Software Development Kit for Multicore Acceleration
Version 3.1

Programming 'lutorial

Version 3.1

<|lI!

SC33-8410-01

Software Development Kit for Multicore Acceleration
Version 3.1

Programming 'lutorial

Version 3.1

<|lI!

SC33-8410-01

Note
FBefore using this information and the product it supports, read the information in|‘Notices” on page 159

Edition notice

This edition applies to the version 3.1, release 0 of the IBM Software Development Kit for Multicore Acceleration
(Program number 5724-S84) and to all subsequent releases and modifications until otherwise indicated in new
editions.

© Copyright International Business Machines Corporation, Sony Computer Entertainment Incorporated, Toshiba
Corporation 2005, 2008

Preface

About this book

This tutorial is written for programmers who are interested in developing
applications or libraries for the Cell Broadband Engine™ (Cell/B.E.). It is not
intended for programmers who want to develop device drivers, compilers, or
operating systems for the Cell Broadband Engine.

The descriptions and examples in this tutorial are from the Software Development Kit
for Multicore Acceleration, Version 3.0, and Version 3.1. The examples are chosen to
highlight the general principals required for Cell Broadband Engine programming,
so that an experienced programmer can apply this knowledge to other
environments.

Who should read this book

The document is intended for system and application programmers who wish to
develop Cell Broadband Engine applications.

Prerequisites

It is assumed that you are an experienced C/C++ programmer and are familiar
with the basic concepts of single-instruction, multiple-data (SIMD) vector
instruction sets, such as the PowerPC® ® Architecture Vector/SIMD Multimedia
Extensions, Intel® ® MMX"", SSE, 3DNOW!, or x86-64 instruction sets.

It is also assumed that you have the Software Development Kit (SDK) for
Multicore Acceleration, which includes a Cell/B.E. specific, 64-bit PowerPC Linux®
operating system, SDK code examples, and the IBM® Full System Simulator for
Cell/B.E.

Related documentation

The following is a list of reference and supporting materials for the Cell Broadband
Engine. Additional documentation is available in the IBM Systems Information
Center. The information center provides you with a single, searchable site where
you can access product documentation for IBM systems hardware, operating
systems, and server software. Through a consistent framework, you can efficiently
find information and personalize your access. The IBM Systems Information Center
is at |http:/ /publib.boulder.ibm.com /infocenter /systems]

* C/C++ Language Extensions for Cell Broadband Engine Architecture

* Cell Broadband Engine, Architecture

e Cell Broadband Engine Linux Reference Implementation, Application Binary Interface
Specification

* Cell Broadband Engine Programming Handbook including the IBM® PowerXCell " 8i
processor

* Cell Broadband Engine Registers

e Accelerated Library Framework Programmer’s Guide and API Reference

* Data Communication and Synchronization Programmer’s Guide and API Reference

iii

http://publib.boulder.ibm.com/infocenter/systems

iv

PowerPC Microprocessor Family: The Programming Environments Manual for 64-bit
Microprocessors

PowerPC Microprocessor Family: Vector/SIMD Multimedia Extension Technology
Programming Environments Manual

PowerPC Operating Environment Architecture, Book 111
PowerPC User Instruction Set Architecture, Book I
PowerPC Virtual Environment Architecture, Book 11

SIMD Math Library Specification for Cell Broadband Engine
Software Development Kit Programmer’s Guide

SPE Runtime Management Library (Version 2)

SPU Application Binary Interface Specification

SPU Assembly Language Specification

Synergistic Processor Unit, Instruction Set Architecture

SDK for Multicore Acceleration, Programming Tutorial

Contents
Preface.
Figures
Tables

Chapter 1. Overview of the Cell
Broadband Engine .

Introduction .

Background and motlvatlons . .

Scaling the three performance-limiting walls.
Architecture overview . .

The PowerPC Processor Element

Synergistic Processor Elements
Programming Overview .

Byte ordering and bit numberlng

SIMD vectorization . .

SIMD C-language intrinsics .

Threads and tasks .

The runtime environment.

Application partitioning .
The software development kit .

Chapter 2. The PPE and the
programming process .
PPE registers .
PPE instruction sets

PowerPC instructions .

Vector/SIMD Multimedia Extensmn 1nstructlons

C/C++ language extensions (intrinsics) .

Programming with Vector/SIMD Multimedia

Extension intrinsics .

The PPE and the SPEs.
Storage Domains .
Issuing DMA commands from the PPE .
Creating threads for the SPEs .
Communication between the PPE and SPEs

Developing code for the Cell Broadband Engine .
Producing a simple multi-threaded CBE program

Running the program in the simulator
Debugging programs .

Chapter 3. Programmlng the SPEs.
SPE configuration .
Synergistic Processor Un1t
Memory flow controller
Channels .
SPU instruction set .
Data layout in registers
Instruction types.
SPU C/C++ language extensrons (1ntr1nsrcs)

Assembly language versus intrinsics comparison:

an example
Intrinsic classes .

. Vil

O O O N W =,

_= = =
AW WN =

. 19
.19
.21
.22

24

. 25

. 33
. 35
. 35
. 37
. 38
. 40
.41

42

.44
. 48

. 49
. 49
. 50
. 54
. 55
. 60
. 60
. 62
. 64

. 65
. 66

Promoting scalar data types to vector data types 72
Differences between PPE and SPE SIMD support 72
Compiler directives. . . .75
MEFC commands. . .76
DMA-command tag groups . .79
Synchronizing DMA transfers . 80
MFC input and output macros . . 80
Coding methods and examples . . 83
DMA transfers . . .83
Simple SPE-initiated DMA transfers example . .85
Transferring large buffer from main memory to
SPE LS examples . 85
DMA-list transfers . . . 90
Transferring data from main memory to SPE LS
using DMA List . . .92
Destructive DMA list example . . 94
Vectorizing a loop 94
Reducing the impact of branches . - . 95
Porting SIMD code from the PPE to the SPEs . . 98
Code-mapping considerations . .99
Simple macro translation .. 100
Example 1: Euler particle-system 51mulat10n .. 102
Performance analysis . . 112
Performance issues . 112
Example 1: Tuning SPE performance w1th stat1c
and dynamic timing analysis . . 112
General SPE programming tips . 121
Chapter 4. Programming models . . 123
Function-Offload Model . . 123
Remote procedure call . 124
Device-Extension Model . . 124
Computation-Acceleration Model. . 125
Streaming model 125
Shared-Memory Multlprocessor Model . . 125
Asymmetric-Thread Runtime Model. . 126
User-mode thread model . 126
Cell application frameworks . 126
SPE overlays . 127
Chapter 5. The simulator . 129
Simulator basics . 130
Operating-system modes . 130
Interacting with the simulator . . 130
Command-line interface . . 131
Graphical User Interface. . 132
The simulation panel . . 133
GUI buttons. . 141
Performance monitoring. . . 146
Displaying performance stat1st1cs . 147
SPE performance profile checkpoints . 150
Example program: tpal . . 152
Emitters . . . 153
SPU performance and semantrcs . . 155

Notices 159 Glossary165
Edition notices16l

Index.173
Trademarks 163

Vi SDK for Multicore Acceleration, Programming Tutorial

Figures

1.

2.

W

® NSO

10.
11.

12.

13.

14.

15.

16.
17.

18.
19.
20.
21.
22.

Overview of Cell Broadband Engine
architecture . . .
PowerPC Processor Element (PPE) block
diagram .

Synergistic Processor Element (SPE) block
diagram . .
Big-endian byte and b1t orderlng

Four concurrent Add operat1ons
Byte-shuffle operation .

Application partitioning model .
PPE-centric multistage pipeline model and
parallel stages model

PPE-centric services model

PPE user-register set .

Concurrent execution of integer, floatrng po1nt
and vector units . .

Running the Vector/ SIMD Multlmed1a
Extension sample program .
Storage domains defined in the Cell
Broadband Engine

Sample project directory structure and
makefiles

Windows visible after startmg the s1mulator
GUI .

Console window on completion of Linux boot
Loading the program into the simulation
environment . .o

Running the sample program

SPE architectural block diagram.

SPE user-register set .
Big-endian ordering supported by the SPE
Register layout of data types and preferred
(scalar) slot. . .

. 10
11
.11
.14
.15
.15
. 20
.24
. 34
. 36
.42

. 45

46

. 47
. 48
. 50
. 51

61

. 61

23.
24.

25.

26.

27.

28.
29.
30.

31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.

SIMD floating-point Add instruction function
Array-of-structures data organization for one
triangle .

Structure- of—arrays data orgamzatlon for four
triangles

DMA transfers us1ng a double—bufferlng
method . .

Example of the Funct1on Offload (or RPC)
Model . o
Simulation stack .

Simulator structures and screens .

Main Graphical User Interface for the
simulator .

Project and processor folders

PPE General-Purpose Registers w1ndow

PPE Floating-Point Registers window

PPE Core window .

SPE MFC window . .

SPE MFC Address Translat1on w1ndow

SPE Channels window

SPE statistics.

Debug Controls wrndow

SPE Visualization window .

Track All PCs window

SPU Modes window .

tpal statistics for SPE 0 .

tpal statistics for SPE 2 . .

Profile checkpoint output for SPE 2 .
Emitters ...

Emitter arch1tecture

63

. 63
. 64
. 86
. 124
. 129
. 131

. 133
. 134

135
135

. 136
. 137

138

. 139
. 140
. 143
. 144
. 145
. 146
. 149
. 150
. 152
. 154
. 154

vii

viii SDK for Multicore Acceleration, Programming Tutorial

Tables

SO .

*

10.

11.

12.
13.
14.
15.
16.

17.
18.
19.
20.

PPE and SPE intrinsic classes

Definition of threads and tasks .

PPE-specific scalar intrinsics .

Vector /SIMD Multimedia Extension data types
Vector/SIMD Multimedia Extension specific
and generic intrinsics

Vector/SIMD Multimedia Extensmn predlcate
intrinsics

MFC command- parameter reglsters for
PPE-initiated DMA transfers .

Mailbox channels and MMIO reglsters

Signal notification channels and MMIO
registers.

LS-Access Arbltratlon Prlorlty and Transfer
Size . .

SPU Instructlon Latency and Plpehne by
Instruction Class . . .o
SPE Channels . ..

SPE Channel Instructions .

Vector Data Types

SPU Instruction Types .

Specific intrinsics not avallable as generlc
intrinsics .

Specific Casting Intr1n51cs

Generic SPU Intrinsics .

Composite SPU intrinsics .

Intrinsics for Changing Scalar and Vector Data

Types

.12
.12

. 26
29

.29

.32

. 37
. 40

.41

. 53

. 53
. 55
. 57
. 61
. 62

. 66
. 67
. 69
.71

.72

21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.

37.

38.

39.

40.

PPE and SPE Architectural Comparison 72
PPE versus SPU Vector Data Types.73
Single-Token Vector Keyword Data Types 75
MFC DMA Command)
MFC Command Suffixes78
MFC Synchronization Commands79
MFC Atomic Commands79
MEFC Input and Output Macros.80
MEC Tag Manager Functions.83
Interrupt Safe Critical Section Functlons 83
Time step description87
Time step description88
Time step description89
Time step description90
Branch-Hint Instructions . . L. 97

Vector/SIMD Multimedia Extensmn

Single-Token Data Types . . 100
SPU Intrinsics with One-to-One Vector / SIMD
Multimedia Extension Mapping .. 101
Vector/SIMD Multimedia Extension Intrinsics
with One-to-One SPU Mapping . 101
Important Commands for the IBM Full

System Simulator for the Cell Broadband

Engine . . 132
Simulator Performance Statlstlcs for the SPU 155

ix

X SDK for Multicore Acceleration, Programming Tutorial

Chapter 1. Overview of the Cell Broadband Engine

Introduction

The first generation Cell Broadband Engine is the first incarnation of a new family
of microprocessors conforming to the Cell Broadband Processor Architecture (CBEA).
The CBEA is a new architecture that extends the 64-bit PowerPC Architecture.

The CBEA and the Cell Broadband Engine are the result of a collaboration between
Sony, Toshiba, and IBM, known as STI, formally started in early 2001.

Background and motivations

Although the Cell Broadband Engine is initially intended for application in game
consoles and media-rich consumer-electronics devices such as high-definition
televisions, the architecture and the Cell Broadband Engine implementation have
been designed to enable fundamental advances in processor performance. A much
broader use of the architecture is envisioned.

The Cell Broadband Engine is a single-chip multiprocessor with nine processors
operating on a shared, coherent memory. In this respect, it extends current trends
in PC and server processors. The most distinguishing feature of the Cell
Broadband Engine is that, although all processors share main storage (the
effective-address space that includes main memory), their function is specialized
into two types:

» the PowerPC Processor Element (PPE),

e the Synergistic Processor Element (SPE).

The Cell Broadband Engine has:
* one PPE,
* eight SPEs.

The PPE (the first type of processor element) is a 64-bit PowerPC Architecture core.
It is fully compliant with the 64-bit PowerPC Architecture and can run 32-bit and
64-bit operating systems and applications.

The SPE (the second type of processor element) is optimized for running
compute-intensive applications, and it is not optimized for running an operating
system. The SPEs are independent processors, each running its own individual
application programs. Each SPE has full access to coherent shared memory,
including the memory-mapped 1/0 space.

The designation synergistic for this processor was chosen carefully because there is
a mutual dependence between the PPE and the SPEs. The SPEs depend on the PPE
to run the operating system, and, in many cases, the top-level control thread of an
application. The PPE depends on the SPEs to provide the bulk of the application
performance.

The SPEs are designed to be programmed in high-level languages and support a
rich instruction set that includes extensive single-instruction, multiple-data (SIMD)
functionality. However, just like conventional processors with SIMD extensions, use
of SIMD data types is preferred, not mandatory. For programming convenience,
the PPE also supports the PowerPC Architecture Vector/SIMD Multimedia
Extension.

2

To an application programmer, the Cell Broadband Engine looks like a 9-way
coherent multiprocessor. The PPE is more adept at control-intensive tasks and
quicker at task switching. The SPEs are more adept at compute-intensive tasks and
slower at task switching. However, either processor is capable of both types of
functions. This specialization has allowed increased efficiency in the
implementation of both the PPE and especially the SPEs. It is a significant factor in
the approximate order-of-magnitude improvement in peak computational
performance and area-and-power efficiency that the Cell Broadband Engine
achieves over conventional PC processors.

A significant difference between the PPE and SPEs is how they access memory:

* The PPE accesses main storage (the effective-address space that includes main
memory) with load and store instructions that go between a private register file
and main storage (which may be cached).

* The SPEs access main storage with direct memory access (DMA) commands that
go between main storage and a private local memory used to store both
instructions and data. SPE instruction-fetches and load and store instructions
access this private local store, rather than shared main storage. This 3-level
organization of storage (register file, local store, main storage), with
asynchronous DMA transfers between local store and main storage, is a radical
break with conventional architecture and programming models, because it
explicitly parallelizes computation and the transfers of data and instructions.

The reason for this radical change is that memory latency, measured in processor
cycles, has gone up several hundredfold in the last 20 years. The result is that
application performance is, in most cases, limited by memory latency rather than
by peak compute capability or peak bandwidth. When a sequential program on a
conventional architecture performs a load instruction that misses in the caches,
program execution now comes to a halt for several hundred cycles. Compared to
this penalty, the few cycles it takes to set up a DMA transfer for an SPE is quite
small. Conventional processors, even with deep and costly speculation, manage to
get, at best, a handful of independent memory accesses in flight. The result can be
compared to a bucket brigade in which a hundred people are required to cover the
distance to the water needed to put the fire out, but only a few buckets are
available. In contrast, the explicit DMA model allows each SPE to have many
concurrent memory accesses in flight, without the need for speculation.

The most productive SPE memory-access model appears to be the one in which a
list (such as a scatter-gather list) of DMA transfers is constructed in an SPE’s local
store, so that the SPE’s DMA controller can process the list asynchronously while
the SPE operates on previously transferred data. In several cases, this new
approach to accessing memory has led to application performance exceeding that
of conventional processors by almost two orders of magnitude, significantly more
than one would expect from the peak performance ratio (about 10x) between the
Cell Broadband Engine and conventional PC processors.

It is also possible to write compilers that manage an SPE’s local Store as a very
large second-level register file or to automatically bring in code when needed and
present a conventional symmetric multiprocessing (SMP) model. Although such a
compiler exists, at least in prototype form, it does not today result in the most
optimal application performance. Hence, this tutorial focuses on approaches to
programming the Cell Broadband Engine that expose the local store and the
asynchronous DMA-transfer commands.

SDK for Multicore Acceleration, Programming Tutorial

Scaling the three performance-limiting walls

The Cell Broadband Engine overcomes three important limiters of contemporary
microprocessor performance: power use, memory use, and processor frequency.

Scaling the power-limitation wall

Increasingly, microprocessor performance is limited by achievable power
dissipation rather than by the number of available integrated-circuit resources
(transistors and wires).

Therefore, the only way to significantly increase the performance of
microprocessors is to improve power efficiency at about the same rate as the
performance increase.

One way to increase power efficiency is to differentiate between:
* processors optimized to run an operating system and control-intensive code, and

* processors optimized to run compute-intensive applications.

The Cell Broadband Engine does this by providing a general-purpose PPE to run
the operating system and other control-plane code, and eight SPEs specialized for
computing data-rich (data-plane) applications.

Scaling the memory-limitation wall
On multi-gigahertz symmetric multiprocessors (even those with integrated memory
controllers) latency to DRAM memory is currently approaching 1,000 cycles.

As a result, program performance is dominated by the activity of moving data
between main storage (the effective-address space that includes main memory) and
the processor. Increasingly, compilers and even application writers must manage
this movement of data explicitly, even though the hardware cache mechanisms are
supposed to relieve them of this task.

The Cell Broadband Engine’s SPEs use two mechanisms to deal with long
main-memory latencies:

* a 3-level memory structure (main storage, local stores in each SPE, and large
register files in each SPE),

* asynchronous DMA transfers between main storage and local stores.

These features allow programmers to schedule simultaneous data and code
transfers to cover long latencies effectively. Because of this organization, the Cell
Broadband Engine can usefully support 128 simultaneous transfers between the
eight SPE local stores and main storage. This surpasses the number of
simultaneous transfers on conventional processors by a factor of almost twenty.

Scaling the frequency-limitation wall

Conventional processors require increasingly deeper instruction pipelines to
achieve higher operating frequencies. This technique has reached a point of
diminishing returns — and even negative returns if power is taken into account.

By specializing the PPE and the SPEs for control and compute-intensive tasks,
respectively, the Cell Broadband Engine Architecture, on which the Cell Broadband
Engine is based, allows both the PPE and the SPEs to be designed for high
frequency without excessive overhead. The PPE achieves efficiency primarily by
executing two threads simultaneously rather than by optimizing single-thread
performance.

Chapter 1. Overview of the Cell Broadband Engine 3

Each SPE achieves efficiency by using a large register file, which supports many
simultaneous in-process instructions without the overhead of register-renaming or
out-of-order processing. Each SPE also achieves efficiency by using asynchronous
DMA transfers, which support many concurrent memory operations without the
overhead of speculation.

How the Cell Broadband Engine overcomes performance
limitations

By optimizing control-plane and data-plane processors individually, the Cell
Broadband Engine alleviates the problems posed by the power, memory, and
frequency limitations.

The net result is a processor that, at the power budget of a conventional PC
processor, can provide approximately ten-fold the peak performance of a
conventional processor. Of course, actual application performance varies. Some
applications may benefit little from the SPEs, whereas others show a performance
increase well in excess of ten-fold. In general, compute-intensive applications that
use 32-bit or smaller data formats (such as single-precision floating-point and
integer) are excellent candidates for the Cell Broadband Engine.

The remainder of this chapter describes the Cell Broadband Engine hardware,

some basic programming conventions, a typical software-development sequence,

and the major support tools available in the software development kit (SDK).

* Programming the PPE is described in [Chapter 2, “The PPE and the|
[programming process,” on page 19/

* Programming the SPEs is described in [Chapter 3, “Programming the SPEs,” on|
* Programming models are described in [Chapter 4, “Programming models,” on|

* The IBM Full System Simulator for the Cell Broadband Engine is described in
[Chapter 5, “The simulator,” on page 129,

* A glossary is provided in [‘Glossary” on page 165,

Architecture overview

4

The Cell Broadband Engine consists of nine processors on a single chip, all
connected to each other and to external devices by a high-bandwidth,
memory-coherent bus.

[Figure 1 on page 5|shows a block diagram of the Cell Broadband Engine. The main
blocks include the:

* PowerPC Processor Element (PPE). The PPE is the main processor. It contains a
64-bit PowerPC Architecture reduced instruction set computer (RISC) core with a
traditional virtual-memory subsystem. It runs an operating system, manages
system resources, and is intended primarily for control processing, including the
allocation and management of SPE threads. It can run legacy PowerPC
Architecture software and performs well executing system-control code. It
supports both the PowerPC instruction set and the Vector/SIMD Multimedia
Extension instruction set.

* Synergistic Processor Elements (SPEs). The eight SPEs are SIMD processors
optimized for data-rich operations allocated to them by the PPE. Each of these
identical elements contains a RISC core, 256-KB, software-controlled local store
for instructions and data, and a large (128-bit, 128-entry) unified register file. The
SPEs support a special SIMD instruction set, and they rely on asynchronous

SDK for Multicore Acceleration, Programming Tutorial

DMA transfers to move data and instructions between main storage (the
effective-address space that includes main memory) and their local stores. SPE
DMA transfers access main storage using PowerPC effective addresses. As on
the PPE, address translation is governed by PowerPC Architecture segment and
page tables. The SPEs are not intended to run an operating system.

* Element Interconnect Bus (EIB). The PPE and SPEs communicate coherently with

each other and with main storage and I/O through the EIB. The EIB is a 4-ring
structure (two clockwise and two counterclockwise) for data, and a tree structure
for commands. The EIB’s internal bandwidth is 96 bytes per cycle, and it can
support more than 100 outstanding DMA memory requests between main
storage and the SPEs.

(Synergistic
Processor
Element)

SPE

SPE SPE SPE

PPE
(PowerPC
Processor

Element)

! ! !

A 4

[—>

D S—

Memory Interface
Controller (MIC)

<«—> XIO
<—> Channels

Element Interconnect Bus (EIB)

| Broadband Engine |[«—> FlexIO

Interface (BEI) [«—> Channels

[—>|

{ !

