32-bit message value to either its two outbound 
mailbox channels. The PPE and other devices can read a message in an outbound mailbox by 
reading the MMIO register in the SPE’s MFC that is associated with the mailbox channel. Like-
wise, the PPE and other devices send messages to the inbound mailbox by writing the associ-
ated MMIO register. For interrupts associated with the SPU Write Outbound Interrupt Mailbox, 
there is no ordering of the interrupt and previously issued MFC commands.

For details about the mailbox channels, including programming examples, see Section 19.6 Mail-
boxes on page 539. 
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18. SPE Events

This section describes how SPE software can enable and process external events. From the 
perspective of SPE software, an event is generally an asynchronous change in the state of an 
resource or unit in a Cell Broadband Engine Architecture (CBEA) processor1 that is external to 
that SPE. Each event of potential interest to an SPE has a corresponding bit in the SPE’s Event 
Status Channel. For example, the arrival of a mailbox message from another processor element 
sets the mailbox bit in the event status and might generate an synergistic processor unit (SPU) 
interrupt. SPE software can choose to monitor and respond to events synchronously (by polling 
or stalling) or asynchronously (by enabling the event interrupt).

Each SPE supports an event facility with the capability to mask and unmask events, wait on 
events, poll for events, and generate interrupts to the SPE when a specific event occurs. If the 
interrupts are enabled, an occurrence of an unmasked event results in the SPE’s interrupt 
handler being invoked. These interrupts are referred to as “SPU interrupts”; they are unrelated to 
the PowerPC Processor Element (PPE) interrupts described in Section 9 PPE Interrupts on 
page 239. 

18.1 Introduction

The main interface between SPE software and the event-tracking hardware is provided by four 
channels that control event handling and report event status. SPE software deals with events 
using four basic actions involving these three channels:

• Initialize event handling: write to Event Mask, channel 1.

• Recognize events that have occurred: read Event Status, channel 0.

• Clear events: write Event Acknowledge, channel 2.

• Service events: execute application-specific code.

For a pictorial view of the manner in which events occur, see the Logical Representation of SPU 
Event Support figure in the Cell Broadband Engine Architecture specification. See Section 17.2 
SPU Event-Management Channels on page 453 for details about the channels. 

Typically, an SPE program is interested in only some of the possible SPE events. To enable only 
the events that are relevant to its operation, SPE software initializes a mask value with event bits 
set for the relevant events. After software recognizes an event, it writes an acknowledgment 
value so that the same events can be recognized again.

SPE software can choose to recognize events synchronously or asynchronously. For synchro-
nous event handling, software can either poll for pending events (for example, test a channel 
count in a loop) or block when no enabled events are pending (for example, stall on a read from 
an empty channel). For asynchronous event handling, software must enable the event interrupt 
and provide interrupt handling code. An intermediate approach is to sprinkle Branch Indirect and 
Set Link if External Data (bisled) instructions, either manually or automatically using code-gener-
ation tools, throughout application code so that they are executed frequently enough to approxi-
mate asynchronous event detection (see Section 18.5.1 on page 478). This approach has the 
advantage that interrupts need not be disabled and re-enabled around critical sections of code.

1. The Cell Broadband Engine (Cell/B.E.) and PowerXCell 8i processors are collectively called CBEA processors.
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18.2 Events and Event-Management Channels

Each SPE can enable and respond to twelve different external events, listed in Table 18-2. There 
are four event-management channels, with identical bit definitions, that deal with masking, 
enabling, and reporting events: 

• SPU Read Event Status (SPU_RdEventStat)—channel 0

• SPU Write Event Mask (SPU_WrEventMask)—channel 1

• SPU Write Event Acknowledgment (SPU_WrEventAck)—channel 2

• SPU Read Event Mask (SPU_RdEventMask)—channel 11 

In addition to these four channels, there is an internal Pending Event Register that is hidden from 
SPE software but visible to privileged PPE software. The internal register and the four event-
management channels are described in the following sections. 

18.2.1 Event Conditions and Bit Definitions for Event-Management Channels

The four event-management channels, plus the internal Pending Event Register, use 32-bit 
values that defined as shown in Table 18-2. This table also explains the condition that leads to 
each event becoming pending. All of these events that can cause SPU interrupts, as described in 
Section 18.3 SPU Interrupt Facility on page 476. 

For more information about conditions that lead to events being raised and the proper protocol 
for acknowledging and handling events, see Section 18.6 Event-Specific Handling Guidelines on 
page 481.

Table 18-1. Bit Assignments for Event-Management Channels and Internal Register 

Reserved Ms A Lr S1 S2 Le Me Tm Mb Qv R
es

er
ve

d 

Sn Tg

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Table 18-2. Bit Definitions for Event-Management Channels and Internal Register  (Sheet 1 of 2)

Bit Field
Name Event Name

Condition for Event
To Become Pending

Reason for Condition Reference

0:18 — Reserved

19 Ms Multisource Sync
Channel count for 
MFC_WrMSSyncReq changes 
from ‘0’ to ‘1’. 

All of the write transfers directed at the 
SPE’s memory flow controller (MFC) that 
were started before the multisource 
synchronization request (the write to 
MFC_WrMSSyncReq) have completed.

Section 18.6.2 on 
page 483

20 A Privileged attention

PPE software or other 
device sets the attention 
event request bit to ‘1’ in the 
SPU Privileged Control 
Register (SPU_PrivCntl). 

This can be done to control the execution 
of the SPU. When it is done, a privileged 
attention event is raised on the SPU. The 
SPU can reset the condition by 
acknowledging the event.

Section 18.6.3 on 
page 484
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18.2.2 Pending Event Register (Internal, SPE-Hidden)

The Pending Event Register records all event occurrences, regardless of whether they are 
enabled. When an event occurs, the corresponding bit in the Pending Event Register is set to 1. 
The Pending Event Register has the layout shown in Table 18-1 on page 472, but it is not directly 
accessible to SPE software. The contents of the register are, however, visible to privileged PPE 
software, using the SPU channel access facility described in Section 12.4.4 on page 362.

Because the Pending Event Register reflects all pending events, regardless of the value of the 
SPU Write Event Mask, events that are pending but not enabled by the SPU Write Event Mask 
are nevertheless latched in pending external event. Consequently, if the SPU Write Event Mask 
is changed to enable a pending event, it will be reported in the SPU Read Event Status Channel 

21 Lr Lock-line reservation-
lost

A lock-line reservation 
created by a getllar MFC 
command is lost. 

The MFC snooped a write to data in the 
reserved lock-line.

Section 18.6.4 on 
page 485

22 S1 Signal-Notification 1 
Channel count for 
SPU_RdSigNotify1 changes 
from ‘0’ to ‘1’.

Unread signals are pending.

Section 18.6.5 on 
page 486

23 S2 Signal-Notification 2
Channel count for 
SPU_RdSigNotify2 changes 
from ‘0’ to ‘1’.

Section 18.6.6 on 
page 487

24 Le SPU Write Outbound 
Mailbox available

Channel count for 
SPU_WrOutMbox changes 
from ‘0’ to nonzero.

A read from a full SPU Outbound 
(Interrupt) Mailbox Register has occurred, 
and the SPU Write Outbound (Interrupt) 
Mailbox Channel can be written without 
stalling the SPU.

Section 18.6.7 on 
page 488

25 Me
SPU Write Outbound 
Interrupt Mailbox 
available

Channel count for 
SPU_WrOutIntrMbox 
changes from ‘0’ to 
nonzero.

Section 18.6.8 on 
page 489

26 Tm Decrementer

The most-significant bit of 
the decrementer count 
changes from ‘0’ to ‘1’ 
(count changes from ‘0’ to 
minus-‘1’).

The decrementer’s elapsed time has 
expired. If software loads a value that 
causes the MSb to change from ‘0’ to ‘1’, 
the event becomes pending immediately.

Section 18.6.9 on 
page 489

27 Mb SPU Read Inbound 
Mailbox Available

Channel count for 
SPU_RdInMbox changes from 
‘0’ to nonzero.

A write to an empty SPU Read Inbound 
Mailbox Register has occurred, and the 
SPU Read Inbound Mailbox Channel can 
be read without stalling the SPU.

Section 18.6.10 on 
page 491

28 Qv MFC SPU Command 
Queue Available

Channel count for MFC_Cmd 
changes from ‘0’ nonzero.

An entry in the MFC SPU command queue 
has become available.

Section 18.6.11 on 
page 492

29 — Reserved

30 Sn

MFC direct memory 
access (DMA) list 
command stall-and-
notify

Channel count for 
MFC_RdListStallStat 
changes from ‘0’ to ‘1’.

A stall-and-notify flag set on a DMA list 
element has been encountered, the MFC 
has stopped executing the list, and the 
MFC has set the bit corresponding to the 
list’s tag group in the MFC_RdListStallStat 
channel.

Section 18.6.12 on 
page 492

31 Tg MFC Tag-Group Status 
Update

Channel count for 
MFC_RdTagStat changes 
from ‘0’ to ‘1’.

The tag-group status is currently available 
by reading the MFC_RdTagStat channel. 

Section 18.6.13 on 
page 494

Table 18-2. Bit Definitions for Event-Management Channels and Internal Register  (Sheet 2 of 2)

Bit Field
Name Event Name

Condition for Event
To Become Pending

Reason for Condition Reference
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immediately, regardless of how long the event has been pending. For this reason, the initializa-
tion code for event handling in SPE software should first clear any pending events (see 
Section 18.2.5 on page 475) to prevent the raising of stale or phantom events.

18.2.3 SPU Read Event Status

Reading the SPU Read Event Status Channel (SPU_RdEventStat) reports events that are both 
enabled by the SPU Write Event Mask and pending (that is, latched in the Pending Event 
Register) at the time of the channel read. Any event bit whose corresponding enable is cleared to 
‘0’ in the SPU Write Event Mask will read as ‘0’ in the SPU Read Event Status. In other words, 
when software reads SPU Read Event Status, the value of the SPU Write Event Mask is logically 
ANDed with the value in the Pending Event Register. 

18.2.3.1 Read Channel and Read Channel Count

A read-channel-count (rchcnt) instruction to the SPU Read Event Status Channel can return 
either ‘0’ or ‘1’, depending on the channel’s state, whereas reading the channel count of any of 
the other three event-management channels always returns ‘1’.

A rchcnt to SPU Read Event Status returns ‘0’ if no enabled events are pending, and it returns 
‘1’ if enabled events have been raised since the last read of the status. A channel count of ‘1’ 
indicates that at least one event is pending (corresponding bit set in SPU Pending Event) and 
enabled (corresponding bit set in SPU Write Event Mask). A channel count of ‘0’ indicates no 
events are both enabled and pending. 

Thus, SPE software can poll for pending, enabled events by reading the channel count, or it can 
execute a rdch instruction. A rdch when the channel count is ‘0’ causes the SPE to stall until at 
least one enabled event is pending. This stall behavior allows software to implement a wait on 
external event function. A further benefit is that the SPU uses significantly less power when 
stalled because most logic gates in the SPU stop switching. To avoid stalling, software can read 
the channel count before deciding whether to read the channel. 

The channel count for SPU Read Event Status is set to ‘1’ for the following conditions:

• An event occurs when the corresponding bit in the SPU Write Event Mask has a value of ‘1’ 
(the event is enabled when the event occurs).

• At least one event is pending and enabled following a write of the SPU Write Event Mask (an 
event is already pending when the corresponding bit is set to ‘1’ by a write to the Mask). The 
previous state of the SPU Write Event Mask has no effect.

• At least one event is both enabled and pending after a write of the SPU Write Acknowledg-
ment Channel (the value written to SPU Write Acknowledgment did not acknowledge all 
events that were pending and enabled at the time of the write).

18.2.3.2 Branch Condition

The channel count of the SPU Read Event Status Channel is used as the condition in the Branch 
Indirect and Set Link if External Data (bisled) instruction. If the channel count for SPU Read 
Event Status is ‘0’, the branch is not taken; if the channel count is ‘1’, the branch is taken. SPE 
software can execute a bisled instruction periodically to poll for events, and if bisled instructions 
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are executed frequently enough, software can approximate asynchronous event detection. See 
Section 18.5.1 on page 478. For more information about the bisled instruction, see Table B-1 on 
page 772 and the Synergistic Processor Unit Instruction Set Architecture document.

18.2.3.3 SPU Interrupts

If SPU interrupts are enabled (the IE bit in SPU_RdMachStat is set to ‘1’), an interrupt is taken 
when the channel count for SPU Read Event Status changes from ‘0’ to ‘1’, which means that 
one or more enabled events are pending. The only way to enable or disable interrupts while the 
SPU is running is to execute an indirect branch with either the D or E feature bit set. The SPU 
interrupt can be enabled or disabled while the SPU is stopped by setting the I bit in the SPU Next 
Program Counter Register (SPU_NPC). See the Synergistic Processor Unit Instruction Set Archi-
tecture document for details. 

18.2.4 SPU Write Event Mask

An SPE program determines which events it will monitor by setting the appropriate bits in the 
SPU Write Event Mask Channel (SPU_WrEventMask). The value written to the SPU Write Event 
Mask determines which pending events will affect the value returned by a read of the SPU Read 
Event Status Channel. When a bit in the Mask has a value of ‘1’, the corresponding event is said 
to be enabled. The value written to this channel is retained until a subsequent write changes the 
value. The current value of the SPU Write Event Mask can be read from the SPU Read Event 
Mask Channel.

18.2.5 SPU Write Event Acknowledgment

Before SPE software services the events reported in SPU Read Event Status, software should 
write a value to the SPU Write Event Acknowledge Channel (SPU_WrEventAck) to acknowledge 
(clear) the events that will be processed. The bits set to ‘1’ in the value that is written to SPU 
Write Event Acknowledge cause the corresponding bits in the hidden Pending Event Register to 
be cleared to ‘0’. Thus, after software writes acknowledgment bits, events of the same type can 
be reported again. Clearing all pending and enabled events has no effect on the channel count 
for SPU Read Event Status.

All events are recorded in the hidden Pending Event Register, regardless of the SPU Write Event 
Mask value. A pending, enabled event will continue to be reported in SPU Read Event Status 
until it is acknowledged—that is, cleared by writing an appropriate value to the SPU Write Event 
Acknowledgment Channel; each bit position that corresponds to a pending event must be set to 
‘1’. 

The bit for a pending event can be cleared in the hidden SPU Pending Event Register with a write 
to the SPU Event Acknowledgment Channel even if the event is disabled. A disabled event that 
becomes pending and is subsequently acknowledged (cleared) is not reflected in the value read 
from the SPU Read Event Status Channel. An event that has been acknowledged is resampled 
to allow future occurrences of the event to be recorded in the hidden SPU Pending Event 
Register.

Enabling a currently pending but disabled event by writing an appropriate mask value to the SPU 
Write Event Mask Channel results in an update of the SPU Read Event Status Channel count 
(and an SPU interrupt, if enabled).
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Acknowledging an event before it occurs results in a software-induced deadlock. Software should 
be careful in clearing unreported events. 

18.2.6 SPU Read Event Mask

Software uses the SPU Read Event Mask Channel (SPU_RdEventMask) to read the state of the 
SPU Write Event Status Mask. The SPU Read Event Mask always returns the data last written to 
the mask. Instead of keeping software shadow copies of the Event Status Mask, SPE software 
can read the state of the mask directly. SPE context save and restore operations can also use 
this channel. 

18.3 SPU Interrupt Facility

The SPE can monitor event status through the SPU Read Event Status Channel 
(SPU_RdEventStat). Software can process the event status in the SPU_RdEventStat channel by 
polling, using the bisled instruction or by enabling the SPU interrupt facility. When enabled, the 
interrupt facility causes the SPE to execute the interrupt handler located at local storage (LS) 
address x‘0’ when the SPU_RdEventStat channel has nonzero count.

The SPU interrupt can be enabled in one of two ways:

• Setting the E bit in the indirect-branch instruction (see the Synergistic Processor Unit Instruc-
tion Set Architecture document)

• Setting bit 31 of the SPU Next Program Counter Register (SPU_NPC) before running the SPE

An SPU interrupt is taken if the interrupt is enabled and the count in the SPU_RdEventStat 
channel has transitioned from ‘0’ to ‘1’. This transition is edge-triggered, based on the ORing of 
events in the SPU_RdEventStat channel, masked by bits in the SPU Write Event Mask Channel 
(SPU_WrEventMask), and the acknowledgment bits in the SPU Write Event Acknowledgment 
Channel (SPU_WrEventAck). For a logical representation of the SPE event support and the 
descriptions of the SPU_RdEventStat channel, the SPU_WrEventMask channel, and the 
SPU_WrEventAck channel, see the Cell Broadband Engine Architecture document. See the Syner-
gistic Processor Unit Instruction Set Architecture document for information about using indirect 
branches for entering and returning from the interrupt handler. 

An interrupt sequence might go through the following steps: 

1. Enable interrupts as described previously.

2. The program runs until conditions cause the channel count for the SPU_RdEventStat channel 
to transition from '0' to '1'; then, the interrupt is taken.

3. Interrupts are acknowledged through internal logic as follows: 

a. Internal logic disables interrupts.

b. Any blocked channel access is preempted.

c. The program counter goes to LS address 0.

d. The return address is stored in SRR0. 

4. Read the SPU_RdEventStat channel to see the status of events (the channel count for the 
SPU_RdEventStat channel bit transitions to '0').
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5. Acknowledge all events to be processed (write to the SPU_WrEventAck channel).

6. Process events (for example, mailbox events).

7. Execute an interrupt return (iret) instruction, which branches to the return address held in 
SRR0. The SPU interrupt can be re-enabled using the E bit of the iret instruction.

Nested interrupts are supported through reading the SPU Read State Save-and-Restore 
Channel (SPU_RdSRR0) and writing the SPU Write State Save-and-Restore Channel (SPU_WrSRR0). 

The value written to the SPU_WrSRR0 channel is not immediately available to the iret instruction. 
This write must be synchronized by execution of a channel sync instruction (with the C bit set in 
the instruction) before executing an iret instruction. 

For details about handling SPU interrupts, see Section 18.5.2 Asynchronous Event Handling 
Using Interrupts on page 479. 

18.4 Interrupt Address Save-and-Restore Channels

Two channels are used for saving and restoring the interrupt return address: SPU Read State 
Save-and-Restore (SPU_RdSRR0) and SPU Write State Save-and-Restore (SPU_WrSRR0).

18.4.1 SPU Read State Save-and-Restore

When an SPE takes an interrupt, the current program counter is stored in the SPU Read State 
Save-and-Restore Channel (SPU_RdSRR0) and execution continues are address 0. The saved 
program counter can be acquired by reading SPU_RdSRR0. 

SPU interrupts are precise; that is, all instructions in the program flow before the interrupt will 
have completed execution, and no subsequent instructions will have begun.

18.4.2 SPU Write State Save-and-Restore

SPE software can write to the SPU Write State Save-and-Restore Channel (SPU_WrSRR0) to set 
the return address for an interrupt-return (iret) instruction. This channel should only be written 
when SPU interrupts are disabled, and after it is written, the syncc instruction should be 
executed before the interrupt-return instruction. The syncc instruction (sync with the channel-
feature bit set) makes sure channel writes complete before any subsequent instructions can 
execute.

18.4.3 Nested Interrupts Using SPU Write State Save-and-Restore

The SPE architecture does not have the ability to assign priorities to event interrupts, but nested 
interrupts can help software approximate prioritized interrupts by allowing a low-priority event 
interrupt handler to be interrupted by a higher-priority event.

To implement nested interrupts, SPU interrupt handling code can save the SPU Read State 
Save-and-Restore value before re-enabling interrupts. After handling the initial interrupt, SPU 
interrupt code must:

1. Disable interrupts.
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2. Write to SPU Write State Save-and-Restore to restore the initial interrupt return address.

3. Execute a syncc instruction (sync with the channel feature-bit set) to force the channel write 
to complete.

4. Execute an irete instruction to return from the initial interrupt and re-enable interrupts.

18.5 Event-Handling Protocols

SPE software can be written to handle events either synchronously or asynchronously. Synchro-
nous event handling can be implemented by polling or stalling; asynchronous event handling is 
implemented with interrupts.

18.5.1 Synchronous Event Handling Using Polling or Stalling

SPE software can use polling to recognize an enabled and pending event either by reading the 
channel count of SPU Read Event Status, channel 0, or by executing the bisled instruction.

When no enabled events are pending, the channel count of SPU Read Event Status is ‘0’; when 
one or more enabled events are pending, the count is ‘1’. Thus, SPE event-polling code can 
implement a loop such as the one shown in the following code fragment:

do {
    /* Perform work between checks of the

* channel count, as appropriate. 
     */
} while (!spu_readchcnt(SPU_RdEventStat));

A programmer can use the bisled instruction or the spu_bisled intrinsic to test the SPU Read 
Event Status channel count. The instruction or intrinsic jumps to the indirect branch target when 
the channel count is ‘1’ but falls through when the count is ‘0’.

As shown in Table 17-2 on page 450, the SPU Read Event Status Channel is a blocking channel. 
If SPE software executes a rdch instruction on the channel, the rdch instruction will stall when 
there are no enabled events pending. This provides a simple way to implement a general “wait 
on external event” capability as illustrated in the following simple code fragment:

unsigned int event;

/* Block until event is available. */
event = spu_readch(SPU_RdEventStat);

SPE software that is concerned with only a single type of event, such as a mailbox or signal 
arrival, can read the associated channel or channel count to achieve stalling or polling behavior if 
the associated channel can block. Thus, if SPE software is concerned only with events on the 
SPU Signal Notification 1 Channel, it can poll the channel count for SPU_RdSigNotify1 with the 
rchcnt instruction, or software can stall by reading SPU_RdSigNotify1, a blocking channel, with a 
rdch instruction. If SPE software is concerned only with incoming mailbox events, it can stall by 
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blocking on a rdch from SPU_RdInMbox. Polling or stalling on a specific channel instead of on the 
SPU Read Event Status Channel can save a small amount of overhead (setting up the event 
mask and writing the event acknowledgment). 

18.5.2 Asynchronous Event Handling Using Interrupts

When SPU interrupts are enabled and at least one event is pending in the SPU Read Event 
Status Channel, SPE hardware takes the following steps to recognize the event interrupt:

• Interrupts are disabled.

• The address of the next instruction that would have executed is saved in Save-Restore Reg-
ister 0.

• SPE hardware begins executing instructions from address 0 in the SPE’s LS.

The only way SPE software can enable and disable interrupts under program control is by using 
the D and E feature bits in indirect-branch instructions; SPE software cannot write directly to SPE 
machine status. Table 18-3 shows the instructions that can be qualified with the D and E feature 
bits to enable or disable interrupts. See the Synergistic Processor Unit Instruction Set Architec-
ture document for details. 

These instructions leave the interrupt-enable status unchanged unless either the D or E feature bit 
is specified (an instruction with both feature bits causes undefined behavior).

When one of these branches is taken with an interrupt feature bit set, the interrupt-enable status 
change takes effect before the target instruction is executed.

SPE hardware supports one hardwired interrupt vector for all interrupts; this vector is to address 
0 in LS. This single interrupt handler at address 0 must determine which events have occurred 
and process them appropriately.

If an SPE application needs nested interrupt handling, the handler at address 0 must save the 
interrupt return address from Read Save-Restore Register 0, prepare for a possible nested inter-
rupt (for example, save other volatile state), and enter an interruptible event handler with inter-
rupts enabled (that is, execute an indirect branch with the E feature bit to the interruptible event 
handler).

Table 18-3. Indirect-Branch Instructions 

Mnemonic Description

bi Branch Indirect

bisl Branch Indirect and Set Link

bisled Branch Indirect and Set Link If External Data

biz Branch Indirect If Zero

binz Branch Indirect If Not Zero

bihz Branch Indirect If Zero Halfword

bihnz Branch Indirect If Not Zero Halfword

iret Interrupt Return 
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When (possibly nested) event processing is complete, an interruptible interrupt handler can 
return to the instruction stream it interrupted in one of two ways:

• By writing the return address to SPU Write State Save-and-Restore and executing a syncc 
or iret instruction pair (syncc is needed to force the channel write before iret executes).

• By loading the return address into an SPE register and executing a bie instruction (or other 
suitable indirect branch).

In either case, the iret or bi instruction should have the E feature bit set to re-enable event inter-
rupts.

18.5.3 Protecting Critical Sections from Interruption

When asynchronous interrupts are enabled, an interrupt can happen at any time while applica-
tion code is running. Because applications might contain critical sections of code that must not be 
interrupted, programs must disable interrupts while a critical section is executing.

Critical sections arise in typical SPE application programs. For example, an application that 
enqueues DMA commands must do so with a sequence of instructions that forms the complete 
DMA command. When both application and interrupt handler code enqueue DMA commands, 
the sequence of channel writes that forms the DMA command must not be interrupted; the 
channel writes for a single DMA command must all complete before the first channel write for the 
next DMA command happens.

In high-level-language code, the SPE intrinsics spu_idisable() and spu_ienable() can be used 
to surround a critical section. In assembler code, indirect branches must be used to disable and 
enable interrupts. The following code fragments show one way to implement disable and enable 
operations in assembler; in fact, these are the code sequences in the intrinsics spu_idisable() 
and spu_ienable().

idisable:
ila $Rt, next_inst # form address of instruction after bie
bid $Rt # branch to next_inst and disable interrupts

next_inst:

[code inside critical section]

ienable:
ila $Rt, next_inst # form address of instruction after bie
bie $Rt # branch to next_inst and enable interrupts

next_inst:

Note:  A branch to the next sequential instruction will not be mispredicted and need not be 
hinted.
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18.6 Event-Specific Handling Guidelines

Most of the semantics of event handling will be application specific and therefore beyond the 
scope of this document, but all applications should follow general guidelines for event-handling 
protocol and satisfy the minimum requirements for each possible event. Examples of event 
handlers with application-specific code are given later in this section (see Section 18.10.1 on 
page 506).

For each event, the conditions that lead to it being raised are described in the following sections. 
One of the necessary conditions for any event to be raised—that the event be enabled in the 
SPU Write Event Mask—is assumed but not mentioned in the descriptions.

18.6.1 Protocol with Multiple Events Enabled

When multiple events are enabled (when the SPU Write Event Mask has more than one bit set to 
‘1’), SPE software should follow a simple procedure to prevent the occurrence of spurious 
(phantom) events. Before SPE software performs any event-specific actions, it must disable the 
events that will be processed and then acknowledge them. This allows the MFC hardware to 
register new occurrences of the events as soon as possible. After all event-specific processing is 
completed, SPE software restores the event mask. This allows the new occurrences of the 
processed events to be recognized in the SPU Read Event Status Channel.

The steps of the common protocol, when multiple events are enabled, follow:

1. Save SPU Read Event Status (SPU_RdEventStat) in status.

2. Save SPU Read Event Mask (SPU_RdEventMask) in mask.

3. Disable events: write (mask & ~status) to SPU Write Event Mask (SPU_WrEventMask).

4. Acknowledge events: write status to SPU Write Event Acknowledge (SPU_WrEventAck). 

5. Process events (see Table 18-4 on page 482 and the following individual event sections).

6. Restore the event mask: write mask to SPU Write Event Mask (SPU_WrEventMask).

A common implementation of this protocol is to perform steps 1 through 4 and 6 in a first-level 
event handler routine and to encapsulate the code for handling each specific event in second-
level event handling routines. With this organization, the first-level event handler sets up the envi-
ronment and then calls each second-level event handler routines that corresponds to a bit set to 
‘1’ in the event status. This two-level organization is used in the interrupt-driven event handling 
examples described in Section 18.7 on page 495, Section 18.8 on page 501, Section 18.9 on 
page 504, and Section 18.10.1 on page 506.

The following sections describe the recommended protocols for handling specific events. 
Table 18-4 on page 482 lists the events along with protocol summaries.
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Table 18-4. SPE Event Handling Protocol Summaries  (Sheet 1 of 2)

Field
Name Bit Event Name Handling Protocol Reference

Ms 19 Multisource Synchronization • Release resource waiting on 
synchronization.

Section 18.6.2 on 
page 483

A 20 Privileged Attention
• Perform high-priority response such as 

stop-and-signal, mailbox communication, 
or update in-memory status.

Section 18.6.3 on 
page 484

Lr 21 Lock-Line Reservation Lost • If lock still being used, re-issue lock and 
act on new data.

Section 18.6.4 on 
page 485

S1 22 SPU Signal-Notification 1 
Available

• Read channel count of 
SPU_RdSigNotify1; if ‘0’, handler done.

• Read SPU_RdSigNotify1 and process 
signal data.

Section 18.6.5 on 
page 486

S2 23 SPU Signal-Notification 2 
Available

• Read channel count of 
SPU_RdSigNotify2; if ‘0’, handler done.

• Read SPU_RdSigNotify2 and process 
signal data.

Section 18.6.6 on 
page 487

Le 24 SPU Outbound Mailbox 
Available

• Read channel count of SPU_WrOutMbox; if 
‘0’, handler done.

• Write SPU_WrOutMbox with mail box data.

Section 18.6.7 on 
page 488

Me 25 SPU Outbound Interrupt 
Mailbox Available

• Read channel count of 
SPU_WrOutIntrMbox; if ‘0’, handler done.

• Write SPU_WrOutIntrMbox with mail box 
data.

Section 18.6.8 on 
page 489

Tm 26 SPU Decrementer

• Read SPU_RdDec; if negative, this is time 
delay from event to response (additional 
time-base ticks since decrementer count 
expired).

• Write SPU_WrDec with new timer interval 
count (optionally reduced by the time 
delay discovered previously).

Section 18.6.9 on 
page 489

Mb 27 SPU Read Inbound Mailbox 
Available

• Read channel count of SPU_RdInMbox; if 
‘0’, handler done.

• Read SPU_RdInMbox and process mail 
box data.

• Write SPU_WrEventAck with Mb bit set 
(acknowledge each mail box entry).

• Repeat.

Section 18.6.10 on 
page 491
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18.6.2 Procedure for Handling the Multisource Synchronization Event

A multisource synchronization event is the expected response after SPE software writes to MFC 
Write Multisource Synchronization Request, channel 9 (MFC_WrMSSyncReq). SPE software can 
write any value to start the request, but writing a value of ‘0’ ensures compatibility with future 
architectural revisions. The occurrence of a multisource synchronization event indicates that all 
the write transfers directed at the SPE’s MFC that were started before the multisource synchroni-
zation request (the write to MFC_WrMSSyncReq) have completed.

SPE software must use the multisource synchronization facility when cumulative ordering is 
needed across address domains. Cumulative ordering is the ordering of storage accesses 
performed by multiple sources (that is, two or more processor elements) with respect to another 
processor element. 

See Section 20.1.5 MFC Multisource Synchronization Facility on page 577 for a description of 
multisource synchronization. Graphic flowcharts of the possible software sequences are given in 
Figure 20-2 on page 579, Figure 20-3 on page 581, and Figure 20-4 on page 582. 

SPE software uses multisource synchronization when it needs data that depends on the comple-
tion of a chain of storage operations that other processor elements perform. Thus, when the 
multisource synchronization event occurs, the action taken by SPE software is application-
dependent. Two typical meanings of the event are that (1) an input buffer is completely filled and 
ready for SPE processing, and (2) that an output buffer is no longer in use and can be reallocated 
for future use.

To ensure the multisource synchronization event will be raised in response to a specific request, 
SPE software should perform an initial acknowledgment of the event (write ‘1’ to the Ms bit of the 
SPU_WrEventAck channel) before enabling it (write ‘1’ the Ms bit of the SPU_WrEventMask channel). 
This initial clearing of a possible stale (phantom) pending multisource synchronization event 

Qv 28 MFC SPU Command Queue 
Available

• Read channel count of MFC_Cmd; if ‘0’, 
handler done.

• Enqueue DMA command with sequence 
of channel writes.

• If no more commands to enqueue, exit.
• Write SPU_WrEventAck with Qv bit set.
• Repeat.

Section 18.6.11 on 
page 492

Sn 30 MFC DMA List Command 
Stall-and-Notify

• Read MFC_RdListStallStat to get stalled 
tag groups.

• Choose a stalled tag group.
• Process the stalled tag group.
• Write MFC_WrListStallAck for the stalled 

tag group.
• Repeat previous three steps until all 

stalled tag groups processed.

Section 18.6.12 on 
page 492

Tg 31 MFC Tag-Group Status 
Update

• Read channel count of MFC_RdTagStat; if 
‘0’, handler done.

• Read MFC_RdTagStat to get new tag-
group status.

Section 18.6.13 on 
page 494

Table 18-4. SPE Event Handling Protocol Summaries  (Sheet 2 of 2)

Field
Name Bit Event Name Handling Protocol Reference
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need only happen once during SPE application startup, because adherence to the protocols 
outlined here will ensure that each event occurrence is properly matched with its acknowledg-
ment.

The procedure for handling the multisource synchronization event is as follows:

1. Perform a read channel (rdch) instruction to the SPU Read Event Mask Channel and save 
the data in a “mask”.2

2. Mask the event by issuing a write channel (wrch) instruction to the SPU Write Event Mask 
Channel with SPU_WrEventMask[Ms] set to ‘0’.2

3. Acknowledge the event by performing a write channel (wrch) instruction to the SPU Write 
Event Acknowledgment Channel with SPU_WrEventAck[Ms] set to ‘1’.2

4. Perform the application-specific function in response to the completion of a pending multi-
source synchronization operation. 

This typically indicates that the data in a particular buffer has been completely updated, or 
that a buffer area is no longer in use. 

5. Exit the multisource synchronization event handler.

6. Restore the “mask” by issuing a write channel (wrch) instruction to the SPU Write Event 
Mask Channel with SPU_WrEventMask[Ms] set to ‘1’.2

7. Exit the general event handler.2

18.6.3 Procedure for Handling the Privileged Attention Event

The privileged attention event can be raised when a ‘1’ is written by the PPE to the SPU Privi-
leged Control Register’s Attention Event Required bit. If the event is enabled when this bit is set 
to ‘1’, the event is raised.

The intended use of the privileged attention event is to inform SPE software that privileged soft-
ware running on the PPE requires high-priority action. Examples of such actions are an SPE 
context switch and reporting SPE status to PPE software. Thus, the handler for this event will 
contain or call the functions that implement the high-priority action.

Because the privileged attention event communicates only one bit of information—the event 
itself—an application-specific protocol must be implemented if additional information must be 
passed between the PPE and the SPE. For example, information about the type of attention 
requested can be passed in a memory location or as a value written to a signal or mailbox 
channel.

2. When multiple events are enabled, a common handler should be used to save the current event mask, mask all 
events that are to be handled in one channel write, and acknowledge all events that are to be handled in a single 
channel write. Then each event specific handler should be invoked to handle the event. The common handler 
should then restore the current event mask from the saved value and exit. This technique minimizes the genera-
tion of spurious events. 
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The procedure for handling the privileged attention event is:

1. Perform a read channel (rdch) instruction to the SPU Read Event Mask Channel and save 
the data in “mask”.3

2. Mask the event by issuing a write channel (wrch) instruction to the SPU Write Event Mask 
Channel with SPU_WrEventMask[A] set to ‘0’.3

3. Acknowledge the event by performing a write channel (wrch) instruction to the SPU Write 
Event Acknowledgment Channel with SPU_WrEventAck[A] set to ‘1’.

4. Perform the application-specific function in response to a privileged attention event. 

This can be used to signal that a yield of the SPU is being requested or some other action. 
An application or operating system-specific response to the privileged attention event should 
be issued, such as stop and signal, SPU Inbound mailbox write, SPU Outbound Interrupt 
mailbox write, or an update of a status in system or I/O memory space. 

5. Exit the privileged attention event handler.

6. Restore the “mask” by issuing a write channel (wrch) instruction to the SPU Write Event 
Mask Channel with SPU_WrEventMask[A] set to ‘1’.3

7. Exit the general event handler.3

18.6.4 Procedure for Handling the Lock-Line Reservation Lost Event

This event is raised when a get lock-line and reserve (getllar) command is issued, and the reser-
vation is reset due to the modification of data in the same lock line by an outside entity. A lock-
line reservation is reset because the snoop hardware in the SPE’s atomic unit (atomic-update 
cache) detects a data modification by the outside entity. This event will not be raised due to a 
reservation reset by any local SPE action.

When SPE software executes a getllar command, the atomic unit caches the 128-byte line and 
marks the status of the line as reserved. Typically, the reservation will be reset when SPE soft-
ware executes a matching putllc or putlluc to complete an atomic operation (see Section 20 
Shared-Storage Synchronization on page 561 for a complete description of atomic operations 
using atomic lock-line commands). When the reservation is reset by a matching putllc, putlluc, 
or putqlluc operation, the lock-line reservation lost event will not be raised. If another processor 
element or device modifies the data in the reserved lock-line, the reservation will be lost and the 
event will be raised if it is enabled. 

The handler for this event should decide if the lock-line reservation should be renewed, and if so, 
issue a duplicate getllar command. There is no need to read the atomic command status to 
confirm that the reservation was lost; the fact that the event was received means that the reser-
vation was lost. 

3. When multiple events are enabled, a common handler should be used to save the current event mask, mask all 
events that are to be handled in one channel write, and acknowledge all events that are to be handled in a single 
channel write. Then each event specific handler should be invoked to handle the event. The common handler 
should then restore the current event mask from the saved value and exit. This technique minimizes the genera-
tion of spurious events. 
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The procedure for handling the lock-line reservation lost event is:

1. Perform a read channel (rdch) instruction to the SPU Read Event Mask Channel and save 
the data in “mask”.4

2. Mask the event by issuing a write channel instruction to the SPU Write Event Mask Channel 
with SPU_WrEventMask[Lr] set to ‘0’.4

3. Acknowledge the event by performing a write channel (wrch) instruction to the SPU Write 
Event Acknowledgment Channel with SPU_WrEventAck[Lr] set to ‘1’.4

4. Perform the application-specific function in response to system modification of data in the 
lock line area.

This is typically started by checking a software structure in memory to determine if a lock line 
is still being monitored. If it is still being “waited on,” then the next step typically consists of 
issuing a getllar command to the same lock line area that was modified to obtain the new 
data and then acting on that data.

5. Exit the lock line reservation lost event handler.

6. Restore the “mask” by issuing a write channel (wrch) instruction to the SPU Write Event 
Mask Channel with SPU_WrEventMask[Lr] set to ‘1’.4

7. Exit the general event handler.4

Note:  Avoid looping on getllar commands. Specifically, in the Cell/B.E. and PowerXCell 8i 
implementations, avoid looping on more than four different lock lines. This helps to prevent the 
starvation of writes or low-priority reads, which can result from back-to-back high-priority reads 
taking precedence in the arbitration scheme. For more information, see the Cell Broadband 
Engine Architecture document.

18.6.5 Procedure for Handling the Signal-Notification 1 Available Event

The signal-notification 1 available event is raised when another processor or device has written 
to an empty SPU Signal Notification 1 Register. The event occurrence also means that the 
channel count has changed from ‘0’ to ‘1’; thus, the SPU can read the value of the signal without 
stalling.

To account for the possibility of a phantom event, the procedure for handling a signal-notification 
1 available event should start by reading the channel count for the SPU Signal-Notification 1 
Channel (SPU_RdSigNotify1). If the count is ‘0’, the event was a phantom event and no signal 
data is waiting to be read. If the count is not ‘0’, the handler should read SPU_RdSigNotify1 to get 
the signal data and reset the signal data to ‘0’ in preparation for the next signal.

4. When multiple events are enabled, a common handler should be used to save the current event mask, mask all 
events that are to be handled in one channel write, and acknowledge all events that are to be handled in a single 
channel write. Then each event specific handler should be invoked to handle the event. The common handler 
should then restore the current event mask from the saved value and exit. This technique minimizes the genera-
tion of spurious events. 
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The procedure for handling the SPU signal-notification 1 available event is:

1. Perform a read channel (rdch) instruction to the SPU Read Event Mask Channel and save 
the data in “mask”.5

2. Mask the event by issuing a write channel (wrch) instruction to the SPU Write Event Mask 
Channel with SPU_WrEventMask[S1] set to ‘0’.5

3. Acknowledge the event by performing a write channel (wrch) instruction to the SPU Write 
Event Acknowledgment Channel with SPU_WrEventAck[S1] set to ‘1’.5

4. Obtain the channel count by issuing a read channel count (rchcnt) instruction to the SPU 
Signal Notification 1 Channel.

5. If the channel count is ‘0’, skip to step 7.

6. Read the signal data by issuing a read channel (rdch) instruction to the SPU Signal Notifica-
tion 1 Channel (SPU_RdSigNotify1).

7. Exit the SPU Signal Notification 1 handler.

8. Restore the “mask” by issuing a write channel (wrch) instruction to the SPU Write Event 
Mask Channel with SPU_WrEventMask[S1] set to ‘1’.5

9. Exit the general event handler.5

18.6.6 Procedure for Handling the Signal-Notification 2 Available Event

The signal-notification 2 available event is raised when another processor or device has written 
to an empty SPU Signal Notification 2 Register. The event occurrence also means that the 
channel count has changed from ‘0’ to ‘1’; thus, the SPU can read the value of the signal without 
stalling.

To account for the possibility of a phantom event, the procedure for handling a signal-notification 
2 available event should start by reading the channel count for the SPU Signal-Notification 2 
Channel (SPU_RdSigNotify2). If the count is ‘0’, the event was a phantom event and no signal 
data is waiting to be read. If the count is not ‘0’, the handler should read SPU_RdSigNotify2, which 
will get the signal data and reset the signal data to ‘0’ in preparation for the next signal.

The procedure for handling the SPU signal-notification 2 available event is:

1. Perform a read channel (rdch) instruction to the SPU Read Event Mask Channel and save 
the data in “mask”.5

2. Mask the event by issuing a write channel (wrch) instruction to the SPU Write Event Mask 
Channel with SPU_WrEventMask[S2] set to ‘0’.5

3. Acknowledge the event by performing a write channel (wrch) instruction to the SPU Write 
Event Acknowledgment Channel with SPU_WrEventAck[S2] set to a ‘1’.5

4. Obtain the channel count by issuing a read channel count (rchcnt) instruction to the SPU 
Signal Notification 2 Channel.

5. If the channel count is ‘0’, skip to step 7.

5. When multiple events are enabled, a common handler should be used to save the current event mask, mask all 
events that are to be handled in one channel write, and acknowledge all events that are to be handled in a single 
channel write. Then each event specific handler should be invoked to handle the event. The common handler 
should then restore the current event mask from the saved value and exit. This technique minimizes the genera-
tion of spurious events. 
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6. Read the signal data by issuing a read (rdch) channel instruction to the SPU Signal Notifica-
tion 2 Channel.

7. Exit the SPU Signal Notification 2 handler.

8. Restore the “mask” by issuing a write channel (wrch) instruction to the SPU Write Event 
Mask Channel with SPU_WrEventMask[S2] set to ‘1’.5

9. Exit the general event handler.5

18.6.7 Procedure for Handling the SPU Write Outbound Mailbox Available Event

The SPU write outbound mailbox available event is raised when a PPE or other device reads 
from the SPU Write Outbound Mailbox and the mailbox has available data. When the mailbox 
data is read by the PPE or device, the channel count for the SPU Write Outbound Mailbox 
Channel (SPU_WrOutMbox) changes from ‘0’ to ‘1’, which means the SPU can write SPU_WrOutMbox 
without stalling.

To account for the possibility of a phantom event, the procedure for handling a SPU write 
outbound mailbox available event should start by reading the channel count for SPU_WrOutMbox. If 
the count is ‘0’, the event was a phantom event and the mailbox is still full. If the count is not ‘0’, 
the handler should write SPU_WrOutMbox with the next mailbox data to send to the PPE.

The procedure for handling the SPU write outbound mailbox available event is:

1. Perform a read channel (rdch) instruction to the SPU Read Event Mask Channel and save 
the data in “mask”.6

2. Mask the event by issuing a write channel (wrch) instruction to the SPU Write Event Mask 
Channel with SPU_WrEventMask[Le] set to ‘0’.6

3. Acknowledge the event by performing a write channel (wrch) instruction to the SPU Write 
Event Acknowledgment Channel with SPU_WrEventAck[Le] set to ‘1’.6

4. Obtain the channel count by issuing a read channel count (rchcnt) instruction to the SPU 
Write Outbound Mailbox Channel.

5. If the channel count is ‘0’, skip to step 7.

6. Write a new mailbox data entry by issuing a write channel (wrch) instruction to the SPU 
Write Outbound Mailbox Channel.

7. Exit the SPU Outbound Mailbox handler. 

8. Restore the “mask” by issuing a write channel (wrch) instruction to the SPU Write Event 
Mask Channel with SPU_WrEventMask[Le] set to ‘1’.6

9. Exit the general event handler.6

6. When multiple events are enabled, a common handler should be used to save the current event mask, mask all 
events that are to be handled in one channel write, and acknowledge all events that are to be handled in a single 
channel write. Then each event specific handler should be invoked to handle the event. The common handler 
should then restore the current event mask from the saved value and exit. This technique minimizes the genera-
tion of spurious events. 
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18.6.8 Procedure for Handling the SPU Write Outbound Interrupt Mailbox Available Event

The SPU write outbound interrupt mailbox available event is raised when a PPE or other device 
reads from the SPU’s PPE interrupt mailbox and the mailbox has available data. When the 
mailbox data is read by the PPE or device, the channel count for the SPU Write Outbound Inter-
rupt Mailbox Channel (SPU_WrOutIntrMbox) changes from ‘0’ to ‘1’, which means the SPU can 
write SPU_WrOutIntrMbox without stalling.

To account for the possibility of a phantom event, the procedure for handling a SPU write 
outbound interrupt mailbox available event should start by reading the channel count for 
SPU_WrOutIntrMbox. If the count is ‘0’, the event was a phantom event and the mailbox is still full. 
If the count is not ‘0’, the handler should write SPU_WrOutIntrMbox with the next mailbox data to 
send to the PPE.

The procedure for handling the SPU write outbound interrupt mailbox available event is:

1. Perform a read channel (rdch) instruction to the SPU Read Event Mask Channel and save 
the data in the “mask”.7

2. Mask the event by issuing a write channel (wrch) instruction to the SPU Write Event Mask 
Channel with SPU_WrEventMask[Me] set to ‘0’.7

3. Acknowledge the event by performing a write channel (wrch) instruction to the SPU Write 
Event Acknowledgment Channel with SPU_WrEventAck[Me] set to a ‘1’.7

4. Obtain the channel count by issuing a read channel count (rchcnt) instruction to the SPU 
Write Outbound Interrupt Mailbox Channel.

5. If channel count is ‘0’, skip to step 7.

6. Write a new mailbox data entry by issuing a write channel (wrch) instruction to the SPU 
Write Outbound Interrupt Mailbox Channel.

7. Exit the SPU Outbound Interrupt Mailbox Available handler.

8. Restore the “mask” by issuing a write channel (wrch) instruction to the SPU Write Event 
Mask Channel with SPU_WrEventMask[Me] set to ‘1’.7

9. Exit the general event handler.7

18.6.9 Procedure for Handling the SPU Decrementer Event

The SPU decrementer event is raised when the decrementer value changes from ‘0’ to negative; 
that is, the SPU decrementer event is raised when the most-significant bit of the decrementer 
changes from ‘0’ to ‘1’.

The decrementer maintains a signed, twos-complement value in a 32-bit down counter. The 
decrementer counts down at the rate of the PPE time base; all decrementers in the SPUs and the 
PPE count down at the same rate. The value of the decrementer can be read by SPE software 
through SPU Read Decrementer (SPU_RdDec) and set through SPU Write Decrementer 
(SPU_WrDec).

7. When multiple events are enabled, a common handler should be used to save the current event mask, mask all 
events that are to be handled in one channel write, and acknowledge all events that are to be handled in a single 
channel write. Then each event specific handler should be invoked to handle the event. The common handler 
should then restore the current event mask from the saved value and exit. This technique minimizes the genera-
tion of spurious events. 
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The SPU decrementer can run if the Dh (decrementer halt) bit in the MFC_CNTL register is cleared 
to ‘0’ by PPE software (see Section 13 Time Base and Decrementers on page 381). If the Dh bit 
is set, SPE software cannot start the decrementer.

After an SPU decrementer event becomes pending, it is possible that a significant amount of time 
might elapse before the event handler runs. Depending on the needs of the application program, 
it might be desirable to account for the delay in setting the next time interval to be measured by 
the decrementer.

To account for the delay, the event handler can read SPU_RdDec to get the current value of the 
decrementer. If the decrementer has been running during the delay, the value will be the twos-
complement of the number of time-base ticks that have elapsed between the time the event was 
raised and the read of SPU_RdDec. To account for the time lapse in the next decrementer interval, 
the handler can simply add the required decrementer count to the (negative) value read from 
SPU_RdDec and write the result to SPU_WrDec. Software will thus set the decrementer to a new 
count that is adjusted by the number of time-base ticks since the event was raised.

If the protocol given in Section 18.6.1 on page 481 is followed, however, the decrementer will 
stop when the acknowledgment step is executed (acknowledging the decrementer event when it 
is disabled stops the decrementer). In this case, the twos-complement value read from SPU_RdDec 
as described previously might not account for all the time lapse between the event being raised 
and the execution of the decrementer event-handler (other handlers might run before the decre-
menter handler while the decrementer is stopped).

Thus, it might be necessary to either structure interrupt handling to run the decrementer event-
handler first or not acknowledge the decrementer event immediately. If the handler follows a 
protocol that does not cause the decrementer to stop (the event is disabled but not acknowl-
edged immediately or the event is enabled when it is acknowledged), then the twos-complement 
value read from SPU_RdDec will accurately represent the time delay between the event being 
raised and the handler running.

To start a stopped decrementer, SPE software writes SPU_WrDec. Thus, when the decrementer 
event-handler writes a value to SPU_WrDec for another time interval, the decrementer begins 
counting down immediately if it was stopped.

The procedure for handling the SPU decrementer event is:

1. Perform a read channel (rdch) instruction to the SPU Read Event Mask Channel and save 
the data in the “mask”.8

2. Mask the event by issuing a write channel (wrch) instruction to the SPU Write Event Mask 
Channel with SPU_WrEventMask[Tm] set to ‘0’.8

3. Acknowledge the event by issuing a write channel (wrch) instruction to the SPU Write Event 
Acknowledgment Channel (SPU_WrEventAck[Tm] set to ‘1’).

4. Read the decrementer value by issuing a read channel (rdch) instruction to the SPU Read 
Decrementer Channel. If this value is negative, it can be used to determine how much addi-
tional time has elapsed from the required interval.

8. When multiple events are enabled, a common handler should be used to save the current event mask, mask all 
events that are to be handled in one channel write, and acknowledge all events that are to be handled in a single 
channel write. Then each event specific handler should be invoked to handle the event. The common handler 
should then restore the current event mask from the saved value and exit. This technique minimizes the genera-
tion of spurious events. 
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5. If a new timer event is required, write (wrch) a new decrementer value to the SPU Write Dec-
rementer Channel. 

6. Exit the SPU decrementer event handler.

7. Restore the “mask” by issuing a write channel (wrch) instruction to the SPU Write Event 
Mask Channel with SPU_WrEventMask[Tm] set to ‘1’.8

8. Exit the general event handler.8

18.6.10 Procedure for Handling the SPU Read Inbound Mailbox Available Event

The SPU read inbound mailbox event is raised when the PPE or other device writes data to the 
SPU Read Inbound Mailbox and the mailbox is empty; the data is accessible by the SPE through 
the SPU Read Inbound Mailbox (SPU_RdInMBox). When the SPU_RdInMBox channel count changes 
from ‘0’ to nonzero, the event is raised.

When the PPE or other device writes data to the inbound mailbox, the channel count for the 
SPU_RdInMBox is incremented. The queue depth of the SPU_RdInMBox is four, and the maximum 
channel count is four. It is possible for a PPE or other device to overrun the SPU mailbox which 
causes the most-recently written value to be lost.

When the SPU mailbox available event handler executes, the SPU mailbox queue can have from 
one to four valid entries. Because the event is only raised when the SPU_RdInMBox channel count 
changes from ‘0’ to nonzero, the handler must read and process all valid entries to prevent any 
entries from being ignored for an arbitrarily long period of time

The procedure for handling the SPU read inbound mailbox available event is:

1. Perform a read channel (rdch) instruction to the SPU Read Event Mask Channel and save 
the data in “mask”.9

2. Mask the event by issuing a write channel (wrch) instruction to the SPU Write Event Mask 
Channel with SPU_WrEventMask[Mb] set to ‘0’.9

3. Acknowledge the event by performing a write channel (wrch) instruction to the SPU Write 
Event Acknowledgment Channel with SPU_WrEventAck[Mb] set to ‘1’.9

4. Obtain a channel count by issuing a read channel count (rchcnt) instruction to the SPU Read 
Inbound Mailbox Channel.

5. If the channel count is ‘0’, skip to step 8.

6. Read next mailbox data entry by issuing a read channel (rdch) instruction to the SPU Read 
Inbound Mailbox Channel (SPU_RdInMbox). 

7. Return to step 3.

8. Exit the SPU inbound mailbox handler.

9. When multiple events are enabled, a common handler should be used to save the current event mask, mask all 
events that are to be handled in one channel write, and acknowledge all events that are to be handled in a single 
channel write. Then each event specific handler should be invoked to handle the event. The common handler 
should then restore the current event mask from the saved value and exit. This technique minimizes the genera-
tion of spurious events. 
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9. Restore the “mask” by issuing a write channel (wrch) instruction to the SPU Write Event 
Mask Channel with SPU_WrEventMask[Mb] set to ‘1’.9

10. Exit the general event handler.9

18.6.11 Procedure for Handling the MFC SPU Command Queue Available Event

The MFC SPU command queue available event is raised when the channel count for MFC Class 
ID and Command Opcode (MFC_Cmd) changes from ‘0’ (full) to nonzero (not-full). The occurrence 
of the event means that the SPU can write MFC_Cmd to enqueue a command at least once without 
stalling.

When the MFC SPU command queue available event handler executes, the MFC SPU 
command queue might have more than one empty entry. Because the event is only raised when 
the MFC_Cmd channel count changes from ‘0’ to nonzero, the handler can improve efficiency by 
enqueuing commands until the command queue is full. Thus, software can implement a software 
queue of MFC commands that is shared by the handler and the main application code.

The procedure for handling the MFC SPU command queue available event is:

1. Perform a read channel (rdch) instruction to the SPU Read Event Mask Channel and save 
the data in the “mask”.10

2. Mask the event by issuing a write channel (wrch) instruction to the SPU Write Event Mask 
Channel with SPU_WrEventMask[Qv] set to ‘0’.10

3. Acknowledge the event by performing a write channel (wrch) instruction to the SPU Write 
Event Acknowledgment Channel with SPU_WrEventAck[Qv] set to ‘1’.

4. Obtain the channel count by issuing a read channel count (rchcnt) instruction to the MFC 
Command Opcode Channel (MFC_Cmd).

5. If the channel count is ‘0’, skip to step 8.

6. Enqueue a DMA command to the MFC command queue.

7. If more commands are left to queue, return to step 3.

8. Exit the MFC SPU command queue handler.

9. Restore the “mask” by issuing a write channel (wrch) instruction to the SPU Write Event 
Mask Channel with SPU_WrEventMask[Qv] set to ‘1’.10

10. Exit the general event handler.10

18.6.12 Procedure for Handling the DMA List Command Stall-and-Notify Event

The DMA list command stall-and-notify event is raised when the DMA hardware completes an 
element of a DMA list command list and the element has the stall-and-notify flag set to ‘1’ (the 
stall-and-notify flag is bit 0 (the MSb) of the transfer-size word of the element); when the channel 
count for MFC Read List Stall-and-Notify Tag Status (MFC_RdListStallStat) changes from ‘0’ to 
‘1’, the event is raised.

10.When multiple events are enabled, a common handler should be used to save the current event mask, mask all 
events that are to be handled in one channel write, and acknowledge all events that are to be handled in a single 
channel write. Then each event specific handler should be invoked to handle the event. The common handler 
should then restore the current event mask from the saved value and exit. This technique minimizes the genera-
tion of spurious events.
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At this point, the DMA hardware suspends processing of the DMA list and raises the event to give 
SPE software an opportunity to modify the characteristics (transfer size, starting effective 
address, stall-and-notify flag) of the remaining elements in the list. See Section 19 DMA Trans-
fers and Interprocessor Communication on page 513 for an example of how the stall-and-notify 
event can be used.

The DMA hardware in the MFC is designed to execute DMA operations with maximum perfor-
mance. To this end, the DMA hardware can execute the DMA commands from its queues out of 
order. When the stall-and-notify event is raised, SPE software can query MFC_RdListStallStat to 
find out which tag groups have a stalled DMA list command, but the channel interface provides 
no information about which DMA list command in the tag group has stalled and no indication of 
which element in the DMA list command has stalled.

When a DMA list contains multiple elements with the stall-and-notify flag set to ‘1’ or when a tag 
group has multiple DMA list commands queued that have elements with the stall-and-notify flag 
set, application software must track stall-and-notify events explicitly. Software can maintain a 
stall counter for each tag group with elements that can stall, but in addition, the DMA list 
commands within each such tag group must be explicitly ordered with tag-specific fences or 
barriers or with the command barrier. Without enforced ordering, DMA hardware can execute 
DMA commands out of order; if hardware executes commands out of order, software is unable to 
identify which DMA list command within the tag group is causing a given stall-and-notify event.

When the DMA list command stall-and-notify event handler executes, MFC_RdListStallStat 
might have more than bit set to ‘1’, indicating more than one group with a stalled DMA command. 
If the handler does not acknowledge and resume all stalled tag groups in response to the event 
by writing MFC_WrListStallAck for each group, the un-acknowledged stalled groups will not 
cause a subsequent stall-and-notify event and they will remain in the stalled state. Thus, the 
handler should process and acknowledge all stalled groups reported in MFC_RdListStallStat.

Software can adjust the characteristics of a stalled DMA list command in a tag group by changing 
list-element addresses and transfer sizes for the list elements beyond the element that caused 
the stall. If application software determines that some list elements should be skipped, software 
can simply set the list-element transfer sizes to ‘0’. However, the number of list elements in a 
queued DMA list command cannot be changed.

The procedure for handling the DMA list command stall-and-notify event is:

1. Perform a read channel (rdch) instruction to the SPU Read Event Mask Channel and save 
the data in the “mask”.11

2. Mask the event by issuing a write channel instruction to the SPU Write Event Mask Channel 
with SPU_WrEventMask[Sn] set to ‘0’.11

3. Acknowledge the event by performing a write channel (wrch) instruction to the SPU Write 
Event Acknowledgment Channel with SPU_WrEventAck[Sn] set to ‘1’.11

4. Perform a read channel (rdch) instruction to the MFC Read List Stall-and-Notify Tag Status 
Channel MFC_RdListStallStat[gn].

11.When multiple events are enabled, a common handler should be used to save the current event mask, mask all 
events that are to be handled in one channel write, and acknowledge all events that are to be handled in a single 
channel write. Then each event specific handler should be invoked to handle the event. The common handler 
should then restore the current event mask from the saved value and exit. This technique minimizes the genera-
tion of spurious events. 
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5. Use this information to determine which tag group or tag groups have a DMA List Element in 
the Stall and Notify state.

6. Perform the application-specific action with respect to each tag group having a stalled DMA 
list element.

Note:  If a DMA list contains multiple list elements having the Stall and Notify flag set, or if a 
Tag Group has multiple DMA list commands queued with elements having the Stall and 
Notify flag set, it is essential for the application software to initialize to 0 a tag-group specific 
stall counter before the DMA list commands are queued for the tag group. In addition, if mul-
tiple DMA list commands are queued for a tag group with Stall and Notify elements, ordering 
must be enforced with tag-specific fences, barriers, or the command barrier. Each time a 
Stall and Notify status is indicated for a tag group, the corresponding counter should be 
incremented. Application software can then use this counter to determine at what point in the 
list the stall has occurred. Application software uses stall and notify to update list element 
addresses and transfer sizes that follow the list element that has stalled due to dynamically 
changing conditions. List elements after the stalled list element can be skipped by setting 
their transfer sizes to 0. However the number of list elements in a queued DMA list command 
cannot be changed. 

7. Acknowledge and resume each stalled DMA list command by issuing a write channel (wrch) 
instruction to the MFC Write List Stall-and-Notify Tag Acknowledgment Channel 
(MFC_WrListStallAck[MFC Tag]) where the supplied MFC Tag is the encoded Tag ID of the 
tag group to be resumed.

8. Exit the DMA List Stall and Notify handler. 

Note:  If application software does not acknowledge all stalled tag groups indicated in the 
MFC_RdListStallStat[gn] channel, a second stall and notify event does not occur for the 
unacknowledged tag group. 

9. Restore the “mask” by issuing a write channel (wrch) instruction to the SPU Write Event 
Mask Channel with SPU_WrEventMask[Sn] set to ‘1’.12

10. Exit the general event handler.11

18.6.13 Procedure for Handling the Tag-Group Status Update Event

The tag-group status update event is raised when a tag group or groups have completed and 
resulted in an update of the MFC Read Tag-Group Status (MFC_RdTagStat); when the channel 
count for MFC_RdTagStat changes from ‘0’ to ‘1’, the event is raised, and software can read 
MFC_RdTagStat without stalling.

The specific meaning of this event is determined by the values that software writes to the MFC 
Write Tag Group Query Mask (MFC_WrTagMask) and MFC Write Tag Status Update Request 
(MFC_WrTagUpdate). Software writes a mask to MFC_WrTagMask to track completion status for the 
groups with corresponding bits set to ‘1’ in the mask. Then, software writes a request type to 
MFC_WrTagUpdate. If the request type is “any,” then when any of the groups named in the mask 
complete, MFC_RdTagStat is updated and the event is raised. If the request type is “all,” then when 

12. If multiple events are enabled, a common handler should be used to save the current event mask, mask all 
events that are to be handled in one channel write, and acknowledge all events that are to be handled in a single 
channel write. Then each event specific handler should be invoked to handle the event. The common handler 
should then restore the current event mask from the saved value and exit. This technique minimizes the genera-
tion of spurious events. 
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all the groups named in the mask complete, MFC_RdTagStat is updated and the event is raised. If 
the request type is “immediate,” then MFC_RdTagStat is updated immediately and the event is 
raised.

The steps in the event-handling protocol follow:

1. Read channel count (rchcnt) for MFC_RdTagStat.

2. If channel count is ‘0’ then handler done.

3. Read MFC_RdTagStat.

4. Perform application-specific processing for each completed tag group.

18.7 Developing a Basic Interrupt Handler

Because SPE hardware provides only basic interrupt support, SPE software is responsible for 
defining most aspects of interrupt handling. Most programmers will want to use high-level 
languages and tools as much as possible, so the calling conventions and stack management 
defined by the high-level language development tools should guide the development of the inter-
rupt handling code.

Proper handling of external events on the SPE involves a certain degree of complexity. From a 
software engineering perspective, this complexity is best managed when a set of system utility 
functions is provided. To this end, the following items are considered necessary to promote the 
use of external events (and asynchronous interrupts) on the SPE:

• A set of utilities that safely mask, unmask, and acknowledge a set of external events.

• A first-level interrupt handler (FLIH) that saves and restores resources on entry and exit, and 
that supports second-level interrupt handlers (SLIHs) that conform to the application binary 
interface (ABI) of the SPE program. A set of utilities for registering SLIHs should also be 
included.

• A set of utilities to query, enable, disable, and save interrupt state, thus supporting nested 
interrupts and SPE critical sections.13

Much of this can be absorbed into the default SPE entry function (crt0.o), or efficiently imple-
mented as macros or inline assembly functions, with little or no cost to the general SPE 
program’s LS footprint.

The focus of the description in this section is on developing an interrupt handler that is compat-
ible with function-calling conventions and stack management, as defined in the SPU Application 
Binary Interface Specification. Compatibility with the ABI allows the interrupt handlers to be at 
least partly written in a high-level language.

18.7.1 Basic Interrupt Protocol Features and Design

The example interrupt protocol shown here will consist of a small FLIH coded in assembler 
language and a small routine for registering SLIHs coded entirely in C. The FLIH respects the 
register-use and stack-management requirements of the SPE ABI, and the SLIH registration 

13.The Linux kernel supports interfaces such as in_interrupt(), local_irq_enable(), local_irq_disable(), 
local_irq_save(), local_irq_restore(), and so forth, for these purposes.
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code is written in C. Thus, SPE application developers can write SLIH event handlers entirely in 
C and register these SLIH event handlers with a simple C function call. The example shows that 
it is possible to have an SPU interrupt mechanism that is easy to use, although a handler written 
entirely in assembly code would be more efficient.

The example concludes with application code that registers a decrementer event handler and 
counts ten decrementer events.

18.7.2 FLIH Design

The FLIH code resides at address zero in the LS, so it runs every time the SPE takes an inter-
rupt. The tasks of the FLIH are:

• Preserve the interrupted application stack.

• Invoke the SLIH for the pending event.

• Restore the application stack and return to the interrupted application.

The FLIH assembler code follows:

.set STACK_SKIP, 125                # max. size needed to protect unallocated stack space 
        .extern spu_slih_handlers 
        .text 
        .align 3 
        .global spu_flih 
spu_flih: 
        stqd         $SP, -(STACK_SKIP+82)*16($SP)    # save back-chain pointer 
        stqd         $0, -(STACK_SKIP+80)*16($SP)     # save volatile registers 0, 2-79 
        stqd         $2, -(STACK_SKIP+ 2)*16($SP) 
        stqd         $3, -(STACK_SKIP+ 3)*16($SP) 
        stqd         $4, -(STACK_SKIP+ 4)*16($SP) 
        stqd         $5, -(STACK_SKIP+ 5)*16($SP) 
        stqd         $6, -(STACK_SKIP+ 6)*16($SP) 
        stqd         $7, -(STACK_SKIP+ 7)*16($SP) 
        stqd         $8, -(STACK_SKIP+ 8)*16($SP) 
        stqd         $9, -(STACK_SKIP+ 9)*16($SP) 
        stqd         $10, -(STACK_SKIP+ 10)*16($SP) 
                . . .                                # omitted regs 11-75 for brevity 
        stqd         $76, -(STACK_SKIP+76)*16($SP) 
        stqd         $77, -(STACK_SKIP+77)*16($SP) 
        stqd         $78, -(STACK_SKIP+78)*16($SP) 
        stqd         $79, -(STACK_SKIP+79)*16($SP) 
        rdch         $6, $SPU_RdEventMask 
        stqd         $6, -(STACK_SKIP+1)*16($SP)     # save event mask on stack 
        rdch         $3, $SPU_RdEventStat 
        andc         $7, $6, $3                      # clear current pending event bits in mask 
        wrch         $SPU_WrEventMask, $7            # disable current pending events 
        wrch         $SPU_WrEventAck, $3             # acknowledge current pending events 
        il           $2, -(STACK_SKIP+82)*16         # stack frame size 
        a            $SP, $SP, $2                    # instantiate flih stack frame 
next_event: 
        clz          $4, $3                          # determine next (left-most) event 
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        ila         $5, spu_slih_handlers            # address of slih function table 
        shli        $4, $4, 2                        # make event number a word offset 
        lqx         $5, $4, $5                       # load four slih function pointers 
        rotqby      $5, $5, $4                       # rotate slih pointer to preferred slot 
        bisl        $0, $5                           # branch-and-link to slih function 
        brnz        $3, next_event                   # more events? ($3 is slih return value) 
        lqd         $6, 80*16($SP) 
        wrch         $SPU_WrEventMask, $6            # re-establish previous event mask 
        lqd         $79, 2*16($SP)                   # restore volatile registers 79-2, 0 
        lqd         $78, 3*16($SP) 
        lqd         $77, 4*16($SP) 
        lqd         $76, 5*16($SP) 
                . . . 
        lqd         $10, 71*16($SP) 
        lqd         $9, 72*16($SP) 
        lqd         $8, 73*16($SP) 
        lqd         $7, 74*16($SP) 
        lqd         $6, 75*16($SP) 
        lqd         $5, 76*16($SP) 
        lqd         $4, 77*16($SP) 
        lqd         $3, 78*16($SP) 
        lqd         $2, 79*16($SP) 
        lqd         $0, 2*16($SP) 
        lqd         $SP, 0*16($SP)                 # restore stack pointer from back chain ptr 
        irete                                      # Return through SRR0, re-enable interrupts 

18.7.2.1 Preserve the Interrupted Application Stack

The first section of FLIH code allocates an ABI-compliant stack frame. Because the FLIH cannot 
know the exact context of the application code that has been interrupted, it must assume the 
worst-case situation, which happens when two conditions are true:

• A leaf function (a function that makes no function calls) has been interrupted.

• The leaf function uses space in its stack frame without actually allocating the frame.

It is legal for a leaf function to use stack space below its caller’s stack frame without actually 
decrementing the stack pointer to allocate a frame. Thus, to be compatible with any interrupt 
scenario, the FLIH must protect space on the stack equivalent to the maximum size stack frame 
and preserve registers so that the code for the SLIH, which is written in an ABI-compliant high-
level language, can freely use the processor registers and stack according to the ABI rules.

The example FLIH begins by storing the previous stack frame’s back-chain pointer at the end of 
the new stack frame. Next, it saves the return address from R0 (LR, the Link Register) to the 
correct position in the new stack frame, just above the back-chain pointer. Next, the FLIH saves 
volatile registers including the registers that might contain parameters for the interrupted func-
tion. Then the FLIH sets the SP to the bottom of the new stack frame. At this point, the stack is 
ready to support calling ABI-compliant functions.

The FLIH also follows the recommended policy of acknowledging all the current pending events 
before the first event is processed.
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18.7.2.2 Invoke SLIH for Pending Event

The middle section of the FLIH gets the pending event status, determines the left-most event, 
loads, aligns the function pointer for the event’s corresponding SLIH, and executes a branch-
and-link to the SLIH function. Because an ABI-compliant stack frame has been allocated and 
volatile registers have been saved, the SLIH can be a high-level-language function.

Note that the event status is in R3, which is the first parameter register according to the ABI 
protocol. Thus, the effect of the FLIH call to the SLIH is equivalent to the C function call:

specific_slih (event_status);

When the SLIH returns, the FLIH expects the SLIH to have cleared its corresponding event bit in 
the event_status and to have passed back this updated status as the return value; the return 
value is passed back in R3 according to the SPE ABI. The FLIH uses the return value to deter-
mine the next left-most pending event and loops to call the next event’s corresponding SLIH.

18.7.2.3 Restore Application Stack and Return to Interrupted Application

When all pending events have been handled, the FLIH restores the context of the interrupted 
code by restoring the saved volatile registers and unwinding the stack. The SP is reset to point to 
the stack frame of the interrupted code, and the FLIH exits with an irete instruction to re-enabled 
interrupts.

Note that the FLIH and all the SLIH functions are executed with interrupts disabled.

18.7.3 SLIH Design and Registering SLIH Functions

SLIH functions are expected to be written as part of an application that is coded in a high-level 
language; here, the C language is used. The code to register the SLIH functions is also written in 
C. Shown next is the code for the default SLIH function, the code for the initialization of the SLIH 
function table, and the function that application code uses to register SLIH functions. 

#define SPU_EVENT_ID(_mask)(spu_extract(spu_cntlz(spu_promote(_mask, 0)), 0))

static unsigned int spu_default_slih (unsigned int events)
{

unsigned int mse;

mse = 0x80000000 >> SPU_EVENT_ID (events); /* get my (left-most) event number */

return (events & ~mse); /* return updated event bits */
}

spu_slih_func  spu_slih_handlers[33] __attribute__ ((aligned (16))) = {
spu_default_slih, /* event bits 0 through 18: RESERVED, use default slih */
spu_default_slih,
spu_default_slih, 
spu_default_slih,
spu_default_slih, 
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spu_default_slih,
spu_default_slih, 
spu_default_slih,

spu_default_slih,
spu_default_slih,
spu_default_slih, 
spu_default_slih,
spu_default_slih, 
spu_default_slih,
spu_default_slih, 
spu_default_slih,

spu_default_slih,
spu_default_slih,
spu_default_slih, 
spu_default_slih, /* event bit 19: Multisource Sync */
spu_default_slih, /* event bit 20: Privilege attention */
spu_default_slih, /* event bit 21: Lock-line reservation-lost */
spu_default_slih, /* event bit 22: Signal-notification 1 */
spu_default_slih, /* event bit 23: Signal-notification 2 */

spu_default_slih, /* event bit 24: SPU Write Outbound Mailbox available */
spu_default_slih, /* event bit 25: SPU Write Outbound Interrupt Mailbox avail. */
spu_default_slih, /* event bit 26: Decrementer */
spu_default_slih, /* event bit 27: SPE mailbox */
spu_default_slih, /* event bit 28: DMA-queue */
spu_default_slih, /* reserved */
spu_default_slih, /* event bit 30: DMA list command stall-and-notify */
spu_default_slih, /* event bit 31: SPE tag-status update */

spu_default_slih, /* extra slih table entry for phantom events */
};

void spu_slih_reg(unsigned int mask, spu_slih_func func)
{

unsigned int id;

while (mask)
{

id = SPU_EVENT_ID (mask); /* get next (left-most) event */
spu_slih_handlers[id] = func; /* put function pointer into slih table */
mask &= ~(0x80000000 >> id); /* clear that event bit */

}
}



Programming Handbook

Cell Broadband Engine  

SPE Events
Page 500 of 884

Version 1.11
May 12, 2008

18.7.3.1 Default SLIH Function

The default SLIH function, spu_default_slih, simply satisfies the FLIH protocol that requires 
each SLIH to clear its corresponding event bit in the status. The event bit is cleared the in the 
status and the updated status is returned to the caller (the FLIH), but the default SLIH takes no 
other action on behalf of the event.

18.7.3.2 Initialization of SLIH Function Table

The SLIH function table has 32 entries for SLIH functions that correspond to event bits 0 through 
31. Each entry in the table is initialized to the default SLIH function, spu_default_slih(). 

The function table has a 33rd entry, also initialized to spu_default_slih(), that will be accessed 
when an interrupt is taken with no event bits set in the SPU Read Event Status Channel. Such an 
interrupt is called a “phantom event” interrupt. In this case, the count-leading-zeros instruction 
(clz) in the FLIH code will return the value 32, which will cause the 33rd entry in the table to be 
used as the function pointer. For a phantom event interrupt, the correct action is to read the SPU 
Read Event Status Channel, which clears the phantom event, and return from the interrupt. If a 
phantom event occurs, the code shown previously handles it properly.

18.7.3.3 Registering an Application Function in SLIH Table

The last function in the preceding code, spu_slih_reg(), is used by an application to register 
(install) its SLIH functions. Normally, an application will have one function for each event of 
interest and will call spu_slih_reg() with a single-bit mask to install each SLIH function. This 
spu_slih_reg() function is written, however, to allow a single call to register the same function 
for multiple events. In the extreme, an application can register a single SLIH for all events of 
interest; this allows the application’s SLIH to supersede the FLIH dispatch and move most 
aspects of event processing into application code.

18.7.4 Example Application Code

With the interrupt-handling infrastructure described previously, only a small amount of program-
ming is needed to enable and process asynchronous events, and no assembler programming is 
required.

Shown next is a simple application program that sets up an event handler for decrementer events 
(a decrementer event occurs when the SPU decrementer count makes the transition from ‘0’ to 
‘-1’; see Section 18.10.1 SPU Decrementer Event on page 506) and waits until ten such events 
occur before printing an appropriate message. 

#include <stdio.h> 
#include <spu_mfcio.h> 
#define DECR_COUNT        10000    /* count 10000 time base ticks per decrementer interrupt */ 

volatile unsigned int event_count = 0; 

unsigned int decr_handler (unsigned int status) 
{ 
        event_count++;                            /* bump global event count */ 
        spu_writech (SPU_WrDec, DECR_COUNT);      /* reset decrementer */ 
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        return (status & ~MFC_DECREMENTER_EVENT); /* return updated event bits */ 
} 

int main (void) 
{ 
        spu_slih_reg (MFC_DECREMENTER_EVENT, decr_handler);    /* register the handler */ 
        spu_writech (SPU_WrEventMask, MFC_DECREMENTER_EVENT);  /* enable decr. event */ 
        spu_writech (SPU_WrDec, DECR_COUNT);                   /* init decrementer */ 
        spu_ienable ();                                        /* enable interrupts */ 
        while (event_count < 10);          /* busy-wait until 10 decrementer events happen */ 
        printf ("Test successfully completed.\n"); 
        return (0); 
} 

18.7.4.1 Decrementer Event Handler

The decrementer event handler is based on the default SLIH shown previously. In addition to 
clearing the event bit in the status, the handler increments the global event_count variable, re-
initializes the decrementer to the start value, and returns the event status with the decrementer-
event bit cleared.

18.7.4.2 Application Code

The application code for this example demonstrates how simple it is for SPU application 
programs to setup and use asynchronous events. The main program first registers the SLIH 
decr_handler() in the SLIH function table by calling the spu_slih_reg() function defined previ-
ously. Next, the decrementer event is enabled by writing a mask to the SPU Write Event Mask 
Channel. Next, the decrementer is initialized to the start value DECR_COUNT and interrupts are 
enabled. The empty while loop implements a busy-wait until ten decrementer events occur. 
Finally, the application prints a success message and exits.

In the application, only four lines of code are required to setup interrupt handling including the 
line to initialize the decrementer starting count. The decrementer SLIH also needs only four lines 
of code, including re-initializing the starting count and updating the global event counter. A more 
sophisticated application that uses the decrementer to help implement execution profiling of a 
running application is described in Section 18.10.1 SPU Decrementer Event on page 506.

18.8 Nested Interrupt Handling

The interrupt handling design described previously is simple and clean but has the limitation that 
all pending events must be processed before another event interrupt can be taken. When many 
events are handled in one invocation of the FLIH, this limitation can lead to long latency between 
an event occurring and its handler running. Nested interrupt handling removes this limitation and 
is beneficial when an application must guarantee minimum delay between the occurrence of a 
high-priority event and handling the event.
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For example, it is best to handle DMA-queue interrupts as soon as they occur. CBEA processor 
system throughput is maximized when all processing elements, including the DMA engines in the 
MFCs, are active simultaneously. If the mailbox event handler requires lengthy processing and 
runs with interrupts disabled, a DMA-queue event that occurs shortly after the mailbox handler 
starts will not be recognized immediately, and, consequently, overall system throughput might be 
reduced by an idle DMA engine. If nested interrupt handling is implemented, the mailbox handler 
can be interrupted, which allows immediate handling of a DMA-queue event to minimize DMA 
idle time.

18.8.1 Nested Handler Design

In the basic design described previously, each SLIH was written as a high-level-language func-
tion, which means SLIH functions need no modification to support interruptibility. The FLIH code, 
however, does need some changes to support interruption of SLIH functions.

The implication of interrupting a SLIH function is that the FLIH can run again before a previous 
FLIH execution runs to completion. The FLIH itself need not be interruptible, but it must save 
some extra machine context information and re-enable interrupts before transferring control to an 
interruptible SLIH function. Because the FLIH transfers control to a SLIH before the FLIH finishes 
all its work, the FLIH must preserve its own context in addition to the context of the interrupted 
program. 

The example code uses a fixed, bit-ordered priority. The code can be modified to handle inter-
rupts in a different priority by bit-sizzling the interrupt events. 

18.8.2 FLIH Design for Nested Interrupts

The nested FLIH assembler code follows, with new or changed lines of code shown in bold-face 
type:

        .set STACK_SKIP, 125 # max. size needed to protect unallocated stack space 
        .extern spu_slih_handlers 
        .text 
        .align 3 
        .global spu_flih 
spu_flih: 
        stqd         $SP, -(STACK_SKIP+83)*16($SP)   # save back-chain pointer 
        stqd         $0, -(STACK_SKIP+81)*16($SP)    # save volatile registers 0, 2-79 
        stqd         $2, -(STACK_SKIP+ 2)*16($SP) 
        stqd         $3, -(STACK_SKIP+ 3)*16($SP) 
        stqd         $4, -(STACK_SKIP+ 4)*16($SP) 
        stqd         $5, -(STACK_SKIP+ 5)*16($SP) 
        stqd         $6, -(STACK_SKIP+ 6)*16($SP) 
        stqd         $7, -(STACK_SKIP+ 7)*16($SP) 
        stqd         $8, -(STACK_SKIP+ 8)*16($SP) 
        stqd         $9, -(STACK_SKIP+ 9)*16($SP) 
        stqd         $10, -(STACK_SKIP+ 10)*16($SP) 
                . . .                                # omitted regs 11-75 for brevity 
        stqd         $76, -(STACK_SKIP+76)*16($SP) 
        stqd         $77, -(STACK_SKIP+77)*16($SP) 
        stqd         $78, -(STACK_SKIP+78)*16($SP) 
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        stqd         $79, -(STACK_SKIP+79)*16($SP) 
        rdch         $3, $SPU_RdSRR0               # get interrupt return address 
        stqd         $3, -(STACK_SKIP+80)*16($SP)  # save int. ret. addr. above link reg. 
        rdch         $6, $SPU_RdEventMask 
        stqd         $6, -(STACK_SKIP+1)*16($SP)   # save event mask on stack 
        rdch         $3, $SPU_RdEventStat 
        andc         $7, $6, $3                   # clear current pending event bits in mask 
        wrch         $SPU_WrEventMask, $7         # disable current pending events 
        wrch         $SPU_WrEventAck, $3          # acknowledge current pending events 
        il           $2, -(STACK_SKIP+83)*16      # get stack frame size 
        a            $SP, $SP, $2                 # instantiate flih stack frame 
next_event: 
        clz          $4, $3                       # determine next (left-most) event 
        ila          $5, spu_slih_handlers        # address of slih function table 
        shli         $4, $4, 2                    # make event number a word offset 
        lqx         $5, $4, $5                    # load four slih function pointers 
        rotqby $5, $5, $4                         # rotate slih pointer to preferred slot 
        bisle        $0, $5                       # call slih with interrupts enabled 
        brnz         $3, next_event               # more events? ($3 is slih return value) 
        ila        $0, next_inst                  # disable interrupts before restoring SRR0 
        bid        $0 
next_inst: 
        lqd         $6, 80*16($SP) 
        wrch         $SPU_WrEventMask, $6         # re-establish previous event mask 
        lqd         $0, 3*16($SP) 
        wrch        $SPU_WrSRR0, $0               # restore interrupt return address 
        
        lqd         $79, 2*16($SP)                # restore volatile registers 79-2, 0 
        lqd         $78, 3*16($SP) 
        lqd         $77, 4*16($SP) 
        lqd         $76, 5*16($SP) 
                . . . 
        lqd         $10, 71*16($SP) 
        lqd         $9, 72*16($SP) 
        lqd         $8, 73*16($SP) 
        lqd         $7, 74*16($SP) 
        lqd         $6, 75*16($SP) 
        lqd         $5, 76*16($SP) 
        lqd         $4, 77*16($SP) 
        lqd         $3, 78*16($SP) 
        lqd         $2, 79*16($SP) 
        lqd         $0, 2*16($SP) 
        lqd         $SP, 0*16($SP)               # restore stack pointer from back chain ptr 
        syncc                                    # force channel write to complete 
        irete                                    # Return through SRR0, re-enable interrupts 

The new FLIH, which allows SLIH functions to be interrupted, has only a few minor changes. 
First, the stack frame that is allocated to protect the context of the interrupted code has been 
expanded by one quadword. The extra quadword is required to hold the interrupt return address 
and maintain quadword alignment of the stack. The interrupt return address will be saved on the 
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stack just above the saved R0 (LR), so the offsets for the back pointer and Link Register in the 
stack have been adjusted down by one quadword. The interrupt return address is moved from 
the Save-Restore Register 0 Channel into R0 and then stored onto the stack.

The indirect-branch instruction that calls SLIH functions, bisl, has been changed into the version 
with the E feature bit set, bisle. Thus, when the first instruction of the SLIH function executes, 
interrupts will be enabled.

When the SLIH function returns, the FLIH code, as before, looks for more pending events as indi-
cated by bits set to ‘1’ in the updated SPU Read Event Status Channel that is passed back from 
the SLIH. When all enabled pending events are serviced by calls to SLIH functions, the FLIH 
context-restore code is executed. The context-restore code is unchanged except for the offsets in 
the instructions that restore R0 (LR) and the stack pointer (SP), the two new instructions that 
restore the Save-Restore Register 0 value, and the syncc instruction that forces the SPU Write 
State Save-and-Restore Channel write to complete before the irete executes. Before restoring 
the Save-Restore Register and stack pointer, the interrupts must be disabled. They are re-
enabled at end of the FLIH by executing a irete instruction. 

18.9 Using a Dedicated Interrupt Stack

The previous examples of interrupt handling code have used the application stack for temporary 
storage space and to support calling SLIH functions. However, using the application stack for 
interrupt handling creates some problems.

One problem is the fact that the FLIH must allocate a very large frame to account for the worst-
case situation: interrupting a leaf procedure that is using a maximum-sized stack frame without 
actually allocating it. The FLIH must allocate more than 125 quadwords—2000 bytes—on the 
stack even though only a small fraction of that space is likely ever needed.

Another problem is switching contexts when the runtime environment supports multiple 
processes or multiple threads. When an interrupt handler can be the cause of a process or 
thread switch, using a separate, dedicated interrupt stack can simplify preserving the context of 
the suspended thread and restoring the context of the activated thread.

The FLIH code that follows implements a separate interrupt stack; this dedicated stack is used by 
the FLIH code and SLIH functions. The major changes in the FLIH are to save the application 
stack pointer and initialize the SP register to the top of the dedicated interrupt stack. Also, this 
FLIH allocates a much smaller stack frame because the frame need only have space for the vola-
tile registers that must be preserved across calls to SLIH functions.

When the FLIH is finished, it restores the application stack pointer and returns from the interrupt. 
In a more complete interrupt handler—one that supports thread switching—the application stack 
pointer would probably be saved in a thread context structure to support a possible interrupt-
induced thread switch.

.set INTERRUPT_STACK_SIZE, 2048 

        .extern spu_slih_handlers 
        .text 
        .align 3 
        .global spu_flih 
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spu_flih: 
        stqr $SP, main_stack_ptr 
        ila $SP, interrupt_stack-82 
        stqd $0, 2*16($SP)                # save volatile registers 0, 2-79 
        stqd $SP, 0*16($SP)               # save back chain pointer 
        stqd $2, 80*16($SP) 
        stqd $3, 79*16($SP) 
        stqd $4, 78*16($SP) 
        stqd $5, 77*16($SP) 
        stqd $6, 76*16($SP) 
        stqd $7, 75*16($SP) 
        stqd $8, 74*16($SP) 
        stqd $9, 73*16($SP) 
        stqd $10, 72*16($SP) 
        . . .                          # omitted regs 11-75 for brevity 
        stqd $76, 6*16($SP) 
        stqd $77, 5*16($SP) 
        stqd $78, 4*16($SP) 
        stqd $79, 3*16($SP) 
        rdch $6, $SPU_RdEventMask 
        stqd $6, 2*16($SP)            # save event mask on stack 
        rdch $3, $SPU_RdEventStat 
        andc $7, $6, $3               # clear current pending event bits in mask 
        wrch $SPU_WrEventMask, $7     # disable current pending events 
        wrch $SPU_WrEventAck, $3      # acknowledge current pending events 
next_event: 
        clz $4, $3                    # determine next (left-most) event 
        ila $5, spu_slih_handlers     # address of slih function table 
        shli $4, $4, 2                # make event number a word offset 
        lqx $5, $4, $5                # load four slih function pointers 
        rotqby $5, $5, $4             # rot slih function pointer to preferred slot 
        lqd $4, 2*16($SP)             # pass interrupt return address to slih 
        bisl $0, $5                   # call slih 
        brnz $3, next_event           # more events? ($3 is slih return value) 
        lqd $6, 2*16($SP) 
        wrch $SPU_WrEventMask, $6     # re-establish previous event mask 
        lqd $79, 3*16($SP)            # restore volatile registers 79-2, 0 
        lqd $78, 4*16($SP) 
        lqd $77, 5*16($SP) 
        lqd $76, 6*16($SP) 
                . . . 
        lqd $10, 72*16($SP) 
        lqd $9, 73*16($SP) 
        lqd $8, 74*16($SP) 
        lqd $7, 75*16($SP) 
        lqd $6, 76*16($SP) 
        lqd $5, 77*16($SP) 
        lqd $4, 78*16($SP) 
        lqd $3, 79*16($SP) 
        lqd $2, 80*16($SP) 
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        lqd $0, 2*16($SP) 
        lqr $SP, main_stack_ptr      # restore application stack pointer 
        irete                        # return through SRR0 and re-enable interrupts 

        .align 4 
        .skip INTERRUPT_STACK_SIZE 
interrupt_stack:                     # top of private interrupt stack 
main_stack_ptr:                      # Place to save main runtime stack pointer 
        .skip 16 

18.10 Sample Applications

This section considers a few basic examples of how external events might be used by a Syner-
gistic Processor Element (SPE) program. 

A preferred implementation enables asynchronous interrupts and processes specific conditions 
with SLIHs, which are typically written in a higher-level language like C. Of course bisled polling 
or individual event polling can be used instead, provided that the event status is checked at 
appropriate intervals.

18.10.1 SPU Decrementer Event

The decrementer and the SPU decrementer event have many potential uses, including the 
watchdog timer function described in Section 18.10.3.1 Watchdog Timer on page 508. A few of 
these are described in the next few sections.

Each SPE controls a 32-bit decrementer. The decrementer value counts down by ‘1’ for every 
cycle of the PPE time base (see Section 13.2.3 Time-Base Frequency on page 383). If the 
decrementer event is enabled (the Tm bit is set in the SPU Read Event Mask), a decrementer 
event occurs when the value in the decrementer makes the transition from ‘0’ to ‘-1’ (that is, the 
most-significant bit changes from ‘0’ to ‘1’).

Because the frequency of the time base is a function of the system, SPE software can assume 
that a specific decrementer value corresponds to a fixed time interval, regardless of the CBEA 
processor implementation. Thus, software can use the decrementer for time-based scheduling, 
performance monitoring, and so forth.

If the value loaded into the decrementer causes a change from ‘0’ to ‘1’ in the MSb, an event is 
signaled immediately. Setting the decrementer to a value of ‘0’ results in an event after a single 
decrementer interval.

18.10.1.1 Execution Profiling or Hot-Spot Analysis

Often, compute-intensive inner loops offer the best opportunities to improve program perfor-
mance. Programmers can usually identify inner loops by inspection, yet programmer intuition 
about where to apply optimization effort is subjective and sometimes wrong.
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Execution profiling provides objective data about where a program’s run time is actually being 
spent. High-level-language development systems typically have a way to build a version of any 
program that will gather execution profile information. This type of profiling works well for non-
real-time applications, but it has disadvantages due to the extra code that is inserted by the 
development system to gather the profile data; this extra code changes the real-time behavior of 
the program by adding to execution time and changing the memory addresses of processor 
instructions. As a result of the extra profile-gathering code, cache residency and branch align-
ments can change in ways that affect execution characteristics.

The disadvantages of adding code for profiling can be reduced by gathering profile data through 
periodic interrupts. When a time interval expires, an interrupt is taken, and the interrupt handler 
makes note of where the program was executing by incrementing a count associated with the 
range of PC addresses that contains the interrupt SPU program counter (PC). The handler main-
tains an array of counts such that the product of the size of the array and the range of PC 
addresses per count covers the application code of interest. If the interrupt interval is short 
enough and the application run time long enough, statistical sampling theory holds that the 
resulting array of counts accurately represents where the application is spending its execution 
time. The array of counts can be analyzed when the application terminates or even while the 
application is running by correlating the PC address ranges with high-level-language statements 
and procedure names.

18.10.1.2 Garbage Collection

A handler for the decrementer event can be used to intermittently run a garbage collector for 
languages supporting such constructs, such as C++ or Java.

18.10.1.3 Microthreads

A user-level threading (microthread) environment for the SPE can use the decrementer event to 
time slice between tasks that share the same SPE.

18.10.2 Tag-Group Status Update Event

The tag-group status update event becomes pending when all the MFC commands are complete 
in at least one unmasked tag group. Because a tag group by definition contains multiple MFC 
commands, completion of all commands can take a significant amount of time; instead of wasting 
time waiting for tag-group completion, it makes sense to have the SPU work on other tasks while 
the MFC autonomously executes the commands in the tag group.

To support such concurrency, SPE software can include an event handler that responds to the 
tag-group status update event. The handler can set a buffer-complete flag for each tag group 
reported in the value read from the MFC Read Tag-Group Status Channel. Software can set up a 
data structure with status bits for each buffer that is currently being processed by the MFC. The 
structure can have multiple 32-bit status, if necessary, where the assignment of buffer flag bits in 
the 32-bit words matches the tag-group bit assignments in the 32-bit word of the MFC Read Tag-
Group Status Channel. When the tag-group status update event is recognized, the handler can 
efficiently set and clear flags, such as buffer-complete or buffer-busy flags, with bit-wise logical 
operations.
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18.10.3 DMA List Command Stall-and-Notify Event

The purpose of the DMA list command stall-and-notify event is to allow software to set up and 
start a sequence, or list, of DMA transfers even when the precise characteristics of all list-
element transfers is not known at set-up time. By setting the stall-and-notify flag in one or more 
list elements, the DMA list command can be queued, and the MFC can immediately begin 
processing some of the DMA transfers.

After the DMA transfer for the first list element in the list with the stall-and-notify flag is completed, 
the MFC suspends list processing and raises the DMA list command stall-and-notify event. In 
response to the event, software can re-evaluate conditions affecting the DMA list transfer and 
adjust the characteristics—transfer size and effective address—of one or more of the remaining 
list elements. When adjustments are complete, software restarts the MFC processing of the list 
by acknowledging the event.

When software adjusts list-element characteristics, it can set the stall-and-notify flag in subse-
quent elements, and the process of responding the event, re-evaluating conditions, and adjusting 
list-element characteristics can be repeated.

Two example applications of this event-handling procedure follow.

18.10.3.1 Watchdog Timer

In real-time applications, such as computing frames in a live-action 3D game, software must 
respond to strict deadlines. Software might be unable to complete all requested processing in a 
real-time interval due to unanticipated input data or environment complexity, unusually high input 
data rate, and so forth. In a 3D game, if the current frame cannot be completed in its allotted time, 
it might be acceptable to have software drop the current frame or render a low-quality version 
and begin rendering the next frame.

SPE software can combine the DMA list command stall-and-notify event with a real-time clock 
maintained by the SPE decrementer to check buffer progress against a hard, real-time deadline.

When software recognizes the DMA list command stall-and-notify event, it can check the value of 
the decrementer to find out how much time is left before the next upcoming deadline. If software 
determines that the remainder of the buffer cannot be transferred before the deadline or that all 
transfers for the buffer will not finish early enough to allow the SPU to complete some buffer-
dependent computation, software can simply cancel the remaining list elements by setting their 
transfer sizes to ‘0’.

When software cancels unneeded list elements in this way, the system might realize two impor-
tant benefits. The first benefit is that system power consumption might be reduced by preventing 
the DMA engine from performing needless work that causes driving and switching internal and 
possibly external buses. The second benefit is that other time-critical tasks that would have been 
impeded by competition from the remaining list element transfers might finish earlier because 
bus bandwidth that would have been wasted on needless transfers becomes available for other, 
productive transfers.

18.10.3.2 Linked Data Structure Traversal

Software can cooperate with the MFC DMA engine to search a complex data structure using a 
novel application of the DMA list command stall-and-notify event.
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Consider the task of searching through some portion of an ordered binary tree, and then 
performing computation on a matching result. In this example, each node in the tree contains a 
data element, along with pointers to left and right children. In the tree, internal nodes have a valid 
pointer for either child, while leaf nodes have left and right child pointers equal to the null pointer. 
Further, for the purposes of this example, assume that the storage for each tree node has been 
allocated from a heap in some arbitrary order; for example, the tree was created from randomly 
ordered data.

A straight-forward implementation coded in a high-level language might fetch a parent node and 
examine its data to determine if it matches the search key. If a match is found, then the search 
terminates and the compute phase of the program is started. if a match is not found, either the 
left or right child pointer is followed depending on whether the search key is logically greater than 
the current node’s data. The search terminates when a match is found, or when the traversal can 
proceed no further (the child pointer to be followed is the null pointer). This approach has the 
main disadvantage of serializing tree traversal, node fetching, and computation.

One alternative is to have the DMA engine and a handler for the stall-and-notify event cooperate 
to asynchronously search for a match in the tree while the main program independently 
computes. The steps in this cooperative process are as follows: 

1. Software reserves storage for a DMA list with number of list elements equal to the maximum 
number of nodes to be searched (the maximum tree depth). Note that individual DMA list ele-
ments can be modified after the DMA list command is queued, but the number of elements in 
the list cannot.

2. For the first element in the DMA list, software sets the effective address to that of the parent 
node and sets the element’s stall-and-notify flag.

3. Software initiates the search operation by enqueuing the DMA list getl command and then 
proceeds to process an independent task; software is assumed to have set up interrupt han-
dling and the DMA list command stall-and-notify event handler at an earlier time.

4. When the interrupt for the stall-and-notify event is taken, a node will have been transferred 
into SPU LS. The DMA list command stall-and-notify event handler will compare the node’s 
data against the search key, and it terminates the remaining elements in the DMA list—by 
setting their transfer sizes to ‘0’—if the data and key match (search success).

5. If the node’s data is logically greater than the search key and the left child pointer is not the 
null pointer, then copy the left child pointer to the effective address of the next element in the 
DMA list, set the element’s stall-and-notify flag, acknowledge the event, and return from the 
handler to the interrupted program. If the left child pointer is the null pointer, then terminate 
the remaining elements in the DMA list (search failure).

6. If the node’s data is logically less than the search key and the right child pointer is not the null 
pointer, then copy the right child pointer to the effective address of the next element in the 
DMA list, set the element’s stall-and-notify flag, acknowledge the event, and return from the 
handler to the interrupted program. If the right child pointer is the null pointer, then terminate 
the remaining elements in the DMA list (search failure).

Some combination of steps 4-7 will be repeated until the search succeeds or fails. There are at 
least two benefits to this search method. First, SPU efficiency is improved because all the time 
spent transferring data into SPU LS can be overlapped with useful SPU computation. Second, a 
recursive algorithm, which might fail due to a limit on the size of the call stack, is avoided.
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Figure 18-1 on page 510 shows graphically how a search might proceed. First, the algorithm 
loads node 0 into LS, fails to find a match, and proceeds to the right child. Next, the algorithm 
loads the right child, node 4, into LS, fails to find a match, and proceeds to the left child. The 
algorithm loads the left child, node 5 into LS and finds a match. The nodes are loaded into LS 
autonomously by the DMA engine; checking for a match and setting up the next transfer is done 
by the event handler. Software performs a minimum of processing while letting the DMA engine 
do the part of the algorithm it was designed to do well.

In Figure 18-1, the nodes are shown being loaded into separate areas of LS due to the limitations 
of a static drawing. In a real implementation, a single LS area can be used to hold all nodes 
because only one node is held in LS at a time.

SPE software and MFC hardware can use this algorithm to support multiple simultaneous 
searches by having the main program initiate several DMA list commands, each with a unique 
tag group identifier. The DMA List Command Stall-and-Notify handler can maintain a list of active 
searches and identify which searches have events pending by reading the MFC Read List Stall-
and-Notify Tag Status Channel. The handler can resume or terminate each search according to 
the algorithm described in the preceding paragraphs.

18.10.4 MFC SPU Command Queue Available Event

When software has more than sixteen MFC commands to issue, it can issue the first sixteen but 
then it must wait until space in the queue becomes available to enqueue the remaining 
commands. If the SPU has no other work to do, it can wait for space by stalling on a write to the 
MFC Class ID and Command Opcode Channel. If the SPU can proceed with other tasks until 
space in the MFC queue becomes available, software can set up a handler for the MFC SPU 
command queue available event so that more MFC commands are enqueued as soon as space 
is available even though the SPU is attending to other tasks.

Software can set up a queue in LS for MFC commands that are ready for processing. The MFC 
SPU command queue available event handler takes commands from this queue as MFC queue 
space becomes available. When the handler finds an empty software queue, it can set a flag that 
lets the application software know that it must take action to inform the handler that commands 

Figure 18-1. SPE Search of Ordered Binary Tree 
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are available to be sent to the MFC queue. The software queue can be made large enough to 
hold the maximum number of commands generated by application software at any one time. 
Thus, application software can be written under the assumption that the MFC queue is much 
larger than it actually is. The software queue and the event handler work together to create this 
virtual MFC queue. 

18.10.5 SPU Read Inbound Mailbox Available Event

The SPU read inbound mailbox available event is raised when a message value is written to the 
inbound mailbox queue. The message can be any 32-bit value, and messages of more than 32 
bits can be sent by enqueuing multiple 32-bit words in succession. Software can define a formal 
message-passing protocol that requires all messages to begin with header word containing 
message type and length information. The message decoding logic can be encapsulated in the 
event handler.

For example, consider an application where effective-address and transfer-size information for a 
DMA command is sent by another processor or device to an SPU through its mailbox. The SPU 
read inbound mailbox available event handler can read the mailbox data, decode the message, 
determine that it should handle the message, and initiate a DMA transfer; all this processing can 
proceed with minimal impact on the SPU as it processes an independent task. Having the 
handler interact with the MFC tag-group status update event handler and its data structures 
might increase the efficiency and capability of these asynchronous handlers by allowing tag 
groups to be used when appropriate.

18.10.6 SPU Signal-Notification Available Event

An SPU signal-notification 1 available or SPU signal-notification 2 available events is raised 
when a signal value is written to a respective signal-notification register in the MFC’s memory-
mapped I/O (MMIO) address space. Each signal value is a 32-bit word much like a mailbox 
message value. Unlike mailbox queues, signal notification registers can operate in an OR mode 
that allows the successive values written to the registers to be accumulated with a logical OR 
operation.

OR mode allows the single 32-bit signal value to be partitioned so that multiple short messages 
can be received simultaneously. For example, when software on the SPU and software on 
another processor participate in a producer-consumer relationship, they need to send and 
receive simple notices such as a buffer-ready flag. In the simplest case, 32 different flags can be 
implemented in a single 32-bit signal value.

Because the response times of participants in distributed producer-consumer relationships are 
typically unpredictable, SPE software can process independent tasks while the SPU signal notifi-
cation available event handlers respond to signals and perform the simple protocol steps that 
keep the producer-consumer relationship alive.