<—>

SPE SPE SPE SPE

Figure 1. Overview of Cell Broadband Engine architecture

The memory-coherent EIB has two external interfaces, as shown in
* The Memory Interface Controller (MIC) provides the interface between the EIB and

main storage. It supports two Rambus Extreme Data Rate (XDR) I/0 (XIO)
memory channels and memory accesses on each channel of 1-8, 16, 32, 64, or 128
bytes.

* The Cell Broadband Engine Interface (BEI) manages data transfers between the EIB

and I/0 devices. It provides address translation, command processing, an
internal interrupt controller, and bus interfacing. It supports two Rambus FlexIO
external I/O channels. One channel supports only non-coherent 1/O devices.
The other channel can be configured to support either non-coherent transfers or
coherent transfers that extend the logical EIB to another compatible external
device, such as another Cell Broadband Engine.

The Cell Broadband Engine supports concurrent real-time and non-real-time
operating systems and resource management. Software development in the C/C++
language is supported by a rich set of language extensions that define C/C++ data
types for SIMD operations and map C/C++ intrinsics (commands, in the form of
function calls) to one or more assembly instructions.

Chapter 1. Overview of the Cell Broadband Engine 5

These language extensions give C/C++ programmers much greater control over
code performance, without the need for assembly-language programming. Software
development is further supported by:

* a complete Linux-based SDK,
* a full-system simulator, and

* arich set of application libraries, performance tools and debug tools.

The PowerPC Processor Element

The PowerPC Processor Element (PPE) is a general-purpose, dual-threaded, 64-bit
RISC processor that conforms to the PowerPC Architecture, version 2.02, with the
Vector/SIMD Multimedia Extension.

Programs written for the PowerPC 970 processor, for example, should run on the
Cell Broadband Engine without modification.

As shown in the PPE consists of two main units:
* The Power Processor Unit (PPU).
* The Power Processor Storage Subsystem (PPSS).

The PPE is responsible for overall control of the system. It runs the operating
systems for all applications running on the Cell Broadband Engine.

PowerPC Processor Element (PPE)

PowerPC Processor Unit (PPU)

L1 Instruction L1 Data
Cache Cache

PowerPC Processor Storage Subsystem (PPSS)

L2 Cache

Figure 2. PowerPC Processor Element (PPE) block diagram

The PPU deals with instruction control and execution. It includes:
* the full set of 64-bit PowerPC registers,

* 32 128-bit vector registers,

* a 32-KB level 1 (L1) instruction cache,

* a 32-KB level 1 (L1) data cache,

e an instruction-control unit,

* a load and store unit,

* a fixed-point integer unit,

6 SDK for Multicore Acceleration, Programming Tutorial

* a floating-point unit,
* a vector unit,
¢ a branch unit,

* a virtual-memory management unit.

The PPU supports two simultaneous threads of execution and can be viewed as a
2-way multiprocessor with shared dataflow. This appears to software as two
independent processing units. The state for each thread is duplicated, including all
architected and special-purpose registers except those that deal with system-level
resources, such as logical partitions, memory, and thread-control. Most
non-architected resources, such as caches and queues, are shared by both threads,
except in cases where the resource is small or offers a critical performance
improvement to multithreaded applications.

The PPSS handles memory requests from the PPE and external requests to the PPE
from other processors or I/O devices. It includes:

* a unified 512-KB level 2 (L2) instruction and data cache,

* various queues,

* a bus interface unit that handles bus arbitration and pacing on the EIB.
Memory is seen as a linear array of bytes indexed from 0 to 264 - 1. Each byte is

identified by its index, called an address, and each byte contains a value. One
storage access occurs at a time, and all accesses appear to occur in program order.

The L2 cache and the address-translation caches use replacement-management
tables that allow software to control use of the caches. This software control over
cache resources is especially useful for real-time programming.

Synergistic Processor Elements

Each of the eight Synergistic Processor Elements (SPEs) is a 128-bit RISC processor
specialized for data-rich, compute-intensive SIMD applications.

As shown in [Figure 3 on page 8| each SPE consists of two main units:
* The Synergistic Processor Unit (SPU).
¢ The Memory Flow Controller (MFC).

Chapter 1. Overview of the Cell Broadband Engine 7

8

Synergistic Processor Element (SPE)

Synergistic Processor Unit (SPU)

Local Store (LS)

Memory Flow Controller (MFC)

DMA Controller

Figure 3. Synergistic Processor Element (SPE) block diagram

The SPU deals with instruction control and execution. It includes a single register
file with 128 registers (each one 128 bits wide), a unified (instructions and data)
256-KB local store (LS), an instruction-control unit, a load and store unit, two
fixed-point units, a floating-point unit, and a channel-and-DMA interface. The SPU
implements a new SIMD instruction set, the SPU Instruction Set Architecture, that is
specific to the Broadband Processor Architecture.

Each SPU is an independent processor with its own program counter and is
optimized to run SPE threads spawned by the PPE. The SPU fetches instructions
from its own LS, and it loads and stores data from and to its own LS. With respect
to accesses by its SPU, the LS is unprotected and un-translated storage. The MFC
contains a DMA controller that supports DMA transfers. Programs running on the
SPU, the PPE, or another SPU, use the MFC’s DMA transfers to move instructions
and data between the SPU’s LS and main storage. (Main storage is the
effective-address space that includes main memory, other SPEs’ LS, and
memory-mapped registers such as memory-mapped 1/O [MMIQO] registers.) The
MEC interfaces the SPU to the EIB, implements bus bandwidth-reservation
features, and synchronizes operations between the SPU and all other processors in
the system.

To support DMA transfers, the MFC maintains and processes queues of DMA
commands. After a DMA command has been queued to the MFC, the SPU can
continue to execute instructions while the MFC processes the DMA command
autonomously and asynchronously. The MFC also can autonomously execute a
sequence of DMA transfers, such as scatter-gather lists, in response to a DMA-list
command. This autonomous execution of MFC DMA commands and SPU
instructions allows DMA transfers to be conveniently scheduled to hide memory
latency.

Each DMA transfer can be up to 16 KB in size. However, only the MFC'’s
associated SPU can issue DMA-list commands. These can represent up to 2,048
DMA transfers, each one up to 16 KB in size. DMA transfers are coherent with
respect to main storage. Virtual-memory address-translation information is
provided to each MFC by the operating system running on the PPE. Attributes of
system storage (address translation and protection) are governed by the page and

SDK for Multicore Acceleration, Programming Tutorial

segment tables of the PowerPC Architecture. Although privileged software on the

PPE can map LS addresses and certain MFC resources to the main-storage address
space, enabling the PPE or other SPUs in the system to access these resources, this
aliased memory is not coherent in the system.

The SPEs provide a deterministic operating environment. They do not have caches,
so cache misses are not a factor in their performance. Pipeline-scheduling rules are
simple, so it is easy to statically determine the performance of code. Although the
LS is shared between DMA read and write operations, load and store operations,
and instruction prefetch, DMA operations are accumulated and can only access the
LS for at most one of every eight cycles. Instruction prefetch delivers at least 17
instructions sequentially from the branch target. Thus, the impact of DMA
operations on loads and stores and program-execution times is, by design, limited.

Programming Overview

The instruction set for the PPE is an extended version of the PowerPC instruction
set. The extensions consist of the Vector/SIMD Multimedia Extension instruction set
plus a few additions and changes to PowerPC instructions.

The instruction set for the SPE is similar to that of the PPE’s Vector/SIMD
Multimedia Extension instruction set. Although the PPE and the SPEs execute
SIMD instructions, the two instruction sets are different, and programs for the PPE
and SPEs must be compiled by different compilers.

Byte ordering and bit numbering

Storage of data and instructions in the Cell Broadband Engine is big-endian.

Big-endian ordering has the following characteristics:
* Most-significant byte is stored at the lowest address, and least-significant byte is
stored at the highest address.

* Bit numbering within a byte goes from most-significant bit (bit 0) to
least-significant bit (bit n). This differs from some other big-endian processors.

[Figure 4 on page 10/ shows a summary of the byte-ordering and bit-ordering in
memory, as well as the bit-numbering conventions.

Chapter 1. Overview of the Cell Broadband Engine 9

MSB LsB
01 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Byte 0 Byte 1 Byte 2 Byte 3

Bit and Byte Order for a 32-bit Word

MSB LsB
01 2 3 4 5 6 7 8 9 10 11 12 13 14 15 120 127

Byte 0 Byte 1 Byte 15

Bit and Byte Order for a 128-bit Register

Figure 4. Big-endian byte and bit ordering

10

SIMD vectorization

A vector is an instruction operand containing a set of data elements packed into a
one-dimensional array. The elements can be integer or floating-point values. Most
Vector /SIMD Multimedia Extension and SPU instructions operate on vector
operands. Vectors are also called SIMD operands or packed operands.

SIMD processing exploits data-level parallelism. Data-level parallelism means that
the operations required to transform a set of vector elements can be performed on
all elements of the vector at the same time. That is, a single instruction can be
applied to multiple data elements in parallel.

Support for SIMD operations is pervasive in the Cell Broadband Engine. In the
PPE, they are supported by the Vector/SIMD Multimedia Extension instruction set.
In the SPEs, they are supported by the SPU instruction set.

In both the PPE and SPEs, vector registers hold multiple data elements as a single
vector. The data paths and registers supporting SIMD operations are 128 bits wide,
corresponding to four full 32-bit words. This means that four 32-bit words can be
loaded into a single register, and, for example, added to four other words in a
different register in a single operation. [Figure 5 on page 11|shows such an
operation. Similar operations can be performed on vector operands containing 16
bytes, 8 halfwords, or 2 doublewords.

SDK for Multicore Acceleration, Programming Tutorial

add VC,VA,VB

A2

B.2

Figure 5. Four concurrent Add operations

The process of preparing a program for use on a vector processor is called
vectorization or SIMDization. It can be done manually by the programmer, or it can
be done by a compiler that does auto-vectorization.

shows another example of an SIMD operation- in this case, a byte-shuffle
operation. Here, the bytes selected for the shuffle from the source registers, VA and
VB, are based on byte entries in the control vector, VC, in which a 0 specifies VA
and a 1 specifies VB. The result of the shuffle is placed in register VT.

shuffle VT,VA,VB,VC

vC |01 |14 |18 | 10| 06 | 15| 19 | 1A|1C|1C | 1C | 13 | 08 | 1D | 1B | OE

VA

VB

v [~ [- I - I -

Figure 6. Byte-shuffle operation

SIMD C-language intrinsics

Both the Vector/SIMD Multimedia Extension and SPU instruction sets have
extensions that support C-language intrinsics. Intrinsics are C-language commands,
in the form of function calls, that are convenient substitutes for one or more inline
assembly-language instructions.

In a specific instruction set, most intrinsic names use a standard prefix in their
mnemonic, and some intrinsic names incorporate the mnemonic of an associated

Chapter 1. Overview of the Cell Broadband Engine 11

12

assembly-language instruction. For example, the Vector/SIMD Multimedia
Extension intrinsic that implements the add Vector/SIMD Multimedia Extension
assembly-language instruction is named vec_add, and the SPU intrinsic that
implements the stop SPU assembly-language instruction is named spu_stop.

The PPE’s Vector/SIMD Multimedia Extension instruction set and the SPE’s SPU
instruction set both have extensions that define somewhat different sets of
intrinsics, but they all fall into four types of intrinsics. These are listed in Table 1-1.
Although the intrinsics provided by the two instruction sets are similar in function,
their naming conventions and function-call forms are different.

Table 1. PPE and SPE intrinsic classes

Types of

Intrinsic Definition PPE | SPE

Specific One-to-one mapping to a single assembly-language X X
instruction.

Generic Map to one or more assembly-language instructions, X X
depending on types of input parameters.

Composite Constructed from a sequence of Specific or Generic X
intrinsics.

Predicates Evaluate SIMD conditionals. X

For more information about the PPE intrinsics, see [‘C/C++ language extensions|
[(intrinsics)” on page 25,

For more information about the SPE intrinsics, see [‘SPU C/C++ language|
fextensions (intrinsics)” on page 64

Threads and tasks

In a system running the Linux operating system, the main thread of a program is a
Linux thread running on the PPE. The program’s main Linux thread can spawn
one or more Cell Broadband Engine Linux tasks.

A Cell Broadband Engine Linux task has one or more Linux threads associated
with it that may execute on either a PPE or a SPE. An SPE thread is a Linux thread
that is executing on a SPE. These terms are defined in

The software threads described in this section are unrelated to the hardware
multithreading capability of the PPE.

Table 2. Definition of threads and tasks

Term Definition

Linux thread A thread running in the Linux operating-system environment.
PPE thread A Linux thread running on a PPE.

SPE thread A Linux thread running on an SPE. Each such thread:

* has its own SPE context which includes the 128 x 128-bit
register file, program counter, and MFC Command Queues.

* can communicate with other execution units (or with
effective-address memory through the MFC channel
interface).

SDK for Multicore Acceleration, Programming Tutorial

Table 2. Definition of threads and tasks (continued)

Term Definition
Cell Broadband Engine A task running on the PPE and SPE.
Linux task

* Each such task has one or more Linux threads.

e All the Linux threads within the task share the task’s
resources.

A Linux thread can interact directly with an SPE thread through the SPE’s local
store or its problem state. It can interact indirectly through effective-address (EA)
memory or the interface provided by the SPE Runtime Management library
subroutines.

The operating system defines the mechanism and policy for scheduling an
available SPE. It must prioritize among all the Cell Broadband Engine Linux
applications in the system, and it must schedule SPE execution independent from
regular Linux threads. It is also responsible for runtime loading, passing
parameters to SPE programs, notification of SPE events and errors, and debugger
support.

The runtime environment

The PPE runs PowerPC applications and operating systems, which may include
Vector/SIMD Multimedia Extension instructions.

The PPE requires an operating system that is extended to support the hardware
features of Cell Broadband Engines, such as multiprocessing with the SPEs, access
to the PPE Vector/SIMD Multimedia Extension functions, the Cell Broadband
Engine interrupt controller, and all other functions on the Cell Broadband Engine.

The assumed development and operating-system environment for this tutorial are
described in the [“Preface” on page iii|In this operating environment, the PPE
handles thread allocation and resource management among SPEs. The PPE’s Linux
kernel controls the SPUs” execution of programs.

SPE threads follow the M:N thread model, meaning M threads distributed over N
processor elements. Typically SPE threads run to completion. However, the SPE
threads are pre-emptible in accordance with the thread’s scheduling policy and
priority. Time slice quanta for the SPE threads is typically longer than PPE threads
because of the SPE context switch is relatively heavy.

The Linux kernel manages virtual memory, including mapping each SPE’s local
store (LS) and problem state (PS) into the effective-address space. The kernel also
controls virtual-memory mapping of MFC resources, as well as MFC segment-fault
and page-fault handling. Large pages (16-MB pages), using the huget1bfs Linux
extension, are supported.

Application partitioning
Programs running on the Cell Broadband Engine’s nine processor elements
typically partition the work among the available processor elements.

In determining when and how to distribute the workload and data, take into
account the following considerations:

* processing-load distribution,
* program structure,

Chapter 1. Overview of the Cell Broadband Engine 13

14

e program data flow and data access patterns,

* cost, in time and complexity of code movement and data movement among
processors, and

* cost of loading the bus and bus attachments.

The main model for partitioning an application is PPE-centric, as shown in

Models

T

PPE-centric SPE-centric

/’\ Model

Multistage Parallel Services
Pipleline Stages Model
Model Model

Figure 7. Application partitioning model

In the PPE-centric model, the main application runs on the PPE, and individual
tasks are off-loaded to the SPEs. The PPE then waits for, and coordinates, the
results returning from the SPEs. This model fits an application with serial data and
parallel computation.

In the SPE-centric model, most of the application code is distributed among the
SPEs. The PPE acts as a centralized resource manager for the SPEs. Each SPE
fetches its next work item from main storage (or its own local store) when it
completes its current work.

There are three ways in which the SPEs can be used in the PPE-centric model:
* the multistage pipeline model,

* the parallel stages model, and

* the services model.

The first two of these are shown in [Figure 8 on page 15}

If a task requires sequential stages, the SPEs can act as a multistage pipeline. The left
side of [Figure 8 on page 15|shows a multistage pipeline. Here, the stream of data is
sent into the first SPE, which performs the first stage of the processing. The first
SPE then passes the data to the next SPE for the next stage of processing. After the
last SPE has done the final stage of processing on its data, that data is returned to
the PPE. As with any pipeline architecture, parallel processing occurs, with various
portions of data in different stages of being processed.

Multistage pipelining is typically avoided because of the difficulty of load
balancing. In addition, the multistage model increases the data-movement
requirement because data must be moved for each stage of the pipeline.

SDK for Multicore Acceleration, Programming Tutorial

PPE
PPE
» SPE >
SPE » SPE » SPE
> SPE >
> SPE >
Multistage Pipeline Model Parallel Stages Model

Figure 8. PPE-centric multistage pipeline model and parallel stages model

If the task to be performed is not a multistage task, but a task in which there is a
large amount of data that can be partitioned and acted on at the same time, then it
typically make sense to use SPEs to process different portions of that data in
parallel. This parallel stages model is shown on the right side of

The third way in which SPEs can be used in a PPE-centric model is the services
model. In the services model, the PPE assigns different services to different SPEs,
and the PPE’s main process calls upon the appropriate SPE when a particular
service is needed.

shows the PPE-centric services model. Here, one SPE processes data
encryption, another SPE processes MPEG encoding, and a third SPE processes
curve analysis. Fixed static allocation of SPU services should be avoided. These
services should be virtualized and managed on a demand-initiated basis.

SPE
Data Encryption

PPE
Application Code

SPE
MPEG Encoding

7
™.

SPE
Curve Analysis

Figure 9. PPE-centric services model

For a more detailed view of programming models, see [Chapter 4, “Programming]|
[models,” on page 123

Chapter 1. Overview of the Cell Broadband Engine 15

The software development kit
A software development kit (SDK) is available for the Cell Broadband Engine.

16

The SDK contains the essential tools required for developing programs for the Cell
Broadband Engine. [“Preface” on page iii| describes the assumptions with respect to
the available SDK.

The SDK consists of numerous components including the following:

System root image containing Linux execution environment for use within
systemsim.

GNU tools including C and C++ compilers, linkers, assemblers and binary
utilities for both PPU and SPU.

IBM x1c (C and C++) compiler for both PPU and SPU.
IBM x1f (Fortran) compiler for both PPU and SPU.

newlib for the SPU. newlib is a C standard library designed for use on
embedded systems.

gdb debuggers for both PPU and SPU with support for remote gdbserver
debugging. The PPU debugger also provides combined, PPU and SPU,
debugging.

PPC64 Linux with CBE enhancements.

SPE Runtime Management Library providing a standardized, low-level
application programming interface for application access to the SPEs.

Libraries to assist in the development and execution of parallel applications,
including the following::

— Accelerated Library Framework (ALF) library

— Data Communication and Synchronization (DaCS) library

Performance tools including:

— oprofile — a system-wide profiler for Linux,

— CellPerfCount — a low level tool to configure and access HW performance
counters,

— FDPR-Pro — a tool for gather information for feedback directed optimization,

— CodeAnalyzer — examines executable files and displays detailed information
about functions, basic blocks, and assembly instructions, and

— Visual Performance Analyzer (VPA) — an Eclipse-based performance
visualization toolkit.

— spu_timing — a static timing analysis timing tool that instruments assembly
source (either compiler or programmer generated) with expected, linear,
instruction timing details.

— PDT — a performance debugging tool which provides a tracing infrastructure
for application timing analysis.

An Eclipse-based Integrated Development Environment (IDE) to improve
programmer productivity and integration of development tools.

Standardized SIMD math libraries for the PPU’s Vector/SIMD Multimedia
Extension and the SPU.

Mathematical Acceleration Subsystem (MASS) libraries supporting both long and
short (SIMD) vectors.

Cell optimized domain-specific application libraries, including the following:
— Basic Linear Algebra Subprograms (BLAS) library
— Fast Fourier Transform (FFT) library

— Monte Carlo Random Number Generator library

SDK for Multicore Acceleration, Programming Tutorial

— Linear Algebra PACKage (LAPACK) library

* Example source code containing programming examples, example libraries,
benchmarks, and demos.

Chapter 1. Overview of the Cell Broadband Engine 17

18 SDK for Multicore Acceleration, Programming Tutorial

Chapter 2. The PPE and the programming process

This chapter describes the PowerPC Processor Element (PPE) registers, the PPE’s
two instruction sets, and the C-language intrinsics for the PPE and Vector/SIMD
Multimedia Extension instructions.

[“The PowerPC Processor Element” on page 6| introduced the organization and
functions of the PowerPC Processor Element (PPE). This chapter describes the
relation between the PPE and Synergistic Processor Element (SPE) address spaces.

Examples are provided of:
e PPE-initiated DMA transfers between main storage and an SPE’s local store (LS).
* PPE thread-creation for the SPE.

PPE registers

This section describes the complete set of PowerPC Processor Element (PPE) user
(problem-state) registers.

[Figure 10 on page 20| shows all the PPE user (problem-state) registers. All
computational instructions operate only on registers — there are no computational
instructions that modify storage.

To use a storage operand in a computation and then modify the same or another
storage location, the contents of the storage operand must be:

1. loaded into a register,

2. modified,

3. stored back to the target location.

19

63

General-Purpose Registers GPRO
GPR 1
GPR 31
0 63
Floating-Point Registers FPRO
FPR 1
FPR 31
0 63
Link Register ‘ LR ‘
0 63
Count Register ‘ CTR \
0 63
Fixed-Point Exception Register ‘ XER \
0 32
Condition Register | CR \
0 32
Floating-Point Status and Control Register ‘ FPSCR ‘
0 127
Vector Multimedia Registers VMR 0
VMR 1
T T
‘ VR 31 \
0 32
Vector Status and Control Register ‘ VSCR \
0 32
VR Save/Restore Register ‘ VRSAVE \

Figure 10. PPE user-register set

20

The PPE registers include:

* General-Purpose Registers (GPRs) — Fixed-point instructions operate on the full

64-bit width of the GPRs, of which there are 32. The instructions are
mode-independent, except that in 32-bit mode, the processor uses only the
low-order 32 bits for determination of a memory address and the carry,
overflow, and record status bits.

Floating-Point Registers (FPRs) — The 32 FPRs are 64 bits wide. The internal
format of floating-point data is the IEEE 754 double-precision format.
Single-precision results are maintained internally in the double-precision format.
Link Register (LR) — The 64-bit LR can be used to hold the effective address of a
branch target. Branch instructions with the link bit (LK) set to 1 (that is,
subroutine-call instructions) copy the next instruction address into the LR. A
Move To Special-Purpose Register instruction can copy the contents of a GPR
into the LR.

Count Register (CTR) — The 64-bit CTR can be used to hold either a loop counter
or the effective address of a branch target. Some conditional-branch instruction

SDK for Multicore Acceleration, Programming Tutorial

forms decrement the CTR and test it for a zero value. A Move To
Special-Purpose Register instruction can copy the contents of a GPR into the
CTR.

* Fixed-Point Exception Register (XER) — The 64-bit XER contains the carry and
overflow bits and the byte count for the move-assist instructions. Most
arithmetic operations have instruction forms for setting the carry and overflow
bit.

* Condition Register (CR) — Conditional comparisons are performed by first setting
a condition code in the 32-bit CR with a compare instruction or with a recording
instruction. The condition code is then available as a value or can be tested by a
branch instruction to control program flow. The CR consists of eight
independent 4-bit fields grouped together for convenient save or restore during
a context switch. Each field can hold status information from a comparison,
arithmetic, or logical operation. The compiler can schedule CR fields to avoid
data hazards in the same way that it schedules the use of GPRs. Writes to the
CR occur only for instructions that explicitly request them; most operations have
recording and non-recording instruction forms.

* Floating-Point Status and Control Register (FPSCR) — The processor updates the
32-bit FPSCR after every floating-point operation to record information about the
result and any associated exceptions. The status information required by IEEE
754 is included, plus some additional information for exception handling.

* Vector Registers (VRs) — There are 32 128-bit-wide VRs. They serve as source and
destination registers for all vector instructions.

* Vector Status and Control Register (VSCR) — The 32-bit VSCR 1is read and written
in a manner similar to the FPSCR. It has 2 defined bits, a non-Java" mode bit
and a saturation bit; the remaining bits are reserved. Special instructions are
provided to move the VSCR to a VR register.

* Vector Save Register (VRSAVE) — The 32-bit VRSAVE register assists user and
privileged software in saving and restoring the architectural state across context
switches.

PPE instruction sets

The PowerPC Processor Element (PPE) supports two instruction sets: the PowerPC
instruction set and the Vector/SIMD Multimedia Extension instruction set.

Although most of the coding for the Cell Broadband Engine will be in a high-level
language like C or C++, an understanding of the PPE architecture and instruction
sets adds considerably to a developer’s ability to produce efficient, optimized code.
This is particularly true because C-language intrinsics are provided for the PPE’s
Vector /SIMD Multimedia Extension instruction set, and these intrinsics map
directly to one or more Vector/SIMD Multimedia Extension assembly-language
instructions.

The PowerPC instruction set uses instructions that are 4 bytes long and
word-aligned. It supports byte, halfword, word, and doubleword operand accesses
between storage and its 32 general-purpose registers (GPRs). The instruction set
also supports word and doubleword operand accesses between storage and a set of
32 floating-point registers (FPRs). Signed integers are represented in
twos-complement form.

The Vector/SIMD Multimedia Extension instruction set uses instructions that, like

PowerPC instructions, are 4 bytes long and word-aligned. However, all of its
operands are 128 bits wide. Most of the Vector/SIMD Multimedia Extension

Chapter 2. The PPE and the programming process 21

22

operands are vectors, including single-precision floating-point, integer, scalar, and
fixed-point of vector-element sizes of 8,16, and 32 bits.

The sections that follow briefly summarize key points of the instruction sets.
However, for a complete description of the PowerPC instruction sets, refer to these
publications:

* PowerPC Microprocessor Family, Programming Environments Manual for 64-Bit
Microprocessors

* PowerPC Microprocessor Family, Vector/SIMD Multimedia Extension Technology
Programming Environments Manual

PowerPC instructions

Whenever instruction addresses are presented to the processor, the low-order 2 bits
are ignored.

Similarly, whenever the processor develops an instruction address, the low-order 2
bits are zero. The address of either an instruction or a multiple-byte data value is
its lowest-numbered byte. This address points to the most-significant end
(big-endian convention). The little-endian convention is not supported.

Arithmetic for address computation is unsigned and ignores any carry out of bit 0
(the MSb).

For an overview of the big-endian bit and byte numbering used by the PPE, see
[‘Byte ordering and bit numbering” on page 9.|

Addressing modes
All instructions, except branches, generate addresses by incrementing a program
counter. All load and store instructions specify a base register.

The effective address in memory for a data value is calculated relative to the base
register in one of three ways:

* Register + Displacement — The displacement forms of the load and store
instructions calculate an address that is the sum of a displacement specified by
the sign-extended 16-bit immediate field of the instruction plus the contents of
the base register.

* Register + Register — The indexed forms of the load and store instructions
calculate an address that is the sum of the contents of the index register, which
is a GPR, plus the contents of the base register.

* Register — The Load String Immediate and Store String Immediate instructions
use the unmodified contents of the base register to calculate an address.

Loads and stores can specify an update form that reloads the base register with the
computed address, unless the base register is the target register of the load.

Branches are the only instructions that explicitly specify the address of the next
instruction. A branch instruction specifies the effective address of the branch target
in one of the following ways:

* Branch Not Taken — The byte address of the next instruction is the byte address of
the current instruction, plus 4.

* Absolute — The word address of the next instruction is given in an immediate
field of the branch instruction.

SDK for Multicore Acceleration, Programming Tutorial

* Relative — The word address of the next instruction is given by the sum of the
immediate field of the branch instruction and the word address of the branch
instruction itself.

* Link Register or Count Register — The byte address of the next instruction is the
effective byte address of the branch target specified in the Link Register or
Count Register, respectively.

Instruction types

The PowerPC Processor Element (PPE)’s PowerPC instructions can have up to three
operands. Most computational instructions specify two source operands and one
destination operand.

The PPE’s PowerPC instructions include the following types:

* Integer Instructions — These include arithmetic, compare, logical, and rotate/shift
instructions. They operate on byte, halfword, word, and doubleword operands.

* Floating-Point Instructions — These include floating-point arithmetic, multiply-add,
compare, and move instructions, as well as instructions that affect the
Floating-Point Status and Control Register (FPSCR). Floating-point instructions
operate on single-precision and double-precision floating-point operands.

* Load and Store Instructions — These include integer and floating-point load and
store instructions, with byte-reverse, multiple, and string options for the integer
loads and stores.

e Memory Synchronization Instructions — These instructions control the order in
which memory operations are completed with respect to asynchronous events,
and the order in which memory operations are seen by other processors or
memory-access mechanisms. The instruction types include load and store with
reservation, synchronization, and enforce in-order execution of I/O. They are
especially useful for multiprocessing.

* Flow Control Instructions — These include branch, Condition-Register logical, trap,
and other instructions that affect the instruction flow.

* Processor Control Instructions — These instructions are used for synchronizing
memory accesses and managing caches, Translation Lookaside Buffers (TLBs),
segment registers, and other privileged processor states. They include
move-to/from special-purpose register instructions.

e Memory and Cache Control Instructions — These instructions control caches, TLBs,
and segment registers.

* External Control Instructions — These instructions allow a user-level program to
communicate with a special-purpose device.

Compatibility with existing PowerPC code
The PowerPC Processor Element (PPE) complies with version 2.0.2 of the PowerPC
architecture, with only minor exceptions.

The following optional user-mode instructions are implemented:

» fsqrt(.) — Floating-point square root

» fsqrts(.) — Floating-point square root single

» fres(.) — Floating-point reciprocal estimate single, A-form

+ frsqrte(.) — Floating-point reciprocal square root estimate, A-form
» fsel(.) — Floating-point select

* mtocrf — Move to one condition register field, XFX-form

* mfocrf — Move from one condition register field, XFX-form

The following optional instructions that are defined in the PowerPC Book I are not
implemented. Use of these instructions will cause an illegal-instruction interrupt:

Chapter 2. The PPE and the programming process 23

e mcrxr — Move to condition register from XER
* bccbr — Branch condition to CBR

The following instructions that are not defined in the PowerPC Architecture are
implemented. Since these instructions are not part of the architecture, they should
be considered highly implementation-specific.

* ldbrx — Load doubleword byte reverse indexed, X-form

¢ sdbrx — Store doubleword byte reverse indexed, X-form

In addition, the little endian option for data ordering is not available. A complete
list of differences can be found in the Cell Broadband Engine, Programming Handbook.

Vector/SIMD Multimedia Extension instructions

The 128-bit Vector/SIMD Multimedia Extension unit (VXU) operates concurrently
with the PPU’s fixed-point integer unit (FXU) and floating-point execution unit
(FPU).

Like PowerPC instructions, the Vector/SIMD Multimedia Extension instructions are
4 bytes long and word-aligned. The Vector/SIMD Multimedia Extension
instructions support simultaneous execution on multiple elements that make up
the 128-bit vector operands. These vector elements may be byte, halfword, or
word.

Instructions

FXU

FPU VXU

Memory

Figure 11. Concurrent execution of integer, floating-point, and vector units

24

The Vector/SIMD Multimedia Extension instructions are fully described in the
PowerPC Microprocessor Family, Vector/SIMD Multimedia Extension Technology
Programming Environments manual.

All Vector/SIMD Multimedia Extension instructions are designed to be easily

“pipelined”. Parallel execution with the PPE’s integer and floating-point

instructions is simplified by the fact that Vector/SIMD Multimedia Extension

instructions:

* do not generate exceptions (other than data-storage interrupt exceptions on loads
and stores),

SDK for Multicore Acceleration, Programming Tutorial

C/C++

* do not support unaligned memory accesses or complex functions, and
¢ share few resources or communication paths with the other PPE execution units.

Addressing modes
The PowerPC Processor Element (PPE) supports not only basic load and store
operations, but also load and store vector left- or right-indexed forms.

All Vector/SIMD Multimedia Extension load and store operations use the register
+ register indexed addressing mode, which forms the sum of the contents of an
index GPR plus the contents of a base-address GPR. This addressing mode is very
useful for accessing arrays.

In addition to the load and store operations, the Vector/SIMD Multimedia
Extension instruction set provides a powerful set of element-manipulation
instructions — for example, shuffle, permute (similar to the SPEs’ shuffle), rotate,
and shift — to manipulate vector elements into the desired alignment and
arrangement after the vectors have been loaded into vector registers.

Instruction types

Most Vector/SIMD Multimedia Extension instructions have three or four 128-bit
vector operands — two or three source operands and one result. Also, most
instructions are SIMD in nature.

The instructions have been chosen for their utility in digital signal processing
(DSP) algorithms, including 3D graphics.

The Vector/SIMD Multimedia Extension instructions include the following types:

* Vector Integer Instructions — These include vector arithmetic, compare, logical,
rotate, and shift instructions. They operate on byte, halfword, and word vector
elements. The instructions use saturation-clamping.

* Vector Floating-Point Instructions — These include floating-point arithmetic,
multiply /add, rounding and conversion, compare, and estimate instructions.
They operate on single-precision floating-point vector elements.

* Vector Load and Store Instructions — These include only basic integer and
floating-point load and store instructions. No update forms of the load and store
instruction are provided. They operate on 128-bit vectors.

* Vector Permutation and Formatting Instructions — These include vector pack,
unpack, merge, splat, permute, select, and shift instructions.

e Processor Control Instructions — These include instructions that read and write the
vector status and control register (VSCR).

* Memory Control Instructions — These include instructions for managing caches
(user-level and supervisor-level). These instructions are “no-ops”.

language extensions (intrinsics)

A set of C-language extensions are available for PowerPC Processor Element (PPE)
and Vector/SIMD Multimedia Extension programming.

These extensions include additional vector data types and a large set of scalar and
vector commands (intrinsics). The intrinsics are essentially inline
assembly-language instructions, in the form of function calls, that have syntax
familiar to high-level programmers using the C language.

The intrinsics provide explicit control of the PPE or Vector/SIMD Multimedia
Extension instructions without directly managing registers and scheduling

Chapter 2. The PPE and the programming process 25

26

instructions, as assembly-language programming requires. A compiler that
supports these C-language extensions will emit code optimized for the PPE and/or
the Vector/SIMD Multimedia Extension architecture.

Scalar intrinsics

A minimal set of specific intrinsincs, to make the underlying PPU instruction set
accessible from the C programming language, have been provided. These intrinsics
are declared in the system header file ppu_intrinsics.h.

Table 3. PPE-specific scalar intrinsics

Intrinsic Description

__cctph() Change Thread Priority to High
__cctpl() Change Thread Priority to Low
__cctpm() Change Thread Priority to Medium
d = __cntlz(a) Count Leading Doubleword Zeros
d = __cntlzw(a) Count Leading Word Zeros
__db10cyc() Delay 10 Cycles at Dispatch
__db12cyc() Delay 12 Cycles at Dispatch
__dbl6cyc() Delay 16 Cycles at Dispatch
__db8cyc() Delay 8 Cycles at Dispatch
__dcbf(pointer) Data Cache Block Flush
__dcbst(pointer) Data Cache Block Store
__dcbt(pointer) Data Cache Block Touch

__dcbt_TH1000(eatrunc, d, ug, id)

Start Streaming Data

__dcbt_TH1010(g0, s, unitent, t, u, id)

Stop Streaming Data

__dcbtst(pointer) Data Cache Block Touch for Store
__dcbz(pointer) Data Cache Block Set to Zero
__eieio() Enforce In-Order Execution of I/O
d = __fabs(a) Double Absolute Value

d = __fabsf(a) Float Absolute Value

d = __fcfid(a) Convert Doubleword to Double

d = _ fctid(a) Convert Double to Doubleword

d = __fctidz(a)

Convert Double to Doubleword with
Round Towards Zero

d = __fctiw(a)

Convert Double to Word

d = _ fctiwz(a)

Convert Double to Word with Round
Toward Zero

d = __fmadd(a,b,c)

Double Fused Multiply and Add

d = __fmadds(a,b,c)

Float Fused Multiply and Add

d = __fmsub(a,b,c)

Double Fused Multiply and Subtract

d = __fmsubs(a,b,c)

Float Fused Multiply and Subtract

d = __fmul(a,b)

Double Mulitply

d = _ fmuls(a,b)

Float Multiply

d = __fnabs(a)

Double Negative Absolute Value

d = __fnabsf(a)

Float Negative Absolute Value

SDK for Multicore Acceleration, Programming Tutorial

Table 3. PPE-specific scalar intrinsics (continued)

Intrinsic

Description

d = __fnmadd(a,b,c)

Double Fused Negative Multiply and
Add

d = __fnmadds(a,b,c)

Float Fused Negative Multiply and Add

d = __fnmsub(a,b,c)

Double Fused Negative Multiply and
Subtract

d = __fnmsubs(a,b,c)

Float Fused Negative Multiply and
Subtract

d = __ fres(a)

Float Reciprocal Estimate

d = _ frsp(a)

Round to Single Precision

d = _ fsel(a,b,c)

Floating Point Select of Double

d = __fsels(a,b,c)

Floating Point Select of Float

d = __fsqrt(a)

Double Square Root

d = _ fsqrts(a)

Float Square Root

__icbi(pointer)

Instruction Cache Block Invalidate

__isyne()

Instruction Sync

d = __ldarx(pointer)

Load Doubleword with Reserved

d = __ldbrx(pointer)

Load Reversed Doubleword

d = __lhbrx(pointer)

Load Reversed Halfword

d = __lwarx(pointer)

Load Word with Reserved

d = __Iwbrx(pointer)

Load Reversed Word

__lwsyne()

Light Weight Sync

d = __mffs()

Move from Floating-Point Status and
Control Register

d = __mfspr(spr)

Move from Special Purpose Regiser

d = __mftb() Move from Time Base
__mtfsb0(bt) Unset Field of FPSCR
__mtfsb1(bt) Set Field of FPSCR
__mitfsf(flm,b) Set Fields of FPSCR
__mtfsfi(bf,u) Set Field FPSCR from other Field
__mtspr(spr,value) Move to Special Purpose Register

d = _mulhdu(a,b)

Multiply Double Unsigned Word, High
Part

d = __mulhd(ab)

Multiply Doubleword, High Part

d = __mulhwu(a,b)

Multiply Unsigned Word, High Part

d = __mulhw(a,b)

Multiply Word, High Part

__nop() No Operation
__protected_stream_count(count,id) Set the Number of Blocks to Stream
__protected_stream_go() Start All Streams
__protected_stream_set(d,addr,id) Set Up a Stream
__protected_stream_stop(id) Stop a Stream
__protected_stream_stop_all() Stop All Streams

Chapter 2. The PPE and the programming process 27

28

Table 3. PPE-specific scalar intrinsics (continued)

Intrinsic Description

__protected_unlimited_stream_set(d,addr,id) Set Up an Unlimited Stream

d = __rldcl(a,b,mb) Rotate Left Doubleword then Clear Left

d = __rldcr(a,b,me) Rotate Left Doubleword then Clear Right

d = __rldic(a,sh,mb) Rotate Left Doubleword Immediate then
Clear

d = __rldicl(a,sh,mb) Rotate Left Doubleword Immediate then
Clear Left

d = __rldicr(a,sh,me) Rotate Left Doubleword Immediate then
Clear Right

d = __rldimi(a,b,sh.mb) Rotate Left Doubleword Immediate then
Mask Insert

d = __rlwimi(a,b,sh,mb,me) Rotate Left Word Immediate the Mask
Insert

d = __rlwinm(a,sh,mb,me) Rotate Left Word Immediate then AND
with Mask

d = __rlwnm(a,v,mb,me) Rotate Left Word then AND with Mask

d = __setflm(a) Save and Set the FPSCR

__stdbrx(pointer,b) Store Reversed Doubleword

d = __stdex(pointer,b) Store Doubleword Conditional

__sthbrx(pointer,b) Store Reversed Halfword

__stwbrx(pointer,b) Store Reversed Word

d = _ stwex(pointer,b) Store Word Conditional

__sync() Sync

Vector data types
The Vector/SIMD Multimedia Extension model adds a set of fundamental data
types, called vector types.

Vector types are shown in [Table 4 on page 29 The represented values are in
decimal (base-10) notation. The vector registers are 128 bits and can contain:

e Sixteen 8-bit values, signed or unsigned
* Eight 16-bit values, signed or unsigned
* Four 32-bit values, signed or unsigned

* Four single-precision IEEE-754 floating-point values

The vector types use the prefix vector in front of one of standard C data
types—for example vector signed int and vector unsigned short. A vector type
represents a vector of as many of the specified C data type as will fit in a 128-bit
register. Hence, the vector signed int is a 128-bit operand containing four 32-bit
signed ints. The vector unsigned short is a 128-bit operand containing eight
unsigned values.

Note: Since the token, vector, is a keyword in the Vector/SIMD Multimedia
Extension data types, you are recommended not to use the term elsewhere in the
program (for example, as a variable name).

SDK for Multicore Acceleration, Programming Tutorial

Table 4. Vector/SIMD Multimedia Extension data types

Vector Data Type Meaning Values

vector unsigned char Sixteen 8-bit unsigned values 0..255

vector signed char Sixteen 8-bit signed values -128 ... 127

vector bool char Sixteen 8-bit unsigned boolean 0 (false), 255 (true)
vector unsigned short Eight 16-bit unsigned values 0 ... 65535

vector unsigned short int | Eight 16-bit unsigned values 0 ... 65535

vector signed short Eight 16-bit signed values -32768 ... 32767
vector signed short int Eight 16-bit signed values -32768 ... 32767
vector bool short Eight 16-bit unsigned boolean 0 (false), 65535 (true)
vector bool short int Eight 16-bit unsigned boolean 0 (false), 65535 (true)
vector unsigned int Four 32-bit unsigned values 0..2%2-1

vector signed int Four 32-bit signed values -231..231-1

vector bool int Four 32-bit unsigned values 0 (false), 231 - 1 (true)
vector float Four 32-bit single precision IEEE-754 values
vector pixel Eight 16-bit unsigned values 1/5/5/5 pixel

Introducing fundamental vector data types permits the compiler to provide
stronger type-checking and supports overloaded operations on vector types.

Vector intrinsics
Vector /SIMD Multimedia Extension intrinsics are grouped into three classes.

These classes are:

e Specific Intrinsics — Intrinsics that have a one-to-one mapping with a single
assembly-language instruction

e Generic Intrinsics — Intrinsics that map to one or more assembly-language
instructions as a function of the type of input parameters

* Predicates Intrinsics — Intrinsics that compare values and return an integer that
may be used directly as a value or as a condition for branching

The Vector/SIMD Multimedia Extension intrinsics and predicates use the prefix
vec_ in front of an assembly-language or operation mnemonic; predicate intrinsics
use the prefixes vec_all and vec_any. When compiled, the intrinsics generate one
or more Vector/SIMD Multimedia Extension assembly-language instructions.