18.10.7 Lock-Line Reservation Lost Event

The lock-line reservation lost event is raised when the PPE or other device writes to any of the 
addresses in the lock-line reserved by the getllar command. A lock-line reservation lost event 
handler can be used by an application to receive asynchronous notification that a shared-
memory synchronization predicate or condition might have been satisfied.
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For example, atomic commands such as the getllar command can be executed to reserve a 
lock-line containing the address of a mutual-exclusion (mutex) lock, also called a semaphore. 
When the PPE or other device writes to the mutex lock, the lock-line reservation will be lost 
resulting in the lock-line reservation lost event being raised. In a micro-thread environment, 
where the SPU implements software multithreading, the event handler can consult a data struc-
ture to see that the event allows a previously suspended thread that needs to use the mutex lock 
to be re-awakened. The handler can interact with the thread-management kernel to move the 
thread from the suspended list to a list that can be run. A version of the Portable Operating 
System Interface (POSIX) thread library interfaces pthread_cond_wait(3) or 
pthread_mutex_lock(3) for the SPU might use this event to implement efficient user-level 
threading.

18.10.8 Privileged Attention Event

The privileged attention event is raised when the PPE or other device sets the Attention Event 
Required bit is set in the SPU Privileged Control Register. This event is intended to signal an 
urgent request for SPU action. The meaning of this event depends on the operating system envi-
ronment and the organization of resources in the system. One possible meaning for the event is 
that the SPU has not responded as expected to the passing of a deadline; in this case, the event 
might signal to SPE software that it must respond in a certain way to prevent the PPE from termi-
nating the SPU tasks.



Programming Handbook

 Cell Broadband Engine

Version 1.11
May 12, 2008
 

DMA Transfers and Interprocessor Communication
Page 513 of 884

19. DMA Transfers and Interprocessor Communication

19.1 Introduction

The Cell Broadband Engine Architecture (CBEA) processors1 have many attributes of a shared-
memory system. The PowerPC Processor Element (PPE) and all Synergistic Processor 
Elements (SPEs) have coherent access to main storage. But the CBEA processors are not tradi-
tional shared-memory multiprocessors. For example, an SPE can execute programs and directly 
load and store data only from and to its private local storage (LS). In a traditional shared-memory 
multiprocessor, data communication and synchronization among processors happen at least 
partially as a side-effect of the fact that all processors use the same shared memory.

Because SPEs lack shared memory, they must communicate explicitly with other entities in the 
system using three primary communication mechanisms: DMA transfers, mailbox messages, and 
signal-notification messages. All three communication mechanisms are implemented and 
controlled by the SPE’s memory flow controller (MFC). Table 19-1 summarizes the three primary 
mechanisms. This section describes these mechanisms, plus additional MFC mechanisms for 
synchronizing and otherwise managing DMA transfers and related MFC functions. The channel 
interface used by an SPE to initiate and monitor these mechanisms is described in Section 17 
SPE Channel and Related MMIO Interface on page 447. 

One type of programming model might rely on the PPE to perform the task of application 
management by assigning and distributing work to the SPEs. A significant part of this task might 
be loading main storage with programs and data and then notifying an SPE of available work by 
either writing to its mailbox or one of its signal-notification registers. After getting the message or 
signal, the SPE performs a DMA operation to transfer the data and code to its LS. In a variation 
on this programming model, the PPE might perform the DMA operation and then send a 
message or signal to the SPE when the DMA operation completes. 

After processing the data, an SPE can use another DMA operation to deliver the results to main 
storage. When the DMA transfer of the SPE results from LS to main storage finishes, the SPE 
can write a completion message to one of its two outgoing mailboxes that informs the PPE that 
processing and delivery is complete. If the completion message requires more than 32 bits of 
information, the SPE can write multiple mailbox messages or use a DMA operation to transfer the 

1. The Cell Broadband Engine (Cell/B.E.) and PowerXCell 8i processors are collectively called CBEA processors.

Table 19-1. SPE DMA and Interprocessor Communication Mechanisms 

Mechanism Description

DMA transfers
Used to move data and instructions between main storage and an LS. SPEs rely on 
asynchronous DMA transfers to hide memory latency and transfer overhead by moving 
information in parallel with synergistic processor unit (SPU) computation.

Mailboxes
Used for control communication between an SPE and the PPE or other devices. Mailboxes hold 
32-bit messages. Each SPE has two mailboxes for sending messages and one mailbox for 
receiving messages.

Signal notification
Used for control communication from the PPE or other devices. Signal notification (also called 
signaling) uses 32-bit registers that can be configured for one-sender-to-one-receiver signalling 
or many-senders-to-one-receiver signalling.
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long message to main storage where the PPE can read it. Even when a long completion 
message is transferred with a DMA operation, an outgoing mailbox message can be used to 
inform the PPE that the message is available.

Although signal notifications and mailbox messages are similar, there are important differences. 
Table 19-2 summarizes the differences between using a mailbox and using a signal to communi-
cate.

19.2 MFC Commands

One of the functions of an MFC is to act as a specialized co-processor for its associated SPU. An 
MFC has the ability to execute operations from its command set, and it executes them autono-
mously. The MFC maintains two queues to hold issued commands: the 16-entry MFC SPU 
command queue and the 8-entry MFC proxy command queue. MFC commands issued by the 
SPU are buffered only in the MFC SPU command queue; MFC commands issued by the PPE or 
other system devices are buffered only in the proxy command queue.

An SPU uses its channel interface to send commands to its associated MFC. The SPU can send 
two types of commands: immediate commands and queueable commands. Queueable 
commands are entered into the MFC SPU command queue and are processed by the MFC at a 
time determined by two factors: the MFC execution algorithm and any barrier or fence modifiers 
attached to commands in the queue. When possible and beneficial, the MFC will execute 
commands out-of-order. Immediate commands are executed when issued by the SPU and are 
not entered into a queue.

Other devices in the system, including the PPE, use the MFC’s memory-mapped-I/O (MMIO) 
registers to send commands to a particular SPU’s associated MFC. The MFC accepts only 
queueable commands through the MMIO registers. Queueable commands are entered into the 
MFC proxy command queue, and the MFC processes these commands as it does commands in 
the MFC SPU command queue: possibly out of order to improve efficiency but respecting 
barriers and fences. Commands issued through the MMIO registers to the proxy command 
queue are called proxy commands.

Table 19-2. Comparison of Mailboxes and Signals 

Attribute Mailboxes Signals

Direction One inbound, two outbound, all accessible 
through channel interface.

Two inbound accessible through channel 
interface, but can send signal using MFC 
send-signal commands.

Interrupts One mailbox can interrupt PPE. 
Two mailbox-available event interrupts. Two signal-notification event interrupts.

Message Accumulation No. Yes: overwrite mode (one-to-one), logical 
OR mode (many-to-one).

Unique SPU Commands No; programs use channel reads and writes.
Yes, sndsig, sndsigf, and sndsigb for 
sending signals to other units. 
See Section 19.2.3 on page 518.

Destructive Read Reading a mailbox consumes an entry. Reading a channel resets all 32 bits to ‘0’.

Channel Count Indicates number of available entries. Indicates waiting signal.

Number Three mailboxes: 4-deep incoming, 1-deep 
outgoing, 1-deep outgoing with interrupt. Two signal registers.
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The characteristics of the two command queues are shown in Table 19-3. These two queues are 
independent; the MFC chooses commands to execute from a queue without regard to the activity 
or conditions in the other queue. Together, these two queues are named the MFC command 
queues (or queue).

Each MFC has a DMA controller that implements DMA transfers. DMA-transfer commands 
contain both a local storage address (LSA) and an effective address (EA) and thereby initiate 
transfers between the two storage domains. The MFC converts queued DMA-transfer commands 
into DMA transfers. Each MFC can maintain and process multiple simultaneous MFC commands 
and multiple simultaneous DMA transfers.

An MFC can also autonomously perform a sequence of DMA transfers in response to a DMA list 
command issued by software on its associated SPU.

The majority of MFC commands have names that imply a direction, such as get, put, and 
sndsig. The data-transfer direction for these MFC commands is always referenced from the 
perspective of the SPU that is associated with the MFC that executes the commands. Thus, get 
commands transfer data into the LS associated with the MFC; put commands transfer data out of 
the LS associated with the MFC. 

Software assigns each MFC queueable command with a 5-bit tag group ID when the command is 
issued to the MFC. Software can use tag group IDs to monitor the completion of all queued 
commands in one or more tag groups in a single command queue. SPU software can check the 
tag-group status by polling, by stalling, or with an asynchronous interrupt.

The MFCs support out-of-order execution of MFC commands. If software needs to maintain 
order between commands in a queue, it has three ways to do so:

• A command can be issued with its tag-specific barrier feature-bit set to order the command 
against all preceding and all succeeding commands in the tag group.

• A command can be issued with its tag-specific fence feature-bit set to order the command 
against all preceding commands in the tag group. 

• A separate barrier command (Section 19.2.3 on page 518) can be issued to order the com-
mand against all preceding and all succeeding commands in the queue, regardless of tag 
group.

MFC commands can be classified into two types: DMA commands (Section 19.2.1), and 
synchronization commands (Section 19.2.3 on page 518). All the DMA commands can be 
queued; three of the synchronization commands are immediate. The DMA commands can be 
modified with the suffixes described in Section 19.2.4 on page 519. 

Table 19-3. MFC Command Queues 

Queue Entries Description

MFC SPU Command Queue 16 For MFC commands sent from the SPU through the channel interface.

MFC Proxy Command Queue 8 For MFC commands sent from the PPE, other SPUs, or other devices 
through the MMIO registers.



Programming Handbook

Cell Broadband Engine  

DMA Transfers and Interprocessor Communication
Page 516 of 884

Version 1.11
May 12, 2008

19.2.1 DMA Commands

The majority of MFC commands initiate DMA transfers; these are called DMA commands. The 
basic get and put DMA commands and all the possible variants are listed in Table 19-4 and 
Table 19-5 on page 517. The command-modifier suffixes for the MFC commands are listed in 
Table 19-7 on page 519; these suffixes are used to create the variants shown in Table 19-4 and 
Table 19-5. Because the LSs of the SPEs and the I/O subsystems are typically mapped into the 
effective address space, DMA commands can transfer data between an LS and these areas as 
well.

Regardless of the initiator (SPU, PPE, or other device), DMA transfers move up to 16 KB of data 
between an LS and main storage. An MFC supports naturally aligned DMA transfer sizes of 1, 2, 
4, 8, and 16 bytes and multiples of 16 bytes. For naturally aligned 1, 2, 4, and 8-byte transfers, 
the source and destination addresses must have the same 4 least significant bits.

The performance of a DMA transfer can be improved when the source and destination addresses 
have the same quadword offsets within a 128-byte cache line. Quadword-offset-aligned transfers 
generate full cache-line bus requests for every cache line, except possibly the first and last. 
Transfers that start or end in the middle of a cache line transfer a partial cache line in the first or 
last bus request, respectively. 

The performance of a DMA data transfer when the source and destination addresses have 
different quadword offsets within a cache line is approximately half2 that of quadword-aligned 
transfers, because every bus request is a partial cache-line transfer; in effect, there are two bus 
requests for each cache line of data.

Peak performance is achieved for transfers in which both the EA and the LSA are 128-byte 
aligned and the size of the transfer is a multiple of 128 bytes.

Fifteen types of put commands move data from LS to main storage. Nine types of get 
commands move data into LS from main storage. For single-transfer DMA code example, see 
Section 19.4.1 on page 530. 

2. For some PowerXCell 8i processor systems configured with large memory, put commands are degraded by 
more than half.

Table 19-4. MFC DMA Put Commands  (Sheet 1 of 2)

Mnemonic
Possible Initiator

Description
SPU PPE

put • • Moves data from LS to the effective address.

puts • Moves data from LS to the effective address and starts the SPU after the DMA 
operation completes.

putf • •
Moves data from LS to the effective address with fence (this command is locally 
ordered with respect to all previously issued commands within the same tag group 
and command queue).

putb • •

Moves data from LS to the effective address with barrier (this command and all 
subsequent commands with the same tag ID as this command are locally ordered 
with respect to all previously issued commands within the same tag group and 
command queue).

putfs •
Moves data from LS to the effective address with fence (this command is locally 
ordered with respect to all previously issued commands within the same tag group 
and command queue) and starts the SPU after the DMA operation completes.
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putbs •

Moves data from LS to the effective address with barrier (this command and all 
subsequent commands with the same tag ID as this command are locally ordered 
with respect to all previously issued commands within the same tag group and 
command queue) and starts the SPU after the DMA operation completes.

putl • Moves data from LS to the effective address using an MFC list.

putlf •
Moves data from LS to the effective address using an MFC list with fence (this 
command is locally ordered with respect to all previously issued commands within the 
same tag group and command queue).

putlb •

Moves data from LS to the effective address using an MFC list with barrier (this 
command and all subsequent commands with the same tag ID as this command are 
locally ordered with respect to all previously issued commands within the same tag 
group and command queue).

Table 19-5. MFC DMA Get Commands 

Mnemonic
Possible Initiator

Description
SPU PPE

get • • Moves data from the effective address to LS.

gets • Moves data from the effective address to LS, and starts the SPU after the DMA 
operation completes.

getf • •
Moves data from the effective address to LS with fence (this command is locally 
ordered with respect to all previously issued commands within the same tag group 
and command queue).

getb • •

Moves data from the effective address to LS with barrier (this command and all 
subsequent commands with the same tag ID as this command are locally ordered 
with respect to all previously issued commands within the same tag group and 
command queue).

getfs •
Moves data from the effective address to LS with fence (this command is locally 
ordered with respect to all previously issued commands within the same tag group), 
and starts the SPU after the DMA operation completes.

getbs •

Moves data from the effective address to LS with barrier (this command and all 
subsequent commands with the same tag ID as this command are locally ordered 
with respect to all previously issued commands within the same tag group and 
command queue), and starts the SPU after the DMA operation completes.

getl • Moves data from the effective address to LS using an MFC list.

getlf •
Moves data from the effective address to LS using an MFC list with fence (this 
command is locally ordered with respect to all previously issued commands within the 
same tag group and command queue).

getlb •

Moves data from the effective address to LS using an MFC list with barrier (this 
command and all subsequent commands with the same tag ID as this command are 
locally ordered with respect to all previously issued commands within the same tag 
group and command queue).

Table 19-4. MFC DMA Put Commands  (Sheet 2 of 2)

Mnemonic
Possible Initiator

Description
SPU PPE
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19.2.2 DMA List Commands

A DMA list is sequence of eight-byte list elements, stored in an SPE’s LS, each of which 
describes a DMA transfer. DMA list commands can be initiated only by SPU programs, not by 
other devices or by programs running on the PPE. DMA lists are accessed when the MFC 
executes one of the DMA list commands (getl, getlf, getlb, putl, putlf, or putlb) described in 
Table 19-4 on page 516 and Table 19-5 on page 517.

A DMA list command can specify up to 2048 DMA transfers, each up to 16 KB in length. Thus, a 
DMA list command can transfer up to 32 MB, which is 128 times the size of the 256 KB LS, more 
than enough to accommodate future increases in the size of LS. The space required for the 
maximum-size DMA list is 16 KB (eight bytes for each of 2048 list elements).

DMA list commands are used to move data between a contiguous area in an SPE’s LS and 
possibly noncontiguous area in the effective address space, thus implementing scatter-gather 
functions between main storage and the LS. 

For details and a DMA list code example, see Section 19.4.4 on page 536.

19.2.3 Synchronization Commands

MFC synchronization commands, listed in Table 19-6, are used to control the order in which 
storage accesses are performed. The synchronization commands include four atomic commands 
(getllar, putllc, putlluc, and putqlluc), three send-signal commands (sndsig, sndsigf, and 
sndsigb), and three barrier commands (mfcsync, mfceieio, and barrier). The MFC can issue 
up to two outstanding atomic commands, one immediate-type and one putqlluc. For details on 
the four atomic commands, see Section 20.3 SPE Atomic Synchronization on page 597.

Table 19-6. MFC Synchronization Commands 

Command
Possible Initiator Executed

Immediately Description
SPU PPE

getllar • • Get lock line and reserve.

putllc • • Put lock line conditional.

putlluc • • Put lock line unconditional.

putqlluc • • Put queued lock line unconditional.

barrier • •

Barrier type ordering. Ensures ordering of all preceding DMA commands 
with respect to all commands following the barrier command in the same 
command queue. The barrier command has no effect on the immediate 
DMA commands: getllar, putllc, and putlluc. 

mfceieio • •

Controls the ordering of get commands with respect to put commands, 
and of get commands with respect to get commands accessing storage 
that is caching inhibited and guarded. Also controls the ordering of put 
commands with respect to put commands accessing storage that is 
memory coherence required and not caching inhibited.

mfcsync • •
Controls the ordering of DMA put and get operations within the specified 
tag group with respect to other processing units and mechanisms in the 
system.

sndsig • • Write SPU Signal Notification Register in another device.

sndsigf • • Write SPU Signal Notification Register in another device, with fence.

sndsigb • • Write SPU Signal Notification Register in another device, with barrier.
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19.2.4 Command Modifiers

The suffixes listed in Table 19-7 are included in the mnemonics of DMA commands listed in 
Table 19-4 on page 516 and Table 19-5 on page 517. These suffixes extend or refine the func-
tion of a command. For example, a put command moves data from LS to the effective address. A 
puts command moves data from LS to an effective address and starts the SPU after the DMA 
transfer completes. Commands with an s suffix can only be issued to the MFC proxy command 
queue. Commands with an l suffix and all the MFC atomic commands can only be issued to the 
MFC SPU command queue. Commands with an f or b suffix can be issued to either command 
queue.

19.2.5 Tag Groups

All DMA commands except getllar, putllc, and putlluc can be tagged with a 5-bit tag group ID. 
Tag group IDs on commands in the MFC SPU command queue are independent of the tag group 
IDs on commands in the proxy command queue. Software can ignore the tag group ID capabili-
ties or it can tag one or more commands with the same tag group ID to form a tag group. When 
multiple commands are in the same tag group, SPU software can use the tag group ID to take 
advantage of several tag-related features including: checking on the status of a tag group, 
enabling an interrupt that is raised when one or more tag groups complete, and enforcing an 
execution order of commands in a tag group. 

Programmers can enforce ordering among DMA commands in a tag group with a fence or barrier 
option by appending an f, for fence, or a b, for barrier, to the command mnemonic (see 
Section 19.2.4 and Table 19-7). A fenced command is not executed until all previously issued 
commands within the same tag group have been performed; commands issued after the fenced 
command might be executed before the fenced command. A barrier command and all the 
commands issued after the barrier command are not executed until all previously issued 
commands in the same tag group have been performed. 

19.2.5.1 Status of Tag Groups Containing MFC Commands

The SPE uses the following channels, listed in Table 17-2 on page 450, to query tag groups in 
the MFC SPU command queue: 

• MFC_WrTagMask

• MFC_WrTagUpdate

Table 19-7. MFC Command-Modifier Suffixes 

Mnemonic
Possible Initiator

Description
SPU PPE

s • Start SPU. Starts the SPU running at the address in the SPU Next Program Counter 
Register (SPU_NPC) after the MFC command completes.

f • • Tag-specific fence. Command is locally ordered with respect to all previously issued 
commands in the same tag group and command queue.

b • • Tag-specific barrier. Command is locally ordered with respect to all previously issued 
and all subsequently issued commands in the same tag group and command queue.

l • List command. Command processes a list of DMA list elements located in LS. Up to 
2048 elements in a list; each list element specifies a transfer of up to 16 KB.
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• MFC_RdTagStat

• MFC_RdListStallStat

• MFC_WrListStallAck

The PPE uses the following MMIO registers, listed in Table 17-2 on page 450, to query tag 
groups in the MFC proxy command queue: 

• Prxy_QueryType

• Prxy_QueryMask

• Prxy_TagStatus

The MFC SPU command queue has tag groups 0 to 31, and these are different from MFC proxy 
command queue tag groups 0 to 31. When one or more commands belonging to a tag group are 
queued in the MFC, the status of that tag group is not empty. When all commands belonging to a 
tag group are processed and completed, the status of that tag group becomes empty.

Software can use tag-group identifiers to check the completion status of all queued commands in 
one or more tag groups. For details and examples, see Section 19.3.3 on page 525 and 
Section 19.4.3 on page 532. 

19.2.5.2 MFC Commands with Tag-Group Dependencies

The MFC command-execution mechanism checks tag group dependencies in the MFC SPU 
command queue separately from tag-group dependencies in the MFC proxy command queue; a 
tag group can have members from only one queue. Tag-group dependencies are determined by 
the opcode of the command, the command’s tag ID, and conditions in the appropriate command 
queue. Dependencies on still-active commands are cleared as each command is completed.

The get, put, and sndsig commands with f (fence) or b (barrier) suffixes create a tag-group-
specific dependency for the command as compared with other commands in the same tag group 
and the same command queue. 

The putqlluc command has a tag-group-specific dependency as compared with other 
commands in the MFC SPU command queue and a non-tag-specific dependency as compared 
with other putqlluc commands in the MFC SPU command queue. 

Note:  The Cell Broadband Engine Architecture specifies that the putqlluc command has an 
implied tag-specific fence which prevents this command from being issued until all previously 
issued commands with the same tag have completed. The Cell/B.E. and PowerXCell 8i imple-
mentations further add a fence against all other putqlluc commands so that all putqlluc com-
mands are ordered regardless of their tag IDs. 

Note:  The Cell Broadband Engine Architecture specifies that the mfceieio and mfcsync com-
mands are tag-specific. This means that these commands and all subsequent commands in the 
same tag group are ordered with respect to all previous commands in the queue with the same 
tag ID. However, the Cell/B.E. and PowerXCell 8i implementations treat these commands as 
non-tag-specific such that they are ordered with respect to all subsequent and previous com-
mands in the command queue regardless of their tag group.
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19.2.6 MFC Command Issue

The MFC supports out-of-order execution of independent MFC commands. The MFC considers 
commands that have no dependencies to be eligible for issue. The issue mechanism has two 
slots: slot 0 and slot 1. Each command is assigned to either slot 0 or slot 1 depending on the 
command type. Table 19-8 lists the MFC command and their slot assignment.

The MFC issue mechanism alternates issuing commands in slot 0 and slot 1 at the element inter-
connect bus (EIB) frequency, which is half the SPU frequency. When multiple commands in a 
slot are eligible, the oldest command in the MFC SPU command queue has priority; if no 
commands in the MFC SPU command queue are eligible, then the oldest eligible command in 
the MFC proxy command queue is selected. Thus, commands in the MFC SPU command queue 
have higher priority than commands in the proxy queue. Sixteen requests can be outstanding.

19.2.7 Replacement Class ID and Transfer Class ID

The MFC Class ID and Command Opcode Channel, listed in the MFC Command Parameters 
group of Table 17-2 on page 450, can be used to specify both the replacement class ID 
(RclassID) and the transfer class ID (TclassID) for each MFC command.

The TclassID allows application software to influence the allocation of bus bandwidth for an MFC 
command. The TclassID generates an index into the issue-quota table (IQ0, IQ1, and IQ2 fields 
in the MFC_TClassID register, see Section 17.9.6 on page 463), which specifies the fraction of bus 
issue slots to allocate to a transfer class.

The RClassID allows privileged software to influence L2-cache and translation lookaside buffer 
(TLB) replacement for cache misses caused by the MFC command. The RClassID is used to 
generate an index into the replacement management table (RMT), which specifies which 
members in a congruence class are eligible for replacement. See Section 6.3 Replacement 
Management Tables on page 154 for details. 

The MFC Class ID Register performs the same function for commands issued to the MFC by the 
PPE or the SPU. This register is used to influence cache replacement and bus bandwidth alloca-
tion associated with an SPU’s MFC, and it has no effect on resources associated with the PPE.

The default class ID (‘0’) is used for all undefined or invalid class IDs. An invalid class ID does not 
generate an exception.

19.2.7.1 TClassID Enabled

By default, the transfer class ID facility is disabled and the issue mechanism does not use the 
TclassID value of an MFC command. However, performance of the MFC can be improved if priv-
ileged software enables TclassID in the privileged MFC_TClassID register. Enabling the facility 
allows software to manage the bus and bandwidth allocation for requests to different types of 
targets, such as on-chip storage, off-chip storage, and I/O.

Table 19-8. MFC Issue Slot Command Assignments 

Slot Instructions

Slot 0 put, sndsig, putqlluc, sdcrz, sdcrst, sdcrf

Slot 1 get, sdcrt, sdcrtst, barrier, mfcsync, mfceieio
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When TclassID is enabled, the issue mechanism enables round-robin selection between 
TClassID0, TClassID1, and TClassID2 eligible MFC commands for both slot 0 and slot 1. Slot 0 
and slot 1 have separate round-robin tokens that track the class of the last command issued in 
that slot. When slot alternation (described later) is disabled for a class, that class is skipped by 
the slot 1 round-robin mechanism, and all entries are issued by the slot 0 round-robin mecha-
nism.

Each TclassID has a quota, specified in the IQ0, IQ1, and IQ2 fields of the MFC_TClassID register, 
for the number of outstanding requests to the synergistic bus interface (SBI). The sum of these 
quotas should not exceed sixteen (the depth of the SBI queue). The quota for each class is used 
to prevent the issue mechanism from selecting an MFC command in that class when the quota is 
reached. When the number of outstanding requests for a class is below the quota for that class, 
the issue mechanism can select eligible commands from the class. 

Slot alternation of issues between slot 0 and slot 1 can be enabled separately for each TclassID 
using the SA0, SA1, and SA2 fields of the MFC_TClassID register. Enabling slot alternation for a 
class allows commands from that class to issue every cycle but alternating between slot 0 and 
slot 1 at the EIB frequency. Disabling slot alternation for a class forces commands from that class 
to issue only in slot 0 every 4th cycle at the EIB frequency.

The suggested uses for transfer class IDs are:

• Transfer Class ID 0—For MFC commands that bypass the token request, such as LS to LS 
(EA translated to LS address) transfers or on-chip MMIO transfers with slot alternation 
enabled (SA0 = 0) to allow put and get commands to execute at the same time

• Transfer Class ID 1—For off-chip memory-access MFC commands with slot alternation dis-
abled (SA1 = 1) to reduce the penalties associated with switching the direction of the bidirec-
tional memory interface

• Transfer Class ID 2—For I/O-access MFC commands with slot alternation enabled (SA2 = 0) 
to allow put and get commands to execute at the same time

19.2.7.2 TClassID Disabled

By default, the transfer class ID facility is disabled, and the issue mechanism does not consider 
the transfer class ID when it makes issue decisions. When the transfer class ID facility is 
disabled, the IQ0 (issue quota 0) and SA0 (slot alternation 0) fields in MFC_TClassID affect all MFC 
commands. IQ0 is sixteen by default to match the depth of the SBI queue. If software lowers the 
value of IQ0, the maximum number of outstanding DMA requests to the SBI is reduced accord-
ingly. SA0 is 0 by default to allow the issue mechanism to alternate issuing commands in slot 0 
and slot 1. If software sets SA0 to 1, this alternation of slots is disabled, and all MFC commands 
are issued only in slot 0 every fourth cycle at the EIB frequency.

19.2.8 DMA-Command Completion

When an MFC command from the SPU is complete, the channel count for MFC_Cmd is incre-
mented to indicate that an entry in the MFC SPU command queue has become available. When 
an MFC command from the PPE is complete, the MFC_QStatus register (Table 19-9 on page 523) 
is updated. Command completion also updates Prxy_TagStatus register (Table 17-2 on 
page 450) if the command’s Tag Group is empty.
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19.3 PPE-Initiated DMA Transfers

The PPE or other devices can initiate DMA transfers between main storage and an SPE’s LS by 
accessing the MMIO command-parameter registers maintained by the target SPE’s MFC. These 
MMIO registers are listed in Table 19-9 on page 523. 

19.3.1 MFC Command Issue

The PPE issues MFC commands by writing parameters to these registers and writing a 
command opcode to the MFC_ClassID_CMD register. To enqueue an MFC command through the 
MFC Command Parameter Registers, the registers must be written and read in the following 
sequence:

1. Write the MFC_LSA register. The MFC_LSA register must be written with a single 32-bit store. 

2. Write the MFC_EAH and MFC_EAL registers. The MFC_EAH register defaults to ‘0’ and need not be 
written for effective addresses less than 4 GB. Software can write MFC_EAH and MFC_EAL as 
two 32-bit stores or one 64-bit store.3 

3. Write the MFC_Size and MFC_Tag Parameters. The MFC_Size parameter occupies the upper 16 
bits of a 32-bit word; MFC_Tag occupies the lower 16 bits. MFC_Size and MFC_Tag can be writ-
ten with a single 32-bit store or they can be written along with MFC_ClassID_CMD in a single 
64-bit store.3

4. Write the MFC_ClassID and MFC_Cmd Parameters. The MFC_ClassID parameter occupies the 
upper 16 bits of the MFC_ClassID_CMD word; the MFC_Cmd parameter occupies the lower 16 bits 
of a 32-bit word. MFC_ClassID and MFC_Cmd can be written with a single 32-bit store or they 
can be written along with the MFC_Size and MFC_Tag parameters in a single 64-bit store.3

5. Read the MFC_CMDStatus Register. The read of the MFC_CMDStatus register is a 32-bit load. 

Table 19-9. MFC Command-Parameter Registers for PPE-Initiated DMA Transfers 

Offset 
From 
Base

MMIO Register

M
ax

. E
nt

rie
s

R/W Width
(bits) Functions

x‘03004’ MFC_LSA 1 W 32 Specifies the LS address of the DMA transfer. 

x‘03008’ MFC_EAH 1 W 32 Specifies the high-order half of the EA address of the DMA 
transfer. 

x‘0300C’ MFC_EAL 1 W 32 Specifies the low-order half of the EA address of the DMA 
transfer. 

x‘03010’
MFC_Size 1 W 16 H Specifies the size of the DMA transfer. 

MFC_Tag 1 W 16 L Specifies an identifier for the DMA-transfer command.

x‘03014’

MFC_ClassID_CMD 8 W 32 Specifies the opcode, replacement class ID (RclassID), and 
transfer class ID (TclassID) for the DMA-transfer command. 

MFC_CMDStatus 1 R 32 Returns information about the success or failure of queuing a 
DMA command.

MFC_QStatus 1 R 32 Returns the number of queue entries available. 

3. Except when specified explicitly as in this instance, 64-bit access to an address range that includes a 32-bit 
MMIO register is not allowed. 
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6. If there was insufficient space in the queue, wait until there is space and retry the sequence 
starting at step 1. 

7. If a sequence error occurred, retry sequence starting at step 1. 

The least-significant two bits of the command-status value returned from the read of the 
MFC_CMDStatus register indicate success or error when attempting to enqueue an MFC 
command, as shown in Table 19-10.

Figure 17-2 on page 459 shows a flowchart of the sequence in which MFC commands are issued 
by PPE software. 

19.3.1.1 Example: A PPE-Initiated DMA Transfer

The following C-language program fragment shows how code running on the PPE can initiate a 
16 KB DMA transfer from EA x‘10000000’ to LS address x‘500’ using a tag ID of 5.

void *ps = get_ps();
unsigned int ls = 0x500;
unsigned int long long ea = 0x10000000;
unsigned int size = 0x4000;
unsigned int tag = 5;
unsigned int classid = 0;
unsigned int cmd = MFC_GET_CMD;
unsigned int cmd_status;

do {
*((volatile unsigned int *)(ps + MFC_LSA)) = ls;
*((volatile unsigned long long *)(ps + MFC_EAH)) = ea;
*((volatile unsigned int *)(ps + MFC_Size)) = (size << 16) | tag;
*((volatile unsigned int *)(ps + MFC_ClassID)) = (classid << 16) | cmd;

  /*
* Read MFC_CMDStatus to enqueue command and check enqueue success.
*/
cmd_status = *((volatile unsigned int *)(ps + MFC_CMDStatus)) & 0x3;

} while (cmd_status); /* Attempt to enqueue until success */

Table 19-10. MFC_CMDStatus Return Values 

Least-Significant Two Bits Command Status

0 The enqueue was successful.

1

A sequence error occurred while enqueuing the DMA transfer (for example an interrupt 
occurred, then another DMA transfer was started within an interrupt handler). In this case, 
the MFC-command enqueue must be restarted from the beginning of the command issue 
protocol.

2 The enqueue failed due to insufficient space in the command queue.

3 Both of these errors occurred.
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19.3.2 MFC Command-Queue Control Registers

The PPE can control and monitor an SPE by using the MFC command-queue control registers, 
which are listed in Table 19-11. These MMIO registers are in the SPE problem-state memory 
region of each SPE along with the MFC Command Parameter Registers. 

19.3.3 DMA-Command Issue Status and Errors

The progress of PPE-initiated DMA commands can be monitored in various ways including 
checking the completion status of tag groups and checking the number of entries available in the 
MFC proxy command queue. PPE-initiated DMA commands can also fail due to exceptional 
conditions that include address-translation faults, command errors, and alignment errors. These 
exceptional conditions are detected and handled by privileged software executing on the PPE. 

19.3.3.1 DMA Tag-Group Completion

Each of the 32 tag groups (Section 19.2.5 on page 519) is assigned a bit in the 32-bit 
Prxy_QueryMask register. When software needs to check the completion status of one or more 
tag groups, it sets the Prxy_QueryMask register with a value that has the corresponding bit set for 
each DMA tag group of interest. Tag group 31 is assigned the most-significant bit of 
Prxy_QueryMask, and tag group 0 is assigned the least-significant bit.

Software can use three basic protocols to determine the completion status of one or more tag 
groups:

• Poll the Proxy Tag-Group Status Register

• Poll the Proxy Tag-Group Query-Type Register

• Wait for a tag-group completion interrupt

These protocols are described in the following sections.

Table 19-11. MFC Command-Queue MMIO Registers for PPE-Initiated Commands 

Offset 
From 
Base

MMIO Register

M
ax

. E
nt

rie
s

R/W Width
(bits) Functions

x‘03014’
MFC_CMDStatus 1 R 32 Returns information about the success or failure of queuing a 

DMA command.

MFC_QStatus 1 R 32 Returns the number of queue entries available.

x‘0321C’ Prxy_QueryMask 1 R/W 32
Specifies the tag groups to be included in a query operation.
Returns the current mask value.

x‘03204’ Prxy_QueryType 1 R/W 32
Specifies a tag-group query-completion condition.
Returns query status. A return value of ‘0’ means the query 
request is complete.

x‘0322C’ Prxy_TagStatus 1 R 32 Returns the status of the tag groups enabled in the 
Prxy_QueryMask register.
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Poll Proxy Tag-Group Status Register

The basic procedure to poll for the completion of an MFC command or group of MFC commands 
using the Proxy Tag-Group Status Register is as follows:

1. Issue the MFC commands to the MFC proxy command queue.

2. Set the Proxy Tag-Group Query-Mask Register to the groups of interest.

3. Issue an eieio instruction before reading the Proxy Tag-Group Status Register to ensure the 
effects of all previous stores complete.

4. Read the Proxy Tag-Group Status Register.

5. If the value is nonzero, at least one of the tag groups of interest has completed. If polling for 
all the tag groups of interest to complete, XOR the tag group status value with the tag group 
query mask. A result of ‘0’ indicates that all groups of interest are complete.

6. Repeat steps 4 and 5 until the tag groups of interest are complete.

The following C-language program fragment shows how to poll for tag group completion of a 
single tag group. This example assumes that MFC commands have already been issued with a 
tag-group identifier of 5. 

void *ps = get_ps();
unsigned int tag_mask = 1 << 5;
unsigned int tag_status;

*((volatile unsigned int *)(ps + Prxy_QueryMask)) = tag_mask;

__asm__(“eieio”); /* force write to Prxy_QueryMask to complete */

do {
tag_status = *((volatile unsigned int *)(ps + Prxy_TagStatus));

} while (!tag_status);

The following C-language program fragment shows how to poll for tag group completion of any 
tag group among many. This example assumes that MFC commands have already been issued 
with a tag ID of 5, 14, and 31. 

void *ps = get_ps();
unsigned int tag_mask = (1<<5)|(1<<14)|(1<<31);
unsigned int tag_status;

*((volatile unsigned int *)(ps + Prxy_QueryMask)) = tag_mask;

__asm__(“eieio”); /* force Prxy_QueryMask write to complete */

do {
tag_status = *((volatile unsigned int *)(ps + Prxy_TagStatus));

} while (!tag_status);
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The following C-language program fragment shows how to poll for tag group completion of all tag 
groups among many. This example assumes that MFC commands have already been issued 
with a tag id of 5, 14, and 31. 

void *ps = get_ps();
unsigned int tag_mask = (1<<5)|(1<<14)|(1<<31);
unsigned int tag_status;

*((volatile unsigned int *)(ps + Prxy_QueryMask)) = tag_mask;

__asm__(“eieio”);

do {
tag_status = *((volatile unsigned int *)(ps + Prxy_TagStatus));

} while (tag_status ^ tag_mask);

Poll Proxy Tag-Group Query-Type Register

The basic procedure to poll for the completion of an MFC command or group of MFC commands 
using the Proxy Tag-Group Query-Type Register is as follows:

1. Issue the MFC commands to the MFC proxy command queue.

2. Set the Proxy Tag-Group Query-Mask Register to the groups of interest.

3. Request a tag group query by writing a value to the Proxy Tag-Group Query-Type Register: 
write ‘01’ to indicate a query for completion of any enabled tag group, or write ‘10’ to indi-
cated a query for completion of all enabled tag groups.

4. Read the Proxy Tag-Group Query-Type Register.

5. If the value is ‘0’, then the requested tag group query condition has been met. If the value is 
nonzero, then repeat step 4 until it returns a value of ‘0’.

The following C-language program fragment shows how to poll for tag group completion of any 
tag group. The code will poll for completion of any of the groups enabled by the tag mask; to poll 
for completion of all of the groups enabled by the tag mask, a tag group query value of ‘10’ is set. 
This example assumes that MFC commands have already been issued with a tag id of 5, 14, and 
31. 

void *ps = get_ps();
unsigned int tag_mask = (1<<5)|(1<<14)|(1<<31);
unsigned int query_type = 1; /* Use 2 for “all” query. */
unsigned int query_status;

*((volatile unsigned int *)(ps + Prxy_QueryMask)) = tag_mask;
*((volatile unsigned int *)(ps + Prxy_QueryType)) = query_type;

__asm__(“eieio”);

do {
query_status = *((volatile unsigned int *)(ps + Prxy_QueryType));
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} while (query_status);

Note:  Waiting for any tag-group completion with a 0 tag mask can result in a hang or deadlock 
condition.

Wait for Tag-Group Completion Interrupt

The basic procedure to wait for a tag-group completion interrupt is as follows:

1. Enable the tag-group completion interrupt by means of PPE privileged software.

2. Issue the MFC commands to the MFC proxy command queue.

3. Set the Proxy Tag-Group Query-Mask Register to the groups of interest.

4. Request a tag-group query by writing a value to the Proxy Tag-Group Query-Type Register: 
write ‘01’ to indicate a query for completion of any enabled tag group, or write ‘10’ to indi-
cated a query for completion of all enabled tag groups.

5. Wait for the tag-group completion interrupt to occur.

6. PPE privileged software must reset the interrupt status after the interrupt is taken.

The following C-language program fragment shows how to setup up for a tag-group completion 
interrupt on completion of any tag group. As with the previous example, the tag group query 
value can be changed to ‘10’ to interrupt on completion of all tag groups. This example assumes 
that PPE privileged software has already enabled the tag-group completion interrupt, the applica-
tion has already enabled an interrupt handler, and that MFC commands have already been 
issued with a tag id of 5, 14, and 31. 

void *ps = get_ps();
unsigned int tag_mask = (1<<5)|(1<<14)|(1<<31);
unsigned int query_type = 1; /* Use 2 for all query. */

*((volatile unsigned int *)(ps + Prxy_QueryMask)) = tag_mask;
*((volatile unsigned int *)(ps + Prxy_QueryType)) = query_type;

Because interrupts are asynchronous, the application can proceed with other tasks while the 
MFC hardware monitors the tag-group completion status.

19.3.3.2 MFC Proxy Command Queue Space

Each MFC has an 8-entry MFC proxy command queue for commands initiated by the PPE. As 
the PPE submits MFC commands, the queue might become full. When the queue is full, PPE 
software must wait for space to become available before subsequent commands can be issued.

The MFC Queue Status Register contains the current status of the MFC proxy command queue. 
The most-significant bit is set when the queue is empty. The least-significant 16 bits indicate the 
number of available slots in the queue. A value of ‘0’ in this field indicates that the queue if full. 
Software can use the value from this field to set a loop count for the number of MFC commands 
to enqueue.
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The following C-language program fragment shows how to either wait for the MFC proxy 
command queue to be empty or wait for a specific number of entries, specified in the space vari-
able, to become available. 

void *ps = get_ps();
unsigned int queue_status;

unsigned int space;
  /*

* When the requested space is greater than eight
* wait for MFC proxy command queue to become empty.
*/

if (space > 8)
{

do {
queue_status = *((volatile unsigned int *)(ps + MFC_QStatus));

} while (!(queue_status & 0x80000000));
}
else
{

do {
queue_status = *((volatile unsigned int *)(ps + MFC_QStatus));

} while ((queue_status & 0xFFFF) < space);
}

19.4 SPE-Initiated DMA Transfers

The SPE can initiate DMA transfers between main storage and its LS by accessing its channels, 
listed in Table 19-12. 

Table 19-12. MFC Command-Parameter Channels for SPE-Initiated DMA Transfers 

S
P

E
 C
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Mnemonic
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R/W Width
(bits) Functions

16 MFC_LSA 1 no W 32 Specifies the LS address of the DMA transfer. 

17 MFC_EAH 1 no W 32 Specifies the high-order half of the EA address of the DMA 
transfer. 

18 MFC_EAL 1 no W 32 Specifies the low-order half of the EA address of the DMA 
transfer. 

19 MFC_Size 1 no W 16 Specifies the size of the DMA transfer. 

20 MFC_TagID 1 no W 16 Specifies an identifier for the DMA-transfer command.

21 MFC_Cmd 16 yes W 32 Specifies the opcode, replacement class ID (RclassID), and 
transfer class ID (TclassID) for the DMA-transfer command. 
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19.4.1 MFC Command Issue

The SPE issues MFC commands by writing parameters to these channels and then writing a 
command opcode to the MFC_Cmd channel, using the wrch instruction, described in Section 17.1.5 
on page 452. To enqueue a DMA command, the first five parameters listed in the following 
sequence can be written in any order, but they must all be written before the MFC_Cmd parameter, 
which must be written last. The one exception is the MFC_EAH parameter, which can be skipped if 
the default value of ‘0’ is acceptable.

1. Write MFC_LSA channel with the LS address.

2. Write MFC_EAH channel with the high 32 bits of the effective address (defaults to ‘0’ if not writ-
ten). 

3. Write MFC_EAL channel with the low 32-bits of the effective address. 

4. Write MFC_Size channel with the transfer size. 

5. Write MFC_TagID channel with the tag-group identifier value. 

6. Write MFC_Cmd channel with the transfer-class and replacement-class IDs and the command 
opcode. 

Figure 17-2 on page 459 shows a flowchart of the sequence in which MFC commands are issued 
by SPE software. 

19.4.1.1 Example: Initiating a DMA Transfer from the SPE

The following examples show how to initiate a DMA transfer from an SPE. 

extern void dma_transfer(volatile void *lsa,     // local storage address
                        unsigned int eah,        // high 32-bit effective address
                        unsigned int eal,        // low 32-bit effective address
                        unsigned int size,       // transfer size in bytes
                        unsigned int tag_id,     // tag identifier (0-31)
                        unsigned int cmd);       // DMA command
                   

An ABI-compliant assembly-language implementation of the subroutine is: 

       .text
       .global      dma_transfer
dma_transfer:
       wrch         $MFC_LSA, $3
       wrch         $MFC_EAH, $4
       wrch         $MFC_EAL, $5
       wrch         $MFC_Size, $6
       wrch         $MFC_TagID, $7
       wrch         $MFC_Cmd, $8
       bi           $0 
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A comparable C implementation using the SPU composite intrinsic, spu_mfcdma64, is:

#include <spu_intrinsics.h> 

void dma_transfer(volatile void *lsa, unsigned int eah, unsigned int eal, 
                        unsigned int size, unsigned int tag_id, unsigned int cmd)
{
       spu_mfcdma64(lsa, eah, eal, size, tag_id, cmd);
} 

For an example of enqueuing a set of DMA transfers using a DMA list command, see 
Section 19.4.4 on page 536.

19.4.2 MFC Command-Queue Monitoring Channels

SPE software can monitor the MFC commands in one or more tag groups with the MFC Tag 
Status channels, listed in Table 19-13. An SPE can monitor external events with the MFC Event 
channels, listed in Table 19-14. The following examples show how to use these channels. 

Table 19-13. MFC Tag-Status Channels for Monitoring SPE-Initiated Commands 
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22 MFC_WrTagMask 1 no W 32 Specifies the tag groups to be included in a query operation. 

23 MFC_WrTagUpdate 1 yes W 32 Specifies when the MFC tag-group status is updated in 
MFC_RdTagStat.

24 MFC_RdTagStat 1 yes R 32 Returns the status of the tag groups from the last tag-group 
status update request. 

25 MFC_RdListStallStat 1 yes R 32 Returns the tag groups that have an MFC DMA list command in 
the stall state.

26 MFC_WrListStallAck 1 no W 32

Specifies the tag group number for a tag group with a stalled 
DMA list command. Writing this tag value to MFC_WrListStallAck 
restarts (acknowledges) the stalled DMA list command in the tag 
group.

27 MFC_RdAtomicStat 1 yes R 32
Returns the status of the most-recently completed immediate 
MFC atomic-update command (the immediate MFC atomic-
update commands are getllar, putllc, or putlluc).
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19.4.3 DMA Command Issue Status and Errors

The progress of SPU-initiated DMA commands can be monitored in various ways including 
checking the completion status of tag groups and checking the number of entries available in the 
MFC SPU command queue. SPU-initiated DMA commands can also fail due to exceptional 
conditions that include address-translation faults, command errors, and alignment errors. These 
exceptional conditions are detected and handled by privileged software executing on the PPE.

19.4.3.1 DMA Tag-Group Completion

Each MFC command is tagged with a 5-bit tag-group ID. The same identifier can be used for 
multiple MFC commands. The set of all commands with the same identifier is defined as a tag 
group. Software can use this tag-group identifier to check the completion status of all queued 
commands in one or more tag groups. When one or more tag group completes, an interrupt can 
be raised in the SPU, if enabled by software.

Each of the 32 tag groups is assigned a bit in the 32-bit MFC_WrTagMask register. When software 
needs to check the completion status of one or more tag groups, it sets the MFC_WrTagMask 
register with a value that has the corresponding bit set for each DMA tag group of interest. Tag 
group 31 is assigned the most-significant bit of MFC_WrTagMask, and tag group 0 is assigned the 
least-significant bit.

Software can use three basic protocols to determine the completion status of one or more 
commands using tag groups:

• Poll the tag-group update status.

• Wait for tag-group update event.

• Enable interrupt on tag-group update event and process other tasks.

These protocols are described in the following sections.

Poll Tag-Group Update Status

The basic procedure for polling the completion of an MFC command or group of commands is:

1. Set the MFC Write Tag-Group Query Mask, MFC_WrTagMask.

2. Write ‘0’ to MFC_WrTagUpdate to request immediate tag status update.

Table 19-14. MFC Channels for Event Monitoring and Management 
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0 SPU_RdEventStat 1 yes R 32 Returns events that are both enabled and pending.

1 SPU_WrEventMask 1 no W 32 Specifies which pending events will affect the value returned by a 
read of the SPU_RdEventStat channel. 

2 SPU_WrEventAck 1 no W 32 Specifies the pending events to be acknowledged (cleared). 
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3. Read MFC_RdTagStat to find out if the tag groups have completed.

4. Repeat steps 2 and 3 as necessary.

The following assembler-language program fragment illustrates the preceding procedure. 

# Inputs:
# $0 contains tag mask
# Outputs:
# $1 contains completed tag status

# Set tag group mask. Once written, the tag mask is retained
# until changed by another write to the tag mask.

wrch $MFC_WrTagMask, $0

# Set up for immediate tag status update.
il $1, 0

repeat:
wrch $MFC_WrTagUpdate, $1
rdch $1, $MFC_RdTagStat
brz $1, repeat

The following C-language program fragment performs the same function as the preceding 
assembler-language fragment. The C-language intrinsic spu_mfcstat(t) writes the t argument to 
MFC_WrTagUpdate and then returns the value read from MFC_RdTagStat. 

#include <spu_intrinsics.h>
#include <spu_mfcio.h>

unsigned int tag_id = 0;
unsigned int tag_mask = 1 << tag_id;

spu_writech(MFC_WrTagMask, tag_mask);

do {
} while (!spu_mfcstat(MFC_TAG_UPDATE_IMMEDIATE)); /* poll for immediate update */

Wait for Tag-Group Update

The basic procedure for waiting on a conditional tag event (one or more tag-group completions) 
is:

1. Set the MFC Write Tag-Group Query Mask, MFC_WrTagMask.

2. Write one (MFC_TAG_UPDATE_ANY) to MFC_WrTagUpdate to request completion status for any tag 
in the mask; write two (MFC_TAG_UPDATE_ALL) if requesting completion status for all tags in the 
mask.

3. If only waiting for conditional update, read MFC_RdTagStat; SPU will stall until the requested 
completion status is true.
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4. If waiting for any one of multiple events, unmask the MFC tag-group status update event in 
SPU_WrEventMask and read SPU_RdEventStat; the SPU will stall until an event is raised. See 
Section 18 on page 471 for additional methods of detecting and handling SPU external 
events. 

The following assembler-language program fragment illustrates this procedure. 

# Inputs:
# $0 contains tag mask
# Outputs:
# $1 contains completed tag status

# Set tag group mask
wrch $MFC_WrTagMask, $0

# 0x1 for any tag, 0x2 for all tags.
il $1, 0x1

# Wait for conditional tag status update (stall the SPU).
wrch $MFC_WrTagUpdate, $1
rdch $1, $MFC_RdTagStat

Note:  Waiting for any tag-group completion with a 0 tag mask can result in a hang or deadlock 
condition.

The following C-language program fragment performs the same function as the preceding 
assembler-language fragment. The C-language intrinsic spu_mfcstat(t) writes the t argument to 
MFC_WrTagUpdate and then returns the value read from MFC_RdTagStat. If the tag status is not 
ready, the SPU stalls on the read of MFC_RdTagStat. 

#include <spu_intrinsics.h>
#include <spu_mfcio.h>

unsigned int tag_id = 0;
unsigned int tag_mask = 1 << tag_id;

spu_writech(MFC_WrTagMask, tag_mask);

/* Wait for all ids in tag group to complete (stall the SPU) */
spu_mfcstat(MFC_TAG_UPDATE_ALL);

19.4.3.2 MFC SPU Command Queue Space

Each MFC has a 16-entry MFC SPU command queue for commands initiated by the SPE. As 
SPE software submits MFC commands, the queue can become full. When the queue is full, SPE 
software must wait for space to become available before subsequent commands can be issued.

Software can use three basic protocols to wait for space to become available in the MFC SPU 
command queue:

• Poll for queue space.
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• Wait for (stall until) queue space is available.

• Wait for (stall until) an external event signals space is available.

Poll for Queue Space

The basic procedure for polling for available space in the command queue is:

1. Read the channel count for MFC_Cmd.

2. Repeat until the required amount of queue space is available.

The following assembler-language example illustrates this procedure. 

# Outputs:
# $0 contains available DMA queue space.

repeat:
rchcnt $0, $MFC_Cmd
brz $0, repeat

The following C-language program fragment performs the same function as the preceding 
assembler-language fragment. 

#include <spu_intrinsics.h>
#include <spu_mfcio.h>

do {
} while (!spu_readchcnt(MFC_Cmd));

Wait for Queue Space

The basic procedure for waiting for available space in the command queue is:

1. If only waiting for space in the MFC SPU command queue, simply enqueue the MFC com-
mand as usual. The SPU will block (stall) on the channel write to MFC_Cmd until space 
becomes available.

2. If waiting for any one of multiple events, enable the MFC SPU command queue available 
event in SPU_WrEventMask and read from SPU_RdEventStat. The SPU will stall until an event is 
raised.

When SPE software has no independent task to perform until MFC SPU command queue space 
is available, the assembler and C language code sequences are the same as for regular MFC 
command issue. When software is waiting on MFC SPU command queue space and other 
events, it reads from SPU_RdEventStat and stalls until an event is raised. Software then checks 
the events that are pending and enabled; if MFC SPU command queue space is available, soft-
ware can enqueue more MFC commands.

If SPE software has independent tasks to perform while waiting for queue space to become avail-
able, software can enable interrupts for asynchronous event handling. See Section 18 on 
page 471 for a complete description of event handling and SPU interrupts.
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19.4.4 DMA List Command Example

Section 19.2.2 on page 518 summarizes the basics of DMA lists. A DMA list is a sequence of list 
elements that, together with an initiating DMA list command, specifies a sequence of DMA trans-
fers between a single area of LS and possibly discontinuous areas in main storage. Such lists are 
stored in an SPE’s LS, and the sequence of transfers is initiated with a DMA list command such 
as getl or putl. DMA list commands can only be issued by programs running on an SPE, but the 
PPE or other devices can create and store the lists in an SPE’s LS. DMA lists can be used to 
implement scatter-gather functions between main storage and the LS. 

Each DMA transfer specified by a list element can transfer up to 16 KB of data, and the list can 
have up to 2048 (2 K) list elements. Each list element contains a transfer size, the low half of an 
effective address, and a stall-and-notify bit which can be used to suspend list execution after 
transferring a list element whose stall-and-notify bit is set. 

The DMA list command specifies one LS starting address for the entire DMA list, and the data in 
the LS is accessed sequentially with a minimum step of one quadword. Each list element speci-
fies a new starting address in the effective-address space, but the LS address for a list element 
starts where the last list element left off. The one exception to this rule is that when a list element 
in a DMA list contains a short transfer size of 1, 2, 4, or 8 bytes, the LS address increments as 
needed to start the next list element on a quadword boundary; thus, for a short transfer size, 
some data in LS will be skipped between list elements. For transfer sizes that are a multiple of a 
quadword, no data is skipped.

19.4.4.1 Creating the List

Software creates the list and stores it in the LS. Lists must be stored in the LS on an 8-byte 
boundary. The form of a list element is {LTS, LEAL}. The first word (LTS) is the list transfer size, 
the most-significant bit of which serves as an optional stall-and-notify flag. The second word 
(LEAL) is the list element’s 32-bit low-order EA. List elements are processed sequentially, in the 
order they are stored. If the stall-and-notify flag is set for a list element, the MFC will stop 
processing the DMA list after performing the transfer for that element until the SPE program 
clears the DMA list command stall-and-notify event from the SPU Read Event Status Channel. 
This gives programs an opportunity to modify subsequent list elements before they are 
processed by the MFC. 

Figure 19-1 shows the format of a DMA list element. 

Figure 19-1. DMA List Element 

0 3117161 6332
LEAL

Stall-and-Notify Flag

LTSReserved

LTS List Transfer Size
LEAL List-Element Effective Address Low
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19.4.4.2 Initiating the Transfers Specified in the List

After the list is stored in the LS, the execution of the list is initiated by a DMA list command, such 
as getl or putl, from the SPE whose LS contains the list. DMA list commands, like single-transfer 
DMA commands, require that parameters be written to the MFC Command Parameter channels 
in the manner described in Section 19.4.1 on page 530. However, a DMA list command requires 
two different types of parameters then those required by a single-transfer DMA command:

• MFC_EAL: This parameter must be written with the starting local storage address (LSA) of 
the list, rather then with the effective address low (EAL). (The EAL is specified in each list 
element, although it is named List-Element Effective Address Low, LEAL, as shown in 
Figure 19-1.)

• MFC_Size: This parameter must be written with the size of the list, in bytes, rather then the 
transfer size. (The transfer size is specified in each list element as the List Transfer Size 
(LTS) as shown in Figure 19-1.) The list size is equal to the number of list elements, multi-
plied by the size of the transfer-element structure (8 bytes). 

The starting LSA and the EA-high (EAH) are specified only once, in the DMA list command that 
initiates the transfers. The LSA is internally incremented based on the amount of data transferred 
by each list element. However, if the starting LSA for each list element does not begin on a 16-
byte boundary, then hardware automatically increments the LSA to the next 16-byte boundary. 

For list elements smaller than 16 bytes, the least-significant four bits of the transfer-element LSA 
are equivalent to the least-significant four bits of its EAL. 

The EAL for each list element is in the 4 GB area defined by EAH. DMA list element transfers 
cannot cross the 4 GB area defined by the EAH. If a DMA list element contains an effective 
address and a transfer size that would result in violation of this rule, the DMA is halted at the 
4 GB boundary, and an MFC exception is signalled. 

19.4.4.3 Programming Example

This C-language sample program creates a DMA list and, in the last line, uses an 
spu_mfcdma32 intrinsic to issue a single DMA list command  (getl) to transfer a main-storage 
region into LS. 

/* dma_list_sample.c - SPU MFC-DMA list sample code.
 *
 * This sample defines a list-element data structure, which 
 * contains the element's transfer size and low-order 32 bytes of the effective 
 * address. Also defined in the structure, but not used by this sample, 
 * is the DMA list stall-and-notify bit, which can be used to indicate 
 * that the MFC should suspend list execution after transferring a list 
 * element whose stall-and-notify bit is set.
 */

#include <spu_mfcio.h>

struct dma_list_elem {
union {
unsigned int all32;



Programming Handbook

Cell Broadband Engine  

DMA Transfers and Interprocessor Communication
Page 538 of 884

Version 1.11
May 12, 2008

struct {
unsigned int stall    : 1;
unsigned int reserved : 15;
unsigned int nbytes   : 16;
} bits;

} size;
unsigned int ea_low;

};

struct dma_list_elem list[16] __attribute__ ((aligned (8)));

void get_large_region(void *dst, unsigned int ea_low, unsigned int nbytes)
{
    unsigned int i = 0;
    unsigned int tagid = 0;
    unsigned int listsize;

    /* get_large_region
     *    Use a single DMA list command request to transfer 
     *    a "large" memory region into LS. The total size to 
     *    be copied may be larger than the MFC's single element 
     *    transfer limit of 16kb.
     */

    if (!nbytes)
return;

    while (nbytes > 0) {
unsigned int sz;

sz = (nbytes < 16384) ? nbytes : 16384;
list[i].size.all32 = sz;
list[i].ea_low = ea_low;

nbytes -= sz;
ea_low += sz;
i++;

    }

/* Specify the list size and initiate the list transfer */

    listsize = i ∗ sizeof(struct dma_list_elem);
    spu_mfcdma32((volatile *)dst, (unsigned int) &list[0], listsize, tagid,
        MFC_GETL_CMD);
}
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19.5 Performance Guidelines for MFC Commands
• Minimize small transfers. Transfers of less than one cache line consume bus bandwidth 

equivalent to a full cache-line transfer. 

• Align source and destination addresses of large transfers (128 bytes of larger) to a cache-line 
boundary. 

• Have SPEs Initiate DMA transfers. Let the SPEs pull their data instead of PPE pushing the 
data to the SPE. This is beneficial for four reasons: 

a. There are eight times more SPEs than PPEs. 

b. An MFC SPU command queue is twice as deep (16 entries) as the PPE’s MFC proxy 
command queue (eight entries).

c. Consumer-managed transfers are easier to synchronize. 

d. The number of cycles required to initiate a DMA transfer from the SPE is smaller than the 
number to initiate from the PPE. 

• Avoid PPE pre-accesses to large data sets, so that most SPE-initiated DMA transfers come 
from main storage rather than the PPE’s L2 cache. DMA transfers from main storage have 
high bandwidth with moderate latency, whereas transfers from the L2 have moderate band-
width with low latency. 

• Minimize the use of synchronizing and data-ordering commands. 

19.6 Mailboxes

Mailboxes support the sending and buffering of 32-bit messages between an SPE and other 
devices, such as the PPE and other SPEs. Each SPE can access three mailbox channels, each 
of which is connected to a mailbox register in the SPU’s MFC. Two one-entry mailbox channels—
the SPU Write Outbound Mailbox and the SPU Write Outbound Interrupt Mailbox—are provided 
for sending messages from the SPE to the PPE or other device. One four-entry mailbox 
channel—the SPU Read Inbound Mailbox—is provided for sending messages from the PPE, or 
other SPEs or devices, to the SPE. Each of the two outbound mailbox channels has a corre-
sponding MMIO register that can be accessed by the PPE or other devices.

Table 19-15 through Table 19-17 give details about the mailbox channels and their associated 
MMIO registers. 
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19.6.1 Reading and Writing Mailboxes

Data written by an SPE program to one of the outgoing mailboxes using an SPE write-channel 
(wrch) instruction is available to any processor element or device that reads the corresponding 
MMIO register in the main-storage space. Data written by a device to the SPU Read Inbound 
Mailbox using an MMIO write is available to an SPE program by reading that mailbox with a read-
channel (rdch) instruction. 

An MMIO read from either of the outbound mailboxes, or a write to the inbound mailbox, can be 
programmed to raise an SPE event, which in turn, can cause an SPU interrupt. A wrch instruc-
tion to the SPU Write Outbound Interrupt Mailbox can also be programmed to cause an interrupt 
to the PPE or other device, depending on interrupt routing (see Section 9.6 Direct External Inter-
rupts on page 265 and Section 9.8 SPU and MFC Interrupts Routed to the PPE on page 280). 

Table 19-15. Mailbox Channels and MMIO Registers 
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28 SPU Write Outbound 
Mailbox SPU_WrOutMbox 1 yes W 32 x‘04004’ SPU_Out_Mbox 1 R 32

29 SPU Read Inbound Mailbox SPU_RdInMbox 4 yes R 32 x‘0400C’ SPU_In_Mbox 4 W 32

30 SPU Write Outbound 
Interrupt Mailbox1 SPU_WrOutIntrMbox 1 yes W 32 x‘04000’ SPU_Out_Intr_Mbox 1 R 64

— SPU Mailbox Status — — — — — x‘04014’ SPU_Mbox_Stat 1 R 32

1. Access to this MMIO register is available only to privileged PPE software.

Table 19-16. Functions of Mailbox Channels 

Channel Interface SPU Read or 
Write Functions

SPU_WrOutMbox W Writes message data to the outbound mailbox. 

SPU_RdInMbox R Returns the next message data from the inbound mailbox

SPU_WrOutIntrMbox W Writes message data to the outbound interrupt mailbox. 

Table 19-17. Functions of Mailbox MMIO Registers 

MMIO Register PPE Read or 
Write Functions

SPU_Out_Mbox R Returns the message data from the corresponding SPU outbound mailbox.

SPU_In_Mbox W Writes message data to the SPU inbound mailbox. 

SPU_Out_Intr_Mbox1 R Returns the message data from the corresponding SPU outbound interrupt mailbox.

SPU_Mbox_Stat R Returns the number of available mailbox entries. 

1. Access to the SPU_Out_Intr_Mbox MMIO register is available only to privileged PPE software.
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Each time a PPE program writes to the four-entry inbound mailbox, the channel count for the 
SPU Read Inbound Mailbox Channel increments. Each time an SPE program reads the mailbox, 
the channel count decrements. The inbound mailbox acts as a first-in-first-out (FIFO) queue; 
SPE software reads the oldest data first. If the PPE program writes more than four times before 
the SPE program reads the data, then the channel count stays at ‘4’, and the fourth location 
contains the last data written by the PPE. For example, if the PPE program writes five times 
before the SPE program reads the data, then the data read is the first, second, third, and fifth 
messages that were written. The fourth message that was written is lost.

19.6.2 Mailbox Blocking

Mailbox operations are blocking operations for an SPE: an SPE write to an outbound mailbox 
that is already full stalls the SPE until a entry is cleared in the mailbox by a PPE read. Similarly, a 
rdch instruction—but not a read-channel-count (rchcnt) instruction—from an empty inbound 
mailbox is stalled until the PPE writes to the mailbox. That is, if the channel count is ‘0’ for a 
blocking channel, then an rdch or wrch instruction for that channel causes the SPE to stall until 
the channel count changes from ‘0’ to nonzero. 

To prevent stalling, SPE software should read the channel count associated with the mailbox 
before deciding whether to read or write the mailbox channel. This stalling behavior for the SPE 
does not apply to the PPE; if the PPE sends a message to the inbound mailbox and the mailbox 
is full, the PPE will not stall. 

Because a wrch instruction will stall when it tries to send a value to a full outbound mailbox, SPE 
software cannot over-run an outbound mailbox. All outbound messages must be read by some 
entity outside the SPU before space is made available for more outbound messages. In contrast, 
the SPU Read Inbound Mailbox can be over-run by an outside entity because the MMIO write 
used for this purpose does not stall. When the PPE or other device writes to a full inbound 
mailbox, the last value written to it is overwritten and is lost. See the code sample in 
Section 19.7.6.1 on page 553 for a safeguard to avoid this situation. 

19.6.3 Dealing with Anticipated Messages

There are at least three ways to deal with anticipated mailbox messages:

• SPE software uses an rdch instruction to read the inbound mailbox channel, which will block 
until a mailbox message arrives.

• SPE software uses a rchcnt instruction on the mailbox channel, which will return the count 
(‘0’ or nonzero). If the count is ‘0’, software can work on other tasks and check again later.

• SPE software enables interrupts to respond to mailbox events. Software can work on other 
tasks and need never check because the mailbox event interrupt handlers will be activated 
when mailbox status changes.

19.6.4 Uses of Mailboxes

Mailbox message values are intended to communicate messages up to 32 bits in length, such as 
buffer completion flags or program status. In fact, however, they can be used for any short-data-
transfer purpose, such as sending of storage addresses, function parameters, command param-
eters, and state-machine parameters. 
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Mailboxes are useful, for example, when the SPE places computational results in main storage 
via DMA. After requesting the DMA transfer, the SPE waits for the DMA transfer to complete and 
then writes to an outbound mailbox to notify the PPE that its computation is complete. 

If the SPE sends a mailbox message after waiting for a DMA transfer to complete, this ensures 
only that the SPE’s LS buffers are available for reuse. It does not guarantee that data has been 
coherently written to main storage. The SPE might solve this problem by issuing an mfcsync 
command before notifying the PPE. But doing so is inefficient. Instead, the preferred method is to 
have the PPE receive the notification and then issue an lwsync instruction before accessing any 
of the resulting data.

Alternatively, an SPE can notify the PPE that it has completed computation by writing, via DMA, 
such a notification to main storage, from which the PPE can read the notification. (This is some-
times referred to as a writeback DMA command, although no such DMA command is defined.) In 
this case, the data and the writeback must be ordered. To ensure ordering, an mfceieio 
command must be issued between the data DMA commands and the notification to main 
storage.

Although the mailboxes are primarily intended for communication between the PPE and the 
SPEs, they can also be used for communication between an SPE and other SPEs, processors, 
or devices. For this to happen, privileged software needs to allow one SPE to access the mailbox 
register in another SPE by mapping the target SPE’s problem-state area into the EA space of the 
source SPE. If software does not allow this, then only atomic operations and signal notifications 
are available for SPE-to-SPE communication. 

19.6.5 SPU Outbound Mailboxes

The MFC provides two one-entry mailbox channels—the SPU Write Outbound Mailbox and the 
SPU Write Outbound Interrupt Mailbox—for sending messages from the SPE to the PPE or other 
device that can read from the main-storage space.

19.6.5.1 SPU Write Outbound Mailbox Channel

The value written to the SPU Write Outbound Mailbox Channel (SPU_WrOutMbox) is entered into 
the outbound mailbox in the MFC if the mailbox has capacity to accept the value. If the mailbox 
can accept the value, the channel count for SPU_WrOutMbox is decremented by ‘1’.

If the outbound mailbox is full, the channel count will read as ‘0’. If SPE software writes a value to 
SPU_WrOutMbox when the channel count is ‘0’, the SPU will stall on the write. The SPU remains 
stalled until the PPE or other device reads a message from the outbound mailbox by reading the 
MMIO address of the mailbox. When the mailbox is read through the MMIO address, the channel 
count is incremented by ‘1’.

19.6.5.2 SPU Write Outbound Interrupt Mailbox Channel

The value written to the SPU Write Outbound Interrupt Mailbox Channel (SPU_WrOutIntrMbox) is 
entered into the outbound interrupt mailbox if the mailbox has capacity to accept the value. If the 
mailbox can accept the message, the channel count for SPU_WrOutIntrMbox is decremented by 
‘1’, and an interrupt is raised in the PPE or other device, depending on interrupt enabling and 
routing. There is no ordering of the interrupt and previously issued MFC commands.
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The raising of an interrupt depends on privileged PPE software having enabled the interrupt for 
this channel, as described in Section 9.6 Direct External Interrupts on page 265 and Section 9.8 
SPU and MFC Interrupts Routed to the PPE on page 280. After handling the PPE-side interrupt, 
if enabled, privileged PPE software performs an MMIO read of the SPU Write Outbound Interrupt 
Mailbox Register to get the value written by the SPU. In response to the MMIO read, the channel 
count is incremented by ‘1’. This is the simplest use of the SPU Write Outbound Interrupt 
Mailbox. 

If the outbound interrupt mailbox is full, the channel count will read as ‘0’. If SPE software writes 
a value to SPU_WrOutIntrMbox when the channel count is ‘0’, the SPU will stall on the write. The 
SPU remains stalled until the PPE or other device reads a mailbox message from the outbound 
interrupt mailbox by reading the MMIO address of the mailbox. When this is done, the channel 
count is incremented by ‘1’.

The field assignments and definitions for SPU Write Outbound Interrupt Mailbox are identical to 
those for the SPU Write Outbound Mailbox, shown in Section 19.6.5.1 on page 542. 

19.6.5.3 SPU Side

Writing SPU Write Outbound Mailbox Data

SPE software can write to the SPU Write Outbound Mailbox Channel to put a mailbox message 
in the SPU Write Outbound Mailbox. This write-channel instruction will return immediately if there 
is sufficient space in the SPU write outbound mailbox queue to hold the message value. If there 
is insufficient space, the write-channel instruction will stall the SPU until the PPE reads from this 
mailbox.

The same behavior applies to the SPU Write Outbound Interrupt Mailbox on the SPU side, the 
only difference is the channel number.

The following assembler-language program fragment shows how to write to an SPU Write 
Outbound Mailbox. 

# To write to the SPU Write Outbound Interrupt Mailbox
# instead of the SPU Write Outbound Mailbox, simply replace
# SPU_WrOutMbox with SPU_WrOutIntrMbox in the
# following example.
# Input:
#   $1 contains the mailbox value to be written

wrch $SPU_WrOutMbox, $1

The following C-language program fragment shows how to write to the SPU Write Outbound 
Mailbox. 

unsigned int mb_value;

spu_writech(SPU_WrOutMbox, mb_value);
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Waiting to Write SPU Write Outbound Mailbox Data

To avoid an SPU stall condition, the SPU can use the read-channel-count instruction on the SPU 
Write Outbound Mailbox Channel to determine if the queue is empty before writing to the 
channel. If the read-channel-count instruction returns ‘0’, the SPU write outbound mailbox queue 
is full. If the read channel-count instruction returns a nonzero value, the value indicates the 
number of free entries in the SPU write outbound mailbox queue. When the queue has free 
entries, the SPU can write to this channel without stalling the SPU. 

The same behavior described in the preceding paragraph also applies to the SPU write outbound 
interrupt mailbox queue.

The following assembler-language program fragment shows how to poll SPU Write Outbound 
Mailbox or SPU Write Outbound Interrupt Mailbox. 

# To write to the SPU Write Outbound Interrupt Mailbox
# instead of the SPU Write Outbound Mailbox, simply replace
# SPU_WrOutMbox with SPU_WrOutIntrMbox in the
# following example.
# Input:
#   $1 contains the mailbox value to be written

repeat:
rchcnt $2, $SPU_WrOutMbox
brz $2, repeat

wrch $SPU_WrOutMbox, $1

The following C-language program fragment shows how to poll SPU Write Outbound Mailbox or 
SPU Write Outbound Interrupt Mailbox. 

/*
* To write the value 1 to the SPU Write Outbound Interrupt Mailbox instead
* of the SPU Write Outbound Mailbox, simply replace SPU_WrOutMbox
* with SPU_WrOutIntrMbox in the following example.
*/

unsigned int mb_value;

do {
/* 
* Do other useful work while waiting.
*/

} while (!spu_readchcnt(SPU_WrOutMbox));

spu_writech(SPU_WrOutMbox, mb_value);

The SPU can also avoid a stall by enabling the SPU event facility, described in Section 18 on 
page 471. Using events involves the following steps:
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1. Enable the PPE core mailbox available event or the PPE core interrupt mailbox available 
event in SPU Write Event Mask.

2. Monitor for this event. Software can poll with a read-channel-count instruction on SPU Read 
Event Status; software can block (stall) with a read-channel instruction on the SPU Read 
Event Status Channel; software can enable SPU interrupts and use interrupt handlers to ser-
vice mailbox events as they are encountered asynchronously.

3. When the event is detected, it must be acknowledged by writing the corresponding bit to the 
SPU Write Event Acknowledgment Channel. A typical handler for this event performs the 
acknowledgment and also writes a value to SPU Write Outbound Mailbox or SPU Write Out-
bound Interrupt Mailbox.

The following assembler-language program fragment shows how to poll for or block on an SPU 
write outbound mailbox available event. To block, instead of poll, simply delete the following 
repeat loop. To write to the SPU Write Outbound Interrupt Mailbox instead of the SPU Write 
Outbound Mailbox, simply replace SPU_WrOutMbox with SPU_WrOutIntrMbox and use the appro-
priate event bit for SPU Write Outbound Interrupt Mailbox in the following example. 

# Inputs:
#   $2 contains SPU Write Outbound Mailbox event bit
#   $5 contains the 32-bit value to be written to the SPU Write Outbound Mailbox

il   $2, 0x80
wrch $SPU_WrEventMask, $2   # Write event mask

repeat:
rchcnt $3, $SPU_RdEventStat
brz $3, repeat # Wait for event to occur

rdch $4, $SPU_RdEventStat       # Get event bit
wrch $SPU_WrEventAck, $2   # Acknowledge event

wrch $SPU_WrOutMbox, $5  # Send the mailbox message

The following C-language program fragment shows how to poll for or block on an SPU write 
outbound mailbox available event. To block, instead of poll, simply delete the following do/while 
loop. To write to the SPU Write Outbound Interrupt Mailbox instead of the SPU Write Outbound 
Mailbox, simply replace SPU_WrOutMbox with SPU_WrOutIntrMbox and use the appropriate event bit 
for SPU Write Outbound Interrupt Mailbox in the following example. 

#define MBOX_AVAILABLE_EVENT  0x00000080
unsigned int event_status;
unsigned int mb_value;

spu_writech(SPU_WrEventMask, MBOX_AVAILABLE_EVENT);

do {
/*
* Do other useful work while waiting.
*/
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} while (!spu_readchcnt(SPU_RdEventStat));

event_status = spu_readch(SPU_RdEventStat);     /* read status */

spu_writech(SPU_WrEventAck, MBOX_AVAILABLE_EVENT);   /* acknowledge event */

spu_writech(SPU_WrOutMbox, mb_value);  /* send mailbox message */

Note:  The preceding example does not fully accommodate the occurrence of a phantom event. 
For details on handling phantom events, see Section 18.6.1 on page 481.

19.6.5.4 PPE Side

Before PPE software can read data from one of the SPU Write Outbound Mailboxes, it must first 
read the Mailbox Status Register to determine that unread data is present in the SPU Write 
Outbound Mailbox or SPU Write Outbound Interrupt Mailbox; otherwise, stale or undefined data 
might be returned.

To determine that unread data is available in the SPU Write Outbound Mailbox, PPE software 
reads the Mailbox Status Register and extracts the count value from the SPU_Out_Mbox_Count 
field. If the count is nonzero, then at least one unread value is present. If the count is ‘0’, PPE 
software should not read the SPU Write Outbound Mailbox Register because it will get incorrect 
data and should poll the Mailbox Status Register.

The following C-language example shows how PPE software can read from the SPU Write 
Outbound Mailbox of an SPE. The example assumes the existence of a operating system call, 
like get_ps, that returns a base address for the problem state area, and some defines, like 
SPU_Mbox_Stat and SPU_Out_Mbox, that specify offsets into the problem state area corresponding 
to the SPU_Mbox_Stat and SPU_Out_Mbox registers, respectively.

void *ps = get_ps();
unsigned int mb_status;
unsigned int new;
unsigned int mb_value;

do {
mb_status = *((volatile unsigned int *)(ps + SPU_Mbox_Stat));
new = mb_status & 0x000000FF;

} while ( new == 0 );

mb_value = *((volatile unsigned int *)(ps + SPU_Out_Mbox));

SPE software typically uses the SPU Write Outbound Interrupt Mailbox when PPE software 
needs to be interrupted to detect mailbox data from an SPU. For details on using privileged oper-
ations to enable, process, and reset the PPE interrupt associated with the SPU Write Outbound 
Interrupt Mailbox, see Section 9 PPE Interrupts on page 239. 

As for the SPU Write Outbound Mailbox, a nonzero value in the SPU_Out_Intr_Mbox_Count field 
of the Mailbox Status Register indicates that unread data is present in the SPU Write Outbound 
Interrupt Mailbox. The same code example provided previously for the SPU Write Outbound 
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Mailbox can be used for reading the SPU Write Outbound Interrupt Mailbox, after changes have 
been made for the location of the SPU_Out_Intr_Mbox_Count field in the Mailbox Status Register 
and the appropriate offset is used for the SPU Write Outbound Interrupt Mailbox Register.

19.6.6 SPU Inbound Mailbox

The MFC provides one mailbox for a PPE to send information to an SPU: the SPU Read Inbound 
Mailbox. This mailbox has four entries; that is, the PPE can have up to four 32-bit messages 
pending at a time in the SPU Read Inbound Mailbox.

19.6.6.1 SPU Read Inbound Mailbox Channel

If the SPU Read Inbound Mailbox Channel (SPU_RdInMbox) has a message, the value read from 
the mailbox is the oldest message written to the mailbox. If the inbound mailbox is empty, the 
SPU_RdInMbox channel count will read as ‘0’. 

If SPE software reads from SPU_RdInMbox when the channel count is ‘0’, the SPU will stall on 
the read. The SPU remains stalled until the PPE or other device writes a message to the mailbox 
by writing to the MMIO address of the mailbox. 

When the mailbox is written through the MMIO address, the channel count is incremented by ‘1’. 
When the mailbox is read by the SPU, the channel count is decremented by '1'.

19.6.6.2 PPE Side

An important difference between the SPU Read Inbound Mailbox and the SPU Write Outbound 
Mailboxes is that the SPU Read Inbound Mailbox can be overrun by a PPE. A PPE writing to the 
SPU Read Inbound Mailbox will not stall when this mailbox is full. When a PPE overruns the SPU 
Read Inbound Mailbox, mailbox message data will be lost.

There is a simple mechanism for the PPE to use to avoid overruns. The fields of the SPU Mailbox 
Status Register, SPU_Mbox_Stat, shown in Table 19-18, contains an SPU_In_Mbox_Count field that 
contains the number of available entries in the SPU Read Inbound Mailbox. To avoid overruns, 
the PPE should read the SPU_Mbox_Stat register and send no more mailbox values than indicated 
in the SPU_In_Mbox_Count field.

Reserved SPU_Out_Intr_Mbox_ Count SPU_In_Mbox_Count SPU_Out_Mbox_Count

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Table 19-18. Fields of Mailbox Status Register (SPU_Mbox_Stat) 

Bits Field Name Description

0:7 Reserved Set to zeros.

8:15 SPU_Out_Intr_Mbox_ Count Number of valid entries in the SPU Write Outbound Interrupt Mailbox.

16:23 SPU_In_Mbox_Count Number of available entries in the SPU Read Inbound Mailbox.

24:31 SPU_Out_Mbox_Count Number of valid entries in the SPU Write Outbound Mailbox.
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The following C-language program fragment shows how to write four 32-bit messages to the 
SPU Read Inbound Mailbox of a particular SPU from the PPE. The code avoids overrunning the 
SPU Read Inbound Mailbox. The example assumes the existence of a operating system call, like 
get_ps, that returns a base address for the problem state area, and some defines, like 
SPU_Mbox_Stat, and SPU_In_Mbox, that specify offsets into the problem state area corresponding 
to the SPU_Mbox_Stat and SPU_In_Mbox registers, respectively.

void *ps = get_ps();
unsigned int j,k = 0;
unsigned int mb_status;
unsigned int slots;
unsigned int mb_value[4] = {0x1, 0x2, 0x3, 0x4};
do {

/*
* Poll the Mailbox Status Register until the SPU_In_Mbox_Count
* field indicates there is at least one slot available in the
* SPU Read Inbound Mailbox.
*/
do {

mb_status = *((volatile unsigned int *)(ps + SPU_Mbox_Stat));
slots = (mb_status & 0x0000FF00) >> 8;

} while ( slots == 0 );

for (j=0; j<slots && k < 4; j++) {
*((volatile unsigned int *)(ps + SPU_In_Mbox)) = mb_value[k++];

}
} while ( k < 4 );

19.6.6.3 SPU Side

Reading SPU Read Inbound Mailbox Data

SPE software can use a read-channel instruction on the SPU Read Inbound Mailbox Channel to 
read the contents of its SPU Read Inbound Mailbox. This channel read will return immediately if 
any data written by the PPE is waiting in the SPU Read Inbound Mailbox. This read-channel 
instruction will cause the SPU to stall if the SPU Read Inbound Mailbox is empty.

The following assembler-language program fragment shows how to read the SPU Read Inbound 
Mailbox:

# Outputs:
#   $1 contains the mailbox value read
rdch $1, $SPU_RdInMbox
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The following C-language program fragment also shows how to read the SPU Read Inbound 
Mailbox. Assume that the spu_ macro names have been defined previously.

unsigned int mb_value;

mb_value = spu_readch(SPU_RdInMbox);

Waiting for SPU Read Inbound Mailbox Data

To avoid an SPU stall condition, SPE software can use the read-channel-count instruction on the 
SPU Read Inbound Mailbox Channel to determine if the mailbox is empty. If the read-channel-
count instruction returns a ‘0’, the mailbox is empty and a read-channel instruction would stall. If 
the read channel-count instruction returns a nonzero value, the value indicates the number of 
waiting mailbox message values in the SPU Read Inbound Mailbox that can be read without 
stalling the SPE. 

The following assembler-language program fragment shows how to poll an SPU Read Inbound 
Mailbox read channel.

# Outputs:
#  $2 contains the SPU Read Inbound Mailbox value

repeat:
   rchcnt $1, $SPU_RdInMbox
   brz $1, repeat

rdch $2, $SPU_RDInMbox

The following C-language program fragment shows how to poll an SPU Read Inbound Mailbox 
read channel. 

unsigned int mb_value;

do {
/*
* Do other useful work while waiting.
*/

} while (!spu_readchcnt(SPU_RdInMbox));

mb_value = spu_readch(SPU_RdInMbox);

The SPU can also avoid a stall by enabling the SPU event facility, described in Section 18 on 
page 471. Using events involves the following steps:

1. Enable the SPU inbound mailbox available event in SPU Write Event Mask.

2. Monitor for this event. Software can poll with a read-channel-count instruction on SPU Read 
Event Status; software can block (stall) with a read-channel instruction on the SPU Read 
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Event Status Channel; software can enable SPU interrupts and use interrupt handlers to ser-
vice mailbox events as they are encountered asynchronously.

3. When the event is detected, it must be acknowledged by writing the corresponding bit to the 
SPU Write Event Acknowledgment Channel. A typical handler for this event performs the 
acknowledgement and also reads one or more inbound mailbox values from the SPU Read 
Inbound Mailbox Channel.

The following assembler-language program fragment shows how to poll or block for an SPU read 
inbound mailbox available event. To block, instead of poll, simply delete the following repeat 
loop. Only one mailbox value is read to simplify this example, although more than one might have 
been indicated by the SPU Read Inbound Mailbox Channel count. 

# Inputs:
#   $2 contains SPU Read Inbound Mailbox event bit
# Outputs:
#   $6 contains one SPU Read Inbound Mailbox value

il     $2, 0x10
wrch   $SPU_WrEventMask, $2   # Enable only inbound mailbox event

repeat:
rchcnt $3, $SPU_RdEventStat
brz    $3, repeat # Wait for event

rdch   $4, $SPU_RDEventStat    # Read event status
wrch   $SPU_WrEventAck, $2  # Use the value to acknowledge the event
rdch   $6, $SPU_RdInMbox  # Read first available message

The following C-language program fragment shows how to poll or block for an SPU read inbound 
mailbox available event. To block, instead of poll, simply delete the following do/while loop. All 
available mailbox messages are placed in the mb_value array, and the mb_count is set to indicate 
the number of messages read.

#define MFC_SPU_In_Mbox_Event  0x00000010
unsigned int event_status;
unsigned int mb_count, i;
unsigned int mb_value[4];

spu_writech(SPU_WrEventMask, MFC_SPU_In_Mbox_Event);

do {
/* 
* Do other useful work while waiting.
*/

} while (!spu_readchcnt(SPU_RdEventStat));

event_status = spu_readch(SPU_RdEventStat);

spu_writech(SPU_WrEventAck, event_status);
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mb_count = spu_readchcnt(SPU_RdInMbox);
for (i=0; i< mb_count; i++) {

mb_value[i] = spu_readch(SPU_RdInMbox);
}

19.7 Signal Notification

SPE signal-notification channels are connected to inbound registers (into the SPE). The PPE, 
other SPEs, and other devices use the signal notification registers to send information, such as a 
buffer-completion synchronization flag, to an SPE. An SPE has two 32-bit signal-notification 
registers, each of which has a corresponding MMIO register that can be written with signal-notifi-
cation data. 

When SPE software reads a signal-notification channel, hardware clears the channel atomically. 
In contrast, a read in the MMIO main-storage space does not clear a signal-notification register. 
SPE software can use polling or blocking when waiting for a signal to appear, or it can set up 
interrupts to catch signals as they appear asynchronously.

The PPE sends a signal-notification message to the SPE by writing to a MMIO register in the 
SPE’s MFC. The signal is latched in the MMIO register and the SPU signal value by executing a 
read-channel (rdch) instruction. 

One SPU can send a signal-notification message to another SPU using one of three special MFC 
commands: sndsig, sndsigf, and sndsigb. All of these commands are implemented in the same 
manner as a DMA put command, with the effective address of an MMIO register as the destina-
tion. In fact, a DMA put command can be used to perform exactly the same function as a send-
signal command; the send-signal commands are defined in the architecture to support possible 
future Cell Broadband Engine Architecture implementations that optimize signal-notification 
performance. 

19.7.1 SPU Signalling Channels

There are two SPU signal-notification channels, one to read each of the two signal-notification 
MMIO registers. A signal can be from one bit to 32 bits long. Table 19-19 through Table 19-21 list 
the signal-notification channels and associated MMIO registers. An SPU read from a signal-noti-
fication channel will be stalled when no signal is pending at the time of the read.

Table 19-19. Signal-Notification Channels and MMIO Registers 

S
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Name

Channel Interface MMIO Register Interface

Mnemonic

M
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R/W Width
(bits)

Offset 
From 
Base

Mnemonic

M
ax

. E
nt
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s

R/W Width
(bits)

3 SPU Signal Notification 1 SPU_RdSigNotify1 1 yes R 32 x‘1400C’ SPU_Sig_Notify_1 1 R/W 32

4 SPU Signal Notification 2 SPU_RdSigNotify2 1 yes R 32 x‘1C00C’ SPU_Sig_Notify_2 1 R/W 32

— SPU Configuration — — — — — x‘04078’ SPU_Cfg 1 R/W 64
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The two signal-notification channels each have one entry. Thus, the value returned from a read-
channel-count (rchcnt) instruction indicates the presence or absence of an available signal 
value; if the channel-count value is ‘1’, a signal is available; if the value is ‘0’, no signal is avail-
able. When the channel count is ‘0’ for a signal-notification channel, a read-channel (rdch) 
instruction directed at that channel will stall the SPU until a signal is available.

19.7.2 Uses of Signaling

Like mailboxes, signal-notification channels are useful when the SPE places computational 
results in main storage via DMA. After requesting the DMA transfer, the SPE waits for the DMA 
transfer to complete and then sends a signal to notify the PPE that its computation is complete. In 
this case, waiting for the DMA transfer to complete only ensures that the SPE’s LS buffers are 
available for reuse and does not guarantee that data has been coherently written to main 
storage, as described in Section 19.6.4 Uses of Mailboxes on page 541.

19.7.3 Mode Configuration

Signal-notification registers can be configured independently by PPE software to operate in 
either OR mode or overwrite mode. The SPU Configuration (SPU_Cfg) MMIO register is used for 
this purpose. 

In OR mode, the MFC combines all the values written to a signal-notification register using a 
logical OR operation until the SPU reads the register through the corresponding channel. When 
the SPU reads the register, the register is reset to ‘0’. OR mode allows multiple signals to be 
accumulated in a single signal-notification register. Each signal producer is assigned a subset of 
the 32 bits in the signal-notification register; this allows the signal producers to send their signals 
at any time and independently or other signal producers. When SPE software reads the signal-
notification register, it becomes aware of all the signals that have been sent since the most-
recent read of the register. This mode of signalling can be referred to as many-to-one signalling. 

Table 19-20. Functions of Signal-Notification Channels 

Channel Interface SPU Read or 
Write Functions

SPU_RdSigNotify1 R Returns signal-notification data.

SPU_RdSigNotify2 R Returns signal-notification data.

Table 19-21. Functions of Signal-Notification MMIO Registers 

MMIO Register PPE Read or 
Write Functions

SPU_Sig_Notify_1 R/W Reads or writes signal-notification data.

SPU_Sig_Notify_2 R/W Reads or writes signal-notification data.

SPU_Cfg1 R/W Reads or writes the configuration (either OR mode or overwrite mode) of the SPU signal 
notification registers. 

1. Access to this MMIO register is available only to privileged PPE software.
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In overwrite mode, each value written to a signal-notification register overwrites the value in 
register. This mode of signalling can be referred to as one-to-one signaling. In the case of one-to-
one signaling, there is typically no substantial difference in performance between signaling and 
using an inbound mailbox.

Because the channel count for signal-notification registers can be at most ‘1’, SPE software 
cannot determine how many writes to the signal-notification register have taken place. If software 
needs to be made aware immediately of a write to a signal-notification register, it can enable 
interrupts and configure the event facility to interrupt when signals arrive (see Section 18 on 
page 471).

19.7.4 SPU Signal Notification 1 Channel

The value read from the SPU Signal Notification 1 Channel (SPU_RdSigNotify1) is the 32-bit 
value of signal register 1. Reading this channel atomically resets to ‘0’ any bits in the corre-
sponding signal register that were set to ‘1’. A read from this channel when no signals are 
pending stalls the SPU until a signal is sent. If no signals are pending, a read-channel-count 
instruction for this channel returns ‘0’; if unread signals are pending, it returns one. 

19.7.5 SPU Signal Notification 2 Channel

The value read from the SPU Signal Notification 2 Channel (SPU_RdSigNotify2) is the 32-bit 
value of signal register 2. Reading this channel atomically resets to ‘0’ any bits in the corre-
sponding signal register that were set to ‘1’. A read from this channel when no signals are 
pending stalls the SPU until a signal is sent. If no signals are pending, a read-channel-count 
instruction for this channel returns ‘0’; if unread signals are pending, it returns one. 

19.7.6 Sending Signals

19.7.6.1 From the PPE

PPE software and other system devices send a signal to an SPE by performing a 32-bit MMIO 
write to the effective address of the required signal-notification register. This write increments the 
count of the corresponding channel to one.

When the target signal-notification register is in overwrite mode, a PPE application can send 
multiple signals to an SPU without overrunning the signal facility by using nonzero signal values 
and verifying that the previous value has been read by the SPU before writing to the signal-notifi-
cation register. PPE software verifies that the previous value has been read by reading from the 
MMIO address of the signal-notification register and ensuring that the MFC has reset the value to 
‘0’; a value of ‘0’ means SPE software read the previous value.

When the target signal-notification register is in OR mode, a PPE application can send multiple 
signals to an SPU without overrunning the signal facility by designating a unique bit field in the 
signal value to represent a particular signaller. Then, in a manner similar to the preceding, PPE 
software should verify that the bit field for the signaller is ‘0’ before initiating another signal.

The following C-language program fragment shows how the PPE can write to a signal-notification 
register of a particular SPE. The code avoids overrunning the signal notification facility. Assume 
that the SPU_Sig_Notify_1 and SPU_Sig_Notify_2 macro names, representing offsets into the 
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problem-state region, have been defined previously. This is an example of overwrite-mode 
signalling, and assumes that privileged PPE software has already configured the SPU Signal 
Notification 1 Register in overwrite mode. 

void *ps = get_ps();
unsigned int prev_sn_value;
unsigned int sn_value = 0xF0;

do {
/* Do some other useful work while waiting. */
prev_sn_value = *((volatile unsigned int *)(ps + SPU_Sig_Notify_1));

} while ( prev_sn_value != 0 );

*((volatile unsigned int *)(ps + SPU_Sig_Notify_1)) = sn_value; // Write signal value

19.7.6.2 From an SPE

SPE software can send a signal to another SPE or some other device by issuing an MFC send-
signal command (Section 19.2.3 on page 518) and specifying the effective address of the target 
SPU signal-notification channel and a signal value. The command increments the channel count 
of the target SPU’s signal-notification channel to one.

When the target signal-notification register is in overwrite mode, an SPU application can send 
multiple signals to a target SPU without overrunning the signal facility by using nonzero signal 
values and verifying that the previous value has been read by the target SPU before performing 
an MFC send-signal command. SPE software verifies that the previous value has been read by 
by performing an MFC get command from the effective address of the target SPU signal-notifica-
tion register and ensuring that it has been reset to ‘0’ by a channel read on the target SPU.

When the target signal-notification register is in OR mode, an SPU application can send multiple 
signals to another SPU without overrunning the signal facility by designating a unique bit field in 
the signal value to represent a particular signaller. Then, in a manner similar to the preceding, 
SPE software should ensure that the bit field for the signaller is ‘0’ before initiating another signal.

Send-Signal Command

The following ABI-compliant assembler-language program fragment shows how a source SPE 
can write to a signal-notification register in a target SPE using an MFC sndsig command. SPE 
software first performs an MFC get command to confirm that the target signal-notification register 
is ‘0’ before writing a new signal value. This is an overwrite-mode signalling example, and 
assumes that privileged software has already configured the SPU Signal Notification 1 Register 
in the target SPE to operate in overwrite mode.

# Inputs:
#   $3 contains 64-bit effective address of signal register
#   $4 contains 32-bit value to be written
#   $5 contains tag id, between [0..31]
#
        
    .set MFC_GET_CMD, 0x40
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    .set MFC_SNDSIG_CMD, 0xA0

send_signal:            
    ila  $6, 4                  # size of signal register
    ila  $7, signal_word        # LSA of signal word
    rotqbyi $8, $3, 4           # EAL of signal register
        
    ila  $9, 1                  # initialize tag mask
    shl  $9, $9, $5
    wrch $MFC_WrTagMask, $9     

    # Read signal notification register and wait until 0
repeat:
    wrch $MFC_LSA, $7
    wrch $MFC_EAH, $3
    wrch $MFC_EAL, $8
    wrch $MFC_Size, $6
    wrch $MFC_TagID, $5
    ila  $9, MFC_GET_CMD
    wrch $MFC_Cmd, $9           # enqueue command
    ila  $9, 2
    wrch $MFC_WrTagUpdate, $9
    rdch $9, $MFC_RdTagStat     # wait for DMA get command to complete
    lqa  $9, signal_qword
    rotqbyi $9, $9, 12
    brz  $9, repeat

    # Place the requested data into the LS to be DMAed
    rotqbyi $9, $4, -12 
    stqa $9, signal_qword
    dsync
        
    # Write the specified data to the signal notification register
    wrch $MFC_LSA, $7
    wrch $MFC_EAH, $3
    wrch $MFC_EAL, $8
    wrch $MFC_Size, $6
    wrch $MFC_TagID, $5
    ila  $9, MFC_SNDSIG_CMD
    wrch $MFC_Cmd, $9           # enqueue command
        
    bi    $0                    # return to caller

    # LS data buffer used for DMA operations    
    .align 4
signal_qword:   
    .skip 12
signal_word:
    .skip 4
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Here is a C-language subroutine that is comparable to the preceding example. 

#include <spu_intrinsics.h>
#include <spu_mfcio.h>

void send_signal(unsigned long long ea, unsigned int value, unsigned int tag)
{
  volatile vector unsigned int signal_qword;
  unsigned int eal, eah;

  spu_writech(MFC_WrTagMask, 1 << tag);

  /* Read signal notification register and wait until 0 
   */
  do {
    mfc_get((volatile void *)(&signal_qword) + 12, ea, 4, tag, 0, 0);
    spu_mfcstat(MFC_TAG_UPDATE_ALL);
  } while (spu_extract(signal_qword, 3));

  /* Place the requested data into the LS to be DMAed
   */
  signal_qword = spu_promote(value, 3);
  spu_dsync();

  mfc_sndsig((volatile void *)(&signal_qword) + 12, ea, tag, 0, 0);
}

19.7.7 Receiving Signals

19.7.7.1 Reading Signals

SPE software uses a read-channel instruction on the signal-notification channel of interest to 
receive a 32-bit signal value. This read-channel instruction will return immediately, reset any set 
bits in the signal-notification register, and reset the channel count to ‘0’ if the associated signal-
notification register has a waiting unread signal value. Otherwise, the read-channel instruction 
will cause the SPU to stall until a write to the signal-notification register happens.

The following assembler-language program fragment shows how to read an SPU signal. 

# Outputs:
#   $3 contains the signal control value read

rdch     $3, $SPU_RdSigNotify1
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Here is a C-language program fragment that is comparable to the preceding example. 

#include <spu_intrinsics.h>
unsigned int sn_value;

sn_value = spu_readch(SPU_RdSigNotify1); // Read SPU Signal Notification 1 

19.7.7.2 Waiting for Signals

To avoid an SPU stall, SPE software can use the read-channel-count instruction on the signal 
channel of interest to determine if a signal has been sent. If the read-channel-count instruction 
returns ‘0’, no signal is pending. If the read-channel-count instruction returns a nonzero value, an 
unread signal is waiting, and the SPU can read the signal channel without stalling.

Poll For Signals

The following assembler-language program fragment shows how an SPU can poll one of its 
signal-notification channels. 

# Outputs:
#    $3 contains the signal control word 1

repeat:
   rchcnt $3, $SPU_RdSigNotify1
   brz    $3, repeat

rdch      $3, $SPU_RdSigNotify1

Here is a C-language program fragment that is comparable to the preceding example. 

#include <spu_intrinsics.h>
unsigned int sn_value;

do {
/* Do other useful work while waiting. */

} while (!spu_readchcnt(SPU_RdSigNotify1));

sn_value = spu_readch(SPU_RdSigNotify1); // Read the SPU Signal Notification 1 Channel

Poll or Block for Signal-Notification Events

The SPU can also avoid a stall by enabling the SPU event facility, described in Section 18 on 
page 471. Using events involves the following steps:

1. Enabling an event by setting the Signal Notification 1 Available event bit or the Signal Notifi-
cation 2 Available event bit in the SPU Write Event Mask Channel. 
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2. Monitor for this event. Software can poll with a read-channel-count instruction on SPU Read 
Event Status; software can block (stall) with a read-channel instruction on the SPU Read 
Event Status Channel; software can enable SPU interrupts and use interrupt handlers to ser-
vice signal-notification events as they are encountered asynchronously.

3. When the event is detected, it must be acknowledged by writing the corresponding bit to the 
SPU Write Event Acknowledgment Channel. A typical handler for this event performs the 
acknowledgement and also reads from the appropriate SPU Signal Notification Channel.

The following assembler-language program fragment shows how to poll for or block on signal-
notification events. To block instead of poll, simply delete the repeat loop. 

# Outputs:
#   $3 contains the signal notification register contents
#   $4 contains the event that occurred

receive_signal:
    ila    $3, 0x200
    wrch $SPU_WrEventMask, $3 # Write event mask

repeat: # Wait for event to occur
    rchcnt $3, $SPU_RdEventStat
    brz    $3, repeat

    rdch   $4, $SPU_RdEventStat # Read the events that occurred
    wrch $SPU_WrEventStat, $4 # Ack the events received
    rdch   $3, $SPU_RdSigNotify1 # Read the signal notification register

Here is a C-language program fragment that is comparable to the preceding example. To block, 
instead of poll, simply delete the following do/while loop. 

#include <spu_intrinsics.h>
#include <spu_mfcio.h>

unsigned int event_status;
unsigned int sn_value;

spu_writech(SPU_WrEventMask, MFC_SIGNAL_NOTIFY_1_EVENT);  // Enable event

do {
/* Do other useful work while waiting. */

} while (!spu_readchcnt(SPU_RdEventStat));

event_status = spu_readch(SPU_RdEventStat);     // Read event status

spu_writech(SPU_WrEventAck, event_status);               // Ack. event

sn_value = spu_readch(SPU_RdSigNotify1); // Read the signal value
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19.7.8 Differences Between Mailboxes and Signal Notification

For a comparison of the differences between the mailbox and signal-notification facilities, see 
Table 19-2 on page 514. 
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20. Shared-Storage Synchronization

This section treats the subject of synchronization in two aspects. The first involves storage-
access and instruction-execution ordering for shared-storage environments. The second involves 
the use of atomic operations to create semaphores, mutex locks, and other synchronization prim-
itives for shared-storage environments. 

Synchronization should be done with care because it affects performance. For example, one key 
to successful parallelization strategies is the minimizing of synchronizing events between the 
computational elements. 

This section describes only nonprivileged (user) synchronization facilities and scenarios. Some 
operations on privileged registers and memory-management facilities also require synchroniza-
tion. For details, see Section 4 Virtual Storage Environment on page 79, Section 9 PPE Inter-
rupts on page 239, Section 11 Logical Partitions and a Hypervisor on page 331, and PowerPC 
Operating Environment Architecture, Book III.

20.1 Shared-Storage Ordering

This section describes storage-access and instruction-execution ordering for shared-storage 
environments. The Cell Broadband Engine Architecture (CBEA) processors1 contain multiple 
shared-storage domains—the main-storage domain, eight local storage (LS) address domains, 
and eight local channel domains—as illustrated in Figure 1-2 on page 47. 

20.1.1 Storage Model

Although the CBEA processors execute instructions in program order, they load and store data 
using a weakly consistent storage model. That is, the order in which any processor element 
(PowerPC Processor Element [PPE] or Synergistic Processor Element [SPE]) performs storage 
accesses, the order in which those accesses are performed with respect to another processor 
element or mechanism, and the order in which those accesses are performed in main storage 
might be different. This storage model allows storage accesses to be reordered dynamically, 
which provides an opportunity for improved overall performance and reduced effect of memory 
latency on instruction throughput. Therefore, in a memory environment that is shared by other 
threads of execution or I/O devices, this weakly consistent model requires that programs explic-
itly order accesses to storage if they want stores to occur in the program order. 

To ensure that accesses to shared storage (main storage, which includes external access to the 
LSs of SPEs) are performed in program order, software must place memory-barrier instructions 
between storage accesses, as required by the Cell Broadband Engine Architecture (CBEA). 
Programs that do not contain such memory-barrier instructions in appropriate places might be 
executed correctly for a given implementation or execution environment but will fail if the execu-
tion environment is changed or is executed on another implementation of the CBEA.

The term storage access means an access to main storage caused by a load, a store, a direct 
memory access (DMA) read, or a DMA write. There are two orders to consider:

• Order in which Instructions are executed—Instructions can be executed in-order or out-of-
order. For in-order machines, such as the CBEA processors, each instruction completes 

1. The Cell Broadband Engine (Cell/B.E.) and PowerXCell 8i processors are collectively called CBEA processors.
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before the next instruction starts. In general, from the viewpoint of a program, it appears that 
the instructions are executed in the order specified by the program. An out-of-order machine 
does not guarantee that the processor element executes instructions in program order. A pro-
gram cannot detect that a sequence of instructions is executed in an order different than 
specified in the program. 

• Order in which storage accesses are performed—The order in which shared-storage 
accesses are performed might be different from both program order and the order in which 
the instructions that caused the accesses are executed. Consider a program that contains a 
sequence of loads from locations A, B, and C, in that order. The processor element might 
execute these instructions in a different order (for example, B, A, C) and perform the 
accesses caused by the instructions in yet a different order (for example, C, B, A).

The CBEA defines four storage-control attributes that are maintained by the operating system in 
the page-table entries (see Section 4.2.6 Paging on page 87): 

• Write-Through Required (W attribute)—When an access is designated as write-through, if 
data is in a cache (such as one of the PPE’s L1 or L2 caches), a store operation updates 
both the cache copy of the data and the main-storage location of the data.

• Caching-Inhibited (I attribute)—When an access is designated as caching-inhibited, the 
access is completed by referencing only the location in main storage, bypassing the cache.

• Memory-Coherence Required (M attribute)—When an access is designated as memory-
coherent, a hardware indication is sent to the rest of the system indicating that the access is 
global. Other processor elements affected by the access must acknowledge and respond 
appropriately to the access.

• Guarded (G attribute)—Memory is marked as guarded when areas of main storage must be 
protected from accesses not directly dictated by the program. For example, the guarded 
attribute can be used to prevent out-of-order, speculative load, or prefetch operations from 
occurring with peripheral devices; such accesses can produce undesirable results.

Main storage has the memory-coherence required attribute. SPE LSs and I/O devices that are 
mapped to the effective-address space typically have the cache-inhibited and guarded attributes. 

Several means of enforcing an ordering of storage accesses are provided to allow programs to 
share storage with other programs or threads of execution, or with other mechanisms such as I/O 
devices. The appropriate mechanism depends upon the subsystem wanting to enforce storage 
ordering and the storage-control attributes of the storage being accessed.

Table 20-1 on page 563 summarizes the effects on address and communication domains of the 
synchronization instructions, commands, and facilities that are described in the sections immedi-
ately following this table. Gray shading in a table cell means that the instruction, command, or 
facility has no effect on the referenced domain. 
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Table 20-1. Effects of Synchronization on Address and Communication Domains1 

Issuer
Instruction, 

Command, or
Facility

Main-Storage Domain LS Domain2 Channel 
Domain3

Accesses by PPE Accesses 
by All Other 
Processor 
Elements 

and 
Devices

Accesses 
by Issuing 

SPU

Accesses 
by Issuing 

SPU’s MFC

Accesses 
by All Other 
Processor 
Elements 

and 
Devices

Accesses 
by Issuing 

SPU
Issuing 
Thread

Both 
Threads

PPU

sync4 all accesses
Unreliable. Use MFC 

Multisource 
Synchronization Facility5

lwsync6
accesses to memory-
coherence-required 

locations

eieio

accesses to 
caching-
inhibited 

and 
guarded 
locations

accesses to 
caching-
inhibited 

and 
guarded 
locations

Unreliable. Use MFC 
Multisource 

Synchronization Facility5

isync instruction fetches

SPU

sync all accesses

all 
accessesdsync

load and 
store 

accesses
all accesses

syncc all accesses

MFC

mfcsync all 
accesses

Unreliable. Use MFC 
Multisource 

Synchronization Facility5

mfceieio

accesses to 
caching-
inhibited 

and 
guarded 
locations

barrier all 
accesses

<f>, <b>

all 
accesses 
for the tag 

group

MFC Multisource 
Synchronization 

Facility

all 
accesses all accesses

1. Gray shading in a table cell means that the instruction, command, or facility has no effect on the referenced 
domain.

2. The LS of the issuing SPE. 
3. The channels of the issuing SPE. 
4. This is the PowerPC sync instruction with L = ‘0’. 
5. These accesses can exist only if the LS is mapped by the PPE operating system to the main-storage space. This 

can only be done if the LS is assigned caching-inhibited and guarded attributes. 
6. This is the PowerPC sync instruction with L = ‘1’. 
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20.1.2 PPE Ordering Instructions 

The PPE supports barrier instructions for ordering storage accesses and instruction execution. 
The PowerPC Architecture defines two types of barrier instructions:

• Storage Barriers—the sync, lwsync, ptesync, and eieio instructions 

• Instruction Barrier—the isync instruction

These instructions can be used between storage-access instructions to define a memory barrier 
that divides the instructions into those that precede the barrier instruction and those that follow it. 
The storage accesses caused by instructions that precede the barrier instruction are performed 
before the storage accesses caused by instructions that follow the barrier instruction. 

The PPE supports one additional synchronization instruction, tlbsync, that is privileged. For 
details, see Section 4 Virtual Storage Environment on page 79.

20.1.2.1 The PPE sync Instruction

The PPE sync instruction—which differs from the synergistic processor unit (SPU) sync instruc-
tion (Section 20.1.3.1 on page 569)—ensures that all instructions preceding the sync appear to 
have completed before the sync instruction completes, and that no subsequent instructions are 
initiated until after the sync instruction completes. This does not mean that the previous storage 
accesses have completed before the sync instruction completes.

The sync instruction is also known as the heavyweight sync instruction, as opposed to the light-
weight lwsync instruction and the ptesync instruction. The opcode of the sync instruction has 
its L bit cleared to ‘0’, whereas the lwsync instruction is the sync instruction with L = ‘1’ and the 
ptesync instruction is the sync instruction with L = ‘2’. See the PowerPC Operating Environment 
Architecture, Book III for details. 

The sync instruction orders all main-storage accesses, regardless of the main-storage memory 
attributes. For example, it orders a caching-inhibited load with respect to a caching-enabled 
store. However, only processor elements operating in the same logical partition (see Section 4 
Virtual Storage Environment on page 79) will accept the sync; processor elements in other 
logical partitions ignore it.

In addition, the sync instruction does the following:

• Prevents store-combining to storage that is caching-inhibited or write-through-required.

• Prevents load-combining for storage that is caching-inhibited. 

• Is cumulative—that is, all processor elements in the system will see the same barrier 
sequence that is performed and seen by the processor element that executes the sync 
instruction (the PPE). 

The sync instruction can be used, for example, to ensure that the results of all stores into a data 
structure, caused by store instructions executed in a critical section of a program, are seen by 
other processor elements before the data structure is seen as unlocked.

The functions performed by the sync instruction normally take a significant amount of time to 
complete, and the time required to execute sync can vary from one execution to another, so this 
instruction should be used with care. The eieio instruction might be more appropriate than sync 
for many cases (see Table 20-3 on page 567 and Table 20-4 on page 568).
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20.1.2.2 The lwsync Instruction

The lwsync instruction (also known as the lightweight sync instruction) creates the same barrier 
as the sync instruction for storage accesses that have the memory-coherence-required attribute. 
However, the lwsync instruction does not create a barrier for storage accesses that have either 
the caching-inhibited or write-through-required attribute. 

Unlike the sync instruction, the lwsync instruction orders only the main-storage accesses of the 
PPE. It has no effect on the main-storage accesses of other processor elements in the system. 
Thus, the effects of the lwsync instruction are not cumulative. 

The lwsync instruction should be used when ordering is required only for coherent memory, 
because lwsync executes faster than sync.

20.1.2.3 The eieio Instruction

The eieio instruction (enforce in-order execution of I/O) ensures that all main-storage accesses 
caused by instructions proceeding the eieio have completed, with respect to main storage, 
before any main-storage accesses caused by instructions following the eieio. 

The eieio instruction orders loads and stores in the following two sets, which are ordered sepa-
rately in the following sequence:

1. Loads and stores to storage that is both caching-inhibited and guarded, and stores to storage 
that is write-through-required. All accesses in this set are ordered as a single set—that is, 
there is not one order for loads and stores to caching-inhibited and guarded memory and 
another order for stores to write-through-required memory.

2. Stores to storage that is memory-coherence-required but that is neither caching-inhibited nor 
write-through-required.

In addition, the eieio instruction does the following:

• Prevents store-combining to storage that is both caching-inhibited and guarded, or to storage 
that is write-through-required

• Prevents load-combining for storage that is caching-inhibited

• Is cumulative (see Section 20.1.2.1 The PPE sync Instruction on page 564) for storage that is 
neither caching-inhibited nor write-through-required

The PowerPC Architecture specifies that stores to storage that is both caching-inhibited and 
guarded are performed in program order, so eieio is needed for such storage only when loads 
must be ordered with respect to stores or with respect to other loads, or when load and store 
combining operations must be prevented.

An eieio instruction issued on one PPE thread has no architected effect on the other PPE thread. 
However, there is a performance effect because all load or store operations (cacheable or 
noncacheable) on the other thread are serialized behind the eieio instruction. 

The eieio instruction does not order accesses with differing storage attributes. For example, if an 
eieio is placed between a caching-enabled store and a caching-inhibited store, the access might 
still be performed in an order different than specified by the program.
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The eieio instruction is intended for use in managing shared data structures, in accessing 
memory-mapped I/O, and in preventing load or store combining. For the first use, the shared 
data structure and the lock that protects it must be altered only by stores that are in the same 
eieio ordering set as described previously. For the second use, eieio can be thought of as 
placing a barrier into the stream of memory accesses issued by a processor element, such that 
any given memory access appears to be on the same side of the barrier to both the processor 
element and the I/O device.

20.1.2.4 The isync Instruction

The isync instruction ensures that all PPE instructions proceeding the isync are completed 
before isync is completed. An isync (L = 0 or 1) instruction causes issue stall and blocks all 
other instructions from both PPE threads until the isync instruction completes. 

Prefetched instructions on the issuing thread are discarded; those on the other PPE thread are 
unaffected. The isync instruction only flushes based on thread. The instructions from the other 
thread which are already fetched or dispatched are not refetched after the isync completes. 

This instruction is most often used in conjunction with self-modifying PPE code. After an instruc-
tion is modified, an isync instruction must be issued before execution of the modified instruction. 
The isync instruction might also be used during context-switching when the memory manage-
ment unit (MMU) translation rules are being changed.

The isync instruction is context synchronizing, as opposed to the sync instruction which is 
execution synchronizing. See the Glossary on page 835 and the Synchronization section of 
PowerPC Operating Environment Architecture, Book III for a further information.

20.1.2.5 Summary of Storage-Barrier Instruction Use

Table 20-2 on page 567 summarizes the functions of the storage-barrier instructions with respect 
to storage attributes. In this table, “yes” (and “no”) mean that the instruction performs (or does not 
perform) a barrier function on storage with the related attribute. 
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Table 20-3 and Table 20-4 summarize the use of the storage-barrier instructions for two common 
types of main-storage memory:

• System Memory—Memory that has the memory-coherence-required attribute.

• Device Memory—Memory that has caching-inhibited and guarded attributes, which is typical 
of memory-mapped I/O devices. (The mapping of SPEs’ LS to main storage is generally 
caching-inhibited but not guarded.) 

In these tables, “yes” (and “no”) mean that the instruction performs (or does not perform) a 
barrier function on the related storage sequence, “recommended” means that the instruction is 
the preferred one, “not recommended” means that the instruction will work but is not the 
preferred one, and “not required” and “no effect” mean the instruction has no effect. 

Table 20-2. Storage-Barrier Function Summary 

Storage Attribute or Function Loads or 
Stores sync lwsync eieio

memory-coherence-required

loads

yes

yes

no

stores
yes, if neither caching-

inhibited nor write-
through-required1

caching-inhibited loads and 
stores

no

yes, if both caching-
inhibited and guarded2

guarded loads and 
stores

write-through-required
stores yes2

loads not applicable

combining prevented

loads for caching-inhibited

stores for (a) caching-inhibited, 
and for (b) write-through-required

for (a) caching-inhibited 
and guarded, and for (b) 
write-through-required

cumulative3 loads and 
stores yes no

yes, if neither caching-
inhibited nor write-
through-required

1. Second ordering: stores to storage that is memory-coherence-required but that is neither caching-inhibited nor 
write-through-required.

2. First ordering: loads and stores to storage that is both caching-inhibited and guarded, and stores to storage that is 
write-through-required

3. All processor elements in the system will see the same barrier sequence that is performed and seen by the proces-
sor element that executes the instruction. 

Table 20-3. Storage-Barrier Ordering of Accesses to System Memory 

Storage-Access
Instruction Sequence sync lwsync eieio

load-barrier-load yes recommended no affect

load-barrier-store yes recommended no affect

store-barrier-load yes no no affect

store-barrier-store yes recommended not recommended 
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.

The following rules apply to ordering operations for cacheable and caching-inhibited locations:

• The ordering of cacheable loads is not guaranteed. If ordering is required, software needs to 
issue a sync or lwsync instruction.

• Caching-inhibited loads are implemented as guarded operations. This means that the PPE 
does not issue a new load until the data for the older load is returned. There can only be one 
outstanding caching-inhibited load at any time. 

• Caching-inhibited instruction fetches are treated as nonguarded operations. The PPE does 
not maintain ordering for caching-inhibited, nonguarded operations.

20.1.3 SPU Ordering Instructions

An LS can experience asynchronous interaction from the following streams that access it: 

• Instruction fetches by the local SPU

• Data loads and stores by the local SPU

• DMA transfers by the local memory flow controller (MFC) or another SPE’s MFC

• Loads and stores in the main-storage space by other processor elements or devices 

With regard to an SPU, the CBEA processors’ in-order execution model2 guarantees only that 
SPU instructions that access that SPU’s LS appear to be performed in program order with 
respect to that SPU. These accesses might not appear to be performed in program order with 
respect to external accesses to that LS or with respect to the SPU’s instruction fetch. Thus, in the 
absence of external LS writes, an SPU load from an address in its LS returns the data written by 
that SPU’s most-recent store to that address. However, an instruction fetch from that address 
does not necessarily return that data. The SPU may buffer and otherwise reorder its LS 
accesses. Instruction fetches, loads, and stores can access the LS in any order. The SPU can 
speculatively read the LS. However, the SPU does not speculatively write the LS; the SPU only 
writes the LS on behalf of stores required by the program. 

The SPU Instruction Set Architecture (ISA) provides three synchronization instructions: synchro-
nize (sync), synchronize data (dsync), and synchronize channel (syncc). These instructions 
have both coherency and instruction-serializing effects. 

Table 20-4. Storage-Barrier Ordering of Accesses to Device Memory 

Storage-Access
Instruction Sequence sync lwsync eieio

load-barrier-load yes no affect yes

load-barrier-store yes no affect yes

store-barrier-load yes no affect yes

store-barrier-store not required 1 no affect not required 1

1. Two stores to caching-inhibited storage are performed in the order specified by the program, regardless of whether 
they are separated by a barrier instruction or not.

2. The in-order execution model is implementation-specific, rather than part of the Cell Broadband Engine Architec-
ture.
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In the descriptions that follow, the following terms are used:

• “External Read” and “External Write” mean accesses by any DMA transfer (by the local MFC 
or the MFC associated with another SPE) or any processor element (including the PPE) or 
other device—other than the SPU that executes the synchronization instruction. 

• “SPU Load” and “SPU Store” mean accesses by the SPU that executes the synchronization 
instruction. 

20.1.3.1 The SPU sync Instruction

The SPU sync instruction—which differs from the PPE sync instruction (Section 20.1.2.1 on 
page 564)—causes the SPU to wait until all pending store instructions to its LS have completed 
before fetching the next sequential instruction. It orders instruction fetches, loads, stores, and 
channel accesses. 

After an SPU has executed a sync instruction, the SPU’s instruction fetches from an LS address 
return data stored by the most-recent store instruction or external write to that address. In addi-
tion, the SPU will have completed all prior loads, stores, and channel accesses and will not have 
begun execution of any subsequent loads, stores, or channel accesses. At this time, an external 
read from an LS address returns the data stored by the most-recent SPU store to that address. 
SPU loads after the sync return the data externally written before the moment when the sync 
completes. 

The sync instruction affects only that SPU’s instruction sequence and the coherency of that 
SPU’s fetches, loads, and stores, with respect to actual LS state. The SPU does not broadcast 
sync notification to external devices that access its LS, and therefore the sync does not affect 
the state of external devices. 

The SPU’s instruction-fetch buffers and pipelines are flushed when it executes the sync instruc-
tion. The sync instruction has no affect on, and does not wait for, DMA get operations controlled 
by the SPU’s MFC. 

The sync instruction must be used before attempting to execute new code that either arrives 
through DMA transfers or is written with store instructions. This instruction is most often used in 
conjunction with self-modifying SPE code. 

The CBEA processors invalidate the instruction prefetch buffer whenever a mispredicted branch 
is executed. In such a case, the sync instruction can be omitted, but for architecture portability 
the sync instruction should still be used.

20.1.3.2 The dsync Instruction

The dsync (data synchronization) instruction allows SPE software to ensure that data has been 
stored in the LS before the data becomes visible to the local MFC or other external devices. It 
orders loads, stores, and channel accesses but not instruction fetches, and it does not affect any 
prefetching of instructions that the SPE might have done. 

After a dsync completes, the SPU will have completed all prior loads, stores, and channel 
accesses and will not have begun execution of any subsequent loads, stores, or channel 
accesses. At this time, an external read from an LS address returns the data stored by the most-
recent SPU store to that address. SPU loads after the dsync return the data written before the 
moment when the dsync completes. 
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The dsync instruction affects only that SPU’s instruction sequencing and the coherency of that 
SPU’s loads and stores, with respect to actual LS state. The SPU does not broadcast dsync 
notification to external devices that access its LS, and therefore the dsync does not affect the 
state of the external devices. 

DMA transfers can interfere with store instructions and the store buffer. Architecturally, the 
dsync instruction is used to ensure that all store buffers have been flushed to the LS, so that all 
previous stores to the LS will be seen by subsequent LS accesses. However, the CBEA proces-
sors do not require the dsync instruction for this purpose. 

20.1.3.3 The syncc Instruction

The syncc (channel synchronization) instruction performs channel synchronization followed by 
the same synchronization provided by the sync instruction. It forces all channel instructions to 
complete before executing the next SPU instruction. It ensures that the effects on SPU state 
caused by prior wrch instructions are propagated and influence the execution of the following 
instructions. 

Data through a particular channel is never reordered. A channel is either blocking or nonblocking. 
If a channel is blocking, read data must be present or previous write data must have been 
consumed before the instruction that accesses the channel can complete. Thus, the hardware 
synchronizes the channel streams. However, if a channel is nonblocking, then software must 
manage the synchronization based on the ordering of channel data. 

Some channel activity might, as a side effect, alter the SPU operating state. These side effects 
are not ordered with respect to the SPU pipeline. Such side effects can be synchronized with 
SPU-instruction execution using the syncc instruction. Channel synchronization does not ensure 
that DMA commands generated as a result of issuing a channel command have completed; it 
ensures only that such DMA commands have been placed in the MFC command queue.

See Section 17 on page 447 for details about channels.

20.1.3.4 Summary of SPU Ordering Instructions

The SPU synchronization instructions are summarized in Table 20-5 on page 571. Table 20-6 on 
page 571 shows which SPU synchronization instructions are required between LS writes and LS 
reads to ensure that reads access data written by prior writes. 
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20.1.3.5 Ordering and Synchronization of External Accesses to the MFC and LS

Privileged software on the PPE can make the SPE’s LS and MFC resources accessible to the 
PPE or other devices in the main-storage space. If two accesses are made to two different 
addresses, no ordering is maintained between the accesses unless the PPE eieio or sync 
instruction is used between the two accesses. (The eieio instruction can be used because LS 
mappings to main storage have the caching-inhibited attribute.) 

Table 20-5. SPU Synchronization Instructions 

Instruction Coherency Effects Instruction Serialization Effects

sync

Ensures that subsequent external1 reads access 
data written by prior SPU stores.
Ensures that subsequent instruction fetches access 
data written by prior SPU stores and external1 
writes.
Ensures that subsequent SPU loads access data 
written by external1 writes.

Forces all access of LS and channels due to 
instructions before the sync to be completed before 
completion of sync.
Forces all access of LS and channels due to 
instructions after the sync to occur after completion 
of the sync.

dsync

Ensures that subsequent external1 reads access 
data written by prior SPU stores.
Ensures that subsequent SPU loads access data 
written by external1 writes.

Forces SPU load and SPU store access of LS due 
to instructions before the dsync to be completed 
before completion of dsync.
Forces read channel operations due to instructions 
before the dsync to be completed before 
completion of the dsync.
Forces SPU load and SPU store access of LS due 
to instructions after the dsync to occur after 
completion of the dsync.
Forces read-channel and write-channel operations 
due to instructions after the dsync to occur after 
completion of the dsync.

syncc

Ensures that subsequent external1 reads access 
data written by prior SPU stores.
Ensures that subsequent instruction fetches access 
data written by prior SPU stores and external1 
writes.
Ensures that subsequent SPU loads access data 
written by external1 writes.
Ensures that subsequent instruction processing is 
influenced by all internal execution states modified 
by previous wrch instructions.

Forces all access of LS and channels due to 
instructions before the syncc to be completed 
before completion of syncc.
Forces all access of LS and channels due to 
instructions after the syncc to occur after 
completion of the syncc.

1. By any DMA transfer (from the local MFC or a nonlocal MFC), the PPE, or other device—other than the SPU that 
executes the synchronization instruction. 

Table 20-6. Synchronization Instructions for Accesses to an LS 

Writer
Reader

SPU Instruction Fetch SPU Load External1 Read

SPU Store sync nothing required dsync

External1 Write sync dsync not applicable

1. By any DMA transfer (from the local MFC or a nonlocal MFC), the PPE, or other device—other than the SPU that 
executes the synchronization instruction. 
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20.1.4 MFC Ordering Mechanisms

The MFC of each SPE supports synchronization commands and command options that control 
the order in which DMA storage accesses are performed by that MFC. These synchronization 
commands are of two kinds:

• Barrier Commands—The mfcsync, mfceieio, and barrier commands order storage 
accesses made through the MFC with respect to all other MFCs, processor elements, and 
other devices in the system. The CBEA specifies that the mfcsync and mfceieio commands 
are tag-specific, but the Cell/B.E. and PowerXCell 8i processors treat all three barrier com-
mand identically, having no tag-specific effects. 

• Fence or Barrier Command Options—These are options of the get, put, and sndsig com-
mands. The options order storage accesses and signaling only for a specific, local tag group 
and MFC command queue. 

For an overview of MFC commands, command queues, and tag groups, see Section 19.2 on 
page 514. 

20.1.4.1 The mfcsync Command

The mfcsync command is similar in operation to the PPE sync instruction, described in 
Section 20.1.2.1 on page 564. The CBEA specifies that the mfcsync command controls the 
order in which MFC commands within a specified tag group for that MFC are executed with 
respect to storage accesses by all other processor elements and devices in the system. The 
mfcsync command and all subsequent commands in the same tag group are ordered with 
respect to all previous commands in the queue with the same tag ID. 

Although the CBEA specifies the mfcsync command as having tag-specific effects, the Cell/B.E. 
and PowerXCell 8i processors treat this command as not having tag-specific effects and as 
behaving the same as the barrier command, described in Section 20.1.4.3 on page 573. 

The C-intrinsic syntax for an SPE issuing an mfcsync command with the tag_id tag group is:

spu_writech(MFC_TagID, tag_id);
spu_writech(MFC_Cmd, 0xCC);

To obtain the best performance across the widest range of implementations, use the mfcsync 
command only when its entire functionality is needed. Use the mfceieio command, the barrier 
command, or fence <f> or barrier <b> options of other commands, if any of these are sufficient 
for the ordering needs.

If the storage accesses between two DMA operations that access storage having different 
storage attributes need to be strongly ordered, the fence <f> or barrier <b> options of the get and 
put commands can do this. However, these options are insufficient to guarantee the ordering 
function with respect to other processor elements or devices. In these cases, an mfcsync 
command must be issued between commands involving storage with different storage attributes 
to provide the required ordering function.
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20.1.4.2 The mfceieio Command

The mfceieio command is similar in operation to the PPE eieio instruction, described in 
Section 20.1.2.3 on page 565. The CBEA specifies that the mfceieio command controls the 
order in which DMA commands within a specified tag group for that MFC are executed with 
respect to storage accesses by all other processor elements and devices in the system, when the 
storage being accessed has the attributes of caching-inhibited and guarded (typical for I/O 
devices). 

Although the CBEA specifies the mfceieio command as having tag-specific effects, the Cell/B.E. 
and PowerXCell 8i processors treat this command as not having tag-specific effects and as 
behaving the same as the barrier command, described in Section 20.1.4.3. 

The mfceieio command only orders:

• get commands with respect to other get commands from storage that is caching-inhibited 
and guarded 

• get commands with respect to put commands accessing storage that is caching-inhibited 
and guarded

• put commands with respect to put commands accessing storage that is memory-coherence-
required and is not caching-inhibited

The C-intrinsic syntax for issuing an mfceieio command with the tag_id tag group is:

spu_writech(MFC_TagID, tag_id);
spu_writech(MFC_Cmd, 0xC8);

The mfceieio command is intended for use in managing shared data structures, in performing 
memory-mapped I/O, and in preventing load and store combining in main storage. To obtain the 
best performance across the widest range of implementations, use the fence <f> or barrier <b> 
options of other commands, if any of these are sufficient for the ordering needs.

20.1.4.3 The barrier Command

The barrier command orders all subsequent MFC commands with respect to all MFC commands 
preceding the barrier command in the DMA command queue, independent of tag groups. The 
barrier command will not complete until all preceding commands in the queue have completed. 
After the command completes, subsequent commands in the queue may be started.

The C syntax for issuing a barrier command is:

spu_writech(MFC_TagID, tag_id);
spu_writech(MFC_Cmd, 0xC0);

The setting of the tag ID is optional and need only be provided to assign an ID to the barrier 
command for subsequent tag-completion testing.

In contrast to the barrier command, which operates independently of tag-groups, the fence <f> 
or barrier <b> options of get and put commands form of fence or barrier that only affects 
commands within the same tag group. 
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20.1.4.4 Tag-Specific Ordering Commands

Local ordering of the MFC commands within a specific tag group can be achieved using the 
fence <f> or barrier <b> options of the get, put, or sndsig commands. Local ordering only 
ensures ordering of the MFC commands with respect to that particular MFC command queue 
and tag group (tag-groups cannot span multiple MFCs). 

The storage system may complete requests in an order different then the order in which they are 
issued, depending on the storage attributes. However, caching-inhibited storage accesses are 
ordered in the order in which they are issued. Table 20-7 lists the tag-specific ordering 
commands. 

The fence form ensures that all previous MFC commands of the same tag group are issued prior 
issuing the fenced command. The barrier form ensures that all previous MFC commands in the 
same tag group are issued before issuing the barrier command, and that none of the subsequent 
MFC commands in the same tag group are issued before the barrier command. 

Figure 20-1 on page 575 illustrates the behavior of barriers and fences. In this example, the row 
of white boxes represents command-execution slots, in real-time, in which the DMA commands 
(red and green boxes) might execute. Each DMA command is assumed to transfer the same 
amount of data, thus, all boxes are the same size. The arrows show how the DMA hardware, 
using out-of-order execution, might execute the DMA commands over time. So, a barrier does 
not allow the DMA hardware to reach across the barrier to find eligible commands to execute. A 
fence, in contrast, allows the DMA hardware to reach across the fence in one direction to find 
eligible DMA commands to run.

Table 20-7. Tag-Specific Ordering Commands 

Option Commands

barrier getb, getbs, getlb, putb, putbs, putrb, putlb, putrlb, sndsigb

fence getf, getfs, getlf, putf, putfs, putrf, putlf, putrlf, sndsigf
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Storage-Access Consistency for DMA-Command Combinations

The fence and barrier options provide stronger storage-access consistency for some combina-
tions of DMA commands:

• A put(l) command followed by a put(l) command with either the fence <f> or barrier <b> 
option, where the storage attributes are memory-coherence-required and neither write-
through-required nor caching-inhibited, has a storage-order effect at least as strong as two 
stores on the PPE separated by a lwsync instruction. 

• A get(l) command followed by a get(l) command with either the fence <f> or barrier <b> 
option, where the storage attributes are memory-coherence-required and neither write-
through-required nor caching-inhibited, has a storage-order effect at least as strong as two 
loads on the PPE separated by a lwsync instruction.

• A put(l) command followed by a put(l) command with either the fence <f> or barrier <b> 
option, where the storage attribute is caching-inhibited, has a storage-order effect at least as 
strong as two stores on the PPE separated by a sync instruction. 

• A get(l) command followed by a get(l) command with either the fence <f> or barrier <b> 
option, where the storage attributes are caching-inhibited and not guarded, has a storage-
order effect at least as strong as two loads on the PPE separated by a sync instruction. 

• A get(l) command followed by a get(l) command with either the fence <f> or barrier <b> 
option, where the storage attributes are caching-inhibited and guarded, has a storage-order 
effect at least as strong as two loads on the PPE separated by an eieio instruction. 

Figure 20-1. Barriers and Fences 
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• A put(l) command followed by a get(l) command with either the fence <f> or barrier <b> 
option, where the storage attributes are caching-inhibited and not guarded, has a storage-
order effect at least as strong as a store followed by a load on the PPE separated by a sync 
instruction. 

• A get(l) command followed by a put(l) command with either the fence <f> or barrier <b> 
option, where the storage attributes are memory-coherence-required and neither write-
through-required nor caching-inhibited, has a storage-order effect at least as strong as a load 
followed by a store on the PPE separated by a lwsync instruction.

• A get(l) command followed by a put(l) command with either the fence <f> or barrier <b> 
option, where the storage attributes are caching-inhibited and not guarded, has a storage-
order effect at least as strong as a load followed by a store on the PPE separated by a sync 
instruction.

•  A get(l) command followed by a put(l) command with either the fence <f> or barrier <b> 
option, where the storage attributes are caching-inhibited and guarded, has a storage-order 
effect at least as strong as a load followed by a store on the PPE separated by an eieio 
instruction. 

• A put(l) command followed by a put(l) command with either the fence <f> or barrier <b> 
option, where the storage attributes are caching-inhibited and guarded, are always per-
formed in program order with respect to any processor element or mechanism. 

Common Fenced-Option Use

The most common use of the fenced DMA is when writing back notifications. Consider an 
example in which an SPE computes some data, writes the computed data back to main storage, 
then writes a notification that the data is available. This notification might be to any type memory 
(main memory, I/O memory, a memory-mapped I/O [MMIO] register, a signal-notification register, 
or another SPE’s mailbox). To ensure ordering of the DMA write and the notification, the notifica-
tion can be sent using a fenced DMA command, so that the notification is not sent until all 
previous DMA commands of the group are issued.

A fence option might also be useful when multiple DMA commands are needed to load an SPU 
program and to start its execution. In this example, one DMA command is used to load the initial-
ized data segment and a second DMA command with both the SPU start (‘'s”) suffix (causing 
execution to start after the DMA transfer completes) and the tag-specific fence (“f”) suffix is used 
to load the code (the “text” segment). If the two commands have the same tag ID, the fence 
ensures that the load of the data segment is completed before loading the text data and before 
starting the SPU program execution. Without the fence, the second DMA command might 
complete and might start the SPU program before the data segment is loaded.

Common Barrier-Option Use

A barrier option might be useful when a buffer read takes multiple commands and must be 
performed before writing the buffer, which also takes multiple commands. In this example, the 
commands to read the buffer can be queued and performed in any order. Using the barrier-form 
for the first command to write the buffer allows the commands used to write the buffer to be 
queued without waiting for an MFC tag-group event on the read commands. (The barrier-form is 
only required for the first buffer-write command.) If the buffer read and buffer write commands 
have the same tag ID, the barrier ensures that the buffer is not written before being read. If 
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multiple commands are used to read and write the buffer, using the barrier option allows the read 
commands to be performed in any order and the write commands to be performed in any order, 
which provides better performance but forces all reads to finish before the writes start.

Barrier commands are also useful when performing double-buffered DMA transfers in which the 
data buffers used for the input data are the same as the output data buffers. Consider the 
following example for such a double-buffered environment:

int i;
i = 0;
read buffer 0
while (more buffers) {

read buffer i^1
wait for buffer i
compute buffer i
write buffer i
i = i^1;

}
wait buffer i
compute buffer i
write buffer i

At the bottom of the loop, data is written from the same buffer that is read into immediately at the 
top of the next loop iteration. It is critical that the writes complete before the reads are started. 
Therefore, the first read (at the top of the loop) should be a barrier read. (For examples of using 
double-buffering techniques to overlap DMA transfers with computation on an SPU, see 
Section 24.1.2 on page 692.)

20.1.5 MFC Multisource Synchronization Facility

The PPE sync instruction (Section 20.1.2.1 on page 564) provides cumulative ordering, such 
that all threads in the system see the same barrier sequence that is performed and seen by the 
PPE, one of whose two threads executes the sync instruction. However, sync is only cumulative 
with respect to the main-storage domain. The CBEA processors contain multiple address and 
communication domains—the main-storage domain, eight local LS-address domains, and eight 
local channel domains—as illustrated in Figure 1-2 on page 47. To ensure cumulative ordering 
across all address domains, the MFC multisource synchronization facility must be used.

Standard PowerPC storage-ordering rules apply to storage accesses performed by one 
processor element or device with respect to another processor element or device. Ordering of 
storage accesses performed by multiple sources (that is, two or more processor elements or 
devices) with respect to another processor element or device is referred to as cumulative 
ordering, as described in the PowerPC Virtual Environment Architecture, Book II. Cumulative 
ordering is ensured when all accesses are performed in the main-storage (effective-address) 
domain and the proper synchronization instructions are performed. Cumulative ordering cannot 
be ensured when accesses are performed from both the main-storage and the LS-address 
domains. 
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The MFC multisource synchronization facility addresses this cumulative-ordering need by 
providing two independent multisource synchronization-request methods: 

• The MFC Multisource Synchronization Register, which allows the PPE or other processor 
elements or devices to control synchronization from the main-storage domain

• The MFC Write Multisource Synchronization Request Channel, which allows an SPE to con-
trol synchronization from its LS-address and channel domain 

Each of these two synchronization-request methods ensures that all write transfers to the associ-
ated MFC are sent and received by the MFC before the MFC synchronization-request is 
completed. This facility does not ensure that read data is visible at the destination when the asso-
ciated MFC is the source. 

The channel and register supporting the MFC multisource synchronization facility are shown in 
Table 20-8. For details about channels and their associates MMIO registers, see Section 17 on 
page 447. 

These two synchronization-request methods operate independently. A synchronization request 
through the MMIO register has no effect on synchronization requests through the channel, and 
vice versa.

All outstanding requests that are in an SPE’s snoop-write queue when a Multisource Synchroni-
zation Request is received are completed before reporting the completion of the Multisource 
Synchronization Request.

20.1.5.1 MFC Multisource Synchronization Register

The MFC Multisource Synchronization Register (MFC_MSSync) allows processor elements or other 
devices to control ordering from the main-storage domain using the MMIO register at problem-
state offset x‘00000’. Writing any value to this register causes the MFC to track all pending trans-
fers targeted at the associated SPE received before the MFC_MSSync write. A read of the 
MFC_MSSync register will return a value of ‘1’ if any transfers being tracked are still outstanding. 
When all the transfers are being tracked are complete, a read of this register will return a value of 
‘0’.

To use the MMIO facility, a program must perform the following steps:

1. Write any value to the MFC_MSSync register.

2. Poll the MFC_MSSync register until a value of ‘0’ is read.

Figure 20-2 on page 579 shows the sequence of events for PPE control of multisource synchro-
nization.

Table 20-8. MFC Multisource Synchronization Facility Channel and MMIO Register 
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Use of this register is required for swapping context on an SPE. After stopping the SPU, privi-
leged software on the PPE must prevent any new transfers from being initiated to the SPE by 
unmapping the associated resources. Next, privileged software must use the MFC_MSSync register 

Figure 20-2. PPE Multisource Synchronization Flowchart 
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to ensure the completion of all outstanding transfers. This has the side-effect of ensuring that the 
count of the MFC Write Multisource Synchronization Request Channel, described in 
Section 20.1.5.2, is ‘1’ and that the SPU Read Event Status (Section 18.6.2 Procedure for 
Handling the Multisource Synchronization Event on page 483) is updated. 

Note:  Frequent use of a single MFC multisource synchronization facility by two or more proces-
sor elements or devices can result in a livelock condition. The livelock occurs when a read from a 
processor element or from a device never returns ‘0’ due to a synchronization request from other 
processor elements or devices.

20.1.5.2 MFC Write Multisource Synchronization Request Channel

MFC Write Multisource Synchronization Request Channel (MFC_WrMSSyncReq) allows an SPE to 
control ordering from its LS-address and channel domain using its channel 9. Writing any value 
(‘0’ is recommended) to this channel causes the MFC to track all pending transfers targeted at 
itself that are received before the channel write. A second write to this channel will result in the 
SPE stalling until the outstanding transfers being tracked by the first write are complete; then, the 
second synchronization request will receive its response. A read of the channel count will return 
‘0’ if any transfers being tracked are still outstanding. When all the transfers are being tracked are 
complete, a read of this channel will return a value of ‘1’.

To use the channel facility, a program must perform the following steps:

1. Write any value (‘0’ is recommended) to the MFC_WrMSSyncReq channel.

2. Wait for the MFC_WrMSSyncReq channel to become available. This can be accomplished by one 
of the following means:

• Non-Event-Based:

– Initiate a second multisource synchronization request by writing to the 
MFC_WrMSSyncReq channel. This method will block, waiting for a previous request to 
complete, without having to poll. 

– Poll the MFC_WrMSSyncReq channel count for the count to be set back to ‘1’. The 
MFC_WrMSSyncReq channel has a maximum count of ‘1’.

• Event-Based:

– Read the SPU_RdEventStat channel. This method will block, waiting for a multisource 
synchronization event, indicating that all outstanding writes have completed. 

– Poll the SPU_RdEventStat channel count for the count to be set back to ‘1’. 

– Wait for an event interrupt, then determine the cause. 

– Loop periodically on execution of a bisled instruction. This instruction uses the chan-
nel count of the SPU_RdEventStat channel for the condition in the branch, as 
described in Section 18.2.3.2 Branch Condition on page 474. 

Figure 20-4 on page 582 shows the sequence of events for SPE control of multisource synchro-
nization using monitoring methods unrelated to events. Figure 20-4 on page 582 shows the 
sequence of events for SPE control of multisource synchronization using event-based monitoring 
methods.
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Figure 20-3. SPE Multisource Synchronization Flowchart (Non-Event-Based) 
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For details about the procedures for handling a multisource synchronization event, see 
Section 18.6.2 on page 483. 

Figure 20-4. SPE Multisource Synchronization Flowchart (Event-Based) 
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20.1.5.3 Multisource Synchronization Examples

To best understand when ordering across multiple domains is required and how to use each of 
these facilities, consider the following examples of an I/O device storing a value of ‘1’ to an LS 
area, X, that is aliased in main storage, followed by a store of the value ‘2’ to a main-storage 
area, Y. The PPE reads main-storage area Y and stores a value of ‘3’ to another location, Z, in 
the LS area aliased in main storage. Multisource synchronization is required to guarantee that 
the value of ‘1’ that is stored in location X is ordered, with respect to the SPE, before the value of 
‘3’ that is stored to location Z.

The following three examples illustrate the use of MMIO and channel multisource synchroniza-
tion. The third example illustrates the use of the MMIO facility when starting an SPE. Without 
these facilities, the SPE is not guaranteed to receive a value of ‘1’ when reading its LS location, 
X.

Throughout these examples, recall that I/O transfers are always in-order. 

Example 1: MFC Multisource Synchronization Register

This example demonstrates MMIO-initiated SPE multisource synchronization:

• I/O Device:

a. Stores a value of ‘1’ to LS-aliased X.

b. Stores a value of ‘2’ to main-storage location Y.

• PPE:

a. Loops loading from main storage location Y until a value of ‘2’ is obtained.

b. Stores any value to MFC_MSSync register.

c. Polls MFC_MSSync register until a ‘0’ is obtained.

d. Stores a value of ‘3’ to LS-aliased Z.

• SPE:

a. Loops loading from LS location Z until a value of ‘3’ is obtained.

b. Loads from LS location X, guaranteed to read a value of ‘1’

This example is provided for explanation purposes only. It is not intended as a recommendation 
for the use of polling loops.

Example 2: MFC Write Multisource Synchronization Request Channel

This example demonstrates channel-initiated SPE multisource synchronization: 

• I/O Device:

a. Stores a value of ‘1’ to LS-aliased X.

b. Stores a value of ‘2’ to main-storage location Y.

• PPE:

a. Loops loading from main storage location Y until a value of ‘2’ is obtained.

b. Stores a value of ‘3’ to LS-aliased Z.



Programming Handbook

Cell Broadband Engine  

Shared-Storage Synchronization
Page 584 of 884

Version 1.11
May 12, 2008

• SPE:

a. Writes a ‘0’ to the MFC Write Multisource Synchronization Request (MFC_WrMSSyncReq) 
channel. 

b. Loads from LS location Z and obtains a 3.

c. Wait for an SPE multisource synchronization event to occur by one of the following 
means:

— Waiting for the channel count of the MFC_WrMSSyncReq channel to become ‘1’.

— Waiting for a multisource synchronization request event.

d. Loads from LS location X, guaranteed to read a value of ‘1’.

Example 3: MFC Multisource Synchronization Register

This example demonstrates MMIO-initiated SPE multisource synchronization when starting an 
SPE:

• I/O Device:

a. Stores a value of ‘1’ to LS-aliased X.

b. Interrupts PPE.

• PPE:

a. Receives interrupt from I/O Device.

b. Stores any value to MFC_MSSync register.

c. Polls MFC_MSSync register until a ‘0’ is obtained.

d. Starts an SPE program by writing a value of ‘1’ to the SPE Run Control Register.

• SPE:

a. Begins execution as a result of step d.

b. Loads from LS location X, guaranteed to read a value of ‘1’.

20.1.6 Scenarios for Using Ordering Mechanisms

This section includes some examples showing how the storage-ordering facilities of the CBEA 
processor can be used.

20.1.6.1 PPE-to-SPE Communications

When the PPE is used as an application controller, managing and distributing work to the SPEs, 
the PPE typically loads main storage with the data to be processed, and then the PPE notifies the 
SPE by writing to either the PPE-to-SPE mailbox or one of the SPE’s signal-notification registers. 

To make this feasible, it is important that the data storage be visible to the SPE before receiving 
the work-request notification. To ensure guaranteed ordering, a lwsync storage barrier instruc-
tion must be issued by the PPE between the final data store in memory and the PPE write to the 
SPE mailbox or signal-notification register.
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20.1.6.2 SPE-to-PPE Communications

Consider a case in which the SPE places computational results into main storage, waits for the 
DMA transfers to complete, and then either writes to an SPE-to-PPE mailbox or performs a stop 
and signal instruction (stop or stopd) to notify the PPE that its computation is complete. Waiting 
for the DMA transfers to complete only ensures that the LS buffers are available for SPE reuse; it 
does not guarantee that data has been placed into main storage. In this case, the SPE might 
issue an mfcsync command before notifying the PPE. However, doing so is inefficient. Instead, 
the preferred method is to have the PPE receive the notification and then issue an lwsync 
instruction before accessing any of the resulting data. 

Alternatively, the SPE can perform a writeback to main storage to notify the PPE that the SPE’s 
computation is complete. A writeback is a flag written to main storage that notifies the PPE that a 
specific event (for example, data computation complete) has occurred. In this case, the data and 
the writeback must be ordered. To ensure ordering, the writeback must either use the fence <f> 
or barrier <b> option. 

20.2 PPE Atomic Synchronization

This section describes the use of PPE atomic operations to create semaphores and mutex locks 
for synchronization of storage or other functions among applications. Section 20.3 on page 597 
describes the comparable subject for SPE atomic operations. 

20.2.1 Atomic Synchronization Instructions

The PPE atomic synchronization instructions include the lwarx, ldarx, stwcx., and stdcx. 
instructions. 

The load and reserve instructions (lwarx, ldarx) load the addressed value from memory and 
then set a reservation on an aligned unit of real storage (called a reservation granule) containing 
the address. The CBEA processor reservation granule is 128 bytes, corresponding to the size of 
a PPE cache line. These instructions control the order in which memory operations are 
completed with respect to asynchronous events, and the order in which memory operations are 
seen by other processor elements or memory access mechanisms. 

A subsequent store conditional instruction (stwcx, stdcx) to this address verifies that the reser-
vation is still set on the granule before carrying out the store. If the reservation does not exist, the 
instruction completes without altering storage. If the store is performed, bit 2 of CR0 is set to ‘1’; 
otherwise, it is cleared to ‘0’. The processor element clears the reservation by setting another 
reservation or by executing a conditional store to any address. Another processor element may 
clear the reservation by accessing the same reservation granule. A pair of load-and-reserve and 
store-conditional instructions permits the atomic update of a single aligned word or doubleword 
(only in 64-bit implementations) in memory.

A compiler that directly manages threads may use these instructions for in-line locks and to 
implement wait-free updates using primitives similar to compare and swap. Because locked or 
synchronized operations in multiprocessor systems are complex, these operations are typically 
exposed only through calls to appropriate runtime library functions. 
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The lwarx, ldarx, stwcx., and stdcx. instructions, when the load and store versions of the 
instructions are used together, permit atomic update of a storage location by implementing 
atomic primitives such as fetch-and-increment, fetch-and-decrement, and test-and-set. A 
programmer can choose to implement a lock, a condition variable, or a semaphore with these 
instructions. Examples of semaphore operations can be found in Section 20.2.2 on page 587. 

The lwarx instruction must be paired with an stwcx. instruction, and the ldarx instruction must 
be paired with an stdcx. instruction, with the same effective address specified by both instruc-
tions of the pair. The only exception is that an unpaired stwcx. or stdcx. instruction to any effec-
tive address can be used to clear any reservation held by the processor element. The conditional 
store is performed based upon the existence of a reservation established by the preceding lwarx 
or ldarx instruction. If the reservation exists when the store is executed, the store is performed 
and a bit is set in the Condition Register (CR). If the reservation does not exist when the store is 
executed, the target memory location is not modified and a bit is cleared in the CR.

The lwarx, ldarx, stwcx., and stdcx. instructions allow software to read a semaphore, compute 
a result based on the value of the semaphore, store the new value back into the semaphore loca-
tion only if that location has not been modified since it was first read, and determine if the store 
was successful. If the store was successful, the sequence of instructions from the read of the 
semaphore to the store that updated the semaphore appears to have been executed atomically 
(that is, no other processor element or mechanism modified the semaphore location between the 
read and the update), thus providing the equivalent of a real atomic operation. However, in 
reality, other processor elements might have read from the location during this operation.

At most one reservation exists simultaneously on any processor element. The address associ-
ated with the reservation can be changed by a subsequent lwarx or ldarx instruction. The condi-
tional store is performed based upon the existence of a reservation established by the preceding 
lwarx or ldarx instruction. 

A reservation held by the processor element is cleared (or may be cleared, in the case of the 
fourth and fifth items in the following list) by one of the following:

• The processor element holding the reservation executes another lwarx or ldarx instruction. 
This clears the first reservation and establishes a new one.

• The processor element holding the reservation executes any stwcx. or stdcx. instruction 
regardless of whether its address matches that of the lwarx or ldarx.

• Some other processor element executes a store or dcbz (data cache block clear to zero) to 
the same reservation granule (128 bytes), or modifies a referenced or changed bit in the 
same reservation granule.

• Some other processor element executes a dcbtst (data cache block touch for store), dcbst 
(data cache block store), or dcbf (data cache block flush) to the same reservation granule. 
Whether the reservation is cleared is undefined.

• Some other mechanism modifies a memory location in the same reservation granule (128 
bytes). If the processor element holding the reservation modifies a Reference (R) or Change 
(C) bit in the same reservation granule, the lose of reservation is undefined.

Exceptions do not clear reservations. However, when a exception occurs, a stwcx. or stdcx. 
instruction might need to be issued to ensure that a lwarx or ldarx in the interrupted program is 
not paired with a stwcx. or stdcx in the new program.
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See the PowerPC Architecture for descriptions of the atomic synchronization instructions. See 
Section 20.2 on page 585 for additional memory synchronization instructions. 

Note:  The PowerPC Architecture is likely to be changed in the future to permit the reservation to 
be lost if a dcbf (data cache block flush) instruction is executed on the processor element holding 
the reservation. Therefore dcbf instructions should not be placed between a load and reserve 
instruction and the subsequent store conditional instruction. 

The following points provide general information about the lwarx and stwcx. instructions:

• In general, the lwarx and stwcx. instructions should be paired, and the same effective 
address (EA) should be used for both instructions. The only exception is that an unpaired 
stwcx. instruction to any (scratch) effective address can be used to clear any reservation 
held by the processor element. 

• It is acceptable to execute an lwarx instruction for which no stwcx. instruction is executed. 

• To increase the likelihood that forward progress is made, it is important that looping on lwarx 
or stwcx. pairs be minimized. For example, this can be achieved by testing the old value 
before attempting the store; were the order reversed, more stwcx. instructions might be exe-
cuted, and reservations might more often be lost between the lwarx and the stwcx. instruc-
tions. 

• The manner in which lwarx and stwcx. are communicated to other processor elements and 
mechanisms, and between levels of the memory subsystem within a given processor ele-
ment, is chip-implementation-dependent. 

• In a multiprocessor, livelock (a state in which processor elements interact in a way such that 
no processor element makes progress) is possible if a loop containing an lwarx and stwcx. 
pair also contains an ordinary store instruction for which any byte of the affected memory 
area is in the reservation granule of the reservation. 

• The reservation granularity is 128 bytes. The lwarx, ldarx, stwcx., and stdcx. instructions 
require the effective address to be aligned. 

20.2.2 PPE Synchronization Primitives

The following examples demonstrate how the PPE's atomic memory synchronization instruc-
tions, lwarx and stwcx, can be used to achieve commonly used synchronization primitives. 
These include atomic operations such as addition, mutexes, and condition variables. Equivalent 
synchronization primitives for the SPE are provided in Section 20.2.3 SPE Synchronization Prim-
itives on page 590.

Additional sample PPE synchronization primitives can be found in the PowerPC Virtual Environ-
ment Architecture, Book II. All of the synchronization primitive examples require that all synchro-
nization variables reside in memory marked with the memory coherency required storage control 
attribute (see Section 4.2.6.7 WIMG-Bit Storage Control Attributes on page 91 for details). 

20.2.2.1 Atomic Addition

The atomic addition primitive atomically adds a value to a word in memory. GPR3 contains the 
pointer to the word in memory, GPR4 contains the value to be added to the memory word. The 
previous value is returned in GPR5. 
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atomic_add:
lwarx    r5, 0, r3# load memory word with reservation
add      r0, r5, r4# add value
stwcx.   r0, 0, r3# store result if still reserved
bne-     atomic_add# retry if reservation was lost

20.2.2.2 Mutex Lock and Unlock

A mutex can be used ensure mutual exclusive access to a resource or object. It is used to cause 
other threads to wait will while the thread holding the mutex executes code in a critical section.

The atomic synchronization instructions can be used to construct such a mutex. The mutex 
consists of a memory variable, pre-initialized to 0, and at least two methods, lock and unlock, that 
operate on the mutex variable. 

The following code sample demonstrates a spin lock. The spin lock waits indefinitely until the lock 
can be acquired. Ideally, if the lock cannot be acquired, control should be yielded to other tasks 
and retried at a later time.

In this example, GPR3 contains the pointer to the lock variable.

spin_lock:
 lwarx    r4, 0, r3# load lock variable with reservation
 cmpwi    r4, 0# is the mutex already locked
 bne-     spin_lock# keep waiting if it is
 li       r4, 1#
 stwcx.   r4, 0, r3# set the lock variable
 bne-     spin_lock# retry if store conditional failed
 isync    # delay subsequent instruction til lock acquired

To unlock the mutex, a simple store of zero to the mutex variable need only be done.

20.2.2.3 Condition Variables

A condition variable is used by a thread to make itself wait until an expression involving shared 
data attains a particular state. Condition variable can be used to implement other synchronization 
constructs such as counting semaphores.

The three primary operations on condition variables are condition wait, condition signal, and 
condition broadcast. This sample condition variable implementation uses a 32-bit word, pointed 
to by GPR3, that is atomically accessed. The word is partitioned into two half words in which the 
least significant half word is incremented for each conditional wait request. While the most signif-
icant halfword contains a count of the number of threads signaled. The initial value of the condi-
tion variable word is zero.

Condition wait, atomically increments the “waiting halfword”, then waits until it is signaled, that is 
when the “signaled” (high) halfword equals or is larger then the incremented waiting halfword. A 
Portable Operating System Interface (POSIX) standard condition wait function also will include a 
mutex unlock at the start of the condition wait and a mutex lock at the end of the condition wait. 
These have been omitted from the sample for brevity sake.
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cond_wait: # r3 = pointer to condition variable
  _retry:

lwarx r5,0,r3 # atomically fetch the condition variable
addi r0,r5,1 # increment the waiting count
rlwinm r6,r5,16,16,31    # extract signaling count for cond var
clrlwi r7,r0,16          # extract incremented waiting count
rlwimi r0,r5,0,0,15
stwcx. r0,0,r3 # store the incremented condition variable
bne- _retry # retry increment if reservation was lost
subf r5,r6,r7 # delta = abs(waitint_cnt-signaling_cnt)
subf r7,r7,r6
cmpwi r5,0
bge _wait_for_signal
mr r5,r7
UNLOCK MUTEX
                             # r5 = delta, r6 = signaling count

  _wait_for_signal: # atomically wait until signaled
lwarx r0,0,r3 # re-fetch the condition variable
rlwinm r0,r0,16,16,31 # extract current signaling count
subf r7,r6,r0 # compute num signaled since wait start
subf r0,r0,r6
cmpwi r7,0
bge _skip_next
mr r7,r0

  _skip_next:
cmpw r5,r7 # if num signaled is less than delta
bgt- _wait_for_signal # keep waiting
LOCK MUTEX

Condition signal notifies one thread waiting on the condition variable. This is accomplished by 
atomically incrementing the “signaled” halfword if the waiting count is not equal to the signaled 
count. This will signal the oldest waiting thread to discontinue waiting.

cond_signal:
lwarx r4,0,r3 # load cond variable with reservation
rlwinm r5,r4,16,16,31 # compare signaled and waiting counts
clrlwi r6,r4,16
cmplw r5,r6
beq done # do nothing if waiting == signaled
addis r4,r4,1 # increment signaled (high) halfword
stwcx. r4, 0, r3 # store result if still reserved
bne- cond_signal # retry if reservation was lost

  _done:

All currently waiting threads can be signaled by making a broadcast request. A broadcast, is 
implemented by atomically copying the “waiting count” (low halfword) of the condition variable to 
the “signaled count” (high halfword) of the condition variable.
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cond_broadcast:
lwarx r4, 0, r3 # load condition variable with reservation
rlwimi r4, r4,16,0,15 # copy low halfword to high halfword
stwcx. r4, 0, r3 # store result if still reserved
bne- cond_broadcast # retry if reservation was lost

20.2.3 SPE Synchronization Primitives

The following examples demonstrate how the MFC synchronization commands, getllar and 
putllc, can be used to perform synchronization primitives that are compatible with equivalent 
PPE primitives demonstrated in Section 20.2.2 PPE Synchronization Primitives on page 587. 
The example primitives include atomic addition, mutexes, and condition variables.

20.2.3.1 Atomic Addition

The atomic addition primitive atomically adds a value to a word in memory and returns the 
previous value. Because the granularity of the MFC synchronization commands is a cache line, 
this function can be easily extended to atomically alter an entire 128 byte block. 

“ea_ptr” is a 64 bit effective address pointer to a naturally aligned 32-bit word in which “addend” is 
it to be added. 

#include <spu_intrinsics.h>

int atomic_add_return(unsigned long long ea_ptr, int addend)
{
    int old_word;
    unsigned int offset, status;
    unsigned int ea_lo, ea_hi;
    volatile char buf[256], *buf_ptr;
    volatile int *word_ptr;

    // Determine the offset to the word within its cache line. Align
    // the effective address to a cache line boundary.
    ea_hi = (unsigned int)ea_ptr >> 32;
    ea_lo = (unsigned int)ea_ptr; 
    offset = ea_lo & 0x7F;
    ea_lo &= ~0x7F;

    // Cache line align the local stack buffer.
    buf_ptr = (char *)(((unsigned int)(buf) + 127) & ~127);
    word_ptr = (volatile int *)(buf_ptr + offset);

    do {
        // Get, with reservation, the cache line containing the word to be 

// atomically added.
        spu_mfcdma64(buf_ptr, ea_hi, ea_lo, 128, 0, MFC_GETLLAR_CMD);

(void)spu_readch(MFC_RdAtomicStat);
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// Fetch original value and add with addend.
old_word = *word_ptr;
*word_ptr = old_word + addend;

// Put, conditionally the cache line containing the modified word.
        spu_mfcdma64(buf_ptr, ea_hi, ea_lo, 128, 0, MFC_PUTLLC_CMD);

status = spu_readch(MFC_RdAtomicStat) & MFC_PUTLLC_STATUS;

// Retry if the reservation was lost.
    } while (status);

    return (old_word);
}

20.2.3.2 Mutex Lock and Unlock

A mutex can be used ensure mutual exclusive access to a resource or object. It is used to cause 
other threads to wait will while the thread holding the mutex executes code in a critical section.

The MFC synchronization commands can be used to construct such a mutex. The mutex 
consists of a memory variable, pre-initialized to 0, and at least two methods, lock and unlock, that 
operate on the mutex variable. 

The following code sample demonstrates a spin lock. The spin lock waits indefinitely until the lock 
can be acquired. The lock-line reservation lost event is used to initiate a low power stall if the 
mutex is currently held by another party. The input parameter, mutex_ptr, is a 64-bit effective 
address of the naturally aligned lock word.

#include <spu_intrinsics.h>

void lock(unsigned long long mutex_ptr)
{
    unsigned int offset, status, events, mask;
    unsigned int mutex_lo, mutex_hi;
    volatile char buf[256], *buf_ptr;
    volatile int *lock_ptr;

    // Determine the offset to the mutex word within its cache line. Align
    // the effective address to a cache line boundary.
    mutex_hi = (unsigned int)mutex_ptr >> 32;
    mutex_lo = (unsigned int)mutex_ptr; 
    offset = mutex_lo & 0x7F;
    mutex_lo &= ~0x7F;

    // Cache line align the local stack buffer.
    buf_ptr = (char *)(((unsigned int)(buf) + 127) & ~127);
    lock_ptr = (volatile int *)(buf_ptr + offset);

    // Setup for use possible use of lock line reservation lost events.
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    // Detect and discard phantom events.
    mask = spu_readch(SPU_RdEventMask);
    spu_writech(SPU_WrEventMask, 0);
    if (spu_readchcnt(SPU_RdEventStat)) {
        spu_writech(SPU_WrEventAck, spu_readch(SPU_RdEventStat));
    }
    spu_writech(SPU_WrEventMask, MFC_LLR_LOST_EVENT);

    do {
        // Get, with reservation, the cache line containing the mutex lock

// word.
        spu_mfcdma64(buf_ptr, mutex_hi, mutex_lo, 128, 0, MFC_GETLLAR_CMD);

(void)spu_readch(MFC_RdAtomicStat);

if (*lock_ptr) {
    // The mutex is currently locked. Wait for the lock line 
    // reservation lost event before checking again. 
    events = spu_readch(SPU_RdEventStat);
    spu_writech(SPU_WrEventAck, events);

    status = MFC_PUTLLC_STATUS;
} else {
    // The mutex is not currently locked. Attempt to lock.
    *lock_ptr = 1;

    // Put, conditionally, the cache line containing the lock word.
    spu_mfcdma64(buf_ptr, mutex_hi, mutex_lo, 128, 0, MFC_PUTLLC_CMD);
    status = spu_readch(MFC_RdAtomicStat) & MFC_PUTLLC_STATUS;
}

// Retry if the reservation was lost.
    } while (status);

    // Restore the event mask
    spu_writech(SPU_WrEventMask, mask);
}

To unlock the mutex, a simple word store of zero to the mutex variable need only be done. This 
can be accomplished by either atomically writing zero to the mutex word, or alternatively, 
performing a DMA put to the mutex variable.

#include <spu_intrinsics.h>

void unlock(unsigned long long mutex_ptr)
{
    unsigned int mask;
    volatile vector unsigned int zero = (vector unsigned int){0};
    volatile void * word_ptr;
    unsigned int mutex_lo, mutex_hi;
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    // Determine the offset to the word within its quadword so that our
    // source and destination addresses have the same sub-quadword alignment.
    mutex_hi = (unsigned int)mutex_ptr >> 32;
    mutex_lo = (unsigned int)mutex_ptr; 

    word_ptr = (volatile void *)(&zero) + (mutex_lo & 0xF);
        
    spu_mfcdma64(word_ptr, mutex_hi, mutex_lo, 4, 0, MFC_PUT_CMD);

    // Wait until the DMA put completes before returning.
    mask = spu_readch(MFC_RdTagMask);
    spu_writech(MFC_WrTagMask, 1 << 0);
    (void)spu_mfcstat(MFC_TAG_UPDATE_ALL);
    spu_writech(MFC_WrTagMask, mask);
}

20.2.3.3 Condition Variables

A condition variable is used by a thread to make itself wait until an expression involving shared 
data attains a particular state. Condition variable can be used to implement other synchronization 
constructs such as counting semaphores.

The three primary operations on condition variables are condition wait, condition signal, and 
condition broadcast. This sample condition variable implementation uses a 32-bit word that is 
atomically accessed. The word is partitioned into two half words counters in which the least 
significant half word is incremented for each conditional wait request. While the most significant 
half word contains a count of the number of threads signaled. The initial value of the condition 
variable word is zero.

Condition wait atomically increments the “waiting halfword”, then waits until it is signaled, that is 
when the “signaled” (high) halfword equals or is larger then the incremented waiting halfword. A 
POSIX standard condition wait function also will include a mutex unlock at the start of the condi-
tion wait and a mutex lock at the end of the condition wait.

The inputs cond_ptr and mutex_ptr are 64-bit effective address to the 32-bit condition variable 
and mutex lock word, respectively. These are assumed to be naturally (4 byte) aligned.

#include <spu_intrinsics.h>

void cond_wait(unsigned long long cond_ptr, unsigned long long mutex_ptr) 
{ 
    signed short delta, cur_delta; 
    unsigned short signaled_cnt, waiting_cnt; 
    unsigned int offset, events, mask, status; 
    unsigned int cond_lo, cond_hi; 
    volatile char buf[256], *buf_ptr; 
    volatile unsigned short *cv_ptr; 

    // Determine the offset to the condition variable word within its 
    // cacheline. Align the effective address to a cacheline boundary. 
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    cond_hi = (unsigned int)cond_ptr >> 32; 
    cond_lo = (unsigned int)cond_ptr; 
    offset = cond_lo & 0x7F; 
    cond_lo &= ~0x7F; 

    // Cache line align the local stack buffer. 
    buf_ptr = (char *)(((unsigned int)(buf) + 127) & ~127); 
    cv_ptr = (volatile unsigned short *)(buf_ptr + offset); 

    // Setup for use possible use of lock line reservation lost events. 
    // Detect and discard phantom events. 
    mask = spu_readch(SPU_RdEventMask); 
    spu_writech(SPU_WrEventMask, 0); 
    if (spu_readchcnt(SPU_RdEventStat)) { 
        spu_writech(SPU_WrEventAck, spu_readch(SPU_RdEventStat)); 
    } 
    spu_writech(SPU_WrEventMask, MFC_LLR_LOST_EVENT); 
    // Increment the waiting halfword. 
    do { 
        // Get, with reservation, the cache line containing the condition 
        // variable word. 
        spu_mfcdma64(buf_ptr, cond_hi, cond_lo, 128, 0, MFC_GETLLAR_CMD); 
        (void)spu_readch(MFC_RdAtomicStat); 

        // Increment the low halfword - waiting count. 
        signaled_cnt = *(cv_ptr+0); 
        waiting_cnt = *(cv_ptr+1) + 1; 
        *(cv_ptr+1) = waiting_cnt;         

        // Put, conditionally, the cache line containing the condition variable. 
        spu_mfcdma64(buf_ptr, cond_hi, cond_lo, 128, 0, MFC_PUTLLC_CMD); 
        status = spu_readch(MFC_RdAtomicStat) & MFC_PUTLLC_STATUS; 
    } while (status); 

    // Unlock the mutex 
    unlock(mutex_ptr); 

    delta = waiting_cnt - signaled_cnt; 
    if (delta < 0) delta = -delta; 

    // Wait until a signal is received. I.E., high halfword of the condition 
    // variable is greater than or equal to the waiting_cnt fetched when 
    // the wait was established with the condition variable. 

    while (1) { 
        // Get, with reservation, the cache line containing the condition 
        // variable word. 
        spu_mfcdma64(buf_ptr, cond_hi, cond_lo, 128, 0, MFC_GETLLAR_CMD); 
        (void)spu_readch(MFC_RdAtomicStat); 
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        cur_delta = *(cv_ptr+0) - signaled_cnt; 
        if (cur_delta < 0) cur_delta = -cur_delta; 

        if (cur_delta < delta) { 
            // No signal received yet. Wait until the lock line reservation 
            // is lost before checking again. 
            events = spu_readch(SPU_RdEventStat); 
            spu_writech(SPU_WrEventAck, events); 
        } else { 
            // Signal received. Done waiting. 
            break; 
        } 
    } 

    // Restore the event mask 
    spu_writech(SPU_WrEventMask, mask); 

    lock(mutex_ptr); 
} 

Condition signal notifies one thread waiting on the condition variable. This is accomplished by 
atomically incrementing the “signaled” halfword count if the waiting count is not equal to the 
signaled count. This will signal the oldest waiting thread to discontinue waiting.

#include <spu_intrinsics.h>

void cond_signal(unsigned long long cond_ptr)
{
    unsigned int offset, status;
    unsigned int cond_lo, cond_hi;
    volatile char buf[256], *buf_ptr;
    volatile unsigned short *cv_ptr;

    // Determine the offset to the word within its cache line. Align
    // the effective address to a cache line boundary.
    cond_hi = (unsigned int)cond_ptr >> 32;
    cond_lo = (unsigned int)cond_ptr; 
    offset = cond_lo & 0x7F;
    cond_lo &= ~0x7F;

    // Cache line align the local stack buffer.
    buf_ptr = (char *)(((unsigned int)(buf) + 127) & ~127);
    cv_ptr = (volatile unsigned short *)(buf_ptr + offset);

    do {
        // Get, with reservation, the cache line containing the condition 

// variable word.
        spu_mfcdma64(buf_ptr, cond_hi, cond_lo, 128, 0, MFC_GETLLAR_CMD);

(void)spu_readch(MFC_RdAtomicStat);
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// If there is anyone waiting on the condition variable, increment
// the waiting count. Else, do nothing.
if (*(cv_ptr+0) != *(cv_ptr+1)) {
    *cv_ptr++;

    // Conditionally put the lock line containing the adjusted
    // signaled halfword.
    spu_mfcdma64(buf_ptr, cond_hi, cond_lo, 128, 0, MFC_PUTLLC_CMD);
    status = spu_readch(MFC_RdAtomicStat) & MFC_PUTLLC_STATUS;

} else {
    status = 0;
}

    } while (status);
}

All currently waiting threads can be signaled by making a broadcast request. A broadcast, is 
implemented by atomically copying the “waiting” count (low halfword) of the condition variable to 
the “signaled” count (high halfword) of the condition variable.

#include <spu_intrinsics.h>

void cond_broadcast(unsigned long long cond_ptr)
{
    unsigned int offset, status;
    unsigned int cond_lo, cond_hi;
    volatile char buf[256], *buf_ptr;
    volatile unsigned short *cv_ptr;

    // Determine the offset to the word within its cache line. Align
    // the effective address to a cache line boundary.
    cond_hi = (unsigned int)cond_ptr >> 32;
    cond_lo = (unsigned int)cond_ptr; 
    offset = cond_lo & 0x7F;
    cond_lo &= ~0x7F;

    // Cache line align the local stack buffer.
    buf_ptr = (char *)(((unsigned int)(buf) + 127) & ~127);
    cv_ptr = (volatile unsigned short *)(buf_ptr + offset);

    do {
        // Get, with reservation, the cache line containing the condition

// variable word.
        spu_mfcdma64(buf_ptr, cond_hi, cond_lo, 128, 0, MFC_GETLLAR_CMD);

(void)spu_readch(MFC_RdAtomicStat);

// Copy the wait count into the signaled count.
*(cv_ptr+0) = *(cv_ptr+1);
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// Conditionally put the lock line containing the adjusted
// signaled halfword.
spu_mfcdma64(buf_ptr, cond_hi, cond_lo, 128, 0, MFC_PUTLLC_CMD);
status = spu_readch(MFC_RdAtomicStat) & MFC_PUTLLC_STATUS;

    } while (status);
}

20.3 SPE Atomic Synchronization

This section describes the use of MFC atomic commands to create locks for synchronization of 
storage or other functions among applications. Section 20.2 on page 585 describes a compa-
rable subject for PPE atomic operations. 

The MFC for each SPE provides two main functions for the SPE: moving data between the 
SPE’s LS and main storage, and providing synchronization between the SPE and other 
processor elements in the system. The MFC has an atomic unit that supports synchronization.  In 
the Cell/B.E. and PowerXCell 8i implementations, the atomic unit has a buffer that holds six 128-
byte cache lines, and it dedicates four of its six cache lines to providing synchronization functions 
with other processing units in the system. The atomic unit does this by processing atomic MFC 
commands and by maintaining cache coherence when the MFC receives snoop requests from 
other processor elements in the system. Even though there are four cache lines dedicated to 
synchronization, only one reservation is maintained in each atomic unit. Four cache lines are 
implemented in a nested fashion (up to four deep) to provide high performance in situations 
where atomic updates are used for lock acquisition. 

20.3.1 MFC Commands for Atomic Updates

Each MFC supports commands for atomic operations. The get and reserve (getllar) and put 
conditional (putllc) commands provide essentially the same functions as the PowerPC lwarx 
and stwcx instructions, described in Section 20.2 on page 585. Together, these MFC commands 
permit atomic update of a main-storage location. In addition, the MFC supports the put uncondi-
tional (putlluc) and the put unconditional in queued (putqlluc) commands. 

The getllar, putllc, and putlluc commands are not tagged, and they are executed immediately 
instead of being queued behind other DMA commands. Attempts to issue these three commands 
before a previous getllar, putllc, or putlluc command has completed result in an error. The 
putqlluc command enables additional putlluc commands to be queued while the previous 
command executes. These four atomic-update commands can only be issued by the SPU to the 
MFC SPU command queue.

Table 20-9 lists the MFC commands for atomic updates. 

Table 20-9. MFC Commands for Atomic Updates  (Sheet 1 of 2)

Command Opcode Description

getllar x‘D0’ Get lock-line and create a reservation (executed immediately)
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20.3.1.1 The Get Lock-Line and Reserve Command—getllar

The get lock-line and reserve (getllar) command is similar to the PowerPC lwarx instruction, with 
the exception of the size and destination of the load. The getllar command loads 128 bytes (the 
PPE cache-line size) into the SPE’s LS and sets a reservation visible in main storage. Issuing the 
getllar command requires an available slot in the MFC SPU command queue. This command is 
issued immediately, is not queued behind other commands, and has no associated tag. An 
attempt to issue this command before a previous getllar, putllc, or putlluc command has 
completed results in an error.

A read from the MFC Read Atomic Command Status Channel (MFC_RdAtomicStat) must be 
performed after issuing the getllar command, before issuing another getllar, putllc, or putlluc 
command. 

20.3.1.2 The Put Lock-Line Conditional Command—putllc

The put lock-line conditional (putllc) command is similar to the operation of the PowerPC stwcx 
instruction, with the exception of the size and source of the store-conditional. This is a put 
command of 128 bytes that is conditioned on two things: 

• The existence of the reservation created by the getllar

• Whether the same storage location is specified by both commands 

The putllc command is a conditional-store operation. The store will not be successful if no reser-
vation for the same address has been made, or if the reservation has been lost. A read of the 
MFC Read Atomic Command Status Channel (MFC_RdAtomicStat) is required to determine the 
success or failure of this command. 

20.3.1.3 The Put Lock-Line Unconditional Command—putlluc

The put lock-line unconditional (putlluc) command is similar to the operation of the putllc 
command, but the store for the putlluc is always performed. The putlluc command store is not 
dependent on the existence of a previously-made reservation. The store size of the putlluc 
command is 128 bytes. 

20.3.1.4 The Put Queued Lock-Line Unconditional Command—putqlluc

The put queued lock-line unconditional (putqlluc) command is functionally equivalent to the put 
lock-line unconditional (putlluc) command. The difference between the two commands is the 
order in which the commands are performed and how completion is determined. The putlluc is 
performed immediately (not queued), and the putqlluc is placed into the MFC SPU command 
queue along with other DMA commands. Because this command is queued, it executes indepen-
dently of any pending immediate getllar, putllc, or putlluc commands. 

putllc x‘B4’ Put lock-line conditional on a reservation (executed immediately)

putlluc x‘B0’ Put lock-line unconditional (executed immediately)

putqlluc x‘B8’ Put lock-line unconditional (queued form)

Table 20-9. MFC Commands for Atomic Updates  (Sheet 2 of 2)

Command Opcode Description
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To determine if the putqlluc command is complete, software must wait for a tag-group comple-
tion. The putqlluc command requires a tag input and has an implied tag-specific fence. This 
command cannot be issued unless all previously issued commands with the same tag have 
completed. 

Multiple putqlluc commands may be issued and pending in the MFC SPU command queue. All 
the command-queue ordering rules apply to the putqlluc command.

The putqlluc command allows software to queue the release of a lock behind commands 
accessing storage associated with the lock. For proper operation, the putqlluc command must 
either be within the same tag group as the commands accessing the storage, or the barrier 
command must be used to ensure ordering.

20.3.2 The MFC Read Atomic Command Status Channel

The MFC Read Atomic Command Status Channel (MFC_RdAtomicStat), channel 27, contains the 
status of the last-completed immediate atomic update DMA command (getllar, putllc, or 
putlluc). A read from this channel before issuing an atomic command results in a software-
induced deadlock. For details about the channel interface, see Section 17 on page 447. 

Software can read the count associated with this channel to determine if an atomic DMA 
command has completed. A value of ‘0’ is returned if an atomic DMA command has not 
completed. A value of ‘1’ is returned if an atomic DMA command has completed and the status is 
available by reading this channel. A read from the MFC_RdAtomicStat channel should always 
follow an atomic DMA command. Performing multiple atomic DMA commands without an inter-
vening read from the MFC_RdAtomicStat channel might result in an incorrect status.

This channel is read-blocking, with a maximum count of ‘1’. The contents of this channel are 
cleared when read. Completion of a subsequent atomic DMA command will overwrite the status 
of prior atomic DMA commands. Table 20-10 shows the content of this channel. 

20.3.3 Avoiding Livelocks

The MFC atomic synchronization commands have the benefit of allowing an SPE program to 
participate in atomic shared-memory updates with other processor elements in the system, 
including the PPE. However, care must be taken when applying these commands. Incorrect use 
of atomic synchronization commands can lead to large performance penalties or livelocks.

Table 20-10. MFC Read Atomic Command Status Channel Contents 

Bits Field Name Description

0:28 Reserved Reserved.

29 G Set if the getllar command completed.

30 U Set if the putlluc command completed.

31 S
Put lock-line conditional command status:
1 Put conditional unsuccessful. The reservation was lost.
0 Put conditional successful.
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Serialize programs as infrequently as possible to maximize parallelism, per Amdahl’s law3. Try to 
partition problems statically, and only use atomic operations. Livelock is a common problem if 
atomic commands are not used, and used carefully. The following sections illustrate how to avoid 
livelocks.

20.3.3.1 Lock-Line Reservation Lost Event

Use lock-line reservation lost events instead of spin loops. This event is triggered when a get 
lock-line and reserve (getllar) command is issued and the reservation is reset due to modifica-
tion of the data in the same lock-line by an outside entity. It will not be set due to a reservation 
reset by a local action. 

Using the notification of this event allows the program to accomplish other tasks while waiting for 
an external modification to the lock-line data. If no other task is available, software can perform a 
read from the SPU Read Event Status Channel (SPU_RdEventStat) to put the SPE into a low-
power state until the lock-line data has been modified. A lock-line reservation lost event can be 
used to implement a sleeping lock rather than spin locks. 

For details about handling lock-line reservation lost events, see Section 18.6.4 on page 485. 

Here is an example of how to use atomic commands with lock-line reservation lost events:

* In this example, ea and lsbuf are 128-byte aligned */

/* Disable all events */
spu_writech (SPU_WrEventMask, 0);

/* Clear phantom events */
if (spu_readchcnt (SPU_RdEventStat)) spu_readch (SPU_RdEventStat);
spu_writech(SPU_WrEventAck, MFC_LLAR_LOST_EVENT_MASK);

/* set event mask */
spu_writech (SPU_WrEventMask, MFC_LLAR_LOST_EVENT_MASK);

do {
  /* Atomically fetch the synchronization variable
   */
  spu_mfcdma32(lsbuf, ea, 128, 0, MFC_GETLLAR_CMD);
  (void)spu_readch (MFC_RdAtomicStat);

  if (lsbuf[0]) {
    /* Non-zero synchronization variable, wait until
     * reservation is lost
     */
    event = spu_readch(SPU_RdEventStat);
    spu_writech (SPU_WrEventAck, MFC_LLAR_LOST_EVENT_MASK);
    status = MFC_PUTLLC_STATUS;

3. If N is the number of processor elements, and s is the amount of time spent by one processor element on a serial 
parts of a program and p is the amount of time spent by one processor element on parts of the program that can 
be done in parallel, then the speedup is given by Speedup = 1/(s + p/N). So, speedup is inversely proportional to 
s, the amount of time spent in the serial parts of a program.
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  } else {
    /* Zero synchronization variable. Atomically set it.
     */
    lsbuf[0] = 1;
    spu_mfcdma32(lsbuf, ea, 128, 0, MFC_PUTLLC_CMD);
    status = spu_readch (MFC_RdAtomicStat);
  } 
} while (status & MFC_PUTLLC_STATUS);

/* Clean up any remnant events, as needed */
spu_writech (SPU_WrEventMask, 0);
if (spu_readchcnt (SPU_RdEventStat)) {
  event = spu_readch(SPU_RdEventStat);
  spu_writech (SPU_WrEventAck, MFC_LLAR_LOST_EVENT_MASK);
}

20.3.3.2 Nesting Atomic Primitives

Avoid nesting more than four atomic primitives. The MFC commands provide a 4-line cache for 
data involved in atomic updates used for lock acquisition. Nesting more than four atomic primi-
tives might degrade performance. 

20.3.4 Synchronization Primitives

The following examples demonstrate how the MFC's synchronization commands, getllar and 
putllc, can be used to perform synchronization primitives that are compatible with equivalent 
PPE primitives demonstrated in Section 20.2.2 on page 587. The example primitives include 
atomic addition, mutexes, and condition variables. 

20.3.4.1 Atomic Addition

The atomic addition primitive atomically adds a value to a word in memory and returns the 
previous value. Because the granularity of the MFC synchronization commands is a cache line, 
this function can be easily extended to atomically alter an entire 128-byte cache line. 

ea_ptr is a 64-bit effective-address pointer to a naturally aligned 32-bit word, in which addend is it 
to be added. 

#include <spu_intrinsics.h>

int atomic_add_return(unsigned long long ea_ptr, int addend)
{
    int old_word;
    unsigned int offset, status;
    unsigned int ea_lo, ea_hi;
    volatile char buf[256], *buf_ptr;
    volatile int *word_ptr;

    // Determine the offset to the word within its cache line. Align
    // the effective address to a cache line boundary.
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    ea_hi = (unsigned int)ea_ptr >> 32;
    ea_lo = (unsigned int)ea_ptr; 
    offset = ea_lo & 0x7F;
    ea_lo &= ~0x7F;

    // Cache line align the local stack buffer.
    buf_ptr = (char *)(((unsigned int)(buf) + 127) & ~127);
    word_ptr = (volatile int *)(buf_ptr + offset);

    do {
        // Get, with reservation, the cache line containing the word to be 

// atomically added.
        spu_mfcdma64(buf_ptr, ea_hi, ea_lo, 128, 0, MFC_GETLLAR_CMD);

(void)spu_readch(MFC_RdAtomicStat);

// Fetch original value and add with addend.
old_word = *word_ptr;
*word_ptr = old_word + addend;

// Put, conditionally the cache line containing the modified word.
        spu_mfcdma64(buf_ptr, ea_hi, ea_lo, 128, 0, MFC_PUTLLC_CMD);

status = spu_readch(MFC_RdAtomicStat) & MFC_PUTLLC_STATUS;

// Retry if the reservation was lost.
    } while (status);

    return (old_word);
}

20.3.4.2 Mutex Lock and Unlock

A mutex can be used ensure mutual-exclusive access to a resource or object. It is used to cause 
other threads to wait will while the thread holding the mutex executes code in a critical section.

This mutex code sample consists of a memory variable, pre-initialized to ‘0’, and at least two 
methods, lock and unlock, that operate on the mutex variable. The sample demonstrates a spin 
lock. The spin lock waits indefinitely until the lock can be acquired. The lock-line reservation lost 
event is used to initiate a low-power stall if the mutex is currently held by another party. The input 
parameter, mutex_ptr, is a 64-bit effective address of the naturally aligned lock word.

#include <spu_intrinsics.h>

void lock(unsigned long long mutex_ptr)
{
    unsigned int offset, status, events, mask;
    unsigned int mutex_lo, mutex_hi;
    volatile char buf[256], *buf_ptr;
    volatile int *lock_ptr;
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    // Determine the offset to the mutex word within its cache line. Align
    // the effective address to a cache line boundary.
    mutex_hi = (unsigned int)mutex_ptr >> 32;
    mutex_lo = (unsigned int)mutex_ptr; 
    offset = mutex_lo & 0x7F;
    mutex_lo &= ~0x7F;

    // Cache line align the local stack buffer.
    buf_ptr = (char *)(((unsigned int)(buf) + 127) & ~127);
    lock_ptr = (volatile int *)(buf_ptr + offset);

    // Setup for use possible use of lock line reservation lost events.
    // Detect and discard phantom events.
    mask = spu_readch(SPU_RdEventMask);
    spu_writech(SPU_WrEventMask, 0);
    if (spu_readchcnt(SPU_RdEventStat)) {
        spu_writech(SPU_WrEventAck, spu_readch(SPU_RdEventStat));
    }
    spu_writech(SPU_WrEventMask, MFC_LLR_LOST_EVENT);

    do {
        // Get, with reservation, the cache line containing the mutex lock

// word.
        spu_mfcdma64(buf_ptr, mutex_hi, mutex_lo, 128, 0, MFC_GETLLAR_CMD);

(void)spu_readch(MFC_RdAtomicStat);

if (*lock_ptr) {
    // The mutex is currently locked. Wait for the lock line 
    // reservation lost event before checking again. 
    events = spu_readch(SPU_RdEventStat);
    spu_writech(SPU_WrEventAck, events);

    status = MFC_PUTLLC_STATUS;
} else {
    // The mutex is not currently locked. Attempt to lock.
    *lock_ptr = 1;

    // Put, conditionally, the cache line containing the lock word.
    spu_mfcdma64(buf_ptr, mutex_hi, mutex_lo, 128, 0, MFC_PUTLLC_CMD);
    status = spu_readch(MFC_RdAtomicStat) & MFC_PUTLLC_STATUS;
}

// Retry if the reservation was lost.
    } while (status);

    // Restore the event mask
    spu_writech(SPU_WrEventMask, mask);
}
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To unlock the mutex, a simple word store of zero to the mutex variable is done. This can be 
accomplished by either atomically, by writing zero to the mutex word, or by performing a DMA 
put to the mutex variable.

#include <spu_intrinsics.h>

void unlock(unsigned long long mutex_ptr)
{
    unsigned int mask;
    volatile vector unsigned int zero = (vector unsigned int){0};
    volatile void * word_ptr;
    unsigned int mutex_lo, mutex_hi;

    // Determine the offset to the word within its quadword so that our
    // source and destination addresses have the same sub-quadword alignment.
    mutex_hi = (unsigned int)mutex_ptr >> 32;
    mutex_lo = (unsigned int)mutex_ptr; 

    word_ptr = (volatile void *)(&zero) + (mutex_lo & 0xF);
        
    spu_mfcdma64(word_ptr, mutex_hi, mutex_lo, 4, 0, MFC_PUT_CMD);

    // Wait until the DMA put completes before returning.
    mask = spu_readch(MFC_RdTagMask);
    spu_writech(MFC_WrTagMask, 1 << 0);
    (void)spu_mfcstat(MFC_TAG_UPDATE_ALL);
    spu_writech(MFC_WrTagMask, mask);
}

20.3.4.3 Condition Variables

A condition variable is used by a thread to make itself wait until an expression involving shared 
data attains a particular state. Condition variables can be used to implement other synchroniza-
tion constructs, such as counting semaphores.

The three primary operations on condition variables are condition wait, condition signal, and 
condition broadcast. This sample condition-variable implementation uses a 32-bit word that is 
accessed atomically. The word is partitioned into two halfword counters, in which the least-signif-
icant halfword is incremented for each conditional-wait request while the most-significant half-
word contains a count of the number of threads signaled. The initial value of the condition-
variable word is zero.

Condition wait atomically increments the “waiting halfword”, then waits until it is signaled—that is, 
when the “signaled” (high) halfword equals or is larger then the incremented waiting halfword. A 
POSIX standard condition wait function also will include a mutex unlock at the start of the condi-
tion wait and a mutex lock at the end of the condition wait.

The inputs cond_ptr and mutex_ptr are 64-bit effective address to the 32-bit condition variable 
and mutex lock word, respectively. These are assumed to be naturally (4-byte) aligned.
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#include <spu_intrinsics.h>

void cond_wait(unsigned long long cond_ptr, unsigned long long mutex_ptr)
{
    signed short delta, cur_delta;
    unsigned short signaled_cnt, waiting_cnt;
    unsigned int offset, events, mask, status;
    unsigned int cond_lo, cond_hi;
    volatile char buf[256], *buf_ptr;
    volatile unsigned short *cv_ptr;

    // Unlock the mutex
    unlock(mutex_ptr);

    // Determine the offset to the condition variable word within its 
    // cacheline. Align the effective address to a cache line boundary.
    cond_hi = (unsigned int)cond_ptr >> 32;
    cond_lo = (unsigned int)cond_ptr; 
    offset = cond_lo & 0x7F;
    cond_lo &= ~0x7F;

    // Cache line align the local stack buffer.
    buf_ptr = (char *)(((unsigned int)(buf) + 127) & ~127);
    cv_ptr = (volatile unsigned short *)(buf_ptr + offset);

    // Setup for use possible use of lock line reservation lost events.
    // Detect and discard phantom events.
    mask = spu_readch(SPU_RdEventMask);
    spu_writech(SPU_WrEventMask, 0);
    if (spu_readchcnt(SPU_RdEventStat)) {
        spu_writech(SPU_WrEventAck, spu_readch(SPU_RdEventStat));
    }
    spu_writech(SPU_WrEventMask, MFC_LLR_LOST_EVENT);

    // Increment the waiting halfword.
    do {
        // Get, with reservation, the cache line containing the condition 

// variable word.
        spu_mfcdma64(buf_ptr, cond_hi, cond_lo, 128, 0, MFC_GETLLAR_CMD);

(void)spu_readch(MFC_RdAtomicStat);

// Increment the low halfword - waiting count.
signaled_cnt = *(cv_ptr+0);
waiting_cnt = *(cv_ptr+1) + 1;
*(cv_ptr+1) = waiting_cnt;

// Put, conditionally, the cache line containing the condition variable.
spu_mfcdma64(buf_ptr, cond_hi, cond_lo, 128, 0, MFC_PUTLLC_CMD);
status = spu_readch(MFC_RdAtomicStat) & MFC_PUTLLC_STATUS;

    } while (status);
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    delta = waiting_cnt - signaled_cnt;
    if (delta < 0) delta = -delta;

    // Wait until a signal is received. I.E., high halfword of the condition
    // variable is greater than or equal to the waiting_cnt fetched when 
    // the wait was established with the condition variable.

    while (1) {
        // Get, with reservation, the cache line containing the condition 

// variable word.
        spu_mfcdma64(buf_ptr, cond_hi, cond_lo, 128, 0, MFC_GETLLAR_CMD);

(void)spu_readch(MFC_RdAtomicStat);

cur_delta = *(cv_ptr+0) - signaled_cnt;
if (cur_delta < 0) cur_delta = -cur_delta;

if (cur_delta < delta) {
    // No signal received yet. Wait until the lock line reservation
    // is lost before checking again.
    events = spu_readch(SPU_RdEventStat);
    spu_writech(SPU_WrEventAck, events);
} else {
    // Signal received. Done waiting.
    break;
}

    }

    // Restore the event mask
    spu_writech(SPU_WrEventMask, mask);

    lock(mutex_ptr);
}

Condition signal notifies one thread waiting on the condition variable. This is accomplished by 
atomically incrementing the “signaled” halfword count if the waiting count is not equal to the 
signaled count. This will signal the oldest waiting thread to discontinue waiting.

#include <spu_intrinsics.h>

void cond_signal(unsigned long long cond_ptr)
{
    unsigned int offset, status;
    unsigned int cond_lo, cond_hi;
    volatile char buf[256], *buf_ptr;
    volatile unsigned short *cv_ptr;

    // Determine the offset to the word within its cache line. Align
    // the effective address to a cache line boundary.
    cond_hi = (unsigned int)cond_ptr >> 32;
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    cond_lo = (unsigned int)cond_ptr; 
    offset = cond_lo & 0x7F;
    cond_lo &= ~0x7F;

    // Cache line align the local stack buffer.
    buf_ptr = (char *)(((unsigned int)(buf) + 127) & ~127);
    cv_ptr = (volatile unsigned short *)(buf_ptr + offset);

    do {
        // Get, with reservation, the cache line containing the condition 

// variable word.
        spu_mfcdma64(buf_ptr, cond_hi, cond_lo, 128, 0, MFC_GETLLAR_CMD);

(void)spu_readch(MFC_RdAtomicStat);

// If there is anyone waiting on the condition variable, increment
// the waiting count. Else, do nothing.
if (*(cv_ptr+0) != *(cv_ptr+1)) {
    *cv_ptr++;

    // Conditionally put the lock line containing the adjusted
    // signaled halfword.
    spu_mfcdma64(buf_ptr, cond_hi, cond_lo, 128, 0, MFC_PUTLLC_CMD);
    status = spu_readch(MFC_RdAtomicStat) & MFC_PUTLLC_STATUS;

} else {
    status = 0;
}

    } while (status);
}

All currently waiting threads can be signaled by making a broadcast request. A broadcast is 
implemented by atomically copying the “waiting” count (low halfword) of the condition variable to 
the “signaled” count (high halfword) of the condition variable.

#include <spu_intrinsics.h>

void cond_broadcast(unsigned long long cond_ptr)
{
    unsigned int offset, status;
    unsigned int cond_lo, cond_hi;
    volatile char buf[256], *buf_ptr;
    volatile unsigned short *cv_ptr;

    // Determine the offset to the word within its cache line. Align
    // the effective address to a cache line boundary.
    cond_hi = (unsigned int)cond_ptr >> 32;
    cond_lo = (unsigned int)cond_ptr; 
    offset = cond_lo & 0x7F;
    cond_lo &= ~0x7F;
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    // Cache line align the local stack buffer.
    buf_ptr = (char *)(((unsigned int)(buf) + 127) & ~127);
    cv_ptr = (volatile unsigned short *)(buf_ptr + offset);

    do {
        // Get, with reservation, the cache line containing the condition

// variable word.
        spu_mfcdma64(buf_ptr, cond_hi, cond_lo, 128, 0, MFC_GETLLAR_CMD);

(void)spu_readch(MFC_RdAtomicStat);

// Copy the wait count into the signaled count.
*(cv_ptr+0) = *(cv_ptr+1);

// Conditionally put the lock line containing the adjusted
// signaled halfword.
spu_mfcdma64(buf_ptr, cond_hi, cond_lo, 128, 0, MFC_PUTLLC_CMD);
status = spu_readch(MFC_RdAtomicStat) & MFC_PUTLLC_STATUS;

    } while (status);
}
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21. Parallel Programming

Programming the Cell Broadband Engine Architecture (CBEA) processors1 requires an under-
standing of parallel programming. Traditional computing platforms contain a single processor, 
which computes a single thread of control. High-performance computing platforms contain many 
processors, with potentially many threads of control. Parallel programming has become the 
default in many fields where immense amounts of data needs to be processed as quickly as 
possible: oil exploration, automobile manufacturing, pharmaceutical development and in anima-
tion and special effects studios. 

These widely disparate tasks, and the algorithms for tackling those tasks, showcase the many 
different styles of parallel programming. Some tasks are data-centric and algorithms for working 
on them fit neatly into the single instruction, multiple data (SIMD) model. Others are character-
ized by distinct chunks of distributed programming, and these algorithms rely on good communi-
cation models among subtasks. This section reviews different styles of parallel programming on 
the CBEA processors and describes ways to implement those different strategies. The section 
covers topics of interest to both application programmers and compiler writers. 

21.1 Challenges

The key to parallel programming is to locate exploitable concurrency in a task. The basic steps 
for parallelizing any program are:

• Locate concurrency.

• Structure the algorithms to exploit concurrency.

• Tune for performance.

The major challenges are:

• Data dependencies.

• Overhead in synchronizing concurrent memory accesses or transferring data between differ-
ent processor elements and memory might exceed any performance improvement.

• Partitioning work is often not obvious and can result in unequal units of work.

• What works in one parallel environment might not work in another, due to differences in 
bandwidth, topology, hardware synchronization primitives, and so forth.

21.2 Patterns of Parallel Programming

There are several ways to express parallelism: programming language features (intrinsics and 
pragmas), languages with explicit support for parallelism (such as Unified Parallel C [UPC] and 
Java), tools, and application programming interfaces (APIs) for using parallel-programming 
libraries. But with all these ways, important basic programming structures can be used to create 
parallel programs with good performance. These programming structures include types of algo-
rithms and ways to synchronize access to data shared among concurrent tasks. This section 
describes these programming structures.

1. The Cell Broadband Engine (Cell/B.E.) and PowerXCell 8i processors are collectively called CBEA processors.
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21.2.1 Terminology

The terms listed in Table 21-1 commonly appear in textbooks and web sites focused on parallel 
programming. These terms describe concepts and properties that are important for efficient 
parallel programming. 

Table 21-1. Parallel-Programming Terminology  (Sheet 1 of 2)

Term Definition

Amdahl’s Law Potential speedup = 1 / 1 - P, where P is the fraction of code that can be parallelized.

Asynchronous In an asynchronous programming model, different processor elements execute different 
tasks without needing to synchronize with other processor elements or tasks. 

Atomic An atomic operation is uninterruptable. In parallel programming, this can mean an 
operation (or set of instructions) that has been protected by synchronization methods. 

Bandwidth
The number of bytes per second that can be moved across a network. A program is 
bandwidth-limited when it generates more data-transfer requests than can be 
accommodated by the network. 

Busy wait
Using a timed loop to create a delay. This is often used to wait until some condition is 
satisfied. Because the device is executing instructions in the loop, no other work can be 
done until the loop ends.

Critical section

A critical section is a piece of code that can only be executed by one task at a time. It 
typically terminates in fixed time, and another task only has to wait a fixed time to enter it. 
Some synchronization mechanism is required at the entry and exit of the critical section 
to ensure exclusive use. A semaphore is often used. 

Deadlock A deadlock occurs when two or more tasks or processor elements are stalled, waiting for 
each other to perform some action such as release a shared resource. 

Latency

Latency is a time delay between the moment something is initiated, and the moment one 
of its effects begins. In parallel programming, this often refers to the time between the 
moment a message is sent and the moment it is received. Programs that generate large 
numbers of small messages are latency-bound.

Load balance Distributing work among processor elements so that each processor element has roughly 
the same amount of work. 

Monitor

A software monitor consists of:
• A set of procedures that allow interaction with a shared resource.
• A mutual-exclusion lock. 
• The variables associated with the shared resource. 
• A monitor invariant that defines the conditions needed to avoid race conditions. 

A monitor procedure takes the lock before doing anything else, and holds it until it either 
finishes or waits for a condition. If every procedure guarantees that the invariant is true 
before it releases the lock, then no task can ever find the resource in a state that might 
lead to a race condition.

Mutual exclusion

Mutual exclusion (often abbreviated to mutex) algorithms are used in parallel 
programming to avoid the concurrent use of nonshareable resources by pieces of 
computer code called critical sections. 
When several processor elements share memory, an indivisible test-and-set of a flag is 
used in a tight loop to wait until the other processor element clears the flag. This test-and-
set ensures that when the code enters the critical region, the flag is set. When the code 
leaves the critical region, it clears the flag. In a spin lock or busy wait mutex, the wait loop 
terminates when the test finds that the flag is not set, and the wait continues if the flag is 
set. 

Race condition

A race condition occurs when the output exhibits a dependence (typically unexpected) on 
the relative timing of events. The term originates with the idea of two signals racing each 
other to influence the output first. The term race condition also refers to an error condition 
where the output of a program changes as the scheduling of (multiple) processor 
elements varies. 
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21.2.2 Finding Parallelism

The first, vital step in parallelizing any program is to consider where there might be exploitable 
concurrency. Time spent analyzing the program and its algorithms and data structures will be 
repaid many-fold in the implementation and coding phase. In other words, by no means immedi-
ately start to code a program to take advantage of this or that parallel programming model. 
Spend time understanding the data flow, data dependencies, and functional dependencies. 

The most important question is: Will the anticipated speedup from parallelizing a program be 
greater than the effort to parallelize a program, which includes any overhead for synchronizing 
different tasks or access to shared data? 

The second question is: Which parts of the program are the most computationally intensive? It is 
worthwhile to do initial performance analysis on typical data sets, to be sure the hot spots in the 
program are being targeted. 

When you know which parts of the program can benefit from parallelization, you can consider 
different patterns for breaking down the problem. Ideally, you can identify ways to parallelize the 
computationally-intensive parts:

• Break down the program into tasks that can execute in parallel. 

• Identify data that is local to each subtask.

• Group subtasks so that they execute in the correct order.

• Analyze dependencies among tasks. 

In this context, a task is a unit of execution that is enough to keep one processor element busy 
for a significant amount of time, and that performs enough work to justify any overhead for 
managing data dependencies. Key elements to examine are:

• Function calls

• Loops

• Large data structures that might be operated on in chunks

Semaphore

A semaphore is a protected variable (or abstract data type) and constitutes the classic 
method for restricting access to shared resources (for example, shared memory) in a 
parallel programming environment. There are two operations on a semaphore: V 
(sometimes called up) and P (sometimes called down). The V operation increases the 
value of the semaphore by one. The P operation decreases the value of the semaphore 
by one. The V and P operations must be atomic operations. 

Starvation Starvation occurs when a task tries to access some resource but is never granted access 
to that resource.

Synchronous Coordinated in time among tasks, such as when one task notifies a second task about 
some state change, which the second task receives when it is polling for such notification.

Synchronization Synchronization enforces constraints on the ordering of events occurring in different 
processor elements. 

Task A unit of execution. 

Thread A fundamental unit of execution in many parallel programming systems. One process 
can contain several (or dozens or hundreds) of threads. 

Table 21-1. Parallel-Programming Terminology  (Sheet 2 of 2)

Term Definition
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Questions to ask about data-sharing include:

• Do all processor elements update shared data?

• Does one task need another’s data?

• Are there any race conditions, in which data might be read either before or after it is written in 
another task?

• Is there too much synchronization overhead to justify the parallelism?

• Are interactions among tasks synchronous or asynchronous?

• Are the processing advantages worth the data-communication costs, including latency, band-
width, and amount of data that needs to be transferred?

Main organizing principles include:

• By tasks (including control flow between tasks and the amount of work in different tasks)

• By data decomposition

• By flow of data

21.2.3 Strategies for Parallel Programming

21.2.3.1 Task Parallelism

Some programs are embarrassingly parallel. For example, ray-tracing routines fit well into task-
parallel designs. Such programs have, inside them, many tasks that are completely independent. 
These programs can be easily mapped onto standard parallel programming models. 

The two essential questions are: 

• Are the tasks independent enough that managing dependencies does not consume too 
much time? 