The specific and generic intrinsics are shown in [Table 5| The predicate intrinsics are
shown in [Table 6 on page 32}

Table 5. Vector/SIMD Multimedia Extension specific and generic intrinsics

Intrinsic | Description

Arithmetic Intrinsics

d = vec_abs(a) Vector Absolute Value

d = vec_abss(a) Vector Absolute Value Saturated

d = vec_add(a,b) Vector Add

d = vec_addc(a,b) Vector Add Carryout Unsigned Word
d = vec_adds(a,b) Vector Add Saturated

Chapter 2. The PPE and the programming process 29

Table 5. Vector/SIMD Multimedia Extension specific and generic intrinsics (continued)

Intrinsic

Description

d = vec_avg(a,b)

Vector Average

d = vec_madd(a,b,c)

Vector Multiply Add

d = vec_madds(a,b,c)

Vector Multiply Add Saturated

d = vec_max(a,b)

Vector Maximum

d = vec_min(a,b)

Vector Minimum

d = vec_mladd(a,b,c)

Vector Multiply Low and Add Unsigned Half Word

d = vec_mradds(a,b,c)

Vector Multiply Round and Add Saturated

d = vec_msum(a,b,c)

Vector Multiply Sum

d = vec_msums(a,b,c)

Vector Multiply Sum Saturated

d = vec_mule(a,b)

Vector Multiply Even

d = vec_mulo(a,b)

Vector Multiply Odd

d = vec_nmsub(a,b,c)

Vector Negative Multiply Subtract

d = vec_sub(a,b)

Vector Subtract

d = vec_subc(a,b)

Vector Subtract Carryout

d = vec_subs(a,b)

Vector Subtract Saturated

d = vec_sumds(a,b)

Vector Sum Across Partial (1/4) Saturated

d = vec_sum?2s(a,b)

Vector Sum Across Partial (1/2) Saturated

d = vec_sums(a,b)

Vector Sum Saturated

Rounding And Conversion Intrinsics

d = vec_ceil(a)

Vector Ceiling

d = vec_ctf(a,b)

Vector Convert from Fixed-Point Word

d = vec_cts(a,b)

Vector Convert to Signed Fixed-Point Word Saturated

d = vec_ctu(a,b)

Vector Convert to Unsigned Fixed-Point Word Saturated

d = vec_floor(a)

Vector Floor

d = vec_trunc(a)

Vector Truncate

Floating-Point Estimate Intrinsic

S

d = vec_expte(a)

Vector Is 2 Raised to the Exponent Estimate
Floating-Point

d = vec_loge(a)

Vector Log2 Estimate Floating-Point

d = vec_re(a)

Vector Reciprocal Estimate

d = vec_rsqrte(a)

Vector Reciprocal Square Root Estimate

Compare Intrinsics

d = vec_cmpb(a,b)

Vector Compare Bounds Floating-Point

d = vec_cmpeq(a,b)

Vector Compare Equal

d = vec_cmpge(a,b)

Vector Compare Greater Than or Equal

d = vec_cmpgt(a,b)

Vector Compare Greater Than

d = vec_cmple(a,b)

Vector Compare Less Than or Equal

d = vec_cmplt(a,b)

Vector Compare Less Than

Logical Intrinsics

d = vec_and(a,b)

Vector Logical AND

SDK for Multicore Acceleration, Programming Tutorial

Table 5. Vector/SIMD Multimedia Extension specific and generic intrinsics (continued)

Intrinsic

Description

d = vec_andc(a,b)

Vector Logical AND with Complement

d = vec_nor(a,b)

Vector Logical NOR

d = vec_or(a,b)

Vector Logical OR

d = vec_xor(a,b)

Vector Logical XOR

Rotate and Shift Intrinsics

d = vec_rl(a,b)

Vector Rotate Left

d = vec_round(a)

Vector Round

d = vec_sl(a,b)

Vector Shift Left

d = vec_sld(a,b,c)

Vector Shift Left Double

d = vec_sll(a,b)

Vector Shift Left Long

d = vec_slo(a,b)

Vector Shift Left by Octet

d = vec_sr(a,b)

Vector Shift Right

d = vec_sra(a,b)

Vector Shift Right Algebraic

d = vec_srl(a,b)

Vector Shift Right Long

d = vec_sro(a,b)

Vector Shift Right by Octet

Load and Store Intrinsics

d = vec_ld(a,b)

Vector Load Indexed

d = vec_lde(a,b)

Vector Load Element Indexed

d = vec_ldl(a,b)

Vector Load Indexed LRU

d = vec_lvlx(a,b)

Load Vector Left Indexed

d = vec_lvixl(a,b)

Load Vector Left Indexed Last

d = vec_lvrx(a,b)

Load Vector Right Indexed

d = vec_lvrxl(a,b)

Load Vector Right Indexed Last

d = vec_lvsl(a,b)

Vector Load for Shift Left

d = vec_lvsr(a,b)

Vector Load Shift Right

d = vec_stvix(a,b)

Store Vector Left Indexed

d = vec_stvixl(a,b)

Store Vector Left Indexed Last

d = vec_stvrx(a,b)

Store Vector Right Indexed

d = vec_stvrxl(a,b)

Store Vector Right Indexed Last

vec_st(a,b,c)

Vector Store Indexed

vec_ste(a,b,c)

Vector Store Element Indexed

vec_stl(a,b,c)

Vector Store Indexed LRU

Pack and Unpack Intrinsics

d = vec_pack(a,b)

Vector Pack

d = vec_packpx(a,b)

Vector Pack Pixel

d = vec_packs(a,b)

Vector Pack Saturated

d = vec_packsu(a,b)

Vector Pack Saturated Unsigned

d = vec_unpackh(a)

Vector Unpack High Element

d = vec_unpackl(a)

Vector Unpack Low Element

Merge Intrinsics

Chapter 2. The PPE and the programming process

31

Table 5. Vector/SIMD Multimedia Extension specific and generic intrinsics (continued)

Intrinsic Description
d = vec_mergeh(a,b) Vector Merge High
d = vec_mergel(a,b) Vector Merge Low

Permute and Select Intrinsics

d = vec_perm(a,b,c) Vector Permute

d = vec_sel(a,b,c) Vector Select

Stream Intrinsics

vec_dss(a) Vector Data Stream Stop

vec_dssall() Vector Stream Stop All

vec_dst(a,b,c) Vector Data Stream Touch

vec_dstst(a,b,c) Vector Data Stream Touch for Store
vec_dststt(a,b,c) Vector Data Stream Touch for Store Transient
vec_dstt(a,b,c) Vector Data Stream Touch Transient

Move Intrinsics

d = vec_mfvscr Vector Move from Vector Status and Control Register

vec_mtvscr(a) Vector Move to Vector Status and Control Register

Replicate Intrinsics

d = vec_splat(a,b) Vector Splat

d = vec_splat_s8(a) Vector Splat Signed Byte

d = vec_splat_s16(a) Vector Splat Signed Half-Word

d = vec_splat_s32(a) Vector Splat Signed Word

d = vec_splat_u8(a) Vector Splat Unsigned Byte

d = vec_splat_ul6(a) Vector Splat Unsigned Half-Word
d = vec_splat_u32(a) Vector Splat Unsigned Word
Scalar Intrinsics

d = vec_extract(a,element) Extract Vector Element from Vector
d = vec_insert(a,b,element) Insert Scalar into Specified Vector Element
d = vec_promote(a,element) Promote Scalar to a Vector

d = vec_splats(a) Splat Scalar to Vector

Table 6. Vector/SIMD Multimedia Extension predicate intrinsics

Predicate Description

All Predicates

d = vec_all_eq(a,b) All Elements Equal

d = vec_all_ge(a,b) All Elements Greater Than or Equal
d = vec_all_gt(a,b) All Elements Greater Than

d = vec_all_in(a,b) All Elements in Bounds

d = vec_all_le(a,b) All Elements Less Than or Equal

d = vec_all_lt(a,b) All Elements Less Than

d = vec_all_nan(a) All Elements Not a Number

d = vec_all_ne(a,b) All Elements Not Equal

32 SDK for Multicore Acceleration, Programming Tutorial

Table 6. Vector/SIMD Multimedia Extension predicate intrinsics (continued)

Predicate

Description

d = vec_all_nge(a,b)

All Elements Not Greater Than or Equal

d = vec_all_ngt(a,b)

All Elements Not Greater Than

d = vec_all_nle(a,b)

All Elements Not Less Than or Equal

d = vec_all_nlt(a,b)

All Elements Not Less Than

d = vec_all_numeric(a)

All Elements Numeric

Any Predicates

d = vec_any_eq(a,b)

Any Element Equal

d = vec_any_ge(a,b)

Any Element Greater Than or Equal

d = vec_any_gt(a,b)

Any Element Greater Than

d = vec_any_le(a,b)

Any Element Less Than or Equal

d = vec_any_lt(a,b)

Any Element Less Than

d = vec_any_nan(a)

Any Element Not a Number

d = vec_any_ne(a,b)

Any Element Not Equal

d = vec_any_nge(a,b)

Any Element Not Greater Than or Equal

d = vec_any_ngt(a,b)

Any Element Not Greater Than

d = vec_any_nle(a,b)

Any Element Not Less Than or Equal

d = vec_any_nlt(a,b)

Any Element Not Less Than

d = vec_any_numeric(a)

Any Element Numeric

d = vec_any_out(a,b)

Any Element Out of Bounds

Programming with Vector/SIMD Multimedia Extension
intrinsics
Vector /SIMD Multimedia Extension data types and Vector/SIMD Multimedia

Extension intrinsics can be used in a seamless way throughout a C-language
program.

You do not need to setup, to enter a special mode, or to include a special header
file.

Example: incorporating Vector instructions into a PPE program
The sample program vmx_sample illustrates the ease with which vector instructions
can be incorporated into a PPE program.

The program vmx_sample performs this processing:

1. “typedefs” a union of an array of four ints and a vector of signed ints. This is
only done so we can refer to the values in two different ways. (Vector elements
can also be accessed using the SPU intrinsic, spu_extract. For more information
about SPU intrinsics, see [“Intrinsic classes” on page 66

2. Loads the literal value 2 into each of the four 32-bit fields of vector vConst.
3. Loads four different integer values into the fields of vector v1.

4. Calls the vec_add intrinsic, and the two vectors are added with the result being
assigned to v2.

#include <stdio.h>

// Define a type we can Took at either as an array of ints or as a vector.

Chapter 2. The PPE and the programming process 33

typedef union {

int ivals[4];

vector signed int myVec;
} vecVar;

int main()
vecVar vl, v2, vConst; // define variables

// load the Titeral value 2 into the 4 positions in vConst,
vConst.myVec = (vector signed int){2, 2, 2, 2};

// load 4 values into the 4 element of vector vl
vl.myVec = (vector signed int){10, 20, 30, 40};

// call vector add function
v2.myVec = vec_add(vl.myVec, vConst.myVec);

// see what we got!
printf("\nResults:\nv2[0] = %d, v2[1] = %d, v2[2] = %d, v2[3] = %d\n\n",
v2.iVals[0], v2.ivals[1], v2.iVals[2], v2.iVals[3]);

return 0;

}

See ["Developing code for the Cell Broadband Engine” on page 41| for more
information on how to run the example on the simulator.

shows the results of running the sample program.

[user@bringup /]# callthru source vmx_sample > vmx_sample
[user@bringup /]# chmod +x vmx_sample
[user@bringup /]# vmx_sample

Results:
v2[0] = 12, v2[1] = 22, v2[2] = 32, v2[3] = 42

[user@bringup /1# _

Figure 12. Running the Vector/SIMD Multimedia Extension sample program

Example: array-summing
This example illustrates array-summing using a function that sums an input array
of 16-byte values.

The following code contains three versions of a function that sums an input array

of 16-byte values. For this kind of array-summing function, you have several

options:

* You can unroll the scalar code to slightly improve the performance.

* You can use the Vector/SIMD Multimedia Extension to significantly improve the
performance.

* You can eliminate the loop entirely.

The first option performs 16 iterations of the loop. The second option performs
only four iterations of the loop but with four additions in each iteration. The third
option uses Vector/SIMD Multimedia Extension intrinsics to eliminate the loop
entirely.

34 SDK for Multicore Acceleration, Programming Tutorial

// 16 iterations of a Toop
int rolled_sum(unsigned char bytes[16])
{

int i;

int sum = 0;

for (i = 0; i < 163 ++i) {

sum += bytes[i];

return sum;

}

// 4 iterations of a loop, with 4 additions in each iteration
int unrolled_sum(unsigned char bytes[16])
{

int i;

int sum[4] = {0, 0, 0, 0};

for (i = 0; i <163 i +=4) {

sum[0] += bytes[i + 0];

sum[1] += bytes[i + 1];

sum[2] += bytes[i + 2];

sum[3] += bytes[i + 3];

1

return sum[0] + sum[1] + sum[2] + sum[3];

}

// Vectorized for Vector/SIMD Multimedia Extension
int vectorized_sum(unsigned char bytes[16])
{
vector unsigned char vbytes;
union {
int i[4];
vector signed int v;
} sum;
vector unsigned int zero = (vector unsigned int){0};

// Perform a misaligned vector load of the 16 bytes.
vbytes = vec_perm(vec_1d(0, bytes), vec_1d(16, bytes), vec Tvs1(0, bytes));

// Sum the 16 bytes of the vector
sum.v = vec_sums((vector signed int)vec_suméds(vbytes, zero),
(vector signed int)zero);

// Extract the sum and return the result.
return (sum.i[3]);

The PPE and the SPEs

This section describes the relationship between the PowerPC Processor Element (PPE)
and the Synergistic Processor Elements (SPEs).

Storage Domains

Three types of storage domains are defined in the Cell Broadband Engine: one
main-storage domain , eight SPE local store domains , and eight SPE channel domains.

The three types of storage domains are shown in [Figure 13 on page 36| The
main-storage domain, which is the entire effective-address space, can be configured
by the PPE operating system to be shared by all processors and memory-mapped
devices in the system (all I/O is memory-mapped).

Chapter 2. The PPE and the programming process 35

36

However, the local-storage and channel problem-state (user-state) domains are
private to the SPU, LS, and MFC of each SPE.

Channels Local Storage Main Storage
(channel commands) (local-address space) (effective-address space)
10f8 10f8
\ SPE
| spu/]
LS
| PPE
MMIO MBS
: DMA

Other Other
Devices Vo SPEs DRAM
Memory

Figure 13. Storage domains defined in the Cell Broadband Engine

An SPE can only fetch instructions from its own LS, and loads and stores can only
access the LS. An SPE or PPE performs data transfers between the SPE’s LS and
main storage primarily using DMA transfers controlled by the MFC DMA
controller for that SPE. Software on the SPE’s SPU interacts with the MFC through
channels, which enqueue DMA commands and provide other facilities, such as
mailboxes, signal notification, and access auxiliary resources.

An SPE program references its own LS using a Local Store Address (LSA). The LS
of each SPE is also assigned a Real Address (RA) range within the system’s
memory map. This allows privileged software to map LS areas into the effective
address (EA) space, where the PPE, other SPEs, and other devices that generate
EAs can access the LS.

Each SPE’s MFC serves as a data-transfer engine. DMA transfer requests contain
both an LSA and an EA. Thus, they can address both an SPE’s LS and main
storage and thereby initiate DMA transfers between the domains. The MFC
accomplishes this by maintaining and processing an MFC command queue. DMA
requests can be sent to an MFC either by software on its associated SPU or on the
PPE, or by any other processing device that has access to the MFC’s MMIO
problem-state registers.

SDK for Multicore Acceleration, Programming Tutorial

The queued requests are converted into DMA transfers. Each MFC can maintain
and process multiple in-progress DMA command requests and DMA transfers. The
MEC can also autonomously manage a sequence of DMA transfers in response to a
DMA-list command from its associated SPU. Each DMA command is tagged with a
5-bit Tag Group ID. Software can use this identifier to check or wait on the
completion of all queued commands in one or more tag groups.

The MFC supports naturally aligned transfer sizes of 1, 2, 4, or 8 bytes, and
multiples of 16-bytes, with a maximum transfer size of 16 KB. Peak performance
can be achieved for transfers when both the EA and LSA are 128-byte aligned and
the size of the transfer is a multiple of 128 bytes.

Each MFC has an associated memory management unit (MMU) that holds and
processes address-translation and access-permission information supplied by the
PPE operating system. This MMU is distinct from the one used by the PPE. To
process an effective address provided by a DMA command, the MMU uses the
same method as the PPE memory-management functions. Thus, DMA transfers are
coherent with respect to system storage. Attributes of system storage are governed
by the page and segment tables of the PowerPC Architecture.

The PPE or other processing devices can initiate MFC commands on a particular
MEC by accessing its MFC Command-Parameter Registers, shown in These
registers are mapped to the system’s real-address space. The PPE performs MMIO
reads and writes to access these registers. The registers are contained in each SPE’s
memory region, and DMA command requests are made by writing parameters to
the registers.

Table 7. MFC command-parameter registers for PPE-initiated DMA transfers

Max. Width
Name Mnemonic Entries | R/W (bits)
MFC Local-Storage Address MFC_LSA 1 W 32
MEFC Effective Address High MFC_EAH A 32
MEFC Effective Address Low MFC_EAL 1 W 32
MEFC Transfer Size MFC_Size 1 A 32
MFC Command Tag Identification | MFC_TagID
MEFC Class ID and Command MFC_ClassID_CMD 8 W 32
Opcode
MFC Command Status MFC_CMDStatus 1 R 32

Note: The MFC_EAH and MFC_EAL can be written in a single 64-bit store. Similarly,
MFC_Size, MFC_TagID, and MFC_ClassID_CMD can also be written in a single 64-bit
store.

Issuing DMA commands from the PPE

To enqueue a DMA command from the PPE, access the MFC Command-Parameter
Registers in this sequence:

1. Write the LS address to the MFC_LSA register.

2. Write the effective address high and low parts to the MFC_EAH and MFC_EAL
registers.

3. Write the transfer size and tag ID to the MFC_Size and MFC_TagID registers.
4. Write the class ID and command opcode to the MFC_CTassID_CMD registers.

Chapter 2. The PPE and the programming process 37

38

5. Read the MFC_CMDStatus register to determine the success or failure of the
attempt to enqueue a DMA command.

The least-significant 2 bits of the command status value returned from the read of
the MFC_CMDStatus register indicate the success or error of the attempt to enqueue a
DMA. The values of these two bits have the following meanings:

* 0 — Indicates that the enqueue was successful.

¢ 1 - Indicates that a sequence error occurred while enqueuing the DMA. For
example, an interrupt occurred, then another DMA was started within an
interrupt handler. In this case, the DMA enqueue sequence must be restarted at
step 1.

¢ 2 —Indicates that the enqueue failed due to insufficient space in the command
queue.

¢ 3 — Indicates that both errors occurred.

In the case of insufficient space, software could wait for space to become available
before attempting the DMA transfer again, or software could simply continue
attempting to enqueue the DMA until successful.

Creating threads for the SPEs

Programs to be run on an SPE are most often written in C or C++ (or assembly
language) and can use the SPE data types and intrinsics defined in the C/C++
Language Extensions for Cell Broadband Engine Architecture.

The SPU C/C++ Language Extensions are described in [“SPU C/C++ language|
[extensions (intrinsics)” on page 64| The SPE code modules must be written and
compiled separately from the PPE code modules, using different compilers. A PPE
module starts an SPE module running by creating a thread on the SPE, using the
spe_context_create, spe_program_load, and spe_context_run library calls,
provided in the SPE runtime management library.

The spe_context_create call creates a context for the SPE thread which contains
the persistent information about a logical SPE. This information should not be
accessed directly by the application. The signature and parameter synopsis for the
spe_create_thread library call is:

spe_context_ptr_t spe_context_create(unsigned int flags,
spe_gang_context_ptr_t gang)

* flags — This is a bit-wise OR of modifiers that is applied when the new context
is created. The following values are accepted:
— 0 — No modifiers are applied.
— SPE_EVENTS_ENABLE — Configure the context with event handling enabled.

— SPE_CFG_SIGNOTIFY1_OR — Configure the SPU Signal Notification 1 Register to
be in “logical OR” mode instead of the default “Overwrite” mode.

— SPE_CFG_SIGNOTIFY2_OR — Configure the SPU Signal Notification 2 Register to
be in “logical OR” mode instead of the default “Overwrite” mode.

— SPE_MAP_PS — Request permission for memory-mapped access to the SPE
thread’s problem state area.

— SPE_ISOLATE — Specifies that the SPE will execute in the isolation mode.

— SPE_ISOLATED_EMULATE — Specifies that the SPE will execute in an emulated
isolation mode.

* gang — Collection of contexts in which the context being created should made a
part of.

SDK for Multicore Acceleration, Programming Tutorial

Before being able to run an SPE context, an SPE program has to be loaded into the
context using the spe_program_load subroutine. The signature and parameter
synopsis for the spe_program_load library call is:

int spe_program load(spe_context ptr spe, spe_program handle t *program)
* spe — The SPE context in which in specified program is to be loaded.

* program — Indicates the program to be loaded into the SPE context. This is an
opaque pointer to an SPE Executable and Linking Format (ELF) image that has
already been loaded and mapped into system memory. This pointer is normally
provided as a symbol reference to an SPE ELF executable image that has been
embedded into a PPE ELF object and linked with the calling PPE program. This
pointer can also be established dynamically by loading a shared library
containing an embedded SPE ELF executable, using dlopen(2) and d1sym(2), or
by using the spe_image_open function to load and map a raw SPE ELF
executable.

An SPE context is executed on a physical SPE by calling the spe_context_run
function. This subroutine causes the current PPE thread to transition to a SPE
thread by passing its execution control from the PPE to the SPE whose context is
scheduled to run on. The PPE resumes execution when the SPE stops.

Note: In order to achieve multiple threads of execution (PPE and SPE threads),
separate “pthreads” must be created for each thread of execution using

pthread create. An example is provided in [“Producing a simple multi-threaded|
[CBE program” on page 42

The signature and parameter synopsis for the spe_context_run library call is:

int spe_context_run(spe_context_ptr_t spe, unsigned int xentry,
unsigned int runflags, void *argp, void *envp, spe_stop_info_t *stopinfo)

* spe — The context to be run.

* entry — Pointer initial value of the instruction pointer in which the SPE
program should start executing. If the value pointed to by entry is
SPE_DEFAULT_ENTRY, the default entry for the main program obtained from
loaded SPE image will be used. Upon return from the spe_context_run call, the
value pointed to by entry contains the next instruction to be executed upon
resumption of the program.

* runflags — This is a bit-wise OR of modifiers which request specific behavior
when the SPE context is run. Flags include:

— 0 — Default behavior. No modifiers are applied.
— SPE_RUN_USER_REGS — Specifies that the SPE setup registers, 13, r4, and r5, are
initialized with the 48 bytes pointed to by argp.

— SPE_NO_CALLBACKS — Specifies that register SPE library callbacks should not
be automatically executed. This includes “PPE-assisted library calls” that are
provided by the SPE Runtime library.

e argp — An optional pointer to application specific data. It is passed as the
second parameter of the SPU program.

* envp — An optional pointer to environment specific data. It is passed as the
third parameter of the SPU program.

* stopinfo — An optional pointer to a structure of type spe_stop_info_t that
provides information as to the reason why the SPE stopped running. See library
documentation for more details on this structure.

The following code sample shows PPE code creating a SPE context, loading a SPE
program into the context and running the program from the current thread.