• Can the tasks be load-balanced among the CBEA processor elements?

21.2.3.2 Data Partitioning

Some programs operate on data that can be broken down into chunks that can be operated on 
independently. This approach makes sense when the most computationally-intensive part of the 
program is centered on manipulating a large data structure. Use this approach when the chunks 
of data are operated on in the same way. Arrays of data, and recursive data structures like trees, 
are often good candidates for this style of data decomposition. 

21.2.3.3 Task Grouping

Sometimes groups of tasks—several sets of operations on data—can be pulled together to form 
the basis of parallelism. Combining a group of tasks can create enough work to justify assigning 
it to a single processor element. This approach can also reduce the amount of synchronization 
between different groups, with each group being scheduled to execute as a single task. This 
approach also makes sense when one task shares data dependencies with another task. Those 
tasks might be candidates for grouping. 
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21.2.3.4 Divide and Conquer

A divide and conquer algorithm works by recursively breaking down a problem into two or more 
sub-problems of the same (or related) type, until these become simple enough to be solved 
directly. The solutions to the sub-problems are then combined to give a solution to the original 
problem. This strategy is often used in mathematical problems, such as fast Fourier transform 
(FFT) or Cholesky matrix decomposition. The parallelism is easy to use: because the sub-prob-
lems are solved independently, they can be computed in parallel. 

21.2.3.5 Pipelining

Sometimes the overall computation involves feeding data through a series of operations. 
Graphics applications often fall into this category. The key here is to express clearly any ordering 
constraints—which operations must occur before any other. Pipelining can be expressed at 
different levels: at the SIMD or vector-processing level, as well as at a higher, algorithmic level. 
The key to parallelism is assigning each stage of the pipeline to a different processor element, 
and managing data flow among the processor elements. 

21.2.3.6 Event Parallelism

Event parallelism concerns a group of independent tasks that are interacting, but in a somewhat 
irregular fashion. This style of programming often relies on asynchronous communication, in 
which a task sends an event but does not wait for a response. In a shared-memory system, the 
program might use a queue to represent message-passing among the tasks. This requires safe, 
concurrent access to mutex variables. One challenge is avoiding deadlock, in which one task 
waits for an event that will never arrive. Another challenge is load-balancing the tasks across 
processor elements. 

21.2.3.7 Master and Subordinate

The master and subordinate approach is similar to task parallelism. One master processor 
element might farm out chunks of works to subordinate processor elements and wait for these 
subordinate tasks to return. This approach works well when you have variable and unpredictable 
workloads, and simple parallel loops are not enough. The master task is in charge of load-
balancing among the several subordinate tasks. A shared queue is a good way to manage the 
workload. This approach has good scalability if the number of tasks greatly exceeds the number 
of subordinate processor elements. 

21.2.3.8 Fork and Join

The fork and join approach works well when the number of parallel tasks varies as the program 
runs, and structures such as parallel loops are not powerful enough to contain each task’s execu-
tion. Tasks are created dynamically: that is, they are forked. When tasks finish, they return their 
status to the parent: that is, they are joined. A one-to-one mapping of tasks onto processor 
elements often works well, but this is dependent on the number of tasks and the number of 
processor elements. 
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21.3 Steps for Parallelizing a Program

Now that the common strategies for parallel programming have been introduced, this section 
suggests ways in which you can apply these strategies to a program. 

21.3.1 Step 1: Understand the Problem

• Performance Objectives—Is the objective to perform the computation as fast as possible, 
using all available resources? Or is absolute performance not critical, and is efficiency more 
important because the algorithm must be run simultaneously with other problems?

• Type of Computation—Does the problem contain small kernels of computation that can be 
partitioned and loaded onto separate Synergistic Processor Elements (SPEs)? Also, 
because of the heterogeneous architecture, it is important to understand what code sections 
must be performed on the PowerPC Processor Element (PPE) (such as system calls) or 
might be faster on a PPE (such as code dominated by unpredictable branches), and what 
code sections are likely to be faster on an SPE.

• Data Types—Is the fundamental data type fixed-point or floating-point? What is the preci-
sion—byte, halfword, word, or doubleword? The answers to these questions might determine 
which computational resources can be used. For example, double-precision floating-point is 
not supported by the PPE’s vector/SIMD multimedia extension instructions, although it is 
supported by the PPE’s standard PowerPC Architecture instructions and the synergistic pro-
cessor unit (SPU) instructions. (The SPEs, however, are optimized for single-precision float-
ing-point operations.) 

• Data-Access Patterns—Is data randomly accessed or sequentially accessed? If randomly 
accessed, what is the size of the data accesses? Small data accesses can negatively affect 
the memory bandwidth so that alternative data organizations might be warranted. Under-
standing data-access patterns includes understanding what data is read-only, write-once, 
accessed by a single task in a particular parallel region, or accessed only by a specific sub-
set of tasks.

21.3.2 Step 2: Choose Programming Tools and Technology

• System Configuration—Is this application going to be deployed on a networked cluster of 
CBEA processors, on a shared-memory system of CBEA processors, on a single CBEA pro-
cessor, or on only one (or a few) CBEA processor processing elements?

• Availability—What tools are available? Because the Cell Broadband Engine Architecture 
(CBEA) is a new architecture, new tools are being developed all the time.

• Quality and Reliability—Are the tools stable and of high-enough quality for the development 
needs?

• Programmer Skills—Are the programmers experienced in the use of tools and languages? 
Can the project schedule absorb the learning curve associated with using new programming 
tools or languages?

• Schedule Objectives—How much time is available to develop the software?

• Performance Objectives—What are the system performance objectives? Can software be 
quickly developed now and optimized over time?
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21.3.3 Step 3: Develop High-Level Parallelization Strategy

The key to maximizing system performance on a CBEA processor is choosing the optimal paral-
lelization strategy. Depending on the system configuration, multiple strategies might be 
required—for example, a high-level parallelization strategy and a moderate-level parallelization 
strategy. A high-level strategy is useful when partitioning the problem across systems without 
shared-memory access. A moderate-level strategy is useful when partitioning the problem across 
processing elements that have high-speed, shared-memory access.

The key to nearly all successful parallelization strategies is minimizing synchronizing events 
between the computational elements. See Section 20 Shared-Storage Synchronization on 
page 561. One effective method for the CBEA processors is to partition the data for independent 
computation across parallel SPE threads of execution. Each SPE thread operates as an inde-
pendent stream processor—streaming in blocks of input data, performing the necessary compu-
tation, and streaming out the results. Multibuffering techniques (see Section 24.1.2 on page 692) 
can be employed to ensure simultaneous computation and data transfer. 

The work (data) can be allocated among the SPEs in one of three methods:

• Algorithmically Assigned—For example, if w work is partition among n SPEs, then each SPE 
is assigned w/n amount of work. This solution works well for simple algorithms in which the 
computation patterns are deterministic.

• Self-Managed—Making SPEs autonomously arbitrate for work is effective at load-balancing 
parallel computation when computation is not easily predictable.

• Mastered—In this method, one of the processing elements (typically the PPE) serves as a 
master distributing work among the available SPEs. Work is communicated to the SPEs 
either by using a work queue in main storage or by using one of the hardware communication 
features—mailboxes (Section 19.6 on page 539) or signal-notification registers (Section 19.7 
on page 551).

There is a set of problems in which an SPE’s local storage (LS) is insufficient to hold both the 
working data set and all the code simultaneously. In these situations, it might be effective to 
stream the code to the data by sequencing a set of code modules over a single set of LS data.

21.3.4 Step 4: Develop Low-Level Parallelization Strategy 

Language extensions, like vector intrinsics, and pragmas, like OpenMP’s parallel do, can be 
used to direct the compiler in its SIMDization phase. Identify data structures that can be operated 
on using vector instructions, and annotate the code accordingly. See Section 22 on page 629 for 
more information about SIMD Programming, and see Section 21.4.1 on page 618 for details on 
programmer-directed SIMDization. 

21.3.5 Step 5: Design Data Structures for Efficient Processing

After the basic low-level parallelization strategy is identified, the data structures must be devel-
oped for efficient processing. This includes:

• Format—Organize structures and arrays according to the SIMD format chosen in step 4 
(Section 21.3.4). Consider padding SOA-formatted data (Section 22.1.1.1 on page 630) to 
an even multiple of quadwords, so that partial quadword processing need not be used, thus 
improving performance.
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• Quadword Align—Quadword-align arrays and structures to ensure correct alignment for 
transferring data from main storage to an LS, and to ensure correct alignment for LS loads 
and stores. Some data structures may also be aligned on a cache-line boundary to maximize 
bus bandwidth.

• ABI Differences—Pointers and long variables may be of different sizes, depending upon 
whether the PPE is compiled according the 32-bit application binary interface (ABI) or 64-bit 
ABI. For example, the 32-bit ABI may be ILP32 (that is, 32-bit integers, longs, and pointers). 
The 64-bit ABI may be LP64 (that is, 64-bit longs and pointers). The SPEs are always ILP32, 
with DMA support for 32-bit and 64-bit effective-address pointers. 

• Synchronization Variables in Independent Cache Lines—Place synchronization variables in 
their own, independent 128-byte cache lines to minimize atomic-reservation thrashing. 

• Optimize Layout—Tailor layout of shared data structures for parallel computation—that is, to 
provide spatial locality. For example, structure data so that (as much as possible) data items 
used locally within a processor are not interspersed with data items shared by multiple pro-
cessor elements.

When data structures are shared, one or more tasks might modify the data, and one or more 
tasks might access the modified data. Explicitly managing shared data structures is one of the 
most error-prone aspects of parallel programming. Try to reduce the size of the critical section. 
Use a mutual-exclusion protocol to access the shared data: mutex locks, synchronization blocks, 
semaphores, or nested locks. Consider partially replicating shared data, so that many tasks can 
update the data without needing to synchronize with one another. But do not prevent concurrent 
operations on shared data that could safely have taken place at the same time. Also, prevent 
bottlenecks, in which several tasks are waiting to access the same areas of shared data at the 
same time. 

21.3.6 Step 6: Iterate and Refine

The next step is to evaluate system performance and determine the effectiveness of the parallel-
ization strategy. Various performance-analysis techniques can be employed to identify the 
performance bottlenecks. Based upon these findings, the strategies devised in step 3 
(Section 21.3.3 on page 615) and step 4 (Section 21.3.4 on page 615) might need to be revis-
ited.

21.3.7 Step 7: Fine-Tune

After the basic parallelization strategy is established in the preceding steps, the software should 
be fine-tuned. Generally, this entails fine-tuning only the critical code sections identified by either 
programmer knowledge or hot-spot analysis. Programmer knowledge of PPE and SPE program-
ming, as well as previous experience with the code-development tools, will influence the degree 
of additional fine-tuning that is necessary. 

Fine-tuning might include one or more of the following considerations:

• Branches—Eliminate branches by exploiting the select-bits instruction (see Section 24.3.2 
on page 700). Reduce mispredicted branches by using feedback-directed optimization, soft-
ware branch-prediction tables, or programmer-directed branch prediction.

• Inline—Inline frequently-called functions, to eliminate call-linkage overhead and provide addi-
tional instructions for improved scheduling and latency-hiding. See Section 24.3.1 on 
page 700. Most compilers give users control over what and how much to inline. 
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• Loops—Unroll loops to reduce loop iterations and provide additional instructions for improved 
instruction scheduling. See Section 24.3.1 on page 700. Loop-unrolling might not prove fruit-
ful for algorithms in which dependencies exist between loop iterations. Be careful of the inter-
action of manual loop-unrolling with compiler SIMDization; check the results after compiling. 
Also, loop unrolling might not always be beneficial, due to constrained LS size in an SPE.

• False Dependencies—Restructure code to eliminate false-dependency stalls. False-depen-
dency stalls are instruction dependencies that exist only because of the order in which the 
operations were scheduled.

• Dual-Issue—Change instruction mix to improve dual-issuing. Frequently, there are multiple 
ways an operation can be performed. The multiple solutions might use instructions on differ-
ent execution pipelines. Choosing the solution that uses instructions executed on an under-
used pipeline can result in improved performance. Explicit instruction control can be achieved 
when programming in intrinsics.

• Memory-Bank Access—Refine data organization to ensure better memory-bank access pat-
terns. Many algorithms have regular, power-of-two, data-access patterns. Because memory 
banks are organized on powers of two, this can result in multiple processor elements access-
ing the same memory banks at the same time. This, in turn, results in less-then-theoretical 
memory bandwidth. Offsetting data buffers or algorithmically changing the access patterns 
can improve performance on algorithms that are memory bound.

• Inefficient Operations—Eliminate inefficient operations based upon known input constraints. 
For example, integer multiply can be optimized if one or more of the operands is known to be 
16 bits or less. See Section 24.7 on page 716. 

21.4 Levels of Parallelism in the CBEA Processors

The CBEA processors provide a foundation for many levels of parallelization. Starting from the 
lowest, fine-grained parallelization—SIMD processing—up to the highest, course-grained paral-
lelization—networked multiprocessing—the CBEA processors provide many opportunities for 
concurrent computation. The levels of parallelization include:

• SIMD processing

• Dual-issue superscalar microarchitecture

• Multithreading

• Multiple execution units with heterogeneous architectures and differing capabilities

• Shared-memory multiprocessing

• Networked distributed-memory multiprocessing

The shared-memory model is key to data transfer and program execution across the PPE and 
the SPEs. Compilers and other utilities can mediate the partitioning of code and data and orches-
trate any data movement implied by this partitioning. A variety of compiler techniques can be 
used to exploit the performance potential of the SPEs and to enable the multilevel heteroge-
neous parallelism supported by the CBEA processors. For example, see Section 21.5.3 on 
page 621 and Section 21.5.4 on page 623. 
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21.4.1 SIMD Parallelization

Section 22 on page 629 describes SIMD parallelization techniques. Both the PPE and the SPEs 
are capable of SIMD computation. Compilers can support programmer-directed parallelism by 
means of programmer-inserted intrinsics and pragmas. Compilers can also provide auto-
SIMDization that generates vector instructions from scalar source code for both the PPE and the 
SPEs. Auto-SIMDization minimizes the overhead due to misaligned data streams and can be 
tailored to handle many of the data structures and code structures found in multimedia applica-
tions. 

21.4.2 Superscalar Parallelization

The PPE and SPEs have multiple, parallel execution units and are capable of executing two 
instructions per clock. The PPE execution units are described in Section 2.1 on page 52. The 
SPE execution units are described in Section 3.1 on page 65. Dual-issue success depends upon 
the instructions being issued, their address, and the state of the system during execution.

A dual-issue instruction pair consists of two instructions on an aligned doubleword address. 
Section A.5 on page 760 describes the dual-issue rules for the PPE’s vector/SIMD multimedia 
extension instructions. Section B.1.3 on page 779 describes the dual-issue rules for SPE instruc-
tions. 

21.4.3 Hardware Multithreading

The PPE supports two simultaneous threads of execution in hardware, so the PPE can be 
viewed as a two-way multiprocessor with shared dataflow. This gives PPE software the effective 
appearance of two independent processing units. The performance of the two threads is limited, 
however, because they must share resources such as the L1 and L2 caches and they must 
reside in the same logical partition. For more details on multithreading, see Section 10 PPE 
Multithreading on page 299.

Programmers typically think of multithreading in terms of application programs and the thread 
libraries they may use. CBEA processor thread libraries can enable multithreading at the applica-
tion level. 

21.4.4 Multiple Execution Units

Each of the nine processor elements provides independent computation and can be considered 
as asymmetric threads of execution. All processor elements have access to the coherent main 
storage for shared-memory multiprocessing. The SPE mailboxes and SPU signal notification 
registers support parallel-processing message-passing. 

Compilers can parallelize and partition a single source program across the PPE and SPEs, 
guided by user directives. Compilers can also optimize data transfer, allowing a single SPE to 
process data that far exceeds the LS’s capacity. The SPE can also use code that exceeds the 
size of LS. Compilers can schedule necessary DMA transfers so that they overlap ongoing 
computation. 
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In addition to the nine processor elements, each of the eight memory flow controllers (MFCs) 
serves as independent DMA controllers capable of supporting up to 16 concurrent transfers for a 
total of 128 such concurrent transfers. The large number of concurrent transfers, in conjunction 
with a uniform distribution of memory transfers across both memory channels and all memory 
banks, makes near-theoretical peak memory throughput possible.

21.4.5 Multiple CBEA Processors

Multiple-instruction, multiple-data (MIMD) parallelization can be supported on one CBEA 
processor or on multiple CBEA processors. This section reviews two common methods of inter-
connecting multiple CBEA processors.

21.4.5.1 Shared-Memory Processing

Two CBEA processors can be directly connected by means of the Cell Broadband Engine inter-
face (BEI) unit, which manages data transfers between the element interconnect bus (EIB) and 
I/O devices as shown in Figure 7-1 on page 161. The BEI supports two Rambus FlexIO I/O inter-
faces. One of the two interfaces supports only a noncoherent I/O Interface (IOIF) protocol, which 
is suitable for I/O devices. The other interface is software-selectable between the noncoherent 
interface and the fully coherent Cell Broadband Engine interface (BIF) protocol—the EIB’s native 
internal protocol—which coherently extends the EIB to another device that can be another CBEA 
processor. 

Figure 7-2 on page 163 shows a 2-way shared-memory processing configuration, and Figure 7-3 
on page 164 shows a 4-way configuration. Configurations with more than two CBEA processors 
require a BIF-protocol switch, and such switches can be connected together to support very large 
multiprocessing configurations.

The BIF protocol supports shared, addressable I/O memory. I/O addresses can be optionally 
translated from effective addresses into real addresses using the I/O address-translation mecha-
nism described in Section 7.4 on page 176. 

The programming of shared-memory systems, whether on one CBEA processor or multiple 
CBEA processors, is often done using either OpenMP, Pthreads, or UPC. See Section 21.5.3 on 
page 621 for details. 

21.4.5.2 Distributed-Memory Processing

Multiple processors and processor complexes can be loosely clustered in a distributed-memory 
configuration. Such a system consists of CBEA processors, memory associated with each CBEA 
processor, and an interconnection network. Because such systems lack shared memory 
between processors, data that is needed by more than one CBEA processor must be explicitly 
sent from processor to processor through the interconnection network.

Distributed-memory processing systems are typically programmed in one of three methods:

• Using a proprietary distributed multiprocessing framework.

• Using the Message Passing Interface (MPI) standard. MPI is widely available and was 
designed for high-performance communication on both massively parallel architectures and 
clustered distributed-memory systems.
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• Using grid computing services, consisting of a set of standards and protocols. For example, 
the Open Grid Services Architecture (OGSA) enables communication across heterogeneous, 
geographically dispersed environments.

21.5 Tools for Parallelization

Given an understanding of the patterns and steps of parallelization, and an understanding of 
what parallelism is available on a CBEA processor, how can parallelism be implemented effi-
ciently? This section describes some tools for creating parallel programs. 

21.5.1 Language Extensions: Intrinsics and Directives

A broad set of intrinsic extensions for C and C++ is defined in the C/C++ Language Extensions 
for Cell Broadband Engine Architecture specification and summarized in Appendix B.2 on 
page 784. Compiler intrinsics function as fast shorthand for expressing assembly-level instruc-
tions. Compilers that support the intrinsics will likely also support vector data types. Each data 
type in C or C++ can be prepended by the keyword, vector, to form a 128-bit vector of two 
doublewords, four words, eight halfwords, or 16 bytes. 

Intrinsics are very useful when you are manually SIMDizing your code. If you are coding at this 
level, be sure to place small structures that must be accessed by mutual exclusion in their own 
cache line, so they can be operated on by the intrinsic equivalents of the MFC atomic 
commands, getllar, putllc, putlluc and putqlluc (Section 19.2.1 DMA Commands on 
page 516). However, it might not be appropriate to use intrinsics in all cases. For example, if you 
are relying on the compiler to perform SIMDization, it is best to let the compiler select the appro-
priate assembly-level instructions. 

The major advantage of using intrinsics is that they provide full control over the handling of data 
alignment and the selection of SIMD instructions, yet still provide the benefits from the compiler’s 
other optimizations such as loop unrolling, function inlining, scheduling, and register allocation. In 
addition, you can normally rely on the compiler to generate scalar code, such as address, 
branch, and loop code. Such code is error-prone when coded manually in assembly language. 
Furthermore, it is much easier to modify code that uses intrinsics than it is to maintain assembly 
code. 

In addition to the hundreds of intrinsics at your disposal, a compiler may provide the special 
directives that are summarized in Appendix B.2.5 on page 791. For example, branch prediction 
can be helped with feedback-directed optimization:

int __builtin_expect(int exp, int value)

This instructs the compiler that exp is expected to equal value. 

The __align_hint directive enables compiler analysis and optimization for pointers. It provides 
compilers with information that is needed for auto-SIMDization:

__align_hint(ptr, base, offset)

Here, ptr points to data with the base alignment of base and an offset from base of offset. 
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The most important tool for efficient, highly optimized low-level assembly code is your compiler. 
See its documentation for a description of compiler optimizations that you can enable for your 
program. 

21.5.2 Compiler Support for Single Shared-Memory Abstraction

Manually partitioning code and data among the PPE and the SPEs, and manually managing 
transfers of code and data between main storage and SPEs’ LSs, are great burdens on a 
programmer. A programmer is accustomed to viewing a computer system as possessing a single 
addressable memory in which all program data reside. 

In the CBEA processors, the LSs, which are directly addressable by their respective SPUs, are 
memories separate from the vastly larger main storage. Each SPE can initiate DMA transfers 
between its LS and main storage. The compiler, under certain conditions, can also initiate DMA 
transfers by explicitly inserting DMA commands. Moreover, there are many optimizations that the 
compiler can perform to optimize these data transfers, especially when memory references are 
regular. The compiler can attempt to abstract the concept of separate memories by allocating 
SPE program data in main storage and automatically managing the movement of this data 
between its home location and a temporary location in an LS. If this movement is done to satisfy 
the demands of an executing SPE program, and if the resulting buffers are organized in such a 
way as to permit reuse, this is referred to as a software cache. See Section 21.5.4 on page 623 
for details about software caches. 

21.5.3 OpenMP Directives

Many compilers support some set of OpenMP directives. OpenMP is a parallel programming 
model for shared-memory systems. Pioneered by Silicon Graphics, Inc. (SGI), it is now 
embraced by most of the computing industry and is exhaustively documented at 
http://www.openmp.org. The book Parallel Programming in OpenMP, by Chandra et al., is 
another good source, as is Parallel Programming with OpenMP at 
http://www.osc.edu/hpc/training/openmp. 

OpenMP directives are instructions to the compiler to perform tasks in parallel. In Fortran, they 
are expressed as source-code comments; in C and C++, they are expressed as a #pragma. All 
OpenMP directives in C and C++ are prefixed by, #pragma omp. A typical OpenMP directive looks 
like this one, which says that individual iterations of the loop are independent and can be 
executed in parallel: 

#pragma omp parallel for
for (int i = 0; i < 1000; i++)

big_calc(x[i]);

OpenMP includes a small set of runtime library routines and environment variables. These 
routines are designed to be thread-safe. The environment variables can be used to control 
thread behavior such as spin, yielding, and thread binding. Also, each thread created by 
OpenMP has its own stack that is off the heap. The compiler often has flags to control the default 
stack size for each thread. Without this functionality, a program might easily run out of memory.

http://www.openmp.org
http://www.openmp.org
http://www.osc.edu/hpc/training/openmp
http://www.osc.edu/hpc/training/openmp
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The basic execution model for OpenMP is the fork and join model. OpenMP provides two parallel 
control constructs. The first control construct is the parallel directive. It encloses a block of code 
and causes new threads of execution to be spun off to execute that block of code. The second 
control construct is a mechanism that divides work among a group of already-existing parallel 
threads. 

Variables can be declared shared, which means they have a single storage location during the 
execution of a parallel section. In contrast, a variable can be declared to be private. It will have 
multiple copies: one within the execution context of each thread. There are different flavors of 
private, including threadprivate, firstprivate, and lastprivate. The latter two include an 
element of shared storage behavior. Finally, a variable can be declared to be a reduction vari-
able. Reduction variables have both private and shared storage behavior. A common example is 
the final summation of temporary local variables at the end of a parallel construct. 

OpenMP provides mutual exclusion and event synchronization as ways for multiple OpenMP 
threads to communicate with each other. The directives critical and barrier can be used. 

OpenMP allows programmers to specify loops, loop nests, or code sections that may be 
executed in parallel. This, of course, relies heavily on the programmer doing the initial data and 
task analysis, to make sure that sections marked for parallelization are safe to parallelize. 
Although OpenMP is a shared memory model, it can also be implemented for distributed memory 
systems. In the case of the CBEA processors, an SPE’s LS is not shared memory, but a compiler 
can simulate shared memory for SPEs using a combination of a software-managed cache 
(Section 21.5.4 on page 623) and DMA-transfer optimizations (Section 24.1.2 on page 692). 

An OpenMP implementation typically uses a runtime library. The runtime library includes func-
tions for initialization, work distribution, and synchronization of data, as well as control flow. The 
compiler can insert calls to runtime library functions appropriate to the OpenMP directives 
contained in the source code. The OpenMP master thread runs on the PPE and uses the runtime 
library to distribute work to the SPEs. The master thread itself partakes in all work-sharing 
constructs. This thread also handles all operating system service requests. The PPE runtime 
library can include the facility to spawn new SPE threads and terminate them. When a new SPE 
thread is spawned, it can continuously loop, waiting for the PPE to assign work items to it. A work 
item specifies a handle that determines the function to execute, any input parameters, and if 
needed, the current address of the stack in main storage. 

Such a runtime library requires communication between the PPE and the SPEs to coordinate 
execution. SPEs can use explicit DMA commands to read work items assigned to them from a 
circular queue that is shared with the PPE. The Cell Broadband Engine Architecture also 
includes more efficient communication channels in the form of signal notification and mailbox 
facilities. The PPE can use asynchronous signals to inform an SPE that there is work available, 
or that it should terminate. The SPEs can use the mailbox facility to update the PPE on the status 
of their execution.

Several factors complicate the implementation of OpenMP on the CBEA processors. There are 
two distinct instruction sets. Certain code sections may be executed on both the PPE and the 
SPEs. Because the SPEs are not designed to run an operating system, certain code sections 
such as system calls must execute on the PPE. The compiler must identify data in main storage 
that is accessed in SPE code sections, and it must insert DMA commands at appropriate points 
to transfer this data to and from the SPE LSs. The SPE LSs are limited to 256 KB, and this space 
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contains both the code and data that is executing on the SPE. The compiler might need to split 
SPE code into multiple partitions if it does not fit in the limited SPE LS (see Section 14 on 
page 397 for some alternatives). 

The challenge for the compiler is to efficiently manage all this complexity while still enabling the 
performance potential of the CBEA processors. To do so, the compiler must:

• Minimize the amount of data that needs to be transferred using DMA commands. 

• Align some data in main storage for efficient DMA transfers. 

• Issue DMA commands early in the code to overlap computation and communication. 

• Carefully choose the size of code partitions and individual data transfers. 

For details about OpenMP in the context of SIMD programming, see Section 22.4.1 on page 674. 

Here are some things a programmer can do to get better performance when using a compiler 
that supports OpenMP:

• Choose intelligent values for OpenMP attributes like scheduling and number of threads.

• Minimize use of pointers in parallel code, to enable more precise compiler analysis.

• Lay out shared data structures carefully, paying attention to locality of data in the context of 
parallel execution.

• Use alignment and other intrinsics to guide compiler analysis.

21.5.4 Compiler-Controlled Software Cache

An SPE’s local storage (LS), which is filled from main storage using software-initiated DMA trans-
fers, can be regarded as a software-managed cache (or simply software cache). Although most 
processors reduce latency to memory by using hardware caches, an SPE uses its DMA-filled LS. 
The approach provides a high degree of control, but it is advantageous only if the DMA transfer-
size is sufficiently large and the DMA command is issued well before the data is needed, 
because the latency and instruction overhead associated with DMA transfers exceeds the 
latency of servicing a cache miss on the PPE. 

When compiling SPE code, the compiler can identify references to data in main storage that have 
not been optimized using explicit DMA transfers, and the compiler can insert code to invoke the 
software-managed cache mechanism before each such reference. The call to the software cache 
takes a main-storage address and returns an address in the SPE LS that contains the corre-
sponding data. The SPE code is generated by a compiler code generator that is different from 
the one that generates PPE code. Symbols that refer to main storage will have space allocated to 
them when the PPE code is compiled and linked. The SPE code does not have access to these 
addresses until it is linked with the PPE code at the very end. During compilation, the compiler 
can create new symbols—local table of contents (TOC) entries—in the SPE code as place-
holders for the main storage addresses. The correct values for these symbols can be filled in 
when the PPE and SPE code sections are linked together.

To support the software cache, a separate directory is maintained in each SPE. The compiler, 
using interprocedural analysis, replaces a subset of load and store instructions with instructions 
that explicitly look up the effective address of the data in a directory. If the directory lookup indi-
cates that the data is present in the LS, the address of the requested variable cached in the LS is 
computed and the load or store proceeds using this LS location. Otherwise, a miss-handler 
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subroutine is invoked and the requested data is transferred from main storage. As is typical in 
hardware caches, the directory is updated and typically another line is selected for eviction, to 
make room for the new data. 

Figure 21-1 on page 625 illustrates a software-cache lookup. Starting with the address of the 
required variable in the left-most (or preferred) slot of an SPE register, instructions are executed 
to produce the address of the appropriate directory entry in the Tag Array. This task consists of 
masking out all bits in the address except for those that are used to index into the Tag Array. The 
cache-line size for the CBEA processors is 128 bytes. By also making the directory entry 128 
bytes long, the index obtained after masking does not need to be shifted right and multiplied, and 
it can be used directly as an offset into the Tag Array. 

This example shows a 64 KB 4-way cache, so there are also 128 lines in each way, and the 
index is thus also 7 bits. To this offset we add the base address of the Tag Array, and using this 
address we load two consecutive quadwords from the array. The first contains four tags, for the 
four ways of the cache, and the second contains the LS addresses of the four lines in the Data 
Array. Independent of this computation, the data address is replicated in all four slots of another 
register. This register is then masked twice to produce, in the first instance, four identical tags, 
and in the second, a register containing the offset in the line of the required data. These two 
instruction sequences are independent and may be scheduled for parallel execution. We now do 
a SIMD compare of the loaded tags and the replicated tag from our data address. If any of the 
comparisons contains the tag we are seeking, then the 128-bit result of the compare will be 
nonzero, and we can use this to test for a hit. If the result is zero, we have a miss and the miss 
handler (not shown in the figure) is invoked. 
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The call to the miss handler need not be expanded by the compiler until very late, so it does not 
appear as a call to the compiler optimizations. This allows the common case, which we assume 
to be a hit, to suffer no penalty due to the call setup, but it also means that the miss handler 
cannot use the system-register conventions. If there is a hit, as shown in Figure 21-1, we can use 
the result of the compare to determine the rotation needed to place the correct line address in the 
preferred slot, making it ready to be used as a LS address. Finally, we add the line offset to the 
line address, and we load the required data. Store processing proceeds in much the same way, 

Figure 21-1. Software-Cache Lookup 
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but additional instructions are required to set the dirty bits. These bits, which are stored in the 
Tag Array entry, are used to ensure correct execution when multiprocessing (“correct execution” 
here means ensuring that updates are correctly reflected in main storage). 

It takes roughly 12 instructions to process a cache hit, and a similar number to set dirty bits for a 
store, but because some of these instructions are dual-issued, and there is often other indepen-
dent work that can be simultaneously scheduled, the cost in cycles is not high. Still, it is clearly 
important to attempt to reduce the number of cache lookups inserted when compiling a program.

This software cache can be used for either a serial or a parallel program. There is some addi-
tional cost involved in supporting parallel execution, because we must keep track of which bytes 
in a cache line have been modified to support multiple writers of the same line. If the compiler 
knows that no data will be shared between SPEs (for example, in the case of a serial SPE appli-
cation), the additional cost of maintaining these dirty bits can be avoided.

Because the compiler must deal with the potential for aliases between cached data and data 
obtained by other means (for example by means of explicit prefetch in the compiler’s tiler), the 
miss handler is required to take more care in choosing a line to be evicted than is normally the 
case with a hardware implementation.

21.5.5 Compiler and Runtime Support for Code Partitioning

Because the limited LS of each SPE must accommodate both code and data, there is always a 
possibility that a single SPE object will be too large to fit in the LS. Compilers can provide a code-
partitioning technique to reduce the impact of the LS limitations on the program’s code segment. 
This approach can be used standalone with an SPE compiler or by programmers choosing to 
manually partition their algorithms. When using OpenMP with single source compilation, the 
code partitioning can be integrated with the data software cache to allow for the execution of 
large functions with large data sets to run seamlessly across multiple SPEs. 

In one approach to code partitioning, the compiler is used to automatically divide the SPE 
program into multiple partitions. The basic unit of partitioning is a function. Just as with data in the 
software-cache approach, the home locations of code partitions are in main storage. These SPE 
code partitions are overlaid during linking. That is, they are all assigned to the same starting 
virtual address. SPE code can then fit into a virtual-address space equal to the size of the largest 
code partition. Because the compiler determines how code is partitioned, it controls the partition 
size, and thus controls the amount of space used in the LS for code. 

The overlaid partitions cannot execute at the same time. This implies that if code in one partition 
calls a function in another partition, the two partitions need to be swapped in and out of the LS at 
the point of the function call and return. To run a partitioned program, such partition transitions 
must be handled properly, and this can be done collaboratively by the compiler and a runtime 
partition manager. 

When the compiler partitions SPE code, it can also reserve a small portion of the SPE LS for the 
runtime partition manager. The reserved memory can be divided into two segments: one to hold 
the continuously resident partition manager, and the other to hold the active code partition. The 
code partitions need to be relocatable, which implies that function calls should not use absolute 
addressing. The partition manager is responsible for loading partitions from their home location in 
main storage into LS during an interpartition function call or an interpartition return. The compiler 
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can modify the original SPE program to replace each interpartition call with a call to the partition 
manager. The partition manager also modifies the return address on the stack before branching 
to the called function to ensure that control returns to the partition manager first. 

When an interpartition call is directed through the partition manager, a function pointer and argu-
ments to the function are passed to the partition manager. The partition manager must determine 
which partition contains the called function. For this purpose, the compiler can assign an index to 
all partitions it creates, and it can encode the corresponding index in the function pointer that is 
passed back to the partition manager. An SPE pointer is 32 bits, but because the LS is 256 KB, 
only 18 bits are used. Of the 14 unused bits, 13 bits can be used for the partition index (the most-
significant bit can be used to indicate special handling for calls to certain library functions). 

For example, an interpartition call to function foo in partition 3 can be transformed from foo 
(arg1, arg2, ...) to call_partition_manager(3<<18 | foo, arg1, arg2, ...). The partition 
manager fetches the correct partition using the partition index, and transfers control to the proper 
location within the partition by using the lower 18 bits of the function pointer. 

21.5.6 Thread Library

Most CBEA processor software systems include a thread library, and many such libraries follow 
the Portable Operating System Interface (POSIX) definition, documented as POSIX threads 
explained at http://www-128.ibm.com/developerworks/linux/library/l-posix3/index.html. A thread 
library can be used to create, manage, and terminate threads of execution, manage access to 
shared data using mutexes and condition variables, and distribute and manage workloads 
among threads. 

Although programming directly with threads is powerful, it puts a burden on the programmer. You 
are responsible not only for protecting access to all shared data, but also partitioning and allotting 
chunks of work among threads. You need to explicitly manage a fork and join model or some 
other programming model. A program that explicitly uses threads can be a challenge to debug, 
unless you have access to a debugger that has been taught to track threads of execution. 

Excellent books are available on this subject. Programming with Threads, by Steve Kleiman is a 
good place to start. Threads Primer: A Guide to Multithreaded Programming, by Bill Lewis is a 
gentle introduction. There are also many good Web sites. 

http://www-128.ibm.com/developerworks/linux/library/l-posix3/index.html
http://www-128.ibm.com/developerworks/linux/library/l-posix3/index.html
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22. SIMD Programming

22.1 SIMD Basics

Both the PowerPC Processor Element (PPE) and the Synergistic Processor Elements (SPEs) 
support parallel processing of Single Instruction Multiple Data (SIMD) vector elements. A vector 
is an instruction operand containing a set of data elements packed into a one-dimensional array, 
as shown in Figure 22-1. In the Cell Broadband Engine Architecture (CBEA) processors1, the 
vector elements can be fixed-point (integer) or floating-point values. Almost all vector/SIMD 
multimedia extension and synergistic processor unit (SPU) instructions operate on vector oper-
ands. Vectors are also called SIMD operands or packed operands. 

As the SIMD name implies, this style of programming allows one instruction to be applied to the 
multiple data elements of a vector in parallel. In this way, SIMD processing exploits data-level 
parallelism. SIMD programming is prevalent in multimedia, graphics-intensive stream processing 
(such as gaming), and high performance computing—basically, in any compute-intensive appli-
cation. The CBEA processors are designed to operate efficiently on SIMD code, so programmers 
benefit from learning how to efficiently exploit data parallelism in their programs and how to take 
advantage of compiler optimizations for SIMD code. 

Support for 128-bit-wide SIMD operations is pervasive in the CBEA processors. In the PPE, 
these operations are supported by the 32-entry vector register file, vector/SIMD multimedia 
extensions to the PowerPC instruction set, and C/C++ intrinsics for the vector/SIMD multimedia 
extensions, as summarized in Section 2 on page 51. In the SPEs, SIMD operations are 
supported by the 128-entry vector register file, SPU instruction set, and C/C++ intrinsics, as 
summarized in Section 3 on page 65. In both the PPE and SPEs, the vector registers hold 
multiple data elements as a single vector. The data paths and registers supporting SIMD opera-
tions are 128 bits wide, corresponding to four full 32-bit words. This means that four 32-bit words 
can be loaded into a single register, and, for example, added to four other words in a different 
register in a single operation. Similar operations can be performed on vector operands containing 
16 bytes, 8 halfwords, or (for the SPEs) 2 doublewords.

In a traditional vector processor, multiple vector elements (typically up to 64) are processed one 
after another, in a pipelined fashion. Registers are very wide—each one holding, for example, 64 
vector elements of 64 bits each—but there are only a small number of such registers (for 
example, eight). These processors have elaborate memory instructions, such as gather data and 
scatter data, that use a vector register as an index into another array. For example, two vector 
loads can be used to fetch the values of a[b[0...63]], as detailed below: 

r1 = vector load b[0..63]; 
r2 = indirect vector load into array of a, using r1 as index 

1. The Cell Broadband Engine (Cell/B.E.) and PowerXCell 8i processors are collectively called CBEA processors.

Figure 22-1. A Vector with Four Elements 

Vector Element 0 Element 1 Element 2 Element 3



Programming Handbook

Cell Broadband Engine  

SIMD Programming
Page 630 of 884

Version 1.11
May 12, 2008

In contrast, a SIMD processor, such as an SPE, stores fewer vector elements in each register but 
it has far more of such registers. The memory unit of a SIMD processor is more similar to the 
memory unit of a scalar load-store processor than to the memory unit of a traditional vector 
processor. The most important distinction is that, in the newer SIMD processors, memory 
accesses must be aligned on 16-byte boundaries, and loads and stores operate only on 16 bytes 
at a time. Architectures that support only loads and stores that are aligned to the vector-register 
length, such as the CBEA processors, are called architectures with alignment constraints. An 
aligned reference means that the required data resides at an address that is a multiple of a vector 
register’s 16-byte width. 

This section describes some basic techniques of SIMD application programming and the reasons 
behind it—such as techniques used by compilers to extract parallelism from SIMD application 
programs. The material is intended for both application programmers and compiler writers. Some 
material is of particular interest to compiler writers. Nevertheless, an understanding of the 
compiler-related concepts is very useful for application programmers who want to get the best 
performance from their programs. 

22.1.1 Converting Scalar Data to SIMD Data

Depending on performance requirements and code size constraints, advantages can be gained 
by properly grouping the data that represent the elements of SIMD vectors. 

When scalar code for an SPE is fed to a compiler, the compiler’s back-end code generator will 
typically expand a scalar load as read-aligned and a scalar store as a read-modify-write code 
sequence. This results in large code size with less than optimal performance. When the code is 
SIMDized (manually by the programmer or automatically by the compiler), such expansion of 
scalar code does not occur. The expansion of scalar code also does not occur in the case of the 
PPE, because the PPE has full-featured scalar units 

22.1.1.1 Organizing Data

Although there are several methods of organizing data, two forms are commonly used for SIMD 
data: an array-of-structures (AOS) form and a structure-of-arrays (SOA) form. Both are described 
in the following sections. For explanation purposes, 3-D homogeneous vertex coordinates will be 
used as the basic data type. Such a vertex consists of four floating-point components, x, y, z, and 
w.

Array Of Structures

The AOS form—also known as the vector-across or vec-across form—is shown in Figure 22-2 on 
page 631. In this form, the vertex coordinates are structures, and several such structures repre-
sent an array of vertices. All components of a single vertex have the same color in Figure 22-2. 
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In the AOS form, a set of vertices can be represented as an array of structs:

union { 
    struct _coordinate{ 
        float x, y, z, w; 
    } coordinate; 
    vector float vertex; 
} array[]; 

This union specifies four single-precision floating-point values x, y, z, and w, which can be 
treated either as individual components, accessible one at a time, or as part of the packed vector, 
named vertex, accessible in a single vector operation. 

Structure Of Arrays

The SOA form—also known as the parallel-array form—is shown in Figure 22-3. In this form, 
which is orthogonal to the AOS form, the components of the vertices are separated into indepen-
dent arrays. These arrays are arranged so that each vector contains a single component from 
four independent vertices. As in Figure 22-2, all elements of a single vertex have the same color 
in Figure 22-3. 

In the SOA form, a set of vertices can be represented as a struct of arrays:

struct { 
    float x[]; 
    float y[]; 
    float z[]; 

Figure 22-2. Array-of-Structures (AOS) Data Organization 
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    float w[]; 
} vertices; 

If data is stored in the AOS form, the spu_shuffle intrinsic can be used to transform it to the SOA 
form, and vice versa.

Converting Between AOS and SOA Organization

Converting between the AOS vectors (A, B, C, D) shown in Figure 22-2 on page 631 and the 
SOA vectors (A, B, C, D) shown in Figure 22-3 entails performing a 4 × 4 matrix transpose. An 
efficient transpose can be accomplished using only two shuffle patterns, as follows:

vector unsigned char hi = ((vector unsigned char){ 
0x00,0x01,0x02,0x03,0x10,0x11,0x12,0x13,0x04,0x05,0x06,0x07,0x14,0x15,0x16,0x17});

vector unsigned char lo = ((vector unsigned char){ 
0x08,0x09,0x0A,0x0B,0x18,0x19,0x1A,0x1B,0x0C,0x0D,0x0E,0x0F,0x1C,0x1D,0x1E,0x1F});
  
tmp1 = spu_shuffle(A, C, hi);
tmp2 = spu_shuffle(A, C, lo);
tmp3 = spu_shuffle(B, D, hi);
tmp4 = spu_shuffle(B, D, lo);

A = spu_shuffle(tmp1, tmp3, hi);
B = spu_shuffle(tmp1, tmp3, lo);
C = spu_shuffle(tmp2, tmp4, hi);
D = spu_shuffle(tmp2, tmp4, lo); 

22.1.1.2 Triangle-Subdivision Example

As an example of SIMDizing an algorithm, consider subdividing a single triangle into multiple 
smaller triangles, as shown in Figure 22-4. This is known as triangle subdivision. The original 
triangle is defined by the three vertices: a, b, and c. Two levels of subdivision results in a subdi-
vided triangle consisting of 16 smaller triangles defined by 15 vertices. 

Figure 22-4. Triangle Subdivision 

subdivide

a b

c
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For this algorithm, there are several methods of exploiting SIMD parallelization in the generation 
of the subdivided vertices. Reviewing these methods should inspire programmers to consider 
alternate, nontraditional, methods that can result in more efficient solutions, in both development 
time and execution performance.

Method 1: Evaluate One Vertex at a Time Using AOS

In the AOS data-organization form (Figure 22-2 on page 631), the coordinates for each vertex 
are packed into a vector. The three vertices that describe the original triangle in Figure 22-4 on 
page 632 can be represented as three vectors of four elements each. Each vertex is then evalu-
ated one at a time. Performance can be improved by unrolling the loops and evaluate several 
vertices at a time. The additional instructions within the loop can be interleaved, manually or by 
the compiler, so that dependent-instruction latency can be hidden.

Although the AOS form is a natural fit for 3-D vertices exploiting SIMD methods, it is typically not 
the most efficient. Efficiency is compromised when the 3-D vertices have only three components. 
In addition, geometric operations such as dot products and cross products are not ideal. Dot 
products on the AOS form generate scalars, and cross products require vertex-component reor-
dering.

Method 2: Evaluate One Vertex at a Time Simultaneously for Four Triangles Using SOA

Another way to subdivide the triangle is to evaluate one subdivision vertex at a time, over four 
independent triangles. In this approach, which uses the SOA data-organization form (Figure 22-3 
on page 631), each vector is populated with independent data, so a program can be developed 
as though the algorithm were operating on scalar data. Each vertex component—for example, 
the x component of each of four triangle vertices—is stored in a single vector. 

Think of the data as if it were scalar, and the vectors were populated with independent data 
across the vector. This differs from the AOS form, in which the four values of each vertex are 
stored in one vector. Figure 22-3 on page 631 shows the use of SIMD vectors to represent the 
four single-precision floating-point values x, y, z, and w for one vertex of four triangles. Not only 
are the data types the same across the vector, but now their data interpretation is the same. 
Depending on the algorithm, software might execute more efficiently with this SOA data organi-
zation than with the AOS organization shown in Figure 22-2 on page 631.

Assuming that the algorithm can be independently and simultaneously performed on multiple 
data objects, this approach often is the most efficient.

Method 3: Evaluate Four Vertices at a Time Using SOA

A third approach is to evaluate four vertices at a time for a single subdivided triangle. In this case, 
the vertex component data is replicated across the vectors. Unique weighting factors are main-
tained in each element of the vector, so that four subdivided vertices can be computed in parallel. 
However, inefficiency can result when the number of subdivision vertices is not a multiple of four. 
In the case of the two levels of subdivision shown in Figure 22-4 on page 632, three iterations of 
four vertices and one iteration of three vertices are performed. 



Programming Handbook

Cell Broadband Engine  

SIMD Programming
Page 634 of 884

Version 1.11
May 12, 2008

22.1.2 Approaching SIMD Coding Methodically

Two of the principal objectives of SIMD programming are:

• Extract parallelism from both loops and basic blocks.

• Satisfy the constraints of data alignment2, data-size conversions, and data stride3. 

These objectives can be achieved in both SPE code and PPE vector/SIMD multimedia extension 
code. 

Consider the execution of the following loop:

for (i=0;i<65;i++) a[i+2] = b[i+1] + c[i+3]

This loop can be performed in a traditional sequential way as shown in Figure 22-5 on page 635. 
Here, the first pair of 32-bit operands, b[1] and c[3], are loaded from their respective addresses 
in memory using standard (nonvector) load instructions. Then, they are added together, and the 
result, a[2], is stored using a standard (nonvector) store instruction. This produces a correct 
result, but the operands and the result are offset from one another, relative to the alignment of 
vectors of which they could be a part, so the method cannot be SIMDized without some realign-
ment of the operands. 

2. Alignment on 16-byte boundaries.
3. A data stride is a memory access pattern in which each element in a list is accessed sequentially.
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Figure 22-5. Traditional Sequential Implementation of a Loop 
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22.1.2.1 Simple, Incorrect SIMDization

A simple, but incorrect, SIMD implementation of the loop is illustrated in Figure 22-6. Here, 
vector-load instructions (called vload in this example) load the complete four-element vectors 
containing the b[i] and c[i] words. Then, a vector-add instruction sums the four pairs of vector 
elements in parallel. However, the result is not correct because the alignments of the b[i] and 
c[i] vector elements within the vector registers do not match—the b[1] element is added to c[1] 
rather than to c[3]. 

Figure 22-6. Simple, Incorrect SIMD Implementation of a Loop 

b0. . . . . .b1 b2 b3 b4 b5 b6

16-Byte Boundary

b7

c0. . . . . .c1 c2 c3 c4 c5 c6 c7

for(i=0;i<65;i++) a[i+2] = b[i+1] + c[i+3]

vload b[1]

vadd

Offset = 4

. . .b0 b1 b2 b3 b4 b5 b6 b7

vload c[3]

Offset = 12

. . .c0 c1 c2 c3 c4 c5 c6 c7

Data
No

Data

Words in Register

Words in Memory

Value of Interest

b0+
c0

b1+
c1

b2+
c2

b3+
c3



Programming Handbook

 Cell Broadband Engine

Version 1.11
May 12, 2008
 

SIMD Programming
Page 637 of 884

22.1.2.2 Simple, Correct SIMDization

A simple, and correct, SIMD implementation of the loop is illustrated in Figure 22-7 on page 638. 
It uses operations, called stream-shift operations, which shift memory loads or stores the right or 
left to align vectors within registers. A stream is a sequence of contiguous memory locations that 
are accessed by a memory reference throughout the lifetime of a loop (also called a memory 
stream), or a sequence of contiguous register values that are produced by an operation over the 
lifetime of a loop (also called a register stream). 

In the Figure 22-7 example, each memory stream is shifted left, by different amounts, to place 
the vector elements, b[1] and c[3], at corresponding register locations. A vector-add instruction 
sums the four pairs of elements in parallel, and these additions are repeated for subsequent 
vectors. A final stream-shift operation, to the right, is used prior storing the results so that the first 
result, a[2], is stored in the expected memory location. 
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Figure 22-7. Simple, Correct SIMD Implementation of a Loop 
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22.1.2.3 Optimized, Correct SIMDization

An optimized, and correct SIMD implementation of the loop is illustrated in Figure 22-8. Here, the 
b[1] memory stream is shifted right and the c[3] memory stream is shifted left, so that both the 
b[1] and c[3] elements align at the same register position from which the result can be stored 
back to memory without stream-shifting. The advantage of this method, compared with that in 
Figure 22-7 on page 638, is the elimination of the last stream-shift. 

Figure 22-8. Optimized, Correct SIMD Implementation of a Loop 
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22.1.2.4 SIMDization Code Structure for a Loop

The basic code structure for the SIMDization of a loop is:

<SIMDization prolog>
for(i=0; i<65; i+=4)

<SIMDization loop body>
<SIMDization epilog>

The SIMDization prolog (Figure 22-10 on page 642) is used if the data to be stored is misaligned. 
The SIMDization epilog (Figure 22-11 on page 643) is used, depending on the requirements for 
store alignment and the loop’s trip-count. 

22.1.2.5 Implementing Stream-Shift Operations on Data

Figure 22-9 on page 641 shows how to implement stream-shift operations using shuffle opera-
tions (the shufb instruction for an SPE, or the vperm instruction for the PPE). The operations on 
b[i] require a stream of vectors, starting at memory address b[1], in vector registers. To obtain 
this, the vector that contains b[1]—the vector that begins at address b[0] in memory—is first 
loaded into a vector register with a vector-load instruction, followed by similar loads of subse-
quent vectors. After the loads are complete, shuffle operations are performed on the contents of 
the registers so that the b[1] element in the first vector is shifted from register offset 4 to offset 0. 
This operation is denoted in the figure as streamshift(4,0), indicating that offset 4 is moved to 
offset 0. The pattern for either the vperm or shufb operation for streamshift(4,0) is: 
(x‘04050607’, x‘08090A0B’, x‘0C0D0E0F’, x‘10111213’). 

Similar stream-shift operations are performed on the vector stream containing c[3]. Then, the 
adds and a store are performed, as shown in Figure 22-8 on page 639. 
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Figure 22-9. Implementing Stream-Shift Operations for a Loop 
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22.1.2.6 The Prolog

Figure 22-10 shows how to implement a SIMDization prolog, which is used if the data to be 
stored is misaligned:

1. The vector that contains a[2]—the vector that begins at address a[0] in memory—is loaded.

2. The b[i] and c[i] streams are loaded and added as in Figure 22-8 on page 639. 

3. The most-significant two elements of the a[i] vector and the least-significant two elements 
of the first add result are selected.

4. The result of the select is stored, starting at the memory address of a[0]. 

Figure 22-10. SIMDization Prolog 
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22.1.2.7 The Epilog

Figure 22-11 shows how to implement a SIMDization epilog, which depends on the requirements 
for store alignment and the loop’s trip-count. In this example, the trip count is 66. Thus, the last-
computed vector result has only three of its four elements with valid data. To handle this:

1. The a[i] vector containing the last element, a[66], is loaded.

2. This a[i] vector and the three valid result elements are selected. 

3. The vector containing the a[66] result is stored. 

Figure 22-11. SIMDization Epilog 
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22.1.2.8 Machine-Independent Pseudocode

The machine-independent pseudocode result of the preceding SIMDization operations—before 
software pipelining of adjacent loads—follows. The code is based on the following assumptions:

• All operations are on vectors.

• Loads and stores are normalized to truncated addresses.

• For SPE application, the splice, shiftpairl, and shiftpairr operations are data-reorganization 
operations that map to the spu_shuffle or spu_sel intrinsics. 

i = 0;
a[i] = splice(a[i], shiftpairr(b[i - 4], b[i], 4) + shiftpairl(c[i - 4], c[i],4), 8);
i=4;
do {
   a[i] = shiftpairr(b[i-4], b[i], 4) + shiftpairl(c[i-4], c[i],4);
   i = i + 4;
} while (i < 65-4);
a[i] = splice(shiftpairr(b[i-4], b[i],4) + shiftpairl(c[i-4], c[i], 4), a[i],12));

22.1.2.9 Typical SPE Code

A typical example of actual code for an SPE—after software pipelining of loads, loop normaliza-
tion, and address truncation—follows. 

extern vector unsigned int a[], b[], c[];            // quadword aligned 

int i;
vector unsigned int tc, tb, oldSPCopy0, oldSPCopy1; 

vector unsigned char patt_b = (vector unsigned char){12,13,14,15,16,17,18,19,
                                                      20,21,22,23,24,25,26,27};
vector unsigned char patt_c = (vector unsigned char){4,5,6,7,8,9,10,11,
                                                      12,13,14,15,16,17,18,19}; 

tc = c[1];
tb = b[0]; 

a[0] = spu_sel(a[0],spu_add(spu_shuffle(b[-1],tb,patt_b), 
             spu_shuffle(c[0], tc,patt_c)), (vector unsigned int)spu_maskb(255));

i = 0;
do {
   oldSPCopy0 = tc;
   oldSPCopy1 = tb; 

   tc = c[i+2];
   tb = b[i+1]; 
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   a[i+1] = spu_add(spu_shuffle(oldSPCopy1,tb,patt_b), 
                    spu_shuffle(oldSPCopy0,tc,patt_c)); 

   i = i + 1;
} while (i < 15); 

a[16] = spu_sel(spu_add(spu_shuffle(tb,b[16],patt_b), 
           spu_shuffle(tc,c[17],patt_c)), a[16],(vector unsigned int)spu_maskb(15));

22.1.3 Coding for Effective Auto-SIMDization

Before going further into the subject of SIMD programming, here are some general application-
programming guidelines for writing code that can be effectively SIMDized by a compiler—a 
method called auto-SIMDization: Details about why these methods work well are described in 
subsequent sections. 

22.1.3.1 Organize Loops

Organize loops so that they can be auto-SIMDized. This might not be easy, but it is possible. 
Such loops should be inner-most loops. They should use the for loop construct, not the while 
loop construct; the while loop construct is not SIMDizable. 

Constant Trip Count

A constant trip count4 is best. But in any case, the trip count should be more than three times the 
number of elements per vector. Loops with long trip count results in more efficient SIMDization. 
Generally, a trip count of more than three times the number of elements per vector is sufficient for 
SIMDization. But shorter loops might also be SIMDizable, depending on their alignment and the 
number of statements in the loop. For example, a loop such as:

for(i=0; i<4;i++) a[i] = xxx;

This loop has a trip count of four and an array, a[i], of int. It can be auto-SIMDized if a[0] is 
aligned. 

The reason that the trip count should be more than three times the number of elements per 
vector is because there must be at least one iteration in the loop for auto-SIMDization to work. 
Because the prolog and epilog can each require one iteration, three iterations of the loop might 
be required if the loop has more than two statements and the compiler knows nothing about the 
alignment. 

Declare Constant Loop Bounds

Use #define to declare constant loop bounds. Doing so increases the reliability that the compiler 
will use the correct constant. 

4. “Trip count” is the number of iterations in a loop. 
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Use the Select Operation for Conditional Branches

Loops that contain if-then-else statements might not always be SIMDizable. However, if the if-
then-else statement has a common left-hand variable and can be expressed using the C-
language :? (colon question-mark) operator, the code will SIMDize using the select bits instruc-
tion. Here is an example of a realizable data-parallel select operation:

for (i = 0; i < VL; i++)
    if (a[i] > b[i])
        m[i] = a[i]*2;
    else
        m[i] = b[i]*3;

22.1.3.2 Organize Data in Memory

Lay out data in memory so that operations on it can be easily SIMDized. 

• Use stride-one accesses. Non-stride-one accesses5 are less efficiently SIMDized, if at all. 
Random or indirect accesses are not SIMDizable. 

• Lay out the data to maximize aligned accesses.

• Use arrays; do not do your own pointer arithmetic in the application to access large data 
structures. Use global arrays that are statically declared. Arrays are aligned to 16-byte 
boundaries.

• If it is not possible to use aligned data, use the alignx directive to indicate to the compiler 
what the alignment is. For example:

#pragma alignx(16, p[i+n+1]);

• If you know arrays are disjoint, use the disjoint directive to indicate to the compiler that the 
arrays specified by the pragma are not overlapping:

#pragma disjoint (*ptr_a, b)
#pragma disjoint (*ptr_b, a)

22.1.3.3 Organize Algorithms

Structure algorithms to reduce dependencies:

• Loops with inherent dependences are not SIMDizable.

• Avoid using pointers when not absolutely necessary. Potential aliasing can confuse the com-
piler. 

5. A stride of one refers to a memory access pattern in which each element in a list is accessed sequentially.
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22.1.3.4 Use Appropriate Computations

Avoid computations that are not SIMDizable, including:

• Function calls are not SIMDizable. Use inline functions or macros in place of function calls. If 
function calls are kept, be sure to enable inlining by the compiler and possibly add an inlining 
directive to make sure that it happens.

• Operations that do not map onto native vector instructions are less SIMDizable. In general, 
all operations except load, branch, and hint-for branch are capable of being mapped. 

22.2 Auto-SIMDizing Compilers

Compilers that optimize for traditional vector processors are called vectorizing compilers. To 
make the distinction between traditional vector processing and SIMD processing, the terms 
SIMDization and SIMDize are used to refer to vectorization on a SIMD processor. 

A compiler that automatically merges scalar data into a parallel-packed SIMD data structure is 
called an auto-vectorizing compiler. Such compilers must handle all the high-level language 
constructs and therefore do not always produce optimal code. Although programming with intrin-
sics gives programmers a direct and powerful way to access the SIMD parallelization of SPU 
operations, this kind of programming can be challenging and time-consuming. In such cases, use 
of an auto-vectorizing compiler is generally less tedious and more productive than hand-coding, 
except perhaps for very critical kernel loops. But even in the latter cases, an auto-vectorizing 
compiler can often achieve performance that is nearly as good as hand-coding with intrinsics.

Although this section, and the remainder of this section, are intended primarily for compiler 
writers, application programmers can benefit from understanding the challenges and limitations 
facing a SIMDizing compiler, so that their application programs can avoid coding styles that are 
not readily SIMDizable by a compiler.

To understand the context of this explanation, consider the following example of SIMDizing a 
loop. The original, scalar loop multiplies two arrays, term by term. In the SIMDized version, the 
arrays are assumed to remain scalar outside of the subroutine, vmult. 

/* Scalar version */
int mult(float *array1, float *array2, float *out, int arraySize) {

int i;
for (i = 0; i < arraySize; i++) {

out[i] = array1[i] * array2[i];
}
return 0;

}

/* SIMDized version for an SPE */
int vmult(float *array1, float *array2, float *out, int arraySize) {

/* This code assumes that the arrays are quadword-aligned. */
/* This code assumes that the arraySize is divisible by 4. */

int i;
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vector float *varray1 = (vector float *) (array1);
vector float *varray2 = (vector float *) (array2);
vector float *vout = (vector float *) (out);

for (i = 0; i < arraySize/4; i++) {
/* spu_mul is an intrinsic that multiplies vectors */
vout[i] = spu_mul(varray1[i], varray2[i]); 

}

return 0;
}

22.2.1 Motivation and Challenges

Compiling for the SPU’s SIMD operations most closely resembles the work done with traditional 
loop-based vectorization, pioneered for vector supercomputers. However, architectural 
constraints for accessing memory and performing vector operations present new challenges. 

22.2.1.1 Misaligned Data

One of the most significant challenges of SIMDization is dealing with misaligned data. Because 
the SPU hardware supports loads and stores only on quadword (16-byte) alignment, SIMDizing 
loops that operate on misaligned data accesses leads to incorrect results. Traditionally, a valid 
vectorization is constrained only by dependences: whether or not data in the loop depends on 
other data being computed first. SIMDization must satisfy three additional alignment conditions:

• The alignment of data in memory dictates the byte-offset in its destination vector register 
when it is loaded. 

• Vector operations must operate on data that are at the same byte-offset in the input vector 
registers.

• Data being stored must be at the same byte-offset in the vector register as the memory align-
ment of the store address. 

22.2.1.2 Scatter-Gather

Scatter-gather refers to a technique for operating on sparse data, using an index vector. A gather 
operation takes an index vector and loads the data that resides at a base address added to the 
offsets in the index vector. A scatter operation stores data back to memory, using the same index 
vector. 

The CBEA processor SIMD Architecture does not directly support scatter-gather in hardware. 
Some processors do support scatter-gather directly in hardware, but this capability comes at a 
great cost to the memory subsystem. Because the CBEA processors do not support scatter-
gather in hardware, the best way to extract SIMD parallelism is to combine operations on data in 
adjacent memory addresses into vector operations. 
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The CBEA processors support only stride-one loads and stores. Only data stored consecutively 
in memory is loaded or stored. Array accesses such as those represented by a[2i+1], where i is 
an iteration index, result in poor memory-access patterns. Random indirect accesses are also a 
potential performance problem. 

The CBEA processor architectural approach has the advantage of providing very efficient 
support for the most common types of memory access, while still providing relatively inexpensive 
support for rarer types of memory access, such as scatter-gather. This architectural approach 
enables the CBEA processors to operate at faster clock speeds and higher compute density than 
would be the case if they supported scatter-gather in hardware. 

22.2.1.3 Packed Data

Because SIMD vectors consist of packed data elements, a compiler writer must keep track of the 
number of data elements in each register. A packed vector refers to the fact that a 16-byte 
register can hold 16 1-byte values, eight 2-byte values, four 4-byte values, or two 8-byte values—
for example, char, short, int, or long long, signed or unsigned. The number of values in a 
register changes when data is converted from one data type to another, such as when a vector of 
1-byte char values is converted to a vector of 2-byte short values. In this case, the original vector 
expands to become two vectors. 

22.2.1.4 Mix of Data Types

The mix of data types in multimedia programs can present problems. Traditional vectorizable 
programs contain loops with a single data type. In contrast, multimedia programs contain a rich 
mix of data types, and converting from one type to another is common. 

Data is often stored as 1-byte char, but operated on as 2-byte short. Without taking care, it is 
easy to use the whole computation bandwidth by operating on eight short values at a time, but 
waste half the memory bandwidth by only storing eight char values at a time. A compiler writer 
must efficiently handle mixed data types in a loop to maximize both computation and memory 
bandwidth. 

22.2.1.5 Nonuniform Instruction Set

Not all data types are equally supported by the SPU instruction set. For example, vectors of 16-
bit integers are the best supported. There is weak support for vector long long (vectors of 64-bit 
integers). There is slow throughput for vector double (vectors of double-precision floating-point 
numbers). 16-bit vector multiply is supported, but 32-bit vector multiply is not. There is no support 
for complex-number arithmetic. 

22.2.1.6 Parallelism Program Scope

Although long-running loops were traditionally targets for optimization on vector processors, the 
relatively short vectors in SIMD Architectures make SIMD programming attractive even for short, 
unstructured computations. In many multimedia programs, SIMD parallelism can be extracted 
from computations among the x, y, and z coordinates of a vertex. Multimedia programs often 
contain manually unrolled loops and loops with a short trip count. A compiler writer must be able 
to extract SIMD parallelism from various program scopes, such as a single basic block, an inner-
most loop, or a loop nest. 
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The CBEA processors provide plenty of support for complex-number arithmetic, such as the 
ability to perform SIMD and shuffle/permute operations. Most of the CBEA processor hardware 
support has been abstracted away from special operations (such as complex-number arithmetic) 
to general operations on SIMD code—(for example, from chars to double). Thus, although there 
is no dedicated hardware for complex-number arithmetic, this results is higher overall perfor-
mance for most SIMD applications.

22.2.1.7 SIMDization Interaction with Other Optimizations

SIMD functional units are more constrained than scalar functional units, SIMD vectors are rela-
tively short, and multimedia programs are complex applications. Because of these consider-
ations, the interaction between SIMDization and other compiler optimizations can be quite 
involved. For example, there is a trade-off between SIMDization and instruction-level parallelism 
(ILP). Without taking care, a compiler can SIMDize a loop but degrade performance. 

Addressing each of these challenges is difficult in itself, but they can and do appear in actual 
applications all at once. The following code fragment exhibits several of these problems: 
misaligned access, length conversion, short loops and available SIMD parallelism across nested 
loops:

short input[], coef[];
for (i=0; i < NInputs; i++) {

int sum = 0;
for (j=0; j < 16; j++) 

sum += input[i+j] * coef[j];
output[i] = sum;

}

22.2.2 Examples of Invalid and Valid SIMDization

Section 22.1.2 Approaching SIMD Coding Methodically on page 634 presents an example of 
invalid and valid SIMDization methods for a loop. This section presents a similar example but 
with a bit more detail. 

Consider the following code fragment, in which integer arrays a, b, and c are quadword-aligned: 

for (i = 0; i < 20; i++) { 
       a[i+3] = b[i+1] + c[i+2];
}

Because there is no loop-carried dependence, the loop can be easily SIMDized for traditional 
vector processors that have no alignment constraints. However, such SIMDized code is invalid 
for SIMD units, such as the CBEA processors, that support only aligned loads and stores. 

Figure 22-12 on page 651 shows the incorrect execution of this loop when it is SIMDized for 
traditional vector processors on hardware with alignment constraints. Consider the first iteration 
of the SIMDized loop in Figure 22-12(a), especially the values of the expression a[3]=b[1]+c[2] 
that are highlighted with red triangles in items (b) through (d). The vload b[1] operation loads 
vector b[0],...,b[3] with b[1] at byte-offset 4 in its vector register. The vload operation is a 
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compiler-internal function, described in Section 22.3.4.1 Streams on page 658. The operation 
vload(addr(i)) loads a vector from a stride-one memory reference described by addr(i). This 
produces a register stream whose byte-offset is the alignment of addr(i).

Similarly, the vload c[2] operation loads c[0],...,c[3] with c[2] at byte offset 8, as shown in 
Figure 22-12 (c). Adding these two vector registers yields the values b[0]+c[0], ..., 
b[3]+c[3], as illustrated in Figure 22-12 (d). This is not the result specified by the original 
b[i+1]+c[i+2] computation.

Figure 22-12. Invalid SIMDization on Hardware with Alignment Constraints 
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A valid vectorization for traditional vector units is only constrained by dependences. This is no 
longer sufficient when SIMDizing for architectures with alignment constraints. A valid SIMDiza-
tion must satisfy these conditions:

• The alignment of data in memory dictates the byte-offset in its destination vector register 
when it is loaded. 

• Vector operations must operate on data that are at the same byte-offset in the input vector 
registers. 

• Data being stored must be at the same byte-offset in the vector register as in the memory 
alignment of the store address. 

Figure 22-13 on page 653 shows one example of a valid SIMDization for the loop with misaligned 
references. A compiler can automatically generate data reorganization instructions to align data 
in registers to satisfy these alignment constraints. Leading and trailing vstore operations require 
store Prolog and Epilog, as described in sections Section 22.1.2.6 on page 642 and 
Section 22.1.2.7 on page 643.
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Figure 22-13. An Example of a Valid SIMDization on SIMD Unit with Alignment Constraints 
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22.3 SIMDization Framework for a Compiler

This section describes how a compiler can provide a SIMDization framework using a set of 
SIMDization algorithms. Although the intended audience is primarily compiler writers, the 
description might also be interesting to application programmers. It explains techniques for effi-
ciently handling alignment and multiple-sourcing of SIMD data, and the conversion techniques 
that can be applied. 

A SIMDization framework is presented that SIMDizes loops primarily with stride-one memory 
accesses. A stride of one refers to a memory access pattern in which each element in a list is 
accessed sequentially. However, the SIMDization framework described accomplishes more than 
SIMDizing the obvious candidates. Some of the features of the framework include:

• SIMD parallelism can be extracted from different program scopes, including basic block, 
inner-most loops, and inner-most loop nests. 

• SIMDization can result in mixed scalar and SIMD code. 

• Loops may contain multiple statements.

• Data inside the loops may have different data types. 

• Loops may convert data from one type to another. 

• Data inside the loops may have mixed lengths.

• Loops that are manually unrolled are SIMDized.

• Operations across vectors (reductions) can be SIMDized.

• Loops may contain induction, reduction, and private variables.

• Both compile-time alignment and runtime alignment can be performed.

• Interprocedural alignment analysis is used to obtain accurate alignment information. 

• Programmer-inserted directives describe alignment of data (for example, the _align_hint 
intrinsic specified by the C/C++ Language Extensions for Cell Broadband Engine Architec-
ture document).

• Redundant sign-extensions are minimized, to reduce unnecessary packing and unpacking 
overhead. 

• Programmer-inserted directives indicate which loops can be parallelized. 

• Diagnostic information is provided on SIMDization failure. 

The approach uses virtual vectors to carry out the early SIMD transformations. These vectors 
have no alignment constraints and can have any length. Compilers gradually devirtualize virtual 
vectors to physical vectors by later SIMD transformations. At that stage, architectural constraints, 
such as alignment and actual vector length, are taken into account. Figure 22-14 on page 655 
shows the six phases of the SIMDization process. 
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SIMDization is broken into six phases. Phases 1, 2, and 3 operate on virtual vectors (basic-block 
aggregation, short-loop aggregation, loop-level aggregation). Phases 4 and 5 transition the 
virtual vectors to physical vectors (alignment and length devirtualization). Phase 6 operates on 
physical vectors (SIMD instruction scheduling and code generation). The first three aggregation 
phases combine operations on data at adjacent memory into vector operations. Such contiguous 
memory access patterns are found in two kinds of places:

• At the basic-block level, adjacent memory accesses like a.y and a.z, or b[i] and b[i+1], can 
be combined. 

• At the loop level, stride-one accesses like c[i] across consecutive loop iterations can be 
combined. 

Unfortunately, these two types of accesses are often not compatible. For example, although 
d[i].x and d[i].y are adjacent accesses at the basic-block level, they are not stride-one 
accesses at the loop level. 

Figure 22-14. SIMDization Framework Based on Virtual Vectors 
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22.3.1 Phase 1: Basic-Block Aggregation

Basic-block aggregation extracts SIMD parallelism within a basic block by packing isomorphic 
computation on adjacent memory accesses into vector operations. That is, when data is being 
operated on in the same way, but the data is not already in a vector, the data is moved into a 
vector so that it can later be SIMDized. This is possible only if the data is stored in adjacent 
addresses in memory. 

Such parallelism is often found in unrolled loops, whether the loops are unrolled manually by the 
programmer or automatically by the compiler. It is also common in graphic applications that 
manipulate adjacent fields of aggregates, such as the subdivision computation shown here:

for (i=0; i < n; i++) {
t = triangles[i];
v[i].x=w0 * t.p[0].x + w1 * t.p[1].x + w2 * t.p[2].x;
v[i].y=w0 * t.p[0].x + w1 * t.p[1].x + w2 * t.p[2].y;
v[i].z=w0 * t.p[0].x + w1 * t.p[1].x + w2 * t.p[2].z;
v[i].w=w0 * t.p[0].x + w1 * t.p[1].x + w2 * t.p[2].w;

}

In this example, the last three computations can be packed into one vector statement. This is 
because they are isomorphic, and also operate on adjacent fields in memory (x, y, z, w). The 
first statement in this loop (t = triangles[i]) is an aggregate copy that can be SIMDized into a 
vector copy.

A loop SIMDized at the basic-block level can be further SIMDized at the loop-level. For example, 
if x, y, z and w are 16-bit integers, both basic-block and loop-level transformations are needed 
to extract enough SIMD parallelism for a 16-byte vector.

22.3.2 Phase 2: Short-Loop Aggregation

Short-loop aggregation eliminates inner loops that have short trip counts. SIMDizable short loops 
are collapsed into vector operations. The next loop in the original loop nest becomes the new 
inner-most loop. This expands the scope of subsequent SIMDization transformations. 

For example, consider a simplified loop nest, which negatively indexes the array, dp:

for (j=40; j ≤ 120; j++) {
sum = 0;
for (i=0; i < 40; i++) {

sum += wt[i] * dp[i-j];
}
L_result[j] = sum;

}

After short-loop aggregation, the inner loop is SIMDized into a single statement operating on a 
vector of 40 elements, because its trip count is 40. See Section 22.3.4.1 Streams on page 658 
for a definition of reduct. 
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for (j=40; j ≤ 120; j++) {
sum = 0;
sum = sum + reduct(+, wt[0:39] * dp[-j:39-j]);
L_result[j] = sum;

}

22.3.3 Phase 3: Loop-Level Aggregation

Loop-level aggregation extracts SIMD parallelism across loop iterations. Computations on stride-
one accesses across loop iterations are combined into vector operations. The loop is blocked by 
B, defined such that the byte length of each virtual vector is a multiple of the physical vector 
length. Loop-blocking refers to rewriting the loops into blocks of size B, to make each block 
accessible for later SIMDization. 

In loop-level aggregation, each statement is packed with itself across consecutive iterations. 
Each final vector length must be a multiple of 16 bytes. A scalar b[i] and a vector a[i].x,y,z 
are treated alike, regardless of alignment. 

Continuing with the example in short-loop aggregation (Section 22.3.2 Phase 2: Short-Loop 
Aggregation on page 656), the remaining j loop is SIMDized. The variable sum is a private vari-
able (a variable used only in this loop), L_result[j] is a stride-one access, and reduct operates 
over a vector. Assuming that all the data is int, the blocking factor is computed as:

B = 16/GCD(16, sizeof(int)) = 16/4 = 4

where GCD is the Greatest Common Divisor—the largest integer that divides into both of the 
integer operands. SIMDization of sum and L_result[j] is straightforward. reduct is more compli-
cated because its data is not stride-one across the j-loop. Specifically, wt[0:39] is now loop-
invariant (its stride is 0). dp[-j:39-j] has a stride of -1/40. The goal is to SIMDize reduct into a 
4-way parallel-reduct (see Section 22.3.4.1 Streams on page 658 for a definition of 
parallel_reduct, elem_splat, and elem_slide). 

Because wt[0:39] has stride 0, to transform the reduction into a 4-way parallel reduction, each of 
its elements needs to be replicated 4 times. A compiler-internal operation, elem_splat(wt[0:39, 
4), can be used for this. 

For dp[-j:39-j], the four vectors to be reduced in parallel are dp[-j:39-j], ..., dp[-j-3:30-
j-3]. The corresponding elements of the four data streams form a packed vector among them-
selves. To produce a 4-way parallel reduction, each element of the original vector needs to be 
expanded by applying a sliding window of -4 elements: elem_slide(dp[-j:39-j], -4). The code 
after loop-level SIMDization is:

for (j=40; j ≤ 120; j+=4) {
vsum = (0, 0, 0, 0);
vsum = vsum + parallel_reduct(+, 4, elem_splat(wt[0:39])

*elem_slide(dp[-j:39-j], -4));
L_result[j:j+3] = vsum;

}
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22.3.4 Phase 4: Alignment Devirtualization

The key to automatically SIMDizing loops with arbitrary misalignment is to provide automatically 
generating data-reorganization operations that align data in registers. This data reorganization 
satisfies the alignment constraints stated previously: that vector operations can only operate on 
aligned data, and that loads and stores to memory must be properly aligned. 

As illustrated in Figure 22-14 on page 655, the top-level algorithm for SIMDizing a loop has six 
phases:

• Phases 1, 2, and 3: SIMDize the loop as if there are no alignment constraints.

• Phase 4: Insert data-reorganization operations to satisfy actual alignment constraints. This 
phase creates the data-reorganization graph:

– Insert the data-reorganization operations. 

– Apply optimizations to reduce the number of data-reorganization operations. 

• Phase 5: Length devirtualization. 

• Phase 6: Generate SIMD code. In this phase, take care of runtime alignment, unknown loop 
bounds, multiple misalignments, and multiple statements. 

Although some alignments are known at compile-time, others are known only at runtime. In fact, 
runtime alignment is pervasive in applications either because it is part of the algorithms used, or 
because it is an artifact of the compiler’s inability to extract alignment information from complex 
applications. 

The alignment framework incorporates length conversions, which are conversions between data 
of different sizes. Length conversions are pervasive in multimedia applications, where mixed 
integer types are often used. Supporting length conversion greatly improves the number of 
SIMDizable loops. 

This loop contains misaligned accesses:

for (i = 0; i < 100; i++) {
a[i+2] = b[i+1] + c[i+3];

}

22.3.4.1 Streams

A stream is a sequence of contiguous memory locations that are accessed by a memory refer-
ence throughout the lifetime of a loop. This is also called a memory stream. By analogy, a stream 
is also a sequence of contiguous registers that are produced by an operation over the lifetime of 
a loop. This is also called a register stream. 

Vector operations in a loop can be viewed as operations on streams. For example, a vector load 
consumes a stream of memory and produces a stream of registers. The stream is a way to view 
values throughout the lifetime of a loop. 

An important property of a stream is its stream offset. This is defined as the byte-offset of the first 
required value in the first register of a stream. In the presence of misaligned streams, data-reor-
ganization operations must be inserted to enforce required stream offsets. There are several 
such compiler-internal operations, including:
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• vshiftstream(stream, inputOffset, outputOffset)—Shift stream, the register stream, 
from stream offset inputOffset to stream offset outputOffset. For example, vshift-
stream(stream, 4, 0) shifts the stream to the left 4 bytes, and vshiftstream(stream, 0, 
12) shifts the stream to the right 12 bytes. Another way to think of this: vshiftstream takes an 
input register stream whose offset is inputOffset, and generates a register stream whose 
offset is outputOffset. 

• vshiftpair(v1, v2, length)—Create a double-length vector by concatenating vectors v1 
and v2, and select the bytes length, length + 1, length + 2, ... length + V - 1, where 
V is the vector length.

• vsplice(v1, v2, length)—Concatenate the first length bytes of v1 with the last (V - length) 
bytes of v2. 

• prependW(Stream, x)—Prepend x bytes to the beginning of Stream of W-byte wide registers. 

• skipW(Stream, x)—Skip the first x bytes of Stream of W-byte wide registers.

• reduct(op, V(n, t))—Perform operation op over all n elements of vector V and generate a 
single result. This is called a reduction. 

• parallel_reduct(op, x, V(n, V(x, t)))—Perform operation op in parallel x times, over n 
distinct values. The data in the vector is interleaved: the first x values are the first elements in 
the of the x reductions, the next x values are the second elements in each of the reductions, 
and so on. The parallel reduction generates a vector of x reduction values. 

• vsplat(x)—Replicate the loop invariant x across a register stream. 

• elem_splat(V(n, t), x)—Generate a new V(n, V(x,t)) vector where each of the values in 
the original vector appears x times, consecutively. 

• elem_slide(V(n, t), w)—Apply a sliding window of w elements along the original vector.

• vload(addr(i))—Load a vector from a stride-one memory reference addr(i). This produces 
a register stream whose byte-offset is the alignment of addr(i). 

• vstore(addr(i), src)—Store a vector stream from src to a stride-one reference at addr(i). 

• vop(src1, ..., srcN)—Take registers src1 through srcN as inputs for a vector operation, 
and produce an output register stream. Input register streams must have matching stream 
offsets. 

• vpack(Stream, f)—Pack Stream by the factor f. For example, converting from a 4-byte data 
type to a 2-byte data type is a stream pack with a factor of 2.

• vunpack(Stream, f)—Unpack Stream by the factor f. For example, converting from a 4-byte 
data type to an 8-byte data type is a stream unpack with a factor of 2. 

In this context, shifting left and shifting right refer to data-reorganization operations that operate 
on a stream of consecutive registers, not to traditional arithmetic or logical shift operations. 

22.3.4.2 Zero-Shift Policy

The Zero-Shift Policy is the least-optimized way to reorganize misaligned data. The idea is to 
shift each misaligned register stream to a stream offset of 0 immediately after it is loaded from 
memory. Then, each register stream is shifted to the alignment of the store address just before it 
is stored back to memory. Zero-Shift Policy inserts one vshiftstream operation for each 
misaligned memory stream. Zero-Shift Policy is used for runtime alignment. Figure 22-7 on 
page 638 shows an example of the Zero-Shift Policy. 
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22.3.4.3 Eager-Shift Policy

The Eager-Shift Policy shifts a misaligned load stream directly to the alignment of the store, 
rather than to 0 as in the Zero-Shift Policy. This policy requires that alignments of loads and 
stores be known at compile-time. It can be more efficient than Zero-Shift Policy, lowering the 
number of vshiftstream operations needed. Eager-Shift Policy is applicable only to compile-time 
alignments, due to code-generation problems: the code sequence for shifting left or right is 
different. 

Figure 22-15 shows the flow of the Eager-Shift policy, and Figure 22-8 on page 639 illustrates 
the policy. It lowers the total number of stream-shift operations from 3 to 2, compared with the 
Zero-Shift Policy. 

22.3.4.4 Lazy-Shift Policy

The Lazy-Shift Policy improves upon the Eager-Shift Policy by delaying stream shifts as long as 
possible. For example, two relatively aligned vectors can be added by first adding them and then 
shifting the result, instead of first shifting them to the alignment of the store and then adding 
them. This helps reduce the number of vshiftstream operations. Figure 22-16 on page 661 
shows the lazy-shift policy. This policy exploits the case in which b[i+1] and c[i+1] are relatively 
aligned, and can be safely operated on as is. Only the result of the add operation needs to be 
shifted to match the alignment of the store. 

Figure 22-15. Eager-Shift Policy 
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22.3.4.5 Dominant-Shift Policy

The Dominant-Shift Policy reduces the number of vshiftstream operations the most. It is most 
effective if applied after the Lazy-Shift Policy. The offset that is dominant (most often used) 
among a set of streams is chosen as the offset to shift to. For example, if 4 is the offset used 
most often, then 4 is the dominant offset, and chosen as the shift target. In Figure 22-17 on 
page 662, the dominant offset is the stream offset 4. Shifting the stream to this offset decreases 
the number of vshiftstreams from 4 (for the Zero-Shift Policy) to 2. 

Figure 22-16. Lazy-Shift Policy 
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22.3.4.6 Length Conversion

A length conversion results from any operation that converts a value of one length to a value of 
another length. The most common length conversions occur between data types of different 
sizes. Such data conversions are common in multimedia workloads because multimedia data, 
such as pixels or colors, are stored in compact forms like short or char, but are operated on as 
integers or floats to reduce rounding errors. The data-reorganization operations, pack and 
unpack, are used to handle data of different lengths. All four shift policies can be applied to 
expression trees with length conversion. The data-reorganization graph created by phase 4 
(Section 22.3.4 on page 658) is a typical compiler expression tree augmented with data-reorgani-
zation operations. 

22.3.4.7 Handling a Partial Store

The first and last iterations of a loop often need to be handled separately, in a prolog 
(Section 22.1.2.6 on page 642) and epilog (Section 22.1.2.7 on page 643). 

Figure 22-17. Dominant-Shift Policy 
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Partial stores are implemented by loading the original value before the store, splicing it with the 
newly computed value, and then storing the spliced value back into memory, using the vsplice 
operation. Figure 22-18 shows how partial stores are implemented by first loading the original 
value before the store. Then, this value is spliced with the newly computed value. Finally, the 
spliced value is stored back into memory, using the compiler-internal function, vsplice. At the 
end of phase 4, the vectors are aligned, and their lengths are multiples of the physical vector 
length. 

The vector/SIMD multimedia extension store vector left and right instructions (lvlx[l], lvrx[l], 
stvlx[l], and stvrx[l]) can also be useful for simplifying partial-vector stores. 

22.3.5 Phase 5: Length Devirtualization

In Length Devirtualization, virtual vectors are first flattened to vectors of primitive types. Then, 
operations on the virtual vectors are either mapped to operations on multiple physical vectors, or 
rewritten as operations on scalar values. The decision of whether to map a virtual vector onto 
physical vectors or onto scalars is based on the length of the virtual vector and other heuristics. 

At the end of phase 5, all vectors have become physical vectors. They are aligned and operate 
on 16-byte data. 

Figure 22-18. Implementing Partial Vector Store 
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22.3.6 Phase 6: SIMD Code Generation and Instruction Scheduling

22.3.6.1 Code Generation

The Code Generation phase maps the SIMDized operations, including the data-reorganization 
operations, to SIMD instructions specific to the target platform (either vector/SIMD multimedia 
extension or SPE). Code generation takes the augmented expression tree (the expression tree 
plus data-reorganization operations) as input, and maps the generic stream-shift operations to 
native SIMD permutation instructions. Figure 22-19 on page 665 shows the basic mechanism to 
shift a stream with offset 4 to offset 0. In this case, the stream is shifted left by 4 bytes. The 
compiler-internal function, vshiftstream, is mapped to a sequence of shift operations across 
pairs of vector registers. These shift operations are called vshiftpair operations; vshiftpair is 
another compiler-internal function. 

The code-generation and earlier phases of the framework also tackle four difficult problems:

• Runtime alignment

• Unknown loop bounds

• Multiple misalignments

• Multiple statements (a loop body that contains more than one statement)

When memory alignment cannot be known at compile-time, it is referred to as runtime alignment. 
Runtime alignment can be inherent to a program, or it can result when the program uses complex 
pointer arithmetic. To handle runtime alignment, transform the original memory streams and 
computation streams into equivalent streams that can be shifted to arbitrary alignments. An arbi-
trary stream-shift, denoted by vshiftstream(stream, left, right), can be converted to a left 
stream-shift to the required offset. The derived stream starts exactly left bytes before the first 
value of stream. 

Here are some guidelines for applying data-reorganization operations for runtime alignment:

• Lazy-Shift, Eager-Shift, and other policies can be applied to runtime alignment.

• When propagating stream offsets, that is, propagating the alignment of the store to the load 
during an Eager-Shift, the stream offset needs to be scaled up or down. The stream offset is 
scaled by the packing factor. 

• Avoid placing a stream-shift that causes an unpack between a register stream and a memory 
stream, with no other stream-shifts in between. 

• When possible, place stream-shifts at the shorter end of a data conversion. It takes fewer 
machine instructions to shift a stream of shorter length.
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22.3.7 SIMDization Example: Multiple Sources of SIMD Parallelism

This section demonstrates how to extract parallelism at the basic-block and loop levels. The orig-
inal code sample, which follows, is a simple loop with four statements. This code is followed by 

Figure 22-19. Implementing Stream Shift 
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three other samples—basic-block aggregation, loop aggregation, and length devirtualization. 
These code samples are truncated, so that they highlight the data elements on which we focus. 

The focus is only on the stores generated by each of the loop’s statements, which are illustrated 
in Figure 22-20 on page 667, although the compiler would take all memory references into 
account. Each 4-byte store is represented by a box in Figure 22-20. The sets of boxes alternative 
in color to distinguish consecutive iterations of the original loop.

Original Code:

for (i = 0; i < n; i++) {
a[i].x = 
a[i].y =
a[i].z = 
b[i] =

}

Step 1: Basic-Block Aggregation:

for (i = 0; i < n; i++) {
(a[i].x,y,z) = 
b[i] =

}

Step 2: Loop Aggregation:

for (i = 0; i < n; i+=4) {
(a[i].x...a[i+3].z) = 
(b[i].......b[i+3]) =

}

Step 3: Length Devirtualization:

for (i = 0; i < n; i+=4) {
(a[i].x.....a[i+1].x) = 
(a[i+1].y...a[i+2].y) = 
(a[i+2].z...a[i+3].z) = 
(b[i].......b[i+3]) =

}
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The first step is basic-block aggregation. The compiler recognizes that the first three stores 
(a[i].x a[i].y, a[i].z) are adjacent in memory. Assuming the right-hand sides of the three 
statements are isomorphic, the compiler aggregates the three statements into a vector of three 
integers stored into a[i].x, y, z. The b[i] statement remains unchanged. 

Figure 22-20. SIMDization Example with Mixed Stride-One and Adjacent Accesses 
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The second step is loop-level aggregation. Recognizing the vector store a[i].x,y,z and the 
element store b[i] as stride-one accesses, the compiler aggregates these accesses across loop 
iterations. It treats the new vector a[i].x,y,z statement no differently than any other statements 
in the loop. The only difference between the a[i].x,y,z and b[i] statements is that the first one 
generates a 12-byte value but the second one generates a 4-byte value. 

During loop-level aggregation, the compiler extracts SIMD parallelism from the smallest number 
of consecutive iterations, while ensuring that each vector in the loop has a length that is a 
multiple of the physical vector length: 16 bytes. The optimal blocking factor is 4, because it 
aggregates 4 of the 12-byte a{i}.x,y,z vectors into a new compound vector of 48 bytes. Four of 
the 4-byte b[i] values aggregate into a new vector of 16 bytes.

An alignment-devirtualization step might be needed. This step is necessary when arrays a and b 
are not aligned. Because both a[i].x ... a[i+3].z and b[i] ... b[i+3] are stride-one 
accesses, their alignment constraints are handled no differently than any stride-one access of 
native data types. For simplicity, our example and Figure 22-20 on page 667 assume both 
vectors are aligned. But suppose that one of them were not; for example. suppose a[i].y is 16-
byte aligned instead of a[i].x. Then, the alignment devirtualization phase logically skews the 
computation associated with vector a to the right by one value. As a result, the blocked loop 
effectively computes and stores the a[i].y ... a[i+4].x instead of a[i].x ... a[i+3].z. 

The third step (in this example) is length devirtualization. The long a[i].x ... a[i+3].z vector is 
broken down to three physical vectors. Each of the three physical vectors mixes original stores 
from two consecutive iterations. At this stage, all vectors have become physical vectors, meaning 
that they are aligned and operate on 16-bytes of data. 

In this example, the basic-block and loop-level aggregation steps each handle some aspect of 
SIMDizing the loop, but neither can SIMDize the loop alone:

• On one hand, basic-block SIMDization combines the otherwise non-stride-one accesses 
a[i].x, a[i].y, a[i].z into stride-one accesses that can be subsequently exploited in 
loop-level aggregation.

• On the other hand, loop-level SIMDization aggregates the unaligned vector of 12-bytes, 
a[i].x,y,z produced by basic-block aggregation into an aligned vector of a multiple of the 
physical vector length. 

This is achieved transparently within the proposed SIMDization framework without expensive 
loop restructuring such as loop distribution, loop rerolling and collapsing, and loop unrolling. 

22.3.8 SIMDization Example: Multiple Data Lengths

There are two types of loops that mix data of different lengths—for example, char, short int, 
and float. The first type has homogenous statements: statements that each operate on data of 
uniform length. Some of the homogenous statements do operate on types of different lengths. 
The second type has statements that operate on distinct data lengths within a unique statement. 
This code example demonstrates such heterogeneous statements:

uint a[N];
ushort b[N];
for (int i = 0; i < N; i++) {

a[i] += (uint) b[i+1];
}
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Such heterogeneous statements often require conversion operations between data of different 
lengths. This is referred to as length conversion. Loops that require length conversion among 
heterogeneous statements are more constraining than loops that contain homogenous state-
ments. The complexity is due to the fixed-length of SIMD vectors. For example, a SIMDized 
length conversion from 1-byte length to 2-byte length consumes one vector and produces two 
vectors. Consuming one vector but producing multiple vectors (or a fraction of a vector, if the 
conversion is the other way around) is unnatural for most compiler intermediate representations. 
The example that follows focuses on the more challenging length conversion among heteroge-
neous statements.

22.3.8.1 Alignment Handling and Alignment Devirtualization

Figure 22-21 on page 670 shows the expression tree for the preceding code after the first three 
phases (basic-block, short-loop, and loop-level aggregation).
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Figure 22-21. Length Conversion After Loop-Level SIMDization 
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In the tree representation, each node is labeled with the tuple V(n, t, aligned) to represent the 
number of elements, the type, and the alignment properties of each vector. Because aligned 
only affects vector load and store semantics, it is specified only for memory nodes. 

For alignment devirtualization, each array accessed in the loop must be stride-one to form a 
stream of contiguous memory accesses across iterations. The alignment-devirtualization algo-
rithm is mainly concerned with code generation problems using stream-shift operations with 
length conversion. 

In our example, assume the base addresses a and b are aligned. Assume the streams repre-
sented by a[i] have an offset of 0 and the streams represented by b[i+1] have an offset of 2. 
These streams are therefore relatively misaligned. Figure 22-21(b) shows the alignment tree 
after alignment handling. The node vstreamshift(2, 0) represents a pseudo operation (a 
compiler-internal function) that shifts the entire input stream of b[i+1] with an offset of 2 to 0, to 
match the offset of the a[i] stream. 

22.3.8.2 Length Devirtualization

For most vector operations, devirtualization simply involves breaking a vector into multiple phys-
ical vectors. Length conversion, however, requires special handling because a devirtualized 
length conversion might consume one physical vector and produce multiple physical vectors, or 
vice versa. The two generic operations, pack and unpack, are used to express such data reorga-
nization:

• pack(v1, v2, vpattern)—This operation produces a physical vector by selecting bytes from 
physical vector v1 and v2 according to the byte pattern specified by physical vector vpattern. 

• unpack(v, vpattern)—This operation produces a physical vector by selecting bytes from 
physical vector v according to the byte pattern specified by physical vector vpattern.

In our example, the conversion operation unpacks a vector of short (16-bit integers) into two 
vectors of int (32-bit integers). Figure 22-22 on page 672 shows the expression trees after 
devirtualization. This SIMDized code consists of three distinct parts. The top part represents the 
computations done with the variables of type short, namely loading from memory. The bottom 
two parts represent the computations done with the variables of type int, with the left and right 
bottom parts each consuming half the data produced by the top part. 
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22.3.8.3 SIMD Code Generation

The generic pack and unpack operations are mapped to instructions of the target platform. Inte-
grating conversion-handling into the SIMDization framework is made much easier because 
stride-one accesses are preserved in early phases of SIMDization. As shown in Figure 22-22, 
when devirtualizing the short to int conversion, the stride-one access a[i] in the original loop 
becomes two non-stride-one vector accesses, a[i:i+3] and a[i+4:i+7], in the SIMDized loop. 
Because stride-one accesses are critical both to aggregation phases and alignment handling, by 
maintaining the stride-one accesses until devirtualization, the early SIMDization phases can 
process length-conversion in the same way that other regular operations are processed. 

Figure 22-22. Length Conversion After Devirtualization 
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22.3.9 Vector Operations and Mixed-Mode SIMDization

The concept of virtual vectors and devirtualization—phase 4 in Section 22.3.4 on page 658, and 
phase 5 in Section 22.3.5 on page 663—can be extended to vector operations. During early 
phases of SIMDization, a vector operation can be SIMDized even if there is no direct support in 
the underlying SIMD hardware. When these virtual vector operations are devirtualized, they can 
be replaced by:

• A single SIMD instruction

• A sequence of SIMD instructions

• A library call

• A sequence of scalar operations 

This process is called mixed-mode SIMDization. A loop that contains computation that can be 
executed on the scalar units, or on the SIMD unit, or both, is a candidate for mixed-mode 
SIMDization. For example, on the PPE’s vector/SIMD multimedia extension unit, double-preci-
sion floating-point instructions are executed in scalar units, but saturate-arithmetic is executed on 
the SIMD (VXU) unit. Most fixed-point instructions can execute on both units. Because the VXU 
unit is more constrained than the scalar unit, it can be more efficient to compute in scalar mode if 
accesses are misaligned or not stride-one. 

Loop distribution is one way in which heterogeneous loops (loops containing a mixture of scalar 
and vector computation) can be handled. Loop distribution might cause large loops be distributed 
into smaller ones. More loops with shorter loop bodies works against finding instruction-level 
parallelism, because it decreases the size of basic blocks. Overly aggressive loop distribution is 
one of the major causes of SIMDization-related performance degradation. 

Mixed-mode SIMDization avoids the problem of loop distribution affecting ILP, and might help 
ILP as the scheduler can use the SIMD and scalar units (and registers) at the same time. It is not 
always straightforward to decide which mix of SIMD and scalar computation is best. Both hard-
ware constraints and resource constraints of the currently executing program need to be taken 
into account. In addition, the VXU and scalar units can be used for the same operation at the 
same time. 

Virtualizing vector operations also provides a way to change transformations made earlier, if 
during later analysis, when more information is available, it becomes clear that those transforma-
tions did not improve the code. For example, during basic-block SIMDization, non-stride-one 
memory accesses can be packed into vectors, hoping that these vectors become stride-one after 
loop-level aggregation. But if that does not happen and the packing overhead is high, the 
compiler can undo the overly optimistic packing decision by devirtualizing the vector operation 
back to scalar operations. 
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22.4 Other Compiler Optimizations

22.4.1 OpenMP

A compiler can support OpenMP directives and routines. OpenMP is a platform-neutral and 
language-neutral way for programmers to insert parallelization directives in source code. 
OpenMP is defined by a consortium of universities and vendors, and the specification is found at 
http://www.openmp.org. See Section 21 Parallel Programming on page 609 for a description of 
how to use OpenMP constructs in programs run on the CBEA processors.

Most of the OpenMP directives are orthogonal to SIMDization, and they should not interfere with 
SIMDization. Some OpenMP directives do parallelize loops in the way that SIMDization does, 
and there can be some side effects. If the OpenMP directives are processed first, the loop struc-
tures can be perturbed in a way that prevents SIMDization. One of the OpenMP directives is the 
parallel for construct. This is used to parallelize a simple loop. For example:

void demo(int n, float *a, float *b) {
int i;

#pragma omp parallel for

for (i = 1; i < n; i++)  /* i is private, by definition */
b[i] = (a[i] + a[i-1]) / 2.0;

}

It is most important for SIMDization that OpenMP not corrupt the alignment information. When 
compile-time alignment is available for arrays before OpenMP directives are processed, this 
compile-time alignment should remain in force after processing OpenMP directives. Whenever 
possible, keep array subsections in multiples of 16 bytes. 

22.4.2 Subword Data Types

Both 2-byte and 1-byte data types are called subword data types. The C programming language 
data types char and short are 1 and 2 bytes, respectively. From the architecture’s perspective, 
not all data types are equally supported. For example, the SPU Instruction Set Architecture (ISA) 
provides 16-bit multiply only, so 32-bit multiply is implemented in software using 16-bit multiplies. 
Subword data types are commonly used in multimedia and games programs, so the SIMD units 
are designed to provide better support for subword data types.

The C programming language requires that subword data types be promoted to a full word before 
being operated on. A word is 32-bits or 4-bytes; the C data type int corresponds to a word. C 
allows a programmer to declare a subword variable, in terms of alignment, size and layout in 
memory—but there is no subword arithmetic. When a short or char is loaded into a register, the 
values are converted into 32-bit integers by sign-extensions. Without additional optimizations, 
there is no way to generate subword instructions directly from scalar C source programs. 

Subword arithmetic optimizations bridge the gap between C’s inability to specify subword arith-
metic and the underlying hardware’s strength in supporting subword operations. There are two 
steps:

http://www.openmp.org
http://www.openmp.org
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• Eliminate Redundant Partial-Copy Operations (from sign extensions). This relies on partial-
copy propagation. Because subword instructions use only a partial region of a register and 
sign-extension instructions copy only a partial region of a register, redundant sign-extensions 
are readily removed. In addition, this step performs general constant folding. Constant folding 
refers to the compiler precalculating constant expressions.

• Generate Subword Arithmetic Operations. This converts integer arithmetic operations to the 
equivalent arithmetic operation on narrower-width data types. This produces more efficient 
code when the ISA provides subword instructions, but not the equivalent instructions on 
32-bit data types. In addition, because this optimization narrows the operating data, it 
exposes more opportunity for eliminating redundant sign extensions. 

22.4.3 Backend Scheduling for SPEs

For SPEs, there are additional code-generation issues that must be handled for both automati-
cally SIMDized instructions and scalar instructions. Instruction scheduling occurs just before the 
compiler emits the final assembly or object code. The scheduling process consists of two closely 
interacting subtasks: scheduling and bundling. While typical schedulers deal with resources and 
latencies, a highly optimizing scheduler takes into account constraints that are expressed in 
numbers of instructions. For example, the hint for branch (HBR) instruction cannot be more than 
256 instructions away from its target branch, and should be no closer than 8 instructions. (See 
Section 24.3.3 Branch Hints on page 701.) The scheduling is complicated by the fact that the 
number of instructions in a scheduling unit is known only after the bundling subtask has 
completed. 

The bundler’s main role is to ensure that each pair of instructions that are expected to be dual-
issued satisfies the SPE’s instruction-issue constraints. The processor will dual-issue indepen-
dent instructions only when the first instruction uses the even pipeline and resides in an even 
word address, and the second instruction uses the odd pipeline and resides in an odd word 
address. After instruction ordering is set by the scheduling subtask, the bundler can only impact 
the even or odd word address of instructions by inserting nop instructions into the instruction 
stream. 

Another important task of the bundler is to prevent instruction-fetch starvation. Recall that a 
single local memory port is shared by the instruction fetch mechanism and the processor’s 
memory instructions. As a result, a large number of consecutive memory instructions can stall 
instruction fetching. With 2.5 instruction-fetch buffers reserved for the fall-through path, the SPE 
can run out of instructions in as few as 40 dual-issued cycles. When a buffer is empty, there 
might be as few as 9 cycles for issuing an instruction-fetch request to still hide its full 15-cycle 
latency. Because the refill window is so small, the bundling process must keep track of the status 
of each buffer and insert explicit ifetch instructions when a starvation situation is detected. 

The refill window is even smaller after a correctly-hinted branch that is taken, because there is 
only one valid buffer after a branch. This compares to 2.5 buffers for the fall-through path. 
Instruction starvation is prevented only when all instructions in the buffer are useful. That is, the 
branch target must point to an address that is a multiple of 16 instructions, which is the alignment 
constraint of the instruction-fetch unit. This constraint is enforced by introducing additional nop 
instructions before a branch target, to push it to the next multiple of 16 instructions. These 
compiler heuristics are successful in scavenging any idle issue slots, so that nop instructions can 
be inserted without performance penalties. 
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A final concern of the bundling process is to make sure that there is a sufficient number of 
instructions between a branch hint and its branch instruction. This constraint is due to the fact 
that a hint is only successful if its target branch address is computed before that branch enters 
the instruction-decode pipeline. The bundler adds extra nop instructions when the schedule did 
not succeed in interleaving a sufficient number of independent instructions between a hint and its 
branch. 

A unified scheduling and bundling phase produces best performance. The compiler can preserve 
the cycle scheduling approach, in which each nondecreasing cycle of the schedule is filled in 
turn. The exception is that the bundling process may retroactively insert nop or ifetch instruc-
tions. When scheduling the next cycle in the scheduling unit, the compiler checks to determine 
whether an ifetch instruction is required. If it is, an ifetch instruction is inserted, and the sched-
uling resource model is updated. The normal scheduling process then continues. When no addi-
tional instructions can be placed in the current cycle, the compiler checks to determine whether 
nop instructions must be inserted in previous cycles to enable dual-issuing. 

22.4.4 Interacting with Typical Optimizations

SIMDization should occur after aggressive dependence analysis and high-level loop transforma-
tions. These loop transformations enhance SIMDization by removing loop-carried dependences 
among inner-most loops:

• Loop interchange, which swaps an inner (nested) loop with an outer loop. This is done when 
the inner loop appears to be the candidate for SIMDization. 

• Loop distribution, which splits off those parts that cannot be SIMDized. 

• Loop versioning, a technique for hoisting an individual array index exception check outside a 
loop by providing two copies of the loop: the safe loop and the unsafe (original) loop. 

SIMDization can be followed by other loop transformations, including:

• Loop fusion.

• Loop unrolling, which removes needless copy operations.

• Predictive commoning, a special form of common subexpression elimination that exploits 
data reuse among consecutive loop iterations. 

Some optimizations are not suitable for SIMDization:

• Loop rerolling converts basic-block parallelism to loop-level parallelism by rerolling state-
ments into loops. The drawback is that a new inner-most loop is added to the loop nest. 
Because loop-level SIMDization happens at the inner-most loop, rerolling does not expand 
the scope of SIMDization. In addition, rerolling requires a loop counter, which is not always 
known. 

• Loop collapsing rerolls statements into a loop and then collapses it to the inner-most sur-
rounding loop. Loop collapsing exploits parallelism at both the basic-block level and the loop 
level. However, it is more constraining because it requires the original inner-most loop to be 
perfectly nested in its surrounding loop, and it requires all its statements to be rerolled. 

• Loop unroll-and-pack converts loop-level parallelism to basic-block parallelism by unrolling 
the loop and packing the computation in a basic block with SIMD instructions. Because 
SIMDization is limited to a basic block in this case, it is very inefficient to handle misalignment 
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and reduction. In addition, packing algorithms are more expensive and randomized, and 
sometimes perform less well, than loop-level SIMDization based on dependence vectors. 
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23. Vector/SIMD Multimedia Extension and SPU Programming

Both the PowerPC Processor Element (PPE) and the Synergistic Processor Elements (SPEs) 
support very similar sets of vector instructions. The PPE processes single instruction, multiple 
data (SIMD) operations in the vector/SIMD multimedia extension unit within its PowerPC 
processor unit (PPU). The operations are those of the vector/SIMD multimedia extensions to the 
PowerPC instruction set. The SPEs process SIMD operations in their synergistic processor unit 
(SPU). The operations are those of the SPU instruction set. Both instruction sets operate on 128-
bit SIMD vectors and both support many of the same types of SIMD operations. 

This section summarizes key similarities between these instructions and intrinsics, with the goal 
of identifying strategies for developing code that is portable between the PPE and the SPEs. 

23.1 Architectural Differences 

The objectives of the vector/SIMD multimedia extension and SPU architectures are essentially 
the same—to perform well on data-intensive processing, such as graphics pipelines, stream 
processing (encoding, decoding, encryption, decryption), and physical modeling. The architec-
tural resources, however, that each architecture brings to bear differ in some important respects. 
Some of the major SIMD-support differences between the PPE and SPE architectures are 
summarized in Table 23-1.

Table 23-1. PPE and SPE SIMD-Support Comparison 

Feature PPE SPE

Number of processing elements 1 8

Modes supported user and supervisor user only

Number of SIMD registers 32 (128-bit) 128 (128-bit)

Organization of register files separate fixed-point, floating-point, 
and SIMD registers unified SIMD registers

Load latency variable (cached) fixed

Addressability 264-byte main storage
256 KB local storage (LS)

264-byte main storage via DMA

Memory architecture 2-level caching software-controlled LS

SIMD instruction set general SIMD, supported by 
PowerPC scalar and control instructions

SIMD only, optimized for 
single-precision floating-point, 16-bit 

fixed-point, and 32-bit fixed-point

Single-precision floating-point 
SIMD

IEEE 754-1985 and SPE-compatible 
graphics-rounding mode supported extended range1

Double-precision floating-point 
SIMD not supported IEEE 754-1985 supported

Doubleword fixed-point SIMD not supported supported

Interelement communication 
facility memory mapped I/O (MMIO) channel

1. See Section 3.1.4 on page 70. 
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The PPE excels at control processing. Unlike the SPEs, which supports only problem (user) 
state, the PPE supports problem (user) state, privileged (supervisor) state, and hypervisor state. 
All of the PPE instructions—standard PowerPC and vector/SIMD multimedia extensions—can be 
intermixed in a single program. The PowerPC and vector/SIMD multimedia extensions architec-
tures are also supported by well-developed tools for debug and performance analysis, although 
this advantage is changing as new tools become available for the SPE. Perhaps most impor-
tantly, there is a substantial quantity of existing PowerPC and vector/SIMD multimedia extension 
code. 

The eight SPEs provide a significant boost in execution resources for both scalar and SIMD 
processing, as compared to the single PPE. SPU instructions provide excellent support for 
single-precision floating-point graphics applications. Several SPU instructions are available for 
eliminating inefficient execution penalties typically associated with branch execution. Blocking 
channels for communication with the memory flow controller (MFC) or other parts of the system 
external to the SPU, provide an efficient mechanism for waiting on the completion of external 
events without the need for polling or interrupts, both of which burn power needlessly. 

23.1.1 Registers

23.1.1.1 PPE Registers Used by Vector/SIMD Multimedia Extension Instructions

The PPE has 32 Vector Registers (VRs) for holding vector/SIMD multimedia extension instruction 
operands, as described in Section 2.3 on page 54. It also has 32 General-Purpose Registers 
(GPRs) for holding fixed-point scalar operands and 32 Floating-Point Registers (FPRs) for 
holding floating-point scalar operands. 

In addition to these instruction-operand register files, the PPE also has three control and status 
registers that are affected by vector/SIMD multimedia extension operations—a 32-bit Vector 
Status and Control Register (VSCR), a 32-bit Vector Save Register (VRSAVE), and a 32-bit (8-
element) Condition Register (CR). The VSCR register has two defined bits—non-Java-mode and 
saturation [SAT]. The VRSAVE register may be used in accordance with the application binary 
interface (ABI) for saving and restoring vector/SIMD multimedia extension state across context 
switches. The CR6 field of the CR register is useful for branch control; the bit is set or cleared 
according to the result of a vector/SIMD multimedia extension compare instruction that is of the 
recording form (a compare instruction that has a dot suffix on the mnemonic). 

The VSCR[SAT] bit is set if saturation (an inexact result) occurs during a saturating SIMD opera-
tion. To use this bit, the contents of the VSCR can be copied to a VR (using the mfvscr instruc-
tion), bits other than the SAT bit can be cleared in the VR (vand with a constant), the result can 
be compared to zero so as to set CR6 (vcmpequb.), and a PowerPC conditional branch instruc-
tion can test CR6. 

The PPE’s Floating-Point Status and Control Register (FPSCR) is not affected by vector/SIMD 
multimedia extension floating-point operations. In general, no status bits are set to reflect the 
results of such operations, except that VSCR[SAT] bit can be set by the Vector Convert To 
Fixed-Point Word instructions.
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23.1.1.2 SPE Registers

Each SPE has 128 registers in one unified register file that holds all types of operands and 
instructions. In addition, the SPE also has a 128-bit Floating-Point Status and Control Register 
(FPSCR) that is updated after every floating-point operation to record information about the result 
and any associated exceptions. 

The SPE architecture does not have a condition register comparable to the PPE’s CR register. 
Instead, SPE comparison operations set result fields in the result vector that are either 
0 (false) or -1 (true) and that are the same width as the operand elements being compared. 
These results can be used for bitwise masking, select instructions, or conditional branches. 

The SPU instruction set includes many conditional branch instructions. An SPE conditional 
branch requires moving the vector element containing the branch condition into the preferred slot 
using a quadword rotate, performing a compare, and branching based on the result of the 
compare. By comparison, a vector/SIMD multimedia extension conditional branch requires a 
compare, a mask, a compare of CR6, and then a conditional branch, which is more expensive 
than an SPE’s conditional branch.

23.1.2 Data Types

For the most part, vector/SIMD multimedia extension instructions operate on 128-bit vectors 
whose elements are byte, halfword, or word data types. The only area in which they do not is in 
the sourcing of a pointer from a GPR and writing a predicate1 result to a GPR.

To this list of data types, the SPU architecture adds the doubleword data type. Table 23-2 
summarizes the supported vector data types for each architecture. 

1. A predicate is Boolean-logic term denoting a logical expression that determines the state of some variables. All 
the vector/SIMD multimedia extension predicates return their results to a GPR. They do this by performing a vec-
tor compare and then moving and masking CR6 to a GPR.

Table 23-2. Vector/SIMD Multimedia Extension and SPU Vector Data Types 

Data Type Vector/SIMD 
Multimedia Extension SPU

vector char (signed and unsigned) yes yes

vector bool char yes no1

vector short (signed and unsigned) yes yes

vector bool short yes no1

vector pixel yes no

vector int (signed and unsigned) yes yes

vector bool int yes no1

vector float yes yes

vector long long (signed and unsigned) no yes

vector double no yes

1. The C/C++ Language Extensions for Cell Broadband Engine Architecture document does not define specific bool-
ean vector types. Boolean vectors are supported as unsigned vectors.
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Among the important differences are:

• Only the vector/SIMD multimedia extension instructions supports pixel vectors.

• Only the SPU instructions support doubleword vectors. 

The SPUs quadword data type is excluded from the list because it is a nonspecific vector data 
type instead of a specific vector data type. The quadword data type is used exclusively as an 
operand in specific intrinsics—those which have a one-to-one mapping with a single assembly-
language instruction. 

23.1.3 Instruction-Set Differences

The vector/SIMD multimedia extension and SPU instructions were architected to integrate seam-
lessly, with an emphasis on frequent and important data types. Thus, they have many similari-
ties, in addition to their use of 128-bit vector operands. Both architectures support a large 
collection of fixed-point operations and 16-bit multiplies. Both support a shuffle or permute opera-
tion on each of 32 source bytes, although the vector/SIMD multimedia extensions also support 
several merge and replicate operations. Both support many rotates and shifts, but there are 
approximately twice as many choices among the SPU instructions. 

Some details of their distinctive features follow. For summary lists of the instructions, see 
Section A.3 on page 748 and Section B.1 on page 771. 

23.1.3.1 Vector/SIMD Multimedia Extension Instructions

The vector/SIMD multimedia extensions provide these operations that are not directly supported 
by the SPU instruction set:

• Saturating math

• Sum-across

• Log2 and 2x

• Ceiling and floor.

• Complete byte instructions

Vector/SIMD multimedia extensions support several vector-pack and unpack operations, 
although comparable operation can be performed with SPU instructions. Vector/SIMD multi-
media extension compare instructions have an optional recording form that is useful for creating 
conditional-branch tests, as described in Section 23.1.1.1 on page 680. 

The CBEA processors support instructions with a graphics rounding mode. This mode allows 
programs written with vector/SIMD multimedia extension instructions to produce floating-point 
results that are equivalent in precision to those written in the SPU instruction set. In this mode, as 
in the SPU environment, the default rounding mode is round to zero, denormals are treated as 
zero, and there are no infinities or NaNs. For details, see Section A.3.3 on page 752. 

Mechanisms are available in both the PPE and SPE to hide memory-load latency. The PPE 
PowerPC instructions include data-cache block touch instructions that can cause data to be 
prefetched into the cache, plus cache-line locking instructions to prevent prefetched data from 
being cast out. However, the advantages of prefetching data are limited by the small number of 
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registers with which to operate on the data. The SPEs, in contrast, support DMA transfers in 
parallel with computation, and their 128 registers provide ample resources with which to operate 
on data. Thus, SPU loads might be better suited for deterministic real-time applications. 

23.1.3.2 SPU Instructions

The SPU instruction set provides these operations that are not directly supported by a single 
vector/SIMD multimedia extension instruction:

• Immediate operands

• Double-precision floating-point

• Sum of absolute difference

• Count ones in bytes

• Count leading zeros

• Equivalence

• AND complement

• OR complement

• Extend sign

• Gather bits

• Form select mask

• Integer multiply and accumulate

• Multiply subtract

• Multiply float

• Shuffle byte special conditions

• Carry and borrow generate

• Sum bytes across

• Extended shift range

SPU single-precision floating-point instructions execute at approximately twice the speed of 
vector/SIMD multimedia extension single-precision floating-point, and the SPU instructions—
unlike the vector/SIMD multimedia extension instructions—also support double-precision vector 
operations. 

The SPU Instruction Set Architecture (ISA) defines compare instructions for setting masks. 
These masks can be used in three-operand select instructions to create efficient conditional 
assignments to avoid difficult-to-predict branches. The SPU also supports hint for branch instruc-
tions (Section 24.3.3 on page 701) that avoid branch penalties on taken branches when the 
branch can be predicted sufficiently early. 
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23.2 Porting SIMD Code from the PPE to the SPEs

It is sometimes easier to write SIMD programs by writing them first for the PPE than porting them 
to the SPEs. This approach postpones some SPE-related considerations—such as the size of 
the SPE’s LS, data movements, and debug—until after the port. This approach can also allow 
partitioning of the work into simpler steps on the SPEs. Nevertheless, it is important to begin 
considering code partitioning for multiple SPUs early in the development of program architecture.

After vector/SIMD multimedia extension code is working properly on the PPE, a strategy for 
parallelizing the algorithm across multiple SPEs can be implemented. This is often, but not 
always, a data-partitioning method. The effort might involve converting from vector/SIMD multi-
media extension intrinsics to SPU intrinsics, adding data-transfer and synchronization constructs, 
and tuning for performance. It might be useful to test the impact of various techniques, such as 
DMA double-buffering, loop unrolling, branch elimination, alternative intrinsics, number of SPEs, 
and so forth (see Section 24 on page 691 for some examples). Debugging tools such as the 
static timing-analysis tool and the IBM Full System Simulator for the Cell Broadband Engine are 
available to assist this effort.

Alternatively, experienced CBEA processor programmers might prefer to skip the vector/SIMD 
multimedia extension coding phase and go directly to SPU programming. In some cases, SIMD 
programming can be easier on an SPE than the PPE because of the SPE’s unified register file. 

The earlier sections in this tutorial describe the vector/SIMD multimedia extension and SPU 
programming environments and some of their differences. Armed with knowledge of these differ-
ences, one can devise a strategy for developing code that is portable between the PPE and the 
SPEs. The strategy one should employ depends upon the type of instructions to be executed, the 
variety of vector data types, and the performance objectives. Solutions span the range of simple 
macro translation to full functional mapping.

23.2.1 Code-Mapping Considerations

There are several challenges associated with mapping code designed for one instruction set and 
compiled for another instruction set. These including performance, unmappable constructs, 
limited size of LS, and equivalent precision, as described in the following sections.

23.2.1.1 Performance

Simplistic mapping of low-level intrinsics might not deliver the full performance potential of the 
SPE, depending upon the intrinsics used. Understanding the dynamic range of the mapping’s 
operands—such as whether the range of operands is known to be restricted—can reduce the 
performance impact of simple mapping. 

For example, consider mapping the spu_shuffle intrinsics (shufb instruction) to vec_perm 
(vperm instruction). If it was known than the shuffle-pattern bytes are all in the range x‘0’ through 
x‘1F’, then spu_shuffle can be directly mapped to vec_perm. Otherwise, the mapping requires 
several instructions. 
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23.2.1.2 Unmappable Constructs

Differences in the processing of intrinsics make simple translation of certain intrinsics unmap-
pable. The unmappable SPU intrinsics include:

• stop and stopd
• Conditional halt
• Interrupt enable and disable
• Move to and from status control and special purpose registers
• Channel instructions
• Branch on external data

23.2.1.3 Limited Size of LS

Vector/SIMD multimedia extension programs mapped to SPU programs might not fit within the 
LS of the SPE, either because the program is initially too big or because mapping expands the 
code. 

23.2.1.4 Equivalent Precision

The SPU instruction set does not fully implement the IEEE 754 single-precision floating-point 
standard2 (default rounding mode is round to zero, denormals are treated as zero, and there are 
no infinities or NaNs). Therefore, floating-point results on an SPE might differ slightly from 
floating-point results using the PPE’s PowerPC instruction set. In addition, all estimation intrin-
sics (for example, ceiling, floor, reciprocal estimate, reciprocal square root estimate, exponent 
estimate, and log estimate) do not have equivalent accuracy on the SPU and PPE PowerPC 
instruction sets. 

However, the instructions in the PPE’s vector/SIMD multimedia extension have a graphics 
rounding mode (enabled by default) that is not available in the standard PowerPC Architecture. 
This mode is a special feature of the Cell Broadband Engine Architecture. It allows programs 
written with vector/SIMD multimedia extension instructions to produce floating-point results for 
add, subtract, multiply, multiply-add, and multiply-subtract that are equivalent in precision to 
those written in the SPU instruction set (but that differ from the estimate instructions). In this 
vector/SIMD multimedia extension graphics rounding mode, as in the SPU environment, the 
default rounding mode is round to zero, denormals are treated as zero, and there are no infinities 
or NaNs. For details on the graphics rounding mode, see Appendix A.3.3 Graphics Rounding 
Mode on page 752.

23.2.2 Simple Macro Translation

For many programs, it is possible to use a simple macro translation strategy for developing code 
that is portable between the vector/SIMD multimedia extension and SPU instruction sets. The 
keys to simple macro translation are described in the sections that follow. 

2. The vector/SIMD multimedia extension instructions also do not fully implement the IEEE standard. The instruc-
tion sets are architected this way to better support applications such as graphics and real-time code. For details, 
see the PowerPC Microprocessor Family: Vector/SIMD Multimedia Extension Technolgy Programming Environ-
ments Manual. 
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23.2.2.1 Use a Compatible Vector-Literal Construction Format

The vector/SIMD multimedia extension and SPU instruction sets support two styles of 
constructing literal vectors: curly brace (preferred style for SPE) and parenthesis (deprecated 
AltiVec style). Some compilers support both styles. A set of construction macros can be used to 
insulate programs from any differences in the tools. 

There are multiple methods of constructing literal vectors, and all tools might not support the 
same construction format. The key differences in the methods are syntax (the deprecated AltiVec 
parenthesis style or the preferred curly-braces style) and handling of unspecified elements. The 
AltiVec style requires either a single element or all elements be specified. If only a single element 
is specified, then all elements of the vector are initialized with the specified value. The curly 
braces style allows one to specify any number of vector elements. The vector/SIMD multimedia 
extension and SPU instruction sets and most compilers support both syntax styles. Unspecified 
elements are cleared to ‘0’.

A simple set of construction macros can be used to insulate programs from any differences in the 
tools and assure portability of vector construction. For example:

#ifdef ALTIVEC_STYLE
/* deprecated legacy support */
#define VECTOR_UINT(a,b,c,d) \

((vector unsigned int)(a,b,c,d))
#else // CURLY_BRACE_STYLE

/* preferred CBEA format */
#define VECTOR_UINT(a,b,c,d) \

((vector unsigned int){a,b,c,d})
#endif

23.2.2.2 Use Single-Token Vector Data Types

The C/C++ Language Extensions for Cell Broadband Engine Architecture document specifies a 
set of single-token vector data types, listed in Table B-8 on page 784. Because these are single-
token, the data types can be easily redefined by a preprocessor to the required target processor. 
Additional single-token data types have been standardized for the unique vector/SIMD multi-
media extension data types. Table 23-3 lists the additional data types. Also, see Table 23-2 on 
page 681.

Table 23-3. Additional Vector/SIMD Multimedia Extension Single-Token Data Types 

Vector Data Type Single-Token Data Type

vector bool char vec_bchar16

vector bool short vec_bshort8

vector bool int vec_bint4

vector pixel vec_pixel8
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23.2.2.3 Use Intrinsics that Map One-to-One

Regardless of the technique used to provide portability, performance will be optimized if the oper-
ations map one-to-one between vector/SIMD multimedia extension intrinsics and SPU intrinsics. 
The SPU intrinsics that map one-to-one with vector/SIMD multimedia extension (except specific 
intrinsics) are shown in Table 23-4. The vector/SIMD multimedia extension intrinsics that map 
one-to-one with SPU are shown in Table 23-5. 

Table 23-4. SPU Intrinsics with One-to-One Vector/SIMD Multimedia Extension Mapping  

SPU 
Intrinsic

Vector/SIMD Multimedia Extension
Intrinsic For Data Types

spu_add vec_add vector operands only, no scalar operands

spu_genc vec_addc all

spu_and vec_and vector operands only, no scalar operands

spu_andc vec_andc all

spu_avg vec_avg all

spu_cmpeq vec_cmpeq vector operands only, no scalar operands

spu_cmpgt vec_cmpgt vector operands only, no scalar operands

spu_convtf vec_ctf limited scale range (5 bits)

spu_convts vec_cts limited scale range (5 bits)

spu_convtu vec_ctu limited scale range (5 bits)

spu_madd vec_madd float only

spu_mulhh vec_mule all

spu_mulo vec_mulo halfword vector operands only, no scalar operands

spu_nmsub vec_nmsub float only

spu_nor vec_nor all

spu_or vec_or vector operands only, no scalar operands

spu_re vec_re all

spu_rl vec_rl vector operands only, no scalar operands

spu_rsqrte vec_rsqrte all

spu_sel vec_sel all

spu_sub vec_sub vector operands only, no scalar operands

spu_genb vec_subc vector operands only, no scalar operands

spu_xor vec_xor vector operands only, no scalar operands

Table 23-5. Vector/SIMD Multimedia Extension Intrinsics with One-to-One SPU Mapping  (Sheet 
1 of 2)

Vector/SIMD Multimedia Extension
Intrinsic

SPU
Intrinsic For Data Types

vec_add spu_add halfwords, words, and floats only (not bytes)

vec_addc spu_genc all

vec_and spu_and all
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23.2.3 Full Functional Mapping

Because intrinsics have function-call syntax, code written for a specific functional unit can be 
mapped using inline functions. The keys to full functional mapping are:

• C++ Function Overloading—Because generic-intrinsic mappings are polymorphic (that is, 
one generic intrinsic maps to one of several instructions), C++ function overloading must be 
used to assure correct mapping.

• Map Nonsupported Data Types to Unique Data Types—Using C++ function overloading to 
map a generic intrinsic to a specific function requires that its parameter types be unique for 
every specific function. The vector/SIMD multimedia extensions support vector data types 
that are not valid on an SPU, and vice-versa. Therefore, these data types must be mapped to 
a supported type on the target processor element. Table 23-6 on page 689 recommends a 
mapping that guarantees that the overloading function will uniquely select the correct 
mapped function without having to mandate that new data types be supported. 

vec_andc spu_andc all

vec_avg spu_avg unsigned chars only

vec_cmpeq spu_cmpeq all

vec_cmpgt spu_cmpgt all

vec_ctf spu_convtf all

vec_cts spu_convts all

vec_ctu spu_convtu all

vec_madd spu_madd all

vec_mulo spu_mulo halfwords only (not bytes)

vec_nmsub spu_nmsub all

vec_nor spu_nor all

vec_or spu_or all

vec_re spu_re all

vec_rl spu_rl halfwords and words only (not bytes)

vec_rsqrte spu_rsqrte all

vec_sel spu_sel all

vec_sub spu_sub halfwords, words, and floats only

vec_subc spu_genb all

vec_xor spu_xor all

Table 23-5. Vector/SIMD Multimedia Extension Intrinsics with One-to-One SPU Mapping  (Sheet 
2 of 2)

Vector/SIMD Multimedia Extension
Intrinsic

SPU
Intrinsic For Data Types
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• Use Intrinsics that Map One-to-One—Use intrinsics that map one-to-one, as described in 
Section 23.2.2.3 on page 687.

23.2.4 Code-Portability Typedefs

To improve code portability between PPE and SPU programs, single-token typedefs can be 
provided for the vector keyword data types. An example of such typedefs is shown in Table B-8 
on page 784. Because they are single-token, they serve as class names for extending generic 
intrinsics for mapping to-and-from vector/SIMD multimedia extension intrinsics and SPU intrin-
sics.

23.2.5 Compiler-Target Definition

To support the development of code that can be conditionally compiled for multiple targets, such 
as SPU and PPU, the C/C++ Language Extensions for Cell Broadband Engine Architecture 
specifies that compilers must define __SPU__ when code is being compiled for the SPU. As an 
example, the following code supports misaligned quadword loads on both the SPU and PPU. 
The __SPU__ define is used to conditionally select which code to use. The code that is selected 
will be different depending on the processor target.

vector unsigned char load_qword_unaligned(vector unsigned char *ptr)
{

vector unsigned char qw0, qw1, qw;
#ifdef __SPU__

unsigned int shift;
#endif

qw0 = *ptr;
qw1 = *(ptr+1);

#ifdef __SPU__
shift = (unsigned int)(ptr) & 15;
qw = spu_or(spu_slqwbyte(qw0, shift, spu_rlmaskqwbyte(qw1, (signed)(shift - 16)));

#else /* PPU */
qw = vec_perm(qw0, qw1, vec_lvsl(0, ptr));

#endif
return (qw);

}

Table 23-6. Unique SPU-to-Vector/SIMD Multimedia Extension Data-Type Mappings 

SPU Data Type Vector/SIMD Multimedia Extension Data Type

vector unsigned long long vector bool char

vector signed long long vector bool short

vector double vector bool int

vector unsigned short vector pixel1

1. There are insufficient unique vector types on the SPU to provide a unique mapping for the vector pixel data type. 
This causes an overloading conflict when attempting to support the vec_unpackl and vec_unpackh intrinsics for 
both vector signed short/vector bool short and vector pixel types. This conflict can be resolved by using conditional 
compilation selection of the required mapping. Simultaneous mapping in a single object is not possible without fur-
ther language extensions.



Programming Handbook

Cell Broadband Engine  

Vector/SIMD Multimedia Extension and SPU Programming
Page 690 of 884

Version 1.11
May 12, 2008



Programming Handbook

 Cell Broadband Engine

Version 1.11
May 12, 2008
 

SPE Programming Tips
Page 691 of 884

24. SPE Programming Tips

This section provides general advice and code examples about how to write efficient code for the 
Synergistic Processor Element (SPE). Specific suggestions and examples are given for overlap-
ping DMA and computation, eliminating and predicting branches, loop unrolling and pipelining, 
vectorizing a loop, and transformations and table lookups. References to more detailed descrip-
tions of these and other topics are also given. 

Among the most general guidelines for synergistic processor unit (SPU) coding are these:

• Intrinsics—Use intrinsics to achieve machine-level control without the need to write assem-
bly-language code. Understand how the intrinsics map to assembly instructions and what the 
assembly instructions do. See Section B on page 771 for a summary of the instruction set 
and its C-language intrinsics, and see the C/C++ Language Extensions for Cell Broadband 
Engine Architecture document for complete details. 

• Overlap DMA Transfers with Computation—Data transfers and computation can proceed in 
parallel by using multibuffering techniques. In addition, use the SPEs rather than the 
PowerPC Processor Element (PPE) to initiate most DMA transfers. See Section 24.1. 

• Fetch and Issue Rules—An understanding of the fetch and issue rules will maximize your 
dual-issue rate. See Section 24.2 on page 698. 

• Design for Limited Local Storage—Each local storage (LS) is limited to 256 KB for program, 
stack, local data structures, and DMA buffers. Many optimization techniques put pressure on 
this limited resource. As such, all optimizations might not be possible for a given application. 
Often it is possible to reduce LS pressure by dynamically managing the program store using 
code overlays. 

• Branch Instructions—Eliminate branches or reduce branch misprediction using hint-for 
branch instructions. See Section 24.3 on page 699. 

• Loop Optimization—Unroll and pipeline loops. See Section 24.4 on page 709. 

• Integer Multiplication—Use the SPU’s 16 x16 bit multiplier to best advantage by avoiding 32-
bit integer multiplies. See Section 24.7 on page 716. 

• Table Lookups and Permutations—Use the shuffle-bytes instruction for efficient table lookups 
and reorganization of operands. See Section 24.6 on page 712. 

• Scalar Code—Scalar (sub-quadword) loads and stores require multiple instructions and have 
long latencies. Section 24.8 on page 716 has advice about efficient use of scalar code. 

For a general overview of the SPE architecture, see Section 3 on page 65. 

24.1 DMA Transfers

This section builds on the basic description of DMA and DMA list transfer methods given in 
Section 19.4 on page 529. It describes how to overlap DMA transfers with computation by using 
double-buffering and multi-buffering, plus techniques to improve DMA performance. 
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24.1.1 Initiating DMA Transfers from SPEs

Performance is typically best if you initiate DMA transfers from the SPEs that need the transfers 
rather than from the PPE. There are eight SPEs and only one PPE. The PPE can have only four 
in-flight data references (plus two for L2-cache loads and stores). Each of the eight SPEs, in 
contrast, can have up to 16 in-flight DMA transfers. Because of these considerations, the SPEs 
can initiate many more DMA transfers than the PPE in a given period of time. 

24.1.2 Overlapping DMA Transfers and Computation

To hide data-access latencies, use double-buffering or multi-buffering techniques. You can either 
double-buffer the data (typical) or double-buffer the code, depending upon the code and data 
sizes and data-access patterns. This section outlines basic strategies for overlapping DMA trans-
fers with computation on an SPU. 

24.1.2.1 Double Buffering

Consider a simple SPU program that performs the following steps:

1. DMA incoming data from effective address (EA) in main storage to LS buffer B.

2. Wait for the transfer to complete.

3. Compute on data in buffer B.

4. Repeat as necessary.

This sequence has no overlap between data transfer and computation. If considered over time, 
the time graph might look like Figure 24-1. 

When these steps are known to iterate more than once, performance might be improved by allo-
cating two LS buffers, B0 and B1, and overlapping computation on one buffer with data transfer 
for the next. This technique is known as double-buffering. Figure 24-2 on page 693 shows a flow 
diagram for this double buffering scheme. Double buffering is a form of multibuffering, which is 
the method of using multiple buffers in a circular queue to overlap computation and data transfer. 

Figure 24-1. Serial Computation and Transfer 
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The double-buffering sequence is:

1. Initiate DMA transfer of incoming data from EA to LS buffer B0.

2. Initiate DMA transfer of incoming data from EA to LS buffer B1.

3. Wait for transfer of buffer B0 to complete.

4. Compute on data in buffer B0.

5. Initiate DMA transfer of incoming data from EA to LS buffer B0.

6. Wait for transfer of buffer B1 to complete.

7. Compute on data in buffer B1.

8. Repeat steps 2 through 7 as necessary.

As the new time graph in Figure 24-3 shows, computation and data transfers proceed concur-
rently once the first DMA for B0 completes.

Double-buffering can be achieved on the SPU by applying tag-group identifiers (Section 19.2.5 
on page 519). Tag-group ID 0 is applied to all transfers involving B0 (steps 1, 3, and 5) and tag-
group ID 1 is applied to all transfers involving B1 (steps 2 and 6). 

Figure 24-2. DMA Transfers Using a Double-Buffering Method 
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Figure 24-3. Parallel Computation and Transfer 
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The key to double-buffering on the SPU lies in properly setting the tag-group mask, such that the 
program only waits for the particular buffer of interest. To wait for B0, software sets the tag-group 
mask to include only tag ID 0 and requests conditional tag-status update (step 3). To wait for B1, 
software sets the tag-group mask to include only tag ID 1 and again requests conditional tag-
status update (step 6).

The following C-language program fragment shows how to initiate a buffer transfer. 

#include <spu_intrinsics.h>
#include <spu_mfcio.h>

volatile void *B[2]; /* Pointers to LS Buffers */

/* Initiate transfer using LS buffer B[idx] */
static inline void xfer(unsigned int ea, unsigned int size, unsigned int id)
{

spu_mfcdma32(B[idx], ea, size, idx, MFC_GET_CMD);
}

The following C-language program fragment shows how to wait for a buffer transfer to complete.

/* Wait for B[idx] transfer to complete. */
static inline void wait_xfer(unsigned int idx)
{

unsigned int tag_mask = (1 << idx);

spu_writech(MFC_WrTagMask, tag_mask);
spu_mfcstat(MFC_TAG_UPDATE_ALL);

}

Both incoming or outgoing data transfers can cause bottlenecks for application performance. It 
might therefore be necessary to implement buffering schemes for both input and output.

The following C-language program fragment shows one way to implement double-buffering. The 
code starts the first DMA transfer, then enters the loop. The loop starts the next transfer and 
waits on the first one. When the first completes, the code calls the use_data() function to process 
the fresh buffer of DMA data. The code then toggles the buffer index and loops to start the next 
transfer. The code waits for the oldest transfer to complete, and then calls use_data() to process 
the fresh data. The process repeats until all the data has been transferred and processed.

Assume that the MFC_ macro names have been defined previously. 

/* Example C code demonstrating double buffering using buffers B[0] and B[1].
* In this example, an array of data starting at the effective address
* eahi|ealow is DMAed into the SPU's local storage in 4 KB chunks and processed 

 * by the use_data subroutine.
 */

#include <spu_intrinsics.h>
#include <spu_mfcio.h>
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#define BUFFER_SIZE 4096
volatile unsigned char B[2][BUFFER_SIZE] __attribute__ ((aligned(128)));

void double_buffer_example(unsigned int ea, int buffers)
{

int next_idx, idx = 0;

// Initiate first DMA transfer
spu_mfcdma32(B[idx], ea, BUFFER_SIZE, idx, MFC_GET_CMD);

ea += BUFFER_SIZE;
while (--buffers) {

next_idx = idx ^ 1;
spu_mfcdma32(B[next_idx], ea, BUFFER_SIZE, idx, MFC_GET_CMD);
ea += BUFFER_SIZE;
spu_writech(MFC_WrTagMask, 1 << idx);
(void)spu_mfcstat(MFC_TAG_UPDATE_ALL); // Wait for previous transfer done
use_data(B[idx]);     // Use the previous data
idx = next_idx;

}
spu_writech(MFC_WrTagMask, 1 << idx);
(void)spu_mfcstat(MFC_TAG_UPDATE_ALL);   // Wait for last transfer done
use_data(B[idx]);    // Use the last data

}

24.1.2.2 Multibuffering

Data buffering can be extended to use more than two buffers, provided that enough space is 
available in the LS. If more than two buffers are involved, the technique is known as multi-
buffering.

Building on the concepts from the previous section, a basic recipe for multibuffered data transfers 
on the SPU is:

1. Allocate multiple LS buffers, B0..Bn.

2. Initiate transfers for buffers B0..Bn. For each buffer Bi, apply tag group identifier i to transfers 
involving that buffer.

3. Beginning with B0 and moving through each of the buffers in round robin fashion:

– Set tag group mask to include only tag i, and request conditional tag status update.

– Compute on Bi.

– Initiate the next transfer on Bi.

This algorithm waits for and processes each Bi in round-robin order, regardless of when the 
transfers complete with respect to one another. In this regard, the algorithm uses a strongly 
ordered transfer model. Strongly ordered transfers are useful when the data must be processed 
in a known order.
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An alternative is to set the tag-group mask to include all outstanding buffer transfers, and then 
request conditional tag-status update for any tags that have completed. The buffers can be 
processed when their transfers complete, rather than in the order that their transfers were initi-
ated. This represents a weakly ordered transfer model. Weakly ordered transfers might be useful 
when the data can be processed in any order.

24.1.2.3 Shared I/O Buffers 

This section examines a special case of multibuffering in which the storage for the incoming 
buffer is reused for subsequent outbound transfers. This allows the program to compute on input 
data from a buffer, store the results back to that same buffer, and then initiate an outbound 
transfer to write the results back to main storage. The advantage of using shared buffers is that 
LS memory requirements can be reduced. 

Shared I/O buffers can be particularly useful when a task has roughly a one-to-one correspon-
dence between the amount of incoming and outgoing data. Vertex transformation (or more 
generally vertex shading) is an example of a task in which there is a one-to-one correspondence 
between incoming and outgoing data. Image convolution is another example.

However, an ordering dependency is introduced when sharing buffers for both input and output: 
previous outbound transfers need to complete before subsequent incoming transfers can be initi-
ated on the same buffer. Such an ordering dependency can lead to increased program 
complexity, particularly when multiple incoming and outgoing transfers are in flight.

The memory flow controller (MFC) supports fenced variants of all the get and put commands 
(Section 20.1.4.4 on page 574). The fence attribute causes a command to be locally ordered with 
respect to all previously issued commands within the same tag group. This is useful for shared 
buffers. 

Figure 24-4 on page 697 show how a fenced get command works. The ordering provided by the 
fence ensures that the get is not initiated until the put from the same buffer has completed. By 
using fenced get commands, an SPU program does not need to wait for outbound transfers to 
complete. Both parallelism and program simplicity can be maintained.
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24.1.2.4 Guidelines for Multibuffering Data

To use multibuffering effectively for data, follow these rules for DMA transfers on the SPE:

• Use multiple LS buffers.

• Use unique DMA tag IDs, one for each LS buffer.

• Use fenced or barriered commands to order the DMA transfers within a tag group.

• Use separate barrier commands to order DMA transfers within the MFC command queue.

• Keep array elements a power-of-2 size to avoid multiplication when indexing.

24.1.3 DMA Transfers and LS Accesses

When using DMA buffers, declare the DMA buffers as volatile to ensure that buffers are not 
accessed by SPU load or store instructions until after DMA transfers have completed. 

The C/C++ Language Extensions for Cell Broadband Engine Architecture document specifies 
that channel commands are ordered with respect to volatile-memory accesses. The DMA 
commands specify LS addresses as volatile, void pointers. By declaring all DMA buffers as vola-
tile, it forces all accesses to these buffers to be performed (that is, they cannot be cached in a 
register) and ordered. 

Depending on the algorithm and buffer access, this can result in additional memory accesses 
(loads and stores) and additional constraints on the compiler's optimizing scheduler that need not 
exist. The solution to this problem is to either: 

• Load DMA-buffer contents into nonvolatile (typically local stack) variables, and reference 
these variables. 

Figure 24-4. Shared I/O Buffers with Fenced get Command 
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• Declare the DMA buffers as nonvolatile, and perform DMA transfers and synchronization in 
noninlined functions. This orders the DMA transfers and memory accesses by separating the 
two by a function-call boundary. 

When coding DMA transfers, exploit DMA list transfers whenever possible. See Section 19.2.2 
DMA List Commands on page 518 for details. See Section 3.1.1.3 on page 68 for LS access 
priorities. 

24.2 SPU Pipelines and Dual-Issue Rules

The SPU has two pipelines, even (pipeline 0) and odd (pipeline 1), into which it can issue and 
complete up to two instructions per cycle, one in each of the pipelines. Whether an instruction 
goes to the even or odd pipeline depends on its instruction type, which is related to the execution 
unit that performs the function. Each execution unit is assigned to one of the two pipelines. 

To obtain high performance from the pipeline:

• Design for balanced pipeline use. Typically, the algorithm dictates the instruction mix. How-
ever, there might be multiple ways to achieve the same computational results. Choosing the 
one that achieves balanced pipeline use will often result in improved performance.

• Unroll loops and interleave computation to hide latency (reduce dependency stalls) and 
improve dual-issue rates.

Table 24-1 and Table 24-2 provide an overview of:

• Pipeline—The pipeline on which the instructions are issued.

• Stalls—The number of additional cycles before another instruction of the same type can be 
issued. For example, double-precision floating-point operations on the first implementation of 
the CBEA, the Cell/B.E. processor, have a 6-cycle stall. Therefore, for back-to-back double-
precision floating-point operations, the second operation will be issued at least 7 cycles after 
the first operation.

• Latency—The number of instructions before the result is available.

Table 24-1. Pipeline 0 Instructions and Latencies 

Pipeline-0 Instructions Latency 
(clocks)

Stall
(clocks)

Single-precision floating-point operations 6 0

Integer multiplies, convert between floating-point and integer, interpolate 7 0

Immediate loads, logical operations, integer add and subtract, signed extend, count 
leading zeros, select bits, carry and borrow generate 2 0

Double-precision floating-point operations

Cell/B.E. processor 7 6

PowerXCell 8i processor 9 0

Element rotates and shifts 4 0

Byte operations (count ones, absolute difference, average, sum) 4 0
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The SPU issues all instructions in program order according to the pipeline assignment. Each 
instruction is part of a doubleword-aligned instruction-pair called a fetch group. A fetch group can 
have one or two valid instructions. This means that the first instruction in the fetch group is from 
an even word address, and the second instruction from an odd word address. The SPU 
processes fetch groups one at a time, continuing to the next fetch group when the current fetch 
group becomes empty. An instruction becomes issueable when register dependencies are satis-
fied and there is no structural hazard (resource conflict) with prior instructions or LS contention 
due to DMA or error-correcting code (ECC) activity. See Section 3.1.1.3 on page 68 for LS 
access priorities. 

Dual-issue occurs when a fetch group has two issueable instructions in which the first instruction 
can be executed on the even pipeline and the second instruction can be executed on the odd 
pipeline. If a fetch group cannot be dual-issued, but the first instruction can be issued, the first 
instruction is issued to the proper execution pipeline and the second instruction is held until it can 
be issued. A new fetch group is loaded after both instructions of the current fetch group are 
issued.

For details on the SPU fetch and issue rules, see Section B.1.3 on page 779. 

24.3 Eliminating and Predicting Branches

The SPU hardware assumes sequential instruction flow. A branch instruction has the potential of 
disrupting the assumed sequential flow. Correctly predicted branches execute in one cycle, but a 
mispredicted branch (conditional or unconditional) incurs a penalty of 18 to 19 cycles, depending 
on the address of the branch target. Considering the typical SPU instruction latency of two-to-
seven cycles, mispredicted branches can seriously degrade program performance. The branch 
instructions also restrict a compiler’s ability to optimally schedule instructions by creating a 
barrier on instruction reordering. 

The most effective method of reducing the impact of branches is to eliminate them using three 
primary methods—inlining, unrolling, and predication. The second-most effective method of 
reducing the impact of branches is to use the hint-for branch instructions. If software speculates 
that the instruction branches to a target path, a branch hint is provided. If a hint is not provided, 
software speculates that the branch is not taken (that is, instruction execution continues sequen-
tially). 

Table 24-2. Pipeline 1 Instructions and Latencies 

Pipeline-1 Instructions Latency 
(clocks)

Stall
(clocks)

Shuffle bytes, quadword rotates, and shifts 4 0

Gather, mask, generate insertion control 4 0

Estimate 4 0

Loads 6 0

Branches 4 0

Channel operations, move to/from special purpose registers (SPRs) 6 0
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24.3.1 Function-Inlining and Loop-Unrolling

Function-inlining and loop-unrolling are two techniques often used to increase the size of basic 
blocks (sequences of consecutive instructions without branches), which increases scheduling 
opportunities. 

Function-inlining eliminates the two branches associated with function-call linkage. These 
include the branch and set link (such as brasl) for function-call entry, and the branch indirect 
(such as bi) for function-call return. Loop-unrolling eliminates branches by decreasing the 
number of loop iterations. Loop unrolling can be manual, programmer-directed, or compiler-auto-
mated. Typically, branches associated with looping are inexpensive because they are highly 
predictable. However, if a loop can be fully unrolled, then all branches can be eliminated—
including the final nonpredicted branch. For more about loop unrolling, see Section 24.4 on 
page 709. 

Over-aggressive use of inlining and loop unrolling can result in code that reduces the LS space 
available for data storage or, in the extreme case, is too large to fit in the LS. 

24.3.2 Predication Using Select-Bits Instruction

The select-bits (selb) instruction is the key to eliminating branches for simple control-flow state-
ments (for example, if and if-then-else constructs). An if-then-else statement can be made 
branchless by computing the results of both the then and else clauses and using select bits 
(selb) to choose the result as a function of the conditional. If computing both results costs less 
than a mispredicted branch, then there are additional savings. 

For example, consider the following simple if-then-else statement:

unsigned int a, b, d;
. . .
if (a > b) d += a;
else d += 1;

This code sequence when directly converted to an SPU instruction sequence without branch 
optimizations looks like:

clgt cc, a, b
brz cc, else

then:
a d, d, a
br done

else:
ai d, d, 1

done:
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Using the select bits instruction, this simple conditional becomes:

clgt cc, a, b                   /* compute the greater-than condition */
a d_plus_a, d, a             /* add d + a */
ai d_plus_1, d, 1             /* add d + 1 */
selb d, d_plus_1, d_plus_a, cc  /* select proper result */

This example shows:

• Both branches were eliminated, and the correct result was placed in d.

• New registers were needed to maintain potential values of d (d_plus_a and d_plus_1). This 
does not put significant pressure on the register file because the register file is so large and 
life of these variables is very short.

• The rewritten code sequence is smaller.

• The latency of the operations permits the scheduler to cover most of the cost of computing 
both conditions. Further scheduling these instructions with those before and after this code 
sequence will likely improve performance even further.

Here is an example of using the select bits with C intrinsics. This code fragment uses the 
spu_cmpgt, spu_add, and spu_sel intrinsics to eliminate conditional branches. 

vector unsigned int va, vb, vd;

va = spu_promote(a, 0);
vb = spu_promote(b, 0);
vd = spu_promote(d, 0);

vd = spu_sel(spu_add(vd, 1), spu_add(vd, va), spu_cmpgt(a, b));

d = spu_extract(vd, 0);

Note:  Most optimizing compilers will exploit the selb instructions for small conditionals.

24.3.3 Branch Hints

General-purpose processors have typically addressed branch prediction by supporting hardware 
look-asides with branch history tables (BHT), branch-target address caches (BTAC), or branch-
target instruction caches (BTIC). The SPU supports branch prediction through a set of hint-for 
branch (HBR) instructions (hbr, hbra, and hbrr) and a branch-target buffer (BTB). These instruc-
tions support efficient branch processing by allowing programs to avoid the penalty of taken 
branches.

Although the effects of hint-for branch instructions are not defined by the Synergistic Processor 
Unit Instruction Set Architecture, the hint-for branch instructions provide three kinds of advance 
knowledge about future branches:

• Address of the branch target (that is, where will the branch take the flow of control) 

• Address of the actual branch instruction (known as the hint-trigger address)
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• Prefetch schedule (when to initiate prefetching instructions at the branch target)

Hint-for branch instructions have no program-visible effects. They provide a hint to the SPU 
about a future branch instruction, with the intention that the information be used to improve 
performance by prefetching the branch target. 

If software provides a branch hint, software is speculating that the instruction branches to the 
branch target. If a hint is not provided, software speculates that the instruction does not branch to 
a new location (that is, it stays inline). If speculation is incorrect, the speculated branch is flushed 
and refetched. It is possible to sequence multiple hints in advance of multiple branches. As with 
all programmer-provided hints, care must be exercised when using branch hints because, if the 
information provided is incorrect, performance might degrade.

24.3.3.1 Hint-for Branch Instructions

The SPE hint-for branch instructions are shown in Table 24-3. There are immediate and indirect 
forms for this instruction class. The location of the branch is always specified by an immediate 
operand in the instruction.

24.3.3.2 Hint-for Branch Fetch

Hint-for branch instructions load the SPU’s branch-target buffer (BTB) with a branch target 
address and an address of a branch instruction (the hint-trigger address). After loading, the BTB 
monitors the instruction stream as it goes into the issue stage of the pipeline. When the address 
of the instruction going into issue matches the hint-trigger address, the hint is triggered, and the 
SPU speculates to the target address. 

Branch hints arbitrate for the LS as though they were loads, except that they require three idle 
DMA cycles before they can issue. See Section 3.1.1.3 on page 68 for details about LS access 
priority. 

24.3.3.3 Hint Trigger

The BTB is invalid at SPU program start. After a branch hint is loaded, the hint remains valid 
either until it is replaced by another hint or is invalidated by a sync instruction. Hints are disabled 
for the first instruction pair sent to issue after a flush.

Table 24-3. Hint-for Branch Instructions 

Instruction Description

hbr s11, ra

Hint for branch (r-form). Hint that the instruction addressed by the sum of the 
address of the current instruction and the signed extended 11-bit value, s11, 
will branch to the address contained in word element 0 of register ra. This form 
is used to hint function returns, pointer function calls, and other situations that 
give rise to indirect branches.

hbra s11, s18
Hint for branch (a-form). Hint that the instruction addressed by the sum of the 
address of the current instruction and the signed extended 11-bit value, s11, 
will branch to the address specified by the sign extended, 18-bit value s18.

hbrr s11, s18

Hint for branch relative. Hint that the instruction addressed by the sum of the 
address of the current instruction and the signed extended 11-bit value, s11, 
will branch to the address specified by the sum of the address of the current 
instruction and sign extended, 18-bit value s18.
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If software’s objective is to load the hint early enough so that the target is issued in the cycle after 
the branch, the branch hint should precede the branch by at least eleven cycles plus four instruc-
tion-pairs. 

24.3.3.4 Hint Stall and Pipelined Hint Mode

It is expected that most hints are used for end-of-loop branches or paired with an upcoming 
branch. It is also possible to sequence multiple hint in advance of multiple branches in a pipeline 
fashion.

After the BTB and the trigger are loaded, they remain available for triggering until either another 
hint is loaded or a synchronizing event occurs (sync or start). In particular, the BTB is not cleared 
if an instruction-sequencing error1 occurs. Therefore, it might be appropriate to hoist hint instruc-
tions from certain simple loops into loop-initialization code. The following types of loops are prob-
ably not candidates for hint hoisting: 

• Loops that execute in interrupt-enabled mode

• Loops that contain sync instructions

• Loops that feature a likely-taken branch in the loop body

If possible, a hint should precede the branch by at least eleven cycles plus four instruction pairs. 
More separation between the hint and branch will probably improve the performance of applica-
tions on future SPU implementations. Hints that are too close to the branch do not affect the 
speculation after the branch. Hint stall has been added to reduce the number of instructions 
required between the hint and the branch, so that the hinted target follows the branch through 
issue. If there are at least four instruction pairs between the hint instruction and the branch 
instruction (based on the branch-address index in the hint instruction), the SPU enters hint stall. 
Hint stall does not stall the hint; rather, it holds the branch instruction in or before the stage of the 
pipeline in which triggering occurs. The branch is held there until the hint trigger is loaded. When 
the hint is ready for trigger, hint stall is released, proper address-matching occurs, and the target 
follows the branch through the issue pipeline.

Hint stall is set up by hints whose branches are at least eight, but less than 32, instructions 
ahead. These hints are said to be stallable. Issue stalls if the hinted branch advances to or just 
before the stage of the pipeline in which triggering occurs, and the BTB has not yet been loaded 
by the hint instruction. 

Figure 24-5 on page 704 shows the branch stall window with respect to when branch hints have 
an effect.

1. An instruction-sequencing error occurs when instructions are executed in a different order other than expected. 
The SPU expects instructions to be executed sequentially unless modified by hint trigger. 
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If another stallable hint is issued in the window between the first stallable hint and the issuance of 
the original hinted branch, the SPU disables the hint stall and enters pipelined hint mode. When 
pipelined hint mode is entered, the hint stall is negated and no further hint stall is generated for 
the duration of the pipelined hint mode. Pipelined hint mode lasts for 16 cycles after the last stall-
able hint is issued in pipelined hint mode. Hints executed during pipelined hint mode are written 
to the hint buffer in order, and are available for trigger from the time they are written until the time 
the next hint is written. Performance enhancements obtained by using pipelined hint mode might 
not be portable to future implementations of SPU. 

Four instruction pairs and one cycle must separate the hint from the branch in order for the 
branch to be predicted to the taken path. If the hint is closer than this to the branch, hint stall does 
not occur. To use hint stall, the instruction sequence must be padded with no operation (nop) 
and no operation-load (lnop) instructions. If hint stall occurs, the speculation might still be incor-
rect. In this case, the incorrect speculation is flushed when it gets to branch resolution.

24.3.3.5 Rules for Using Branch Hints

The following general rules apply to the hint for branch (HBR) instructions:

• An HBR instruction should be placed at least 11 cycles followed by four instruction pairs 
before the branch instructions being hinted by the HBR instruction. In other words, an HBR 
instruction must be followed by at least 11 cycles of instructions, followed by eight instruc-
tions aligned on an even address boundary. More separation between the hint and branch 
will probably improve the performance of applications on future SPU implementations.

• If an HBR instruction is placed too close to the branch, then a hint stall will result. This results 
in the branch instruction stalling until the timing requirement of the HBR instruction is satis-
fied.

• If an HBR instruction is placed closer to the hint-trigger address than four instruction pairs 
plus one cycle, then the hint stall does not occur and the HBR is not used.

• Only one HBR instruction can be active at a time. Issuing another HBR cancels the current 
one.

Figure 24-5. Branch Stall Window 

Branch
Hint

Instruction

11
Cycles

Branch Stall
Window

Instruction
Pipeline

The branch hint
has no effect.

Branches within
this period will be
mis-predicted if
taken.

The branch hint
has an effect.

Branches within
this period will
stall until

The branch hint
has an effect.

Branches within
this period will
not stall.

4 Instruction
Pairs



Programming Handbook

 Cell Broadband Engine

Version 1.11
May 12, 2008
 

SPE Programming Tips
Page 705 of 884

• An HBR instruction can be moved outside of a loop and will be effective on each loop itera-
tion as long as another HBR or sync instruction is not executed.

• The HBR instruction must be placed within -256 to +255 instructions of the branch instruc-
tion.

• The HBR instruction only affects performance.

The HBR instructions can be used to support multiple strategies of branch prediction. These 
include:

• Static Branch Prediction—Prediction based upon branch type or displacement 
(Section 24.3.4 Program-Based Branch Prediction), and prediction based upon profiling or 
linguistic hints (Section 24.3.5 Profile or Linguistic Branch-Prediction on page 706).

• Dynamic Branch Prediction—Software caching of branch-target addresses (Section 24.3.6 
Software Branch-Target Address Cache on page 707), and using control flow to record 
branching history (Section 24.3.7 Using Control Flow to Record Branch History on 
page 708).

24.3.4 Program-Based Branch Prediction

Statically predicting branches based upon the program can improve branch prediction. Ball and 
Larus (1993) developed a set of heuristics that performed well for a large and diverse set of 
programs. Even though these programs are not necessarily appropriate candidates for SPU 
execution, the heuristic are still valid. 

Table 24-4 proposes static branch predictions for various types of program constructs. For 
example, “always” means that the branch should always be predicted taken, and “never” means 
that branch should never be predicted taken. 

Table 24-4.  Heuristics for Static Branch Prediction 

Program Feature Static Prediction

Unconditional branch always

Conditional branch never

Loop-iteration branch always

Loop-termination branch never

Call and return always

Pointer comparison false

Less than zero false

Greater than zero true

Floating-point equal false

Blocks containing store instructions1 avoid

Path length1 shortest

Short-circuit evaluation avoid

1. “Blocks containing store instructions” and “Path length” refer to the properties of code in the predicted branch tar-
get. 
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For the path-length heuristic in Table 24-4 on page 705, if prediction is correct, branch penalty is 
small, but if prediction is incorrect, the mispredict branch penalty is small compared to the 
computation cost of the executed path. 

For the short-circuit evaluation heuristic in Table 24-4, a common optimization performed by 
compilers on complex conditionals is to terminate (short-circuit) the evaluation as soon as 
possible. Consider the following example:

C Source Conditional:
if ((a > b) && (c > d))

Assembly:
clgt cc_ab, a, b
clgt cc_cd, c, d
and cc, cc_ab, cc_cd
brz cc, not_true

. . .
not_true:

Short-circuit evaluation introduces a branch on the first condition, so the second need not be 
evaluated:

Assembly w/ Short-Circuit Evaluation:
clgt cc_ab, a, b
brz cc_ab, not_true
clgt cc_cd, c, d
brz cc_cd, not_true

. . .
not_true:

This technique is not well-suited for effective branch hints on the SPU because there is generally 
not adequate runway for hinting all the branches. As such, this optimization technique should 
probably be avoided.

24.3.5 Profile or Linguistic Branch-Prediction

A common approach to generating static branch prediction is to use expert knowledge that is 
obtained either by feedback-directed optimization techniques or using linguistic hints supplied by 
the programmer.

There are many arguments against profiling large bodies of code, but most SPU code is not like 
that. SPU code tends to be well-understood loops. Thus, obtaining realistic profile data should 
not be time-consuming. Compilers should be able to use this information to arrange code so as 
to increase the number of fall-through branches (that is, conditional branches not taken). The 
information can also be used to select candidates for loop unrolling and other optimizations that 
tend to unduly consume LS space.
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Programmer-directed hints can also be used effectively to encourage compilers to insert opti-
mally predicted branches. Even though there is some anecdotal evidence that programmers do 
not use them very often, and when they do use them, the result is wrong, this is likely not the 
case for SPU programmers. SPU programmers generally know a great deal about performance 
and will be highly motivated to generate optimal code.

The SPU C/C++ Language Extension specification defines a compiler directive mechanism for 
branch prediction (Section B.2.5 Compiler Directives on page 791). The __builtin_expect direc-
tive allows programmers to predicate conditional program statements. The following example 
demonstrates how a programmer can predict that a conditional statement is false (a is not larger 
than b).

if(__builtin_expect((a>b),0))
  c += a;
else
  d += 1;

Not only can the __builtin_expect directive be used for static branch prediction, it can also be 
used for dynamic branch prediction. The return value of __builtin_expect is the value of the exp 
argument, which must be an integral expression. For dynamic prediction, the value argument 
can be either a compile-time constant or a variable. The __builtin_expect function assumes that 
exp equals value.

A static-prediction example might look like this:

if (__builtin_expect(x, 0)) {
foo(); /* programmer doesn’t expect foo to be called */

}

A dynamic-prediction example might look like this:

cond2 = .../* predict a value for cond1 */
...
cond1 = ...
if (__builtin_expect(cond1, cond2)) {

foo();
}
cond2 = cond1;/* predict that next branch is the same as the previous */

Compilers may require limiting the complexity of the expression argument because multiple 
branches can be generated. When this situation occurs, the compiler must issue a warning if the 
program’s branch expectations are ignored.

24.3.6 Software Branch-Target Address Cache

The HBR instructions can also be used to implement a software version of a branch-target 
address cache (BTAC). Consider the following example in which a loop contains a conditional 
branch:
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lqr i, iterations
loop:

 . . .
brz cc, skip // condition variable cc
. . . 

skip:
ai i, i, -1 // decrement loop counter
brnz i, loop

The conditional branch (the brz instruction) can be predicted as follows:

lqr i, iterations
ila hint, skip // initial hint - skip condition

loop:
hbr br_addr, hint // hint based upon previous iteration
 . . .
ila hint, skip // assume hint for next iteration

br_addr:
brz cc, skip
ila hint, br_addr+4// correct hint for next iteration
. . . 

skip:
ai i, i, -1
brnz i, loop

In this example, the hint variable is used to store the previous iteration’s branch target, under the 
assumption that the previous iteration’s branch result is a good predictor of the next iteration’s 
branch. It is possible to extend this concept and keep a history of branch results to be used as 
the predictor.

24.3.7 Using Control Flow to Record Branch History

Another technique for improving branch prediction is to replicate loops with its branches reversed 
and taken branches being vectored to the other copy of the loop. For example, consider the 
following if-then clause within a loop:

 op1
loop:

 op2
brz cc, label1
 op3

label1:
 op4
brnz cntr, loop
 op5
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This loop can be rewritten into two tightly coupled loops as follows:

LOOP 1 (branch not taken) LOOP 2 (branch taken)
-------------------------    ---------------------

 op1
loop: loop2:

 op2  op2
brz cc, label3 brnz cc, label2

label2: label3:
 op3  op4

label1: brnz cntr, loop2
 op4 br label4
brnz cntr, loop

label4:

This optimization is effectively a 1-bit branch predictor for the conditional. The left loop (LOOP 1) 
is used when predicting the conditional as true. The right loop (LOOP 2) is used when predicting 
the conditional as not true. The main problem with this technique is that code can grow signifi-
cantly as it is applied to more complex and larger code sequences. Judicious application of this 
technique is recommended.

24.4 Loop Unrolling and Pipelining

Loops are the foundation in nearly all programs, especially streaming applications. If the number 
of loop iterations is a small constant, then consider removing the loop altogether. Otherwise, 
consider unrolling the loop if the loop is relatively independent (that is, an iteration of the loop is 
not dependent upon the previous iteration). The SPU has a large register file and significant loop 
unrolling can be accomplished before register spill occurs. Register spilling occurs when the 
instantaneous number of active variables exceeds the size of the register file. Unrolled loops 
provide additional computation for the optimizer to improve issue rates and reduce dependency 
stalls. 

When unrolling loops, additional local variables might be required to eliminate false dependen-
cies amongst the loop variables. Failure to eliminate these false dependencies can prevent 
unrolled loops from being interleaved by the compiler.

Note:  Applications using auto-vectorization technology should not explicitly remove, unroll, or 
pipeline loops. This only adds complexity to the auto-vectorization process.

Consider a sample workload, called xformlight, that performs basic graphics vertex-processing, 
four vertices at a time. The vertex processing includes 4 × 4 vertex transformation, perspective 
division, one local light computation with OpenGL-style specularity, color conversion, clamping, 
and RGBA color packing. Table 24-5 on page 710 shows how loop unrolling affects the perfor-
mance of this workload. These values are typical of many computational workloads.
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Most loops have the same basic structure, as shown in Figure 24-6. Per iteration they load input 
data, perform computation, and finally store the results. Because loads, stores, quadword 
rotates, and shuffles execute on pipeline 1, and most computation instructions execute on pipe-
line 0, loops can be software pipelined to improve dual-issue rates by computing at the same 
time as loading and storing data. Figure 24-7 on page 711 shows how software pipelining func-
tions, and Table 24-5 shows some representative results of software pipelining the unrolled 
xformlight workload. 

Table 24-5. Loop Unrolling the xformlight Workload 

Metric
Unroll Factor

1 2 4 8

Normalized Performance 1.00 1.52 1.73 1.66

Cycles Per Instruction (CPI) 1.35 0.91 0.76 0.67

Dual Issue Rate 3.3% 19.8% 34.3% 35.8%

Dependency Stalls 27.2% 5.9% 0.9% 1.5%

Registers Used 78 103 128 128

Text Size (bytes) 768 1344 3076 5252

Figure 24-6. Basic Loop 
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Figure 24-7. Software-Pipelined Loop 
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Table 24-6. Software Pipelining the Unrolled xformlight Workload 

Metric
Unroll Factor

2 4

Normalized Performance 1.82 1.83

Cycles Per Instruction (CPI) 0.75 0.69

Dual Issue Rate 36.7% 47.8%

Dependency Stalls 1.3% 0.5%

Resource Conflicts 1.0% 0.5%

Registers Used 114 128

Text Size (bytes) 2436 3468

Speedup versus nonpipelined 1.16 1.08
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24.5 Offset Pointers

The PPE’s PowerPC instruction set supports load/store with update instructions. These instruc-
tions allow one to sequentially index through an array without the need of additional instructions 
to increment the array pointer. The SPU does not support this instruction form. Instead, one 
should exploit the SPU d-form load instructions by specifying small, literal array offsets from the 
base array pointer. 

For example, consider the following PPE code that exploits the PowerPC store with update 
instruction:

#define FILL_VEC_FLOAT(_q, _data) *(vector float)(_q++) = _data;

FILL_VEC_FLOAT(q, x);
FILL_VEC_FLOAT(q, y);
FILL_VEC_FLOAT(q, z);
FILL_VEC_FLOAT(q, w);

The same code can be modified for SPU execution as follows:

#define FILL_VEC_FLOAT(_q, _offset, _data) *(vector float)(_q+(_offset)) = _data;

FILL_VEC_FLOAT(q, 0, x);
FILL_VEC_FLOAT(q, 1, y);
FILL_VEC_FLOAT(q, 2, z);
FILL_VEC_FLOAT(q, 3, w); 
q += 4;

24.6 Transformations and Table Lookups

24.6.1 The Shuffle-Bytes Instruction

The SPU’s shufb (shuffle bytes) instruction, which is comparable to the vperm instruction for the 
PPE, supports shuffles and permutations that can be used for many purposes, including table 
lookups, transformations between array-of-structure (AOS) and structure-of-array (SOA) vector 
forms, and operand alignment such as endian-reversal. 

Figure 24-8 on page 713 shows an example of how the shufb (shuffle bytes) instruction works. 
Each of the vectors, ra, rb, rc, and rt, contain sixteen byte elements. Each byte of rc is used to 
select a byte from either ra, rb, or a constant (0, x‘80’, or x‘FF’). For example, an rc byte of x'03' 
will select byte element 3 of ra, and an rc byte of x'15' will select byte element 5 of rb. The results 
are placed in the corresponding bytes of rt. 
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A compiler can use the shufb instruction to perform a (sub-quadword) scalar store, using a 
shuffle pattern generated by one of the Generate Controls for Insertion instructions (cbd, cbx, 
cdd, cdx, chd, chx, cwd, cwx). 

24.6.2 Fast SIMD 8-Bit Table Lookups

Many applications require table lookups. An example that uses 8-bit table lookups is the 
Advanced Encryption Standard (AES) byte-substitution (ByteSub) transformations. See the 
Advanced Encryption Standard (AES), Federal Information Processing Standards Publications, 
FIPS PUB 197, 2001, and http://csrc.nist.gov/CryptoToolkit/aes/rijndael/. 

Here is an example of an AES ByteSub transformation: 

unsigned char s_box[256];
unsigned char state[16];
for (i=0; i<16; i++) {

state[i] = s_box[state[i]];
}

Because table lookups involve an indirection, most vector processors do not support single 
instruction, multiple data (SIMD) table lookups. Instead, programmers often must fall back to 
scalar operations, which lack the acceleration found in parallel operations.

24.6.2.1 Scalar Table Lookup 

Assuming an AES state block is stored in a 128-bit quadword vector and the s_box array is either 
a 256-entry byte array of unknown alignment or a 16-entry quadword array, a scalar SPU imple-
mentation of the AES ByteSub transformation can be implemented as follows:

   ila     s_box, s_box_address    # initialize s_box array pointer         
   il      cnt, 16                 # initialize loop counter 
next_byte:                         # for each byte in the state quadword 

Figure 24-8. Shuffle Bytes Instruction 
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   andi    idx, state, 0xFF        #  strip off other bytes in the word 
   lqx     new_state, s_box, idx   # fetch sbox array quadword indexed by state byte 
   cbx     insert, s_box, idx      # generate shuffle pattern for next instruction 
   shufb   state, new_state, state, insert  # insert sbox lookup into state quadword 
   ai      cnt, cnt, -1            #  decrement loop counter 
   rotqbyi state, state, 1         #  rotate state quadword for next byte 
   brnz    cnt, next_byte          #  branch if more bytes in the quadword 

The preceding example uses approximately seven instructions per byte-lookup. By completely 
unrolling the loop, the number of instructions per byte-lookup can be reduced to five. Similar 
results can be obtained using the PPE’s vector/SIMD multimedia extension unit.

24.6.2.2 Exploiting the Shuffle-Bytes Operation

The key to improving the performance of 8-bit table lookups on an SPE is the shufb instruction, 
described in Section 24.6.1 on page 712. This instruction is capable of performing 16 simulta-
neous 8-bit table lookups in a 32-entry table. Assuming the table is quadword-aligned, the 
following SPU instructions perform 16 simultaneous table lookups in a 32-entry byte table:

lqa table0_15, table + 0
lqa table16_31, table + 16
andbi idx, state, 0x1F
shufb state, table0_15, table16_31, idx

Most real-life examples require tables larger than 32 entries. Such larger tables can be handled 
by performing a binary-tree pruning process on a series of 32-entry table lookups. The pruning is 
performed using successively more significant bits in the table index.

For example, Figure 24-9 on page 715 shows the operations required to perform a 128-entry 
table lookup. In this case, the 128 entries of the table are loaded, one quadword at a time, into 
eight quadwords (quadwords 0 through 7). The five least-significant bits are used as the shuffle 
pattern to perform a byte-for-byte select from the four 32-entry subtables. Each successive bit of 
the table index is used as a selector (using the selb instruction, Section 24.3.2 on page 700) to 
choose the correct subtable value. This is repeated for each of the remaining most-significant 
bits of the table index, as follows:

vector unsigned char idx;
vector unsigned char tbl[8];
vector unsigned char tbl0_1, tbl2_3, tbl4_5;
vector unsigned char tbl6_7, tbl0_3, tbl4_7;
vector unsigned char lsb3_7, bit3, bit2;
vector unsigned char result;
lsb3_7 = spu_and(idx, 0x1F);
tbl0_1 = spu_shuffle(tbl[0],tbl[1],lsb3_7);
tbl2_3 = spu_shuffle(tbl[2],tbl[3],lsb3_7)
tbl4_5 = spu_shuffle(tbl[4],tbl[5],lsb3_7);
tbl6_7 = spu_shuffle(tbl[6],tbl[7],lsb3_7);
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bit2 = spu_cmpeq(spu_and(idx,0x20),0x20);
tbl0_3 = spu_sel(tbl0_1,tbl2_3,bit2);
tbl4_7 = spu_sel(tbl4_5,tbl6_7,bit2);
bit1 = spu_cmpgt(idx,0x3F);
result = spu_sel(tbl0_3,tbl4_7,bit1);

24.6.2.3 Performance Characterization

The previous sections have compared a scalar implementation of a table lookup with a SIMD 
implementation. Both implementations use quadword data-loads and loop-unrolling to maximize 
dual-issue rates and minimize dependencies. The performance results are shown in Table 24-7 
on page 716. The results clearly show the performance benefit of SIMD table lookups. Despite 
the fact that dual-issue efficiency is compromised in the SIMD version, the SIMD results show 
performance gains of 3.7 to 14.3 times that of scalar lookups, and code reductions of 4.6 to 27 
times that of scalar lookups. The scalar implementation has higher dual-issue rates because the 
number of instructions and instruction mix provides more opportunities to achieve higher dual-
issue rates. This example demonstrates that a small CPI does not always corollate to good 
performance. 

Figure 24-9. 128-Entry Table Lookup Example 

128-Entry Table (8 quadwords)

0 - 15 16 - 31 32 - 47 48 - 63 64 - 79 80 - 95 96 - 111 112 - 127

Quadwords

Quadword (16 bytes)

32-Byte Table

Index

Table Entries

shufb using
index bits 3:7

selb using
index bit 2

selb using
index bit 1

0 1 2 3 4 5 6 7
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24.7 Integer Multiplies

The SPU contains only a 16 x16 bit multiplier. Therefore, to perform a 32-bit integer multiply, it 
takes five instructions—three 16-bit multiplies and two adds to accumulate the partial products.

To avoid extraneous multiply cycles, observe the following rules:

• Make array-element size a power of 2. This avoids multiplication when indexing.

• If the operands are less than 16 bits in size, cast them to unsigned short before multiplica-
tion. This takes maximum advantage of the multiplier.

• Always cast constants, because they have an implicit type of int.

• To avoid inadvertent introduction of signed extends and masks due to casting, consider intro-
ducing a macro to explicitly perform an integer multiply whose operands are 16-bits or less. 
For example:

#define MULTIPLY(a, b)\
(spu_extract(spu_mulo((vector unsigned short)spu_promote(a,0),\
(vector unsigned short)spu_promote(b, 0)),0))

24.8 Scalar Code

24.8.1 Scalar Loads and Stores

The SPU only loads and stores a quadword at a time. As such, scalar (sub-quadword) loads and 
stores require multiple instructions and have long latencies. This is due to the fact that scalar 
loads must be rotated into the preferred scalar slot (Figure 3-6 on page 77), and stores require a 
read-modify-write operation to insert the scalar into the quadword being stored. This overhead is 
demonstrated by the following scalar load and store sample:

void add1(int *p) { *p += 1; }

ASSEMBLY

add1: 

Table 24-7. Performance Comparison 

Technique Table Size Code Size1 Cycles/Instruction Cycles/Byte Looked Up

scalar 1 to 255 1760 0.536 3.58

SIMD 1 to 32 64 1.07 0.250

SIMD 1 to 64 128 0.774 0.375

SIMD 1 to 128 224 0.691 0.594

SIMD 1 to 255 384 0.653 0.969

1. Inner-loop instructions only, expressed in bytes.
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lqd        $4, 0(p)         # load quadword containing int pointed to by p 
rotqby $5, $4, p            # rotate int into preferred scalar slot 
ai         $5, $5, 1        # add 1 to int 
cwd        $6, 0(p)         # generate shuffle pattern for scalar word insertion 
shufb      $4, $5, $4, $6   # insert scalar into quadword 
stqd       $4, 0(p)         # store updated quadword back to local storage 

There are several strategies for making scalar code (code that is not appropriate for vectoriza-
tion) more efficient. These include:

• Change the scalars to quadword vectors. This might seem wasteful, however, if you consider 
the three extra instructions associated with loading and storing scalars, this trade-off can 
actually have a positive impact on code size.

• Cluster scalars into groups and load multiple scalars at a time using a quadword memory 
access. Manually extract or insert the scalars on an as-needed basis. This will eliminate 
redundant loads and stores.

These strategies have been applied to an implementation of RC4, a character base encryption 
algorithm that uses a 256-byte dynamic state table. The basic algorithm is:

/* cipher msg_in to msg_out */
unsigned char idx1, idx2, *msg_in, *msg_out;
...
for (i=0; i<msg_len; i++)  {

idx2 = state[++idx1] + idx2;
SWAP(state[idx1], state[idx2]);
msg_out[i] = msg_in[i] ^ (state[idx1] + state[idx2])

}

Because each iteration of the algorithm is dependent upon previous iteration, it cannot be paral-
lelized. However, by exploiting the strategies outlined previously, significant performance 
enhancements can still be achieved, as shown in Table 24-8. The 256-byte state table is 
expanded into a 256-quadword state table in which all 16 elements of the unsigned character 
vector contain the same byte value. The input and output messages are loaded and stored a 
quadword at a time to eliminate the extraneous loads and stores and their respective latencies. 
These changes resulted in an 86% performance speedup.

Table 24-8. RC4 Scalar Improvements 

Implementation Instructions Cycles CPI speedup

original 540120 723245 1.34 -

optimized 265794 388457 1.46 1.86
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24.8.2 Promoting Scalar Data Types to Vector Data Types

The spu_promote and spu_extract SPU intrinsics are provided to efficiently promote scalars to 
vectors, or vectors to scalars. These intrinsics are listed in Table 24-9. When promoting a scalar 
operand to a vector operand, be sure to promote the scalar to the preferred scalar slot 
(Figure 3-6 on page 77) to avoid the need for additional instructions. The preferred scalar slot for 
byte, halfword, word, and doubleword operations is shown in Table 24-10. 

24.9 Unaligned Loads

On the SPE, shift-left and shift-right instructions must be used to perform an unaligned quadword 
vector load:

vector unsigned char load_vec_unaligned(unsigned char *ptr)
{

vector unsigned char qw0, qw1, qw;
unsigned int shift;

shift = (unsigned int)(ptr) & 15;
qw0 = *((vector unsigned char *)(ptr));
qw1 = *((vector unsigned char *)(ptr+16));
qw = spu_or(spu_slqwbyte(qw0, shift),

       spu_rlmaskqwbyte(qw1, (signed int)(shift-16)));
return (qw);

}

In contrast, unaligned loads using the PPE’s vector/SIMD multimedia extensions use the load-left 
(lvlx) and load-right (lvrx) instructions. Unaligned stores use the store-left (stvlx) and store-right 
(stvrx) instructions. Two examples are:

# Rb contains a pointer to the misaligned quadword. 
# Vt contains the loaded quadword vector. 
lvlx                Vhi, 0, Rb            # load left-most portion

Table 24-9. Intrinsics for Changing Scalar and Vector Data Types 

Instruction Description

d = spu_promote(a, element) Promote a scalar to a vector.

d = spu_extract(a, element) Extract a vector element from its vector.

Table 24-10. Preferred Scalar Slot 

Scalar Data Type Byte Address of Preferred Scalar Slot

Byte 3

Halfword 1

Word 0

Doubleword 0
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addi                Rb, Rb, 16
lvrx                Vlo, 0, Rb            # load right-most portion
vor                 Vt, Vhi, Vlo          # combine the two portions 

# Rb contains a pointer to the misaligned quadword. 
# Vs contains the quadword to be stored. 
stvlx                Vs, 0, Rb            # store the left-most portion 
addi                 Rb, Rb, 16 
stvrx                Vs, 0, Rb            # store the right-most portion 
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Appendixes, Glossary, and Index
This section includes:

• Appendix A PPE Instruction Set and Intrinsics on page 723

• Appendix B SPU Instruction Set and Intrinsics on page 771

• Appendix C Performance Monitor Signals on page 793

• Glossary on page 835

• Index on page 871



Programming Handbook

Cell Broadband Engine  

Appendixes, Glossary, and Index
Page 722 of 884

Version 1.11
May 12, 2008



Programming Handbook

 Cell Broadband Engine

Version 1.11
May 12, 2008
 

PPE Instruction Set and Intrinsics
Page 723 of 884

Appendix A. PPE Instruction Set and Intrinsics

A.1 PowerPC Instruction Set

An overview of the PowerPC Processor Element (PPE) PowerPC instructions and data types is 
given in Section 2.4 on page 57. The sections that follow summarize key points of the instruc-
tions. For a complete description, see the PowerPC Architecture documents.

A.1.1 Data Types

Section 2.4.1 on page 57 contains a list of the PowerPC data types. 

A.1.2 PPE Instructions

Table A-1 summarizes the PPE instruction performance characteristics. The entries in this table 
are organized by the functional units that execute the instructions. Some considerations for inter-
preting the table follow:

• An instruction can be executed in one or more execution units.

• Latency is the issue-to-issue latency for a dependent instruction. For example, if an add 
issues in cycle 20 and the soonest a dependent xor can issue is cycle 22, the latency for add 
is listed as 2. There are multiple latencies for some instructions when the instruction writes 
more than one type of register. In general, latency will be one cycle larger than use penalty.

• Throughput refers to the maximum sustained rate at which the PPE can execute instructions 
of the type noted in the absence of any dependencies and assuming infinite caches. It is 
shown as instructions per cycle (IPC).

• Some fields are labelled “N/A” to indicate that a more elaborate description is required (and 
is best understood by taking a broader view of the machine as a whole). This includes com-
plex microcoded instructions. Instructions that do not modify a register are also labelled 
“N/A.”

• In the Notes column, “MC” indicates instructions that are microcoded. “CSI” indicates a con-
text-synchronizing instruction.

• The Execution Units column indicates BRU: branch unit, IU: instruction unit, FPU: floating-
point unit, FXU: fixed-point unit, and LSU: load and store unit.

Table A-1. PowerPC Instructions by Execution Unit  (Sheet 1 of 10)

Mnemonic Description Execution
Unit1

Latency
(cycles)2

Throughput
(IPC) Notes3 Comments

b ba bl bla Branch BRU N/A 1 per latency cycle Unconditional branches 
always “predicted” correctly.

bc bca bcl bcla Branch conditional BRU
1 
(lr / ctr)

1 per latency cycle
Branch direction predicted at 
the top of the pipeline. May 
update the link stack.

bclr bclrl Branch conditional to 
link register BRU

1 
(lr / ctr)

1 per latency cycle

Branch direction and target 
address predicted at the top 
of the pipeline. May use the 
link stack.
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bcctr bcctrl Branch conditional to 
count register BRU

1 (lr)
2 (ctr)

1 per latency cycle

Branch direction and target 
address predicted at the top 
of the pipeline. May use the 
link stack.

sc rfid
System call
Return from interrupt

IU N/A N/A CSI

crand cror crxor 
crnand crnor 
crnandc creqv 
crorc

CR logical operations BRU 1 1 per latency cycle

mcrf Move Condition 
Register (CR) field BRU 1 1 per latency cycle

lbz lbzx lhz lhzx 
lwz lwzx ld ldx 
lhbrx lwbrx

Load LSU 2 1 per latency cycle

5-cycle latency for load 
followed by dependent load. 
2-cycle latency for load 
followed by a dependent 
FXU operation. 

lha lhax lwa lwax Load algebraic LSU, 
FXU

See Table A-4 on 
page 737 See note 2 MC

lbzu lhzu lwzu ldu Load with update LSU, 
FXU

2 (RT)
2 (RA)

1 per latency cycle Hardware breaks into basic 
load and an add.

lbzux lhzux lwzux 
ldux

Load and zero with 
update indexed

LSU, 
FXU

2 (RT)
2 (RA)

1 per latency cycle Hardware breaks into a basic 
load and an add.

lhau Load algebraic with 
update

LSU, 
FXU

See Table A-4 on 
page 737 See note 2 MC

lhaux lxaux Load algebraic with 
update indexed

LSU, 
FXU

See Table A-4 on 
page 737 See note 2 MC

stb sth stw std Store LSU, 
FXU N/A 1 per latency cycle

stbx sthx stwx 
stdx Store indexed LSU, 

FXU N/A 1 per latency cycle

stbu sthu stwu 
stdu Store with update LSU, 

FXU
2 for updated 
register 1 per latency cycle Hardware breaks into basic 

store and an add.

sthbrx stwbrx Store byte-reversed 
indexed

LSU, 
FXU N/A 1 per latency cycle

stbux sthux 
stwux stdux

Store with update 
indexed

LSU, 
FXU

2 for updated 
register 1 per latency cycle Hardware breaks into basic 

store and an add.

lmw Load multiple word LSU See Table A-4 on 
page 737 

1 register load per 
latency cycle after 
startup

MC
Microcode generates an 
inline sequence of basic 
loads.

stmw Store multiple word LSU, 
FXU

See Table A-4 on 
page 737 

1 register store per 
cycle after startup MC Microcode generates inline 

sequence of basic stores.

lswi
(naturally aligned)

Load string word 
immediate LSU See Table A-4 on 

page 737
1 register store per 
cycle after startup MC

Microcode assumes natural 
alignment and generates 
inline sequence of basic 
loads.

Table A-1. PowerPC Instructions by Execution Unit  (Sheet 2 of 10)

Mnemonic Description Execution
Unit1

Latency
(cycles)2

Throughput
(IPC) Notes3 Comments
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lswx
(naturally aligned)

Load string word 
indexed LSU See Table A-4 on 

page 737
1 register store per 
cycle after startup MC

Microcode assumes natural 
alignment and generates 
inline sequence of basic 
loads

stswi
(naturally aligned)

Store string word 
immediate

LSU, 
FXU

See Table A-4 on 
page 737 

1 register store per 
cycle after startup MC

Microcode assumes natural 
alignment and generates 
inline sequence of basic 
stores.

stswx
(naturally aligned)

Store string word 
indexed

LSU, 
FXU

See Table A-4 on 
page 737 

1 register store per 
cycle after startup MC

Microcode assumes natural 
alignment and generates 
inline sequence of basic 
stores.

lswi lswx stswi 
stswx
(unaligned)

Load or store string 
word immediate
Load or store string 
word indexed

LSU See Table A-4 on 
page 737 See note 2 MC

A string instruction is first 
decoded and issued 
assuming natural alignment. 
At execution, the LSU notes 
that it is unaligned and 
causes a machine flush.
As the string instruction goes 
through microcode the 
second time, it is broken up 
in a way that takes the 
misalignment into account.

lwarx ldarx Load and reserve 
indexed LSU N/A N/A

Forced to miss data L1 
cache. 
One outstanding lwarx in 
system at a time.

stwcx. stdcx. Store conditional 
indexed

LSU, 
FXU N/A N/A

Must establish coherency 
block ownership before 
completing the instruction 
(other stores do not have to 
do this). Can take anywhere 
from 10 cycles to hundreds 
of cycles depending upon 
the state of the coherency 
block in the memory 
hierarchy.

addi addis add 
subf neg

Add
Subtract
Negate

FXU 2 (gpr) 1 per latency cycle

add. subf. subfic 
neg. subfe

Add
Subtract
Negate

FXU
2 (gpr)
1 (cr)

1 per latency cycle

addco subfco 
addeo subfeo 
addmeo subfmeo 
addzeo subfzeo 
nego addo addze 
subfo addc subfc 
addic subic adde 
addme subfme 
subfze

Add 
Add carrying 
Add extended 
Subtract 
Subtract carrying 
Subtract extended 
Negate

FXU
2 (gpr)
2 (xer)

1 per latency cycle

Table A-1. PowerPC Instructions by Execution Unit  (Sheet 3 of 10)

Mnemonic Description Execution
Unit1

Latency
(cycles)2

Throughput
(IPC) Notes3 Comments
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addic. adde. 
addze. subfe. 
addme. subfme. 
subfze. addo. 
subfo. subfeo. 
addeo. addmeo. 
subfmeo. addzeo. 
subfzeo. addc. 
addco. subfc. 
subfco.

Add 
Add carrying 
Add extended 
Subtract 
Subtract carrying 
Subtract extended 

FXU
2 (gpr)
1 (cr)
2 (xer)

1 per latency cycle

mulli Multiply immediate FXU 6 1 per 6 latency 
cycles

Not pipelined in the FXU. 
Causes a 6-cycle stall after 
issue.

mullw mulhw 
mulhwu mullwo Multiply word FXU 9 1 per 9 latency 

cycles

Not pipelined in the FXU. 
Causes a 9-cycle stall after 
issue.

mulld mulhd 
mulhdu mulldo Multiply doubleword FXU 15 1 per 15 latency 

cycles

Not pipelined in the FXU. 
Causes a 15-cycle stall after 
issue.

mullw. mulld. 
mulhd. mulhw. 
mulhdu. mulhwu.

Multiply recording FXU See Table A-3 on 
page 735 See note 2 MC

Not pipelined in the FXU. 
Microcode breaks into 
baseline operation and a 
compare.

mullwo. mulldo. Multiply recording FXU See Table A-3 on 
page 735 See note 2 MC

Not pipelined in the FXU. 
Microcode breaks into 
baseline operation and a 
compare.

divd divdu divdo 
divduo Divide

FXU
(one)

10 - 70 1 per 10 to 1 per 
70 latency cycles

The performance is 
determined by the number of 
bits required to represent the 
result.
PowerPC processor unit 
(PPU) cycles equal:
((1 setup) + (ceil ((rb 
leading digits - ra 
leading digits)/2) + 1 
iterations) + (1 fixup)) 
× 2
word minimum = 10, 
maximum = 38 cycles
doubleword minimum = 10, 
maximum = 70 cycles
Overflow cases will complete 
in 10 cycles.

divw divwu divwo 
divwuo Divide word

FXU
(one)

10 - 38 1 per 10 to 1 per 
38 latency cycles

Not pipelined in the FXU. 
The XU uses complex queue 
and pipeline stalls until write 
back.
See the performance notes 
for divd.

divd. divw. divdu. 
divwu. Divide recording

FXU
(one)

See Table A-3 on 
page 735 See note 2 MC

Not pipelined in the FXU. 
Microcode breaks into a 
divide and a compare.
The XU uses complex queue 
and pipeline stalls until write 
back.

Table A-1. PowerPC Instructions by Execution Unit  (Sheet 4 of 10)

Mnemonic Description Execution
Unit1

Latency
(cycles)2

Throughput
(IPC) Notes3 Comments
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divdo. divwo. 
divduo. divwuo. Divide recording

FXU
(one)

See Table A-3 on 
page 735 See note 2 MC

Not pipelined in the FXU. 
Microcode breaks into a 
divide and a compare.
See the performance notes 
for divd.

cmpi cmp cmpli 
cmpl Compare FXU 1 1 per latency cycle

tdi twi td tw Trap FXU See note 2

1 per latency cycle 
if a trap does not 
occur; otherwise, 
see note 2

Causes a program interrupt. 

ori oris xori xoris 
and or xor nand 
nor eqv andc orc

Logical FXU 2 (gpr) 1 per latency cycle

andi. andis. and. 
or. xor. nand. nor. 
eqv. andc. orc. 
nego.

Logical recording FXU See Table A-3 on 
page 735 See note 2 MC

extsb
extsh 
extsw

Extend sign FXU 2 1 per latency cycle

extsb. 
extsh. 
extsw.

Extend sign recording FXU See Table A-3 on 
page 735 See note 2 MC

cntlzd cntlzw Count leading zeros FXU 2 (gpr) 1 per latency cycle

cntlzd. cntlzw. Count leading zeros 
recording FXU See Table A-3 on 

page 735 See note 2 MC

rldicl rldic rldicr 
rlwinm rldimi 
rlwimi

Rotate left immediate FXU 2 (gpr) 1 per latency cycle

rldicl. rldicr. rldic. 
rlwinm. rldcl rldcl. 
rldcr rldcr. rlwnm 
rlwnm. rldimi. 
rlwimi.

Rotate left recording
Rotate left clear

FXU See Table A-3 on 
page 735 See note 2 MC

sld sld. slw slw. 
srd srd. srw srw. 
srad srad. sraw 
sraw. sradi. 
srawi.

Shift left 
Shift right

FXU See Table A-3 on 
page 735 See note 2 MC

sradi srawi Shift right algebraic 
immediate FXU 2 (gpr) 1 per latency cycle

mtspr(xer) Move to XER
FXU
(one)

See note 2 See note 2

mtspr(lr) 
mtspr(ctr)

Move to Link Register 
(LR)
Move to Count Register 
(CTR)

BRU 1 1 per latency cycle

Table A-1. PowerPC Instructions by Execution Unit  (Sheet 5 of 10)

Mnemonic Description Execution
Unit1

Latency
(cycles)2

Throughput
(IPC) Notes3 Comments
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mtspr (others)
mtmsr mtmsrd

Move to SPR
Move to MSR

Either 
FXU or 
BRU

(depends 
on SPR)

Varies based on 
SPR

Varies based on 
SPR

mtmsrd L = ‘0’ is 
microcoded. mtmsrd L = ‘1’ 
is not.
LR and CTR have 1-cycle 
latency and issue 1 per 
cycle.

mtcrf
Move to CR fields

FXU See Table A-3 on 
page 735 See note 2 MC Bit 11 = ‘0’

mtcrf, mtocrf FXU 1 1 per latency cycle Bit 11 = ‘1’

mcrxr
Move to CR from Fixed-
Point Exception 
Register (XER)

BRU 1 1 per latency cycle

mfcr

Move from CR

BRU ~34 ~1 per 34 latency 
cycles

mfcrf BRU ~34 ~1 per 34 latency 
cycles

Bit 11 = ‘1’. This form is 
nonpipelined.

mftb Move from time base
FXU
(one)

~40 ~2 to 40 latency 
cycles

mfspr(lr) 
mfspr(ctr) BRU 1 1 per latency cycle

mfspr (others)
mfmsr

Move from Special 
Purpose Register (SPR)
Move from Machine 
State Register (MSR)

Either 
FXU or 
BRU

(depends 
on SPR)

Varies based on 
SPR

Varies based on 
SPR

Other SPRs are handled by 
the FXU and are 
nonpipelined. The pipeline 
stalls until writeback.

lfs lfsx lfd lfdx Load floating-point
LSU, 
FPU 
Load

1 1 per latency cycle

Instructions are issued to 
both the FPU and the LSU 
units; only executes in the 
LSU unit

lfsu lfsux lfdu 
lfdux

Load floating-point with 
update

LSU, 
FXU, 
FPU 
Load

1 (fpr)
2 (gpr)

1 per latency cycle

stfs stfsx stfd 
stfdx Store floating-point

LSU, 
FPU 
Store

See note 2 1 per latency cycle
Instructions are dispatched 
to both the FPU and the LSU 
units

stfsu stfsux stfdu 
stfdux

Store floating-point with 
update

LSU, 
FPU, 
FXU

2 (gpr) 1 per latency cycle

stfiwx Store floating-point as 
integer indexed

LSU, 
FPU See note 2 1 per latency cycle

fmr fneg fabs 
fnabs fadd fadds 
fsub fsubs fmul 
fmuls

Floating-point move
Floating-point absolute
Floating-point negative
Floating-point negative
absolute
Floating-point add
Floating-point subtract
Floating-point multiply

FPU 10 1 per latency cycle

Table A-1. PowerPC Instructions by Execution Unit  (Sheet 6 of 10)

Mnemonic Description Execution
Unit1

Latency
(cycles)2

Throughput
(IPC) Notes3 Comments
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fmr. fneg. fabs. 
fnabs. fadd. 
fadds. fsub. 
fsubs. fmul. 
fmuls.

Floating-point move 
recording
Floating-point absolute 
recording
Floating-point negative 
recording
Floating-point negative 
absolute recording
Floating-point add 
recording
Floating-point subtract 
recording
Floating-point multiply 
recording

FPU
10 (fpr)
+17 (cr)

1 per latency cycle

The processor flushes if a 
CR-using operation is issued 
while one of these 
instructions is in flight. 

fmadd fmadds 
fmsub fmsubs 
fnmadd fnmadds 
fnmsub fnmsubs

Floating-point multiply-
add
Floating-point multiply-
subtract

FPU 10 1 per latency cycle

fmadd. fmadds. 
fmsub. fmsubs. 
fnmadd. 
fnmadds. 
fnmsub. 
fnmsubs.

Floating-point multiply-
add recording
Floating-point multiply-
subtract recording

FPU
10 (fpr)
+17 (cr)

1 per latency cycle

The processor flushes if a 
CR-using operation is issued 
while one of these 
instructions is in flight. 

fdiv fdivs Floating-point divide 
(IEEE) FPU 74 1 per 74 latency 

cycles

fdiv fdivs Floating-point divide 
(non-IEEE) FPU 56 1 per 56 latency 

cycles

Non-IEEE results are 
accurate to within 1 or 2 units 
in last place (ULPs) of the 
correctly rounded IEEE 
result, depending on 
rounding mode: 1 ULP for to-
nearest and to-zero rounding 
modes (the most common), 
2 ULP for the other modes.

fsqrt fsqrts Floating-point square 
root (IEEE) FPU 84 1 per 84 latency 

cycles Nonpipelined in the FPU.

fsqrt fsqrts Floating-point square 
root (non-IEEE) FPU 66 1 per 66 latency 

cycles

Non-IEEE results are 
accurate to within 1 or 2 
ULPs of the correctly 
rounded IEEE result, 
depending on rounding 
mode: 1 ULP for to-nearest 
and to-zero rounding modes 
(the most common), 2 ULP 
for the other modes.

fres Floating-point reciprocal 
estimate FPU 10 1 per latency cycle

Table A-1. PowerPC Instructions by Execution Unit  (Sheet 7 of 10)

Mnemonic Description Execution
Unit1

Latency
(cycles)2

Throughput
(IPC) Notes3 Comments
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frsqrte Floating-point reciprocal 
square-root estimate FPU 10 1 per latency cycle

fdiv. fdivs. fsqrt. 
fsqrts. fres. 
frsqrte.

Floating-point divide 
recording
Floating-point square 
root recording
Floating-point reciprocal 
estimate recording

FPU same as above 
+17 (cr)

Same as 
nonrecording 
instructions with an 
additional 17 
cycles for CR

The processor flushes if a 
CR-using operation is issued 
while one of these 
instructions is in flight. 

frsp Floating-point round to 
single-precision FPU 10 1 per latency cycle

fctid fctidz fctiw 
fctiwz fcfid

Floating-point convert to 
integer
Floating-point convert 
from integer

FPU 10 1 per latency cycle

frsp. fctid. fctidz. 
fctiw. fctiwz. fcfid.

Floating-point convert to 
integer recording
Floating-point convert 
from integer recording

FPU
same as above 
+17 (cr)

1 per latency cycle

The processor flushes if a 
CR-using operation is issued 
while one of these 
instructions is in flight. 

fcmpu fcmpo Floating-point compare FPU 1 1 per latency cycle

fsel Floating-point select FPU 10 1 per latency cycle

fsel. Floating-point select 
recording FPU

same as above 
+1 (cr)

1 per latency cycle

mffs mffs.
Move from Floating-
Point Status and Control 
Register (FPSCR)

FPU 11-28 1 per 28 latency 
cycles

These instructions are 
stalled at VQ8 until all older 
vector scalar unit (VSU) 
operations are complete.

mcrfs Move to CR from 
FPSCR FPU See Table A-3 on 

page 735 See note 2 MC

mtfsfi mtfsfi. 
mtfsf mtfsf. 
mtfsb0 mtfsb0.
mtfsb1 mtfsb1.

Move to FPSCR FPU 1 1 per latency cycle

sync Synchronize LSU See note 2 See note 2

The IU holds at issue until all 
queues and pipelines have 
drained. After issue, the 
sync forces previous stores 
to finish into the cache or 
memory hierarchy; that is, 
out of the store queues.

lwsync Lightweight sync LSU See note 2 See note 2

The IU holds at issue until all 
queues and pipelines have 
drained. After issue, the 
lwsync forces previous 
stores to finish into the cache 
or memory hierarchy; that is, 
out of the store queues.
Still broadcasts a sync 
transaction onto the element 
interconnect bus (EIB) (but 
does not block)

Table A-1. PowerPC Instructions by Execution Unit  (Sheet 8 of 10)
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ptesync LSU N/A N/A

The IU holds at issue until all 
queues and pipelines have 
drained. After issue, the 
ptesync forces previous 
stores to finish into the cache 
or memory hierarchy; that is, 
out of the store queues. 
Still broadcasts sync 
transaction onto the EIB (but 
does not block).

sc rfi rfid
System call
Return from interrupt

IU See note 2 See note 2 CSI

eieio Enforce in-order 
execution of I/O LSU See note 2 See note 2

isync Instruction synchronize LSU See note 2 See note 2 CSI

The IU holds at issue until all 
queues and pipelines have 
drained. Issued to the IU, 
and the IU performs a flush 
(N+1) when complete.

icbi Instruction-cache block 
invalidate LSU See note 2 See note 2

After the LSU generates and 
translates the effective 
address (EA), the icbi looks 
like a snooped icbi to the 
instruction fetcher.

dcbt dbtst Data-cache block touch LSU See note 2 See note 2

dcbz Instruction-cache block 
zero LSU See note 2 See note 2

Invalidates the L1 cache line 
on its way to the L2. 
Allocation and zero function 
occur at the L2 cache.

dcbst Data-cache block store LSU See note 2 See note 2

dcbf Data-cache block flush LSU See note 2 See note 2

slbie
Segment lookaside 
buffer (SLB) invalidate 
entry

LSU See note 2 See note 2

Causes class-based and 
thread-based invalidate in 
both the I-ERAT and the 
D-ERAT

slbia SLB invalidate all LSU See note 2 See note 2 Fully invalidates the SLB, the 
I-ERAT, and D-ERAT

tlbie
Translation lookaside 
buffer (TLB) invalidate 
entry

LSU See note 2 See note 2

Causes index-based 
invalidate in both the I-ERAT 
and the D-ERAT
Broadcast onto the EIB.

tlbiel TLB invalidate entry 
local LSU See note 2 See note 2

Causes index-based 
invalidate in both the I-ERAT 
and the D-ERAT 
Is not broadcast onto the 
EIB.

tlbsync TLB synchronize LSU See note 2 See note 2

Table A-1. PowerPC Instructions by Execution Unit  (Sheet 9 of 10)
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slbmte SLB move to entry LSU See Table A-3 on 
page 735 See note 2 MC

slbmfev slbmfee

SLB move from entry 
virtual segment ID 
(VSID)
SLB move from entry 
effective segment ID 
(ESID)

LSU See Table A-3 on 
page 735 See note 2 MC

1. The execution units are BRU: branch unit, IU: instruction unit, FPU: floating-point unit, FXU: fixed-point unit, LSU: load and store 
unit.

2. Parameters with this note require elaborate descriptions and are best understood by taking a broader view of the machine as a 
whole. This might include complex microcoded instructions or instructions that do not modify a register.

3. MC: Microcode, CSI: Context Synchronizing Instruction. A minimum of 11 cycles is required before the first instruction is received 
from the microcode ROM, so microcoded instructions should be avoided if possible. See Section A.1.3 on page 733 for details 
about microcode.

Table A-1. PowerPC Instructions by Execution Unit  (Sheet 10 of 10)
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A.1.3 Microcoded Instructions

Instructions that are either too complex or require too many system resources to implement 
(such as load string instructions) are microcoded. This means that they are split into several 
simpler instructions (microwords). 

Note:  A minimum of 11 cycles is required before the first instruction is received from the micro-
code ROM, so microcoded instructions should be avoided if possible. 