Chapter 2. The PPE and the programming process 39

#include <libspe2.h>
extern spe_program_handle_t spe_code;

spe_context_ptr_t ctx;
unsigned int entry = SPE_DEFAULT_ENTRY;

if ((ctx = spe_context_create(®, NULL)) == NULL) {
perror("Failed creating SPE context);

exit(1);

1

if (spe_program_load(ctx, &spe_code)) {
perror("Failed Toading program");

exit(1l);

}

if (spe_context_run(ctx, &entry, 0, NULL, NULL, NULL) < 0) {
perror("Failed running context");

exit(1l);

1

Communication between the PPE and SPEs

The PPE communicates with the SPEs through privileged-state and problem-state
MMIO registers supported by the MFC of each SPE.

These registers are accessed by the associated SPE through its channel mechanism
(sed“Channels” on page 55), which consist of unidirectional registers and queues
and support logic. The three primary communication mechanisms between the PPE
and SPEs are mailboxes, signal notification registers, and DM)

Mailboxes are queues for exchanging 32-bit messages. Two mailboxes (the SPU
Write Outbound Mailbox and the SPU Write Outbound Interrupt Mailbox) are
provided for sending messages from the SPE to the PPE. One mailbox (the SPU
Read Inbound Mailbox) is provided for sending messages to the SPE. lists
the mailbox channels and their associated MMIO registers.

Note: Mailboxes can also be used as a communications mechanism between SPEs.
This is accomplished by an SPE DMAing data into the other SPE’s mailbox using
the effective addressed problem state mapping.

Table 8. Mailbox channels and MMIO registers

Channel MMIO Register

Max. Width Max. Width
Name Mnemonic entries | R'W (bits) Mnemonic entries | R/'W | (bits)
SPU Write SPU_WrOutMbox 1 W 32 SPU_Out_Mbox 1 R 32
Outbound Mailbox
SPU Read Inbound | SPU_RdInMbox 4 R 32 SPU_In_Mbox 4 W 32
Mailbox
SPU Write SPU_WrOutIntrMbox 1 ' 32 SPU_Out_Intr_Mbox 1 R 32
Outbound
Interrupt Mailbox

SPU signal-notification channels are inbound (to an SPE) 32-bit registers. They can
be configured for one-to-one signaling or many-to-one signaling. An SPE read of
one of its two signal-notification channels clears the channel. A PPE MMIO read
does not clear the channel. [Table 9 on page 41| lists the signal-notification channels
and associated MMIO registers.

40 SDK for Multicore Acceleration, Programming Tutorial

Table 9. Signal notification channels and MMIO registers

Channel MMIO Register
Max. Width Max. Width
Name Mnemonic entries (bits) | Mnemonic entries | R/W | (bits)
SPU Signal SPU_RdSigNotify1 1 32 SPU_Sig_Notify_1 1 R/W 32
Notification 1
SPU Signal SPU_RdSigNotify2 1 32 SPU_Sig_Notify_2 1 R/W 32
Notification 2

The PPE is often used as an application controller, managing and distributing work
to the SPEs. A large part of this task is loading main storage with the data to be
processed, and then notifying the SPE by either writing to the SPU Read Inbound
Mailbox or writing to one of the SPE’s signal notification registers.

Mailboxes are also useful when the SPE places computational results in main
storage via DMA. After requesting the DMA transfer, the SPE waits for the DMAs
to complete, and then writes to an SPU Write Outbound Mailbox to notify the PPE
that its computation is complete. The PPE can use either a mailbox or a signal to
let an SPE know that the PPE has placed computational results in main storage via
DMA.

Developing code for the Cell Broadband Engine

There can be several types of programs, including PPE programs, SPE programs,
and Cell Broadband Engine programs (PPE programs with embedded SPE
programs).

The PPE and SPE programs use different compilers. The correct compiler, compiler
flags, and libraries must be used for the intended processor and program type. The
PPE typically sets up, starts, and stops an SPE. Communication between the PPE
and SPEs is an important consideration.

To aid in simplifying the process of producing programs for the Cell Broadband
Engine, the SDK’s Samples (see [‘The software development kit” on page 16)
provides a build environment based upon the make utility. For additional details
on the SDK'’s build environment, consult the file README build_env.txt located in
/opt/cell/sdk/buildutils.

Programmers can declare the types of programs in the makefile, and the correct
compiler, compiler options, and libraries will be used for the build. The most
important target types are PROGRAM_ppu and PROGRAM_spu, for building PPE
programs and SPE programs, respectively. To use makefile definitions supplied by
the SDK for producing programs, include the following line at the bottom of the
makefile:

include ../../../buildutils/make.footer

Insert as many instances of “../” as necessary to reach the top of the directory tree
where buildutils resides. Alternatively, make.footer can be sourced directly
(useful when working on projects within the Eclipse IDE framework), by defining
CELL_TOP environment variable and sourcing the make.footer as follows:

include $(CELL_TOP)/buildutils/make.footer

Chapter 2. The PPE and the programming process 41

42

The makefiles in the SDK Samples support both methods of importing the
make.footer.

shows a sample directory structure and makefiles for a system with a
PPE program and an SPE program. This sample project sampleproj has a project
directory and two subdirectories. The ppu directory contains the source code and
makefile for the PPE program. The spu directory has the source code and makefile
for the SPE program. The makefile in the project directory executes the makefiles
in the two subdirectories. This is only one of the possible project directory
structures.

Makefile in directory sampleproj

Subdirectories
DIRS = spu ppu

make.footer
include ../../../buildutils/make.footer

Makefile in sub-directory spu Makefile in sub-directory ppu

Target # Target

PROGRAM_spu = sample_spe PROGRAM_ppu = sample_ppe

make.footer # make.footer

include ../../../../buildutils/make.footer include ../../../../buildutils/make.footer

Figure 14. Sample project directory structure and makefiles

Producing a simple multi-threaded CBE program

To produce a simple program for the CBE, you should follow the steps listed
below (this example is included in the SDK in /opt/cel1/sdk/src/tutorial/
simpTe).

The project is called simple. For this example, the PPE code will be built in the
project directory, instead of a ppu sub-directory.

1. Create a directory named simple.

2. In directory simple, create a file named Makefile using the following code:

[Fddsdsdsdddsddddddsdsdsdadadadadaddddsdsdsdadsdsdaddddddddadadadadadadd
Subdirectories
[ddddsdsdadsdsddddddsdsdadadadadadaddddddddsdadadadadaddddddadadadadadadd

DIRS := spu

#ERRERRER AR AR AR AR AR AR AR
i#######################1;;%}###
PROGRAM ppu := simple

#H##ER AR AR AR AR AR AR AR

Local Defines
ldZdsddsddsdasdssdddsdddddaddddaddadaddaddaddaddaddsddsddsddsdssdssdasd

SDK for Multicore Acceleration, Programming Tutorial

3.

IMPORTS := spu/1ib_simple_spu.a -Ispe2 -Ipthread
imports the embedded simple_spu Tibrary
allows consolidation of spu program into ppe binary

ldZdsddsddsddsdssdddsadsdddaddddaddsddddaddaddaddaddaddsddsddsddsdssdasd
make.footer
lgddaddsddsddsddsdisdtadtsdsadsddaddaddsddaddsdatdssdsadsddsddsddaddaddad

make.footer is in the top of the SDK
ifdef CELL_TOP

include $(CELL_TOP)/buildutils/make.footer
else

include ../../../../buildutils/make.footer
endif

In directory simple, create a file simple.c using the following code:

#include <stdlib.h>
#include <stdio.h>
#include <errno.h>
#include <libspe2.h>
#include <pthread.h>

extern spe_program_handle_t simple_spu;

#define MAX_SPU_THREADS 16

void *ppu_pthread_function(void *arg) {
spe_context_ptr_t ctx;
unsigned int entry = SPE_DEFAULT_ENTRY;

ctx = *((spe_context_ptr_t *)arg);
if (spe_context_run(ctx,&entry, 0, NULL, NULL, NULL) < 0) {
perror ("Failed running context");
exit (1);
}
pthread_exit(NULL);

int main()

{

int i,spu_threads;

spe_context_ptr_t ctxs[MAX_SPU_THREADS];
pthread_t threads[MAX_SPU_THREADS] ;

/* Determine the number of SPE threads to create */
spu_threads = spe_cpu_info_get(SPE_COUNT_USABLE_SPES, -1);
if (spu_threads > MAX_SPU_THREADS) spu_threads = MAX_SPU_THREADS;

/* Create several SPE-threads to execute 'simple_spu' */
for(i=0; i<spu_threads; i++) {
/* Create context x/
if ((ctxs[i] = spe_context_create (0, NULL)) == NULL) {
perror ("Failed creating context");
exit (1);
}
/* Load program into context */
if (spe_program Toad (ctxs[i],&simple_spu)) {
perror ("Failed Toading program");
exit (1);
}
/* Create thread for each SPE context =/
if (pthread create (&threads[i], NULL,&ppu_pthread function,&ctxs[i]))
perror ("Failed creating thread");
exit (1);

Chapter 2. The PPE and the programming process

43

/* Wait for SPU-thread to complete execution. */
for (i=0; i<spu_threads; i++) {
if (pthread_join (threads[i], NULL)) {
perror("Failed pthread_join");
exit (1);

}
printf("\nThe program has successfully executed.\n");

return (0);

}
4. Create a directory named spu.
5. In the directory spu, create a file named Makefile using the following code:

[fgdddssddssdddsadddsaddsadddsdddssddssaddaddtaaddsdddsaddasddaadddad
Target
[fgdddssddssdddssddssaddsadddsaddsaddssaddssadssaddasdddsaddssaddadddadi

PROGRAMS _spu := simple_spu

created embedded Tibrary
LIBRARY_embed := 1ib_simple_spu.a

ldZdsddsdsdaddsddddddddddsddsddsddsddddaddaddaddaddaddsddsdsddsdaaddsd
make.footer
fdZdsddsddsddsdssdddddsdddddadaddaddsddddaddaddaddaddaddsddsdsdsdaddsd

make.footer is in the top of the SDK

ifdef CELL_TOP

include $(CELL_TOP)/buildutils/make.footer
else

include ../../../../../buildutils/make.footer
endif

6. In the same directory, create a file simple_spu.c using the following code:
#include <stdio.h>

int main(unsigned Tong long id)

{

/* The first parameter of an spu program will always be the spe_id of the spe
* thread that issued it.

*/

printf("Hello Cell (0x%11x)\n", id);

return 0;

}

7. Compile the program by entering the following command at the command line
while in the simple directory:

make

This CBE program then creates SPE threads that output “Hello Cell (#)\n” to the
systemsim output window, where # is the spe_id of the SPE thread that issued the
print.

Running the program in the simulator

Now that we have compiled the program, it can now be executed either on a CBE
system or a simulation of a CBE system. In this case, we will use the IBM Full System
Simulator for the Cell Broadband Engine as a simulation of a CBE system by
starting the simulator, importing the program, and executing it.

44 SDK for Multicore Acceleration, Programming Tutorial

To start the IBM Full System Simulator for the Cell Broadband Engine with a
graphics user interface:
1. Create a private, non-root, simulator execution environment.

mkdir sim

cd sim

cp /opt/ibm/systemsim-cel1/run/ce11/Tinux/.systemsim.tcl .
export PATH=/opt/ibm/systemsim-cel1/bin:$PATH

2. Start the simulator with a graphical user interface:
systemsim -g

3. Two new windows will appear on the screen. The first is a
command-line/console window labeled mysim in the window’s title bar. The
second is the simulator graphical user interface (GUI) window. These windows

are shown in |Figure 15

O systemsim-cell

File \Window Help

]

B0 mysim |CW - Cycles: 0

1-(] PPED:D:O ;
2-(3 Advance Cycle Amount |T [
SPED
SPE1
SPEZ Triggers/Breakpoints

Advance Cycle | Go Stop Service GDB

Update GUI Debug Controls Options

SPE Visualization

SPE4
SPES
SPER Exit
SPE7
Load-Ei-App
Load-Eli-Kernel
hiemoryhdap
Systemhdemaory

Track &ll PCs

| |

| | |

SPE3 Emitters I tvlode I 5PU Modes I
| | |

Event Log

E
[
[c
E
E
[E
[
£
[E
[E

LDDDDDDDDDD D

=]

=l

Running Halted |

Fle Edit view Terminal Tabs

Terminal
Help

root@linux->
GUI Enabled
Licensed Materials - Property of IBM.

(C) Copyright IBM Corporation 2001, 2007

ALl Rights Reserved.

Using initial run script /opt/ibm/systemsim-cellslib/cell/systemsim. tcl

Warning: Tried to connect to session manager, Authentication Rejected, reason : None of the a
uthentication protocols specified are supported and host-based authentication failed

GUI not initialized. Execute tcl command 'gui init'.

building tree....

clearing existing Openfirmware tree

done building tree.

LOAD : Opening ELF image file: sopt/ibm/systemsim-cell/images/cell/wmlinux

ELf text start address saved is 0x0000000001000000

ELf ReadImage: Opening ELF image file: /opt/ibm/systemsim-cell/images/cell/vmlinux
Elf_ReadImage: alloc-ed 8456936 bytes for /opt/ibm/systemsim-cell/images/cell/vmlinux

LOAD : ELF startup: PC=0x0000008001000000, msr=0x1000000800000000

LOAD : gpri11=0x000000000FFFFF90, gpr(2]=0x0000000000000000

systemsim % |:|

../run_gui

Figure 15. Windows visible after starting the simulator GUI

The window labeled mysim is an uart window that, when Linux boots, it
becomes a Linux console window. When the console window first appears, it is
empty and there is no user prompt, because Linux has not yet been booted on
the simulated system.

Chapter 2. The PPE and the programming process 45

46

The window in which the simulator was started (systemsim -g) is the simulator
command-line window.

Boot the Linux operating system on the simulator by clicking the Go button on
the graphical user interface (GUI). To make the simulator run “quickly”, click
the Fast Mode button prior to Go. This forces the simulator to bypass its
standard analysis and statistic collection features. The console window will
begin to display the Linux booting process. When Linux has finished booting
on the simulator, a command prompt will be visible in the window.
shows the window on completion of the boot process.

root@(none):~

mice: P52 mouze device common for all mice
usboore: regiztered new interface driver hiddew
usbcore: regiztered new interface driver usbhid
drivers/hid/usbhid/hid-core,ct v2,6:USE HID core driver
TCP bic registered
Initializing XFRM netlink socket
MET: Regiztered protocol family 1
MET: Regiztered protocol family 17
driversfrtoshotosys,c: unable to open rtc device (rtc()
md: Autodetecting RAID arrays,
md: autorun ...
md: ... autorun DOME,
Initializing disk O with devsz 1843200
EXT2-f= warning: mounting unchecked f=, running e2fzck iz recommended
YFS5: Mounted root (ext? filesystem).
Freeing unused kernel memory: 448k freed
INIT: wersion 2,86 booting

Welcome to Fedora Fedora release 7 (Moonshine)

Preszs 'I' to enter interactive startup,
eth: bogus network driver initialization
Mo IR0 retreived
INIT: Entering runlevel: 2
Last login: Thu Jun 13 18:;27:01 on console
[Foot@{none) “1# []

Figure 16. Console window on completion of Linux boot

The simulator is now ready to import the sample program into its environment.
Before doing that, however, you can confirm that the program is not in the
simulator environment, by entering the 1s command at the prompt in the
console window, and observing that simple is not listed in the directory listing.

Import the program from the base simulator hosting environment into the
simulator environment by entering the following command:

callthru source /tmp/simple > simple

This command tells the simulator environment to “call through” to the
simulator hosting environment’s /tmp directory, retrieve the file called simple,
and copy that file to the simulator file system. If you now enter an 1s
command in the console window, you will see simple listed in the current
directory. [Figure 17 on page 47| shows the process of loading the program into
the simulation environment.

Alternatively, one can permanently add or delete files to the sysroot disk
image by performing a loop device mount the sysroot disk image and copying
or removing files from the mounted image, prior to booting the simulation
environment. For example, the following sequence:

SDK for Multicore Acceleration, Programming Tutorial

mount -o Toop /opt/ibm/systemsim-cell/image/cell/sysroot disk /mnt
cp /tmp/simple /mnt/simple
umount /mnt

copies the simple executable from the host system’s /tmp directory to the
sysroot’s / directory.

tun: Univerzal TUNATAP dewice driver. 1.B

tun: (L) 1999-2004 Max Krasnuansky <maxk@qualcomm, coms

Uniform Multi-Platform E-IIE driver Revizion: 7,00alphaZ

ide: Rzsuming BOMHz =ystem buz speed for PI0 modes: override with idebus=:xx

mice; PS5/2 mouze device common for all mice

IPvd ower IPvd tunneling driver

ip_conntrack wersion 2.4 (1024 buckets, 8192 max) - 240 bytes per conntrack

TCP bic regiztered

MET: Registered protocol family 1

MET: Regiztered protocol family 10

IPvE over IPwd tunneling driver

MET: Regiztered protocol family 17

Initializing disk @ with dewsz 1638400

YFS5: Mounted root fext? filesystem],

Freeing unuzed kernel memory: 208k freed

INIT: wersion 2,86 booting

toucht setting times of “Jetc/fstab't Function not implemented
Welcome to Fedora Core
Press '1' to enter interactive startup,

INIT: Entering runlevel: 2

[rootllnone) “1# callthru source Atmpfzimple > simple

[rootBlnone) “1# 1=

zimple
[root@inone) “14]

Figure 17. Loading the program into the simulation environment

Even though the file had execute permissions in the base simulator hosting
environment, the newly imported file in the emulator environment does not.

6. Add execute permissions to the program file simple by issuing the following
command:

chmod +x simple
7. Execute the program by issuing the following command:
./simple

The output of the program will appear in the console window. [Figure 18 on page
shows the output of running the sample program.

Chapter 2. The PPE and the programming process 47

48

Initializing dizsk O with dewvsz 1638400
YFS: Mourted root (ext? filesustem),
Freeing unuzsed kernel memory: 208k freed
INIT: werszion 2,86 booting
touch: zetting times of “Fetc/fstab't Function not implemented
Welcome to Fedora Core
Presz 'I' to enter interactive startup,

INIT: Entering runlevel: 2
[root@inone) “1# callthru source Atmp/simple > simple
[root@lnone) ©14 1=
zimple
[root@lnone) “14 chmod +x simple
[root@{none) “1# ./simple
Hello Cell (018120380
Hello Cell {0x181a208)
Hello Cell (0x181a3d3)
Hella Cell (01812580
Hello Cell (0x181a778)
Hella Cell (18129480

Cell (0x181ab18)

Cell (0x181aced)

he program has successfully executed,
root@{none) 1% [l

Figure 18. Running the sample program

Debugging programs

Debugging a program is often the most challenging part of programming,
especially with multithreaded programs. The SDK contains several tools for
debugging, the most important of which are the gdb debugger and the IBM Full
System Simulator for the Cell Broadband Engine.

The gdb debugger is a command-line debugger available as part of the GNU
development environment. Because of the Cell Broadband Engine’s unique
characteristics, gdb has been modified so that there are actually two versions of the
debugger — ppu-gdb for debugging PPE and combined PPE and SPE programs, and
spu-gdb for debugging SPE programs. For additional information on using ppu-gdb
and spu-gdb, consult the Software Development Kit, Programmer’s Guide.

The other tool for debugging a Cell Broadband Engine program is the IBM Full
System Simulator for the Cell Broadband Engine. This simulator lets you view many
aspects of the simulated running program in GUI mode. You can also control many
aspects of the simulator using Tcl commands. The simulator is described more
fully in [Chapter 5, “The simulator,” on page 129

SDK for Multicore Acceleration, Programming Tutorial

Chapter 3. Programming the SPEs

The eight identical Synergistic Processor Elements (SPEs) are optimized for
compute-intensive applications in which a program’s data and instruction needs
can be anticipated and transferred into the local store (LS) by DMA while the SPE
computes using previously transferred data and instructions.

The streaming data sets in 3D graphics, media, and broadband communications are
examples of applications that run well on SPEs. However, the SPEs are not
optimized for running programs that have significant branching, such as an
operating system. Each SPE supports only a single program context at any one
time. Typically, the operating system runs on the PPE, and user-mode threads are
execute on the SPEs.

The SPEs achieve high performance, in part, by eliminating the overhead of load
and store address translation, hardware-managed caches, out-of-order instruction
issue, and branch prediction. Instead, the SPEs capitalize on the high
computational efficiencies that can be obtained for streaming-data applications by
providing a large (128-entry by 128-bit) unified register file, dual-instruction issue,
and high DMA bandwidth between the LS and main storage.

Each SPE supports the single-instruction, multiple-data (SIMD) instruction
architecture, described in the SPU Instruction Set Architecture . Although details of
this instruction set are given in the sections that follow, an SPE is normally
programmed in a high-level language like C or C++. The SPU instruction set is
supported by a rich set of language extensions for C/C++, described in the C/C++
Language Extensions for Cell Broadband Engine Architecture specification. These
extensions define SIMD data types and intrinsics (commands, in the form of
function calls) that map to one or more assembly-language instructions, giving
programmers very convenient and productive control over code performance
without the need for assembly-language programming.

SPE configuration

This section describes the main components of a Synergistic Processor Element
(SPE).

The main components are shown in [Figure 19 on page 50} Their functions include:

 Synergistic Processor Unit (SPU) — The SPU executes SPU instructions fetched
from its 256-KB LS. The SPU fills its LS with instructions and data using DMA
transfers initiated from SPU or PPE software.

* Memory Flow Controller (MFC) — The MFC provides the interface, by means of
the Element Interconnect bus (EIB), between the SPU and main storage. The
MEC performs DMA transfers between the SPU’s LS and main storage, and it
supports mailbox and signal-notification messaging between the SPE and the
PPE and other devices. The SPU communicates with its MFC through SPU
channels. The PPE and other devices (including other SPEs) communicate with
an MFC through memory-mapped I/O (MMIO) registers associated with the
SPU’s channels.

49

50

SPE

SPU

Execution Local Store
Units LS

)

A

Channels
D —

v MFC

<&

MMIO Registers DMA Controller

EIB
EIB Element Interconnect Bus
LS Local Store
MFC Memory Flow Controller
SPE Synergistic Processor Element

SPU Synergistic Processor Unit

Figure 19. SPE architectural block diagram

Synergistic Processor Unit

Each of the eight SPEs is an independent processor with its own program counter,
register file, and 256-KB LS.

An SPE operates directly on instructions and data in its LS. It fills its LS by
requesting DMA transfers from its MFC, which manages the DMA transfers. The
SPU has specialized units for executing load and store, fixed-point, floating-point
unit (single-precision and double-precision), and channel-interface instructions.