Table A-2. Storage Alignment for PowerPC Instructions 

Operand Alignment

Type Size (bytes) Byte 
Alignment

Within 8-Byte
Block

Crosses 8-Byte 
Boundary

Crosses 32-Byte 
Boundary1

Integer load2 1, 2, 4, 8 any optimal optimal
poor

(to microcode)

Integer store2 1, 2, 4, 8 any optimal optimal
poor

(to microcode)

Floating-point load 4, 8 not word
poor

(alignment
interrupt)

poor
(alignment 
interrupt)

poor
(alignment 
interrupt)

Floating-point load 4, 8 word optimal optimal
poor

(to microcode)

Floating-point store 4, 8 not word
poor

(alignment 
interrupt)

poor
(alignment 
interrupt)

poor
(alignment 
interrupt)

Floating-point store 4, 8 word optimal optimal
poor

(to microcode)

lmw, stmw any multiple of 4 
bytes (word) any

poor
(to microcode)

poor
(to microcode)

poor
(to microcode)

load string word, 
store string word

any any
poor

(to microcode)
poor

(to microcode)
poor

(to microcode)

Caching-inhibited load (not 
from microcode) 1, 2, 4, 8 natural 

alignment optimal optimal N/A

Caching-inhibited load (not 
from microcode) 1, 2, 4, 8 not natural 

alignment

poor
(alignment 
interrupt)

poor
(alignment 
interrupt)

poor
(alignment 
interrupt)

Caching-inhibited store (not 
from microcode) 1, 2, 4, 8 natural 

alignment optimal optimal N/A

Caching-inhibited store 
(not from microcode)

1, 2, 4, 8 not natural 
alignment

poor
(alignment 
interrupt)

poor
(alignment 
interrupt)

poor
(alignment 
interrupt)

Caching-inhibited load or 
store from microcode 1, 2, 4, 8 any

poor
(alignment 
interrupt)

poor
(alignment 
interrupt)

poor
(alignment 
interrupt)

1. Operations crossing 4 KB, 64 KB, or segment boundaries behave the same as crossing a 32-byte boundary.
2. Byte-reversed loads and stores have no special alignment characteristics. 
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Most microcoded instructions are decoded into two or three simple PowerPC instructions, and 
they can be avoided in most cases. The microcoded instructions are typically decomposed into 
an integer and a load or store operation, with a dependency between them. Although most micro-
coded PowerPC instructions are decoded into only a few simple instructions, it is important to 
keep in mind that there are typically dependencies between the internal operations of the micro-
code, which generate stalls at the issue stage. Replacing the microcoded instructions with 
PowerPC instructions not only avoids stalling but also gives more latitude in scheduling instruc-
tions to avoid stalls, as well as potentially improving multithreaded performance.

Some microcoded instructions are more complex than just a few PowerPC instructions, and 
some instructions are only microcoded in certain conditions, so replacement might not be 
possible. Instructions that are always decoded into microcode are referred to as unconditionally 
microcoded. Instructions that are microcoded only under specific conditions are referred to as 
conditionally microcoded. The only instructions that are conditionally microcoded are unaligned 
loads and stores that would not be microcoded if they were aligned.

A microcoded instruction is a single instruction and must execute atomically. Therefore, an asyn-
chronous interrupt cannot be taken while a microcoded instruction is executing. This is another 
reason why microcoded instruction should be avoided. 

A.1.3.1 Unconditionally Microcoded instructions

Instructions that are difficult to implement in hardware or are infrequently executed can be split 
into microcoded instructions. Instructions that are always microcoded can be summarized by the 
following list:

• Shifts and rotates that read the shift amount from a register instead of from an immediate 
field

• Load or store algebraic

• Load or store strings and multiples

• Several condition register (CR) recording instructions (“Rc” = ‘1’)

• Other instructions

Table A-3 on page 735 describes the unconditionally microcoded instructions, except load and 
store instructions. Table A-4 on page 737 describes the unconditionally microcoded load and 
store instructions. In both tables, the Latency column indicates the latency to access the first 
instructions. The Number Of Microwords column indicates the number of microwords generated, 
not the number of cycles required to execute the microwords, because the exact latency will 
depend on adjacent instructions.

The largest class of microcoded instructions is “CR recording” instructions, which set a value in 
the Condition Register (CR). These are composed of two instructions: the base operation 
followed by a dependent compare instruction. Because the compare is dependent on a general-
purpose register (GPR) target produced by the arithmetic logical unit (ALU), the total amount of 
time taken is (microcode-ROM access + 1 for the base instruction + 1 dependency stall + 
1 compare instruction). Some microcoded instructions, such as load and store string and load 
and store multiple, are decomposed into many more operations.

Other things to note:
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• If replacing a microcoded or. instruction with an or instruction followed by a cmp, be sure to 
avoid inadvertently changing the priority of a thread. See Section 10 PPE Multithreading on 
page 299 for details. 

• The load and store string, and the load and store multiple, instructions can be replaced with a 
sequence of PowerPC load or store instructions, which can be an advantage if misses are 
expected in the data effective-to-real address translation (D-ERAT) buffer or the L1 data 
cache, and if interrupt latency is important.

• The load string instruction will first attempt to use load word instructions to move the data. If 
the access would cross a 32-byte boundary when it accesses the L1 data cache, the load will 
be flushed and refetched and will proceed byte-by-byte. The store string instruction behaves 
similarly. 

Table A-3. Unconditionally Microcoded Instructions (Except Loads and Stores)  (Sheet 1 of 3)

Mnemonic Class Latency
(cycles)

Number of 
Microwords Comment

and. CR recording 11 2

 
Record instructions are all handled the 
same way. The “root” instruction is issued 
followed by the cmpi_x instruction. 

andc. CR recording 11 2

andi. CR recording 11 2 The nonrecord form used in the microcode 
sequence is only available to microcode.

andis. CR recording 11 2 The nonrecord form used in the microcode 
sequence is only available to microcode.

nand. CR recording 11 2

nor. CR recording 11 2

nego. CR recording 11 2

or. CR recording 11 2

orc. CR recording 11 2

xor. CR recording 11 2

cntlzd. CR recording 11 2

cntlzw. CR recording 11 2

divd. CR recording 11 2

divdo. CR recording 11 2

divdu. CR recording 11 2

divduo. CR recording 11 2

divw. CR recording 11 2

divwo. CR recording 11 2 .

divwu. CR recording 11 2

divwuo. CR recording 11 2

eqv. CR recording 11 2

extsb. CR recording 11 2

extsh. CR recording 11 2
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extsw. CR recording 11 2

mulhd. CR recording 11 2

mulhdu. CR recording 11 2

mulhw. CR recording 11 2

mulhwu. CR recording 11 2

mulld. CR recording 11 2

mulldo. CR recording 11 2

mullw. CR recording 11 2

mullwo. CR recording 11 2

nego. CR recording 11 2

rldcl indirect rotate 11 4

All indirect shift and rotate instructions are 
handled using the same technique. First 
the mt_shr is issued, followed by two no-
ops for delay, followed by the “root” 
instruction (that is, rldcl_sh).

rldcl. CR recording 11 5

rldcr indirect rotate 11 4

rldcr. CR recording 11 5

rldic. CR recording 11 2

rldicl. CR recording 11 2

rldicr. CR recording 11 2

rldimi. CR recording 11 2

rlwimi. CR recording 11 2

rlwinm. CR recording 11 2

rlwnm indirect rotate 11 4

rlwnm. CR recording 11 5

sld indirect shift 11 4

sld. CR recording 11 5

slw indirect shift 11 4

slw. CR recording 11 5

srad indirect shift 11 4

srad. CR recording 11 5

sradi. CR recording 11 2

sraw indirect shift 11 4

sraw. CR recording 11 5

srawi. CR recording 11 2

srd indirect shift 11 4

srd. CR recording 11 5

Table A-3. Unconditionally Microcoded Instructions (Except Loads and Stores)  (Sheet 2 of 3)

Mnemonic Class Latency
(cycles)

Number of 
Microwords Comment
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srw indirect shift 11 4

srw. CR recording 11 5

slbmte miscellaneous 11 2

slbmfev miscellaneous 11 2

slbmfee miscellaneous 11 2

mtcrf (bit 11 = ‘0’) miscellaneous 11 9

mcrfs miscellaneous 11 2

mtmsrd L = ‘0’ miscellaneous 11 4

mtmsrd is microcoded if and only if the L 
field of the instruction is 0. The microcode 
routine is required for synchronization. The 
sequence is:
sync L = ‘0’; mtmsrd L = ‘0’; sync L = ‘0’; 
isync;

mtmsr L = ‘0’ miscellaneous 11 4

mtmsr is microcoded if and only if the L 
field of the instruction is 0. The microcode 
routine is required for synchronization. The 
sequence is:
sync L = ‘0’; mtmsr L = ‘0’; sync L = ‘0’; 
isync;

Table A-4. Unconditionally Microcoded Loads and Stores  (Sheet 1 of 2)

Mnemonic Class Latency
(cycles) Number of Microwords 1, 2 Comment

lha load algebraic 11 7 Handled by byte. 

lhau load algebraic 11 8 Handled by byte.

lhaux load algebraic 11 8 Handled by byte. 

lhax load algebraic 11 8 Handled by byte.

lmw load multiple 11 (2 + 1 × words) This instruction is broken down 
into a series of load words.

lswi load 
string/optimized 10

By word:
(1 × words + 2 × bytes)

By byte:
(2 × bytes)

Optimized instruction 3

lswx load 
string/optimized

By word:
11

By byte:
7

By word:
4 + (1 × words + 2 × bytes)

By byte:
4 + (2 × bytes)

Optimized instruction 3

lwa load algebraic 11 13 Handled by byte.

lwaux load algebraic 11 12 Handled by byte.

lwax load algebraic 11 12 Handled by byte.

stmw store multiple 11 (2 + 1 × words) Broken into a series of store 
words.

Table A-3. Unconditionally Microcoded Instructions (Except Loads and Stores)  (Sheet 3 of 3)

Mnemonic Class Latency
(cycles)

Number of 
Microwords Comment
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A.1.3.2 Conditionally Microcoded Instructions

The L1 data cache is physically implemented with 32-byte sectors. Thus, a conditionally micro-
coded load or store instruction that attempts to perform an L1 data-cache access that crosses a 
32-byte boundary must be split into several instructions. When one of these misaligned loads or 
stores first attempts to access the L1 data cache, the misalignment is detected and the pipeline 
(Section A.6 on page 762) is flushed when the instruction reaches the EX7 stage. The flushed 
load or store is then refetched, converted to microcode at the decode stage, and split into the 
appropriate loads or stores, as well as any instructions needed to merge the values together into 
a single register. 

Doubleword integer loads that cross a 32-byte alignment boundary are first attempted as two 
word-sized loads or stores. If these still cross the 32-byte boundary, they are flushed and 
attempted again at byte granularity. The word and halfword integer loads behave similarly.

Doubleword floating-point loads and stores that are aligned to a word boundary, but not to a 
doubleword boundary, are handled in microcode. If these loads or stores are not word aligned, or 
if they cross a virtual page boundary, a PowerPC alignment interrupt is taken.

Integer loads and stores that are misaligned but do not cross a 32-byte boundary are not 
converted into microcode and will have the same performance characteristics as aligned loads 
and stores.

All of the conditionally microcoded instructions are loads and stores. The details of these are 
shown in Table A-5.
.

stswi store 
string/optimized 10

By word:
(1 × words + 2 × bytes)

By byte:
(2 × bytes)

Optimized instruction 3

stswx store 
string/optimized 7

By word:
4 + (1 × words + 2 × bytes)

By byte:
4 + (2 × bytes)

Optimized instruction 3

1. A microcode load or store operation can access an 8-bit byte, indicated as “by byte”, or a 32-bit word, indicated 
as “by word”.

2. “Words” means the number of words. 

3. The instruction is first broken down into a series of load-word instructions (odd bytes are handled by byte). If this 
does not cause an alignment exception, then the instruction is complete. If an alignment exception occurs, the 
first attempt is flushed. When the instruction is returned to microcode it is then handled a byte at a time. Odd 
bytes, if any, are defined as the remainder of string_count / 4. For store instructions, it is a series of store words.

Table A-5. Conditionally Microcoded Instructions  (Sheet 1 of 3)

Mnemonic Class Latency
(cycles) Number of Microwords1 Comment

ld load optimized 11
By word: 6
By byte: 18

Optimized instruction2

Table A-4. Unconditionally Microcoded Loads and Stores  (Sheet 2 of 2)

Mnemonic Class Latency
(cycles) Number of Microwords 1, 2 Comment
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ldbrx load 11 19 Optimized instruction2

ldu load optimized 11
By word: 9
By byte: 21

Optimized instruction2

ldux load optimized 11
By word: 7
By byte: 19

Optimized instruction2

ldx load optimized 11
By word: 7 
By byte: 19

Optimized instruction2

lfd load 11 5 Handled by word or handled by byte

lfdu load 11 6 Handled by word or handled by byte

lfdux load 11 6 Handled by word or handled by byte

lfdx load 11 6 Handled by word or handled by byte

lhbrx load 11 7 Handled by byte.

lhz load 11 6 Handled by byte

lhzu load 11 7 Handled by byte

lhzux load 11 7 Handled by byte

lhzx load 11 7 Handled by byte

lwbrx load 11 11 Handled by byte

lwz load 11 10 Handled by byte

lwzu load 11 11 Handled by byte

lwzux load 11 11 Handled by byte

lwzx load 11 11 Handled by byte

std store optimized 11
By word: 6
By byte: 18

Optimized instruction2

stdbrx store 11 18 New instruction

stfdux store 11 5 Handled by word or handled by byte

stdu store optimized 11
By word: 9
By byte: 21

Optimized instruction2

stdux store optimized 11 By word: 6 Optimized instruction2

stdx store optimized 11 By byte: 18 Optimized instruction2

stfd store 11 3 Handled by word

stfdu store 11 5 Handled by word

stfdx store 11 5 Handled by word

sth store 11 5 Handled by byte

sthbrx store 11 6 Handled by byte

Table A-5. Conditionally Microcoded Instructions  (Sheet 2 of 3)

Mnemonic Class Latency
(cycles) Number of Microwords1 Comment
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A.2 PowerPC Extensions in the PPE

This section describes the differences between the instruction-set architecture of the PPE and 
version 2.0.2 of the PowerPC Architecture, as defined in the PowerPC Architecture, Books I, II, 
and III, version 2.02 and further described in the PowerPC Microprocessor Family: The Program-
ming Environments for 64-Bit Microprocessors. These differences include:

• New PowerPC instructions added in the PPE

• New meaning to existing PowerPC instructions in the PPE

• Optional PowerPC instructions implemented by the PPE

• PowerPC instructions not implemented by the PPE

• Endian support 

A.2.1 New PowerPC Instructions

The PPE implements the following new instructions, relative to version 2.02 of the PowerPC 
Architecture:

• ldbrx—Load Doubleword Byte Reverse Indexed X-form
• sdbrx—Store Doubleword Byte Reverse Indexed X-form

Details follow starting on the next page. 

sthu store 11 7 Handled by byte

sthux store 11 7 Handled by byte

sthx store 11 6 Handled by byte

stw store 11 4 Handled by byte

stwbrx store 11 10 Handled by byte

stwu store 11 11 Handled by byte

stwux store 11 10 Handled by byte

1. A microcode load or store operation can access an 8-bit byte, indicated as “by byte”, or a 32-bit word, indicated 
as “by word”.

2. The instruction is first broken down into two load halfword instructions. If this does not cause a misalignment, 
then the instruction is complete. If a misalignment occurs, the first attempt is flushed. When the instruction is 
returned to microcode, it is then handled a byte at a time. For store instructions, it is a series of store words.

Table A-5. Conditionally Microcoded Instructions  (Sheet 3 of 3)

Mnemonic Class Latency
(cycles) Number of Microwords1 Comment
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Load Doubleword Byte Reverse Indexed X-form

/ ... denotes a reserved field.

if RA = 0 then b ← 0
else b ← (RA)
EA ← b +tea (RB)
RT ← MEM(EA+tea7, 1) || MEM(EA+tea6, 1) || MEM(EA+tea5, 1) || MEM(EA+tea4, 1) || 

MEM(EA+tea3, 1) || MEM(EA+tea2, 1) || MEM(EA+tea1, 1) || MEM(EA, 1)

Let the effective address (EA) be the sum (RA|0)+tea(RB). Bits 0:7 of the doubleword in storage 
addressed by EA are loaded into RT56:63. Bits 8:15 of the word in storage addressed by EA are 
loaded into RT48:55. Bits 16:23 of the word in storage addressed by EA are loaded into RT40:47. 
Bits 24:31 of the word in storage addressed by EA are loaded into RT32:39. Bits 32:39 of the word 
in storage addressed by EA are loaded into RT24:31. Bits 40:47 of the word in storage addressed 
by EA are loaded into RT16:23. Bits 48:55 of the word in storage addressed by EA are loaded into 
RT8:15. Bits 56:63 of the word in storage addressed by EA are loaded into RT0:7.

That is, the bytes in memory aligned location as:

ABCDEFGH

will be stored in the GPR as:

HGFEDCBA

Special Registers Altered:

• None

ldbrx rt,ra,rb

0 1 1 1 1 1 RT RA RB 1 0 0 0 0 1 0 1 0 0 /

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
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Store Doubleword Byte Reverse Indexed X-form

/ ... denotes a reserved field.

if RA = 0 then b ← 0
else b ← (RA)
EA ← b +tea (RB)
MEM(EA, 8) ← (RS)56:63 || (RS)48:55 || (RS)40:47 || (RS)32:39 || (RS)24:31 || (RS)16:23 || 
(RS)8:15 || (RS)0:7

Let the effective address (EA) be the sum (RA|0)+tea(RB). (RS)56:63 are stored into bits 0:7 of the 
doubleword in storage addressed by EA. (RS)48:55 are stored into bits 8:15 of the doubleword in 
storage addressed by EA. (RS)40:47 are stored into bits 16:23 of the doubleword in storage 
addressed by EA. (RS)32:39 are stored into bits 24:31 of the doubleword in storage addressed by 
EA. (RS)24:31 are stored into bits 32:39 of the doubleword in storage addressed by EA. (RS)16:23 
are stored into bits 40:47 of the doubleword in storage addressed by EA. (RS)8:15 are stored into 
bits 48:55 of the doubleword in storage addressed by EA. (RS)0:7 are stored into bits 56:63 of the 
doubleword in storage addressed by EA. 

That is, bytes in GPR as:

ABCDEFGH

will be stored in a memory aligned location as:

HGFEDCBA

Special Registers Altered:

• None

sdbrx rt,ra,rb

0 1 1 1 1 1 RT RA RB 1 0 1 0 0 1 0 1 0 0 /

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
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A.2.2 Implementation-Dependent Interpretation of PowerPC Instructions

A.2.2.1 No-Op Forms of OR and ORI Instructions

The PPE supports a subset of the program priorities defined in the PowerPC Operating Environ-
ment Architecture, Book III, Section 3.4.1. The PPE also adds specific forms of the no-op instruc-
tion for performance enhancements. 

For details about the program priorities and the no-op forms of the or and ori instructions that 
support them, see Section 10.6.2.2 nop Instructions that Change Thread Priority and Dispatch 
Policy on page 320. 

A.2.2.2 Logical Partitioning (LPAR)

The PPE supports 32 different logical partitions (LPARs), each of which is a virtual machine 
managed by the hypervisor. The Logical Partitioning Control Register (LPCR) has a new bit field 
[52] named Mediated Interrupt (MER). The associated interrupt is described in Section 9 PPE 
Interrupts on page 239. Values in the Real Mode Limit Select (RMLS) field [34:37] have the 
meanings given in Table A-6. All reserved values are treated as 1 MB.

A.2.2.3 TLB Invalidation

Software must use the tlbie or tlbiel instructions to invalidate entries in the translation lookaside 
buffer (TLB). For these instructions, the PPE supports bits [22:(63 – p)] of the RB source register, 
where p is the page size. This support results in a selective invalidation in the TLB, based on 
VPN[38:(79 – p)] and the page size. Thus, any entry in the TLB with matching VPN[38:(79 – p)] 
and page size will be invalidated. For small pages (p = 12), the Effective to Real Address Trans-

Table A-6. Summary of Real Mode Limit Select (RMLS) Values 

RMLS(0:2) Effective Address Limit

0000 256 GB

0001 16 GB

0010 1 GB

0011 64 MB

0100 256 MB

0101 16 MB

0110 8 MB

0111 128 MB

1000 Reserved

1001 4 MB

1010 2 MB

1011 1 MB

11-- Reserved
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lation (ERAT) is also invalidated as a result of tlbie or tlbiel based on VPN[63:67], which is 
equivalent to EA[47:51]. Thus, any entry in the ERAT table with matching EA[47:51] is invali-
dated.

The PPE adds new fields to the RB register of the tlbiel instruction that are not currently defined 
in the PowerPC Architecture. These include the Large Page Selector (LP) and Invalidation 
Selector (IS) bits. 

Table A-7 gives details of the implementation of the IS field. Bit 1 of the IS field is ignored. Bit 0 of 
the IS field is provided in RB[52] of the tlbiel instruction.

The modified instruction definition for tlbiel specific to the PPE is shown on the next page. 

Table A-7. Summary of Supported IS Values in tlbiel 

IS Field Behavior

00 The TLB is as selective as possible when invalidating TLB entries. The invalidation match criteria is 
VPN[38:79-p], L, LP, and logical partition id (LPID).

01 Reserved. Implemented the same as IS = ‘00’.

10 Reserved. Implemented the same as IS = ‘11’.

11 The TLB does a congruence class (index-based) invalidate. All entries in the TLB matching the index 
of the virtual page number (VPN) supplied will be invalidated. 
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TLB Invalidate Entry Local X-form

/, //, ///, ... denotes a reserved field.

inval_sel ← (RB)52
if inval_sel = 0 then

if L = 0 then pg_size ← 4 KB
else if L = 1 then

LP ← (RB)51
if LP = 0 then 

pg_size = large page size 1 selected by HID6[LB]16:17
else if LP = 1 then 

pg_size = large page size 2 selected by HID6[LB]18:19
p ← log_base_2(pg_size)
for each TLB entry

if (entry_VPN38:79-p = (RB)22:63-p) & (entry_pg_size = pg_size) then
TLB entry ← invalid

else if inval_sel = 1 then
if entry_pg_size = 4 KB then

if (entry_VPN52:55 / entry_VPN60:63 || entry_VPN64:67) = (RB)44:51 then
TLB entry ← invalid

else if entry_pg_size = 64 KB then
if (entry_VPN52:55 / entry_VPN56:59 || entry_VPN60:63) = (RB)44:51 then

TLB entry ← invalid
else if entry_pg_size = 1 MB then

if entry_VPN52:59 = (RB)44:51 then
TLB entry ← invalid

else if entry_pg_size = 16 MB then
if entry_VPN48:55 = (RB)44:51 then

TLB entry ← invalid

Let the invalidation selector be (RB)52. If the invalidation selector is 0, then let all TLB entries that 
have the following properties be made invalid on the processor which executes this instruction:

• The entry translates a virtual address for which VPN38:79-p is equal to (RB)22:63-p.

• The page size of the entry matches the page size specified by the L and LP field of the 
instruction.

If the invalidation selector is 1, then let all TLB entries that are in the congruence class of the TLB 
corresponding to (RB)44:51 be made invalid on the processor which executes this instruction.

Because the ERAT table does not support large pages, any tlbie or tlbiel instruction to a large 
page (L = 1) will cause a complete invalidation of all entries in the ERAT table. For a tlbie or 
tlbiel instruction to a small page (L = 0), any I-ERAT or D-ERAT entries that have VPN[63:67] 
match RB[47:51] of the instruction will be invalidated.

tlbiel rb,l

1 1 1 1 1 /// L /// RB 0 1 0 0 0 1 0 0 1 0 /

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
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Note:  It is possible for a tlbiel with L = ‘0’ and IS = ‘1’ to invalidate a TLB entry in a congruence 
class of the TLB but not invalidate the same translation in the I-ERAT or D-ERAT table. It is soft-
ware’s responsibility in this case to make sure that ERAT coherency is maintained. Software can 
set L = 1 to avoid this (with the performance consequence of invalidating the entire ERAT table).

The tlbie instruction register transfer language (RTL) is similar except that IS = ‘0’ is assumed, 
and the instruction is performed on all processors belonging to the same partition as the 
processor issuing the tlbie instruction.

Because a tlbiel instruction to a large page causes the ERAT to be flushed, software may issue 
a tlbiel to a large page that is not currently in use (unmapped in the page table) to cause an 
ERAT flush. This is useful for invalidating ERAT entries during a partition context switch. The IS 
field of tlbiel should be set to ‘00’ for this operation.

For more information about the TLB, see Section 4 Virtual Storage Environment on page 79.

A.2.3 Optional PowerPC Instructions Implemented

The following optional PowerPC user-mode instructions are implemented in the PPE: 

A.2.3.1 Book I Optional Instructions Implemented

• fsqrt(.)—Floating-Point Square Root

• fsqrts(.)—Floating-Point Square Root Single

• fres(.)—Floating Reciprocal Estimate Single A-form

• frsqrte(.)—Floating-Point Reciprocal Square Root Estimate A-form

• fsel(.)—Floating-Point Select

• mtocrf—Move To One Condition Register Field XFX-form

• mfocrf—Move From One Condition Register Field XFX-form

A.2.3.2 Book III Optional Instructions Implemented

• tlbie—TLB Invalidate Entry (large and small page)

• tlbiel—Processor local form of TLB Invalidate Entry (large and small page)

• tlbsync—TLB Synchronize

• mtmsr—Move to Machine State Register (32-bit)
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A.2.4 PowerPC Instructions Not Implemented

The following PowerPC instructions are not implemented in the PPE:

A.2.4.1 Book I Unimplemented Instructions

The following instructions are not implemented in the PPE:

• popcntb—Population Count Bytes

• fre(.)—Floating Reciprocal Estimate A-form

• frsqrtes(.)—Floating Reciprocal Square Root Estimate Single A-form

The following instruction is obsolete and thus not implemented:

• mcrxr—Move from Condition Register to XER Register

An attempt to execute one of these instructions will result in an illegal instruction-type exception. 

A.2.4.2 Book II Unimplemented Instructions

The optional external control facility is not implemented in the PPE. Instructions associated with 
this facility are likewise not implemented. These include:

• eciwx—External Control In Word indeX

• ecowx—External Control Out Word indeX

An attempt to execute one of these instructions will result in an illegal instruction-type exception.

A.2.4.3 Book III Unimplemented Instructions

The External Access Register (EAR) is not implemented in the PPE. Instructions associated with 
the EAR are likewise not implemented. These include:

• eciwx—External Control In Word indeX

• ecowx—External Control Out Word indeX

• tlbia—TLB Invalidate All

• mtsr—Move to Segment Register

• mtsrin—Move to Segment Register Indirect

• mfsr—Move from Segment Register

• mfsrin—Move from Segment Register Indirect

An attempt to execute one of these instructions will result in an illegal instruction-type exception.

A.2.5 Endian Support

The PPE does not support little-endian mode; it only supports big-endian mode. Writing to the 
Little-Endian mode (LE) and Interrupt Little-Endian mode (ILE) bits in the Machine State Register 
has no effect.
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A.3 Vector/SIMD Multimedia Extension Instructions

An overview of the vector/SIMD multimedia extension instructions is given in Section 2.5 on 
page 59. The sections that follow summarize key points of the instructions. For a complete 
description, see the PowerPC Microprocessor Family: Vector/SIMD Multimedia Extension Tech-
nolgy Programming Environments Manual.

A.3.1 Data Types

Section 2.5.2 on page 61 contains a list of the vector/SIMD multimedia extension data types. 

A.3.2 Vector/SIMD Multimedia Extension Instructions

Table A-8 summarizes the vector/SIMD multimedia extension instructions, showing their pipe-
line, latency, and throughput. Some comments on the table:

• An instruction can be executed in one or more execution units, as shown in Table A-8.

• Latency is the issue-to-issue latency for a dependent instruction. There are multiple latencies 
for some instructions when the instruction writes more than one type of register. In general, 
latency will be one cycle larger than use penalty.

• Throughput refers to the maximum sustained rate at which the PPE can execute instructions 
of the type noted in the absence of any dependencies and assuming infinite caches. It is 
shown as instructions per cycle (IPC).

• Some fields are labelled “N/A” (not applicable) to indicate that a more elaborate description is 
required. This includes complex microcoded instructions and instructions that do not modify 
a register. 

• In the Execution Units column, LSU is the load and store unit, and VXU is the vector/SIMD 
multimedia extension unit.

 

Table A-8. Vector/SIMD Multimedia Extension Instructions  (Sheet 1 of 4)

Instruction Description Execution 
Unit1 Latency Throughput

(IPC) Comments

lvebx lvehx lvewx 
lvlx lvlxl lvrx lvrxl 
lvsl lvsr lvxl

Load vector indexed VXU load, 
LSU 2 1

stvebx stvehx 
stvewx stvlx stvlxl 
stvrx stvrxl stvx 
stvxl

Store vector indexed VXU store, 
LSU N/A 1

dst dstt dstst dss 
dssall Nop

Not implemented (these 
instructions are no longer part of 
the architecture. They will be 
treated as no-ops).

vpkpx vpkshss 
vpkshus vpkswss 
vpkuwus vpkuhum 
vpkuhus vpkuwum 
vpkuwus 

Vector pack permute 4 1

vupkhpx vupkhsb 
vupkhsh vupklpx 
vupklsb vupklsh 

Vector unpack permute 4 1
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vmrghb vmrghh 
vmrghw vmrglb 
vmrglh vmrglw

Vector merge permute 4 1

vspltb vsplth vspltw 
vspltisb vspltish 
vspltisw 

Vector splat permute 4 1

vperm Vector permute permute 4 1

vsldoi Vector shift left double 
by octet immediate permute 4 1

vslo vsro Vector shift left by octet permute 4 1

vaddubm vadduhm 
vadduwm vaddubs 
vadduhs vadduws 
vaddcuw vsububm 
vsubuhm vsubuwm 
vsububs vsubuhs 
vsubuws vsubsbs 
vsubshs vsubsws 
vsubcuw vsubsws 
vaddsbs vaddshs 
vaddsws

Vector add
Vector subtract

simple 4 1

vavgub vavguh 
vavguw vagvsb 
vagvsh vavgsw 

Vector average simple 4 1

vand vor vxor 
vandc vnor Vector logical simple 4 1

vsel Vector select simple 4 1

vrlb vrlh vrlw vslb 
vslh vslw vsl vsrb 
vsrh vsrw vsr vsrab 
vsrah vsraw 

Vector rotate
Vector shift

simple 4 1

vcmpgtub 
vcmpgtsb 
vcmpgtuh 
vcmpgtsh 
vcmpgtuw 
vcmpgtsw 
vcmpgtfp

Vector compare simple 4 1

vcmpgtub. 
vcmpgtsb. 
vcmpgtuh. 
vcmpgtsh. 
vcmpgtuw. 
vcmpgtsw. 
vcmpgtfp.

Vector compare 
recording simple 4 1

vcmpequb 
vcmpequh 
vcmpequw 
vcmpeqfp

Vector compare equal to simple 4 1

vcmpequb. 
vcmpequh. 
vcmpequw. 
vcmpeqfp.

Vector compare equal to 
recording simple 4 1

Table A-8. Vector/SIMD Multimedia Extension Instructions  (Sheet 2 of 4)

Instruction Description Execution 
Unit1 Latency Throughput

(IPC) Comments
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vcmpbfp 
vcmpgefp 

Vector compare bounds
Vector greater than or 
equal to 

simple 4 1

vcmpbfp. 
vcmpgefp.

Vector compare bounds 
recording
Vector greater than or 
equal to recording

simple 4 1

vmaxub vmaxuh 
vmaxuw vmaxsb 
vmaxsh vmaxsw 
vmaxfp

Vector maximum simple 4 1

vminub vminuh 
vminuw vminsb 
vminsh vminsw 
vminfp

Vector minimum simple 4 1

mtvscr
Move to the Vector 
Status and Control 
Register (VSCR)

simple N/A N/A

Stalls during issue until all older 
instructions are complete. Then, 
after issuing from the vector 
scalar unit issue queue, all 
younger vector scalar unit 
instructions stall until complete.

mfvscr Move from VSCR simple N/A N/A Stalls during issue until all older 
instructions are complete.

vaddfp vsubfp 
vmaddfp vnmsubfp

Vector add single-
precision
Vector subtract single-
precision
Vector multiply-add 
single-precision
Vector negative 
multiply-subtract single-
precision

float 12 1

vrefp vrsqrtefp

Vector reciprocal 
estimate single-
precision
Vector reciprocal square 
root estimate single-
precision

estimate 14 1

vlogefp vexptefp

Vector log base-2 
estimate floating-point
Vector 2 raised to the 
exponent estimate 
floating-point

float 12 1

Table A-8. Vector/SIMD Multimedia Extension Instructions  (Sheet 3 of 4)

Instruction Description Execution 
Unit1 Latency Throughput

(IPC) Comments
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vrfin vrfiz vrfip vrfim 
vcfpsxws 
vcfpuxws 
vcuxwfp vcsxwfp

Vector round
Vector convert

float 12 1

vmuloub vmulouh 
vmulosb vmulosh 
vmuleub vmuleuh 
vmulesb vmulesh 
vmhaddshs 
vmhraddshs 
vmladduhm 
vmsumubm 
vmsummbm 
vmsumuhm 
vmsumuhs 
vmsumshm 
vmsumshs 
vsum4ubs 
vsum4sbs 
vsum4shs 
vsum2sws 
vsumsws

Vector multiply
Vector multiply-add
Vector multiply-sum

complex 9 1

1. The vector/SIMD multimedia extension and FPU instructions are categorized into two groups. The first group, VSU 
type 1, includes vector/SIMD multimedia extension simple, vector/SIMD multimedia extension float, and FPU arith-
metic instructions. The second group, VSU type 2, includes vector/SIMD multimedia extension load, vector/SIMD 
multimedia extension store, vector/SIMD multimedia extension permute, FPU load, and FPU store instructions.

Table A-8. Vector/SIMD Multimedia Extension Instructions  (Sheet 4 of 4)

Instruction Description Execution 
Unit1 Latency Throughput

(IPC) Comments
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A.3.3 Graphics Rounding Mode

The vector/SIMD multimedia extension instructions have a graphics rounding mode (enabled by 
default) that allows programs written with vector/SIMD multimedia extension instructions to 
produce floating-point results that are equivalent in precision to those written in the synergistic 
processor unit (SPU) instruction set. In this vector/SIMD multimedia extension mode, as in the 
SPU environment, the default rounding mode is round to zero, denormals are treated as zero, 
and there are no infinities or NaNs. 

When the HID1[grap_mode] bit is set to 1, the VXU operates in graphics rounding mode.

The following set of rules apply to graphics rounding mode:

• The VXU operates in non-Java mode.

– Denormal inputs are flushed to zero.

– If the result is an underflow, the result will be zero.

– If the infinitely precise unrounded result would be denormal, the result will be zero.

• Except where noted, the rounding mode is round toward zero.

• Infinity and NaN inputs are operated upon as normal (extended-range) numbers.

• The positive overflow boundary is moved from x‘7F80_0000’ to x‘7FFF_FFFF’.

• The negative overflow boundary is moved from x‘FF80_0000’ to x‘FFFF_FFFF’.

• If the result is greater than the new positive_overflow_boundary, then the result will be 
x‘7FFF_FFFF.’

Table A-9. Storage Alignment for Vector/SIMD Multimedia Extension Instructions 

Operand Alignment

Type Size (bytes) Byte 
Alignment

Within 8-Byte
Block

Crosses 8-Byte 
Boundary

Crosses 32-Byte 
Boundary1

VXU load 
(except lvlx[l], lvrx[l])

163 any optimal optimal N/A3

VXU store 
(except stvlx[l], stvrx[l])

163 any optimal optimal N/A3

VXU load or store left 
(lvlx[l], stvlx[l])

any any optimal optimal N/A4

VXU load or store right 
(lvrx[l], stvrx[l])

any not quadword 
aligned optimal optimal N/A4

VXU load or store right
(lvrx[l], stvrx[l])

any quadword 
aligned2 optimal optimal N/A4

1. Operations crossing 4 KB, 64 KB, or segment boundaries behave the same as crossing a 32-byte boundary.
2. For Load Vector Right and Store Vector Right that are quadword aligned, no attempt is made to access storage. On 

a load, the data returned is zero; on a store, the operation becomes a no-op.
3. Regular vector/SIMD multimedia extension unit (VXU) operations are assumed to be aligned to the 16-byte bound-

ary.
4. Due to the way these operations are defined, they do not cross a 32-byte boundary (data is accessed up to a16-

byte boundary).
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• If the result is less than the new negative_overflow_boundary, then the result will be 
x‘FFFF_FFFF’.

The following subsections detail graphics rounding mode behavior for individual instruction 
classes.

A.3.3.1 Math Instructions (Multiply-Add, Multiply-Subtract, Add, Subtract)

Because there are no infinity or NaN inputs, there is not a NaN result for infinity - infinity or 
for infinity × 0. The result of infinity or NaN multiplied by zero is zero.

A.3.3.2 Floating-Point Compares

NaN and Infinity inputs are treated as large contiguous numbers, and they are correctly 
compared. Comparisons of +0 to -0 are the same as those for non-graphics-rounding mode.

A.3.3.3 Reciprocal Estimate

The result of a reciprocal estimate is the same as in non-Java mode, except that NaN and Infinity 
inputs are interpreted as large numbers and translated to correct mathematical estimates.

A.3.3.4 Reciprocal Square-Root Estimate

The instruction takes the absolute value of the input, then returns a result that is equivalent to the 
non-Java mode reciprocal square root estimate of the positive value. NaN and Infinity inputs are 
interpreted as large numbers and translated to the correct mathematical estimate.

A.3.3.5 Logarithm Base-2 Estimate

The same results as non-Java mode are generated except that NaN and Infinity inputs are inter-
preted as large numbers and translated to correct mathematical estimates. In non-Java mode, 
the log of a negative number is a NaN result. For negative inputs in graphics rounding mode, the 
result is the log of the absolute value of the input, except when the input is +0 or -0. If the input is 
+0 or -0, the output is x‘FFFF_FFFF’. 

A.3.3.6 Power-of-2 Estimate

The same results as non-Java mode are generated except that NaN and Infinity inputs are inter-
preted as large numbers and translated to correct mathematical estimates. The detection for an 
overflow boundary is the same as for non-Java mode. However, the result is an overflow 
boundary for graphics rounding mode (provided in Section A.3.3 Graphics Rounding Mode on 
page 752).
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A.3.3.7 Scaled Conversion to integer

Because the non-Java rounding mode is truncated for these instructions, the result is the same 
as non-Java mode except for NaN and Infinity inputs. NaN and Infinity inputs are too large for the 
integer range, so they cause the same integer saturation results as non-Java mode for Infinity 
inputs. Positive NaN inputs give the same result as positive infinity in non-Java mode. Negative 
NaN inputs give the same result as negative infinity in non-Java mode.

A.3.3.8 Scaled Conversion from integer

The results are the same as non-Java mode. The rounding mode is round-to-nearest-even. 
Because the input is an integer, there are no differences for NaN and Infinity inputs.

A.3.3.9 Round to Floating-Point Integer

Because the rounding mode is part of the instruction, the rounding mode is not suppressed as in 
the default graphic mode rules. The result is the same as for non-Java mode. There is a form of 
the instruction that uses the rounding mode truncate.

A.4 C/C++ Language Extensions (Intrinsics) for Vector/SIMD Multimedia Extensions

An overview of the C/C++ intrinsics for the vector/SIMD multimedia extension instructions is 
given in Section 2.6 on page 62. The sections that follow summarize key points of the intrinsics.

A.4.1 Vector Data Types

The vector/SIMD multimedia extension programming model adds a set of fundamental data 
types, called vector types, as shown in Table A-10. 

Note:  Because the token, vector, is a keyword in the vector/SIMD multimedia extension data 
types, it is recommended that the term not be used elsewhere in the program as, for example, a 
variable name.

Table A-10. Vector/SIMD Multimedia Extension Data Types  (Sheet 1 of 2)

Vector Data Type Meaning Values1

vector unsigned char Sixteen 8-bit unsigned values 0 ... 255

vector signed char Sixteen 8-bit signed values -128 ... 127

vector bool char Sixteen 8-bit unsigned boolean 0 (false), 255 (true)

vector unsigned short Eight 16-bit unsigned values 0 ... 65535

vector unsigned short int Eight 16-bit unsigned values 0 ... 65535

vector signed short Eight 16-bit signed values -32768 ... 32767

vector signed short int Eight 16-bit signed values -32768 ... 32767

vector bool short Eight 16-bit unsigned boolean 0 (false), 65535 (true)

vector bool short int Eight 16-bit unsigned boolean 0 (false), 65535 (true)

1. The represented values are in decimal (base-10) notation.
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Introducing fundamental vector data types permits a compiler to provide stronger type-checking 
and supports overloaded operations on vector types.

A.4.2 Vector Literals

There are two standard formats of constructing a vector literal. A compiler may support one or 
both formats. The first format, as specified by the AltiVec Technology Programming Interface 
Manual, is shown in Table A-11. This format consists of a parenthesized vector type followed by 
a parenthesized set of constant expressions. The AltiVec format is deprecated and will often only 
be supported for existing software.

vector unsigned int Four 32-bit unsigned values 0 ... 232 - 1

vector signed int Four 32-bit signed values -231 ... 231 - 1

vector bool int Four 32-bit unsigned values 0 (false), 231 - 1 (true)

vector float Four 32-bit single precision IEEE-754 values

vector pixel Eight 16-bit unsigned values 1/5/5/5 pixel

Table A-10. Vector/SIMD Multimedia Extension Data Types  (Sheet 2 of 2)

Vector Data Type Meaning Values1

1. The represented values are in decimal (base-10) notation.

Table A-11. AltiVec Vector-Literal Format  (Sheet 1 of 2)

Notation Description

(vector unsigned char)(unsigned int) A set of 16 unsigned 8-bit quantities that all have the 
value specified by the integer.

(vector unsigned char)(unsigned int, ..., unsigned int) A set of 16 unsigned 8-bit quantities specified by the 16 
integers.

(vector signed char)(signed int) A set of 16 signed 8-bit quantities that all have the 
value specified by the integer.

(vector signed char)(signed int, ..., signed int) A set of 16 signed 8-bit quantities specified by the 16 
integers.

(vector unsigned short)(unsigned int) A set of 8 unsigned 16-bit quantities that all have the 
value specified by the integer.

(vector unsigned short)(unsigned int, ..., unsigned int) A set of 8 unsigned 16-bit quantities specified by the 16 
integers.

(vector signed short)(signed int) A set of 8 signed 16-bit quantities that all have the 
value specified by the integer.

(vector signed short)(signed int, ..., signed int) A set of 8 signed 16-bit quantities specified by the 16 
integers.

(vector unsigned int)(unsigned int) A set of 4 unsigned 32-bit quantities that all have the 
value specified by the integer.

(vector unsigned int)(unsigned int, ..., unsigned int) A set of 4 unsigned 32-bit quantities specified by the 16 
integers.

(vector signed int)(signed int) A set of 4 signed 32-bit quantities that all have the 
value specified by the integer.
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The second format for constructing a vector literal is written as a parenthesized vector type 
followed by a curly-braced set of constant expressions, as shown in Table A-12. The elements of 
the vector are initialized to the corresponding expression. Elements for which no expressions are 
specified default to zero. This format is the preferred syntax and should be used for all new appli-
cation software.

A.4.3 Intrinsics

The intrinsics are shown in Table A-13 on page 757. 

(vector signed int)(signed int, ..., signed int) A set of 4 signed 32-bit quantities specified by the 16 
integers.

(vector float)(float) A set of 4 32-bit floating-point quantities that all have 
the value specified by the float.

(vector float)(float, float, float, float) A set of 4 32-bit floating-point quantities that all have 
the value specified by the 4 floats.

Table A-12. Curly-Brace Vector-Literal Format 

Notation Description

(vector unsigned char){unsigned int} A set of 16 unsigned 8-bit quantities that all have the 
value specified by the integer.

(vector unsigned char){unsigned int, ..., unsigned int} A set of 16 unsigned 8-bit quantities specified by the 16 
integers.

(vector signed char){signed int} A set of 16 signed 8-bit quantities that all have the 
value specified by the integer.

(vector signed char){signed int, ..., signed int} A set of 16 signed 8-bit quantities specified by the 16 
integers.

(vector unsigned short){unsigned int} A set of 8 unsigned 16-bit quantities that all have the 
value specified by the integer.

(vector unsigned short){unsigned int, ..., unsigned int} A set of 8 unsigned 16-bit quantities specified by the 16 
integers.

(vector signed short){signed int} A set of 8 signed 16-bit quantities that all have the 
value specified by the integer.

(vector signed short){signed int, ..., signed int} A set of 8 signed 16-bit quantities specified by the 16 
integers.

(vector unsigned int){unsigned int} A set of 4 unsigned 32-bit quantities that all have the 
value specified by the integer.

(vector unsigned int){unsigned int, ..., unsigned int} A set of 4 unsigned 32-bit quantities specified by the 16 
integers.

(vector signed int){signed int} A set of 4 signed 32-bit quantities that all have the 
value specified by the integer.

(vector signed int){signed int, ..., signed int} A set of 4 signed 32-bit quantities specified by the 16 
integers.

(vector float){float} A set of 4 32-bit floating-point quantities that all have 
the value specified by the float.

(vector float){float, float, float, float} A set of 4 32-bit floating-point quantities that all have 
the value specified by the 4 floats.

Table A-11. AltiVec Vector-Literal Format  (Sheet 2 of 2)

Notation Description
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Table A-13. Vector/SIMD Multimedia Extension Intrinsics  (Sheet 1 of 4)

Intrinsic Description

Arithmetic

d = vec_abs(a) Vector Absolute Value

d = vec_abss(a) Vector Absolute Value Saturated

d = vec_add(a,b) Vector Add

d = vec_addc(a,b) Vector Add Carryout Unsigned Word

d = vec_adds(a,b) Vector Add Saturated

d = vec_avg(a,b) Vector Average

d = vec_madd(a,b,c) Vector Multiply Add

d = vec_madds(a,b,c) Vector Multiply Add Saturated

d = vec_max(a,b) Vector Maximum

d = vec_min(a,b) Vector Minimum

d = vec_mladd(a,b,c) Vector Multiply Low and Add Unsigned Half Word

d = vec_mradds(a,b,c) Vector Multiply Round and Add Saturated

d = vec_msum(a,b,c) Vector Multiply Sum

d = vec_msums(a,b,c) Vector Multiply Sum Saturated

d = vec_mule(a,b) Vector Multiply Even

d = vec_mulo(a,b) Vector Multiply Odd

d = vec_nmsub(a,b,c) Vector Negative Multiply Subtract

d = vec_sub(a,b) Vector Subtract

d = vec_subc(a,b) Vector Subtract Carryout

d = vec_subs(a,b) Vector Subtract Saturated

d = vec_sum4s(a,b) Vector Sum Across Partial (1/4) Saturated

d = vec_sum2s(a,b) Vector Sum Across Partial (1/2) Saturated

d = vec_sums(a,b) Vector Sum Saturated

Rounding And Conversion

d = vec_ceil(a) Vector Ceiling

d = vec_ctf(a,b) Vector Convert from Fixed-Point Word

d = vec_cts(a,b) Vector Convert to Signed Fixed-Point Word Saturated

d = vec_ctu(a,b) Vector Convert to Unsigned Fixed-Point Word Saturated

d = vec_floor(a) Vector Floor

d = vec_trunc(a) Vector Truncate

Floating-Point Estimate

d = vec_expte(a) Vector Is 2 Raised to the Exponent Estimate Floating-Point

d = vec_loge(a) Vector Log2 Estimate Floating-Point

d = vec_re(a) Vector Reciprocal Estimate

d = vec_rsqrte(a) Vector Reciprocal Square Root Estimate
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Compare

d = vec_cmpb(a,b) Vector Compare Bounds Floating-Point

d = vec_cmpeq(a,b) Vector Compare Equal

d = vec_cmpge(a,b) Vector Compare Greater Than or Equal

d = vec_cmpgt(a,b) Vector Compare Greater Than

d = vec_cmple(a,b) Vector Compare Less Than or Equal

d = vec_cmplt(a,b) Vector Compare Less Than

Logical

d = vec_and(a,b) Vector Logical AND

d = vec_andc(a,b) Vector Logical AND with Complement

d = vec_nor(a,b) Vector Logical NOR

d = vec_or(a,b) Vector Logical OR

d = vec_xor(a,b) Vector Logical XOR

Rotate and Shift

d = vec_rl(a,b) Vector Rotate Left

d = vec_round(a) Vector Round

d = vec_sl(a,b) Vector Shift Left

d = vec_sld(a,b,c) Vector Shift Left Double

d = vec_sll(a,b) Vector Shift Left Long

d = vec_slo(a,b) Vector Shift Left by Octet

d = vec_sr(a,b) Vector Shift Right

d = vec_sra(a,b) Vector Shift Right Algebraic

d = vec_srl(a,b) Vector Shift Right Long

d = vec_sro(a,b) Vector Shift Right by Octet

Load and Store

d = vec_ld(a,b) Vector Load Indexed

d = vec_lde(a,b) Vector Load Element Indexed

d = vec_ldl(a,b) Vector Load Indexed Least Recently Used (LRU)

d = vec_lvsl(a,b) Vector Load for Shift Left

d = vec_lvsr(a,b) Vector Load Shift Right

vec_st(a,b,c) Vector Store Indexed

vec_ste(a,b,c) Vector Store Element Indexed

vec_stl(a,b,c) Vector Store Indexed LRU

Pack and Unpack

d = vec_pack(a,b) Vector Pack

d = vec_packpx(a,b) Vector Pack Pixel

d = vec_packs(a,b) Vector Pack Saturated

Table A-13. Vector/SIMD Multimedia Extension Intrinsics  (Sheet 2 of 4)

Intrinsic Description
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d = vec_packsu(a,b) Vector Pack Saturated Unsigned

d = vec_unpackh(a) Vector Unpack High Element

d = vec_unpackl(a) Vector Unpack Low Element

Merge

d = vec_mergeh(a,b) Vector Merge High

d = vec_mergel(a,b) Vector Merge Low

Permute and Select

d = vec_perm(a,b,c) Vector Permute

d = vec_sel(a,b,c) Vector Select

Stream

vec_dss(a) Vector Data Stream Stop

vec_dssall() Vector Stream Stop All

vec_dst(a,b,c) Vector Data Stream Touch

vec_dstst(a,b,c) Vector Data Stream Touch for Store

vec_dststt(a,b,c) Vector Data Stream Touch for Store Transient

vec_dstt(a,b,c) Vector Data Stream Touch Transient

Move

d = vec_mfvscr Vector Move from Vector Status and Control Register

vec_mtvscr(a) Vector Move to Vector Status and Control Register

Replicate

d = vec_splat(a,b) Vector Splat

d = vec_splat_s8(a) Vector Splat Signed Byte

d = vec_splat_s16(a) Vector Splat Signed Half-Word

d = vec_splat_s32(a) Vector Splat Signed Word

d = vec_splat_u8(a) Vector Splat Unsigned Byte

d = vec_splat_u16(a) Vector Splat Unsigned Half-Word

d = vec_splat_u32(a) Vector Splat Unsigned Word

All Predicates

d = vec_all_eq(a,b) All Elements Equal

d = vec_all_ge(a,b) All Elements Greater Than or Equal

d = vec_all_gt(a,b) All Elements Greater Than

d = vec_all_in(a,b) All Elements in Bounds

d = vec_all_le(a,b) All Elements Less Than or Equal

d = vec_all_lt(a,b) All Elements Less Than

d = vec_all_nan(a) All Elements Not a Number

d = vec_all_ne(a,b) All Elements Not Equal

d = vec_all_nge(a,b) All Elements Not Greater Than or Equal

Table A-13. Vector/SIMD Multimedia Extension Intrinsics  (Sheet 3 of 4)

Intrinsic Description
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A.5 Issue Rules

The PPE supports dual-issue of PowerPC and vector/SIMD multimedia extension instructions at 
both the pipeline stages at which instructions are issued. However, there are several restrictions 
that limit which instructions can be issued together.

Figure A-1 on page 761 illustrates valid issue combinations. The instruction in slot 0 (the older 
instruction) is shown on the left vertical axis and the instruction in slot 1 (the younger instruction) 
is shown on the top horizontal axis. The pink squares demonstrate valid dual-issue combinations, 
and the white squares indicate illegal combinations. The vector/SIMD multimedia extension unit 
(VXU) and floating-point unit (FPU) instructions are categorized into two groups:

• Type 1: VXU simple, VXU complex, VXU floating-point, and FPU arithmetic instructions

• Type 2: VXU load, VXU store, VXU permute, FPU load, and FPU store instructions

Also, some instructions are classified in more than one group. For example, all fixed-point store 
and load-with-update instructions require both the fixed-point unit (FXU) and the load and store 
unit (LSU) to execute. In this case, both rows or columns for FXU and LSU must be checked to 
see if an issue conflict will occur. The classification of each PowerPC Architecture instruction can 
be found in Table A-1 on page 723.

d = vec_all_ngt(a,b) All Elements Not Greater Than

d = vec_all_nle(a,b) All Elements Not Less Than or Equal

d = vec_all_nlt(a,b) All Elements Not Less Than

d = vec_all_numeric(a) All Elements Numeric

Any Predicates

d = vec_any_eq(a,b) Any Element Equal

d = vec_any_ge(a,b) Any Element Greater Than or Equal

d = vec_any_gt(a,b) Any Element Greater Than

d = vec_any_le(a,b) Any Element Less Than or Equal

d = vec_any_lt(a,b) Any Element Less Than

d = vec_any_nan(a) Any Element Not a Number

d = vec_any_ne(a,b) Any Element Not Equal

d = vec_any_nge(a,b) Any Element Not Greater Than or Equal

d = vec_any_ngt(a,b) Any Element Not Greater Than

d = vec_any_nle(a,b) Any Element Not Less Than or Equal

d = vec_any_nlt(a,b) Any Element Not Less Than

d = vec_any_numeric(a) Any Element Numeric

d = vec_any_out(a,b) Any Element Out of Bounds

Table A-13. Vector/SIMD Multimedia Extension Intrinsics  (Sheet 4 of 4)

Intrinsic Description
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.

There are several specific cases that prevent dual instruction issue. These are:

• A dependency stall exists. Input parameters are not yet available.

• The even instruction (in slot 0—the older instruction in a dispatch pair) is a nonpipelined 
instruction. The nonpipelined instructions include mfspr, mulli, mullw, mullwo, mulhu, mul-
hwu, mulld, mulldo, mulhd, mulhdu, divd, divdu, divdo, divduo, fdiv, fdivs, fsqrt, fsqrts, 
and mtvscr.

• The even instruction is a context-synchronizing instruction. The context-synchronizing 
instructions include sync (L = 0, 1, or 2), isync, mtctrl, mtmsr and mtmsrd (L = 0), sc, rfid, 
and hrfid.

• One of the instructions is a microcoded instruction. The PPE has two types of microcoded 
instructions—unconditional and conditional. The unconditional microcoded instructions 
include shifts and rotates that source the shift amount from a register (as opposed to an 
immediate field), load/store algebraic instructions, load/store strings and multiples, and sev-

Figure A-1. Dual-Issue Combinations 
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FPU Floating-Point Unit
FXU Fixed-Point Unit
LSU Load and Store Unit
VSU Vector Scalar Unit (a combination of VXU and FPU)
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eral CR recording (Rc=1) instructions. The conditional microcoded instructions are all load 
and store instructions and occur conditionally based upon the alignment of the load or store. 

• The FPU is running single-step as a result of precise floating-point exceptions being enabled 
(machine-state register bits MSR[FE0] or MSR[FE1] being set to 1).

• The issue queue for the vector scalar unit (VSU, a combination of the VXU and FPU) is sin-
gle-stepping as a result of an internal flush. Internal flushes occur when VSU instructions 
have denormalized operands or produce denormalized results.

• A VXU floating-point instruction (except for a reciprocal-estimate operation) is issued within 
two cycles following a reciprocal estimate instruction, vrefp or vrsqrtefp.

• A mffs (move from FPSCR) instruction is issued one cycle following an FPU instruction, 
other than an FPU load or store.

• No instruction can be issued following a nonpipelined FPU or VXU instruction until the non-
pipelined instruction completes.

• No FPU instruction, including loads and stores, can be issued after a fdiv or fsqrt until the 
fdiv or fsqrt completes.

• A younger (slot 1) VSU load or store can be issued in the same cycle as any other VSU type 
1 instruction, but an older VXU or FPU load or store cannot.

• Nothing issues while an internal flush condition is resolved. During this time, instructions are 
issued from the denorm-recycle queue in a single-step fashion.

Additional information can be found in Section A.7 on page 767.

A.6 Pipeline Stages

The instruction unit (IU) is responsible for all instruction handling and control. After instructions 
are issued from the IU, they enter one of the execution units (LSU, FXU, VXU, FPU, or BRU). 
The BRU is an execution unit, but is considered part of the IU because it deals with instruction 
branching. 

A.6.1 Instruction-Unit Pipeline

Figure A-2 on page 763 shows the portion of the IU pipeline that serves of the BRU, FXU, and 
LSU. The front end of the IU pipeline consists of a 4-cycle cache access: IC1 through IC4. The 
fetch address is based on either the sequential path or the branch target path. The branch execu-
tion stage can correct the instruction fetch with the branch-target address if the branch is mispre-
dicted not taken. The branch execution stage can correct the instruction fetch with the sequential 
address if the branch is mispredicted taken. 

After pipeline stage IC4, there are two instruction-buffer stages: IB1 and IB2. The instruction 
buffer (IBuf) is a first in, first out (FIFO) queue. It is used to buffer the four instructions fetched 
from the L1 ICache when there is a downstream stall condition. Instruction-buffer stage IB1 is 
used to load the IBuf; there is one set of IBufs for each thread. IB2 is used to unload the IBuf and 
multiplex down to two instructions (this is the instruction dispatch stage). Each thread is given 
equal priority in dispatch, toggling every other cycle, unless specified otherwise in software (see 
Section 10 PPE Multithreading on page 299). If one thread is not fetching instructions into the 
IBuf (due to conditions such as a cache miss or thread disabled), then the other thread may have 
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exclusive access to dispatch. Dispatch also controls the flow of instructions to and from micro-
code. Microcode (MC) is used to break an instruction that is difficult to execute into multiple 
smaller operations.

The stages labeled RF are GPR read cycles. Those labeled EX are execution cycles. Those 
labeled WB are write-back. 

Dispatch grouping occurs based on the effective address bits [60:63] of the instruction. The 
dispatcher groups instructions with addresses x‘0’ and x‘4’, as well as instructions with addresses 
x‘8’ and x‘C’. An instruction with address x‘0’ cannot be grouped with an instruction with address 
x‘8’ or x‘C’. Similarly, an instruction with address x‘4’ cannot be grouped with an instruction with 
address x‘8’ or x‘C’. In other words, instructions grouped together must be aligned on 8-byte 
boundaries.

Instruction-decode pipeline stages ID1 through ID3 are used to assemble the internal opcodes 
and register source and target fields. In addition, dependency checking starts in ID2, which 
checks for data hazards, such as read-after-write (RAW) or write-after-write (WAW). The issue 
logic continues in ID3, IS1, and IS2 to create a single stall point at IS2, which is propagated up 
the pipeline to the IBufs, stalling both threads. The IS2 stall point is driven by data-hazard detec-
tion, in addition to resource-conflict detections, among other conditions. The IS2 issue stage 
determines the appropriate routing of the instructions. Then, they are issued to the execution 
units in the IS3 cycle. Each instruction in IS2 can be routed to five different issue slots: to the 
FXU, LSU, BRU, and to two slots in the VSU issue queue, described in the next section.

Figure A-2. BRU, FXU, and LSU Pipeline for PPE 
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A.6.2 Vector/Scalar Unit Issue Queue

Figure A-3 shows the VSU issue queue (VIQ). VSU instructions are issued from the IU’s IS2 
stage to the VIQ without checking for dependencies or issue restrictions. The VIQ has a separate 
dependency-checking facility, used exclusively for VSU instructions. A separate stall point is 
generated at the bottom of the VIQ in cycle VQ8. 
.

Figure A-3. VSU (FPU and VXU) Pipeline for PPE 
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Instructions are sent in pairs to the VIQ in cycle IS2. If there are no VSU instructions to issue, a 
bubble propagates down the queue. The queue does not compress the bubbles. In other words, 
the queue is really a pipeline. The VL1 and VL2 stages of the queue represent an overflow buffer. 
When a VQ8 stall occurs, this buffer continues to allow instructions to flow for an additional two 
cycles. The IS2 point will stall two cycles after a VQ8 stall only if there is a VSU instruction that 
would overflow the VIQ if issued. Otherwise, the IS2 point can continue issuing FXU, LSU, and 
BRU instructions. 

After VQ8, instructions are sent to the VXU or FPU. The VQ9, VQ10, VQ11, and VQ12 stages 
are transmit cycles required to physically send the data to the execution unit. 

FPU and VXU instructions can have denormalized operands as described later in this section. 
Therefore, a denorm recycle queue is maintained to track each instruction past issue until the 
VXU or FPU signals that no internal flushes are necessary for the instruction. If no such denor-
malized condition occurs, the instruction completes and is dropped from the denorm recycle 
queue. If an internal flush occurs, the instruction and all younger instructions that are past VQ8 
are reissued to the VSU in a single-step fashion until the denorm recycle queue is empty. Instruc-
tions are issued to the execution units and to the denorm recycle queue in parallel.

VXU and FPU loads are sent to the LSU to access the L1 DCache, in addition to being sent to 
the VIQ. When data is available for these loads, it is sent to the VXU load target buffer (VLTB) or 
FPU load target buffer (FLTB) as appropriate for the type of instruction. The load data is then 
held in these buffers until the instruction is issued from the VIQ. The VLTB and FLTB are 16 
entries deep to accommodate a total of 16 loads in flight past the IS2 issue point.

If a VXU or FPU load misses the L1 DCache, it is issued to the VXU and FPU load miss queue 
(VMQ). It is held in the VMQ until the cache miss is resolved in the LSU. When the miss is 
resolved, the load is reissued to the VSU.

Internal flushes are caused in the VSU for the following reasons:

• An FPU or VXU floating-point instruction with a denormalized operand is encountered.

• An FPU instruction with a Not a Number (NaN) operand (as defined in PowerPC User 
Instruction Set Architecture, Book I) is encountered.

• An FPU instruction uses a bypassed suppressed result caused by an FPU enabled excep-
tion.

• The zero divide or invalid operation exceptions are enabled in the FPU when both were previ-
ously disabled.

A.6.3 Stall and Flush Points

In normal instruction execution, everything will flow in an orderly pipelined fashion. Several condi-
tions exist in which this normal execution is interrupted with a stall or a flush condition. There are 
three separate stall points for the PPE.

The first stall point occurs just after the instruction buffers in the IB2 stage. This stall point is 
commonly referred to as a dispatch block because it prevents instructions from being dispatched. 
There are several possible reasons for a dispatch block. The following are two of the more 
common reasons: 

• A special nop instruction (see Section 10.6.2.2 nop Instructions that Change Thread Priority 
and Dispatch Policy on page 320).
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• The flush logic, whenever an L1 DCache miss dependency (RAW or WAW) or D-ERAT miss 
occurs; or whenever a Condition Register Field 0 (CR0) source-dependent operation issues 
while an stdcx. or stwcx. instruction is pending.

Stalling at this point in the pipeline allows the other thread to continue to dispatch instructions 
while the current thread is stalled. All other stall points in the pipeline block both threads. 

The second stall point occurs in the Issue logic at the IS2 stage. This stall point is activated by 
the hardware whenever one of the following conditions is met:

• An LSU or FXU instruction dependency occurs.

• A nonpipelined instruction is issued.

• An invalid dual-issue combination is present.

• A context serializing instruction is issued.

• The processor is in single-stepping mode.

• The lower VSU stall point (in cycle VQ8) is active, and a VSU instruction is presently trying to 
issue to the VIQ. 

This stall point is also activated whenever a stall request is received from the LSU. This stall 
request is always honored if there is a valid instruction at IS2. A stall at IS2 also causes the 
microcode pipeline to stall. 

The third stall point is exclusive to the VIQ (in cycle VQ8). It is activated for the following condi-
tions:

• VXU or FPU dependencies

• VXU or FPU write-port conflicts on the Vector Registers (VRs) or Floating-Point Registers 
(FPRs), invalid dual-issue combinations

• Nonpipelined instruction issue

• Special single-stepping conditions 

This stall point is also activated whenever a stall request is received from the LSU; this stall 
request is always honored. 

A 2-stage buffer separates the third stall point from the second stall point to help decouple the 
FXU and LSU instruction flow from the VXU and FPU instruction flow. If this buffer fills up and 
there is an instruction in the IS2 stage that needs to issue to the VIQ, then the second stall point 
will activate to prevent overflowing the VIQ. 

When an instruction is past all stall points, it must either flow to completion or be flushed. A flush 
is initiated by one of the execution units in the back end of the pipeline for various reasons, such 
as the occurrence of a dependency on a cache miss or an exception condition. Whenever a flush 
occurs because of an exception, an L1 DCache-miss dependency, or a D-ERAT address-transla-
tion miss, it will be taken at the ninth stage of the execution unit (EX7). All instructions in the 
machine that have been fetched from the L1 ICache and are younger (in program order) than the 
flushing instruction will be invalidated.

The VXU and FPU contain an internal flush for instructions that have denormalized operands. 
(For more information about denormalization, see PowerPC User Instruction Set Architecture, 
Book I.) In this case, all instructions that have issued out of the VIQ and are younger than the 
denormalized instruction will be invalidated and then reexecuted. To facilitate this, there is a 
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denormalized instruction queue (DIQ) that tracks all instructions that are issued from the VIQ. 
When the internal flush condition is signaled, the VIQ is stalled. Instructions in the DIQ are reis-
sued one at a time (each instruction must complete before the next is issued). 

A.7 Compiler Optimizations

The following compiler optimizations apply to all software written for the PPE, using either the 
PowerPC or vector/SIMD multimedia extension instruction sets. These optimizations will improve 
the performance of the PPE. 

For many additional compiler optimizations, including those specifically for single instruction, 
multiple data (SIMD) operations, see Section 22 on page 629. 

A.7.1 Instruction Arrangement

PPE instructions are dispatched in 8-byte aligned pairs. The smaller address of the pair is termed 
I0 (EA[60:63] = x‘0’ or x‘8’); the larger address of the pair is termed I1 (EA[60:63] = x‘4’ or x‘C’). 
By convention, I0 is termed “older” than I1 and I1 is termed “younger” than I0.

See Section A.5 on page 760 for an overview of issue rules and the names of execution units. 
The following rules apply:

• I0 and I1 should not attempt to use the same execution unit (BRU, LSU, FXU, VSU type 1, or 
VSU type 2). Doing so causes a 1-cycle stall for I1. 

• I0 and I1 should not both access (read or write) the CR or LR registers. Doing so causes a 
1-cycle stall for I1.

• If I0 is a load or store instruction and I1 is a any vector/SIMD multimedia extension or FPU 
instruction other than a load or store and if I1 is not dependent on I0, then the order of I0 and 
I1 should be reversed. Failure to do so will cause a 1-cycle stall for I1.

• Nonpipelined operations (see Section A.7.2) and context-synchronizing instructions (CSI, 
see Section A.7.2) should be placed in I1. If placed in I0, then the I1 instruction cannot dual-
issue with the second-issue of the double-issue operation (causing a 1-cycle stall penalty for 
the I1 instruction.

• The target of a branch instruction should be to an x‘0’ or x‘8’ (I0) address. This allows the dis-
patcher to avoid an unpaired instruction (resulting in a 1-cycle inefficiency).

• Predicted-taken branches should have an address of x‘4’ or x‘8’ for maximum dispatch effi-
ciency.

A.7.2 Avoiding Slow Instructions and Processor Modes

For better performance, software should avoid setting MSR[FE0] or MSR[FE1] to ‘1’. When either 
of these is set, the processor will run in a “single-step” mode whereby each instruction must wait 
for all older instructions to complete before getting issued.

Because of the 11-cycle penalty for beginning a microcode sequence, it is best for performance if 
software avoids instructions that go to microcode. See Table A-3 on page 735, Table A-4 on 
page 737, and Table A-5 on page 738.
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The following are context-synchronizing instructions (CSI). These instructions require all older 
instructions to complete before they are issued, and are therefore best to avoid in performance-
critical code:

• sync (L = 0, 1, or 2)

• isync

• mtctrl

• mtmsr, mtmsrd L = 0

• sc

• rfid, hrfid

The following are nonpipelined instructions. These instructions require all younger instructions to 
stall until they are completed:

• mfspr LR or mfspr CTR—inserts a 2-cycle stall.

• all other mfspr instructions—inserts a minimum 9-cycle stall.

• mulli—inserts a 6-cycle stall.

• mullw, mullwo, mulhw, mulhwu—inserts a 9-cycle stall.

• mulld, mulldo, mulhd, mulhdu—inserts a 15-cycle stall.

• divd, divdu, divdo, divduo—inserts a 10 to 70 cycle stall.

• divw, divwu, divwo, divwuo—inserts a 10 to 70 cycle stall.

• fdiv, fdivs, fsqrt, fsqrts, mtvscr—inserts a minimum 13 cycle stall.

The vector/SIMD multimedia extension and FPU instructions that have either denormalized or 
underflow (NaN) operands or results should be avoided. If such an instruction is encountered, an 
internal flush will occur in the VIQ, resulting in a temporary single-step mode. This will cost a 
minimum of 100 cycles.

A.7.3 Avoiding Dependency Stalls and Flushes

The following dependencies should be avoided if possible:

• An instruction that reads the XER while a stwcx. or stdcx. instruction is pending will be 
flushed.

• An instruction that reads the XER should not be I1 in the same dispatch group or I0 or I1 in 
the following dispatch group as an XER writing instruction. If so, the issue logic will stall to 
separate them by a 1-cycle bubble.

• Two instructions that read or write the CTR should not be in the same or back-to-back dis-
patch groups. If so, the issue logic will stall to separate them by a 1-cycle bubble.

• In general, FXU instructions that read the CR should not access the same CR fields that are 
in use by vector/SIMD multimedia extension or FPU instructions. Doing so can cause a flush 
if the FXU instruction issues before the vector/SIMD multimedia extension or FPU instruction 
has written results to the CR field.

• An FXU instruction that is dependent on an older instruction should not be in the same or the 
following dispatch group as the older instruction. If so, the issue logic will stall to separate 
them by a 1-cycle bubble.
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• An LSU instruction that is dependent on an older LSU instruction should not be in the same 
or the following dispatch group as the older instruction. If so, the issue logic will stall to sepa-
rate them by a 1-cycle bubble.

• An LSU instruction that is dependent on an older FXU instruction should not be in the same 
or the following four dispatch groups as the older instruction. If so, the issue logic will stall to 
separate them by a 4-cycle bubble.

There is an exception for a store instruction that has only data (not an address) dependent 
on an older FXU instruction. In this case the store should not be in the same or the following 
dispatch group. If it is, then a 4-cycle bubble will occur (even though it appears that only a 1-
cycle bubble should be necessary).

For vector/SIMD multimedia extension and FPU instructions, the following read-after-write 
(RAW) dependencies should be avoided if possible:

• An instruction dependent on an older FPU arithmetic result should not be in the same or the 
following nine dispatch groups as the older instruction. If so, the issue logic will stall to sepa-
rate them by a 9-cycle bubble. The exception is if the dependent instruction is an FPU store 
that should not be in the same dispatch group as the FPU arithmetic (or a 1-cycle stall will 
result).

• An instruction dependent on an older vector/SIMD multimedia extension Simple or vec-
tor/SIMD multimedia extension Permute result should not be in the same or the following 
three dispatch groups as the older instruction. If so, the issue logic will stall to separate them 
by a 3-cycle bubble.

• An instruction dependent on an older vector/SIMD multimedia extension Complex result 
should not be in the same or the following eight dispatch groups as the older instruction. If so, 
the issue logic will stall to separate them by a 3-cycle bubble.

• An instruction dependent on an older vector/SIMD multimedia extension Float result should 
not be in the same or the following eleven dispatch groups as the older instruction. If so, the 
issue logic will stall to separate them by a 11-cycle bubble.

• An instruction dependent on an older vector/SIMD multimedia extension Estimate result 
should not be in the same or the following thirteen dispatch groups as the older instruction. If 
so, the issue logic will stall to separate them by a 13-cycle bubble.

For vector/SIMD multimedia extension and FPU instructions, the following write-after-write 
(WAW) dependencies should be avoided if possible. Software can reuse the same target for 
instructions that execute in the same pipeline without penalty. For example, a vector/SIMD multi-
media extension Float instruction can reuse the same target register as a previous vector/SIMD 
multimedia extension Float immediately without any penalty.

• The target of a vector/SIMD multimedia extension Estimate instruction should not be reused 
within ten dispatch groups.

• The target of a vector/SIMD multimedia extension Float instruction should not be reused 
within eight dispatch groups.

• The target of a vector/SIMD multimedia extension Complex instruction should not be reused 
within five dispatch groups.

• An FPU load should not reuse an FPU arithmetic target within six dispatch groups.
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For vector/SIMD multimedia extension and FPU instructions, there exist write-port-collisions 
(WPCs). In general these are difficult to avoid in a precise fashion other than to avoid dispatch 
combinations similar to the following:

• A vector/SIMD multimedia extension Simple instruction must stall for 1 cycle if a vector/SIMD 
multimedia extension Complex was issued 5 cycles ago, a vector/SIMD multimedia extension 
Float was issued 8 cycles ago, or a vector/SIMD multimedia extension Estimate was issued 
10 cycles ago.

• A vector/SIMD multimedia extension Complex instruction must stall for 1 cycle if a vec-
tor/SIMD multimedia extension Float was issued 2 cycles ago, or a vector/SIMD multimedia 
extension Estimate was issued 4 cycles ago.

• A vector/SIMD multimedia extension Float instruction must stall for 1 cycle if a vector/SIMD 
multimedia extension Estimate was issued 2 cycles ago.

• A vector/SIMD multimedia extension Store instruction must stall for 1 cycle if a FPU Store 
was issued 12 cycles ago.

• An FPU Load instruction must stall for 1 cycle if an FPU Arithmetic instruction was issued 6 
cycles ago.

Finally, VSU type 1 instructions should avoid writing the same target register as a VSU type 2 
instruction within 12 cycles of each other. This prevents a potential 1-cycle stall that can occur if 
the writes occur in the same cycle.

A.7.4 General Recommendations

The following general recommendations can be used to help improve performance:

• Use the data-cache block touch (cache hint) instructions (dcbt). 

• Use the cache replacement management facility for controlling the L2 cache and TLB 
replacement policy based on a class identifier (class ID). 

• Preload the TLB. 

• Use all of the branch-prediction hints given in the branch instructions.

• Avoid load-hit-store1 dependencies. 

• Avoid D-ERAT thrashing by allocating data addresses so that collisions are less likely to 
occur on 128 KB boundaries (2-way set associative with 32 × 4 KB entries).

• Avoid flush conditions due to filling up the fixed-point unit store queue by having no more 
than 15 stores outstanding at one time.

• Avoid VSU flush conditions due to filling up the VSU load target buffer by having no more 
than 15 VSU loads outstanding at one time.

1. The load-hit-store (LHS) condition occurs when a load request is made to store to a similar address in the pro-
cessor’s store queue. Because the store queue in the processor holds stores that have not yet written into the 
cache, the load must wait in the load miss queue (LMQ) until the store has written its data into the cache. Loads 
that are marked as LHS can be recycled after all older stores have completed.
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Appendix B. SPU Instruction Set and Intrinsics

The Synergistic Processor Elements (SPEs) support the synergistic processor unit (SPU) 
instruction set architecture (ISA), and the C/C++ language extensions for this instruction set 
provide data types and intrinsics to programmers writing in C or C++ when they use the 
spu_intrinsics.h header file. This section summarizes both the ISA and the extensions. 
Because the functions performed by the intrinsics are closely related to the assembly-language 
instructions of the SPU instruction set, this overview can be helpful in understanding the func-
tions of the intrinsics. 

The SPU ISA operates primarily on single instruction, multiple data (SIMD) vector operands, both 
fixed-point and floating-point, with support for some scalar operands. The PowerPC Processor 
Element (PPE) and the SPE both execute SIMD instructions, but the two processors execute 
different instruction sets, and programs for the PPE and SPEs must be compiled by different 
compilers. 

For a complete description of the SPU instructions, intrinsics, and their use, see:

• Synergistic Processor Unit (SPU) Instruction Set Architecture 

• C/C++ Language Extensions for Cell Broadband Engine Architecture

• SPU Application Binary Interface Specification

• SPU Assembly Language Specification

B.1 SPU Instruction Set

The SPU instruction set uses instructions that are 4 bytes long and word-aligned. It supports 16-
byte operand accesses between storage and its 128 vector registers. For a brief overview of the 
SPU instruction set, including the data types, addressing modes and instruction types, see 
Section 3.3 on page 76. The sections that follow summarize key points of the instruction set. 

B.1.1 Data Types

Section 3.3.1 on page 76 contains a list of the SPU data types. 

B.1.2 Instructions

Table B-1 on page 772 contains a complete list of SPU instructions, ordered alphabetically. The 
SPU has two pipelines, named even (pipeline 0) and odd (pipeline 1), into which it can issue and 
complete up to two instructions per cycle, one in each of the pipelines. The pipeline is identified 
for each instruction in the table, along with the latency and stall cycles. The latency values 
include all stall cycles. 

A stall is the number of cycles, after issuing an instruction of a given type, before another instruc-
tion of the same type can be issued. For example, double-precision floating-point operations have 
a 6-cycle stall. Therefore, for sequential double-precision floating-point operations, the second 
operation will be issued at least 7 cycles after the first operation.

The SPU ISA supports only 16-bit multiplies, so 32-bit multiplies are implemented in software 
using 16-bit multiplies. 
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For details about the instruction issue rules, see Section B.1.3 on page 779. For more informa-
tion about the instructions, see the Synergistic Processor Unit Instruction Set Architecture speci-
fication and the SPU Assembly Language Specification. Instructions not supported on specific 
processor implementations are indicated by 'N/S'.

Table B-1. SPU Instructions  (Sheet 1 of 8)

Instruction Description Pipeline

Cell/B.E. 
Processor

PowerXCell 8i 
Processor

Latency1

(cycles)
Stalls

(cycles)
Latency1

(cycles)
Stalls

(cycles)

a rt, ra, rb Add word. 0 2 0 2 0

absdb rt, ra, rb Absolute difference of bytes. 0 4 0 4 0

addx rt, ra, rb Add word extended. 0 2 0 2 0

ah rt, ra, rb Add halfword. 0 2 0 2 0

ahi rt, ra, s10 Add halfword immediate. 0 2 0 2 0

ai rt, ra, s10 Add word immediate. 0 2 0 2 0

and rt, ra, rb And. 0 2 0 2 0

andbi rt, ra, s10 And byte immediate. 0 2 0 2 0

andc rt, ra, rb And with complement. 0 2 0 2 0

andhi rt, ra, s10 And halfword immediate. 0 2 0 2 0

andi rt, ra, s10 And word immediate. 0 2 0 2 0

avgb rt, ra, rb Average bytes. 0 4 0 4 0

bg rt, ra, rb Borrow generate word. 0 2 0 2 0

bgx rt, ra, rb Borrow generate word extended. 0 2 0 2 0

bi ra Branch indirect. 1 N/A 0 N/A 0

bid ra Branch indirect, disable. 1 N/A 0 N/A 0

bie ra Branch indirect, enable. 1 N/A 0 N/A 0

bihnz rt, ra Branch indirect if not zero halfword. 1 N/A 0 N/A 0

bihnzd rt, ra Branch indirect if not zero halfword, disable. 1 N/A 0 N/A 0

bihnze rt, ra Branch indirect if not zero halfword, enable. 1 N/A 0 N/A 0

bihz rt, ra Branch indirect if zero halfword. 1 N/A 0 N/A 0

bihzd rt, ra Branch indirect if zero halfword, disable. 1 N/A 0 N/A 0

bihze rt, ra Branch indirect if zero halfword, enable. 1 N/A 0 N/A 0

binz rt, ra Branch indirect if not zero word. 1 N/A 0 N/A 0

binzd rt, ra Branch indirect if not zero word, disable. 1 N/A 0 N/A 0

1. The latency cycles include all stall cycles. 
2. A rdch or wrch instruction for a blocking channel is not issued unless the channel count for the blocking channel is greater than 

zero. 
3. This is the latency for a nonblocking case.
4. If successive rdch, wrch, or rchcnt instructions are issued within five SPU cycles to the same channel (or to the 

SPU_RdEventStat Channel, the SPU_WrEventMask Channel, or the SPU_WrEventAck Channel), the second channel instruction 
is retried (causing a flush). 

5. This instruction causes a pipeline flush, so in some cycles the pipeline makes no progress. 
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binze rt, ra Branch indirect if not zero word, enable. 1 N/A 0 N/A 0

bisl rt, ra Branch indirect and set link. 1 4 0 4 0

bisld rt, ra Branch indirect and set link, disable. 1 4 0 4 0

bisle rt, ra Branch indirect and set link, enable. 1 4 0 4 0

bisled rt, ra Branch indirect and set link on external data. 1 4 0 4 0

bisledd rt, ra Branch indirect and set link on external data, disable. 1 4 0 4 0

bislede rt, ra Branch indirect and set link on external data, enable. 1 4 0 4 0

biz rt, ra Branch indirect if zero word. 1 N/A 0 N/A 0

bizd rt, ra Branch indirect if zero word, disable. 1 N/A 0 N/A 0

bize rt, ra Branch indirect if zero word, enable. 1 N/A 0 N/A 0

br s18 Branch relative. 1 N/A 0 N/A 0

bra s18 Branch absolute. 1 N/A 0 N/A 0

brasl rt, s18 Branch absolute and set link. 1 N/A 0 N/A 0

brhnz rt, s18 Branch if not zero halfword. 1 N/A 0 N/A 0

brhz rt, s18 Branch if zero halfword. 1 N/A 0 N/A 0

brnz rt, s18 Branch if not zero word. 1 N/A 0 N/A 0

brsl rt, s18 Branch relative and set link. 1 N/A 0 N/A 0

brz rt, s18 Branch if zero word. 1 N/A 0 N/A 0

cbd rt, u7(ra) Generate controls for byte insertion (d-form). 1 4 0 4 0

cbx rt, ra, rb Generate controls for byte insertion (x-form). 1 4 0 4 0

cdd rt, u7(ra) Generate controls for doubleword insertion (d-form). 1 4 0 4 0

cdx rt, ra, rb Generate controls for doubleword insertion (x-form). 1 4 0 4 0

ceq rt, ra, rb Compare equal word. 0 2 0 2 0

ceqb rt, ra, rb Compare equal byte. 0 2 0 2 0

ceqbi rt, ra, s10 Compare equal byte immediate. 0 2 0 2 0

ceqh rt, ra, rb Compare equal halfword. 0 2 0 2 0

ceqhi rt, ra, s10 Compare equal halfword immediate. 0 2 0 2 0

ceqi rt, ra, s10 Compare equal word immediate. 0 2 0 2 0

cflts rt, ra, scale7 Convert floating to signed integer. 0 7 0 7 0

Table B-1. SPU Instructions  (Sheet 2 of 8)

Instruction Description Pipeline

Cell/B.E. 
Processor

PowerXCell 8i 
Processor

Latency1

(cycles)
Stalls

(cycles)
Latency1

(cycles)
Stalls

(cycles)

1. The latency cycles include all stall cycles. 
2. A rdch or wrch instruction for a blocking channel is not issued unless the channel count for the blocking channel is greater than 

zero. 
3. This is the latency for a nonblocking case.
4. If successive rdch, wrch, or rchcnt instructions are issued within five SPU cycles to the same channel (or to the 

SPU_RdEventStat Channel, the SPU_WrEventMask Channel, or the SPU_WrEventAck Channel), the second channel instruction 
is retried (causing a flush). 

5. This instruction causes a pipeline flush, so in some cycles the pipeline makes no progress. 
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cfltu rt, ra, scale7 Convert floating to unsigned integer. 0 7 0 7 0

cg rt, ra, rb Carry generate word. 0 2 0 2 0

cgt rt, ra, rb Compare greater than word. 0 2 0 2 0

cgtb rt, ra, rb Compare greater than byte. 0 2 0 2 0

cgtbi rt, ra, s10 Compare greater than byte immediate. 0 2 0 2 0

cgth rt, ra, rb Compare greater than halfword. 0 2 0 2 0

cgthi rt, ra, s10 Compare greater than halfword immediate. 0 2 0 2 0

cgti rt, ra, s10 Compare greater than word immediate. 0 2 0 2 0

cgx rt, ra, rb Carry generate word extended. 0 2 0 2 0

chd rt, u7(ra) Generate controls for halfword insertion (d-form). 1 4 0 4 0

chx rt, ra, rb Generate controls for halfword insertion (x-form). 1 4 0 4 0

clgt rt, ra, rb Compare logical greater than word. 0 2 0 2 0

clgtb rt, ra, rb Compare logical greater than byte. 0 2 0 2 0

clgtbi rt, ra, s10 Compare logical greater than byte immediate. 0 2 0 2 0

clgth rt, ra, rb Compare logical greater than halfword. 0 2 0 2 0

clgthi rt, ra, s10 Compare logical greater than halfword immediate. 0 2 0 2 0

clgti rt, ra, s10 Compare logical greater than word immediate. 0 2 0 2 0

clz rt, ra Count leading zeros. 0 2 0 2 0

cntb rt, ra Count ones in bytes. 0 4 0 4 0

csflt rt, ra, scale7 Convert signed integer to floating. 0 7 0 7 0

cuflt rt, ra, scale7 Convert unsigned integer to floating. 0 7 0 7 0

cwd rt, u7(ra) Generate controls for word insertion (d-form). 1 4 0 4 0

cwx rt, ra, rb Generate controls for word insertion (x-form). 1 4 0 4 0

dfa rt, ra, rb Double-precision floating add. 0 13 6 9 0

dfceq rt, ra, rb Double-precision floating compare equal 0 N/S N/S 9 0

dfcgt rt, ra, rb Double-precision floating compare greater than 0 N/S N/S 9 0

dfcmeq rt, ra, rb Double-precision floating compare magnitude equal 0 N/S N/S 9 0

dfcmgt rt, ra, rb Double-precision floating compare magnitude greater 
than 0 N/S N/S 9 0

Table B-1. SPU Instructions  (Sheet 3 of 8)

Instruction Description Pipeline

Cell/B.E. 
Processor

PowerXCell 8i 
Processor

Latency1

(cycles)
Stalls

(cycles)
Latency1

(cycles)
Stalls

(cycles)

1. The latency cycles include all stall cycles. 
2. A rdch or wrch instruction for a blocking channel is not issued unless the channel count for the blocking channel is greater than 

zero. 
3. This is the latency for a nonblocking case.
4. If successive rdch, wrch, or rchcnt instructions are issued within five SPU cycles to the same channel (or to the 

SPU_RdEventStat Channel, the SPU_WrEventMask Channel, or the SPU_WrEventAck Channel), the second channel instruction 
is retried (causing a flush). 

5. This instruction causes a pipeline flush, so in some cycles the pipeline makes no progress. 
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dfm rt, ra, rb Double-precision floating multiply. 0 13 6 9 0

dfma rt, ra, rb Double-precision floating multiply and add. 0 13 6 13 6

dfms rt, ra, rb Double-precision floating multiply and subtract. 0 13 6 9 0

dfnma rt, ra, rb Double-precision floating negative multiply and add. 0 13 6 9 0

dfnms rt, ra, rb Double-precision floating negative multiply and 
subtract. 0 13 6 9 0

dfs rt, ra, rb Double-precision floating subtract. 0 13 6 9 0

dftsv rt, ra, u7 Double-precision floating test special value 0 N/S N/S 9 0

dsync Synchronize data. 1 N/A 05 N/A 05

eqv rt, ra, rb Equivalent. 0 2 0 2 0

fa rt, ra, rb Floating add. 0 6 0 6 0

fceq rt, ra, rb Floating compare equal. 0 2 0 2 0

fcgt rt, ra, rb Floating compare greater than. 0 2 0 2 0

fcmeq rt, ra, rb Floating compare magnitude equal. 0 2 0 2 0

fcmgt rt, ra, rb Floating compare greater than. 0 2 0 2 0

fesd rt, ra Floating extend single to double. 0 13 6 13 6

fi rt, ra, rb Floating interpolate. 0 7 0 7 0

fm rt, ra, rb Floating multiply. 0 6 0 6 0

fma rt, ra, rb, rc Floating multiply and add. 0 6 0 6 0

fms rt, ra, rb, rc Floating multiply and subtract. 0 6 0 6 0

fnms rt, ra, rb, rc Floating negative multiply and subtract. 0 6 0 6 0

frds rt, ra Floating round double to single. 0 13 6 13 6

frest rt, ra Floating reciprocal estimate. 1 4 0 4 0

frsqest rt, ra Floating reciprocal square root estimate. 1 4 0 4 0

fs rt, ra, rb Floating subtract. 0 6 0 6 0

fscrrd rt Floating-point status control register read. 0 13 6 13 6

fscrwr ra
fscrwr rt, ra

Floating-point status control register write. 0 7 0 7 0

fsm rt, ra Form select mask for words. 1 4 0 4 0

fsmb rt, ra Form select mask for bytes. 1 4 0 4 0

Table B-1. SPU Instructions  (Sheet 4 of 8)

Instruction Description Pipeline

Cell/B.E. 
Processor

PowerXCell 8i 
Processor

Latency1

(cycles)
Stalls

(cycles)
Latency1

(cycles)
Stalls

(cycles)

1. The latency cycles include all stall cycles. 
2. A rdch or wrch instruction for a blocking channel is not issued unless the channel count for the blocking channel is greater than 

zero. 
3. This is the latency for a nonblocking case.
4. If successive rdch, wrch, or rchcnt instructions are issued within five SPU cycles to the same channel (or to the 

SPU_RdEventStat Channel, the SPU_WrEventMask Channel, or the SPU_WrEventAck Channel), the second channel instruction 
is retried (causing a flush). 

5. This instruction causes a pipeline flush, so in some cycles the pipeline makes no progress. 
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fsmbi rt, u16 Form select mask for byte immediate. 1 4 0 4 0

fsmh rt, ra Form select mask for halfwords. 1 4 0 4 0

gb rt, ra Gather bits from words. 1 4 0 4 0

gbb rt, ra Gather bits from bytes. 1 4 0 4 0

gbh rt, ra Gather bits from halfwords. 1 4 0 4 0

hbr s11, ra Hint for branch (r-form). 1 15 0 15 0

hbra s11, s18 Hint for branch (a-form). 1 15 0 15 0

hbrp Hint for branch, prefetch (r-form). 1 15 0 15 0

hbrr s11, s18 Hint for branch relative. 1 15 0 15 0

heq ra, rb Halt if equal. 0 N/A 0 N/A 0

heqi ra, s10 Halt if equal immediate. 0 N/A 0 N/A 0

hgt ra, rb Halt if greater than. 0 N/A 0 N/A 0

hgti ra, s10 Halt if greater than immediate. 0 N/A 0 N/A 0

hlgt ra, rb Halt if logically greater than. 0 N/A 0 N/A 0

hlgti ra, s10 Halt if logically greater than immediate. 0 N/A 0 N/A 0

iiretd ra Interrupt return, disable. 1 N/A 0 N/A 0

il rt, s16 Immediate load word. 0 2 0 2 0

ila rt, u18 Immediate load address. 0 2 0 2 0

ilh rt, u16 Immediate load halfword. 0 2 0 2 0

ilhu rt, u16 Immediate load halfword upper. 0 2 0 2 0

iohl rt, u16 Immediate OR halfword lower. 0 2 0 2 0

iret ra Interrupt return. 1 N/A 0 N/A 0

irete ra Interrupt return, enable. 1 N/A 0 N/A 0

lnop Nop operation (load). 1 0 0 0 0

lqa rt, s18 Load quadword (a-form). 1 6 0 6 0

lqd rt, s14(ra) Load quadword (d-form). 1 6 0 6 0

lqr rt, s18 Load quadword instruction relative (a-form). 1 6 0 6 0

lqx rt, ra, rb Load quadword (x-form). 1 6 0 6 0

mfspr rt, spr Move from special purpose register. 1 6 0 6 0

Table B-1. SPU Instructions  (Sheet 5 of 8)

Instruction Description Pipeline

Cell/B.E. 
Processor

PowerXCell 8i 
Processor

Latency1

(cycles)
Stalls

(cycles)
Latency1

(cycles)
Stalls

(cycles)

1. The latency cycles include all stall cycles. 
2. A rdch or wrch instruction for a blocking channel is not issued unless the channel count for the blocking channel is greater than 

zero. 
3. This is the latency for a nonblocking case.
4. If successive rdch, wrch, or rchcnt instructions are issued within five SPU cycles to the same channel (or to the 

SPU_RdEventStat Channel, the SPU_WrEventMask Channel, or the SPU_WrEventAck Channel), the second channel instruction 
is retried (causing a flush). 

5. This instruction causes a pipeline flush, so in some cycles the pipeline makes no progress. 
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mpy rt, ra, rb Multiply. 0 7 0 7 0

mpya rt, ra, rb, rc Multiply and add. 0 7 0 7 0

mpyh rt, ra, rb Multiply high. 0 7 0 7 0

mpyhh rt, ra, rb Multiply high high. 0 7 0 7 0

mpyhha rt, ra, rb Multiply high high and add. 0 7 0 7 0

mpyhhau rt, ra, rb Multiply high high unsigned and add. 0 7 0 7 0

mpyhhu rt, ra, rb Multiply high high unsigned. 0 7 0 7 0

mpyi rt, ra, s10 Multiply immediate. 0 7 0 7 0

mpys rt, ra, rb Multiply and shift right. 0 7 0 7 0

mpyu rt, ra, rb Multiply unsigned. 0 7 0 7 0

mpyui rt, ra, s10 Multiply unsigned immediate. 0 7 0 7 0

mtspr spr, ra Move to special purpose register. 1 6 0 6 0

nand rt, ra, rb Nand. 0 2 0 2 0

nop
nop rt

Nop operation (execute). 0 0 0 0 0

nor rt, ra, rb Nor. 0 2 0 2 0

or rt, ra, rb Or. 0 2 0 2 0

orbi rt, ra, s10 Or byte immediate. 0 2 0 2 0

orc rt, ra, rb Or with complement. 0 2 0 2 0

orhi rt, ra, s10 Or halfword immediate. 0 2 0 2 0

ori rt, ra, s10 Or word immediate. 0 2 0 2 0

orx rt, ra Or word across. 1 4 0 4 0

rchcnt rt, ch Read channel count. 1 62, 3, 4 0 62, 3, 4 0

rdch rt, ch Read channel. 1 62, 3, 4 0 62, 3, 4 0

rot rt, ra, rb Rotate word. 0 4 0 4 0

roth rt, ra, rb Rotate halfword. 0 4 0 4 0

rothi rt, ra, s7 Rotate halfword immediate. 0 4 0 4 0

rothm rt, ra, rb Rotate and mask halfword. 0 4 0 4 0

rothmi rt, ra, s6 Rotate and mask halfword immediate. 0 4 0 4 0

Table B-1. SPU Instructions  (Sheet 6 of 8)

Instruction Description Pipeline

Cell/B.E. 
Processor

PowerXCell 8i 
Processor

Latency1

(cycles)
Stalls

(cycles)
Latency1

(cycles)
Stalls

(cycles)

1. The latency cycles include all stall cycles. 
2. A rdch or wrch instruction for a blocking channel is not issued unless the channel count for the blocking channel is greater than 

zero. 
3. This is the latency for a nonblocking case.
4. If successive rdch, wrch, or rchcnt instructions are issued within five SPU cycles to the same channel (or to the 

SPU_RdEventStat Channel, the SPU_WrEventMask Channel, or the SPU_WrEventAck Channel), the second channel instruction 
is retried (causing a flush). 

5. This instruction causes a pipeline flush, so in some cycles the pipeline makes no progress. 
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roti rt, ra, s7 Rotate word immediate. 0 4 0 4 0

rotm rt, ra, rb Rotate and mask word. 0 4 0 4 0

rotma rt, ra, rb Rotate and mask algebraic word. 0 4 0 4 0

rotmah rt, ra, rb Rotate and mask algebraic halfword. 0 4 0 4 0

rotmahi rt, ra, s6 Rotate and mask algebraic halfword immediate. 0 4 0 4 0

rotmai rt, ra, s7 Rotate and mask algebraic word immediate. 0 4 0 4 0

rotmi rt, ra, s7 Rotate and mask word immediate. 0 4 0 4 0

rotqbi rt, ra, rb Rotate quadword by bits. 1 4 0 4 0

rotqbii rt, ra, u3 Rotate quadword by bits immediate. 1 4 0 4 0

rotqby rt, ra, rb Rotate quadword by bytes. 1 4 0 4 0

rotqbybi rt, ra, rb Rotate quadword by bytes from bit shift count. 1 4 0 4 0

rotqbyi rt, ra, s7 Rotate quadword by bytes immediate. 1 4 0 4 0

rotqmbi rt, ra, rb Rotate and mask quadword by bits. 1 4 0 4 0

rotqmbii rt, ra, s3 Rotate and mask quadword by bits immediate. 1 4 0 4 0

rotqmby rt, ra, rb Rotate and mask quadword by bytes. 1 4 0 4 0

rotqmbybi rt, ra, rb Rotate and mask quadword by bytes from bit shift 
count. 1 4 0 4 0

rotqmbyi rt, ra, s6 Rotate and mask quadword by bytes immediate. 1 4 0 4 0

selb rt, ra, rb, rc Select bits. 0 2 0 2 0

sf rt, ra, rb Subtract from word. 0 2 0 2 0

sfh rt, ra, rb Subtract from halfword. 0 2 0 2 0

sfhi rt, ra, s10 Subtract from halfword immediate. 0 2 0 2 0

sfi rt, ra, s10 Subtract from word immediate. 0 2 0 2 0

sfx rt, ra, rb Subtract from word extended. 0 2 0 2 0

shl rt, ra, rb Shift left word. 0 4 0 4 0

shlh rt, ra, rb Shift left halfword. 0 4 0 4 0

shlhi rt, ra, u5 Shift left halfword immediate. 0 4 0 4 0

shli rt, ra, u6 Shift left word immediate. 0 4 0 4 0

shlqbi rt, ra, rb Shift left quadword by bits. 1 4 0 4 0

Table B-1. SPU Instructions  (Sheet 7 of 8)

Instruction Description Pipeline

Cell/B.E. 
Processor

PowerXCell 8i 
Processor

Latency1

(cycles)
Stalls

(cycles)
Latency1

(cycles)
Stalls

(cycles)

1. The latency cycles include all stall cycles. 
2. A rdch or wrch instruction for a blocking channel is not issued unless the channel count for the blocking channel is greater than 

zero. 
3. This is the latency for a nonblocking case.
4. If successive rdch, wrch, or rchcnt instructions are issued within five SPU cycles to the same channel (or to the 

SPU_RdEventStat Channel, the SPU_WrEventMask Channel, or the SPU_WrEventAck Channel), the second channel instruction 
is retried (causing a flush). 

5. This instruction causes a pipeline flush, so in some cycles the pipeline makes no progress. 



Programming Handbook

 Cell Broadband Engine

Version 1.11
May 12, 2008
 

SPU Instruction Set and Intrinsics
Page 779 of 884

B.1.3 Fetch and Issue Rules

B.1.3.1 Fetch

Instruction fetches load 32 instructions per LS request. Because the LS is single-ported and load 
and store instruction frequency is likely to drive LS occupancy to high levels, it is important that 
DMA and instruction-fetch activity transfer as much useful data as possible in each LS request. 

shlqbii rt, ra, u3 Shift left quadword by bits immediate. 1 4 0 4 0

shlqby rt, ra, rb Shift left quadword by bytes. 1 4 0 4 0

shlqbybi rt, ra, rb Shift left quadword by bytes from bit shift count. 1 4 0 4 0

shlqbyi rt, ra, u5 Shift left quadword by bytes immediate. 1 4 0 4 0

shufb rt, ra, rb, rc Shuffle bytes. 1 4 0 4 0

stop u14 Stop and signal. 1 4 0 4 0

stopd ra, rb, rc Stop and signal with dependencies. 1 4 0 4 0

stqa rt, s18 Store quadword (a-form). 1 6 0 6 0

stqd rt, s14(ra) Store quadword (d-form). 1 6 0 6 0

stqr rt, s18 Store quadword instruction relative (a-form). 1 6 0 6 0

stqx rt, ra, rb Store quadword (x-form). 1 6 0 6 0

sumb rt, ra, rb Sum bytes into halfword. 0 4 0 4 0

sync Synchronize. 1 N/A 05 N/A 05

syncc Synchronize channel. 1 N/A 05 N/A 05

wrch ch, ra Write channel. 1 N/A2, 4 0 N/A2, 4 0

xor rt, ra, rb Xor. 0 2 0 2 0

xorbi rt, ra, s10 Exclusive or byte immediate. 0 2 0 2 0

xorhi rt, ra, s10 Exclusive or halfword immediate. 0 2 0 2 0

xori rt, ra, s10 Exclusive or word immediate. 0 2 0 2 0

xsbh rt, ra Extend sign byte to halfword. 0 2 0 2 0

xshw rt, ra Extend sign halfword to word. 0 2 0 2 0

xswd rt, ra Extend sign word to doubleword. 0 2 0 2 0

Table B-1. SPU Instructions  (Sheet 8 of 8)

Instruction Description Pipeline

Cell/B.E. 
Processor

PowerXCell 8i 
Processor

Latency1

(cycles)
Stalls

(cycles)
Latency1

(cycles)
Stalls

(cycles)

1. The latency cycles include all stall cycles. 
2. A rdch or wrch instruction for a blocking channel is not issued unless the channel count for the blocking channel is greater than 

zero. 
3. This is the latency for a nonblocking case.
4. If successive rdch, wrch, or rchcnt instructions are issued within five SPU cycles to the same channel (or to the 

SPU_RdEventStat Channel, the SPU_WrEventMask Channel, or the SPU_WrEventAck Channel), the second channel instruction 
is retried (causing a flush). 

5. This instruction causes a pipeline flush, so in some cycles the pipeline makes no progress. 
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There are three types of instruction fetches: flush-initiated fetches, hint-for branch fetches, and 
inline (sequential) prefetches. Of these, application software can directly influence hint-for branch 
fetches and it has some indirect control over inline prefetches. 

B.1.3.2 Issue

The SPU issues all instructions in program order according to the pipeline assignment. Each 
instruction is part of a doubleword-aligned instruction pair called a fetch group. A fetch group can 
have one or two valid instructions, but it must be aligned to doubleword boundaries. This means 
that the first instruction in the fetch group is from an even word address, and the second instruc-
tion from an odd word address. The SPU processes fetch groups one at a time, continuing to the 
next fetch group when the current instruction group becomes empty. An instruction becomes 
issueable when register dependencies are satisfied and there is no structural hazard (resource 
conflict) with prior instructions or direct memory access (DMA) or error-correcting code (ECC) 
activity. 

Dual-issue occurs when a fetch group has two issueable instructions in which the first instruction 
can be executed on the even pipeline and the second instruction can be executed on the odd 
pipeline. If a fetch group cannot be dual-issued, but the first instruction can be issued, the first 
instruction is issued to the proper execution pipeline and the second instruction is held until it can 
be issued. A new fetch group is loaded after both instructions of the current fetch group are 
issued.

Table B-2 shows how a short program can be issued by the SPU in the absence of resource 
conflicts and register dependencies. Even-pipeline instructions are shaded, odd-pipeline instruc-
tions are not shaded. The program features four cases of pipeline assignment versus instruction 
alignment. The eight instructions are issued in seven cycles. Dual-issue occurs only for the first 
fetch group. The first fetch group consists of an instruction executed by the even pipeline in 
address x‘0000’ and an instruction executed by the odd pipeline at address x‘0004’.

Table B-2. Instruction Issue Example 

Address

Fetch Group in Memory Instruction Issue
Clock 
CyclesEven 

Address
Odd 

Address
Even

Pipeline
Odd

Pipeline

x‘0000’ 1: Even 2: Odd dual issue
(no register dependency)

1: Even 2: Odd
1

x‘0008’ 3: Even 4: Even 3: Even
Penalty

2

x‘0010’ 5: Odd 6: Odd 4: Even 3

x‘0018’ 7: Odd 8: Even 5: Odd 4

6: Odd 5

7: Odd 6

8: Even 7
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Instruction alignment can be optimized to minimize execution time by inserting no operation 
(NOP) and load NOP (LNOP) instructions. For example, Table B-3 shows how another short 
program can be scheduled on an SPU. These eight instructions issue in six cycles. This same 
program can be issued in five cycles if the instruction alignment is improved.

Table B-4 on page 781 shows that a NOP added between instructions 2 and 3 maintains dual-
issue through the third fetch group, and an added LNOP continues dual-issue for the remainder 
of the program.
 

Table B-3. Example of Instruction Issue without NOP and LNOP 

Address

Fetch Group in Memory Instruction Issue
Clock 
CyclesEven 

Address
Odd 

Address
Even
Pipe

Odd
Pipe

x‘0000’ 1: Even 2: Odd dual issue
(no register dependency)

1: Even 2: Odd 1

x‘0008’ 3: Odd 4: Even — 3: Odd 2

x‘0010’ 5: Odd 6: Even 4: Even — 3

x‘0018’ 7: Even 8: Odd — 5: Odd 4

x‘0020’ 6: Even — 5

dual issue
(no register dependency)

7: Even 8: Odd 6

Table B-4. Example of Instruction Issue Using NOP and LNOP 

Address

Fetch Group in Memory Instruction Issue
Clock 
CyclesEven 

Address
Odd 

Address
Even
Pipe

Odd
Pipe

x‘0000’ 1: Even 2: Odd dual issue
(no register dependency)

1: Even 2: Odd 1

x‘0008’ NOP 3: Odd dual issue
(no register dependency)

NOP 3: Odd 2

x‘0010’ 4: Even 5: Odd dual issue
(no register dependency)

4: Even 5: Odd 3

x‘0018’ 6: Even LNOP dual issue
(no register dependency)

6: Even LNOP 4

x‘0020’ 7: Even 8: Odd dual issue
(no register dependency)

7: Even 8: Odd 5

— — 6
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Table B-5 Cell/B.E. SPU Execution Pipelines and Result Latency on page 782 and Table B-6 
PowerXCell 8i SPU Execution Pipelines and Result Latency on page 783 show how the various 
operations on the even and odd pipelines are related. Instructions are classified in this table as:

• LS: Load and Store

• HB: Branch Hints

• BR: Branch Resolution

• CH: Channel Interface, Special Purpose Registers

• SH: Shuffle

• LNOP: No Operation (load)

• NOP: No Operation (execute)

• SP: Single-Precision Floating-Point

• DP: Double-Precision Floating-Point

• FI: Floating-Point Integer

• BO: Byte Operations

• FX: Simple Fixed-Point

• WS: Word Rotate and Shift

Each pipeline stage has a unique alphabetical identifier such that a later stage has a letter that 
occurs later in the alphabet. Execution begins in stage M, where inputs to the execution units are 
launched and latched. No unit produces a result in the first cycle, but FX-class instruction results 
become available for use by subsequent instructions in the second cycle. When a result 
becomes available in a particular cycle, it is available for use by any subsequent instruction 
executed by any unit. Although shorter-latency instructions make their results available for 
forwarding earlier, their results on a Cell/B.E. processor are staged out to latency 8 (stage T) 
before the results are sent to the register file. The longest latency of a pipelined result is seven 
cycles, which allows seven cycles of result-equalization to commit register-file results in program 
order. 

Register-file reads and writes are both 2-cycle operations. Result data is sent to the register file 
while the write addresses are decoded during the pre-writeback stage. In the next cycle, the 
register file is written. One final stage of forwarding, read bypass, is necessary before the written 
result is available from the register file.

Double-precision instructions are performed as two double-precision operations in 2-way SIMD 
fashion. However, the Cell/B.E. SPU is capable of performing only one double-precision opera-
tion per cycle. Thus, the Cell/B.E. SPU executes double-precision instructions by breaking up the 
SIMD operands and executing the two operations in consecutive instruction slots in the pipeline. 

Table B-5. Cell/B.E. SPU Execution Pipelines and Result Latency 

Pipeline
Pipeline Stage/Latency (cycles)

M/1 N/2 O/3 P/4 Q/5 R/6 S/7 T U V

Even FX BO, WS SP DP, FI Pre-
writeback

Register
file write

Read 
bypass

Odd BR, SH LS, CH Pre-
writeback

Register
file write

Read 
bypass



Programming Handbook

 Cell Broadband Engine

Version 1.11
May 12, 2008
 

SPU Instruction Set and Intrinsics
Page 783 of 884

Although double-precision instructions have 13-clock-cycle latencies, only the final seven cycles 
are pipelined. No other instructions are dual-issued with double-precision instructions, and no 
instructions of any kind are issued for six cycles after a double-precision instruction is issued. 

For the PowerXCell 8i processor, the results are staged out to latency 10 (stage V) before the 
results are sent to the register file. The longest latency of a pipelined result is nine cycles. 
Double-precision instructions are fully pipelined and dual-issued.

B.1.4 Inline Prefetch and Instruction Runout

For inline (sequential) prefetch, the prefetcher uses empty slots on the LS schedule to perform 
the fetch, rather than using a specific instruction as in a branch hint. It is possible to prevent 
prefetch with long sequences of load and store instructions. The prefetcher starts looking for 
slots when one of the inline prefetch buffer pairs becomes empty. At this point, there should be 
16 instructions in the predicted-path buffer and another 32 instructions in the other prefetch 
buffer. If the SPU sustains dual-issue, there should be 24 cycles before the prefetched text is 
needed for inline speculation. 

Prefetch requests require 15 cycles to load the instruction line buffer. This means that the 
prefetcher has nine cycles in which it must succeed in securing a slot. If the LS is busy during this 
interval and the prefetch is not started, instruction runout might occur (that is, there might be no 
instructions in the pipeline, and the SPU becomes idle). The minimum runout delay to reset the 
fetch state machine is three cycles if the prefetch was late by only one or two cycles. Prefetches 
late enough to cause runout for more than three cycles incrementally delay the issue of the next 
instruction by one cycle for every cycle the prefetch is delayed. As the pipeline drains, loads and 
stores cease, the prefetcher can schedule the prefetch, and execution resumes.

Long sequences of instructions that access the LS every cycle can cause instruction runout. 
Instruction runout can be prevented by breaking up these sequences with instructions that do not 
access the LS. The hbrp instruction allows programs to ensure that the cycles needed for 
instruction fetch are not consumed by DMA transfers. In principle, any instruction that does not 
use the LS, and that does not dual-issue with an instruction that uses the LS, is sufficient. 

The following rules apply:

• The empty slot in the LS schedule may be adjacent to a slot used by a line-read DMA trans-
fer or branch hint, and this prevents the prefetch from using this empty slot. 

• The issue-control unit can schedule non-LS instructions during a DMA transfer, but this 
causes the slot that the schedule intended for prefetch to be lost.

Table B-6. PowerXCell 8i SPU Execution Pipelines and Result Latency 

Pipeline
Pipeline Stage Name/Latency Cycles

M/1 N/2 O/3 P/4 Q/5 R/6 S/7 T/8 U/9 V W X

Even FX BO, WS SP FI DP
Pre-write

back
Register 
file write

Read 
bypass

Odd BR, SH LS, CH
Pre-write

back
Register 
file write

Read 
bypass
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The hbrp instruction has a P feature bit that alters the behavior of the hbr instruction. When this 
bit is set, hbrp arbitrates for the LS as though it were a hint. However, after it is scheduled, it 
becomes a nop instruction. This leaves a hole wide enough for an instruction prefetch. For more 
information, see:

• SPU Assembly Language Specification

• SPU Application Binary Interface Specification

B.2 C/C++ Language Extensions (Intrinsics) for SPU Instructions

An overview of the SPU intrinsics is given in Section 3.4 on page 77. The sections that follow 
summarize key points of the intrinsics. For a complete description, see the C/C++ Language 
Extensions for Cell Broadband Engine Architecture document. 

B.2.1 Vector Data Types

The C/C++ language extensions define eleven vector data types, as shown inTable B-7. These 
data types are all 128 bits long and contain from 1 to 16 elements per vector. The qword data type 
is a special 16-byte quadword that is only used as input or output for specific intrinsics (see 
Section B.2.3 on page 787). 

To improve code portability, the spu_intrinsics.h header file provides typedefs for the vector 
data types, as shown in Table B-8. The typedefs might be useful when porting code from the 
PPE to an SPE. 

Table B-7. Vector Data Types 

Vector Data Type Content

vector unsigned char 16 8-bit unsigned chars

vector signed char 16 8-bit signed chars

vector unsigned short 8 16-bit unsigned halfwords

vector signed short 8 16-bit signed halfwords

vector unsigned int 4 32-bit unsigned words

vector signed int 4 32-bit signed words

vector unsigned long long 2 64-bit unsigned doublewords

vector signed long long 2 64-bit signed doublewords

vector float 4 32-bit single-precision floating-point numbers

vector double 2 64-bit double-precision floating-point numbers

qword quadword (16-byte)

Table B-8. Programmer Typedefs for Vector Data Types  (Sheet 1 of 2)

Vector Data Type Typedef

vector unsigned char vec_uchar16

vector signed char vec_char16

vector unsigned short vec_ushort8
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Table B-9 shows the size and alignment of the data types. 

The aligned attribute is used to align data on particular boundaries, as in:

float factor _attribute_((aligned (16)));

The variable factor is aligned on a quadword boundary. 

The __align_hint intrinsic helps in two ways:

• Enables compiler analysis and optimization for pointers.

• Provides compilers with extra information needed for auto-SIMDization.

The __align_hint(ptr, base, offset) intrinsic tells the compiler that the pointer ptr points to 
data with a base alignment of base and with the given offset. The base must be a power of 2. A 
base of zero implies the pointer has no known alignment. The offset must be less than the base, 
or zero. 

Use __align_hint() with care. If it is used with pointers that are not aligned, data can end up 
straddling quadword boundaries. If you specify alignment incorrectly, your program might be 
compiled incorrectly (that is, not as you expect) and you might get incorrect results. 

One last caveat: although a compiler compliant with the C/C++ Language Extensions for Cell 
Broadband Engine Architecture specification is required to provide the __align_hint intrinsic, the 
compiler is allowed to ignore these hints. 

vector signed short vec_short8

vector unsigned int vec_uint4

vector signed int vec_int4

vector unsigned long long vec_ullong2

vector signed long long vec_llong2

vector float vec_float4

vector double vec_double2

Table B-9. Data Type Alignments 

Data Type Size Alignment

char 1 byte

short 2 halfword

int 4 word

long 4 word/doubleword

long long 8 doubleword

float 4 word

double 8 doubleword

pointer 4 word

vector 16 quadword

Table B-8. Programmer Typedefs for Vector Data Types  (Sheet 2 of 2)

Vector Data Type Typedef
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B.2.1.1 Vector Element Ordering

The SPE intrinsics support big-endian data ordering of elements within a vector data type, as 
shown in Figure B-10. 

B.2.2 Vector Literals

A vector literal is written as a parenthesized vector type followed by a curly-braced set of 
constant expressions, as shown in Table B-11. The elements of the vector are initialized to the 
corresponding expression. Elements for which no expressions are specified default to 0. Vector 
literals may be used either in initialization statements or as constants in executable statements.

An alternate format may also be supported, as shown in Table B-12. This form consists of a 
parenthesized vector type followed by a parenthesized set of constant expressions. 

Table B-10. Element Ordering for Vector Types 

MSB LSB

byte 
0

byte 
1

byte 
2

byte 
3

byte 
4

byte 
5

byte 
6

byte 
7

byte 
8

byte 
9

byte 
10

byte
11

byte
12

byte 
13

byte 
14

byte 
15

doubleword 0 doubleword 1

word 0 word 1 word 2 word 3

halfword 0 halfword 1 halfword 2 halfword 3 halfword 4 halfword 5 halfword 6 halfword 7

char 
0

char 
1

char 
2

char 
3

char 
4

char 
5

char
6

char
7

char 
8

char 
9

char
10

char
11

char
12

char
13

char
14

char
15

Table B-11. Vector-Literal Format 

Notation Represents

(vector unsigned char) {unsigned int, ...} A set of 16 unsigned 8-bit quantities.

(vector signed char) {signed int, ...} A set of 16 signed 8-bit quantities.

(vector unsigned short) {unsigned short, ...} A set of 8 unsigned 16-bit quantities.

(vector signed short) {signed short, ...} A set of 8 signed 16-bit quantities.

(vector unsigned int) {unsigned int, ...} A set of 4 unsigned 32-bit quantities.

(vector signed int) {signed int, ...} A set of 4 signed 32-bit quantities.

(vector unsigned long long) {unsigned long long, ...} A set of 2 unsigned 64-bit quantities.

(vector signed long long) {signed long long, ...} A set of 2 signed 64-bit quantities.

(vector float) {float, ...} A set of 4 32-bit floating-point quantities.

(vector double) {double, ...} A set of 2 64-bit floating-point quantities.

Table B-12. Alternate Vector-Literal Format  (Sheet 1 of 2)

Notation Description

(vector unsigned char)(unsigned int) A set of 16 unsigned 8-bit quantities that all have the 
value specified by the integer.

(vector unsigned char)(unsigned int, ..., unsigned int) A set of 16 unsigned 8-bit quantities specified by the 16 
integers.

(vector signed char)(signed int) A set of 16 signed 8-bit quantities that all have the 
value specified by the integer.
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B.2.3 Intrinsics

Table B-13 on page 788 lists the generic and composite intrinsics. Generic intrinsics map to one 
or more assembly-language instructions, as a function of the type of its input parameters. Built-
ins are a subset of generic intrinsics that map to more than one SPU instruction. All of the generic 
intrinsics and built-ins are prefixed by the string, spu_. For example, the intrinsic that implements 
the stop assembly instruction is named spu_stop. Many generic intrinsics accept scalars as one 
of their operands. These correspond to intrinsics that map to instructions with immediate values. 

Generic intrinsics are provided for all SPU instructions, except the following:

• Branch

(vector signed char)(signed int, ..., signed int) A set of 16 signed 8-bit quantities specified by the 16 
integers.

(vector unsigned short)(unsigned int) A set of eight unsigned 16-bit quantities that all have 
the value specified by the integer.

(vector unsigned short)(unsigned int, ..., unsigned int) A set of eight unsigned 16-bit quantities specified by 
the 16 integers.

(vector signed short)(signed int) A set of eight signed 16-bit quantities that all have the 
value specified by the integer.

(vector signed short)(signed int, ..., signed int) A set of eight signed 16-bit quantities specified by the 
16 integers.

(vector unsigned int)(unsigned int) A set of four unsigned 32-bit quantities that all have the 
value specified by the integer.

(vector unsigned int)(unsigned int, ..., unsigned int) A set of four unsigned 32-bit quantities specified by the 
16 integers.

(vector signed int)(signed int) A set of four signed 32-bit quantities that all have the 
value specified by the integer.

(vector signed int)(signed int, ..., signed int) A set of four signed 32-bit quantities specified by the 16 
integers.

(vector unsigned long long)(unsigned long long) A set of two unsigned 64-bit quantities that all have the 
value specified by the long long integer.

(vector unsigned long long)(unsigned long long, unsigned long 
long)

A set of two unsigned 64-bit quantities specified by the 
two long long integers.

(vector signed long long)(signed long long) A set of two signed 64-bit quantities that all have the 
value specified by the long long integer.

(vector signed long long)(signed long long, signed long long) A set of two signed 64-bit quantities specified by the 
two long long integers.

(vector float)(float) A set of four 32-bit floating-point quantities that all have 
the value specified by the float.

(vector float)(float, float, float, float) A set of four 32-bit floating-point quantities specified by 
the 4 floats.

(vector double)(double) A set of two 64-bit double-precision quantities that all 
have the value specified by the double.

(vector double)(double, double) A set of two 64-bit quantities specified by the 2 
doubles.

Table B-12. Alternate Vector-Literal Format  (Sheet 2 of 2)

Notation Description
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• Branch hint (see Section 24.3 on page 699)

• Interrupt return

• Generate control for insertion (used for scalar stores)

• Constant formation

• Nop

• Memory load and store

• Stop and signal with dependencies (stopd)

Composite intrinsics are constructed from a sequence of specific or generic intrinsics. Specific 
intrinsics are not included in this summary, because they are rarely used. 

Table B-13. SPU Intrinsics  (Sheet 1 of 3)

Intrinsic Description

Constant Formation

d = spu_splats(a) Replicate scalar a into all elements of vector d

Conversion

 d = spu_convtf(a, scale) Convert integer vector to float vector

 d = spu_convts(a, scale) Convert float vector to signed int vector

 d = spu_convtu(a, scale) Convert float vector to unsigned float vector

 d = spu_extend(a) Sign extend vector

 d = spu_rountf(a) Round double vector to float vector

Arithmetic

 d = spu_add(a, b) Vector add

 d = spu_addx(a, b, c) Vector add extended

 d = spu_genb(a, b) Vector generate borrow

 d = spu_genbx(a, b, c) Vector generate borrow extended

 d = spu_genc(a, b) Vector generate carry

 d = spu_gencx(a, b, c) Vector generate carry extended

 d = spu_madd(a, b, c) Vector multiply and add

 d = spu_mhhadd(a, b, c) Vector multiply high high and add

 d = spu_msub(a, b, c) Vector multiply and subtract

 d = spu_mul(a, b) Vector multiply

 d = spu_mulh(a, b) Vector multiply high

 d = spu_mulhh(a, b) Vector multiply high high

 d = spu_mulo(a, b) Vector multiply odd

 d = spu_mulsr(a, b) Vector multiply and shift right

 d = spu_nmadd(a, b, c) Negative vector multiply and add

 d = spu_nmsub(a, b, c) Negative vector multiply and subtract

 d = spu_re(a) Vector floating-point reciprocal estimate
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 d = spu_rsqrte(a) Vector floating-point reciprocal square root estimate

 d = spu_sub(a, b) Vector subtract

 d = spu_subx(a, b, c) Vector subtract extended

Byte Operation

 d = spu_absd(a, b) Vector absolute difference

 d = spu_avg(a, b) Vector average

 d = spu_sumb(a, b) Vector sum bytes into shorts

Compare, Branch, and Halt

 d = spu_bisled(func) Branch indirect and set link if external data

 d = spu_cmpabseq(a, b) Vector compare absolute equal

 d = spu_cmpabsgt(a, b) Vector compare absolute greater than

 d = spu_cmpeq(a, b) Vector compare equal

 d = spu_cmpgt(a, b) Vector compare greater than

(void) spu_hcmpeq(a, b) Halt if compare equal

(void) spu_hcmpgt(a, b) Halt if compare greater than

d = spu_testsv(a, values) Vector test special value

Bit and Mask

 d = spu_cntb(a) Vector count ones for bytes

 d = spu_cntlz(a) Vector count leading zeros

 d = spu_gather(a) Gather bits from elements

 d = spu_maskb(a) Form select byte mask

 d = spu_maskh(a) Form select halfword mask

 d = spu_maskw(a) Form select word mask

 d = spu_sel(a, b, pattern) Select bits

 d = spu_shuffle(a, b, pattern) Shuffle bytes of a Vector

Logical

 d = spu_and(a, b) Vector bit-wise AND

 d = spu_andc(a, b) Vector bit-wise AND with complement

 d = spu_eqv(a, b) Vector bit-wise equivalent

 d = spu_nand(a, b) Vector bit-wise complement of AND

 d = spu_nor(a, b) Vector bit-wise complement of OR

 d = spu_or(a, b) Vector bit-wise OR

 d = spu_orc(a, b) Vector bit-wise OR with complement

 d = spu_orx(a) Bit-wise OR word elements

 d = spu_xor(a, b) Vector bit-wise exclusive OR

Rotate

 d = spu_rl(a, count) Element-wise bit rotate left

Table B-13. SPU Intrinsics  (Sheet 2 of 3)

Intrinsic Description
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 d = spu_rlmask(a, count) Element-wise bit rotate left and mask

 d = spu_rlmaska(a, count) Element-wise bit algebraic rotate and mask

 d = spu_rlmaskqw(a, count) Bit rotate and mask quadword

 d = spu_rlmaskqwbyte(a, count) Byte rotate and mask quadword

 d = spu_rlmaskqwbytebc(a, count) Byte rotate and mask quadword using bit rotate count

 d = spu_rlqw(a, count) Bit rotate quadword left

 d = spu_rlqwbyte(a, count) Byte rotate quadword left

 d = spu_rlqwbytebc(a, count) Byte rotate quadword left using bit rotate count

Shift

 d = spu_sl(a, count) Element-wise bit shift left

 d = spu_slqw(a, count) Bit shift quadword left

 d = spu_slqwbyte(a, count) Byte shift quadword left

 d = spu_slqwbytebc(a, count) Byte shift quadword left using bit shift count

Control

(void) spu_idisable() Disable interrupts

(void) spu_ienable() Enable interrupts

(void) spu_mffpscr() Move from floating-point status and control register

(void) spu_mfspr(register) Move from special purpose register

(void) spu_mtfpscr(a) Move to floating-point status and control register

(void) spu_mtspr(register, a) Move to special purpose register

(void) spu_dsync() Synchronize data

(void) spu_stop(type) Stop and signal

(void) spu_sync() Synchronize

Scalar

d = spu_extract(a, element) Extract vector element from vector

d = spu_insert(a, b, element) Insert scalar into specified Vector element

d = spu_promote(a, element) Promote scalar to vector

Channel Control

d = spu_readch(channel) Read word channel

d = spu_readchqw(channel) Read quadword channel

d = spu_readchcnt(channel) Read channel count

(void) spu_writech(channel, a) Write word channel

(void) spu_writechqw(channel, a) Write quadword channel

Composite Intrinsics

spu_mfcdma32(ls, ea, size, tagid, cmd) Initiate DMA to or from 32-bit effective address

spu_mfcdma64(ls, eahi, ealow, size, tagid, cmd) Initiate DMA to or from 64-bit effective address

spu_mfcstat(type) Read memory flow controller (MFC) tag status

Table B-13. SPU Intrinsics  (Sheet 3 of 3)

Intrinsic Description



Programming Handbook

 Cell Broadband Engine

Version 1.11
May 12, 2008
 

SPU Instruction Set and Intrinsics
Page 791 of 884

For further information about the SPU intrinsics, see the C/C++ Language Extensions for Cell 
Broadband Engine Architecture document. 

B.2.4 Inline Assembly

Occasionally, the C/C++ language constructs and intrinsic might not be sufficient to achieve a 
required low-level programming result. In these situations, inline assembly instructions can be 
used. The inline assembly syntax must match the AT&T assembly syntax implemented by gcc. 
The .balignl directive may be used within the inline assembly to ensure the known alignment 
that is needed to achieve effective dual-issue by the hardware.

B.2.5 Compiler Directives

Like compiler intrinsics, a compiler might provide directives that are very useful for SPE program-
ming. For example, the restrict qualifier is well-known in many C/C++ implementations, and it 
is part of the C/C++ Language Extensions for Cell Broadband Engine Architecture. When the 
restrict keyword is used to qualify a pointer, it specifies that all accesses to the object pointed 
to are done through the pointer. For example:

void *memcpy(void * restrict s1, void * restrict s2, size_t n);

By specifying s1 and s2 as pointers that are restricted, the programmer is specifying that the 
source and destination objects (for the memory copy) do not overlap. 

Another useful directive is __builtin_expect. Because branch mispredicts are relatively expen-
sive, __builtin_expect provides a way for the programmer to direct branch prediction. This 
example:

int __builtin_expect(int exp, int value)

returns the result of evaluating exp, and means that the programmer expects exp to equal value. 
The value can be a constant for compile-time prediction, or a variable used for runtime predic-
tion. 

Two more useful directives are the aligned attribute, and the _align_hint directive. The aligned 
attribute is used to ensure proper DMA alignment, for efficient data transfer. The syntax is the 
same as in many implementations of gcc:

float factor __attribute__((aligned (16)); //aligns “factor” to a quadword

The _align_hint directive helps compilers auto-vectorize. Although it looks like an intrinsic, it is 
more properly described as a compiler directive, because no code is generated as a result of 
using the directive. The example

_align_hint(ptr, base, offset)

can inform the compiler that the pointer, ptr, points to data with a base alignment of base, with a 
byte offset from the base alignment of offset. The base alignment must be a power of two. 
Giving 0 as the base alignment implies that the pointer has no known alignment. The offset must 
be less than the base, or, zero. The _align_hint directive should not be used with pointers that 
are not naturally aligned. 
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Appendix C. Performance Monitor Signals

The performance-monitoring facilities can monitor many types of events (also called signals) 
from all major units on the Cell Broadband Engine Architecture (CBEA) processors1. For an intro-
duction to the performance monitor signals, see Section 16 Performance Monitoring on 
page 443. 

C.1 Selecting Performance Monitor Signals on the Debug Bus

The performance monitor signals are routed on a 128-bit-wide debug bus to the performance 
monitor registers in the pervasive logic. To enable the signals from an island to reach the debug 
bus, one or more privilege 1 (hypervisor mode) implementation-specific registers within the unit 
needs to be set up correctly. By default, a value of zero in the affected bit positions in these regis-
ters disables the unit from routing its signals to the debug bus. Any unit that needs to be set up 
for signal routing must have the appropriate registers explicitly initialized by writing the nonzero 
values as specified in this document. Typically, the original values are written back to the affected 
registers after the performance monitoring of the specific island is complete.

The performance monitor can be used to count the number of occurrences of an event (event 
counting), or the number of cycles that a signal is active or inactive (cycle counting), or in some 
cases, both. Event counting is performed using the rising edge of a signal, and cycle counting is 
done using the positive-high level of the signal. Note that the cycles refer to the clock rate at 
which the island operates. The clock rate is either the core clock rate (NClk) or half of the core 
clock rate (NClk/2). 

In the signal group tables that follow, each signal is designated as a type B, C, E, V, or S. These 
types define how the signal needs to be interpreted, and are here described:

• B—a signal that counts both the number of occurrences and their cumulative length. This 
signal can present either a single-cycle event or a multicycle event. For this signal type, the 
rising or falling edge of the signal indicates an occurrence of the event, and the level signal 
denotes the length of the occurrence. Two successive occurrences on this signal type are 
separated by at least one cycle.

• C—a signal that counts only the cumulative length of all occurrences. A level detector is used 
to count this signal type. Two successive occurrences of this signal type can occur in back-to-
back cycles. 

• E—a signal that counts only the occurrences. An edge detector is used to count the number 
of times this event occurs. Two successive events of this type are separated by at least one 
idle cycle.

• V—a signal that lasts for only one cycle even though it represents multicycle events. This sig-
nal type is useful for counting the number of occurrences of a signal, but not their duration.

• S—a signal that counts single-cycle event occurrences. Because of the single-cycle nature, 
the length and the number of occurrences are synonymous. Therefore, counting cycles is 
sufficient to determine the number of occurrences and the length.

The count_cycles field of the performance monitor PMx_control registers must be explicitly 
programmed to count either cycles or edges or both, as shown in Table C-1 on page 794.

1. The Cell Broadband Engine (Cell/B.E.) and PowerXCell 8i processors are collectively called CBEA processors.
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All memory-mapped input and output (MMIO) addresses referred to in this document are relative 
to the BE_MMIO_Base address. Some of the registers must be altered with a read-modify-write 
operation. These are designated “rmw” in the register descriptions. 

Note:  The registers listed in this appendix are solely for the setup and use of the performance 
monitor facility. No further description or details of these registers are provided.

The CBEA processors consist of several units, also referred to as islands. These include the 
pervasive unit, the PowerPC Processor Element (PPE), the Synergistic Processor Elements 
(SPEs), the element interconnect bus (EIB), the Cell Broadband Engine interface (BEI), and the 
memory interface controller (MIC). The PPE consists of two subunits: the PowerPC processor 
unit (PPU), and the PowerPC storage subsystem (PPSS). Similarly, each SPE consists of a 
synergistic processor unit (SPU) and a memory flow controller (MFC). The EIB also contains the 
token manager. Finally, the BEI consists of the interface controller and the input and output 
controller. All islands clock at NClk/2 except for the PPU, SPU, and parts of the PPSS, all of 
which clock at NClk.

Each island can logically OR their performance monitor signals onto the debug bus, allowing the 
monitoring of multiple islands at the same time. The 128-bit-wide debug bus is logically parti-
tioned into four 32-bit-wide lanes. An island might be capable of routing the signals on one or 
more of the debug bus lanes. The lane on which the signals are routed is selected by initializing 
the special purpose registers (SPRs) or the MMIO registers in that unit. Care must be taken not 
to allow more than one island to use the same lane on the debug bus at the same time.

Table C-2 shows the mapping between the words selected for each island and the debug bus 
lane to which they are routed. The routed-to debug bus lanes become busy when an island is 
selected to route their performance monitor signals. Again, care must be taken not to allow any 
island to route their signals onto a lane that is in use by another island at the same time.

In general, any island word 0 can be selected with any other island word 2 for performance 
monitor counting. Note also that an NClk signal group (PPU, SPU, or PPSS-NClk) can be 
selected in combination with any NClk/2 signal group providing that they do not use the same 
lane on the debug bus. 

Table C-1. Count_cycles Field of the PMx_control Register 

Tag Cycle Counting Event Counting

B Cycle Edge

C Cycle N/A

E N/A Edge

V N/A Cycle

S Cycle Cycle

Table C-2. Lanes Used by Different Islands on the Debug Bus 

 Debug Bus Lane 0  Debug Bus Lane 1  Debug Bus Lane 2 Debug Bus Lane 3

PPU word 0 PPU word 1

PPSS-NClk word 0 PPSS-NClk word 1

PPSS-NClk/2 word 0 PPSS-NClk/2 word 1 PPSS-NClk/2 word 2 PPSS-NClk/2 word 3
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To use the performance monitor, the signals must pass through all the intervening islands to the 
pervasive logic where the performance monitor logic is located. This is done by activating the 
debug bus at all the units as described in Table C-3. All address offsets are relative to the 
BE_MMIO_Base address.

C.1.1 An Example of Setting up the Performance Monitor in PPSS L2 Mode A

A step-by-step description follows of how to set up the performance monitor logic to count the 
number of hits and misses in the PPSS level 2 (L2) cache. Hit events are available in bit 0, and 
miss events are available in bit 1 of the L2 Mode A signal group described in Section C.3.2 PPSS 
L2 Cache Controller - Group 1 (NClk/2) on page 800. 

The following example uses performance monitor counters 0 and 1 in 32-bit mode, and assumes 
that they will not overflow. If there is any possibility of the counters reaching their maximum 
value, the chosen counters must be set up to either stop counting when they reach the maximum 
value or to use the trace buffer to store their contents periodically, as defined by the pm_interval 
register. See Cell Broadband Engine Book IV for DD 3.0, DD 3.1, DD 3.2 and Cell Broadband 
Engine Registers for details about how to do set up these options, and for a description of all the 
registers used in this example.

1. Activate the main debug bus through all the units. This step involves doing a read-mod-
ify-write to each of the registers shown in Table C-3 on page 795.

MIC word 0 MIC word 1 MIC word 2 MIC word 3

EIB word 0 EIB word 1 EIB word 2 EIB word 3

BEI word 0 BEI word 1 BEI word 2 BEI word 3

MFC word 0 MFC word 1 MFC word 2 MFC word 3

SPU word 0 phase A SPU word 0 phase B SPU word 1 phase A SPU word 1 phase B

Table C-2. Lanes Used by Different Islands on the Debug Bus 

 Debug Bus Lane 0  Debug Bus Lane 1  Debug Bus Lane 2 Debug Bus Lane 3

Table C-3. Register Settings to Enable Pass-Through of Debug Bus Signals through Islands 

Address Offset Register Short Name Enable Pass-Through

 x‘50 0858’ L2_Debug1 rmw bit 61 = 1

 x‘50 0958’ CIU_DR1 rmw bit 5 = 1

 x‘50 9C98’ on_ramp_trace rmw bit 39 = 1

 x‘50 A010’ MBL_Debug rmw bit 20 = 1

x‘40 03C8’ SBI_PMCR (MFC0) rmw bit 38 = 1

x‘40 23C8’ SBI_PMCR (MFC1) rmw bit 38 = 1

x‘40 43C8’ SBI_PMCR (MFC2) rmw bit 38 = 1

x‘40 63C8’ SBI_PMCR (MFC3) rmw bit 38 = 1

x‘40 83C8’ SBI_PMCR (MFC4) rmw bit 38 = 1

x‘40 A3C8’ SBI_PMCR (MFC5) rmw bit 38 = 1

x‘40 C3C8’ SBI_PMCR (MFC6) rmw bit 38 = 1

x‘40 E3C8’ SBI_PMCR (MFC7) rmw bit 38 = 1
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2. Enable performance monitor logic in the L2 unit. This step requires two read-modify-write 
operations: one to L2_Perfmon1 and another to L2_Debug1 as shown in Section C.3.2 
PPSS L2 Cache Controller - Group 1 (NClk/2) on page 800. For this example, the signals 
are assumed to be enabled to route onto the debug bus lane 2.

3. Enable the debug bus for the performance monitor signals from the PPSS L2 island. This 
is done by writing the value of x‘0800 0000’ to the debug_bus_control register.

4. Route debug bus lane 2 (or word 2) to the performance monitor counter input multiplexer 
bits 0-31. This is done by writing the value of x‘8000 0000’ to the group_control register.

5. Choose the signals to be monitored by performance monitor counters 0 and 1. The two 
events counted in this example, L2 hits and L2 misses, are edge-triggered events and 
are in bits 0 and 1, respectively. Set up the two performance monitor counters to count 
these signals by writing x‘0140 0000’ to the pm0_control register, and x‘0540 0000’ to the 
pm1_control register. 

6. Set the interval timer. Because the interval timer counts up, write the value x‘0000 0000’ 
to the pm_interval register to count up to 232-1 NClks. In this example, the counters are 
assumed not to overflow.

7. Initialize the counters. The two counters pm0_4 and pm1_5 must each be initialized by 
explicitly writing zeros into them.

8. Start the performance monitor counting logic at the appropriate time. This is done by 
writing the value of x‘8000 0000’ to the pm_control register. 

9. Stop the performance monitor counting logic at the appropriate time. This is done by writ-
ing the value of x‘0000 0000’ to the pm_control register. 

Note:  The value written to the pm_control register must the same as in step 8, except 
that bit 0 must be set to zero to disable the counting. For example, if the performance 
monitor counters are being used in 16-bit mode, the nonzero values in bits 7-10 must be 
preserved as written in step 8. This step also stops the interval timer.

10. Read out the values in the counters. The 32-bit value in the pm0_4 counter indicates the 
number of L2 hits, and the 32-bit value in the pm1_5 counter indicates the number of L2 
misses. The number of NClks that elapsed between the enabling and disabling of the 
performance monitor logic can be found by reading the pm_interval register.
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C.2 PowerPC Processor Unit (PPU) Signal Selection

C.2.1 PPU Instruction Unit

SPR Address Register Short Name Enable Word 0 Enable Word 1

1009 HID1 rmw bits 31, 32:35, 40:41, 48, 58, 60:61 =
‘1 1111 01 0 0 00’

rmw bits 31, 36:39, 40:41, 48, 58, 62:63 =
‘1 1111 01 0 0 01’

Bit Type Description

Thread 0

0 V Branch instruction committed.

1 E Branch instruction that caused a misprediction flush is committed. Branch misprediction includes mispredictions of 
taken or not-taken on a conditional branch and mispredictions of branch target address on bclr[1] and bcctr[1].

2 C Instruction buffer empty.

3 E Instruction effective-address-to-real-address translation (I-ERAT) miss.

4 B Level 1 (L1) instruction cache miss cycles. Counts the cycles from the miss event until the returned instruction is 
dispatched or cancelled due to branch misprediction, completion restart, or exceptions (see Note 1).

6 C Valid instruction is available for dispatch, but the dispatch is blocked (see Note 2).

9 E Instruction in pipeline stage EX7 causes a flush.

11 V
Two PowerPC instructions committed. For microcode sequences, only the last microcode operation is counted. 
Committed instructions are counted two at a time. If only one instruction has committed for a given cycle, this event 
is not raised until another instruction has been committed in a future cycle.

Thread 1 

19 V Branch instruction committed.

20 E Branch instruction that caused a misprediction flush is committed. Branch misprediction includes mispredictions of 
taken or not-taken on a conditional branch and mispredictions of branch target address on bclr[1] and bcctr[1].

21 C Instruction buffer empty.

22 E I-ERAT miss. 

23 B L1 Instruction cache miss cycles. Counts the cycles from the miss event until the returned instruction is dispatched 
or cancelled due to a branch misprediction, a completion restart, or exceptions (see Note 1).

25 C Valid instruction is available for dispatch, but dispatch is blocked (see Note 2).

28 E Instruction in pipeline stage EX7 causes a flush.

30 V
Two PowerPC instructions committed. For microcode sequences only, the last microcode operation is counted. 
Committed instructions are counted two at a time. If only one instruction has committed for a given cycle, this event 
is not be raised until another instruction has been committed in a future cycle.

1. Counting the rising edge of this event is only an approximation of the number of I-cache misses. If counting edges, note that the 
rising edge does not occur when an older I-cache miss is being resolved while a new I-cache miss occurs. This case can happen 
when the first miss is speculative and is canceled on a later cycle while a new nonspeculative miss occurs on the redirect fetch 
address.

2. These performance monitor signals are not asserted or counted in the event of a blocked dispatch if its hardware thread has a 
higher priority than the other hardware thread.
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C.2.2 PPU Execution Unit (NClk)

SPR Address Register Short Name Enable Word 0 Enable Word 1

1009 HID1 rmw bits 31, 32:35, 42:44, 49, 58, 60:61 =
‘1 1111 001 0 0 10’

rmw bits 31, 36:39, 45:47, 49, 58, 62:63 =
‘1 1111 011 0 0 10’

Bit Type Description

Thread 0

2 S Data effective-address-to-real-address translation (D-ERAT) miss. This event is not speculative.

3 S Store request counted at the L2 interface. This counts microcoded PowerPC Processor Element (PPE) sequences 
more than once (see Note 1 for exceptions).

4 S

Load valid at a particular pipe stage. This is speculative because flushed operations are also counted. Counts 
microcoded PPE sequences more than once. Misaligned flushes might be counted the first time as well. Load oper-
ations include all loads that read data from the cache, dcbt and dcbtst. This event does not include load Vec-
tor/single instruction multiple data (SIMD) multimedia extension pattern instructions.

5 S L1 D-cache load miss. Pulsed when there is a miss request that has a tag miss but not an effective-address-to-real-
address translation (ERAT) miss. This is speculative because flushed operations are counted as well.

Thread 1 

18 S D-ERAT miss. This event is not speculative.

20 S

Load valid at a particular pipe stage. This event is speculative because flushed operations are counted as well. 
Counts microcoded PPE sequences more than once. Additionally, misaligned flushes might also be counted the 
first time. Load operations include all loads that read data from the cache, dcbt and dcbtst. This event does not 
include load Vector/SIMD multimedia extension pattern instructions.

21 S L1 D-cache load miss. This event is pulsed when there is a miss request that has a tag miss but not an ERAT miss. 
This event is speculative because flushed operations are counted as well.

1. In single-threaded mode, bit 3 counts the stores for thread 0. In multithreaded mode, bit 3 might be incorrect. 
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C.3 PowerPC Storage Subsystem (PPSS) Signal Selection

The address offset of each setup register is relative to the BE_MMIO_Base address.

C.3.1 PPSS Bus Interface Unit (NClk/2)

Address Offset Register Short Name Enable Word 2

x‘50 0B58’ BIU_DbgPerfmon rmw bits 0:2 = ‘110’

x‘50 0858’ L2_Debug1 rmw bit 61 = 1

Bit Type Description

0 E Load from memory flow controller (MFC) memory-mapped input and output (MMIO) space.

1 E Stores to MFC MMIO space

6 E Request token type (even memory bank numbers 0-14)

15 E Receive 8-beat data from the element interconnect bus (EIB).

16 E Eight-beat data was sent to the EIB.

17 E A command was sent to the EIB (includes retried commands).

18 C Number of cycles between a data request and a data grant.

23 C The 5-entry noncacheable unit store command queue is not empty.
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C.3.2 PPSS L2 Cache Controller - Group 1 (NClk/2)

The L2 performance group 1 (mode A) shares the upper half of the L2 trace bus with the other L2 

performance group modes. Therefore, only one group is allowed to be active at a time. Do not set 

more than one bit in L2_Perfmon1[59:62]. The upper half of the L2 trace bus (bits 0 to 31) is also 

shared with the upper half of the L2 debug mode selection. These debug modes must also be 

disabled to observe any of the L2 performance groups.

Address Offset Register Short Name Enable Word 0 Enable Word 2

x‘50 0838’ L2_Perfmon1 rmw bits 59:63 = ‘10001’

x‘50 0858’ L2_Debug1 rmw bits 43:61, 62 = 
‘0000000000000000001 1’

rmw bits 43:61, 63 = 
‘0000000000000000001 1’

Bit Type Description

0 E Cache hit for core interface unit (CIU) loads and stores.

1 E Cache miss for CIU loads and stores.

4 E CIU load miss.

5 E CIU store to Invalid state (miss).

7 E Load word and reserve indexed (lwarx/ldarx) for thread 0 hits Invalid (I) cache state. 

14 E Store word conditional indexed (stwcx/stdcx) for thread 0 hits Invalid (I) cache state when reservation is set. 

25 C All four snoop state machines are busy.
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C.3.3 PPSS L2 Cache Controller - Group 2 (NClk/2)

The L2 performance group 2 (mode B) shares the upper half of the L2 trace bus with the other L2 

performance group modes. Therefore, only one group is allowed to be active at a time. Do not set 

more than one bit in L2_Perfmon1[59:62]. The upper half of the L2 trace bus (bits 0 to 31) is also 

shared with the upper half of the L2 debug mode selection. These debug modes also must be 

disabled to observe any of the L2 performance groups.

Address Offset Register Short Name Enable Word 0 Enable Word 2

x‘50 0838’ L2_Perfmon1 rmw bits 59:63 = ‘01001’

x‘50 0858’ L2_Debug1 rmw bits 43:61, 62 = 
‘0000000000000000001 1’

rmw bits 43:61, 63 = 
‘0000000000000000001 1’

Bit Type Description

4 E
Data line claim (dclaim) that received a good combined response. This event includes store/stcx/dcbz to Shared 
(S), Shared Last (SL),or Tagged (T) cache state. This event does not include dcbz to Invalid (I) cache state (see 
Note 1).

11 E Dclaim converted into rwitm; might still not get to the bus if stcx is cancelled (see Note 2).

12 E Store to Modified (M), Modified Unsolicited (MU), or Exclusive (E) cache state

13 C Eight-entry store queue is full.

14 E Store dispatched to read and claim (RC) machine is acknowledged.

15 V Gatherable store (type = ‘00000’) was received from CIU.

18 E Snoop push

19 E Send intervention from (SL | E) cache state to a destination within the same CBEA processor.

20 E Send intervention from (M | MU) cache state to a destination within the same CBEA processor.

25 E Respond with retry to a snooped request due to one of the following conflicts: RC state machine full address, 
castout congruence class, snoop machine full address, all snoop machines busy, directory lockout, or parity error.

26 E Respond with retry to a snooped request because all snoop machines are busy.

27 E Snooped response causes a cache state transition from (M | MU) to (E | S | T).

28 E Snooped response causes a cache state transition from E to S.

29 E Snooped response causes a cache state transition from (E | SL | S | T) to Invalid (I).

30 E Snooped response causes a cache state transition from (M | MU) to I.

1. A combined response of retry for an atomic dclaim (due to a lost reservation) is valid.
2. An atomic dclaim that is converted to rwitm might not get to the bus because of a lost reservation, but it is still counted.
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C.3.4 PPSS L2 Cache Controller - Group 3 (NClk/2)

The L2 performance group 3 (mode C) shares the upper half of the L2 trace bus with the other L2 

performance group modes. Therefore, only one group is allowed to be active at a time. Do not set 

more than one bit in L2_Perfmon1[59:62]. The upper half of the L2 trace bus (bits 0 to 31) is also 

shared with the upper half of the L2 debug mode selection. These debug modes also must be 

disabled to observe any of the L2 performance groups.

Address Offset Register Short Name Enable Word 0 Enable Word 2

x‘50 0838’ L2_Perfmon1 rmw bits 59:63 = ‘00101’

x‘50 0858’ L2_Debug1 rmw bits 43:61, 62 = 
‘0000000000000000001 1’

rmw bits 43:61, 63 = 
‘0000000000000000001 1’

Bit Type Description

12 E Load and reserve indexed (lwarx/ldarx) for thread 1 hits an Invalid (I) cache state.

19 E Store conditional indexed (stwcx/stdcx) for thread 1 hits an Invalid (I) cache state when reservation is set.
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C.3.5 PPSS Noncacheable Unit (NClk/2)

Address Offset Register Short Name Enable Word 0

x‘50 0858’ L2_Debug1 rmw bit 61 = 1

x‘50 0A58’ NCU_DR1 rmw bit 0 = 1

x‘50 0A60’ NCU_DR2 rmw bits 0:6 = ‘0000001’

Bit Type Description

0 V Noncacheable store request received from CIU. This event includes all synchronization operations such as sync 
and eieio.

1 V sync received from CIU.

4 V A noncacheable store request was received from the CIU (includes only stores).

6 V eieio received from CIU.

7 V tlbie received from CIU.

8 C A sync is at the bottom of the store queue (waiting on st_done signal from the bus interface unit [BIU] and 
sync_done signal from L2).

9 C An lwsync is at the bottom of the store queue (waiting for a sync_done signal from the L2).

10 C An eieio is at the bottom of the store queue (waiting for a st_done signal from the BIU and a sync_done signal from 
the L2).

11 C A tlbie is at the bottom of the store queue (waiting for a st_done signal from the BIU).

12 V Noncacheable store combined with the previous noncacheable store with a contiguous address

15 C All four store-gather buffers are full.

16 E A noncacheable load request was received from the CIU (includes instruction and data fetches).

17 C The 4-deep store queue is not empty.

18 C The 4-deep store queue is full.

19 C At least one store gather buffer is not empty.
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C.4 Synergistic Processor Unit (SPU) Signal Selection

The address offset of each setup register is relative to the BE_MMIO_Base address + 
(x‘2000’ × Synergistic Processor Element (SPE) number). For example, the address offset of the 
SPU_trace_sel register in SPU 1 is at offset x‘40 3048’ from the BE_MMIO_Base address.

C.4.1 SPU (NClk)

Address Offset Register Short Name Enable Word 0 (see Note 1) Enable Word 2 (see Note 1)

x‘40 1048’ SPU_trace_sel rmw bits 32:63 = x‘0000 1000’ rmw bits 32:63 = x‘0000 0010’

x‘40 1070’ SPU_trace_cntl rmw bit 48 = 1

x‘40 03C8’ SBI_PMCR

rmw bits 28:38 = 
‘11111111011’ (even SPU)

rmw bits 20:27, 36:38 = 
‘11111111 011’ (even SPU)

rmw bits 20:27, 36:38 = 
‘11111111 101’ (odd SPU)

rmw bits 28:35, 36:38 =
‘11111111 101’ (odd SPU)

Bit Type Description

0 S A dual instruction is committed.

1 S A single instruction is committed.

2 S A pipeline 0 instruction is committed.

3 S A pipeline 1 instruction is committed.

5 B Local storage is busy.

6 S A direct memory access (DMA) might conflict with a load or store.

7 S A store instruction to local storage is issued.

8 S A load instruction from local storage is issued.

9 S A floating-point unit exception occurred.

10 S A branch instruction is committed.

11 S A nonsequential change of the SPU program counter has occurred. This can be caused by branch, asynchronous 
interrupt, stalled wait on channel, error-correction code (ECC) error, and so forth.

12 S A branch was not taken.

13 S Branch miss prediction. This count is not exact. Certain other code sequences can cause additional pulses on this 
signal (see Note 2).

14 S Branch hint miss prediction. This count is not exact. Certain other code sequences can cause additional pulses on 
this signal (see Note 2).

15 S Instruction sequence error

1. When SPU word 0 is enabled, the speed-converted data is routed from the SPU to debug bus lanes 0 and 1. When SPU word 2 is 
enabled, the speed-converted data is routed from the SPU to debug bus lanes 2 and 3.

2. Examples of false pulses on misprediction signals include the following items:

• A blocking channel (count = 0) accessed through wrch or rdch that immediately follows a branch instruction
• An asynchronous interrupt that occurs after a branch is committed
• A correctable instruction or data ECC error after a branch is committed but before another instruction is committed
• If the SPU is stopped through the SPU_RunCntl register or by a thermal monitor event after a branch is committed but before 

another instruction is committed
3. This signal is triggered each time a channel read or channel write instruction is issued to the affected channel and the count for the 

channel is zero. Note that a channel read or write can be issued speculatively following a mispredicted branch instruction.
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17 B Stalled waiting on any blocking channel write (see Note 3).

18 B Stalled waiting on external event status (Channel 0) (see Note 3).

19 B Stalled waiting on SPU Signal Notification 1 (Channel 3) (see Note 3).

20 B Stalled waiting on SPU Signal Notification 2 (Channel 4) (see Note 3).

21 B Stalled waiting on DMA Command Opcode or ClassID Register (Channel 21) (see Note 3).

22 B Stalled waiting on memory flow controller (MFC) Read Tag-Group Status (Channel 24) (see Note 3).

23 B Stalled waiting on MFC Read List Stall-and-Notify Tag Status (Channel 25) (see Note 3).

24 B Stalled waiting on SPU Write Outbound Mailbox (Channel 28) (see Note 3).

30 B Stalled waiting on SPU Mailbox (Channel 29) (see Note 3).

Bit Type Description

1. When SPU word 0 is enabled, the speed-converted data is routed from the SPU to debug bus lanes 0 and 1. When SPU word 2 is 
enabled, the speed-converted data is routed from the SPU to debug bus lanes 2 and 3.

2. Examples of false pulses on misprediction signals include the following items:

• A blocking channel (count = 0) accessed through wrch or rdch that immediately follows a branch instruction
• An asynchronous interrupt that occurs after a branch is committed
• A correctable instruction or data ECC error after a branch is committed but before another instruction is committed
• If the SPU is stopped through the SPU_RunCntl register or by a thermal monitor event after a branch is committed but before 

another instruction is committed
3. This signal is triggered each time a channel read or channel write instruction is issued to the affected channel and the count for the 

channel is zero. Note that a channel read or write can be issued speculatively following a mispredicted branch instruction.
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C.4.2 SPU Trigger (NClk)

Enable Address Offset Register Short Name Value

Trigger 0 x‘40 1028’ SPU_trig0_sel

rmw bit 57 = 1
Trigger 1 x‘40 1030’ SPU_trig1_sel

Trigger 2 x‘40 1038’ SPU_trig2_sel

Trigger 3 x‘40 1040’ SPU_trig3_sel

Triggers 0, 1, 2, 3 x‘40 1070’ SPU_trace_cntl rmw bit 48 = 1

Trigger 0

x‘40 03C8’ SBI_PMCR

rmw bit 39 = 1

Trigger 1 rmw bit 40 = 1

Trigger 2 rmw bit 41 = 1

Trigger 3 rmw bit 42 = 1

Bit Type Description

57 B Stalled waiting on a channel operation (see Notes 1 and 2).

1. When SPU trigger 0, 1, 2, or 3 is selected, then the speed-converted data passes through the MFC on trigger bits 4, 5, 6, or 7 of 
the debug bus, in addition to bits 0, 1, 2, or 3.

2. This signal is triggered each time a channel read or channel write instruction is issued to the affected channel and the count for the 
channel is zero. Note that a channel read or write can be issued speculatively following a mispredicted branch instruction.
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C.4.3 SPU Event (NClk)

Enable Address Offset Register Short Name Value

Event 0 x‘40 1050’ SPU_event0_sel

rmw bit 59, 63 = ‘1 1’
Event 1 x‘40 1058’ SPU_event1_sel

Event 2 x‘40 1060’ SPU_event2_sel

Event 3 x‘40 1068’ SPU_event3_sel

Events 0, 1, 2, 3 x‘40 1070’ SPU_trace_cntl rmw bit 48 = 1

Event 0

x‘40 03C8’ SBI_PMCR

rmw bit 43 = 1 (see Note 1)

Event 1 rmw bit 44 = 1 (see Note 1)

Event 2 rmw bit 45 = 1

Event 3 rmw bit 46 = 1

Bit Type Description

59 B Instruction fetch stall

63 E Serialized SPU address (program counter) trace (see Note 2)

1. When any of the three memory interface control signal groups is enabled for performance monitoring, event 0 and event 1 cannot 
be used.

2. To enable tracing of the program counter or bookmarks, pairs of events (0 and 1) or (2 and 3) must be enabled together.
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C.5 Memory Flow Controller (MFC) Signal Selection

The address offset of each setup register is relative to the BE_MMIO_Base address + 
(x‘2000’ × Synergistic Processor Element [SPE] number). For example, the address of the 
ATO_PMCR register for synergistic processor unit (SPU) number 7 (SPU7) is at offset x‘40 
E3D0’ from the BE_MMIO_Base address.

C.5.1 MFC Atomic Unit (NClk/2)

Address Offset Register Short Name Enable Word 0 Enable Word 2

x‘40 03D0’ ATO_PMCR rmw bits 34:35 = ‘10’ rmw bits 34:35 = ‘01’

x‘40 0580’ SMM_HID rmw bit 23 = 1

x‘40 03C8’ SBI_PMCR

rmw bits 28:31, 36:38 =
‘1111 011’ (even SPU)

rmw bits 20:23, 36:38 =
‘1111 011’ (even SPU)

rmw bits 20:23, 36:38 =
‘1111 101’ (odd SPU)

rmw bits 28:31, 36:38 = 
‘1111 101’ (odd SPU)

Bit Type Description

1 E An atomic load was received from the direct memory access controller (DMAC).

2 E An atomic dclaim was sent to the synergistic bus interface (SBI). This includes retried requests.

3 E An atomic rwitm performed was sent to the SBI. This includes retried requests.

4 E An atomic load miss caused MU cache state.

5 E An atomic load miss caused E cache state.

6 E An atomic load miss caused SL cache state.

7 E An atomic load hits the cache.

8 E An atomic load misses cache with data intervention. This is the sum of both events 4 and 6 in this group.

14 E putllc or putlluc misses cache without data intervention. For putllc, this event counts only when reservation is set 
for the address.

17 C The snoop machine is busy.

19 E A snoop caused a cache state transition from the (M | MU) to the invalid (I) state.

21 E A snoop caused a cache state transition from the (E | S | SL) to the I state.

23 E A snoop caused a cache state transition from the MU to the T state.

27 E Sent modified data intervention to a destination within the same CBEA processor.



Programming Handbook

 Cell Broadband Engine

Version 1.11
May 12, 2008
 

Performance Monitor Signals
Page 809 of 884

C.5.2 MFC Direct Memory Access Controller (NClk/2)

Address Offset Register Short Name Enable Word 0

x‘40 0880’ DMAC_PMCR rmw bit 40 = 1

x‘40 03C8’ SBI_PMCR
rmw bits 28:31, 36:38 = ‘1111 011’ (even SPU)

rmw bits 20:23, 36:38 = ‘1111 101’ (odd SPU)

Bit Type Description

0 V Any flavor of direct memory access (DMA) get[] command issued to the SBI.

1 V Any flavor of DMA put[] command issued to the SBI.

2 V DMA put (put) is issued to the SBI; counts only nonzero transfer size cases.

17 V DMA get data from effective address to local storage (get) issued to the SBI; counts only nonzero transfer size 
cases.
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C.5.3 MFC Synergistic Bus Interface (NClk/2)

Address Offset Register Short Name Enable Word 0 Enable Word 2

x‘40 03C8’ SBI_PMCR

rmw bits 28:31, 36:38, 47:48, 56 = 
‘1111 011 00 1’ (even SPU)

rmw bits 20:23, 36:38, 47:48, 56 = 
‘1111 011 01 0’ (even SPU)

rmw bits 20:23, 36:38, 47:48, 56 =
‘1111 101 00 1’ (odd SPU)

rmw bits 28:31, 36:38, 47:48, 56 = 
‘1111 101 01 0’ (odd SPU)

Bit Type Description

4 V Load request sent to the element interconnect bus (EIB). This includes read, read atomic, rwitm, rwitm atomic, 
and retried commands.

5 V Store request sent to the EIB. This includes wwf, wwc, wwk, dclaim, dclaim atomic, and retried commands.

6 E Received data from the EIB, including partial cache line data.

7 E Sent data to the EIB, both as a master and a snooper.

8 C Sixteen-deep SBI queue with outgoing requests not empty. This does not include atomic requests.

9 C Sixteen-deep SBI queue with outgoing requests full. This does not include atomic requests.

10 V Sent request to EIB.

12 E Received data bus grant (includes data sent for MMIO operations).

13 C Cycles between data bus request and data bus grant.

14 V Command (read or write) for an odd-numbered memory bank. This is valid only when resource allocation is turned 
on.

15 V Command (read or write) for an even-numbered memory bank. This is valid only when resource allocation is turned 
on.

18 V Request gets the retry response (includes local and global requests).

19 E Sent data bus request to the EIB.
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C.5.4 MFC Synergistic Memory Management (NClk/2)

Address Offset Register Short Name Enable Word 0 Enable Word 2

x‘40 0580‘ SMM_HID rmw bits 12, 23, 24 = ‘1 1 1’ rmw bits 14, 23, 24 = ‘1 1 1’

x‘40 03C8’ SBI_PMCR

rmw bits 28:31, 36:38 = 
‘1111 011’ (even SPU)

rmw bits 20:23, 36:38 = 
‘1111 011’ (even SPU)

rmw bits 20:23, 36:38 =
‘1111 101’ (odd SPU)

rmw bits 28:31, 36:38 = 
‘1111 101’ (odd SPU)

Bit Type Description

0 E Translation lookaside buffer (TLB) miss without parity or protection errors.

1 C TLB miss (cycles).

2 E TLB hit.
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C.6 Element Interconnect Bus (EIB) Signal Selection

The address offset of each setup register is relative to the BE_MMIO_Base address.

The EIB has four separate ports to the debug bus. They can be used singly or in any combination 
with each other. The four ports are fed by the global address concentrator (AC0), the local 
address concentrator (AC1), the data arbiter, and the token manager (TKM).

C.6.1 EIB Address Concentrator 0 (NClk/2)

Address Offset Register Short Name Enable Word 0 Enable Word 2

x‘51 1808‘ EIB_AC0Perf rmw bits 0:3, 16, 18:21 = ‘1111 0 0000’ rmw bits 8:11, 17, 18:21 = ‘1111 0 0000’

Bit Type Description

Group 1

0 V Number of read and rwitm commands (including atomic) from AC1 to AC0.

1 V Number of dclaim commands (including atomic) from AC1 to AC0.

2 V Number of wwk, wwc, and wwf commands from AC1 to AC0.

3 V Number of sync, tlbsync, and eieio commands from AC1 to AC0.

4 V Number of tlbie commands from AC1 to AC0.

11 E Previous adjacent address match (PAAM) content addressable memory (CAM) hit.

12 E PAAM CAM miss.

14 V Command reflected.

Group 2

16 V Number of read and rwitm commands (including atomic) from AC1 to AC0.

17 V Number of dclaim commands (including atomic) from AC1 to AC0.

18 V Number of wwk, wwc, and wwf commands from AC1 to AC0.

19 V Number of sync, tlbsync, and eieio commands from AC1 to AC0.

20 V Number of tlbie commands from AC1 to AC0.

27 E PAAM CAM hit.

28 E PAAM CAM miss.

30 V Command reflected.
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C.6.2 EIB Address Concentrator 1 (NClk/2)

Address Offset Register Short Name Enable Word 0 Enable Word 2

x‘51 1860‘ EIB_DbgL rmw bits 0:3, 8:11 = ‘0101 1111’

x‘51 1868’ EIB_DbgR rmw bits 0:3, 8:11 = ‘0110 1111’

Bit Type Description

1 V Local command from Synergistic Processor Element (SPE) 6.

2 V Local command from SPE 4.

3 V Local command from SPE 2.

5 V Local command from the PowerPC Processor Element (PPE).

6 V Local command from SPE 1.

7 V Local command from SPE 3.

8 V Local command from SPE 5.

9 V Local command from SPE 7.

12 V AC1-to-AC0 global command from SPE 6.

13 V AC1-to-AC0 global command from SPE 4.

14 V AC1-to-AC0 global command from SPE 2.

15 V AC1-to-AC0 global command from SPE 0.

16 V AC1-to-AC0 global command from PPE.

17 V AC1-to-AC0 global command from SPE 1.

18 V AC1-to-AC0 global command from SPE 3.

19 V AC1-to-AC0 global command from SPE 5.

20 V AC1-to-AC0 global command from SPE 7.

22 V AC1 is reflecting any local command.

23 V AC1 sends a global command to AC0.

24 V AC0 reflects a global command back to AC1.

25 V AC1 reflects a command back to the bus masters.
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C.6.3 EIB Data Ring Arbiter - Group 1 (NClk/2)

Address Offset Register Short Name Enable Word 0 Enable Word 2

x‘51 1860‘ EIB_DbgL rmw bits 0:3, 8:11 = ‘1110 1111’

x‘51 1868‘ EIB_DbgR rmw bits 0:3, 8:11 = ‘1110 1111’

Bit Type Description

0 E Grant on data ring 0.

1 E Grant on data ring 1.

2 E Grant on data ring 2.

3 E Grant on data ring 3.

4 C Data ring 0 is in use.

5 C Data ring 1 is in use.

6 C Data ring 2 is in use.

7 C Data ring 3 is in use.

8 C All data rings are idle.

9 C One data ring is busy.

10 C Two or three data rings are busy.

11 C All data rings are busy.

12 B An IOIF0 data request is pending.

13 B An SPE 6 data request is pending.

14 B An SPE 4 data request is pending.

15 B An SPE 2 data request is pending.

16 B An SPE 0 data request is pending.

17 B A memory interface controller (MIC) data request is pending.

18 B A PPE data request is pending.

19 B An SPE 1 data request is pending.

20 B An SPE 3 data request is pending.

21 B An SPE 5 data request is pending.

22 B An SPE 7 data request is pending.

24 E IOIF0 is the data destination.

25 E SPE 6 is the data destination.

26 E SPE 4 is the data destination.

27 E SPE 2 is the data destination.

28 E SPE 0 is the data destination.

29 E MIC is the data destination.

30 E PPE is the data destination.

31 E SPE 1 is the data destination.
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C.6.4 EIB Data Ring Arbiter - Group 2 (NClk/2)

Address Offset Register Short Name Enable Word 0 Enable Word 2

x‘51 1860‘ EIB_DbgL rmw bits 0:3, 8:11 = ‘1111 1111’

x‘51 1868‘ EIB_DbgR rmw bits 0:3, 8:11 = ‘1111 1111’

Bit Type Description

0 B An IOIF0 data request is pending.

1 B An SPE 6 data request is pending.

2 B An SPE 4 data request is pending.

3 B An SPE 2 data request is pending.

4 B An SPE 0 data request is pending.

5 B A MIC data request is pending.

6 B A PPE data request is pending.

7 B An SPE 1 data request is pending.

8 B An SPE 3 data request is pending.

9 B An SPE 5 data request is pending.

10 B An SPE 7 data request is pending.

11 B An IOIF1 data request is pending.

12 E IOIF0 is the data destination.

13 E SPE 6 is the data destination.

14 E SPE 4 is the data destination.

15 E SPE 2 is the data destination.

16 E SPE 0 is the data destination.

17 E MIC is the data destination.

18 E PPE is the data destination.

19 E SPE 1 is the data destination.

20 E SPE3 is the data destination.

21 E SPE 5 is the data destination.

22 E SPE 7 is the data destination.

23 E IOIF1 is the data destination.

24 E A grant is on data ring 0.

25 E A grant is on data ring 1.

26 E A grant is on data ring 2.

27 E A grant is on data ring 3.

28 C All data rings are idle.

29 C One data ring is busy.

30 C Two or three data rings are busy.

31 C All four data rings are busy.
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C.6.5 EIB Token Manager (NClk/2)

The address offset of the TKM_PMCR register is relative to the BE_MMIO_Base address.

The TKM performance monitor bus is 64 bits wide. The first word is routed to the debug bus lane 
0; the second word is routed to the debug bus lane 2.

The TKM performance monitor bus is divided into four halfwords (16 bits wide). All signal groups 
in group A are presented to debug bus 0:15, all in group B are presented to debug bus 16:31, all 
in group C are presented to debug bus 64:79, and all in group D are presented to debug bus 
80:95. 
 

C.6.5.1 EIB Token Manager - Group A0 (NClk/2)

Address Offset Register Short Name Enable Word 0 Enable Word 2

x‘50 AFF0’ TKM_PMCR

rmw bits 11, 36, 38:41 = ‘1 1 1111’ rmw bits 11, 37, 46:49 = ‘1 1 1111’

rmw bits 12:16 = 
‘00000’: to disable signal group Ax
‘10000’: to select signal group A0
‘01000’: to select signal group A1
‘00100’: to select signal group A2

rmw bits 22:26 = 
‘00000’: to disable signal group Cx
‘10000’: to select signal group C0
‘01000’: to select signal group C1
‘00100’: to select signal group C2
‘00010’: to select signal group C3

rmw bits 17:21 = 
‘00000’: to disable signal group Bx
‘10000’: to select signal group B0
‘01000’: to select signal group B1
‘00100’: to select signal group B2

rmw bits 27:31 =
‘00000’: to disable signal group Dx
‘10000’: to select signal group D0
‘01000’: to select signal group D1
‘00100’: to select signal group D2

Address Offset Register Short Name Enable Word 0[0:15]

x‘50 AFF0’ TKM_PMCR rmw bits 11, 12:16, 36, 38:41 = ‘1 10000 1 1111’

Bit Type Description

0 S An even extreme data rate input and output (XIO) token was unused by resource allocation group (RAG) 0. 

1 S An odd XIO token was unused by RAG 0.

2 S An even bank token was unused by RAG 0.

3 S An odd bank token was unused by RAG 0.

8 S A token was granted for SPE 0.

9 S A token was granted for SPE 1.

10 S A token was granted for SPE 2.

11 S A token was granted for SPE 3.

12 S A token was granted for SPE 4.

13 S A token was granted for SPE 5.

14 S A token was granted for SPE 6.

15 S A token was granted for SPE 7.
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C.6.5.2 EIB Token Manager - Group A1 (NClk/2)

C.6.5.3 EIB Token Manager - Group A2 (NClk/2)

Address Offset Register Short Name Enable Word 0[0:15]

x‘50 AFF0’ TKM_PMCR rmw bits 11, 12:16, 36, 38:41 = ‘1 01000 1 1111’

Bit Type Description

0 S An even XIO token was wasted by RAG 0. This is valid only when Unused Enable (UE) = 1 in TKM_CR register.

1 S An odd XIO token was wasted by RAG 0. This is valid only when UE = 1 in TKM_CR register.

2 S An even bank token was wasted by RAG 0. This is valid only when UE = 1 in TKM_CR register.

3 S An odd bank token was wasted by RAG 0. This is valid only when UE = 1 in TKM_CR register.

12 S An even XIO token was wasted by RAG U. 

13 S An odd XIO token was wasted by RAG U.

14 S An even bank token was wasted by RAG U.

15 S An odd bank token was wasted by RAG U.

Address Offset Register Short Name Enable Word 0[0:15]

x‘50 AFF0’ TKM_PMCR rmw bits 11, 12:16, 36, 38:41 = ‘1 00100 1 1111’

Bit Type Description

0 S An even XIO token from RAG 0 was shared with RAG 1.

1 S An even XIO token from RAG 0 was shared with RAG 2.

2 S An even XIO token from RAG 0 was shared with RAG 3.

3 S An odd XIO token from RAG 0 was shared with RAG 1.

4 S An odd XIO token from RAG 0 was shared with RAG 2.

5 S An odd XIO token from RAG 0 was shared with RAG 3.

6 S An even bank token from RAG 0 was shared with RAG 1.

7 S An even bank token from RAG 0 was shared with RAG 2.

8 S An even bank token from RAG 0 was shared with RAG 3.

9 S An odd bank token from RAG 0 was shared with RAG 1.

10 S An odd bank token from RAG 0 was shared with RAG 2.

11 S An odd bank token from RAG 0 was shared with RAG 3.
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C.6.5.4 EIB Token Manager - Group B0 (NClk/2)

C.6.5.5 EIB Token Manager - Group B1 (NClk/2)

Address Offset Register Short Name Enable Word 0[16:31]

x‘50 AFF0’ TKM_PMCR rmw bits 11, 17:21, 36, 38:41 = ‘1 10000 1 1111’

Bit Type Description

16 S An even XIO token was unused by RAG 1.

17 S An odd XIO token was unused by RAG 1.

18 S An even bank token was unused by RAG 1.

19 S An odd bank token was unused by RAG 1.

25 S A token was granted for IOC0.

26 S A token was granted for IOC1.

Address Offset Register Short Name Enable Word 0[16:31]

x‘50 AFF0’ TKM_PMCR rmw bits 11, 17:21, 36, 38:41 = ‘1 01000 1 1111’

Bit Type Description

16 S An even XIO token was wasted by RAG 1. This is valid only when UE = 1 in TKM_CR.

17 S An odd XIO token was wasted by RAG 1. This is valid only when UE = 1 in TKM_CR.

18 S An even bank token was wasted by RAG 1. This is valid only when UE = 1 in TKM_CR.

19 S An odd bank token was wasted by RAG 1. This is valid only when UE = 1 in TKM_CR.
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C.6.5.6 EIB Token Manager - Group B2 (NClk/2)

C.6.5.7 EIB Token Manager - Group C0 (NClk/2)

Address Offset Register Short Name Enable Word 0[16:31]

x‘50 AFF0’ TKM_PMCR rmw bits 11, 17:21, 36, 38:41 = ‘1 00100 1 1111’

Bit Type Description

16 S An even XIO token from RAG 1 was shared with RAG 0.

17 S An even XIO token from RAG 1 was shared with RAG 2.

18 S An even XIO token from RAG 1 was shared with RAG 3.

19 S An odd XIO token from RAG 1 was shared with RAG 0.

20 S An odd XIO token from RAG 1 was shared with RAG 2.

21 S An odd XIO token from RAG 1 was shared with RAG 3.

22 S An even bank token from RAG 1 was shared with RAG 0.

23 S An even bank token from RAG 1 was shared with RAG 2.

24 S An even bank token from RAG 1 was shared with RAG 3.

25 S An odd bank token from RAG 1 was shared with RAG 0.

26 S An odd bank token from RAG 1 was shared with RAG 2.

27 S An odd bank token from RAG 1 was shared with RAG 3.

28 S An even XIO token from RAG U was shared with RAG 1.

29 S An odd XIO token from RAG U was shared with RAG 1.

30 S An even bank token from RAG U was shared with RAG 1.

31 S An odd bank token from RAG U was shared with RAG 1.

Address Offset Register Short Name Enable Word 2[64:79]

x‘50 AFF0’ TKM_PMCR rmw bits 11, 22:26, 37, 46:49 = ‘1 10000 1 1111’

Bit Type Description

64 S An even XIO token was unused by RAG 2.

65 S An odd XIO token was unused by RAG 2.

66 S An even bank token was unused by RAG 2.

67 S An odd bank token was unused by RAG 2.

68 S An IOIF0 in token was unused by RAG 0.

69 S An IOIF0 out token was unused by RAG 0.

70 S An IOIF1 in token was unused by RAG 0.

71 S An IOIF1 out token was unused by RAG 0.
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C.6.5.8 EIB Token Manager - Group C1 (NClk/2)

C.6.5.9 EIB Token Manager - Group C2 (NClk/2)

Address Offset Register Short Name Enable Word 2[64:79]

x‘50 AFF0’ TKM_PMCR rmw bits 11, 22:26, 37, 46:49 = ‘1 01000 1 1111’

Bit Type Description

64 S An even XIO token was wasted by RAG 2. This is valid only when UE = 1 in TKM_CR.

65 S An odd XIO token was wasted by RAG 2. This is valid only when UE = 1 in TKM_CR.

66 S An even bank token was wasted by RAG 2. This is valid only when UE = 1 in TKM_CR.

67 S An odd bank token was wasted by RAG 2. This is valid only when UE = 1 in TKM_CR.

Address Offset Register Short Name Enable Word 2[64:79]

x‘50 AFF0’ TKM_PMCR rmw bits 11, 22:26, 37, 46:49 = ‘1 00100 1 1111’

Bit Type Description

64 S An even XIO token from RAG 2 was shared with RAG 0.

65 S An even XIO token from RAG 2 was shared with RAG 1.

66 S An even XIO token from RAG 2 was shared with RAG 3.

67 S An odd XIO token from RAG 2 was shared with RAG 0.

68 S An odd XIO token from RAG 2 was shared with RAG 1.

69 S An odd XIO token from RAG 2 was shared with RAG 3.

70 S An even bank token from RAG 2 was shared with RAG 0.

71 S An even bank token from RAG 2 was shared with RAG 1.

72 S An even bank token from RAG 2 was shared with RAG 3.

73 S An odd bank token from RAG 2 was shared with RAG 0.

74 S An odd bank token from RAG 2 was shared with RAG 1.

75 S An odd bank token from RAG 2 was shared with RAG 3.
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C.6.5.10 EIB Token Manager - Group C3 (NClk/2)

C.6.5.11 EIB Token Manager - Group D0 (NClk/2)

C.6.5.12 EIB Token Manager - Group D1 (NClk/2)

Address Offset Register Short Name Enable Word 2[64:79]

x‘50 AFF0’ TKM_PMCR rmw bits 11, 22:26, 37, 46:49 = ‘1 00010 1 1111’

Bit Type Description

64 S An IOIF0 in token was wasted by RAG 0. This is valid only when UE = 1 in TKM_CR.

65 S An IOIF0 out token was wasted by RAG 0. This is valid only when UE = 1 in TKM_CR.

66 S An IOIF1 in token was wasted by RAG 0. This is valid only when UE = 1 in TKM_CR.

67 S An IOIF1 out token was wasted by RAG 0. This is valid only when UE = 1 in TKM_CR.

Address Offset Register Short Name Enable Word 2[80:95]

x‘50 AFF0’ TKM_PMCR rmw bits 11, 27:31, 37, 46:49 = ‘1 10000 1 1111’

Bit Type Description

80 S An even XIO token was unused by RAG 3.

81 S An odd XIO token was unused by RAG 3.

82 S An even bank token was unused by RAG 3.

83 S An odd bank token was unused by RAG 3.

Address Offset Register Short Name Enable Word 2[80:95]

x‘50 AFF0’ TKM_PMCR rmw bits 11, 27:31, 37, 46:49 = ‘1 01000 1 1111’

Bit Type Description

80 S An even XIO token was wasted by RAG 3. This is valid only when UE = 1 in TKM_CR.

81 S An odd XIO token was wasted by RAG 3. This is valid only when UE = 1 in TKM_CR.

82 S An even bank token was wasted by RAG 3. This is valid only when UE = 1 in TKM_CR.

83 S An odd bank token was wasted by RAG 3. This is valid only when UE = 1 in TKM_CR.
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C.6.5.13 EIB Token Manager - Group D2 (NClk/2)

Address Offset Register Short Name Enable Word 2[80:95]

x‘50 AFF0’ TKM_PMCR rmw bits 11, 27:31, 37, 46:49 = ‘1 00100 1 1111’

Bit Type Description

80 S An even XIO token from RAG 3 was shared with RAG 0.

81 S An even XIO token from RAG 3 was shared with RAG 1.

82 S An even XIO token from RAG 3 was shared with RAG 2.

83 S An odd XIO token from RAG 3 was shared with RAG 0.

84 S An odd XIO token from RAG 3 was shared with RAG 1.

85 S An odd XIO token from RAG 3 was shared with RAG 2.

86 S An even bank token from RAG 3 was shared with RAG 0.

87 S An even bank token from RAG 3 was shared with RAG 1.

88 S An even bank token from RAG 3 was shared with RAG 2.

89 S An odd bank token from RAG 3 was shared with RAG 0.

90 S An odd bank token from RAG 3 was shared with RAG 1.

91 S An odd bank token from RAG 3 was shared with RAG 2.
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C.7 Memory Interface Controller (MIC) Signal Selection

The address offset of each setup register is relative to the BE_MMIO_Base address.

C.7.1 MIC Group 1 (NClk/2)

Address Offset Register Short Name Enable Words 0 and 1 Enable Words 2 and 3

x‘50 A238‘ MIC_FIR_Debug rmw bits 32:33 = ‘10’ rmw bits 32:33 = ‘01’

x‘50 A1C8’ MIC_Ctl_Debug_1 write bits 0:63 = x‘FFFF FFFF FFFF FFFF’

x‘50 A048’ MIC_Ctl_Debug2 rmw bits 0:31 = x‘FFFF FFFF’

x‘50 A228’ MIC_DF_Debug_Yrac_1 write bits 0:63 = x‘FFFF FFFF FFFF FFFF’

Bit Type Description

9 C XIO1 - The read command queue is empty.

10 C XIO1 - The write command queue is empty.

12 C XIO1 - The read command queue is full.

13 S XIO1 - The MIC responds with a retry for a read command because the read command queue is full.

14 C XIO1 - The write command queue is full.

15 S XIO1 - The MIC responds with a retry for a write command because the write command queue is full.

34 S XIO1 - A read command is dispatched. This includes high-priority and fast-path reads (see Note 1).

35 S XIO1 - A write command is dispatched (see Note 1).

36 S XIO1 - A read-modify-write command (with data size < 16 bytes) is dispatched (see Note 1).

37 S XIO1 - A refresh is dispatched (see Note 1).

39 S XIO1 - A byte-masking write command (with data size ≥ 16 bytes) is dispatched (see Note 1).

41 S XIO1 - A write command is dispatched after a read command was previously dispatched (see Note 1).

42 S XIO1 - A read command is dispatched after a write command was previously dispatched (see Note 1).

1. This performance monitor signal originates from the MiClk domain, which is synchronous with the extreme data rate interface. It is 
reliable only when the system operates at nominal clock frequencies (that is, MiClk ≤ NClk/2). In slow mode, for instance, when the 
NClk/2 is slower than the MiClk, the performance monitor event signal from the MiClk domain changes so frequently that it is not 
possible to capture and synchronize all MiClk data for the NClk representation.

2. The synergistic processor unit (SPU) event bit 0 cannot be used at the same time that this group is enabled for monitoring.
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C.7.2 MIC Group 2 (NClk/2)

Address Offset Register Short Name Enable Words 0 and 1 Enable Words 2 and 3

x‘50 A238‘ MIC_FIR_Debug rmw bits 32:33 = ‘01’ rmw bits 32:33 = ‘10’

x‘50 A088’ MIC_Ctl_Debug_0 write bits 0:63 = x‘FFFF FFFF FFFF FFFF’

x‘50 A048’ MIC_Ctl_Debug2 rmw bits 0:31 = x‘FFFF FFFF’

x‘50 A220’ MIC_DF_Debug_Yrac_0 write bits 0:63 = x‘0000 0000 0000 0000’

Bit Type Description

9 C XIO0 - The read command queue is empty.

10 C XIO0 - The write command queue is empty.

12 C XIO0 - The read command queue is full.

13 S XIO0 - The MIC responds with a retry for a read command because the read command queue is full.

14 C XIO0 - The write command queue is full.

15 S XIO0 - The MIC responds with a retry for a write command because the write command queue is full.

34 S XIO0 - A read command was dispatched. This includes high-priority and fast-path reads (see Note 1).

35 S XIO0 - A write command was dispatched (see Note 1).

36 S XIO0 - A read-modify-write command (with data size < 16 bytes) was dispatched (see Note 1).

37 S XIO0 - A refresh was dispatched (see Note 1).

41 S XIO0 - A write command was dispatched after a read command was previously dispatched (see Note 1).

42 S XIO0 - A read command was dispatched after a write command was previously dispatched (see Note 1).

1. This performance monitor signal originates from the MiClk domain. It is reliable only when the system operates at nominal clock 
frequencies (that is, MiClk ≤ NClk/2). In slow mode, for instance, when the NClk/2 is slower than the MiClk, the performance moni-
tor event signal from the MiClk domain changes so frequently that it is not possible to capture and synchronize all MiClk data for 
the NClk representation.

2. The SPU event bit 1 cannot be used while this group is enabled for monitoring.
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C.7.3 MIC Group 3 (NClk/2)

Address Offset Register Short Name Enable Words 0 and 1 Enable Words 2 and 3

x‘50 A238‘ MIC_FIR_Debug rmw bits 32:33 = ‘01’ rmw bits 32:33 = ‘10’

x‘50 A088’ MIC_Ctl_Debug_0 write bits 0:63 = x‘FDFF FFFF FFFF FFFF’

x‘50 A048’ MIC_Ctl_Debug2 rmw bits 0:31 = x‘FDFF FFFF’

x‘50 A220’ MIC_DF_Debug_Yrac_0 write bits 0:63 = x‘FFFF FFFF FFFF FFFF’

Bit Type Description

35 S XIO0 - A write command is dispatched (see Note 1).

36 S XIO0 - A read-modify-write command (of data size < 16 bytes) was dispatched (see Note 1).

37 S XIO0 - A refresh was dispatched (see Note 1).

39 S XIO0 - A byte-masking write command (of data size ≥ 16 bytes) was dispatched (see Note 1).

1. This performance monitor signal originates from the MiClk domain. It is reliable only when the system operates at nominal clock 
frequencies (that is, MiClk ≤ NClk/2). In slow mode, for instance, when the NClk/2 is slower than the MiClk, the performance mon-
itor event signal from the MiClk domain changes so frequently that it is not possible to capture and synchronize all MiClk data for 
the NClk representation.

2. The SPU event bit 1 cannot be used while this group is enabled for monitoring.
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C.8 Cell Broadband Engine Interface (BEI)

The address offset of each setup register is relative to the BE_MMIO_Base address.

The Cell Broadband Engine interface (BIF) controller (BIC) implements two input and output (I/O) 
links (IOIF0 and IOIF1), and these two instances make use of the same building blocks. Each 
BIC building block in IOIF0 and IOIF1 places performance monitor signals onto the same word 
(word 0 or word 2), but the link outputs can be swapped between word 0 and word 2 controlled by 
the IF0TRC0[9:10] for IOIF0 and IOIF1 as described in the following tables.

All I/O controller (IOC) signal groups, except group 3, place their signals on the same word (word 
0 or word 2). Their link outputs can be swapped between word 0 and word 2, using the same 
scheme (shown below) as for the BIC groups. For IOC group 3, however, the selection of the 
output word is controlled by byte selectors in the IOC_DTB_Cfg0 register. 

IOIF0 Word Swapping

IOIF1 Word Swapping

IOIF0 Byte Enables (applies to the data after the IOIF0 word swap)

IOIF1 Byte Enables (applies to the data after the IOIF1 word swap)

Address Offset Register Short Name
Typical

IOIF0 Word 0 → BEI Word 0
IOIF0 Word 2 → BEI Word 2

Swapped
IOIF0 Word 0 → BEI Word 2
IOIF0 Word 2 → BEI Word 0

x‘51 1000’ IF0TRC0 rmw bits 9:10 = ‘00’ rmw bits 9:10 = ‘11’

Address Offset Register Short Name
Typical

IOIF1 Word 0 → BEI Word 0
IOIF1 Word 2 → BEI Word 2

Swapped
IOIF1 Word 0 → BEI Word 2
IOIF1 Word 2 → BEI Word 0

x‘51 1400’ IF1TRC0 rmw bits 9:10 = ‘00’ rmw bits 9:10 = ‘11’

Address Offset Register Short Name BEI Word 0 BEI Word 2

x‘51 1000’ IF0TRC0 rmw bits 11:14 = ‘1111’ rmw bits 1:4 = ‘1111’

Address Offset Register Short Name BEI Word 0 BEI Word 2

x‘51 1400’ IF1TRC0 rmw bits 1:4 = ‘1111’ rmw bits 11:14 = ‘1111’
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C.8.1 BIF Controller - IOIF0 Word 0 (NClk/2)

Address Offset Register Short Name Enable Word 0 Enable Word 2

x‘51 2000‘ IF0TRC2 rmw bits 0, 24:28 = ‘1 01000’

x‘51 1040’ IF0TRC1 rmw bits 0, 4:7, 35 = ‘1 0100 1’

x‘50 8600’ IOC_DTB_Cfg0 rmw bit 0 = 1

x‘51 1400’ IF1TRC0 rmw bit 0 = 1

x‘51 1000’ IF0TRC0 rmw bits 0, 9:10, 11:14 = ‘1 00 1111’ rmw bits 0, 1:4, 9:10 = ‘1 1111 11’

Address Offset Register Short Name Disable Word 0 Disable Word 2

x‘51 2000‘ IF0TRC2 rmw bits 24:28 = ‘10000’

x‘51 1040’ IF0TRC1 rmw bit 4:7, 35 = ‘1000 0’

Bit Type Description

12 S Type A data physical layer group (PLG). Does not include header-only or credit-only data PLGs. In I/O interface 
(IOIF) mode, this event counts I/O device read data. In BIF mode, this event counts all outbound data.

13 S Type B data PLG. In IOIF mode, this event counts I/O device read data. In BIF mode, this event counts all outbound 
data.

14 S Type A data PLG. Does not include header-only or credit-only PLGs. In IOIF mode, this event counts store data to 
I/O device. This event does not apply in BIF mode.

15 S Type B data PLG. In IOIF mode, this event counts store data to an I/O device. This event does not apply in BIF 
mode.

16 S Data PLG. This event does not include header-only or credit-only PLGs.

17 S Command PLG (no credit-only PLG). In IOIF mode, this event counts I/O command or reply PLGs. In BIF mode, 
this event counts command/reflected command or snoop/combined responses.

18 S Type A data transfer regardless of length. This event can also be used to count type A data header PLGs (but not 
credit-only PLGs).

19 S Type B data transfer.

20 S Command-credit-only command PLG in either IOIF or BIF mode.

21 S A data-credit-only data PLG sent in either IOIF or BIF mode.

22 S A nonnull envelope was sent (does not include long envelopes).

24 E A null envelope was sent (see Note 1).

25 V No valid data sent this cycle (see Note 1).

26 E A normal envelope was sent (see Note 1).

27 E A long envelope was sent (see Note 1).

28 V A null PLG was inserted in an outgoing envelope.

29 C An outbound envelope array is full.

1. This signal comes from the BClk domain, which is synchronous with the Rambus FlexIO interface. Counting back-to-back cycles in 
the BClk domain might be inaccurate because the signal crosses into the NClk domain to reach the performance monitor counters. 
A performance monitor signal from the BClk domain is reliable only when the NClk domain operates at more than two times the 
BClk domain (that is, NClk is greater than 3.33 GHz).
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C.8.2 BIF Controller - IOIF1 Word 0 (NClk/2)

Address Offset Register Short Name Enable Word 0 Enable Word 2

x‘51 3000‘ IF1TRC2 rmw bits 0, 24:28 = ‘1 01000’

x‘51 1440’ IF1TRC1 rmw bits 0, 4:7, 35 = ‘1 0100 1’

x‘50 8600’ IOC_DTB_Cfg0 rmw bit 0 = 1

x‘51 1000’ IF0TRC0 rmw bit 0 = 1

x‘51 1400’ IF1TRC0 rmw bits 0, 1:4, 9:10 = ‘1 1111 00’ rmw bits 0, 9:10, 11:14 = ‘1 11 1111’

Address Offset Register Short Name Disable Word 0 Disable Word 2

x‘51 3000‘ IF1TRC2 rmw bits 24:28 = ‘10000’

x‘51 1440’ IF1TRC1 rmw bit 4:7, 35 = ‘1000 0’

Bit Type Description

19 S Type B data transfer
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C.8.3 BIF Controller - IOIF0 Word 2 (NClk/2)

Address Offset Register Short Name Enable Word 0 Enable Word 2

x‘51 2000’ IF0TRC2 rmw bits 0, 32:36 = ‘1 01000’

x‘51 1040’ IF0TRC1 rmw bits 0, 17:20, 25:27, 35 = ‘1 0100 010 1’

x‘50 8600’ IOC_DTB_Cfg0 rmw bit 0 = 1

x‘51 1400’ IF1TRC0 rmw bit 0 = 1

x‘51 1000’ IF0TRC0 rmw bits 0, 9:10, 11:14, 43:45 =
‘1 11 1111 010’

rmw bits 0, 1:4, 9:10, 43:45 =
‘1 1111 00 010’

Address Offset Register Short Name Disable Word 0 Disable Word 2

x‘51 2000’ IF0TRC2 rmw bits 32:36 = ‘10000’

x‘51 1040’ IF0TRC1 rmw bits 17:20, 25:27, 35 = ‘1000 100 0’

x‘51 1000’ IF0TRC0 rmw bits 43:45 = ‘100’

Bit Type Description

1 E A null envelope was received (see Note 1).

14 S
Command PLG, but not credit-only PLG. In IOIF mode, this event counts I/O commands or reply PLGs. In BIF 
mode, this event counts command/reflected command or snoop/combined responses.

15 S Command-credit-only command PLG.

20 E A normal envelope received is good (see Note 1).

21 E A long envelope received is good (see Note 1).

22 S Data-credit-only data PLG in either IOIF or BIF mode (counts a maximum of one per envelope) (see Note 1).

23 S Nonnull envelope (does not include long envelopes; includes retried envelopes) (see Note 1).

24 S A data grant was received.

28 S Data PLG. This does not include header-only or credit-only PLGs.

29 S
Type A data transfer regardless of length. This can also be used to count type A data header PLGs (but not credit-
only PLGs).

30 S Type B data transfer.

1. This signal comes from the BClk domain. Counting back-to-back cycles in the BClk domain can be inaccurate because the signal 
crosses into the NClk domain to reach the performance monitor counters. A performance monitor signal from the BClk domain is 
reliable only when the NClk domain operates at more than two times the BClk domain (that is, NClk is greater than 3.33 GHz).
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C.8.4 BIF Controller - IOIF1 Word 2 (NClk/2)

Address Offset Register Short Name Enable Word 0 Enable Word 2

x‘51 3000‘ IF1TRC2 rmw bits 0, 32:36 = ‘1 01000’

x‘51 1440’ IF1TRC1 rmw bits 0, 17:20, 25:27, 35 = ‘1 0100 010 1’

x‘50 8600’ IOC_DTB_Cfg0 rmw bit 0 = 1

x‘51 1000’ IF0TRC0 rmw bit 0 = 1

x‘51 1400’ IF1TRC0 rmw bits 0, 1:4, 9:10, 43:45 =
‘1 1111 11 010’

rmw bits 0, 9:10, 11:14, 43:45 =
‘1 00 1111 010’

Address Offset Register Short Name Disable Word 0 Disable Word 2

x‘51 3000‘ IF1TRC2 rmw bits 32:36 = ‘10000’

x‘51 1440’ IF1TRC1 rmw bits 17:20, 25:27, 35 = ‘1000 100 0’

x‘51 1400’ IF1TRC0 rmw bits 43:45 = ‘100’

Bit Type Description

1 E A null envelope was received (see Note 1).

14 S Command PLG (no credit-only PLG). This counts I/O command or reply PLGs.

15 S Command-credit-only command PLG.

20 E A normal envelope that was received is good (see Note 1).

21 E A long envelope that was received is good (see Note 1).

22 S A data-credit-only data PLG was received. This event counts a maximum of one per envelope. (see Note 1).

23 S
A nonnull envelope was received. This does not include long envelopes, but does includes retried envelopes (see 
Note 1).

24 S A data grant was received.

28 S A data PLG was received. This does not include header-only or credit-only PLGs.

29 S
Type A data transfer regardless of length. This event can also be used to count type A data header PLGs (but not 
credit-only PLGs).

30 S A type B data transfer was received.

1. This signal comes from the BClk domain. Counting back-to-back cycles in the BClk domain can sometimes be inaccurate because 
the signal crosses into the NClk domain to reach the performance monitor counters. A performance monitor signal from the BClk 
domain is reliable only when the NClk domain operates at more than two times the BClk domain (that is, NClk is greater than 3.33 
GHz).



Programming Handbook

 Cell Broadband Engine

Version 1.11
May 12, 2008
 

Performance Monitor Signals
Page 831 of 884

C.8.5 I/O Controller Word 0 - Group 1 (NClk/2)

Address Offset Register Short Name Enable Word 0 Enable Word 2

x‘50 8600’ IOC_DTB_Cfg0 rmw bits 0,16:19 = ‘1 1111’

x‘51 1C70‘ IOC_TopDbgCtl rmw bits 24:26, 54:56, 61:63 = ‘100 000 000’

x‘51 1400’ IF1TRC0 rmw 0, 1:4, 9:10 = ‘1 1111 00’ rmw bits 0, 9:10, 11:14 = ‘1 11 1111’

x‘51 1000’ IF0TRC0 rmw bit 0 = 1

Address Offset Register Short Name Disable Word 0 Disable Word 2

x‘50 8600‘ IOC_DTB_Cfg0 rmw bits 16:19 = ‘0000’

x‘51 1C70’ IOC_TopDbgCtl rmw bits 24:26 = ‘000’

Bit Type Description

8 E Received a memory-mapped input and output (MMIO) read targeted to IOIF1.

9 E Received an MMIO write targeted to IOIF1.

10 E Received an MMIO read targeted to IOIF0.

11 E Received an MMIO write targeted to IOIF0.

12 S A command was sent to IOIF0.

13 S A command was sent to IOIF1.
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C.8.6 I/O Controller Word 2 - Group 2 (NClk/2)

Address Offset Register Short Name Enable Word 0 Enable Word 2

x‘50 8600’ IOC_DTB_Cfg0 rmw bits 0, 24:27 = ‘1 1111’

x‘51 1C70‘ IOC_TopDbgCtl rmw bits 33:35 = ‘000’

x‘51 1400’ IF1TRC0 rmw bits 0, 1:4, 9:10 = ‘1 1111 11’ rmw bits 0, 9:10, 11:14 = ‘1 00 1111’

x‘51 1000’ IF0TRC0 rmw bit 0 = 1

Address Offset Register Short Name Disable Word 0 Disable Word 2

x‘50 8600‘ IOC_DTB_Cfg0 rmw bits 24:27 = ‘0000’

Bit Type Description

5 B IOIF0 dependency matrix 3 is occupied by a dependent command (see Note 1).

6 B IOIF0 dependency matrix 4 is occupied by a dependent command (see Note 1).

7 B IOIF0 dependency matrix 5 is occupied by a dependent command (see Note 1).

10 E Received a read request from IOIF0.

11 E Received a write request from IOIF0.

14 E Received an interrupt from the IOIF0.

1. The dependency matrix (DM) entries are numbered 0-15. The IOC logic generally uses the lowest-numbered available slot for new 
incoming requests. Therefore, the lower numbered DM entries tend to be used more often than the higher-numbered entries.
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C.8.7 I/O Controller - Group 3 (NClk/2)

Address Offset Register Short Name Enable Word 0 Enable Word 2

x‘50 8600’ IOC_DTB_Cfg0 rmw bits 0, 40:43 = ‘1 1111’ rmw bits 0, 32:35 = ‘1 1111’

x‘50 8618’ IOC_DTB_Cfg3 rmw bit 47 = 1

x‘51 1C00’ IOC_IOCmd_Cfg rmw bit 17 = 1

x‘51 1400’ IF1TRC0 rmw bits 0, 9:10 = ‘1 00’

x‘51 1000’ IF0TRC0 rmw bits 0, 9:10 = ‘1 00’

Address Offset Register Short Name Disable Word 0 Disable Word 2

x‘50 8600’ IOC_DTB_Cfg0 rmw bits 32:35, 40:43 = ‘0000 0000’

x‘50 8618’ IOC_DTB_Cfg3 rmw bit 47 = 0

Bit Type Description

16 S IOIF0 request for a token for even banks (0-14). This is valid only if resource allocation is enabled.

17 S IOIF0 request for a token for odd banks (1-15). This is valid only if resource allocation is enabled.

18 S IOIF0 request for token 1, 3, 5, or 7. This is valid only if resource allocation is enabled.

19 S IOIF0 request for token 9, 11, 13, or 15. This is valid only if resource allocation is enabled.

24 S IOIF0 request for a token 16. This is valid only if resource allocation is enabled.

25 S IOIF0 request for a token 17. This is valid only if resource allocation is enabled.

26 S IOIF0 request for a token 18. This is valid only if resource allocation is enabled.

27 S IOIF0 request for a token 19. This is valid only if resource allocation is enabled.
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C.8.8 I/O Controller Word 0 - Group 4 (NClk/2)

Address Offset Register Short Name Enable Word 0 Enable Word 2

x‘50 8600’ IOC_DTB_Cfg0 rmw bits 0, 48:51 = ‘1 1111’

x‘51 1400’ IF1TRC0 rmw bit 0 = 1

x‘51 1000’ IF0TRC0 rmw bits 0, 9:10, 11:14 = ‘1 00 1111’ rmw bits 0, 1:4, 9:10 = ‘1 1111 11’

Address Offset Register Short Name Disable Word 0 Disable Word 2

x‘50 8600’ IOC_DTB_Cfg0 rmw bits 48:51 = ‘0000’

Bit Type Description

0 E An I/O page table cache hit (for commands from IOIF).

1 E An I/O page table cache miss (for commands from IOIF).

3 E An I/O segment table cache hit.

4 E An I/O segment table cache miss.

24 E An interrupt was received from any synergistic processor unit (reflected command when internal interrupt controller 
(IIC) decides to send an acknowledge response).

25 E IIC generated an interrupt to PowerPC processor unit (PPU) thread 0.

26 E IIC generated an interrupt to PPU thread 1.

27 E Received an external interrupt (using MMIO) from PPU to PPU thread 0.

28 E Received an external interrupt (using MMIO) from PPU to PPU thread 1.
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ABI Application binary interface. The standard that a program follows to 
ensure that code generated by different compilers (and perhaps linking 
with various, third-party libraries) will run correctly on the Cell Broadband 
Engine Architecture (CBEA) processors. The ABI defines data types, 
register usage, calling conventions, and object formats. object formats. 

AC (1) Address Compare bit. (2) Address Concentrator.

aligned reference A memory reference to data that resides at an address that is an integral 
multiple of the data size. 

AltiVec The Freescale SIMD instruction set that is identical to IBM’s vector/SIMD 
multimedia extension instruction set. AltiVec is a trademark of Freescale.

ALU Arithmetic logic unit.

AOS Array of structures. A method of organizing related data values. Also 
called the vector-across, or vec-across, form. Compare SOA 

API Application programming interface. 

application (1) A program designed to perform a specific task or group of tasks. (2) A 
user program, as opposed to a system or supervisor program; also called 
a problem state program in the PowerPC Architecture. 

architecture A detailed specification of requirements for a processor or computer 
system. It does not specify details of how the processor or computer 
system must be implemented; instead it provides a template for a family 
of compatible implementations.

ARPN Abbreviated real page number.

asynchronous Not coordinated in time with the execution of instructions in an instruction 
pipeline. 

ATO Atomic unit. Part of an SPE’s MFC. It is used to synchronize with other 
processor units. 

atomic access A bus access that attempts to be part of a atomic operation. 

atomic operation A set of operations, such as read-write, that are performed as an uninter-
rupted unit. An atomic operation is a form of a mutual-exclusion (mutex) 
lock that can implement a semaphore. 

available to software A region of memory that is not identified as allocated in Figure 5-1 CBEA 
Processor Memory Map on page 122, and that are known to be populated 
with memory chips or external MMIO registers, are available to software 
for any purpose. 

AVPN Abbreviated virtual page number.

B (1) Byte. (2) Blocking. 
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b Bit.

barrier A command that ensures program-ordering of memory accesses of all 
preceding, nonimmediate MFC commands with respect to all commands 
following the barrier command within the same MFC command queue. 
Compare fence.

basic block A sequence of instructions that has no branching or other transfer of 
control. 

basic-block 
aggregation

A method of extracting SIMD parallelism within a basic block by packing 
isomorphic computation on adjacent memory accesses into vector opera-
tions. 

BClk Bus interface controller (BIC) core clock. 

beat Data sent in one L2 clock cycle, which is two Cell Broadband Engine 
core-clock cycles. Also called data beat.

BEI Cell Broadband Engine interface unit. 

BHT Branch history table.

BIC Bus interface controller. Part of the Cell Broadband Engine interface (BEI) 
unit to I/O. 