The large 128-entry, 128-bit wide register file, and its flat architecture (all operand
types stored in a single register file), allows for instruction-latency hiding without
speculation. The register file is unified—meaning that all data types (integer,
single-precision and double-precision floating-point, scalars, vectors, logicals, bytes,
and others) use the same register file. The register file also stores return addresses,
results of comparisons, and so forth. As a consequence of the large, unified register
file, expensive hardware techniques such as out-of-order processing or deep
speculation are not needed to achieve high performance.

LS addresses can be aliased by PPE privileged software onto the main-storage
(effective-address) space. DMA transfers between the LS and main storage are
coherent in the system. A pointer to a data structure created on the PPE can be
passed to an SPU, and the SPU can use this pointer to issue a DMA command to

SDK for Multicore Acceleration, Programming Tutorial

bring the data structure into its LS. PPE software can use locking instructions and
mailboxes for synchronization and mutual exclusion.

The SPU architecture has the following restrictions:

* No direct (SPU-program addressable) access to main storage. The SPU accesses
main storage only by using the MFC’s DMA transfers.

* No direct access to system control, such as page-table entries. PPE privileged
software provides the SPU with the address-translation information that its MFC
needs.

* With respect to accesses by its SPU, the LS is unprotected and un-translated
storage.

SPE registers

This section describes the Synergistic Processor Element (SPE) user registers.

The complete set of SPE user registers is shown in All computational
instructions operate only on registers—there are no computational instructions that
modify storage. The SPE registers include:

* General-Purpose Registers (GPRs) — All data types can be stored in the 128-bit
GPRs, of which there are 128.

* Floating-Point Status and Control Register (FPSCR) — The processor updates the
128-bit FPSCR after every floating-point operation to record information about
the result and any associated exceptions.

0 127
General-Purpose Registers GPRO
GPR 1
GPR 127
0 127
Floating-Point Status and Control Register FPSCR

Figure 20. SPE user-register set

Floating-point operations

The SPU executes both single-precision and double-precision floating-point
operations. Single-precision instructions are performed in 4-way SIMD fashion,
fully pipelined, whereas double-precision instructions are partially pipelined.

The data formats for single-precision and double-precision instructions are those

defined by IEEE Standard 754, but the results calculated by single-precision
instructions are not fully compliant with IEEE Standard 754.

Chapter 3. Programming the SPEs 51

52

For single-precision operations, the range of normalized numbers is extended
beyond the IEEE standard. The representable, nonzero numbers range from

Xmin = 2126 to Xmax = (2 -23)2128 If the exact result overflows (that is, if it is
larger in magnitude than Xmax), the rounded result is set to Xmax with the
appropriate sign. If the exact result underflows (that is, if it is smaller in
magnitude than Xmin), the rounded result is forced to zero. A zero result is always
a positive zero.

Single-precision floating-point operations implement IEEE 754 arithmetic with the
following changes:

* Only one rounding mode is supported: round towards zero, also known as
truncation.

* Denormal operands are treated as zero, and denormal results are forced to zero.

* Numbers with an exponent of all ones are interpreted as normalized numbers
and not as infinity or not-a-number (NaN).

Double-precision operations do not support the IEEE precise trap (exception)
mode. If a double-precision denormal or not-a-number (NalN) result does not
conform to IEEE Standard 754, then the deviation is recorded in a sticky bit in the
FPSCR register, which can be accessed using the fscrrd and fscrwr instructions or
the spu_mffpscr and spu_mtfpscr intrinsics.

Double-precision instructions are performed as two double-precision operations in
2-way SIMD fashion. However, the SPU is capable of performing only one
double-precision operation per cycle. Thus, the SPU executes double-precision
instructions by breaking up the SIMD operands and executing the two operations
in consecutive instruction slots in the pipeline. Although double-precision
instructions have 13-clock-cycle latencies, only the final seven cycles are pipelined.
No other instructions are dual-issued with double-precision instructions, and no
instructions of any kind are issued for six cycles after a double-precision
instruction is issued.

Local Store
The local store (LS) can be regarded as a software-controlled cache that is filled and
emptied by DMA transfers.

Key features of the LS include:

* Holds instructions and data

* 16-bytes-per-cycle load and store bandwidth, quadword aligned only
* 128-bytes-per-cycle DMA-transfer bandwidth

* 128-byte instruction prefetch per cycle

Competition might occur for access to the LS by:
e loads,

¢ stores,

e DMA reads,

* DMA writes,

* instruction fetches.

The SPU arbitrates access to the LS according the following priorities (with the
highest priority first):

1. DMA reads and writes by the PPE or an I/O device.

2. SPU loads and stores.

3. Instruction prefetch.

SDK for Multicore Acceleration, Programming Tutorial

summarizes the LS-arbitration priorities and transfer sizes. DMA reads
and writes always have highest priority. Because hardware supports 128-bit DMA
reads and writes, these operations occupy, at most, one of every eight cycles (one
of sixteen for DMA reads, and one of sixteen for DMA writes) to the LS. Thus,
except for highly optimized code, the impact of DMA reads and writes on LS
availability for loads, stores, and instruction fetches can be ignored.

Table 10. LS-Access Arbitration Priority and Transfer Size

Transfer Maximum Local
Size Store Occupancy
Transaction (Bytes) Priority (SPU Cycle) Access Path
MMIO =16 1-Highest 1/8 Line Interface
DMA =128 1
DMA-List 128 1 1/4 Quadword
Transfer-Element Fetch Interface
ECC Scrub 16 2 1/10
SPU Load /Store 16 3 1
Hint Fetch 128 3 1 Line Interface
Inline Fetch 128 4-Lowest 1/16 for inline
code

After DMA reads and writes, the next-highest user-initiated priority is given to
load and store instructions. The rationale for doing so is that load and store
instructions usually help a program’s progress, whereas instruction fetches are
often speculative. The SPE supports only 16-byte load and store operations that are
16-byte-aligned. It uses a second instruction (byte shuffle) to place bytes in a
different order if, for example, the program requires only a 4-byte quantity or a
quantity with a different data alignment. To store something that is not aligned,
use a read-modify-write operation.

The lowest priority for LS access is given to instruction fetches, of which there are
three types: flush-initiated fetches, inline prefetches, and hint fetches. Instruction
fetches load 32 instructions per SPU request by accessing all banks of the LS
simultaneously. Because the LS is single-ported, it is important that DMA and
instruction-fetch activity transfer as much useful data as possible in each LS
request.

Pipelines and dual-issue rules

The SPU has two pipelines, named even (pipeline 0) and odd (pipeline 1). Into
these pipelines, the SPU can issue can issue and complete up to two instructions
per cycle, one in each of the pipelines.

Whether an instruction goes to the even or odd pipeline depends on its instruction
type, which is related to the execution unit that performs the function. Each
execution unit is assigned to one of the two pipelines. summarizes the
instruction types, latencies, and pipeline assignments.

Table 11. SPU Instruction Latency and Pipeline, by Instruction Class

Instruction Latency (clock

Class Description cycles) Pipeline
LS Load and store 6 Odd
HB Branch hints 15 Odd

Chapter 3. Programming the SPEs

53

Table 11. SPU Instruction Latency and Pipeline, by Instruction Class (continued)

Instruction Latency (clock
Class Description cycles) Pipeline
BR Branch resolution 4 Odd
CH Channel interface, special-purpose 6 Odd
registers
SP Single-precision floating-point 6 Even
DP Double-precision floating-point 132 Even
FI Floating-point integer 7 Even
SH Shuffle 4 Odd
EX Simple fixed-point 2 Even
WS Word rotate and shift 4 Even
BO Byte operations 4 Even
NOP No operation (execute) - Even
LNOP No operation (load) - Odd
Note:

1. Inline or correctly hinted branches have zero-cycle delay. The mispredicted
branch penalty is 18-19 clock cycles.

2. Six cycles of a double-precision floating-point operation are instruction-issue
stalls. No instructions of any kind are issued for six cycles after a
double-precision floating point instruction is issued.

The SPU issues all instructions in program order according to the pipeline
assignment. Each instruction is part of a doubleword-aligned instruction pair called
a fetch group.

A fetch group can have one or two valid instructions, but it must be aligned to
doubleword boundaries. This means that the first instruction in the fetch group is
from an even word address, and the second instruction from an odd word address.

The SPU processes fetch groups one at a time, continuing to the next fetch group
when the current instruction group becomes empty. An instruction becomes
issueable when register dependencies are satisfied and there is no structural hazard
(resource conflict) with prior instructions or DMA or error-correcting code (ECC)
activity.

Dual-issue occurs when a fetch group has two issueable instructions in which the
first instruction can be executed on the even pipeline and the second instruction
can be executed on the odd pipeline. If a fetch group cannot be dual-issued, but
the first instruction can be issued, the first instruction is issued to the proper
execution pipeline and the second instruction is held until it can be issued. A new
fetch group is loaded after both instructions of the current fetch group are issued.

Memory flow controller

The primary functions of the Memory Flow Controller (MFC) are to connect the
SPU to the EIB and support DMA transfers between main storage and the LS.

[Figure 19 on page 50| shows the functions of the MFC.

54 SDK for Multicore Acceleration, Programming Tutorial

The MFC maintains and processes queues of DMA commands from its SPU or
from the PPE or other devices. The MFC’s DMA controller (DMAC) executes the
DMA commands. This allows the SPU to continue execution in parallel with the
MEC’s DMA transfers.

The DMA and other MFC commands, and the command queues, are described in
[“MFC commands” on page 76|

To make DMA transfers between main storage and the LS possible, privileged
software on the PPE provides the LS and MFC resources, such as memory-mapped
I/0 (MMIO) registers, with effective-address aliases in main storage. This enables
software on the PPE or other SPUs and devices to access the MFC resources and
control the SPU. Privileged software on the PPE also provides address-translation
information to the MFC for use in DMA transfers. DMA transfers are coherent with
respect to system storage. Attributes of system storage (address translation and
protection) are governed by the page and segment tables of the PowerPC
Architecture.

The MFC supports channels and associated MMIO registers for the purposes of
enqueueing and monitoring DMA commands, monitoring SPU events, performing
interprocessor-communication via mailboxes and signal-notification, accessing
auxiliary resources such as the decrementer (timer), and other functions.

In addition to supporting DMA transfers, channels, and MMIO registers, the MFC
also supports bus-bandwidth reservation features and synchronizes operations
between the SPU and other processing units in the system.

Channels

Channels are unidirectional message-passing interfaces that support 32-bit messages
and commands. Many of the channels provide communications between the SPE
and its MFC, which in turn, mediates communication with the PPE and other
devices.

lists the channels and their attributes. Reserved and privileged channels
are omitted.

Software on the SPU uses special channel instructions (shown in [Table 13 on page
to read and write channel registers and queues.

Software on the PPE and other devices use load and store instructions to read and
write to MFC’s MMIO registers that are associated with the SPU’s channels.

Table 12. SPE Channels

Channel Name Mnemonic “531;:-) R/W | Blocking
SPU Events

0 SPU Read Event Status SPU_RdEventStat 32 R Yes

1 SPU Write Event Mask SPU_WrEventMask 32 w No

2 SPU Write Event Acknowledgment SPU_WrEventAck 32 W No
SPU Signal Notification

3 SPU Signal Notification 1 SPU_RdSigNotify1l 32 R Yes

4 SPU Signal Notification 2 SPU_RdSigNotify2 32 R Yes

SPU Decrementer

Chapter 3. Programming the SPEs 55

Table 12. SPE Channels (continued)

Channel Name Mnemonic (lsali::) R/W | Blocking

7 SPU Write Decrementer SPU_WrDec 32 \W No

8 SPU Read Decrementer SPU_RdDec 32 R No

MEFC Multisource Synchronization

9 MFC Write Multisource Synchronization MFC_WrMSSyncReq 32 W Yes
Request

SPU and MFC Read Mask

11 SPU Read Event Mask SPU_RdEventMask 32 R No

12 MFC Read Tag-Group Query Mask MFC_RdTagMask 32 R No

SPU State Management

13 SPU Read Machine Status SPU_RdMachStat 32 R No

14 SPU Write State Save-and-Restore SPU_WrSRRO 32 W No

15 SPU Read State Save-and-Restore SPU_RdSRRO 32 R No

MFC Command Parameters

16 MEC Local Store Address MEFC_LSA 32 W No

17 MEFC Effective Address High MFC_EAH 32 W No

18 MEC Effective Address Low or List MFC_EAL 32 W No
Address

19 MEFC Transfer Size or List Size MEC_Size 16 W No

20 MFC Command Tag Identification MFC_TagID 16 w No

21 MFC Command Opcode or ClassID MFC_Cmd 32 w Yes

MEFC Tag Status

22 MFC Write Tag-Group Query Mask MFC_WrTagMask 32 W No

23 MFC Write Tag Status Update Request MFC_WrTagUpdate 32 W Yes

24 MFC Read Tag-Group Status MFC_RdTagStat 32 R Yes

25 MFC Read List Stall-and-Notify Tag Status | MFC_RdListStallStat 32 R Yes

26 MFC Write List Stall-and-Notify Tag MFC_WrListStallAck 32 w No
Acknowledgement

27 MEFC Read Atomic Command Status MEFC_RdAtomicStat 32 R Yes

SPU Mailboxes

28 SPU Write Outbound Mailbox SPU_WrOutMbox 32 w Yes

29 SPU Read Inbound Mailbox SPU_RdInMbox 32 R Yes

30 SPU Write Outbound Interrupt Mailbox SPU_WrOutIntrMbox 32 W Yes

Each channel has a corresponding count that indicates the remaining capacity (the

maximum number of outstanding transfers) in that channel. This count is

decremented when a channel instruction is issued to the channel, and the count
increments when an action associated with that channel completes. Each channel is
implemented with either blocking or non-blocking semantics.

Blocking channels cause the SPE to stall (suspend execution in a low-power state)
when the SPE reads or writes a channel with a count of zero.

56 SDK for Multicore Acceleration, Programming Tutorial

Key features of the SPE channel operations include:

* All transactions on the channel interface are unidirectional.

e Each channel transaction is independent of any other transaction.
* Sequential read and write transactions are supported.

* External access to control MMIO registers has higher priority than channel
operations.

* Channel operations are done in program order.
* Channel read operations to reserved channels return zeros.
* Channel write operations to reserved channels have no effect.

* Reading of channel counts on reserved channels returns zero.

Channel instructions
The SPU Instruction Set Architecture defines three channel instructions: rdch, wrch,
and rchent.

A summary of the SPU Instruction Set Architecture is shown in [“SPU instruction|
set” on page 60| The rdch, wrch, and rchent channel instructions are shown in
Table 13

Software running on an SPE uses the channel instructions to write parameters and
enqueue the MFC commands, as described in [“MFEC commands” on page 76|

able 13| includes both the SPU assembly-language instructions and their
corresponding C-language intrinsics.

The intrinsics are described in [‘SPU C/C++ language extensions (intrinsics)” on|

Table 13. SPE Channel Instructions

Assembler C-Language
Instruction Instruction Intrinsic Description
Read Channel |rdch spu_readch Causes data to be read from the
spu_readchqw |addressed channel and stored into
the selected General-Purpose
Register (GPR).
Write Channel | wrch spu_writech Causes data to be read from the
spu_writechqw |selected GPR and stored in the
addressed channel
Read Channel | rchent spu_readchent | Causes the count associated with
Count the addressed channel to be stored
in the selected GPR.

If the write channel is nonblocking, a wrch instruction can be issued regardless of
the value of the channel count for that channel. If the write channel is blocking ,
then a wrch instruction that is issued when the count for that channel is equal to

zero will stall the SPE. Stalling on a wrch instruction can be useful because it saves
power, but to avoid stalling, software should first read the channel count to ensure
that it is not zero before issuing a wrch instruction.

The method used to determine the channel count is dependent on the program.
The program can poll the channel count for that register, using the rchent

Chapter 3. Programming the SPEs 57

58

instruction, or the program can issue a wrch instruction. If the program issues a
wrch instruction, the SPE stalls, waiting until an acknowledgment is received from
the write channel.

When an SPE program needs to receive information, it uses a rdch instruction.
Usually, this information is held in an SPE register. The information can be loaded
into this register through the channel interface using a read-data-load transaction.

e If the read channel is nonblocking, then a rdch instruction can be issued
regardless of the value of the channel count for that channel.

* In the SPE, if the channel is a blocking channel, the SPE does not read from this
register until the channel count for that register indicates that the data is valid
(that is, when the count is greater than zero).

e If the count is zero, then there is no data in the channel and the SPE stalls until
actions associated with that channel occur.

These actions can include the updating of the MFC_RdTagStat channel (see

on page 55)), the PPE writing data to the corresponding MMIO register (such as a

mailbox channel), or other actions. The method used to determine the count
depends on the program. The program can:

* poll the channel count for that register using the rchcnt instruction, or
* issue the rdch instruction.

If the program issues a rdch instruction, the SPE stalls, waiting until valid data is
loaded.

The channel instructions are architected as 128 bits wide, but in the Cell Broadband
Engine, channel instructions set use only the 32 bits from the preferred slot (the
left-most word, word element 0) in the register.

Mailboxes

Mailboxes are queues that support exchanges of 32-bit messages between an SPE
and other devices. Each mailbox queue has an SPE channel assignment as well as a
corresponding MMIO register assignment.

Two 1-entry mailbox queues are provided for sending messages from the SPE:
e SPU Write Outbound Mailbox
* SPU Write Outbound Interrupt Mailbox

One 4-entry mailbox queue is provided for sending messages to the SPE:
* SPU Read Inbound Mailbox

Each mailbox has an SPE channel assignment (see [Table 12 on page 55) as well as a
corresponding MMIO register. To access the mailbox, an SPE program uses rdch
and wrch instructions (see [Table 13 on page 57). The PPE and other processors use
load and store instructions to access the corresponding MMIO addresses.

Data written by an SPE program to one of these mailboxes using a wrch instruction
is available to any processor or device that reads the corresponding MMIO register.
Data written by a device to the SPU Read Inbound Mailbox using an MMIO write
is available to an SPE program by reading that mailbox using a rdch or rchent
instruction. An MMIO read from either of the SPU Write Outbound Mailboxes, or
a write to the SPU Read Inbound Mailbox, can be programmed to set an SPE
event. The event can in turn cause an SPE interrupt. A wrch instruction to the SPU
Write Outbound Interrupt Mailbox can also be programmed to cause an interrupt
to a processor or other device.

SDK for Multicore Acceleration, Programming Tutorial

Each time a PPE program writes to the 4-entry SPU Read Inbound Mailbox queue,
the channel count for that channel increments. Each time a SPU program reads the
mailbox queue, the channel count decrements. The mailbox is a FIFO queue; the
SPE program reads the oldest data first. If the PPE program writes more than four
times before the SPE program reads the data, then the channel count stays at four,
and the fourth location contains the last data written by the PPE. For example, if
the PPE program writes five times before the SPE program reads the data, then the
data read is the first, second, third, and fifth data elements. The fourth data
element has been overwritten.

Mailbox operations are blocking operations: a write to a outbound mailbox register
that is already full stalls the SPE until a slot is created in the mailbox by a PPE
read. Similarly, a SPE read from an empty inbound mailbox is stalled until the PPE
(or an SPE) writes to the mailbox. If the channel capacity count is zero for a
channel that is configured as a blocking channel, then a channel instruction issued
to that channel causes the SPE to stall and to stop issuing instructions until the
channel is read. To prevent stalling in this case, the SPE program needs to read the
count register associated with the particular mailbox and decide whether or not to
read from or write to the mailbox.

There are at least three ways to deal with anticipated mailbox messages:

* The SPE software reads the channel (rdch), which will block until something
arrives.

* The SPE software reads from the channel’s count (rchcnt), which will return the
count (zero or one); the software can then decide what to do.

* The SPE software sets up its interrupt facility to respond to mailbox events.

Although the mailboxes are primarily intended for communication between the
PPE and the SPEs, they can also be used for communication between an SPE and
other SPEs, processors, or devices. For this to happen, however, privileged
software needs to allow one SPE to access the mailbox register in another SPE. If
software does not allow this, then only system memory communications are
available for SPE-to-SPE communications.

Signal notification

Signal-notification channels, or signals , are inbound (to an SPE) registers. They can
be used by other SPEs, the PPE, or other devices to send information, such as a
buffer-completion synchronization flag, to an SPE.

Each SPE has two 32-bit signal-notification registers, each of which has a
corresponding memory-mapped 1/O (MMIO) register into which the
signal-notification data is written by the sending processor. Unlike mailbox
messaging, signal senders use one of three special MFC send-signal commands to
send a signal:

* sndsig

e sndsigf

* sndsigb

These are described in [“MFC commands” on page 76

An SPE can only read its local signal-notification channels. The PPE or other
processors can write or read the corresponding MMIO register. This allows the
target SPE to do polling, blocking, or set up an interrupt as ways of responding to
signals. An SPE read of one of its two signal-notification channels clears the
channel atomically. An MMIO read does not clear a channel. An SPE read from the
signaling channel will be stalled when no signal is pending at the time of the read.

Chapter 3. Programming the SPEs 59

A signal-notification channel can be configured by software to be in overwrite mode
or OR mode . In overwrite mode (also called one-to-one signaling), sending a signal
(writing to the MMIO address) overwrites previous contents. In OR mode (also
called many-to-one signaling), sending a signal ORs the new 1 bits into the current
contents. In the case of one-to-one signaling, there is usually no substantial
difference in performance between signaling and using a mailbox.

The differences between mailboxes and signal-notification channels include:

* Capacity — Signal-notification channels are registers. Mailboxes are queues.

* Direction — Each SPE supports signal-notification channels that are only inbound
(to the SPE). Their mailboxes support both outbound and inbound
communication. However, an SPE can send signals to another SPE using MFC
send-signal commands.

e Interrupts — One of the mailboxes interrupts the PPE. Signal-notification
channels have no such automatic feature.

* Many-to-One — Signal-notification channels (but not mailboxes) can be
configured as many-to-one (OR mode) or as one-to-one (overwrite mode).

* Unique Commands — Signal-notification channels have specific MFC _send-signal
commands (sndsig, sndsigf, and sndsigb) for writing to them (see
[commands” on page 76).

* Reset — Reading a signal-notification register automatically resets (clears) its bits.

* Count — The channel counts have different meaning. Mailbox channel counts
indicate the number of available (unoccupied) entries in the mailbox queue. The
signal-notification channel count indicates whether there are any pending
(unserviced) signals.

* Number — Each SPE has two signal-notification channels versus three mailboxes.

SPU instruction set

60

The SPU Instruction Set Architecture (ISA) fully documents the instructions
supported by the SPEs. This section summarizes the ISA.

Programmers writing in a high-level language like C or C++ can use the intrinsics
described in [“SPU C/C++ language extensions (intrinsics)” on page 64 to improve
their control over the SPE hardware. Because the functions performed by these
intrinsics are closely related to the assembly-language instructions of the SPU
Instruction Set Architecture , this overview may be helpful in understanding the
utility of the intrinsics.

The SPU ISA operates primarily on SIMD vector operands, both fixed-point and
floating-point, with support for some scalar operands. The PPE and the SPE both
execute SIMD instructions, but the two processors execute different instruction sets,
and programs for the PPE and SPEs must be compiled by different compilers.

Data layout in registers

The SPE supports big-endian data ordering, an ordering in which the
lowest-address byte and lowest-numbered bit are the most-significant (high) byte
and bit, respectively.

Bits in registers are numbered in ascending order from left to right, with bit 0
representing the most-significant bit (MSb) and bit 127 the least-significant bit
(LSb) as shown in the figure below. The SPE architecture does not define or use

SDK for Multicore Acceleration, Programming Tutorial

little endian data ordering.

o)
2]

a
(%]
=

0

[1]2]3]a]5]6]7]8]9[10]]]l [116][117]118 119 [120 [121 \122[123}124[125}126\1;7\

Figure 21. Big-endian ordering supported by the SPE

The SPU hardware defines the following data types:

* byte — 8 bits

e halfword — 16 bits

e word — 32 bits

¢ doubleword — 64 bits
* quadword — 128 bits

These data types are indicated by shading in The left-most word (bytes
0,1, 2, and 3) of a register is called the preferred scalar slot (also shown in

Figure 22).

When instructions use or produce scalar operands or addresses, the values are in

the preferred slot. A set of store assist instructions is available to help store bytes,
halfwords, words, and doublewords.

Preferred Scalar Slot Byte Index
0 1 2 3 4 5 6 7 9 10 1" 12 13 14 15
Byte
Halfword
Address
Word
Doubleword
Quadword

Figure 22. Register layout of data types and preferred (scalar) slot

The SPE programming model defines the vector data types shown in for

the C programming language. These data types are all 128 bits long and contain

from 1 to 16 elements per vector.

Table 14. Vector Data

Types

Vector Data Type

Content

vector unsigned char

Sixteen 8-bit unsigned chars

vector signed char

Sixteen 8-bit signed chars

vector unsigned short

Eight 16-bit unsigned halfwords

vector signed short

Eight 16-bit signed halfwords

vector unsigned int

Four 32-bit unsigned words

Chapter 3. Programming the SPEs

61

Table 14. Vector Data Types (continued)

Vector Data Type Content

vector signed int Four 32-bit signed words

vector unsigned long long Two 64-bit unsigned doublewords
vector signed long long Two 64-bit signed doublewords
vector float Four 32-bit single-precision floats
vector double Two 64-bit double precision floats
qword quadword (16-byte)

Instruction types

There are 204 instructions in the SPU Instruction Set Architecture , and they are
grouped into 11 classes according to their functionality.

These instruction classes are shown in [Table 15

Table 15. SPU Instruction Types

Type Number
Memory Load and Store 16
Constant Formation 6
Integer and Logical Operations 59
Shift and Rotate 31
Compare, Branch, and Halt 40
Hint-for-Branch 3
Floating-Point 28
Control 8
SPU Channel 3
SPU Interrupt Facility 7
Synchronization and Ordering 3

[Figure 23 on page 63| shows one example of an SPU SIMD instruction — the
floating-point add instruction, fa. This instruction simultaneously adds four pairs
of floating-point vector elements, stored in registers ra and rb, and produces four
floating-point results, written to register rt.

62 SDK for Multicore Acceleration, Programming Tutorial

fa rtra,rb

ra a.2

rb b.2

Figure 23. SIMD floating-point Add instruction function

Depending on the programmer’s performance requirements and code size
restraints, advantages can be gained by properly grouping data in an SIMD vector.
shows a natural way of using SIMD vectors to store the homogenous
data values (X, y, z, w) for the three vertices (a, b, c) of a triangle in a 3D-graphics
application. This arrangement is called an array of structures (AOS), because the
data values for each vertex are organized in a single structure, and the set of all
such structures (vertices) is an array.

vector float a, b, ¢

x
<
[\
=

vertex a

vertex b X % p4 Y

vertex ¢ X y z w

Figure 24. Array-of-structures data organization for one triangle

The data-packing approach that is shown in often produces small code
sizes, but it typically executes poorly and generally requires significant
loop-unrolling to improve its efficiency. If the vertices contain fewer components
than the SIMD vector can hold (for example, three components instead of four),
SIMD efficiencies are compromised.

Another method of organizing data in SIMD vectors is a structure of arrays (SOA).
Here, each corresponding data value for each vertex is stored in a corresponding
location in a set of vectors. Think of the data as if it were scalar, and the vectors
are populated with independent data across the vector. This is different from the
previous example, where the four values of each vertex are stored in one vector.
[Figure 25 on page 64| shows the use of SIMD vectors to represent the x, y, z vertices
for four triangles. Not only are the data types the same across the vector, but now

Chapter 3. Programming the SPEs 63

their data interpretation is the same. Depending on the algorithm, software might
execute more efficiently with this SIMD data organization than with the
organization shown in [Figure 24 on page 63|

vector float a, b, ¢

vertex a[0]:x triangle 1 triangle 2 triangle 3 triangle 4

vertex a[1]:y triangle 1 triangle 2 triangle 3 triangle 4

vertex a[2]:z triangle 1 triangle 2 triangle 3 triangle 4

vertex b[0]:x triangle 1 triangle 2 triangle 3 triangle 4
vertex b[1]:y triangle 1 triangle 2 triangle 3 triangle 4

vertex b[2]:z triangle 1 triangle 2 triangle 3 triangle 4

vertex c[0]:x triangle 1 triangle 2 triangle 3 triangle 4

vertex c[1]:y triangle 1 triangle 2 triangle 3 triangle 4

vertex c[2]:z triangle 1 triangle 2 triangle 3 triangle 4

Figure 25. Structure-of-arrays data organization for four triangles

For further details about the SPU instructions, refer to these documents:
e The SPU Instruction Set Architecture,
* The SPU Assembly Language Specification.

SPU C/C++ language extensions (intrinsics)

A large set of SPU C/C++ language extensions (intrinsics) make the underlying SPU
Instruction Set Architecture and hardware features conveniently available to C
programmers. These intrinsics can be used in place of assembly-language code
when writing in the C or C++ languages.

The intrinsics are essentially in-line assembly-language instructions in the form of
C-language function calls. They provide the programmer with explicit control of
the SPE SIMD instructions without directly managing registers. A well-written
compiler that supports these intrinsics will emit efficient code for the SPE
architecture. The techniques used by compilers to generate efficient code include:

* Register coloring

¢ Instruction scheduling (dual-issue optimization)
* Data loads and stores

* Loop blocking, fusion, unrolling

* Correct up-stream placement of branch hints

¢ Literal vector construction

For example, an SPU compiler provides the intrinsic t = spu_add(a, b) as a
substitute for the assembly-language instruction fa rt,ra,rb . The compiler will
generate a floating-point add instruction (fa rt, ra, rb) for the SPU intrinsic

64 SDK for Multicore Acceleration, Programming Tutorial

t = spu_add(a, b), assuming t , a , and b are vector float variables. The system
header file (spu_intrinsics.h) defines the SPU language extension intrinsics.

The intrinsics are defined fully in the C/C++ Language Extensions for Cell Broadband
Engine Architecture specification. The PPU and the SPU instruction sets have
similar, but distinct, SIMD intrinsics. It is important to understand the mapping
between the PPU and SPU SIMD intrinsics when developing applications on the
PPE that will eventually be ported to the SPEs.

Assembly language versus intrinsics comparison: an example

The ease of implementing a DMA transfer using intrinsics versus
assembly-language instructions is illustrated in the example-implementation of the
dma_transfer subroutine that is provided in this section.

The dma_transfer subroutine issues a DMA command with transfer size bytes
from the LS address 1sa, to or from the 64-bit effective address specified by eah |
eal. The DMA command specified by the dma parameter is tagged using the
specified tag_id parameter.

extern void dma_transfer(volatile void *1sa, // local store address

unsigned int eah, // high 32-bit effective address
unsigned int eal, // low 32-bit effective address
unsigned int size, // transfer size in bytes
unsigned int tag_id, // tag identifier (0-31)
unsigned int cmd); // DMA command

The Application Binary Interface (ABI)-compliant assembly-language implementation
of the subroutine would be:

.text

.global dma_transfer
dma_transfer:

wrch $MFC_LSA, $3

wrch $MFC_EAH, $4

wrch $MFC_EAL, $5

wrch $MFC_Size, $6

wrch $MFC_TagID, $7

wrch $MFC_Cmd, $8

bi $0

A comparable C implementation using the SPU intrinsic, spu_writech, for the
write-channel (wrch) instruction would be:

#include <spu_intrinsics.h>

void dma_transfer(volatile void *1sa, unsigned int eah, unsigned int eal,
unsigned int size, unsigned int tag_id, unsigned int cmd)
{

spu_writech(MFC_LSA, (unsigned int)lsa);
spu_writech(MFC_EAH, eah);
spu_writech(MFC_EAL, eal);
spu_writech(MFC_Size, size);
spu_writech(MFC_TagID, tag_id);
spu_writech(MFC_Cmd, cmd);

}

This particular function could be more simply written using the spu_mfcdma64
composite intrinsic, as:

#include <spu_intrinsics.h>

void dma_transfer(volatile void *1sa, unsigned int eah, unsigned int eal,

Chapter 3. Programming the SPEs 65

unsigned int size, unsigned int tag_id, unsigned int cmd)

{
}

spu_mfcdma64(1sa, eah, eal, size, tag_id, cmd);

Intrinsic classes

SPU intrinsics are grouped into the three classes that are described in this section.

* Specific Intrinsics — Intrinsics that have a one-to-one mapping with a single
assembly-language instruction. Programmers rarely need these intrinsics for
implementing inline assembly code because the Joint Software Reference
Environment (JSRE) has adopted gcc-style inline assembly.

* Generic Intrinsics — Intrinsics that map to one or more assembly-language
instructions as a function of the type of input parameters.

* Composite Intrinsics — Convenience intrinsics constructed from a sequence of
specific or generic intrinsics.

Intrinsics are not provided for all assembly-language instructions. Some
assembly-language instructions (for example, branches, branch hints, and interrupt
return) are naturally accessible through the C/C++ language semantics. Many SPU
intrinsics are different than PPE intrinsics (see [“Differences between PPE and SPE]
[SIMD support” on page 72).

Specific intrinsics
Specific intrinsics have a one-to-one mapping with a single assembly-language
instruction.

All specific intrinsics are named using the SPU assembly instruction prefixed by
the string, si_. For example, the specific intrinsic that implements the stop
assembly instruction is named si_stop.

Specific intrinsics are provided for all instructions except branch, branch-hint, and

interrupt-return instructions. All specific intrinsics are also available in the form of

generic intrinsics, except for the specific intrinsics shown in The specific

intrinsics shown in this table fall into three categories:

* Instructions generated using basic variable-referencing (that is, using vector and
scalar loads and stores),

e Instructions used for immediate vector construction,
* Instructions that have limited usefulness and are not expected to be used except
in rare conditions.

Table 16. Specific intrinsics not available as generic intrinsics

Intrinsic | Description

Generate Controls for Sub-Quadword Insertion Intrinsics

d = si_cbd(a, imm) Generate controls for byte insertion (d form)

d = si_cbx(a, b) Generate controls for byte insertion (x form)

d = si_cdd(a, imm) Generate controls for doubleword insertion (d form)
d = si_cdx(a, b) Generate controls for doubleword insertion (x form)
d = si_chd(a, imm) Generate controls for halfword insertion (d form)

d = si_chx(a, b) Generate controls for halfword insertion (x form)

d = si_cwd(a, imm) Generate controls for word insertion (d form)

d = si_cwx(a, b) Generate controls for word insertion (x form)

66 SDK for Multicore Acceleration, Programming Tutorial

Table 16. Specific intrinsics not available as generic intrinsics (continued)

Intrinsic

Description

Constant Formation Intrinsics

d = si_il(imm)

Immediate load word

d = si_ila(imm)

Immediate load address

d = si_ilh(imm)

Immediate load halfword

d = si_ilhu(imm)

Immediate load halfword upper

d = si_iohl(a, imm)

Immediate or halfword lower

No Operation Intrinsics

si_Inop(

No operation (load)

si_nop()

No operation (execute)

Memory Load and Store Intrinsics

d = si_lqa(imm)

Load quadword (a form)

d = si_lqd(a, imm)

Load quadword (d form)

d = si_lqr(imm)

Load quadword instruction relative

d = si_Igx(a, b)

Load quadword (x form)

si_stqa(a, imm)

Store quadword (a form)

si_stqd(a, b, imm)

Store quadword (d form)

si_stqr(a, imm)

Store quadword instruction relative

si_stqx(a, b, c)

Store quadword (x form)

Control Intrinsics

si_stopd(a, b, ¢)

Stop and signal with dependencies

Specific intrinsics accept only the following types of arguments:

* Immediate literals, as an explicit constant expression or as a symbolic address.

* Enumerations.

* Quadword arguments (variables of type qword).

Arguments of other types must be cast to the qword data type. When using specific
intrinsics, it might be necessary to cast from scalar types to the qword data type, or
from the gqword data type to scalar types. Similar to casting between vector data
types, specific cast intrinsics have no effect on an argument that is stored in a
register. All specific casting intrinsics are of the following form:

d = casting_intrinsic(a)

For example, to add 3 to the integer i:
int i;
i =si_to_int (si_ai (si_from_ int(i), 3));

lists the specific casting intrinsics.

Table 17. Specific Casting Intrinsics

Intrinsic Description

si_to_char Cast byte element 3 of qword to char.

si_to_uchar Cast byte element 3 of qword to unsigned char.

si_to_short Cast halfword element 1 of qword to short.

Chapter 3. Programming the SPEs 67

68

Table 17. Specific Casting Intrinsics (continued)

Intrinsic

Description

si_to_ushort

Cast halfword element 1 of qword to unsigned short.

si_to_int Cast word element 0 of qword to int.

si_to_uint Cast word element 0 of qword to unsigned int.
si_to_ptr Cast word element 0 of qword to a void pointer.
si_to_llong Cast doubleword element 0 of qword to long long.

si_to_ullong

Cast doubleword element 0 of qword to unsigned long
long.

si_to_float

Cast word element 0 of qword to float.

si_to_double

Cast doubleword element 0 of qword to double.

si_from_char

Cast char to byte element 3 of qword.

si_from_uchar

Cast unsigned char to byte element 3 of qword.

si_from_short

Cast short to halfword element 1 of qword.

si_from_ushort

Cast unsigned short to halfword element 1 of qword.

si_from_int

Cast int to word element 0 of qword.

si_from_uint

Cast unsigned int to word element 0 of qword.

si_from_ptr

Cast void pointer to word element 0 of qword.

si_from_llong

Cast long long to doubleword element 0 of qword.

si_from_ullong

Cast unsigned long long to doubleword element 0 of
qword.

si_from_float

Cast float to word element 0 of qword.

si_from_double

Cast double to doubleword element 0 of qword.

Generic intrinsics

Generic intrinsics map to one or more assembly-language instructions, as a
function of the type of its input parameters. Generic intrinsics are often
implemented as compiler built-ins.

All of the generic intrinsics are prefixed by the string spu_. For example, the
intrinsic that implements the stop assembly instruction is named spu_stop.

Generic intrinsics are provided for all SPU instructions, except for the following:

e branch
¢ branch hint

* interrupt return

 generate control for insertion (used for scalar stores)

e constant formation

* no-op

¢ memory load and store

* stop and signal with dependencies (stopd)

Many generic intrinsics accept scalars as one of their operands. These correspond
to intrinsics that map to instructions with immediate values.

SDK for Multicore Acceleration, Programming Tutorial

able 18| lists the generic intrinsics.

Table 18. Generic SPU Intrinsics

Intrinsic

| Description

Constant Formation Intrinsics

d = spu_splats(a)

| Replicate scalar a into all elements of vector d

Conversion Intrinsics

d = spu_convtf(a, scale)

Convert integer vector to float vector

d = spu_convts(a, scale)

Convert float vector to signed int vector

d = spu_convtu(a, scale)

Convert float vector to unsigned float vector

d = spu_extend(a)

Sign extend vector

d = spu_rountf(a)

Round double vector to float vector

Arithmetic Intrinsics

d = spu_add(a, b)

Vector add

d = spu_addx(a, b, c)

Vector add extended

d = spu_genb(a, b)

Vector generate borrow

d = spu_genbx(a, b, ¢)

Vector generate borrow extended

d = spu_genc(a, b)

Vector generate carry

d = spu_gencx(a, b, ¢)

Vector generate carry extended

d = spu_madd(a, b, c)

Vector multiply and add

d = spu_mhhadd(a, b, c)

Vector multiply high high and add

d = spu_msub(a, b, c)

Vector multiply and subtract

d = spu_mul(a, b)

Vector multiply

d = spu_mulh(a, b)

Vector multiply high

d = spu_mulhh(a, b)

Vector multiply high high

d = spu_mulo(a, b)

Vector multiply odd

d = spu_mulsr(a, b)

Vector multiply and shift right

d = spu_nmadd(a, b, ¢)

Negative vector multiply and add

d = spu_nmsub(a, b, c)

Negative vector multiply and subtract

d = spu_re(a)

Vector floating-point reciprocal estimate

d = spu_rsqrte(a)

Vector floating-point reciprocal square root estimate

d = spu_sub(a, b)

Vector subtract

d = spu_subx(a, b, ¢)

Vector subtract extended

Byte Operation Intrinsics

d = spu_absd(a, b)

Vector absolute difference

d = spu_avg(a, b)

Vector average

d = spu_sumb(a, b)

Vector sum bytes into shorts

Compare, Branch, and Halt Intrinsics

d = spu_bisled(func)

Branch indirect and set link if external data

d = spu_cmpabseq(a, b)

Vector compare absolute equal

d = spu_cmpabsgt(a, b)

Vector compare absolute greater than

d = spu_cmpeq(a, b)

Vector compare equal

d = spu_cmpgt(a, b)

Vector compare greater than

Chapter 3. Programming the SPEs

69

Table 18. Generic SPU Intrinsics (continued)

Intrinsic

Description

(void) spu_hcmpeq(a, b)

Halt if compare equal

(void) spu_hcmpgt(a, b)

Halt if compare greater than

d = spu_testsv(a, values)

Element-wise test for special value

Bit and Mask Intrinsics

d = spu_cntb(a)

Vector count ones for bytes

d = spu_cntlz(a)

Vector count leading zeros

d = spu_gather(a)

Gather bits from elements

d = spu_maskb(a)

Form select byte mask

d = spu_maskh(a)

Form select halfword mask

d = spu_maskw(a)

Form select word mask

d = spu_sel(a, b, pattern)

Select bits

d = spu_shuffle(a, b, pattern)

Shuffle bytes of a vector

Logical Intrinsics

d = spu_and(a, b)

Vector bit-wise AND

d = spu_andc(a, b)

Vector bit-wise AND with complement

d = spu_eqv(a, b)

Vector bit-wise equivalent

d = spu_nand(a, b)

Vector bit-wise complement of AND

d = spu_nor(a, b)

Vector bit-wise complement of OR

d = spu_or(a, b)

Vector bit-wise OR

d = spu_orc(a, b)

Vector bit-wise OR with complement

d = spu_orx(a)

Bit-wise OR word elements

d = spu_xor(a, b)

Vector bit-wise exclusive OR

Rotate Intrinsics

d = spu_rl(a, count)

Element-wise bit rotate left

d = spu_rlmask(a, count)

Element-wise bit rotate left and mask

d = spu_rlmaska(a, count)

Element-wise bit algebraic rotate and mask

d = spu_rlmaskqw(a, count)

Bit rotate and mask quadword

d = spu_rlmaskqwbyte(a, count)

Byte rotate and mask quadword

d = spu_rlmaskqwbytebc(a, count)

Byte rotate and mask quadword using bit rotate
count

d = spu_rlqw(a, count)

Bit rotate quadword left

d = spu_rlgqwbyte(a, count)

Byte rotate quadword left

d = spu_rlgqwbytebc(a, count)

Byte rotate quadword left using bit rotate count

d = spu_sr(a, count)

Vector Shift Right by Bits

d = spu_sra(a, count)

Vector Shift Right Algebraic by Bits

d = spu_srqw(a, count)

Quadword Shift Right by Bits

d = spu_srqwbyte(a, count)

Quadword Shift Right by Bytes

d = spu_srqwbytebc(a, count)

Quadword Shift Right by Bytes from Bit Shift Count

Shift Intrinsics

d = spu_sl(a, count)

Element-wise bit shift left

70 SDK for Multicore Acceleration, Programming Tutorial

Table 18. Generic SPU Intrinsics (continued)

Intrinsic

Description

d = spu_slqw(a, count)

Bit shift quadword left

d = spu_slqwbyte(a, count)

Byte shift quadword left

d = spu_slqwbytebc(a, count)

Byte shift quadword left using bit shift count

Control Intrinsics

(void) spu_idisable()

Disable interrupts

(void) spu_ienable()

Enable interrupts

(void) spu_mffpscr()

Move from floating-point status and control register

(void) spu_mfspr(register)

Move from special-purpose register

(void) spu_mtfpscr(a)

Move to floating-point status and control register

(void) spu_mtspr(register, a)

Move to special-purpose register

(void) spu_dsync()

Synchronize data

(void) spu_stop(type)

Stop and signal

(void) spu_sync()

Synchronize

Scalar Intrinsics

d = spu_extract(a, element)

Extract vector element from vector

d = spu_insert(a, b, element)

Insert scalar into specified vector element

d = spu_promote(a, element)

Promote scalar to vector

Channel Control Intrinsics

d = spu_readch(channel)

Read word channel

d = spu_readchqw(channel)

Read quadword channel

d = spu_readchent(channel)

Read channel count

(void) spu_writech(channel, a)

Write word channel

(void) spu_writechqw(channel, a)

Write quadword channel

Composite SPU intrinsics

Composite intrinsics are constructed from a sequence of specific or generic

intrinsics.