BIF (1) Cell Broadband Engine interface protocol. The EIB’s internal commu-
nication protocol. It supports coherent interconnection to other CBEA 
processors and BIF-compliant I/O devices, such as memory subsystems, 
switches, and bridge chips. The protocol is software-selectable only at 
power-on reset (POR). See IOIF. (2) Branch indirect if false instruction. 

big endian An ordering of bytes and bits in which the lowest-address byte is the 
most-significant (high) byte and lowest-numbered bit is the most-signifi-
cant (high) bit. The CBEA processors support only big-endian ordering; 
they do not support little-endian ordering. 

BIU Bus interface unit. Part of the PPE’s interface to the EIB. 

block (1) A cache line, which is 128 bytes in size. (2) The inability for an instruc-
tion in a pipeline to proceed. Blocking occurs at the instruction-dispatch 
stage and, in the PPE, stops only one of the two threads. Compare stall 
and bubble. 

blocking A property of certain SPE channels when its count is zero. Blocking chan-
nels cause the SPE to stall when the SPE reads or writes a channel with 
a count of zero. See channel count for more details.

boundedly 
undefined

Instruction-execution results that might have occurred by executing an 
arbitrary sequence of instructions, starting from a given machine state.

branch-and-link A PPE branch instruction that writes the current instruction address plus 4 
into the Link Register (LR).
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branch hint A type of branch instruction that provides a hint of the address of the 
branch instruction and the address of the target instruction. Hints are 
coded by the programmer or inserted by the compiler. The branch is 
assumed taken to the target. Hints are used in place of branch prediction 
in the SPU. 

BRU Branch unit. 

bubble An unused stage in a pipeline during a cycle. Compare stall and block. 

built-ins The subset of generic intrinsics that map to assembly-language instruc-
tion sequences. A built-in cannot be expressed as a sequence of generic 
intrinsics, although it can be expressed as a sequence of specific intrin-
sics. 

bypassing the cache Sending a cache line obtained from the L2 cache or main storage directly 
to the instruction pipeline, instead of first writing it into the L1 cache and 
then rereading it.

C (1) The C programming Language. (2) The Change bit in a PPE page-
table entry. 

cache High-speed memory close to a processor. A cache typically contains 
recently-accessed data or instructions, but certain cache-control instruc-
tions can lock, evict, or otherwise modify the caching of data or instruc-
tions. 

cacheable An access, such as a load, store, or instruction fetch, in which the 
caching-inhibited (I) bit in the PTE is cleared to ‘0’. 

cache block 128 bytes. Same as cache line. 

cache line 128 bytes. Same as cache block. 

cache touch A compiler-directed method, initiated by the dcbt and dcbtst instructions, 
of preloading data into the cache so that the subsequent accesses hit in 
the cache.

caching-inhibited A memory update policy in which caches are bypassed, and the load or 
store is performed to or from main storage. Only the storage location 
specified by the instruction (rather than a full cache line) is accessed at a 
caching-inhibited location. Stores to caching inhibited pages must update 
the memory hierarchy to a level that is visible to all processors and 
devices in the system. The operating system typically implements this 
policy, for example, for I/O devices. The “I” bit in the “WIMG” bits. 

callee A program or routine that is called by another program or routine (the 
caller). 

caller A program or routine that calls another program or routine (the callee). 

cast out The process of writing modified data from a cache to the next-lower-level 
cache (for example, L1 to L2) or to main storage, and marking the cache 
line invalid.
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CBEA See Cell Broadband Engine Architecture. The Cell/B.E. processor and 
the PowerXCell 8i processor are both implementations of the Cell Broad-
band Engine Architecture. 

CBEA processor A Cell/B.E. processor or a PowerXCell 8i processor.

CBEA processor 
task

A task running on the PPE and SPE. Each such task has one or more 
main threads and some number of SPE threads, and all the main threads 
within the task share the task’s resources, including access to the SPE 
threads.

CEC Central electronics complex. 

Cell/B.E. Cell Broadband Engine. 

Cell/B.E. processor The first implementation of the Cell Broadband Engine Architecture 
(CBEA).

Cell Broadband 
Engine Architecture

Extends the PowerPC 64-bit architecture with loosely coupled coopera-
tive off-load processors. The Cell Broadband Engine Architecture 
provides a basis for the development of microprocessors targeted at the 
game, multimedia, and real-time market segments. The Cell/B.E. 
processor and the PowerXCell 8i processor are both implementations of 
the Cell Broadband Engine Architecture.

CESOF An extension of PPE-ELF that allows PPE executable objects to contain 
SPE executables. The PPU and SPUs are supported by different 
compilers and different tools. CESOF allows a programmer to represent 
and resolve dependencies among PPU and SPU programs, which do not 
share a symbol space. 

channel A 32-bit, unidirectional communication interface between an SPE and the 
system, including main storage, the PPE, and other SPEs. 

channel count The value returned by the read-channel-count instruction (rchcnt). 
Reading the channel count of an implemented and blocking (queue-
connected) channel returns the channel’s available capacity. Reading the 
channel count of an implemented but nonblocking channel always returns 
a 1. Reading the channel count of an unimplemented (reserved) channel 
always returns a 0. 

CIDR Class ID Register.

CIU Core interface unit.

CL A class-ID parameter in an MFC command. 

classID See RClassID and TClassID.
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coherence The correct ordering of stores to a memory address, and the enforcement 
of any required cache write-backs during accesses to that memory 
address. Cache coherence is implemented by a hardware snoop (or 
inquire) method, which compares the memory addresses of a load 
request with all cached copies of the data at that address. If a cache 
contains a modified copy of the requested data, the modified data is 
written back to memory before the pending load request is serviced. 

The primary objective of a coherent memory system is to provide the 
same image of memory to all devices in the system.

coherence domain All processor elements and all interfaces to main storage.

coherence 
granularity

See coherency block.

coherency block The block size used in managing memory coherence. In the CBEA 
processors, it is 128 bytes. 

combined snoop 
response

The snoop responses from all snoopers are combined together to form 
the combined snoop response that is sent to all devices in the system.

command A result of executing certain instructions. For example, an MFC DMA 
command can result from an SPU’s execution of several write channel 
(wrch) instructions that define the parameters of a DMA transfer. 

committed The point in the execution of an instruction at which all older instructions 
in the pipeline are past the flush point (the point at which they can be 
written back to main storage). 

An instruction is said to be committed when the process of recording and 
writing back its result has begun and cannot be prevented by an excep-
tion.

common 
subexpression 
elimination

The replacement of repeated, redundant expression evaluations with a 
single computation assigned to a temporary variable. 

complete An instruction is said to complete when its result is both available to 
another instruction and can be written back to memory (retired), and past 
the point at which the instruction can cause an exception. 

congruence class (1) A set (or row) of a set-associative cache, including a TLB cache. 
Compare way. (2) All cache entries indexed by a specified effective 
address. (3) A cache index. 

constant folding A compiler’s precalculation of constant expressions.

context (1) The environment (for example, privilege and relocation) of instruction 
execution that is controlled by system registers (such as the Machine 
State Register and Storage Description Register 1) and the relevant page 
table. (2) The process or task environment of instruction execution. 

context switch A process or task switch.
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context 
synchronizing

The halting of instruction dispatch, clearing of the fetch buffer, and 
completion of all instructions currently in execution (that is, past the point 
at which they can cause an exception). The first instruction after a 
context-synchronizing event is fetched and executed in the context estab-
lished by that instruction. Context synchronization occurs when certain 
instructions are executed (such as isync or rfi) or when certain events 
occur (such as an exception). All context-synchronizing events are also 
execution synchronizing. Compare execution synchronizing.

control plane Refers to software or hardware that manages the operation of data plane 
software or hardware, by allocating resources, updating tables, handling 
errors, and so forth. See data plane.

core clock The processor core clock (NClk).

count register The PPE register that holds a loop count, which can be decremented 
during certain branch instructions, or which provides a branch target 
address.

CPI Cycles per instruction. 

CPL Current priority level.

CR Condition Register. 

CSA Context save area. 

CSI Context-synchronizing instruction.

CTR Count Register. 

cumulative ordering The ordering of storage accesses performed by multiple sources.

cycle Unless otherwise specified, one tick of the processor core clock (NClk), 
which is the frequency at which the PPE and SPEs run.run.

DAR Data Address Register. 

data (1) Any information in memory or on the processor’s data bus, including 
instruction operands and instruction opcodes. (2) Instruction operands, as 
opposed to instruction opcodes. 

data beat See beat.

data hazard A situation in which an instruction has a data dependence or a name 
dependence on a prior instruction, and they occur close enough together 
in the instruction sequence that the processor might generate a result 
inconsistent with execution in program order.

data plane Refers to software or hardware that operates on a stream or other large 
body of data and is managed by control plane software or hardware. See 
control plane.

data stream A sequence of contiguous data cache blocks (cache lines). 



Programming Handbook

 Cell Broadband Engine

Version 1.11
May 12, 2008
 

Glossary
Page 841 of 884

DCache The PPE’s L1 data cache. 

dcbf PPE data-cache-block flush instruction.

dcbst PPE data-cache-block store instruction.

dcbt PPE data-cache-block touch instruction.

dcbtst PPE data-cache-block touch-for-store instruction.

dcbz PPE data-cache-block set-to-zero instruction.

DDR2 Double double rate 2 synchronous dynamic random access memory 
(SDRAM). Transfers are performed on both the rising and falling edges of 
the clock.

deadlock A state in which two elements in a process are stalled, each waiting for 
the other to respond. Compare livelock. 

DEC Decrementer.

decrementer A register that counts down each time an event occurs. Each SPU 
contains dedicated 32-bit decrementers for scheduling or performance 
monitoring, by the program or by the SPU itself. 

demand fetch A request by the L1 cache to the L2 cache for a cache line that caused a 
an L1 cache miss. 

denormalized 
number

A nonzero floating-point number whose exponent is the format’s 
minimum, but represented as all zeros, and whose implicit leading signifi-
cand bit is zero. 

dependence A relationship between two instructions that requires them to execute in 
program order. Dependence is a property of a program. 

D-ERAT Data ERAT, or the data-cache effective-to-real-address translation table. 

DERR Data error interrupt. 

device memory Memory that has both the caching-inhibited and guarded attributes. This 
is typical of memory-mapped I/O devices.

DFQ Demand instruction request queue. 

DIQ Denormalized instruction queue. 

displacement An offset or index from a base address. 

DLQ Demand data load request queue. 

DMA Direct memory access. A technique for using a special-purpose controller 
to generate the source and destination addresses for a memory or I/O 
transfer. 

DMAC Direct memory access controller. A controller that performs DMA trans-
fers. 
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DMA command A type of MFC command that transfers or controls the transfer of a 
memory location containing data or instructions. See MFC command.

DMA list A list of list elements that, together with an initiating DMA list command, 
specifies a sequence of DMA transfers between a single area of LS and 
discontinuous areas in main storage. Such lists are stored in an SPE’s 
LS, and the sequence of transfers is initiated with a DMA list command 
such as getl or putl. DMA list commands can only be issued by programs 
running on an SPE, but the PPE or other devices can create and store the 
lists in an SPE’s LS. DMA lists can be used to implement scatter-gather 
functions between main storage and the LS. 

DMA list command A type of MFC command that initiates a sequence of DMA transfers spec-
ified by a DMA list stored in an SPE’s LS. See DMA list.

DMA queue A queue for holding DMA-transfer commands. The MFC contains two 
DMA queues—a 16-entry SPU command queue and an 8-entry proxy 
command queue.

DMA transfer Byte moves by a DMAC, without regard to the numeric significance of any 
byte.

dominant-shift 
reorganization

A reorganization of misaligned data in which the offset that is dominant 
(most often used) among a set of streams is chosen as the offset to shift 
to. 

doubleword Eight bytes. 

DP Double-precision.

DPFE Data prefetch engine. 

DR Data relocate.

DSI Data storage interrupt.

DSISR Data Storage Interrupt Status Register.

DTS Digital thermal sensor.

dual-issue Issuing two instructions at once, under certain conditions. See fetch 
group. 

dynamic branch 
prediction

Methods in which hardware records the resolution of branches and uses 
this information to predict the resolution of a branch when it is encoun-
tered again. 

dynamic linking Linking of a program in which library procedures are not incorporated into 
the load module, but are dynamically loaded from their library each time 
the program is loaded. 

EA See effective address. 

eager-shift 
reorganization

A reorganization of a misaligned load stream that shifts directly to the 
alignment of the store. 
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EAH An effective address high parameter in an MFC command. 

EAL An effective address low parameter in an MFC command. 

EAR Effective-address reference. A software structure in the .toe section of the 
CESOF format. 

ECC Error-correcting code. 

effective address An address generated or used by a program to reference memory. A 
memory-management unit translates an effective address (EA) to a 
virtual address (VA), which it then translates to a real address (RA) that 
accesses real (physical) memory. The maximum size of the effective-
address space is 264 bytes. 

EIB Element interconnect bus. The on-chip coherent bus that handles 
communication between the PPE, SPEs, memory, and I/O devices (or a 
second CBEA processor). The EIB is organized as four unidirectional 
data rings (two clockwise and two counterclockwise). 

eieio Enforce in-order execution of I/O. 

ELF Executable and linking format. The standard object format for many 
UNIX® operating systems, including Linux. Originally defined by AT&T 
and placed in the public domain. Compilers generate ELF files. Linkers 
link to files with ELF files in libraries. Systems run ELF files. 

ELF header An ELF object-file header that is used to find a section header or a 
program header. 

endian orientation A view of bits and bytes in which either the little end (least-significant or 
low end) or the big end (most-significant or high end) is assigned the 
lowest number or address. Thus, there are two types of endian orienta-
tion—little-endian and big-endian. Endian orientation applies to bits, in the 
context of register-value interpretation, and to bytes, in the context of 
memory accesses. The CBEA processors support only big-endian 
ordering; they do not support little-endian ordering. 

ERAT Effective-to-real address translation, or a buffer or table that contains 
such translations, or a table entry that contains such a translation. 

ESID Effective segment ID

even pipeline Part of an SPE’s dual-issue execution pipeline. Also referred to as pipe-
line 0.

exception An error, unusual condition, or external signal that might alter a status bit 
and will cause a corresponding interrupt, if the interrupt is enabled. See 
interrupt, imprecise interrupt, and precise interrupt. 
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execution 
synchronizing

The completion of previously issued instructions—to a point where they 
can no longer cause an exception, but not necessarily in the context (priv-
ilege, protection, and address translation) under which they were 
issued—before continuing with program execution. Execution-synchro-
nizing does not empty (flush) the instruction prefetch queue. The sync 
instruction is execution-synchronizing. Compare context synchronizing. 

external access From an SPE’s viewpoint, a read or write access by any DMA transfer (by 
the local MFC or the MFC associated with another SPE) or any processor 
(including the PPE or another SPE) or other device—other than the SPE 
being referred to. 

fence A modifier to a DMA command that ensures that this command is ordered 
with respect to all preceding commands in the DMA command queue 
within the same tag group. Compare barrier.

fetch To read instructions (but not data) from storage. 

fetch group A doubleword-aligned instruction pair. Dual-issue occurs when a fetch 
group has two instructions that are ready to issue, and when the first 
instruction can be issued on the even pipeline and the second instruction 
can be issued on the odd pipeline. 

FIFO First in, first out. Refers to one way elements in a queue are processed. It 
is analogous to “people standing in line.” 

FIR Fault Isolation Register. 

fixed-point value An integer. 

FlexIO Rambus FlexIO bus. The physical-link I/O signals on the BIF and IOIF 
interfaces. See IOIF. 

FLIH First-level interrupt handler. 

flush (1) Write the contents of a cache line back to main storage, and invalidate 
the cache line. (2) Invalidate a cache line or an instruction pipeline. 

flush point The execution-pipeline point at which all instructions older than the flush 
point can be written back to main storage. 

flush transaction A transaction caused by a dcbf that hits on a memory-coherent cache line 
and is marked shared or invalid. It is sent to other snoopers who might 
have a copy of the line. 

FP Floating point.

FPR Floating-Point Register. 

FPSCR Floating-Point Status and Control Register.

FPU Floating-point unit.

fres Floating reciprocal estimate single A form instruction.
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FXU Fixed-point unit. In the PPE, the fixed-point integer unit. 

G The guarded bit in a page table entry which controls the processor's 
accesses to cache and main storage. It is part of the “WIMG” bits. 

GCD The greatest common divisor of two integers. It is the largest integer that 
divides them both. This is typically denoted by GCD(a,b). 

general-purpose 
registers

The registers used for integer and string operations.

generic intrinsics Intrinsics that map to one of several assembly-language instructions or 
instruction sequences, depending on the type of operands. (See intrinsic.) 
All generic SPU intrinsics are prefaced by the string, spu_. For example, 
the generic intrinsic that implements the stop assembly instruction is 
named spu_stop. 

getllar Get lock line and reserve MFC command. 

get_ps An operating system call that returns a base address for the problem 
state area. 

GPR See general-purpose register.

guarded Regions of memory in which prefetching and other speculative storage 
operations are not permitted. A data access to a guarded location is 
performed only if either (a) the access is caused by an instruction that is 
required for sequential execution, or (b) the access is a load and the 
storage location is already in a cache. Such regions in memory are 
marked by setting the G bit in the relevant page-table entry. The oper-
ating system typically implements guarding, for example, on I/O devices. 

H Hash function identifier.

harvest To reset (clear) the state of an SPE. 

hashed page table A variable-sized, chained data structure that maps virtual page numbers 
(VPNs) and real page numbers (RPNs). A hash function is applied to a 
VPN to yield an entry into the page table. Each entry in a hashed page 
table is associated with a page in real memory. Also called inverted page 
table. 

hazard A situation in which the overlapped or out-of-order execution of a pair of 
instructions might generate a result inconsistent with execution of the 
instructions in program order. A hazard is a property of a program. 

hcall Hypervisor call, which is an sc instruction with the LEV bit set to ‘1’.

HDEC Hypervisor decrementer.

HID Hardware-implementation dependent.



Programming Handbook

Cell Broadband Engine  

Glossary
Page 846 of 884

Version 1.11
May 12, 2008

high The most-significant bit or byte numbers in a field, register or memory. 
High bits and bytes are the lowest-numbered bits or bytes in a data struc-
ture. For example, bit 0 is the high bit of a bit field or register. 

hint stall The holding of a branch instruction in or before the stage of the pipeline in 
which triggering occurs. The branch is held there until an associated hint-
for branch trigger is loaded. 

hoist To move an instruction to an earlier point in the program-execution order. 

HRMOR Hypervisor Real-Mode Offset Register.

HTAB Hashed page table. 

hypervisor A control (or virtualization) layer between hardware and the operating 
system. It allocates resources, reserves resources, and protects 
resources among (for example) sets of SPEs that might be running under 
different operating systems. 

The CBEA processors have three operating modes: user, supervisor, and 
hypervisor. The hypervisor performs a meta-supervisor role that allows 
multiple independent supervisors’ software to run on the same hardware 
platform.

For example, the hypervisor allows both a real-time operating system and 
a traditional operating system to run on a single PPE. The PPE can then 
operate a subset of the SPEs in the CBEA processors with a real-time 
operating system, while the other SPEs run under the traditional oper-
ating system. 

hypervisor call An sc instruction with the LEV bit set to ‘1’.

I The caching-inhibited bit in a page table entry which controls the 
processor's accesses to cache and main storage. It is part of the “WIMG” 
bits. 

IBuf Instruction buffer.

ICache The PPE’s L1 instruction cache. 

icbi PPE instruction-cache-block invalidate instruction.

ID Instruction dispatch.

IEEE 754 The IEEE 754 floating-point standard. A standard written by the Institute 
of Electrical and Electronics Engineers that defines operations and repre-
sentations of binary floating-point arithmetic.

I-ERAT Instruction ERAT, or instruction-cache effective-to-real-address transla-
tion table. 

IFAR Instruction Fetch Address Register.



Programming Handbook

 Cell Broadband Engine

Version 1.11
May 12, 2008
 

Glossary
Page 847 of 884

IGP Interrupt generation port. One of two registers, IIC_IGP0 and IIC_IGP1 
(one for each PPE thread), to which software on the PPE or an SPU can 
write an Interprocessor Interrupt (IPI). 

IIC Internal interrupt controller.

ILP Instruction-level parallelism.

ILP32 32-bit Integers, Longs, and Pointers. The SPEs are always ILP32, with 
DMA support for 32-bit and 64-bit effective-address pointers

immediate operand An operand included in an instruction. Also called immediate constant or 
immediate value. 

imprecise interrupt A synchronous exception that does not adhere to the precise exception 
model. Imprecise interrupts occur one or more instructions after the 
execution of the instruction causing the interrupt. They are not restart-
able. In the CBEA processors, single-precision floating-point operations 
generate imprecise exceptions. See precise interrupt. 

inbound access An access initiated externally from an I/O device (also called I/O unit) to 
the CBEA processors. Also called an I/O access. Compare outbound 
access. 

index An offset from a base address. 

indirect An access is said to be indirect if a register holds its target. For example, 
an indirect branch is one whose target is specified in a register. 

inline expansion An optimization in which the reference to a procedure is replaced with the 
code of the procedure itself to eliminate calling overhead.

in-order In program order. The PPE and SPEs execute instructions in-order; that 
is, they do not rearrange them (out-of-order). 

instruction runout A situation in which there are no instructions remaining in the SPU 
instruction pipeline, and the SPU becomes idle.

instruction-
sequencing error

An error that occurs when instructions are executed in a different order 
other than expected. The SPU expects instructions to be executed 
sequentially unless modified by hint trigger. 

interrupt A change in machine state in response to an exception. See exception, 
imprecise interrupt, and precise interrupt. 

interrupt packet Used to signal an interrupt, typically to a processor or to another interrupt-
ible device.

interrupt vector The starting address of an interrupt handler or service routine. 

intervention The peer-to-peer movement of data between two caches, without 
involving main storage. 
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intrinsic An in-line set of assembly-language instructions in the form of function 
call that is built into a compiler. Intrinsics make the underlying ISA acces-
sible from a high-level programming language. 

inverted page table See hashed page table. 

I/O access (1) An I/O operation that is initiated internally or externally to the CBEA 
processor. (2) As used in Section 7.7 I/O Storage Model on page 188, an 
I/O operation that is initiated externally to the CBEA processor. 

I/O address As used in Section 7.7 I/O Storage Model on page 188, an address 
passed from an I/O device to the CBEA processor when the I/O device 
attempts to perform an access to the CBEA processor real-address 
space.

IOC I/O interface controller.

I/O device Input/output device. From software’s viewpoint, I/O devices exist as 
memory-mapped registers that are accessed in main-storage space by 
load/store instructions. The operating system typically configures access 
to I/O devices as caching-inhibited and guarded. 

IOID I/O identifier. It is described in the IOPT and identifies an I/O unit. 

IOIF (1) One of two I/O interfaces supported by the EIB. Also called a FlexIO 
interface. (2) A noncoherent communication protocol used by I/O devices 
attached to an IOIF, which differs from the coherent BIF protocol. The 
IOIF protocol can be used on either IOIF0 or IOIF1; the BIF protocol can 
be used only on IOIF0. The protocol is software-selectable only at power-
on reset (POR). 

IOIF0, IOIF1 One of two I/O (IOIF) interfaces, also called a FlexIO interfaces. 

IOIF device A device that is connected directly to the CBEA processor IOIF port. 

IOIF protocol The EIB’s noncoherent protocol for interconnection to I/O devices. See 
BIF. 

I/O operation A storage operation that crosses a Cell Broadband Engine coherence-
domain boundary.

IOPT I/O page table. 

IOST I/O segment table. 

I/O unit One or more physical I/O devices, I/O bridges, or other functional units 
attached to an IOIF, in which one value of the IOID described in the IOPT. 
A functional unit that can initiate I/O accesses. 

IPC Instructions per cycle. 

IPFQ Instruction prefetch request queue. 
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IPI Interprocessor Interrupt. In the CBEA processors, a software interrupt 
written by a PPE thread or an SPE to one of the Interrupt Generation Port 
(IGP) registers. 

IPP Interrupt pending port.

IR Instruction relocate.

IS (1) Instruction issue. (2) Invalidation selector. 

ISEG Instruction segment exception. 

ISI Instruction storage interrupt. 

island A separate logic unit that the performance monitor facility can monitor 
(see Section C.1 Selecting Performance Monitor Signals on the CBEA 
Processor Debug Bus on page 795 for more information). 

ISRC Interrupt source.

IU Instruction unit. 

JSRE Joint Software Reference Environment

K 210 (as in KB for 1024 bytes). 

KB Kilobyte.

key A value, ‘0’ or ‘1’, used in conjunction with the page protection (PP) bits in 
page-table entries to determine access rights to locations in main 
storage. The value of the key is equal to the value of the Ks bit or value of 
the Kp bit in an SLB entry, depending on the PR bit in the machine state 
register (MSR).

Kp The problem-state (user-mode) storage key bit in SLB entries. In address 
translations, the Kp bit is used in conjunction with the PR, PP, N, and Ks 
bits to determine access privilege.

Ks The supervisor-state storage key bit in SLB entries. In address transla-
tions, the Ks bit is used in conjunction with the PR, PP, N, and Ks bits to 
determine access privilege.

L Large page indicator. 

L1 Level-1 cache memory. The closest cache to a processor, measured in 
access time. 

L2 Level-2 cache memory. The second-closest cache to a processor, 
measured in access time. An L2 cache is typically larger than an L1 
cache. 

LAR Load and reserve.

LARX-reserve 
transaction

An address-only transaction that sets the reservation for every cache 
level below the level serviced by a read atomic operation.
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latency (1) The number of cycles between when an instruction begins execution 
to when the result is available. (2) The issue-to-issue latency for a depen-
dent instruction. (3) The time between when a function is called and when 
it returns. 

lazy-shift 
reorganization

A reorganization of misaligned data that delays eager-shift reorganization 
as long as possible. 

ld PPE load doubleword instruction.

ldarx PPE load-doubleword-and-reserve indexed instruction.

LEAL List-element effective-address low. A parameter in a DMA-list MFC 
command. 

least-recently used An algorithm for replacing cache entries to identifies or approximates the 
oldest entry so that it can be cast out (evicted) to make room for a new 
entry. 

least-significant The highest-numbered bits or bytes (big-endian) in a data structure.

length conversion A conversion between data of different lengths. 

linker A program that resolves cross-references between separately compiled 
or assembled object modules and then assigns final addresses to create 
a single relocatable load module. If a single object module is linked, the 
linker simply makes it relocatable. Also called a link editor. 

link register The PPE register used to provide a branch-target address and to hold the 
return address for certain branch instructions. 

list element Also called transfer element. See DMA list.

livelock A state in which processors interact in a way such that no processor 
makes forward progress, such as in an endless loop of program execu-
tion. Compare deadlock. In a livelock, processing continues to take place. 
In a deadlock, no processing continues.

lmw PPE load multiple word instruction.

lnop A nop in an SPU’s odd pipeline. It can be inserted in code to align for dual 
issue of subsequent instructions. 

load combining The combining of multiple load accesses to storage into a single load 
access. 

loader A program that reads the load module into main storage, performing all 
necessary dynamic linking so that the module can execute.

local storage The 256 KB on-chip memory associated with each SPE. It holds both 
instructions and data. Abbreviated as LS. 
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lock (1) To use a replacement management table (RMT) entry to prevent L2-
cache or TLB entries from being cast out. (2) To obtain exclusive access 
to a main-storage location using the lwarx and stwcx. instructions. (3) See 
pinned. 

logical partition A virtual machine managed by a hypervisor.

logical PPE One of the two PPE threads. 

loop distribution The splitting off of those parts of a loop that cannot be SIMDized

looped-back 
operation

A command that is received by the Cell Broadband Engine from an IOIF 
device and routed back out the same IOIF. 

loop interchange The swapping of an inner (nested) loop with an outer loop. This is done 
when the inner loop appears to be the candidate for SIMDization.

loop-level 
aggregation

A method of extracting SIMD parallelism across loop iterations. Computa-
tions on stride-one accesses across loop iterations can be combined into 
vector operations. 

loop unrolling A programming optimization that increases the step of a loop, and dupli-
cates the expressions within a loop to reflect the increase in the step. This 
can improve instruction scheduling and memory access time.

loop versioning A technique for hoisting an individual array-index exception-check outside 
a loop by providing two copies of the loop: the safe loop and the unsafe 
(original) loop.

low The least-significant bit or byte numbers in a field, register or memory. 
Low bits and bytes are the highest-numbered bits or bytes (big-endian) in 
a data structure. For example, bit 63 is the low bit of a doubleword field or 
register. 

LP Large page selector. 

LP64 64-bit longs and pointers. 32-bit integers. 

LPAR Logical partition. 

LPCR Logical Partition Control Register.

LPES Logical Partitioning Environment Selector. A field in the LPCR register. 

LPID Logical partition ID.

LR Link Register. 

LRU Least recently used. See least-recently used. 

LS See local storage.

LSA Local storage address.

LSCSA Local storage context save area,
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LSU Load and store unit.

lswi PPE load string word immediate instruction.

lswx PPE load string word indexed instruction.

LSZ List size. A parameter in an MFC command. 

LTS List-element transfer size. A parameter in an MFC command. 

lwarx PPE load-word-and-reserve indexed instruction.

M (1) The memory-coherence bit in a page table entry which controls the 
processor's accesses to cache and main storage. It is part of the “WIMG” 
bits. (2) 220, as in MB for 1,048,576 bytes.

m The number of bits in a real address. For the CBEA processors, this value 
is 42.

mailbox A queue in an SPE’s MFC for exchanging 32-bit messages between the 
SPE and the PPE or other devices. Two mailboxes (the SPU Write 
Outbound Mailbox and SPU Write Outbound Interrupt Mailbox) are 
provided for sending messages from the SPE. One mailbox (the SPU 
Read Inbound Mailbox) is provided for sending messages to the SPE. 

main memory See main storage. 

main storage (1) The effective-address (EA) space. It consists physically of physical 
memory (whatever is external to the memory-interface controller), SPU 
LSs, memory-mapped registers and arrays, memory-mapped I/O devices 
(all I/O is memory-mapped), and pages of virtual memory that reside on 
disk. It does not include caches or execution-unit register files. (2) The 
level of storage hierarchy in which all storage state is visible to all proces-
sors and mechanisms in the system. See storage

mangle To add an extra prefix or suffix to a global symbol that is produced by a 
compiler. Global symbols produced by a compiler are said to be mangled 
if a symbol has any extra prefix or suffix added by the tool chain. 

MB Megabyte.

MC Microcode.

memory-mapped Mapped into the Cell Broadband Engine’s addressable-memory space. 
Registers, SPE local storages (LSs), I/O devices, and other readable or 
writable storage can be memory-mapped. Privileged software does the 
mapping. 

memory stream A sequence of contiguous memory locations that are accessed by a 
memory reference throughout the lifetime of a loop. 

MERSI The Modified (M), Exclusive (E), Recent (R), Shared (S), and Invalid (I) 
cache states. The CBEA processors use the MERSI protocol, plus two 
additional states: Unsolicited Modified (Mu) and Tagged (T). 
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MFC Memory flow controller. It is part of an SPE and provides two main func-
tions: moves data via DMA between the SPE’s local storage (LS) and 
main storage, and synchronizes the SPU with the rest of the processing 
units in the system.

MFC command A command issued to an SPE’s MFC. The command and any related 
parameters are written with a series of instructions executed either on the 
MFC’s associated SPU or on the PPE or other device. MFC commands 
provide the main mechanism by which software running on an SPU 
accesses main storage and maintains synchronization with other devices 
in the system. DMA commands are a primary type of MFC command. 

mfceieio MFC enforce in-order execution of I/O command.

MFC pause MFC Pause state. One of six power-management states. 

MFC proxy 
commands

MFC commands issued using the MMIO interface.

mfcsync MFC synchronize command.

mfspr PPE move from special-purpose register instruction.

MIC Memory interface controller. The CBEA processor MIC supports two 
memory channels. 

MiClk MIC core clock. 

microarchitecture A microprocessor’s hardware architecture. 

miss penalty The time required to fill a cache line after a cache miss.

mixed-mode 
SIMDization

The devirtualization of virtual vectors and their replacement by a single 
SIMD instruction, a sequence of SIMD instructions, a library call, or a 
sequence of scalar operations. 

MMIO Memory-mapped input/output. The documentation for the CBEA proces-
sors defines an “MMIO register” as any internal or external register that is 
accessed through the main-storage space with load and store instruc-
tions, whether or not the register is associated with an I/O device. See 
memory-mapped. 

MMU Memory management unit. A functional unit that translates between 
effective addresses (EAs) used by programs and real addresses (RAs) 
used by physical memory. The MMU also provides protection mecha-
nisms and other functions. 

M:N thread model A programming model in which M user threads are mapped to N kernel 
threads (or virtual processors).

MOD Modified snoop response code.

MODINTV Modified-intervention snoop response code.

most-significant The lowest-numbered bits or bytes (big-endian) in a data structure.
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MPI Message passing interface. A standard for high-performance communica-
tion on massively parallel architectures and clustered distributed-memory 
systems.

MSb Most-significant bit.

MSR Machine State Register.

MT Multithreading. See multithreading. 

mtmsr PPE move to machine state register instruction.

mtspr PPE move to special-purpose register instruction.

multithreading Simultaneous execution of more than one program thread. It is imple-
mented by sharing one software process and set of execution resources 
but duplicating the architectural state (registers, program counter, flags, 
and so forth.) of each thread. 

mutex lock Mutual-exclusion lock. An atomic operation used to implement a sema-
phore. 

N (1) No Execute bit in SLB entries. (2) Intervention bit. (3) Nonblocking. (4) 
Normal run thermal-management state. 

n The number of bits in a virtual address. For the CBEA processors, this 
value is 65.

NaN Not-a-number. A special string of bits encoded according to the IEEE 754 
Floating-Point Standard. A NaN is the proper result for certain arithmetic 
operations; for example, 0/0 = NaN. There are two types of NaNs, quiet 
NaNs and signaling NaNs. Only the signaling NaN raises a floating-point 
exception when it is generated.

NClk Core clock. The clock for the PPU and SPU. It is the highest-frequency 
processor clock. 

NCU Noncacheable unit. 

no-op See nop. 

nop No operation. Also called no-op. 

NPC An SPE’s Next Program Counter Register. 

NUMA Nonuniform memory access.

object module The output file of a compiler or other language translator. It includes the 
machine language translation and other information for symbolic binding 
and relocation.

odd pipeline Part of an SPE’s dual-issue execution pipeline. Also referred to as pipe-
line 1. 

offset An index that is added to a base address.
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OGSA Open Grid Services Architecture. A standard that enables communication 
across heterogeneous, geographically dispersed environments. 

OpenMP Open Multiprocessing. An API that supports multiplatform, shared-
memory parallel programming. 

ordered Said of an exception that only generates an interrupt in a prioritized order, 
with respect to the state of the interrupt-processing mechanism.

OS Operating system. 

outbound access An access initiated internally from the CBEA processor to an I/O device 
(also called I/O unit). Compare inbound access. 

out of order Not in program order. 

overlay SPU code that is dynamically loaded and executed by a running SPU 
program.

p Page size. A power-of-2 variable representing the size of a page. Three 
concurrent page sizes can be used: 4 KB (p = 12) and any two of the 
following large page sizes: 64 KB (p = 16), 1 MB (p = 20), 16 MB (p = 24).

page A unit of main-memory storage. Each page can have independent protec-
tion and control attributes, and Change and Reference status bits can be 
independently recorded. See page table.

page fault A restartable interrupt that causes the loading of a page from disk to 
memory. 

page-history 
recording

Same as storage-access recording. 

page table A table that maps pages of virtual addresses (VAs) to real addresses 
(RA) and contains related protection parameters and other information 
about memory locations. See hashed page table. 

page-table entry 
group

A 64-byte data structure in the hashed page table that contains eight 
page-table entries. 

parity A means of checking data reliability in which data bits are concatenated 
with a parity bit whose value makes the total number of ‘1’ bits even or 
odd. 

path length The number of instructions in an instruction sequence.

PC (1) Program counter. The PPE maintains separate program counters for 
each thread. (2) Personal computer. 

performance 
simulation

Simulation by the IBM Full System Simulator for the Cell Broadband 
Engine in which both the functional behavior of operations and the time 
required to perform the operations is simulated. Also called cycle-accu-
rate simulation. 
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pervasive logic Logic that provides power management, thermal management, clock 
control, software-performance monitoring, trace analysis, and so forth. 

physical address (1) A PowerPC Architecture real address (RA). (2) An address on the 
CBEA processor address-bus signals. 

pinned A set of virtual-memory pages is said to be pinned or locked if the oper-
ating system has forced them resident in memory, so that they are not 
swapped out to disk. In addition to pages of memory being locked, the 
TLB entries associated with those pages can also be locked, thus 
preventing TLB misses.

pipelined hint mode An SPU pipelined mode in which a hint-for branch stall is negated and no 
further hint stall is generated for the duration of the pipelined hint mode. 
Pipelined hint mode lasts for 16 cycles after the last stallable hint is 
issued in pipelined hint mode. 

pipelining A technique that breaks operations, such as instruction processing or bus 
transactions, into smaller stages so that a subsequent stage in the pipe-
line can begin before the previous stage has completed. 

PIR Processor Identification Register. 

PLG Physical layer group.

PLL Phase-locked loop. 

plug-in Fully resolved code that is dynamically loaded and executed by running 
an SPU program. Plug-ins facilitate code overlays. 

POR Power-on reset. 

POSIX Portable Operating System Interface. 

POSIX threads 
library

The standard UNIX threads library, available at http://www-
106.ibm.com/developerworks/linux/library/l-posix1.html. See POSIX.

PowerPC Of or relating to the PowerPC Architecture or the microprocessors that 
implement this architecture. 

PowerPC 970 A 64-bit microprocessor from IBM in the PowerPC family. It supports both 
the PowerPC and vector/SIMD multimedia extension instruction sets. 

PowerPC 
Architecture

A computer architecture that is based on the third generation of RISC 
processors. The PowerPC Architecture was developed jointly by Apple, 
Motorola, and IBM.

PowerXCell 8i 
processor

An implementation of the CBEA that uses a DDR2 memory interface and 
contains SPEs with enhanced double-precision performance and instruc-
tions.

PP Page Protection bits. 

PPE PowerPC Processor Element. The general-purpose processor in the 
CBEA processors. It consists of the PPU and the PPSS. 
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PPE Pause (0) PPE Pause (0) state. One of six power-management states. 

PPSS PowerPC Processor Storage Subsystem (L2 cache, NCU, CIU, BIU). Part 
of the PPE. It operates at half the frequency of the PPU. 

PPU PowerPC processor unit. The part of the PPE that includes execution 
units, memory-management unit, and L1 cache. 

pragma A compiler directive, inserted in source code by the programmer.

precise interrupt An interrupt in which the architecturally visible processor state (in the 
CBEA processors, this is the PPE state) is known at the time of the 
exception that caused the interrupt, so that the pipeline can be stopped, 
instructions that preceded the faulting instruction can complete, and 
subsequent instructions can be flushed and redispatched after interrupt 
handling has completed. A precise interrupt is caused by an exception 
that was generated when the instruction was fetched or executed. 

predicate A Boolean-logic term denoting a logical expression that determines the 
state of some variables. For example, a predicate can be an expression 
stating that variable A must have a value of 3.

predictive 
commoning

A form of common subexpression elimination that exploits data reuse 
among consecutive loop iterations.

preferred scalar slot The preferred location for scalar values within a 128-bit register. The 
preferred location for 8-bit scalars is byte 3. The preferred location for 16-
bit scalars is bytes 2 through 3. The preferred location for 32-bit scalars is 
bytes 0 through 3. The preferred location for 64-bit scalars is bytes 0 
through 7. Compare preferred slot. See Figure 3-6 on page 73. 

preferred slot The left-most word (bytes 0, 1, 2, and 3) of a 128-bit register in an SPE. 
This is the SIMD word element in which scalar values are naturally main-
tained. Compare preferred scalar slot. See Figure 3-6 on page 73. 

prefetch To fetch instructions ahead of the processor’s ability to dispatch them. 

primitive A simple procedure, such as a test-and-set loop used for atomic lock 
acquisition. 

privilege 1 A designation given to SPE registers that are the most privileged of all 
SPE registers, used by the hypervisor to manage the SPE on behalf of a 
logical partition. 

privilege 2 A designation given to SPE registers that are the second-most privileged 
of all SPE registers, used by the operating system in a logical partition to 
manage the SPE within the partition. 

privilege 3 A designation given to SPE registers that are the least privileged of all 
SPE registers, used by Problem State (application) software, if direct 
access to the SPE from user space is supported by the operating system.

privileged software Software that can be executed only in supervisor or hypervisor state. 
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privileged state Also known as supervisor state. The permission level of operating system 
instructions. The instructions are described in the PowerPC Operating 
Environment Architecture, Book III and are required of software the 
accesses system-critical resources.

problem state The permission level of user instructions. The instructions are described 
in the PowerPC Architecture Books I and II and are required of software 
that implements application programs. Compare supervisor state.

program header An ELF object-file header specifies program segments in the file for use 
in program loading. Compare section header.

program order The order in which instructions occur in the program. Compare sequential 
order. 

PRV Pervasive logic. For details, see the Cell Broadband Engine CMOS SOI 
65 nm Hardware Initialization Guide. 

pseudo-LRU A cache-replacement algorithm that approximates, and performs faster 
than, a true least-recently used replacement algorithm. 

PTE Page table entry. See page table. 

PTEG Page table entry group. 

push A write, triggered by a snooped transaction, that copies a modified cache 
line to main storage. Also called push out. 

putllc MFC put lock line conditional command.

putlluc MFC put lock line unconditional command.

QoS Quality of service. It typically relates to a guarantee of minimum band-
width for streaming applications. 

quadword 16 bytes. 

R Reference bit. It is set by hardware whenever the page is accessed and 
can be used by the operating system to determine recently used pages. 

RA Real address. See real address. 

RAG Resource allocation group.

RAG U Unallocated resource allocation group. 

RAID Resource allocation ID, or resource allocation group ID. It is the ID of a 
Resource Allocation Group (RAG). 

RAM Resource allocation management. A mechanism that allocates access to 
resource allocation groups (RAGs). Examples are the allocation of 
access to memory banks or I/O interfaces.

range hit The satisfaction of all conditions specified in the Address Range Regis-
ters. 
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RAS Reliability, availability, serviceability. 

RAW Read-after-write dependency. 

RC (1) Read-and-claim. The L2 cache has six RC state machines that move 
data in and out of the L2 Cache in response to PPU or snoop requests. 
(2) The Reference (R) and Change (C) bits in a PTE. 

Rc See record bit. 

rchcnt SPU read channel counter instruction.

RClassID Replacement class ID.

RC machine Read and claim machine. 

RC update An updates to the Reference (R) or Change (C) bits in a PTE. 

rdch SPU read from channel instruction.

real address The address of a byte in real storage or on an I/O device. Real storage 
includes physical memory, the PPE’s L1 and L2 caches, and the SPE’s 
LSs. The maximum size of the real-address space is 242 bytes. 

real addressing 
mode

A PPE addressing mode in which address translation is disabled 
(MSR[IR] = ‘0’ for instructions, MSR[DR] = ‘0’ for data). Accesses in real 
mode bypass storage protection checks. The effective address is used as 
the real address; on the PPE (but not on the SPEs), such a real address 
may be offset by an RMOR or HRMOR base address.

real mode Same as real addressing mode. 

record bit Bit 31 (the Rc bit) in a PPE instruction opcode. When set to 1, the instruc-
tion updates the Condition Register (CR) according to the operation’s 
result. Instructions that have the record bit set a dot (or period) suffix on 
their mnemonic. 

recording The setting of bits in the Condition Register (CR) to reflect characteristics 
of an executed instruction’s result. The recording is caused by instruction 
mnemonics that end in a period (.); such instructions cause the record 
(Rc) bit of the instruction format to be set to ‘1’. See record bit. 

register spill A situation in which the instantaneous number of active variables 
exceeds the size of the register file. 

register stream A sequence of contiguous registers that are produced by an operation 
over the lifetime of a loop. 

relocation Virtual-address translation. Instruction and data relocation can be 
enabled independently using two bits (IR and DR) in the Machine State 
Register (MSR). 

replacement 
management table

A software-controlled cache-replacement facility used to lock entries in a 
cache, thus preventing their replacement. The CBEA processors provide 
an RMT for the PPE TLB and L2 cache, and for each SPE TLB.
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reservation An exclusive right to access a main-storage location. Reservations are 
set and cleared with the lwarx and stwcx instructions, MFC atomic 
commands, and other instructions that access the reservation granule in 
which the reservation is set. Also called lock. 

reservation granule The storage block size corresponding to the number of low-order bits 
ignored when a store to a real address is compared with a reservation at 
that address. 

reserved Register locations marked as reserved and bit fields within registers 
marked as reserved not implemented operate in the same way: writes 
have no effect and reads return all ‘1’s. Reserved areas of the MMIO-
register memory map that are not assigned to any functional unit should 
not be read from or written to: doing so will cause serious errors in soft-
ware as follows. See Reserved Regions of Memory and Registers on 
page 30. 

retire To write the results of a completed instruction back to main storage. 
Compare complete. 

RI Recoverable Interrupt. A bit in the Machine State Register (MSR). 

RMI Real-mode caching inhibited.

RMLR Real Mode Limit Register.

RMO Real-mode offset.

RMOR Real-Mode Offset Register.

RMR Range Mask Register.

RMSC Real-mode storage control.

RMT See replacement management table. 

RPN Real page number.

RSR Range Start Register. 

runout See instruction runout.

runtime alignment Memory alignment cannot be known at compile time and is instead done 
at runtime.

SBI Synergistic bus interface. The MFC’s interface to the EIB. 

scalar A single data item, as opposed to a set of data items such as a vector or 
array. 

scatter-gather A technique for operating on sparse data, using an index vector. A 
scatter-gather operation takes an vector and fetches data at an address 
added to that of the vector. A scatter operation stores data back to 
memory, using the same index vector.
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scheduling A compiler optimization that reorders the instruction sequence subject to 
data-flow and control-flow restrictions so as to maximize use of a 
processor’s hardware.

SCN SPU control unit. A unit in SPU that handles branches and program 
control. 

sdcrf SL1 data-cache-range flush.

sdcrt SL1 data-cache-range touch. Implemented as a nop on the CBEA 
processor.

sdcrtst SL1 data-cache-range touch-for-store. Implemented as a nop on the 
CBEA processor. 

sdcrz SL1 data-cache-range set-to-zero.

SDR Storage Descriptor Register.

section header An ELF object-file header specifies sections in the file for use in linking. 
Compare program header.

segment A fixed 256 MB unit of address space that can hold code, data, or any 
mixture thereof. Segments are controlled by the segment lookaside buffer 
(SLB), which maps EAs to VAs and provides protections. 

semaphore A software flag used to indicate the status of, and lock the availability of, a 
shared resource. Semaphores can be implemented with atomic opera-
tions. 

sequential order The order in which the compiler output of a program appears in main 
storage. Compare program order. 

serialization A hardware-enforced alteration of the processor state or execution pipe-
line so as to match the sequential ordering of instructions in a program. 
For example, an instruction is said to be serializing if it (a) causes all 
preceding instructions, in program order, to complete before it begins 
execution, and (b) completes execution before any following instructions, 
in program order, begin execution. Compare synchronization. See also 
program order, sequential order, and context synchronizing.

set A row of a set-associative cache, including a TLB cache. Also called a 
congruence class. Compare way. 

SFP SPU floating-point unit. It handles single-precision and double-precision 
floating-point operations. 

SFS SPU odd fixed-point unit. It handles shuffle operations.

SFX SPU even fixed-point unit. It handles arithmetic, logical, and shift opera-
tions. 

short-loop 
aggregation

The elimination of inner loops that have short trip counts. SIMDizable 
short loops can be collapsed into vector operations. 
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signal Information sent on a signal-notification channel. These channels are 
inbound (to an SPE) registers. They can be used by the PPE or other 
processor to send information to an SPE. Each SPE has two 32-bit 
signal-notification registers, each of which has a corresponding memory-
mapped I/O (MMIO) register into which the signal-notification data is 
written by the sending processor. Unlike mailboxes, they can be config-
ured for either one-to-one or many-to-one signalling. 

These signals are unrelated to UNIX signals. See channel and mailbox.

signal notification See signal. 

SIMD Single instruction, multiple data. Processing in which a single instruction 
operates on multiple data elements that make up a vector data-type. Also 
known as vector processing. This style of programming implements data-
level parallelism. 

SIMDize Transform scaler code to vector code. 

single-ported Single-ported memory allows only one access at a time.

SL1 A first-level cache for DMA transfers between LS and main storage. The 
SPEs in the CBEA processors do not implement SL1s. 

SLB Segment lookaside buffer. It is used to map an effective address (EA) to a 
virtual address (VA). 

SLBE SLB entry. 

slbia SLB invalidate all instruction.

slbie SLB invalidate entry instruction.

slbmfee SLB move from entry ESID X-form instruction.

slbmfev SLB move from entry VSID X-form instruction.

slbmte SLB move to entry X-form instruction.

SLIH Second-level interrupt handler. 

slow mode Slow state. One of six power-management states. 

SLS SPU load and store unit. It handles loads, stores, and branch hints. 

SMD Slow-mode divider. A clock-divider value in PMSR1[BE_Slow] that helps 
specify the maximum time-base frequency. 

SMM Synergistic memory management unit. It translates EAs to RAs for in an 
SPE. 

SMP Symmetric Multiprocessor or Symmetric Multiprocessing. Two CBEA 
processors can be connected together to form an SMP system. 

sndsig Send signal command.
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sndsigb Update signal-notification registers in an I/O device or another SPE with 
barrier command.

sndsigf Update signal notification registers in an I/O device or another SPE with 
fence command.

snoop To compare an address on a bus with a tag in a cache, to detect opera-
tions that violate memory coherency. 

snoop push See push. 

SNP Snoop. 

SOA Structure of arrays. A method of organizing related data values. Also 
called parallel-array form. See AOS. 

software cache Same as software-managed cache. 

software-managed 
cache

An SPE’s local storage (LS), which is filled from main memory using soft-
ware-initiated DMA transfers. Although most processors reduce latency 
to memory by using hardware caches, an SPE uses its DMA-filled LS. 
The approach provides a high degree of control for real-time program-
ming. However, the approach is advantageous only if the DMA transfer-
size is sufficiently large and the DMA command is issued well before the 
data is needed, because the latency and instruction overhead associated 
with DMA transfers exceeds the latency of servicing a cache miss on the 
PPE. 

software-managed 
memory

Same as software-managed cache. 

software pipelining A loop optimization in which the body of the loop is divided into a series of 
stages that are executed in parallel in a manner analogous to hardware 
pipelining.

southbridge A chip that interfaces a processor to I/O buses (except, typically, 
graphics). 

SP (1) Single-precision. (2) Stack pointer. 

SPE Synergistic Processor Element. It includes an SPU, an MFC and an LS. 
In this document, the term “SPE” refers generally to functionality of any 
part of the processor element, including the MFC, and the term “SPU” 
refers to the instruction set or the unit that executes the instruction set. 

specific intrinsic A type of C and C++ language extension that maps one-to-one with a 
single SPU assembly instruction. All SPU specific intrinsics are named by 
prefacing the SPU assembly instruction with si_. 

SPE SRI SPE State Retained and Isolated (SRI) state. One of six power-manage-
ment states. 
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SPE thread A thread scheduled and run on an SPE. A program can have one or more 
SPE threads. Each thread has its own SPU local storage (LS), register 
file, program counter, and MFC command queues.

spin lock A synchronization primitive for shared-storage environments that 
executes a tight loop, attempting to acquire a lock at each iteration. 

splat To replicate, as when a single scalar value is replicated across all 
elements of a SIMD vector. 

SPR Special purpose register.

SPU Synergistic processor unit. The part of an SPE that executes instructions 
from its local storage (LS). In this document, the term “SPU” refers to the 
instruction set or the unit that executes the instruction set, and the term 
“SPE” refers generally to functionality of any part of the processor 
element, including the MFC. 

SPU ISA SPU Instruction Set Architecture. A SIMD instruction set executed in 
SPEs that is similar to the vector/SIMD multimedia extension instruction 
set executed by the PPE. 

SPU Pause SPU Pause state. One of six power-management states. 

SRR0 Save and Restore Registers 0. 

SRR1 Save and Restore Registers 1. 

SSC SPU channel and DMA unit. It handles all input and output functions for 
an SPU. 

SSE Streaming SIMD extensions. An Intel® instruction set. 

stale A value for a parameter is said to be stale if it is not the current value for 
that parameter. 

stall (1) The inability for an instruction in a pipeline to proceed. Possible 
causes of the stall include occupation of the next pipeline stage by 
another instruction, waiting for operands, or serialization. Stalls occur at 
the instruction-issue stage and, in the PPE, stop both threads. Compare 
block and bubble. (2) The number of cycles, after completing the execu-
tion of an instruction of a given type, before another instruction of the 
same type can be issued. 

starvation A condition in which a processing element is making forward progress, 
but at an extremely slow rate.

statically built Built at compile time. 

static branch 
prediction

A method in which software (for example, a compiler) gives a hint to the 
processor about the direction that a branch is likely to take.

static linking The linking of procedures at compile time, rather than at link time or at 
load time.
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stdcx PPE store doubleword conditional indexed instruction.

sticky bit A bit that is set by hardware and remains so until cleared by software.

stmw PPE store multiple word instruction.

storage Any type of data storage, including memory, cache, disk, diskette, and 
tape. Compare main storage. 

storage access An access to main storage caused by a load, a store, a DMA read, or a 
DMA write.

storage-access 
recording

The setting of the PTE Reference (R) bit to ‘1’ whenever an attempt is 
made to read or write the page, and the Change (C) bit to ‘1’ whenever 
the page is written. The recordings are done by hardware. 

store combining The combining of multiple store accesses to storage into a single store 
access. 

STQ Store queue. The CBEA processors have several.

stream A sequence of contiguous memory locations that are accessed by a 
memory reference throughout the lifetime of a loop (also called a memory 
stream), or a sequence of contiguous register values that are produced 
by an operation over the lifetime of a loop (also called a register stream). 

stream offset The byte-offset of the first required value in the first register of a stream. 

stride The relationship between the layout of an array’s elements in main 
storage and the order in which those elements are accessed. A stride of 
length N means that, for each array element accessed, N-1 adjacent 
memory elements are skipped over before the next-accessed element.

stride-one memory 
access

A memory access pattern in which each element in a list is accessed 
sequentially.

stswi PPE store string word immediate instruction.

stswx PPE store string word indexed x-form instruction.

stwcx PPE store word conditional indexed instruction.

subword arithmetic 
operations

The conversion of integer arithmetic operations to the equivalent arith-
metic operation on narrower-width data types.

subword data type A 2-byte or 1-byte data type, both of which are smaller than a word. 

superscalar The ability to execute multiple instructions per cycle. It is accomplished 
with multiple, parallel execution units. 

supervisor state The permission level of privileged instructions. The instructions are 
described in the PowerPC Operating Environment Architecture, Book III 
and are required of software that implements system programs. Compare 
problem state.
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SXU Synergistic execution unit. It contains the SPU odd fixed-point unit (SFS), 
SPU even fixed-point unit (SFX), SPU odd floating-point unit (SFP), and 
SPU load and store unit (SLS).

symmetric 
multiprocessing

See SMP. 

sync A PPE or SPE synchronize instruction. 

synchronization (1) Storage-access ordering for shared-storage environments. (2) A soft-
ware-enforced alteration of processor state so as to match the sequential 
ordering of instructions. (3) The use of atomic operations to create sema-
phores, mutex locks, spin locks, and other synchronization primitives for 
shared-storage environments. Compare serialization. See also sequential 
order, program order, and context synchronizing. 

synchronous Coordinated in time, with the execution of instructions in an instruction 
pipeline or among tasks. 

system A combination of processors, storage, and associated mechanisms that is 
capable of executing programs.

system memory See main storage.

system storage All program-addressable memory in a system, including main storage 
(main memory), the PPE’s L1 and L2 caches, and the SPE’s local storage 
(LS). See main storage.

table walk Table look-up (table search).

tag group A group of MFC DMA commands. All DMA commands except getllar, 
putllc, and putlluc are associated with a Tag Group.

taken (1) Said of an interrupt whose service routine is executed. (2) Said of a 
conditional branch when the condition it is testing is true.

task A process (unit of resource ownership) in a multiprogramming (multi-
tasking) environment. A task owns a virtual address space in which it 
stores processor state, and it may own other resources such as protected 
access to other processes, I/O devices and files. 

TClassID Transfer class ID.

text segment A segment of programming code. 
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thread (1) A unit of operating-system scheduling and dispatching that executes 
sequentially and can be interrupted. Threads are created by processes 
(tasks), which might own one or more of them, and threads use the 
resources of the creating process. A thread can be running or waiting to 
be run. 

(2) A sequence of instructions executed within the global context (shared 
memory space and other global resources) of a process that has created 
(spawned) the thread. Multiple threads (including multiple instances of the 
same sequence of instructions) can run simultaneously, if each thread 
has its own architectural state (registers, program counter, flags, and 
other program-visible state). 

The SPE hardware supports a single thread, per SPE. The PPE hardware 
supports two threads. 

throughput (1) The number of instructions completed per cycle. A high-throughput 
application design seeks to keep pipelines full. (2) The maximum 
sustained rate at which a processor can execute an instruction of a partic-
ular type, in the absence of any dependencies and assuming infinite 
caches. 

time base The facility that provides the timing functions for the processor core-clock 
(NClk) domain.

TIS Tool Interface Standard.

TKM Token management unit. Part of the element interconnect bus (EIB) that 
software can program to regulate the rate at which particular devices are 
allowed to make EIB command requests.

TLB Translation lookaside buffer. An on-chip cache that translates virtual 
addresses (VAs) to real addresses (RAs). A TLB caches page-table 
entries for the most recently accessed pages, thereby eliminating the 
necessity to access the page table from memory during load/store opera-
tions. 

TLB hit A TLB access in which the corresponding entry is present and is valid. 

tlbie PPE TLB invalidate-entry instruction.

TLBIE request A request for a TLB-entry invalidation that is generated by an SPE’s 
atomic unit and broadcast over the EIB. 

tlbsync PPE TLB-synchronization instruction.

TMCU Thermal management control unit. 

.toe A section in a CESOF object file that contains a TOE. It is generated by 
the SPU linker and is not seen by application programmers. 

TOE Table of effective-address references (EARs). It is used to resolve refer-
ences from an SPU’s address space to the PPU’s symbols. 
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TOE shadow An exact copy of a toe segment. In the PPE-ELF object, the TOE shadow 
is defined in a .data section. 

token A grant of access to the EIB. When the token manager function is 
enabled, the SBI will request a token for any memory or I/O-bus transac-
tion. After the token is granted, the SBI will send the bus request to the 
EIB.

touch To cause a cache block to be speculatively loaded. The PowerPC Archi-
tecture supports instructions that perform this function. 

transfer element Same as list element.

trap instruction An instruction that tests for a specified set of conditions. If the conditions 
of a trap instruction are met, the program interrupt trap handler is invoked. 

trip count The number of iterations in a loop. 

TS The transfer-size parameter in an MFC command. 

unified cache A cache that stores both instructions and data. 

unified register file A register file in which all data types—integer, single-precision and 
double-precision floating-point, logicals, bytes, and so forth—use the 
same register file. The SPEs (but not the PPE) have unified register files. 

unordered Said of an exception that may generate an interrupt at any time, regard-
less of the state of the interrupt-processing mechanism.

unroll See loop unrolling. 

UPC Unified Parallel C. A a parallel-programming extension to the ANSI C 
language. 

update The action, by a load or store instruction, of automatically copying the 
target address computed by the instruction into the base register used for 
the address computation. Update instructions are useful for moving repet-
itively through data structures. 

user mode The mode in which problem state software runs. See problem state. 

V Valid.

VA Virtual address. 

valid A page-table entry or TLB entry that is allocated and correctly associated 
with the object of its reference. 

vector (1) An instruction operand that consists of a set of data elements packed 
into a one-dimensional array. The elements can be fixed-point or floating-
point values. Most vector/SIMD multimedia extension and SPU SIMD 
instructions operate on vector operands. Vectors are also called SIMD or 
packed operands. (2) See interrupt vector. 
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vector/SIMD 
multimedia 
extension 

The SIMD instruction set of the PowerPC Architecture, supported on the 
PPE. Also known as AltiVec, which is a Freescale trademark. 

VIQ VSU issue queue. 

virtual address An address to the virtual-memory space, which is much larger than the 
real address space and includes pages stored on disk. It is translated 
from an effective address (EA) by a segmentation mechanism and used 
by the paging mechanism to obtain the real address (RA). The maximum 
size of the virtual-address space is 265 bytes. 

virtual memory The address space created using the memory management facilities of a 
processor. 

virtual mode The mode in which virtual-address translation is enabled. 

virtual vector A compiler construct that has no alignment constraints and can have any 
length. Compilers use virtual vectors to carry out preliminary SIMD trans-
formations.

volatile register A register designated by an ABI as unnecessary to save across proce-
dure calls. Also called a caller-save register.

VPN Virtual page number. The number of a page in virtual memory. 

VSID Virtual segment ID.

VSU Vector scalar unit. In the PPE, the combination of the VXU and FPU. 

VXU Vector/SIMD multimedia extension unit. 

W The write-through bit in a page table entry which controls the processor's 
accesses to cache and main storage. It is part of the “WIMG” bits. 

WAW A write-after-write dependency. 

way A column of a set-associative, multi-way cache, including a TLB cache. 
Compare set. 

weakly consistent 
storage order

A memory-access model in which the order of processor storage 
accesses, the order of those accesses with respect to another processor 
or mechanism, and the order of those accesses in main storage, may be 
different. 

WIMG bits Four bits in a page table which control the processor's accesses to cache 
and main storage—“W” is write-through, “I” is caching-inhibited, “M” is 
memory-coherence, and “G” is guarded. 

word Four bytes. 

workload A set of code samples that characterizes the performance of the architec-
ture, algorithms, libraries, tools, and compilers. 

WPC Write-port collision.
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wrch SPU write to channel instruction.

writeback A data-cache property that allows modified data to be written only to the 
cache, rather than also to main storage. The modified data is written to 
main storage only when the cache line is replaced. Compare write 
through

writeback flag A flag written (for example, by an SPE) to main storage that notifies 
another processor (for example, the PPE) of an event.

write through A data-cache property that requires modified data to be written not only to 
the cache but also to main storage. Compare writeback

Write With Clean A burst operation caused by a processor executing a dcbst instruction or 
a bus snoop read or clean to a modified block. It is used to tell all lower-
level caches that a copy still remains in this level, while updating memory 
or I/O.

Write With Flush A partial-block write to memory or a sub-block burst operation from the 
I/O. It is used for caching-inhibited or write-through writes from a 
processing element.

Write With Kill A burst operation used to tell all snoopers to invalidate any copies of this 
cache line in their caches, while also storing the line to memory.

X2D PowerXCell 8i logic block that converts XDR packets to DDR2 
commands.

XDR Rambus Extreme Data Rate DRAM technology. 

XIO Rambus XDR I/O (XIO) cell. 

XLAT Translate request queue.

XU Execution unit. The PPE unit that contains the FXU, LSU, and MMU.

zero-shift policy A reorganization of misaligned data in which each misaligned register 
stream is shifted to a stream offset of 0 immediately after it is loaded from 
memory. 
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Index

Symbols

.bss section, 400

.data section, 400

.spe.elf section, 409, 410

.text section, 400

.toe, 399, 400, 407, 413, 415

.toe section, 399, 400, 407, 409, 415

.toe segment, 409
__builtin_expect, 791
__SPU__, 689
_align_hint, 791
_spe_elf_image, 413

Numerics

16-bit, 61
32-bit, 61
8-bit, 61

A

A, 281, 282, 482
ABI, 398, 408
AC, 88
address range, 155
addressing, 79
addressing modes, 57, 61
advanced encryption standard, 713
AES, 713
aggregation, 656, 657, 665
aligned, 791
aligned reference, 630
alignment, 407, 733
alignment constraints, 630, 654
alignment devirtualization, 658
alignment interrupt, 255
allocation registers, 214
alpha partition, 334
AltiVec, 686, 755
ALU, 734
AOS, 630
API, 397, 398, 609
application, 29, 39, 40
application yielding, 357
argp, 406
arguments, 420
ARPN, 89, 109
array of structures (AOS), 630
arrays, 646
asynchronous event handling, 479

ATO, 108
ATO flush collision, 154
atomic access, 118, 166, 286
atomic cache, 110, 151
atomic commands, 512, 518
atomic operation, 151, 561, 585, 597
atomic synchronization, 585
atomic unit, 108, 151, 152
atomic update, 74
atomic-reservation thrashing, 616
attributes, 562
auto-SIMDization, 645
auto-SIMDizing compilers, 647
auto-vectorizing compiler, 647
auto-vectorizing compilers, 647
auxiliary information structures, 403
auxiliary vector area, 404
available to software, 121

B

B, 281, 282, 283
bandwidth, 207
bank incrementer, 218
banks, 217
barrier, 518
barrier commands, 515, 518, 697
barrier instructions, 564
barrier option, 574
basic block, 634, 649, 654, 656, 676, 700
basic-block aggregation, 656, 665
BClk, 381
beat, 138
BEI, 45
BHT, 135, 701
BIC, 45, 123, 125, 130, 261
BIC core clock (BClk), 381
BIF, 45, 161, 162, 268
BIF/IOIF0, 45
big-endian mode, 747
big-endian ordering, 48
bisled, 474
bit ranges, 31
BIU, 126, 231
block, 49, 137
blocking, 306
boundedly undefined, 97, 98
branch hint, 699, 701
branch history tables, 141
branch-and-link, 497
branch-hint instructions, 702
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branch-prediction hints, 770
branch-target buffer (BTB), 702
BRU, 302, 723, 762
BTB, 702
BTIC, 701
bubble, 765, 768
buffers, 692, 696
built-ins, 78
bundling, 675
bus interface controller, 261
bypassing the cache, 138
byte ordering, 48
byte substitution, 713
byte-shuffle, 60
ByteSub, 713

C

C, 29, 92, 98, 151, 188, 195, 281, 282
C/C++ language extensions (intrinsics), 754
cache, 51, 54, 181, 183
cache block, 137, 147
cache hint, 770
cache invalidation, 182
cache line, 133
cache touch, 148
cache writebacks, 193
cacheable, 568
cache-line lock, 173
cache-line size, 52, 54
caching inhibited, 562, 568
caching-inhibited (I bit), 91
callee, 404
caller, 404, 497
cast out, 139
CBEA, 29, 39
CBEA embedded SPE object format (CESOF), 408
CCF, 381
CCM, 383
Cell Broadband Engine Architecture (CBEA), 29, 39
Cell Broadband Engine interface (BEI), 45
CESOF, 408
CESOF object layout, 415
CESOF wrapping layer, 412
CFG_TO, 435
channel access facility, 362
channel count, 447
channel instructions, 452
channel interface, 46
channels, 74, 447, 449
checkstop, 354
CIDR, 155
CIU, 126, 133, 136, 144, 150
CL, 101
class ID, 154, 156, 158, 451, 463, 521, 770

ClassID Register (CIDR), 155
clear a reservation, 586
clearing pending events, 475
clock domains, 381
code overlays, 691
code partitioning, 626
coherence, 44, 188
coherence domain, 188
coherence granularity, 141
coherency block, 193
columns, 217
combined snoop response, 275
combining, 190
command, 514
command issue, 521, 523
committed, 137
common subexpression elimination, 676
compatibility with PowerPC code, 740
compiler, 647
compiler directives, 791
compiler optimizations, 767
complete, 58, 77
completion, 522
composite intrinsics, 78
configuration ring, 121, 123, 208, 230, 232
configuration-ring settings, 435
congruence class, 93, 109, 168, 183
constant folding, 675
context, 357
context save area (CSA), 358
context switch, 357
context synchronizing, 241, 250, 278
control plane, 42
conversion of data length, 669
converting scalar data, 630
core clock, 381
Core clock (NClk), 867
core clock frequency (CCF), 381
core clock multiplier (CCM), 383
core stop safety, 434
CORE_CLK, 381
count register, 56
CPI, 710, 711, 715, 717
CPL, 267
CR, 56, 680
CR6, 680
critical quadword, 145
critical section, 610
critical-sector first, 138
CSA, 358
CSI, 723, 768
CTR, 56
cumulative ordering, 577
curly braces style, 686
current priority level, 267
cycle, 41, 42, 45
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D

DABR, 337, 346
DABRX, 337, 346
DAR, 244, 252, 253, 255
data, 41
data beat, 138, 145
data effective-to-real address translation (D-ERAT), 735
data ERAT, 83, 150
data hazard, 56, 763
data length, 668
data plane, 42
data segment interrupt, 252
data storage interrupt, 251
data stream, 147, 148
data types, 57, 61, 62, 649, 754, 786
data-level parallelism, 59
data-plane, 42
DCache, 135, 137
dcbf, 144, 146, 149, 196, 210, 212, 251, 586
dcbst, 146, 148, 149, 212, 251, 586
dcbt, 139, 146, 147, 148, 149, 210
dcbtst, 146, 147, 148, 149, 210, 586
dcbz, 144, 145, 146, 251, 586
deadlock, 599
DEC, 389
decrementer interrupt, 257
decrementers, 389, 390, 454, 489, 506
demand fetch, 138
demand-paging, 79
denormals, 62, 70
dependence, 646, 648, 650, 676
dependencies, 646, 676, 768, 769
D-ERAT, 735
DERR, 114, 118, 120, 250, 286
development tools, 29, 39
device memory, 567
devirtualization, 658, 663, 666, 671, 673
DFQ, 135, 150
DigFiltDly, 435
digital thermal sensors (DTSs), 432
DIQ, 767
direct memory access, 41
direct memory access controller, 75
directives, 621, 674, 791
disableable, 240
dispatch block, 765
displacement, 57
distributed-memory processing, 619
divide and conquer, 613
DLQ, 135, 150
DMA, 41, 513
DMA buffers, 697
DMA command parameter registers, 523
DMA commands, 74, 515, 516, 525
DMA data transfer commands, 74
DMA list, 518

DMA queue, 525
DMA transfer, 41, 513, 524, 529
DMAC, 75
DMA-list command, 536
DMA-list command stall and notify event, 492
DMA-list command stall-and-notify event, 508
DMA-list commands, 518
documentation conventions, 31
dominant-shift policy, 661
double buffering, 692, 693
double-precision (IEEE mode) minimum and maximum 

values, 72
DP, 782
DPFE, 135, 136, 148, 150
DR, 83, 251, 308
DRAM memory, 45
DSI, 96, 112, 116, 118, 120, 244, 283, 286, 288, 

292, 293
DSISR, 244, 252, 253, 254, 307
DTS, 432
dual-issue, 698, 699, 780
dynamic branch prediction, 705, 707
dynamic linking, 418
dynamic thermal-management registers, 438

E

E, 166, 167
EA, 53
ea_value, 414
eager shift, 660
eager-shift policy, 660
EAH, 537
EAR, 400, 413
ECC, 45, 54, 66, 142
effective address, 47, 53, 79
effective address reference (EAR) structure, 400, 413
effective-address space, 46
effective-to-real address translation, 135
EIB, 44, 135
EIB possible livelock detection interrupt, 275
eieio, 565, 575, 576
elem_slide, 659
elem_splat, 659
element interconnect bus, 44, 113, 261, 521, 619
ELF, 408
ELF header, 398
ELF object files, 398
enableable, 240
endian order, 32, 48
endian support, 747
entry point, 401, 405
environment note, 400
envp, 406
ERAT, 80, 81, 83, 135
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error handler, 239
error-correcting code, 350, 699
errors, 525
ESID, 85
even pipeline, 698
event-control channels, 472
event-handling protocols, 478, 482
events, 444, 471, 472, 793
exception handler, 239
exceptions, 239
executables, 397
execution order, 561, 568
execution synchronizing, 566
external access, 568, 569
external events, 471
external interrupt, 254
external interrupt controller, 296
external interrupts, 265
external time-base sync mode, 387

F

MSR, 767
fence, 515
fence option, 574
fenced commands, 697
fetch, 779, 780
fetch group, 699, 780
fields, 31
FIFO, 146, 541, 762
FIR, 267, 281
fixed-point, 53, 56, 57
FlexIO, 45, 161
FlexIO_0, 161
FlexIO_1, 161
FLIH, 495, 496
floating-point unavailable interrupt, 257
floating-point unit, 303
flush condition, 765
flush point, 137
flushes, 768
Fmax, 383
for loop construct, 645
fork and join, 613
fork and join model, 622
FP, 308
FPR, 55
FPSCR, 56, 69, 379, 680, 681
FPU, 53
frequency, 383
fres, 746
fscrrd instruction, 71
fscrwr instruction, 71
function-inlining, 700
FXU, 53

G

G, 88, 91
garbage collector, 507
gather, 648
gather and scatter, 518
GCD, 657
general-purpose registers, 55
generic intrinsics, 63, 78
get, 516, 517
getb, 517
getbs, 517
getf, 517
getfs, 517
getl, 517, 518
getlb, 517
getlf, 517
getllar, 518, 598
gets, 517
GPRs, 55, 69
granularity, 141, 587
graphics rounding mode, 62, 685, 752
guaranteed latency, 300
guarded, 562
guarded (G bit), 91
H, 88, 168, 169, 170, 171, 281, 282, 283

H, I, J, K

hardware environment, 44
harvest, 364
harvesting an SPE, 364
hashed page table, 81, 87
hazard, 138, 139, 699, 763
HBR, 704
hbrp, 783
hcall, 334
HDEC, 332, 337, 389
header, 400
heavyweight sync, 564
HID, 113, 256, 337
high, 30
hint (H) bit, 170, 173
hint for branch, 701
hint for branch (HBR) instructions, 704
hint stall, 703
hint-for branch instructions, 702
hint-trigger address, 701, 702
HL, 167
hoist, 703
hrfid, 336
HRMOR, 337, 340
HSPRG0, 337
HSPRG1, 337
HSRR0, 336
HSRR1, 336
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HTAB, 87
HTABSIZE, 104
HV, 293
HW, 167
hypervisor, 248, 293, 332, 743
hypervisor call, 334
hypervisor decrementer interrupt, 258
hypervisor interrupts, 295
hypervisor state, 306, 336
I, 91, 195
I/O access, 188
I/O address, 164
I/O address translation, 176
I/O address translation interrupt, 274
I/O architecture, 161
I/O device, 181
I/O device interrupt, 273
I/O devices, 45, 67, 91, 121, 126, 161, 165, 181
I/O Exception Status Register (IOC_IO_ExcpStat), 176, 

181
I/O exceptions, 180
I/O identifier, 188
I/O interface considerations

memory-mapped I/O interface operations, 92
I/O interface controller (IOC), 32, 162, 203
I/O interfaces, 45, 161
I/O operation, 188
I/O page table (IOPT), 171
I/O segment table (IOST), 169
I/O Segment Table Origin (IOC_IOST_Origin) register, 

166, 351
I/O storage model, 188
I/O unit, 188
I/O-address space, 351
I/O-hosting partition, 334
I0, 767
I1, 767
IBuf, 134, 302, 762
ICache, 135, 136
icbi, 138, 146, 147, 251
ID, 48, 83, 85, 89, 97, 99, 105, 119, 181, 206, 266, 

268
IE, 456
IEEE 754, 70, 685
I-ERAT, 83
IFAR, 303
if-then-else statements, 646
IGP, 270
IIC, 240, 243
ILP, 650
ILP32, 616
immediate operand, 702
imprecise interrupt, 240
inbound, 190
inbound access, 188
incoming IOIF, 194

index, 58, 83, 87, 93
index vector, 648
indirect, 456, 471, 476
inexact result, 680
infinities, 62
initial machine state, 401, 405
initialization, 401, 420
inline assembly, 791
inlining, 700
inner loops, 656
in-order, 54, 59, 561, 568, 699, 780
instruction and data relocate mode, 337
instruction buffer, 136
instruction ERAT, 83
instruction fetch, 779, 780
instruction runout, 783
instruction scheduling, 675
instruction segment interrupt, 254
instruction storage interrupt, 253
instruction types, 58, 61, 62
instruction-fetch buffer, 675
instruction-fetch starvation, 675
internal interrupt controller (IIC), 240
internal time-base sync mode, 384
interprocessor interrupt (IPI), 242, 265, 270
interrupt, 239, 248
interrupt address save/restore channels, 477
interrupt controller (IIC), 243
interrupt generation port (IGP), 270
interrupt handler, 239, 495
interrupt handling, 245, 501
interrupt latencies, 293
interrupt packet, 195, 265, 272, 289
interrupt pending port (IPP), 266
interrupt priorities, 291
interrupt protocol, 495
interrupt registers, 244, 266, 282
interrupt service routine, 239
interrupt stack, 504
interrupt vector, 245, 246
Interrupts, 194, 239, 291, 479
intervention, 142, 166, 212
intrinsics, 62, 63, 754
invalid SIMDization, 650
invalidation, 182, 186
inverted mapping, 79
inverted page table, 79
IOC, 162, 203
IOC base address registers, 174
IOC_BaseAddr0, 174
IOC_BaseAddr1, 174
IOC_BaseAddrMask0, 174
IOC_BaseAddrMask1, 174
IOC_IO_ExcpStat, 176, 181
IOC_IOST_Origin, 166, 351
IOID, 165, 166, 173
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IOID field, 171
IOIF, 161
IOIF device, 181
IOIF in bus, 194
IOIF out bus, 194
IOIF protocol, 161
IOIFs, 161
IOPT, 171
IOPT base RPN field, 169
IOPT cache, 183
IOST, 169
IOST cache, 181
IOST origin, 167
IOST size, 33, 167
IPC, 723, 748
IPFQ, 133, 135, 150
IPI, 242, 265, 270
IPP, 266
IQ0, 522
IQ1, 522
IQ2, 522
IR, 83
IS, 456
IS field, 744
ISA, 76, 771
ISEG, 254
ISI, 253
ISRC, 268, 270
issue, 523, 530, 699
issue rules, 760
isync, 566
IU, 52, 135
Java-mode, 680
key, 348, 509
Kp, 86, 101, 251
Ks, 86, 101, 251

L

L, 86, 88, 91
L1, 135, 136
L2, 135, 141
large pages, 88, 108
latency, 237, 300, 723, 748
lazy-shift policy, 660
ld, 724, 738
ldarx, 585
ldbrx, 740, 741
Le, 482
LEAL, 536, 537
least-recently used, 95, 110, 138
least-significant, 30
length conversion, 669
length conversions, 658, 662, 671
length devirtualization, 663, 666

level-1 cache memory, 136
level-2 cache memory, 141
LG, 281, 282
lightweight sync, 564, 565
linear thermal diode, 432
linkable objects, 410
linked data structure traversal, 508
linked list, 300
linker, 398, 400, 407, 409, 414, 419
list element, 75, 536
list size, 461
list stall-and-notify, 466
list transfer size, 537
list-element effective address low, 537
little-endian order, 58
livelock, 580, 599
LMQ, 135
lmw, 255, 724
lnop, 704, 776
load combining, 190
load-combining, 565
loader, 398, 409, 419, 421
loader parameters, 421
loading, 397
local Cell/B.E. processor, 213
local storage address, 515
local storage context save area (LSCSA), 358
local storage domains, 46
lock, 143, 152, 154, 158, 166, 167, 168, 173, 468, 

473, 485, 511, 518
locked, 158
lock-line reservation lost event, 485, 511
logical partition, 295, 331, 743
logical partitioning, 331
Logical Partitioning Control Register (LPCR), 743
loop aggregation, 656, 665
loop bounds, 645, 664
loop collapsing, 676
loop distribution, 676
loop fusion, 676
loop interchange, 676
loop rerolling, 676
loop unroll-and-pack, 676
loop unrolling, 676, 700
loop versioning, 676
loopback, 275
loop-carried dependencies, 676
looped-back operations, 173
loop-level aggregation, 657
loops, 656, 676
low, 30
LP, 86, 88, 281, 282
LP64, 616
LPAR, 258, 295, 743
LPCR, 337, 743
LPES, 341
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LPID, 342
LPIDR, 336
LR, 55
Lr, 482
LRU, 95, 110, 138
LRU algorithm, 183
LS, 46, 66
LS addresses, 697
LS mappings to main storage, 567
LS memory attributes, 567
LSA, 127, 515
LSCSA, 358
LSU, 52, 135, 748
LTS, 536, 537
lvlx, 718
lvrx, 718
lwarx, 585
lwsync, 565, 575, 576

M

M, 88, 91, 115, 171, 188, 195, 281, 282, 283
m, 81
machine check, 293, 354
machine check interrupt, 249
Machine State Register, 334
mailboxes, 74, 469, 513, 539
main memory, 576
main storage, 41, 46, 47
main thread, 49
mangle, 399
mangled, 399
many-to-one signalling, 552
mapping PPE to SPEs, 684
maskable, 240
master and subordinate, 613
master thread, 622
MaxSlowModeNclkDivider, 383
Mb, 482
MC, 329, 723
ME, 293, 337
Me, 482
mediated external exception, 276
mediated external exception mode, 344
mediated external interrupt, 276, 279
mediated interrupt (MER), 743
memory, 40
memory banks, 216
memory coherence, 188
memory coherence (M bit), 172
memory coherency (M bit), 91
memory interface controller, 45
memory management unit, 53, 338, 419
memory stream, 637, 658
memory-channel 0, 218

memory-channel 1 tokens, 218
memory-coherence and cache-coherence, 44
memory-coherent, 562
memory-mapped, 32
memory-mapped I/O (MMIO), 32, 121
MER, 345, 743
MERSI, 142
MF, 281, 282
MFC Class ID channel, 463
MFC Command Opcode channel, 463
MFC command queue, 515
MFC Command Tag Identification channel, 462
MFC commands, 514
MFC Effective Address High channel, 460
MFC Effective Address Low or List Address channel, 460
MFC interrupts, 271, 280
MFC Local Storage Address channel, 459
MFC multisource synchronization facility, 455, 563, 577, 

578
MFC Multisource Synchronization register, 578
MFC pause state, 432
MFC proxy command queue, 528
MFC Read Atomic Command Status channel, 468, 599
MFC Read List Stall-and-Notify Tag Status channel, 466
MFC Read Tag-Group Query Mask channel, 464
MFC Read Tag-Group Status channel, 466
MFC SPU command queue available event, 492, 510
MFC synchronization commands, 572
MFC tag-group management channels, 463
MFC Transfer Size or List Size channel, 461
MFC Write List Stall-and-Notify Tag Acknowledgment 

channel, 467
MFC Write Multisource Synchronization Request channel, 

455, 580
MFC Write Tag Status Update Request channel, 464, 

465
MFC Write Tag-Group Query Mask channel, 464
MFC_Cmd, 492
MFC_EAH, 460
MFC_EAL, 460
MFC_LSA, 459
MFC_MSSync, 578
MFC_RdAtomicStat, 468, 598, 599
MFC_RdListStallStat, 466
MFC_RdTagMask, 464
MFC_RdTagStat, 466, 531
MFC_SDR, 104
MFC_Size, 461
MFC_TagID, 462
MFC_WrListStallAck, 467
MFC_WrMSSyncReq, 455, 580
MFC_WrTagMask, 464
MFC_WrTagUpdate, 464
mfceieio, 518
mfcsync, 518, 572
MIC, 45
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MIC auxiliary trace buffer full interrupt, 273
MiClk, 381
microarchitecture, 617
microcoded instructions, 734
microthreads, 507
MIMD, 619
minimum and maximum values

double-precision (IEEE mode), 72
single-precision (extended-range mode), 71, 72

MinStopPPE, 435
MinStopSPE, 435
misaligned data, 648
misalignment, 658
misalignments, 664
mispredicted branches, 699
miss handler, 624
mixed-mode SIMDization, 673
MMIO, 32, 121
MMU, 53, 135
most-significant, 30
MPI, 619
Ms, 482
MSb, 30
MSR, 293, 336
MT, 218, 219
mtmsr, 336, 728
mtspr, 97, 98, 102, 155, 256, 319, 388, 390, 728
multibuffering, 692, 695
multiple events, 481
multiplies, 70, 771
multiprocessing, 619
multisource synchronization, 455
multisource synchronization event, 483, 580, 582, 584
multithreading, 618
mutex lock, 512, 610
mutual exclusion, 610

N

N, 86, 88, 101, 104, 105, 440
n, 81
NaNs, 62, 70
NClk, 867
NCU, 126, 133, 135, 136
noncacheable unit, 207, 231
nonvolatile variables, 697
no-op, 391, 743
no-op forms, 743
nop, 306, 320
not-a-number, 70
notation, 30
NPC, 420
NPPT field, 169
NUMA, 340

O

object files, 398
object module, 397
object-file formats, 397
odd pipeline, 698
offset, 100, 124
OGSA, 620
one-to-one signaling, 553
OpenMP, 621, 674
operating system, 29, 39, 49
optional PowerPC instructions implemented, 746
OR mode, 552
order, 561, 568, 697
order of storage, 189
ordered, 561
OS, 334
out of order, 561
outbound access, 188
outgoing IOIF, 194
out-of-order execution, 521
overlay, 409, 412
overwrite mode, 552

P

p, 81, 98
pack, 671
packed data, 649
packed operands, 59, 629
page, 79
page fault, 87
page protection (PP) field, 172
page sizes, 76
page table, 79, 87, 108
page table entry (PTE), 88
page tables, 79
page-size (PS) field, 170
paging, 79
parallel for construct, 674
parallel memory operations, 217
parallel programming, 609
parallel_reduct, 659
parallel-array form, 631
parallelism, 59, 611, 612, 613, 649
parallelization, 561
parenthesis style, 686
parity, 52, 53, 105, 109, 119, 142
partial stores, 663
partial-copy operations, 675
partition manager, 626
partitions, 331
path length, 705
PC, 40, 507
performance, 42, 391, 539
performance counters, 444
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performance monitor interrupt, 276
performance monitoring, 443
performance monitoring events, 444
performance simulation, 443
permute, 60
pin TLB entries, 208
pinned, 362
pipeline, 77, 698, 762, 771, 780
pipeline 0, 698
pipeline 1, 698
pipeline stages, 59, 762
pipelined hint mode, 704
PIR, 336
PLL, 383
PLL multiplier, 383
PLL multiplier setting, 383
PLL reference clock (PLL_REFCLK), 383
PLL_REFCLK, 383
PLLmultiplier, 383
plug-ins, 399, 401
pointer arithmetic, 646
pointer chasing, 300
polling, 239, 478
POR, 121, 123, 208, 230, 231, 248, 334
POSIX, 512, 588, 627
POSIX threads library, 627
power and thermal management, 429
power-management states, 429
power-on reset (POR), 121, 123, 230, 231, 248, 334
PowerPC, 29, 39
PowerPC 970, 51
PowerPC Architecture, 29, 39, 51
PowerPC compatibility, 740
PowerPC extensions, 740
PowerPC instructions, 746
PowerPC instructions not implemented, 747
PowerPC processing storage subsystem, 444
PowerPC Processor Element (PPE), 51
PowerPC processor storage subsystem (PPSS), 54
PowerPC processor unit, 52, 444
PP, 81, 88, 101, 112, 118, 171
PPE, 51
PPE Pause (0) State, 431
PPE registers, 56
PPE SPU channel access facility, 362
PPSS, 54, 135
PPU, 52, 135
pragma, 609
precise interrupt, 240
precise trap, 71
precision, 685
predicate, 63, 511, 681, 707, 759
predicate intrinsics, 63
predication, 700
predictive commoning, 676

preemptive context switch, 357
preferred scalar slot, 77, 718
preferred slot, 77
prefetch, 54, 66, 68, 92, 126, 133, 134, 135, 136, 

137, 142, 144, 145, 148, 150
prefix, 63
prependW, 659
primary partition, 334
primitive, 561, 586, 587, 590
priorities, 291
privilege 1, 128, 346, 347
privilege 2, 128, 346
privilege 3, 128, 346
privilege states, 305
privileged attention event, 364, 484, 512
privileged state, 306, 336
privilege-state programming, 29
problem state, 306, 336
problem-state programming, 29
problem-state registers, 56, 69
process-management primitives, 397
profiling, 507
program header, 398
program interrupt, 256
program order, 54, 562
programming, 46
programming-environment overview, 29
PRV, 121
PS, 170
pseudo-LRU, 95, 110, 138
PT_NOTE, 400
PTE, 88, 108
PTE groups (PTEGs), 89
PTEG, 89
push, 142, 234
put, 516
putb, 516
putbs, 517
putf, 516
putfs, 516
putl, 517, 518
putlb, 517
putlf, 517
putllc, 518, 598
putlluc, 518, 598
putqlluc, 518, 598
puts, 516

Q

QoS, 45, 237
quadword, 61
quality of service, 237
Qv, 483
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R

R, 81, 88, 92, 98, 104, 115, 117, 151
RA, 53
RAG U, 215
RAGs, 203, 206
RAID, 206
RAM, 203
range hit, 156
Range Mask Register (RMR), 155
Range Start Register (RSR), 155, 156
RAS, 125
rate decrementer, 220
RAW, 763, 766, 769
RC, 114, 134, 145, 150
Rc, 369, 734
RC machine, 152, 154
RC update, 151
RC4, 717
rchcnt, 448, 452
RClassID, 521
RclassID, 99, 154, 155, 156, 157, 463
rdch, 452
real address, 100
real address space, 121
real addressing mode, 80, 100, 338
real addressing mode facility, 339
real mode, 80, 83, 100, 339
Real Mode Limit Select (RMLS) field, 743
real mode offset, 339
real-mode address boundary facility, 117
record bit, 734
recording, 734
recording forms, 680, 682
recoverable interrupt, 293
reduct, 659
RefDiv, 383
referencing registers, 31
refill window, 675
register initialization, 402, 405
register stream, 637, 658
registers, 56, 69
related publications, 29
relocation, 79
replacement class ID, 154, 463, 521
replacement management table (RMT), 99, 111, 154, 

158
replacement-management tables, 54
requesters, 45, 203, 204, 206
reservation, 585
reservation clearing, 586
reservation granule, 585
reserved, 121, 124
reserved regions, 32
resolve, 323, 348
resource allocation groups (RAGs), 203, 206
resource allocation ID, 206

resource allocation management (RAM), 203
resources, 203
restrict, 791
retire, 77
revision log, 33
RI, 293
RLD, 135, 136
RMLR, 100, 117
RMLS, 341, 743
RMO, 344
RMOR, 337, 339
RMQ, 135
RMR, 155
RMSC, 100, 101, 341
RMT, 99, 111, 154, 158
round towards zero, 70
rounding, 70, 752
rounding mode, 62
rows, 217
RPN, 169, 171, 172
RPN field, 171
RSR, 155, 156
runout, 783
runtime alignment, 664
runtime environment, 49
runtime loader, 419, 421
runtime partition manager, 626

S

S, 120, 172, 189, 191, 195, 281, 282, 283, 468
S1, 482
SA0, 522
SA1, 522
SA2, 522
saturation, 680
SBI, 113, 283, 522
scalar, 57, 65, 76, 77
scalar loads and stores, 716
scatter-gather, 75, 300, 518, 536, 648
scheduling, 675
SCN, 70
sdbrx, 740, 742
sdcrf, 153, 521
sdcrt, 153, 521
sdcrtst, 153, 521
sdcrz, 120, 153, 288, 521
SDR, 81, 89, 104
SDR1, 127, 337
SE, 281, 282
section header, 398
sections, 398, 399
segment, 79
segment buffer, 79
segment lookaside buffer, 287
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segmentation, 79
segments, 398, 410
select-bits (selb) instruction, 700
select-bits intrinsic, 700
semaphore, 512
send-signal commands, 518
SenSampTime, 435
serialization, 600
set, 93, 108
SF, 281, 282
SFP, 70
SFS, 70
SFX, 70
shared data structures, 616
shared-memory processing, 619
shift, 659, 660, 661
SHT_NOTE, 400
signal, 420, 551
signal notification, 74, 551
signal type, 427
signal-notification 1 available event, 486
signal-notification 2 available event, 487
signal-notification channels, 454, 551
signals, 74, 444, 793
SIMD, 59
SIMD operands, 59, 629
SIMD operations, 60
SIMD programming, 629
SIMDization, 61, 629, 647
SIMDization epilog, 640
SIMDization phases, 654
SIMDization prolog, 640
SIMDize, 630
single instruction multiple data, 629
single-instruction, multiple-data (SIMD) vectorization, 59
single-ported, 66, 69
single-precision (extended-range mode) minimum and 

maximum values, 71, 72
single-step operation, 420
skipW, 659
SLB, 53, 76, 135
SLB entry (SLBE), 85
SLB mapping, 107, 108
SLB_ESID, 106
SLB_Index, 106
SLB_Invalidate_All, 107
SLB_Invalidate_Entry, 107
SLB_VSID, 106
SLBE, 85
slbia, 84, 86, 106, 731
slbie, 84, 106, 731
slbmfee, 86, 106, 732, 737
slbmfev, 86, 106, 732, 737
slbmte, 86, 106, 732, 737
SLIH, 495
slot 0, 521

slot 1, 521
slot alternation, 522
slow mode, 45, 383
slow state, 383
slow-mode dividers (SMDs), 383
SLS, 70
SMD, 383
SMM, 48, 76
SMP, 44, 54, 162
Sn, 483
sndsig, 518
sndsigb, 518
sndsigf, 518
snoop, 54
snoop-write queue, 578
SNP, 135, 136
SO, 191, 195
SO field, 171
SOA, 630
software cache, 621, 623
software monitor, 610
southbridge, 242
SP, 406, 420, 497, 498, 782
SPE, 65
SPE interrupts, 280
SPE loading, 397
SPE LS memory attributes, 567
SPE registers, 69
SPE thread, 49
spe_program_handle data structure, 411
specific intrinsics, 63, 78
SPE-ELF environment note, 400
SPE-ELF name note, 401
SPE-ELF objects, 399
spin lock, 362, 588, 591, 600, 602, 610
splat, 62, 749
SPR, 86, 256, 266, 382, 728
SPU, 65
SPU channel access facility, 362
SPU code performance, 391
SPU decrementer event, 489, 506
SPU event-management channels, 453
SPU floating-point unit (SFP), 70
SPU Instruction Set Architecture (ISA), 76
SPU interrupts, 271
SPU ISA, 76, 771
SPU Mailbox Status register, 547
SPU pause state, 432
SPU Read Decrementer channel, 455
SPU read event mask, 476
SPU Read Event Mask channel, 476
SPU read event status, 474
SPU Read Inbound Mailbox, 547
SPU read inbound mailbox available event, 491, 511
SPU Read Inbound Mailbox channel, 547
SPU Read Machine Status channel, 456
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SPU Read State Save-and-Restore channel, 457
SPU Signal Notification 1 channel, 553
SPU Signal Notification 2 channel, 553
SPU signalling channels, 454
SPU signal-notification available event, 511
SPU target definition, 689
SPU Write Decrementer channel, 390, 454
SPU write event acknowledgment, 475
SPU write event mask, 475
SPU Write Event Mask channel, 475
SPU write outbound interrupt mailbox available, 489
SPU Write Outbound Interrupt Mailbox channel, 542
SPU write outbound mailbox available event, 488
SPU Write Outbound Mailbox channel, 542
SPU Write State Save-and-Restore channel, 456
spu_env structure, 400
SPU_Mbox_Stat, 547
spu_mffpscr intrinsic, 71
spu_mtfpscr intrinsic, 71
spu_program symbol, 411
spu_program_handle data structure, 415
SPU_RdDec, 390, 454, 455
SPU_RdEventMask, 476
SPU_RdEventStat, 474
SPU_RdInMBox, 491, 547
SPU_RdMachStat, 456
SPU_RdSigNotify1, 553
SPU_RdSigNotify2, 553
SPU_RdSSR0, 457
SPU_WrDec, 390, 454
SPU_WrEventAck, 475
SPU_WrEventMask, 475
SPU_WrOutIntrMbox, 489, 542
SPU_WrOutMbox, 488, 542
SPU_WrSSR0, 456
SPU-ELF executable object, 415
spuid, 406
SSC, 70
SSE, 29
stack frame, 402, 406
stack initialization, 402, 406
stale, 139, 350, 474, 483, 546
stall, 771
stall points, 765
stallable, 703
stall-and-notify flag, 466, 492
stalling, 306, 478
stalls, 768
starvation, 675
static branch prediction, 141, 705
static linking, 419
statically built, 141, 332, 408, 413
status, 525
stdcx, 585
sticky bit, 71
stmw, 255, 724, 733, 737

stop-and-signal, 420
storage, 32, 41, 46
storage access, 561
storage alignment, 733
storage barriers, 513
storage control attributes, 91
storage domains, 46
storage model, 91, 188, 561
storage order, 172, 189
storage-control attributes, 562
store combining, 190, 565
STQ, 135, 136
stream, 615, 637
stream offset, 658
streams, 658
stream-shift operations, 637
stride, 646, 654
stride-one accesses, 646
stride-one memory accesses, 654
strongly ordered transfer model, 695
structure of arrays (SOA), 630
stswi, 255, 725, 738
stswx, 255, 725, 738
stvlx, 663, 718, 748, 752
stvrx, 663, 718, 748, 752
stwcx, 142, 152, 251, 252, 255, 323, 585, 587, 597, 

598, 725, 766, 768
subword arithmetic, 675
subword arithmetic operations, 674
subword arithmetic optimizations, 674
subword data type, 674
superscalar, 617, 618
supervisor mode, 29
supervisor state, 43, 81, 336
SXU, 66
symbol tables, 398
symbols, 399
symbols used, 31
symmetric multiprocessing, 42, 44, 162
sync, 564, 575, 576
sync modes, 384, 387
synchronization, 455, 561
synchronization commands, 515, 518, 572
synchronization instructions, 570
synchronization primitives, 587
synchronization variables, 616
synchronizing, 241
synchronizing events, 615
synchronous event handling, 478
synergistic memory management unit, 158, 286, 289
Synergistic Processor Element, 29, 39, 65, 133, 513
synergistic processor unit, 65, 513
system, 29
system call interrupt, 258
system configurations, 162
system error, 354
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system error interrupt, 260
system memory, 232, 397, 567
system reset interrupt, 248
system storage, 48, 75

T

T, 268, 281, 282, 283
table lookup, 89, 713
table lookup (tablewalk), 89
table walk, 89
tag group, 48, 463, 519, 532, 572, 573
tag group ID, 74
tag ID, 74, 463
tag-group dependencies, 520
tag-group status update event, 494, 507
targets, 291
task, 49, 611
TB, 337, 382
TBEN, 383
TBR, 382
TClassID, 463
TClassID0, 522
TClassID1, 522
TClassID2, 522
TE, 188, 190
text segment, 576
Tg, 483
thermal management, 429
thermal management interrupt, 263
thermal overload, 433
thermal registers, 435
thermal sensor interrupt registers, 436
thermal sensor status registers, 435
thermal-management control registers, 438
thermal-management control unit (TMCU), 432
thermal-management stop time registers, 438
Thermal-Management Throttle Point register, 438
Thermal-Management Throttle Scale register, 438
thrashing, 616
thread, 49
thread library, 627
thread model, 40, 49
threads, 56, 618
throughput, 300, 723, 748
ticks, 381
time base, 381
Time Base Register (TB), 382
Time Base Register (TBR), 382
time-base enable (TBEN), 383
time-base frequency, 381, 383
timebase_mode, 384
Timebase_setting, 384
time-of-day, 389
time-sharing, 332

TIS, 408
TKM, 203, 213
TLB, 53, 76, 770
TLB hit, 87, 95, 111
TLB invalidation, 743
TLB miss, 80, 87, 89, 93, 95
tlbie, 743
TLBIE request, 117
tlbiel, 743, 745
tlbsync, 564
Tm, 482
TMCU, 432
TOC, 402, 623
TOE, 413
TOE shadow, 415
token, 203, 522
token available latches, 214
token manager (TKM), 203, 213
token manager interrupt, 276
token-available latch, 220
tokens, 208
tool interface standard (TIS), 408
touch, 137
trace array, 444, 445
trace interrupt, 259
traditional vector processor, 629
transfer class ID, 463, 521, 522
transfer size, 461
trap instruction, 256
triangle subdivision, 632
trip count, 643, 645, 656
truncation, 70
TS, 465
U, 468

U, V, W

unaligned loads, 718
unaligned stores, 718
unallocated RAG, 214, 215
unified cache, 44, 51
unified register file, 69
unordered, 192
unpack, 671
unroll, 78, 287, 617, 620, 654, 676
unrolled loops, 656
unused tokens, 220
UPC, 609, 619
update, 58, 62, 74
user mode, 306, 336
user state, 306, 336
V, 86, 88, 169, 170, 174, 268, 351
VA, 54
valid, 86, 88, 107, 108, 145, 149, 170
valid SIMDization, 652
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vector, 59, 629
vector data types, 786
vector literals, 63, 786
vector multimedia extensions, 51
vector operands, 59
vector token, 63, 754
vector types, 62, 754
vector/SIMD multimedia extension instruction set, 59, 

748
vector-across form, 630
vectorization, 61
vectorizing compilers, 647
VIQ, 764
virtual address, 54, 81, 94
virtual channels, 188
virtual memory, 79
virtual page number, 88
virtual vector, 654, 655, 673
vload, 659
volatile register, 381, 496, 497, 504
volatile variables, 697
vop, 659
vpack, 659
VPN, 87, 105, 115
VRs, 56
VRSAVE, 56, 680
VSCR, 56, 680
vshiftpair, 659
vshiftstream, 659
VSID, 85, 93, 105
vsplat, 659
vsplice, 659
vstore, 659
VSU, 53
vunpack, 659
VXU, 53, 59, 242, 247, 260, 302, 303, 308, 329, 

673, 748

VXU unavailable interrupt, 260
W, 88, 91, 115
wait on external event, 474
watchdog timer, 508
WAW, 139, 763, 766
WAW dependencies, 769
way, 93, 108
weak ordering, 91
weakly consistent storage order, 91, 561
weakly ordered transfer model, 696
while loop construct, 645
WIMG bits, 91, 101
word, 30
workload, 331, 613, 627, 709
WPC, 770
WPC collisions, 770
wrch, 448, 452
writeback, 144, 193, 542, 585, 728, 782
writeback DMA command, 542
write-through, 52, 88, 91, 137, 562, 567

X

XDR, 45, 208
XER, 56
XLAT, 135, 136, 150
XU, 303

Z

zero, 70
zero-shift policy, 659, 660
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