All of the composite intrinsics are prefixed by the string spu_. [Table 19| lists the

composite intrinsics.

Table 19. Composite SPU intrinsics

Intrinsic

Description

spu_mfcdma32(ls, ea, size, tagid,
cmd)

Initiate DMA to or from 32-bit effective address

spu_mfcdma64(ls, eahi, ealow, size,
tagid, cmd)

Initiate DMA to or from 64-bit effective address

spu_mfcstat(type)

Read MFC tag status

For further information about the SPU intrinsics, refer to the C/C++ Language
Extensions for Cell Broadband Engine Architecture document.

Chapter 3. Programming the SPEs

71

Promoting scalar data types to vector data types

The SPU loads and stores one quadword at-a-time. When instructions use or
produce scalar operands (including addresses), the value is kept in the preferred
scalar slot of a SIMD register.

Scalar (sub quadword) loads and stores require several instructions to format the
data for use on the SIMD architecture of the SPE.

Scalar loads must be rotated into the preferred slot. Scalar stores require a read,
scalar insert, and write operation. These extra formatting instructions reduce
performance.

Vector operations on scalar data are not efficient. The following strategies can be
used to make operations on scalar data more efficient:

* Change the scalars to quadword vectors. By eliminating the three extra
instructions associated with loading and storing scalars, code size and execution
time can be reduced.

* Cluster scalars into groups, and load multiple scalars at a time using a
quadword memory access. Manually extract or insert the scalars as needed. This
will eliminate redundant loads and stores.

SPU intrinsics are provided in the C/C++ Language Extensions to efficiently
promote scalars to vectors, or vectors to scalars. These intrinsics are listed in
_able 20

Table 20. Intrinsics for Changing Scalar and Vector Data Types

Instruction Description

d = spu_insert Insert a scalar into a specified vector element.
d = spu_promote Promote a scalar to a vector.

d = spu_extract Extract a vector element from its vector.

Differences between PPE and SPE SIMD support

This section describes the architectural and language-extension differences between
PPE and SPE SIMD support.

Architectural differences between PPE and SPE SIMD support
The PPE processes SIMD operations in the VXU within its PPU. The operations are
those of the Vector/SIMD Multimedia Extension instruction set.

The SPEs process SIMD operations in their SPU. The operations are those of the
SPU instruction set.

able 21

Table 21. PPE and SPE Architectural Comparison

The maior differences between the PPE and SPE architectures are summarized in

Feature PPE SPE
Number of SIMD registers 32 (128-bit) 128 (128-bit)
Organization of register files separate fixed-point, unified
floating-point, and vector
registers
Load latency variable (cache) fixed

72 SDK for Multicore Acceleration, Programming Tutorial

Table 21. PPE and SPE Architectural Comparison (continued)

Feature PPE

SPE

Addressability 264 bytes

256-KB local store
264 bytes via DMA

Instruction set more orthogonal

optimized for
single-precision float

Single-precision IEEE 754-1985

extended range

Doubleword no doubleword SIMD

double-precision
floating-point SIMD

Language-extension differences between PPE and SPE SIMD

support

The SPE’s SPU instruction set is similar to that of the PPE’s Vector/SIMD Multimedia
Extension instruction set, in that both operate on 128-bit SIMD vectors.

However, from a programmer’s perspective, these instruction sets are quite

different, and their respective language extensions have different intrinsics and

data types.

specifies the supported vector data types for each of the SIMD engines

(PPE and SPE) in the Cell Broadband Engine, where:

“u

e an “Xx” signifies support
e a "—” signifies no support

Table 22. PPE versus SPU Vector Data Types

Vector Data Type PPE SPU
vector unsigned char X X
vector signed char X X
vector bool char X —
vector unsigned short X X
vector signed short X X
vector bool short X —
vector pixel X —
vector unsigned int X X
vector signed int X X
vector bool int X _
vector float X X
vector unsigned long long — X
vector signed long long — X
vector double — X

The key differences are:

* Only the Vector/SIMD Multimedia Extension instruction set supports pixel

vectors.

* Only the SPU instruction set supports doubleword vectors.

Chapter 3. Programming the SPEs

73

74

The SPUs quadword data type is excluded from the list because it is a
type-agnostic register reference instead of a specific vector data type. The
quadword data type is used exclusively as an operand in specific intrinsics — those
which have a one-to-one mapping with a single assembly-language instruction. For
details, see [“Intrinsic classes” on page 66

Also, the Vector/SIMD Multimedia Extension instruction set provides these
operations that are not directly supported by a single instruction in the SPU
instruction set:

* Saturating math

* Sum-across

* Log, and 2*

* Ceiling and floor

* Complete byte instructions

Likewise, the SPU instruction set provides these operations that are not directly
supported by a single instruction in the Vector/SIMD Multimedia Extension
instruction set:

e Immediate operands

* Double-precision floating-point
* Sum of absolute difference

e Count ones in bytes

* Count leading zeros

* Equivalence

* Nand

* Or complement

* Extend sign

* Gather bits

* Form select mask

* Integer multiply and accumulate
* Multiply subtract

* Multiply float

* Shuffle byte special conditions
* Carry and borrow generate

e Sum bytes across

* Extended shift range

These differences between the Vector/SIMD Multimedia Extension and SPU
instruction sets must be kept in mind when porting code from the PPE to the SPE.
Ported programs need to consider not only equivalent instructions but also code
performance. See [“Porting SIMD code from the PPE to the SPEs” on page 98 for
more on porting code.

To improve code portability between PPE and SPU programs, spu_intrinsics.h
provides single-token typedefs for vector keyword data types. These typedefs are
shown in [Table 23 on page 75|

These single-token types serve as class names for extending generic intrinsics for
mapping to-and-from Vector/SIMD Multimedia Extension intrinsics and SPU
intrinsics.

SDK for Multicore Acceleration, Programming Tutorial

Table 23. Single-Token Vector Keyword Data Types

Vector Keyword Data Type Single-Token Typedef
vector unsigned char vec_ucharl6
vector signed char vec_char16
vector unsigned short vec_ushort8
vector signed short vec_short8
vector unsigned int vec_unit4
vector signed int vec_int4
vector unsigned long long vec_ullong?2
vector signed long long vec_llong?2
vector float vec_float4
vector double vec_double2

Compiler directives

Like compiler intrinsics, compiler directives are crucial programming elements.

The restrict qualifier is well-known in many C/C++ implementations, and it is
part of the SPU language extension. When the restrict keyword is used to qualify
a pointer, it specifies that all accesses to the object pointed to are done through the
pointer. For example:

void *memcpy(void * restrict sl, void * restrict s2, size_t n);

By specifying s1 and s2 as pointers that are restricted, the programmer is
specifying that the source and destination objects (for the memory copy) do not
overlap.

Another directive is __builtin_expect . Since branch mispredicts are relatively
expensive, _ builtin_expect provides a way for the programmer to direct branch
prediction. This example:

int _ builtin_expect(int exp, int value)

returns the result of evaluating exp , and means that the programmer expects exp
to equal value . The value can be a constant for compile-time prediction, or a
variable used for run-time prediction.

Two more directives are the aligned attribute, and the _align_hint directive. The
aligned attribute is used to ensure proper DMA alignment, for efficient data
transfer. The syntax is the same as in many implementations of gcc:

float factor _ attribute ((aligned (16)); //aligns "factor" to a quadword

The _align_hint directive helps compilers “auto-vectorize”. Although it looks like
an intrinsic, it is more properly described as a compiler directive, since no code is
generated as a result of using the directive. The example:

_align_hint(ptr, base, offset)
informs the compiler that the pointer, ptr, points to data with a base alignment of

base , with a byte offset from the base alignment of offset . The base alignment
must be a power of two. Giving 0 as the base alignment implies that the pointer

Chapter 3. Programming the SPEs 75

has no known alignment. The offset must be less than the base, or, zero. The
_align_hint directive should not be used with pointers that are not naturally
aligned.

MFC commands

The MFC supports a set of MFC commands. These commands provide the main
mechanism that enables code executing in an SPU to access main storage and
maintain synchronization with other processors and devices in the system.

The MFC is described in [“Memory flow controller” on page 54| MFC commands
can be issued either by code running on the MFC’s associated SPU or by code
running on the PPE or other device, as follows:

¢ Code running on the SPU issues an MFC command by executing a series of
writes using channel instructions, which are described in [Table 13 on page 57

* Code running on the PPE or other devices issues an MFC command by
performing a series of stores and loads to memory-mapped 1/O (MMIO) registers in
the MFC.

The commands are queued in one of two independent MFC command queues:

* MFC SPU Command Queue — For channel-initiated commands by the associated
SPU

* MFC Proxy Command Queue — For MMIO-initiated commands by the PPE or
other device

MFC commands that transfer data are referred to as DMA commands. The
data-transfer direction for MFC DMA commands is always referenced from the
perspective of an SPE. Therefore, commands that transfer data into an SPE (from
main storage to local store), are considered get commands, and transfers of data
out of an SPE (from local store to main storage) are considered put commands.

The MFC DMA commands are shown in [Table 24{ This table also indicates whether
the commands are supported for SPEs (by means of a corresponding channel) and
for the PPE (by means of a corresponding MMIO register), or both.

The suffixes associated with the MFC DMA commands are shown in [Table 25 o
-ae 78

The MFC synchronization commands are shown in [Table 26 on page 79}

The MFC atomic commands are shown in [Table 27 on page 79|

Table 24. MFC DMA Command

Supported

Mnemonic By Description

Put Commands

put PPE, SPE Moves data from local store to the effective address.

puts PPE Moves data from local store to the effective address and
starts the SPU after the DMA operation completes.

putf PPE, SPE Moves data from local store to the effective address with
fence (this command is locally ordered with respect to all
previously issued commands within the same tag group
and command queue).

76 SDK for Multicore Acceleration, Programming Tutorial

Table 24. MFC DMA Command (continued)

Mnemonic

Supported
By

Description

putb

PPE, SPE

Moves data from local store to the effective address with
barrier (this command and all subsequent commands with
the same tag ID as this command are locally ordered with
respect to all previously issued commands within the same
tag group and command queue).

putfs

PPE

Moves data from local store to the effective address with
fence (this command is locally ordered with respect to all
previously issued commands within the same tag group
and command queue) and starts the SPU after the DMA
operation completes.

putbs

PPE

Moves data from local store to the effective address with
barrier (this command and all subsequent commands with
the same tag ID as this command are locally ordered with
respect to all previously issued commands within the same
tag group and command queue) and starts the SPU after
the DMA operation completes.

putl

SPE

Moves data from local store to the effective address using
an MEC list.

putlf

SPE

Moves data from local store to the effective address using
an MFC list with fence (this command is locally ordered
with respect to all previously issued commands within the
same tag group and command queue).

putlb

SPE

Moves data from local store to the effective address using
an MFC list with barrier (this command and all subsequent
commands with the same tag ID as this command are
locally ordered with respect to all previously issued
commands within the same tag group and command
queue).

Get Commands

get

PPE, SPE

Moves data from the effective address to local store.

gets

PPE

Moves data from the effective address to local store, and
starts the SPU after the DMA operation completes.

getf

PPE, SPE

Moves data from the effective address to local store with
fence (this command is locally ordered with respect to all
previously issued commands within the same tag group
and command queue).

getb

PPE, SPE

Moves data from the effective address to local store with
barrier (this command and all subsequent commands with
the same tag ID as this command are locally ordered with
respect to all previously issued commands within the same
tag group and command queue).

getfs

PPE

Moves data from the effective address to local store with
fence (this command is locally ordered with respect to all
previously issued commands within the same tag group),
and starts the SPU after the DMA operation completes.

getbs

PPE

Moves data from the effective address to local store with
barrier (this command and all subsequent commands with
the same tag ID as this command are locally ordered with
respect to all previously issued commands within the same
tag group and command queue), and starts the SPU after
the DMA operation completes.

Chapter 3. Programming the SPEs 77

78

Table 24. MFC DMA Command (continued)

Supported

Mnemonic By Description

getl

SPE Moves data from the effective address to local store using
an MFC list.

getlf

SPE Moves data from the effective address to local store using
an MFC list with fence (this command is locally ordered
with respect to all previously issued commands within the
same tag group and command queue).

getlb

SPE Moves data from the effective address to local store using
an MFC list with barrier (this command and all subsequent
commands with the same tag ID as this command are
locally ordered with respect to all previously issued
commands within the same tag group and command
queue).

The suffixes in are associated with the MFC DMA commands, and extend
or refine the function of a command. For example, a put command moves data
from local store to the effective address. A puts command moves data from local
store to the effective address and starts the SPU after the DMA operation
completes.

* Commands with an s suffix can only be issued to the MFC Proxy command
queue.

* Commands with a 1 suffix and all the MFC atomic commands can only be
issued by the SPE (to the MFC SPU command queue).

* All other commands described in this section can be issued by either the SPE or
the PPE.

Commands issued by the PPE are issued on behalf of the SPE and are sent to the
MEC Proxy command queue.

Table 25. MFC Command Suffixes

Suffix

Description

S

Starts the execution of the SPU at the current location indicated by the SPU Next
Program Counter Register after the data has been transferred into or out of the
local store.

Tag-specific fence. Commands with a tag-specific fence are locally ordered with
respect to all previously-issued commands within the same tag group and
command queue.

Tag-specific barrier. Commands with a tag-specific barrier are locally ordered with
respect to all previously-issued commands within the same tag group and
command queue and all subsequently-issued commands to the same command
queue with the same tag.

List command. Executes a list of DMA transfer elements located in local store. The
maximum number of elements is 2,048, and each element describes a transfer of
up to 16 KB.

SDK for Multicore Acceleration, Programming Tutorial

Table 26. MFC Synchronization Commands

Command

Supported
By

Description

barrier

PPE, SPE

Barrier type ordering. Ensures ordering of all preceding,
nonimmediate DMA commands with respect to all
commands following the barrier command within the same
command queue. The barrier command has no effect on the
immediate DMA commands: getllar, putllc, and putlluc.

mfceieio

PPE, SPE

Controls the ordering of get commands with respect to put
commands, and of get commands with respect to get
commands accessing storage that is caching inhibited and
guarded. Also controls the ordering of put commands with
respect to put commands accessing storage that is memory
coherence required and not caching inhibited.

mfcsync

PPE, SPE

Controls the ordering of DMA put and get operations
within the specified tag group with respect to other
processing units and mechanisms in the system.

sndsig

PPE, SPE

Update SPU Signal Notification Registers in an I/O device
or another SPE.

sndsigb

PPE, SPE

Update SPU Signal Notification Registers in an I/O device
or another SPE with barrier.

sndsigf

PPE, SPE

Update SPU Signal Notification Registers in an 1/O device
or another SPE with fence.

Table 27. MFC Atomic Commands

Supported
Command By Description
getllar SPE Get lock line and create a reservation (executed
immediately).
putlle SPE Put lock line conditional on a reservation (executed
immediately).
putlluc SPE Put lock line unconditional (executed immediately).
putqlluc SPE Put lock line unconditional (queued form).

DMA-command tag groups

All DMA commands except get1lar, putllc, and putlluc can be tagged with a
5-bit Tag Group ID.

By assigning a DMA command or group of commands to different tag groups, the
status of the entire tag group can be determined within a single command queue
(the MFC SPU Command Queue or the MFC Proxy Command Queue).

Software can use this identifier to check or wait on the completion of all queued
commands in one or more tag groups. Tagging is optional but can be useful when
using barriers to control the ordering of MFC commands within a single command

queue.

DMA commands within a tag group can be synchronized with a fence or barrier
option by appending an f or b, respectively, to the command mnemonic. Execution
of a fenced command option is delayed until all previously issued commands
within the same tag group have been performed. Execution of a barrier command

Chapter 3. Programming the SPEs 79

option and all subsequent commands is delayed until all previously issued
commands in the same tag group have been performed.

Synchronizing DMA transfers

MEFC commands can be used to control the order in which DMA storage accesses
are performed.

The MFC synchronization commands are shown in [Table 26 on page 79} There are:

» four atomic commands (getllar, putllc, putlluc, and putqglluc),
* three send-signal commands (sndsig, sndsigf, and sndsigh),
* three barrier commands (barrier , mfcsync , and mfceieio).

MFC input and output macros

The C/C++ Language Extensions for Cell Broadband Engine architecture
specification also defines a set of optional convenience macros to assist in accessing
the SPU and MFC facilities available through the channel interface.

These macros, specified in spu_mfcio.h , can either be implemented as macros or
as built-in functions within the compiler.

Table 28. MFC Input and Output Macros

Macro Description

Effective Address Utilities

mfc_ea2h(ea) Extract higher 32-bits from effective address

mfc_ea2l(ea) Extract lower 32-bits from effective address

mfc_hl2ea(high, low) Concatenate higher and lower 32-bits of an
effective address

mfc_ceil128(value) Round up value to the next multiple of 128

DMA Commands

mfc_put(ls, ea, size, tag, tid, rid) Move data from local storage to effective
address

mfc_putb(ls, ea, size, tag, tid, rid) Move data from local storage to effective
address with barrier

mfc_putf(ls, ea, size, tag, tid, rid) Move data from local storage to effective
address with fence

mfc_get(ls, ea, size, tag, tid, rid) Move data from effective address to local
storage

mfc_getb(ls, ea, size, tag, tid, rid) Move data from effective address to local

storage with barrier

mfc_getf(ls, ea, size, tag, tid, rid) Move data from effective address to local
storage with fence

List DMA Commands

mfc_putl(ls, ea, list, list_size, tag, tid, rid) Move data from local storage to effective
address using MFC list

mfc_putlb(ls, ea, list, list_size, tag, tid, rid) |Move data from local storage to effective
address using MFC list with barrier

mfc_putlf(ls, ea, list, list_size, tag, tid, rid) |Move data from local storage to effective
address listing MFC list with fence

80 SDK for Multicore Acceleration, Programming Tutorial

Table 28. MFC Input and Output Macros (continued)

Macro

Description

mfc_getl(ls, ea, list, list_size, tag, tid, rid)

Move data from effective address to local
storage using MFC list

mfc_getlb(ls, ea, list, list_size, tag, tid, rid)

Move data from effective address to local
storage using MFC list with barrier

mfc_getlf(ls, ea, list, list_size, tag, tid, rid)

Move data from effective address to local
storage using MFC list with fence

Atomic Update Commands

mfc_getllar(ls, ea, tid, rid)

Get lock line and create reservation

mfc_putlle(ls, ea, tid, rid)

Put lock line if reservation for effective
address exists

mfc_putlluc(ls, ea, tid, rid)

Put lock line unconditional

mfc_putqlluc(ls, ea, tag, tid, rid)

Put queued lock line unconditional

SL1 Storage Control Commands

mfc_sdcrt(ea, size, tag, tid, rid)

SL1 Data Cache Range Touch

mfc_sdcrtst(ea, size, tag, tid, rid)

SL1 Data Cache Range Touch for Store

mfc_sdcrz(ea, size, tag, tid, rid)

SL1 Data Cache Range Set to Zero

mfc_sdcrst(ea, size, tag, tid, rid)

SL1 Data Cache Range Store

mfc_sdcrf(ea, size, tag, tid, rid)

SL1 Data Cache Range Flush

Synchronization Commands

mfc_sndsig(ls, ea, tag, tid, rid)

Send signal

mfc_sndsigb(ls, ea, tag, tid, rid)

Send signal with barrier

mfc_sndsigf(ls, ea, tag, tid, rid)

Send signal with fence

mfc_barrier(tag)

Enqueue mfc_barrier command into DMA
queue

mfc_eieio(tag, tid, rid)

Enqueue mfc_eieio command into DMA
queue

mfc_sync(tag)

Enqueue mfc_sync command into DMA
queue

DMA Status

mfc_stat_ cmd_queue()

Check number of available entries in MFC
DMA queue

mfc_write_tag_mask(mask)

Set tag mask to select tag groups to be
included in query operation

mfc_read_tag_mask()

Read tag mask indicating groups to be
included in query operation

mfc_write_tag_update(ts)

Request the tag status to be updated

mfc_write_tag_update_immediate()

Request that tag status be updated
immediately

mfc_write_tag_update_any()

Request that tag status be updated when any
tag groups complete

mfc_write_tag_update_all()

Request that tag status be updated when all
tag groups complete

mfc_stat_tag_update()

Check availability of tag Update Request
Status channel

Chapter 3. Programming the SPEs 81

Table 28. MFC Input and Output Macros (continued)

Macro Description

mfc_read_tag_status() Wait for an updated tag status

mfc_read_tag_status_immediate() Wait for the updated tag status of any
enabled group

mfc_read_tag_status_any() Wait for no outstanding operations for any
enabled groups

mfc_read_tag_status_all() Wait for no outstanding operations for all
enabled groups

mfc_stat_tag_status() Check availability of MFC_RdTagStat channel

mfc_read_list_stall_status() Read list DMA stall-and-notify status

mfc_stat_list_stall_status() Check availability of List DMA

stall-and-notify status

mfc_write_list_stall_ack(tag) Acknowledge tag group containing stalled
DMA list commands

mfc_read_atomic_status() Check availability of atomic command status

Multisource Synchronization Request

mfc_write_multi_src_sync_request() Request multisource synchronization
mfc_stat_multi_src_sync_request() Check status of multisource synchronization
request

SPU Signal Notification

spu_read_signall() Atomically read and clear Signal Notification
1 channel

spu_stat_signall() Check if pending signals exist on Signal
Notification 1 channel

spu_read_signal2() Atomically read and clear Signal Notification
2 channel

spu_stat_signal2() Check if pending signals exist on Signal

Notification 2 channel

SPU Mailboxes

spu_read_in_mbox() Read next data entry in the SPU Inbound
Mailbox

spu_stat_in_mbox() Get the number of data entries in the SPU
Inbound Mailbox

spu_write_out_mbox(data) Send data to the SPU Outbound Mailbox

spu_stat_out_mbox() Get the available capacity of the SPU
Outbound Mailbox

spu_write_out_intr_mbox(data) Send data to the SPU Outbound Interrupt
Mailbox

spu_stat_out_intr_mbox() Get the available capacity of the SPU

Outbound Interrupt Mailbox

SPU Decrementer

spu_read_decremente