
Software Development Kit for Multicore Acceleration

Version 3.1

Programmer’s Guide

SC33-8325-03

���

Software Development Kit for Multicore Acceleration

Version 3.1

Programmer’s Guide

SC33-8325-03

���

Note: Before using this information and the product it supports, read the general information in “Notices” on page 95.

Edition Notice

This edition applies to the version 3, release 1, modification 0 of the IBM Software Development Kit for Multicore

Acceleration (Product number 5724-S84) and to all subsequent releases and modifications until otherwise indicated

in new editions.

This edition replaces SC33-8325-02.

© Copyright International Business Machines Corporation 2006, 2008.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

|

Contents

Preface v

About this book v

What’s new for SDK 3.1 v

Supported operating environments vi

Supported hardware requirements vi

Software requirements vi

Unsupported beta-level environments vi

Getting support vi

Related documentation vii

Chapter 1. SDK technical overview . . . 1

GNU tool chain 1

IBM XL C/C++ compiler 2

Linux kernel 3

Libraries and frameworks 3

SPE Runtime Management Library Version 2.3 . . 3

SIMD math libraries 4

Mathematical Acceleration Subsystem (MASS)

libraries 4

ALF library 5

DaCS library 5

Fast Fourier Transform library 6

Monte Carlo libraries 6

Basic Linear Algebra Sublibrary 7

LAPACK library 7

Code examples and example libraries 8

Performance tools 11

IBM Eclipse IDE for the SDK 11

Overview of the hybrid programming environment 12

Chapter 2. Programming with the SDK 13

SDK directories 13

Specifying the processor architecture 13

SDK programming examples and demos 15

Overview of the build environment 15

Changing the build environment 15

Building and running a specific program . . . 16

Compiling and linking with the GNU tool chain 16

Developing applications with the SDK 17

SDK programming policies and conventions . . 18

Managing a DMA list element crossing 4 GB

boundary 19

Performance considerations 20

Using the huge translation lookaside buffer (TLB)

to reserve memory 20

Using NUMA 21

Preemptive context switching 22

Chapter 3. Debugging Cell/B.E.

applications 23

Overview of GDB 23

GDB for SDK 23

Compiling and linking applications 23

Debugging applications 24

Debugging PPE code 24

Debugging SPE code 24

Debugging in the Cell/B.E. environment 31

Debugging multithreaded code 32

Using the combined debugger 36

New command reference 41

Debugging applications remotely 43

Overview of remote debugging 43

Using remote debugging 44

Starting remote debugging 44

Chapter 4. Debugging common Direct

Memory Access (DMA) errors 47

DMA errors 47

Using ppu-gdb to debug DMA errors 48

Examples 50

Unaligned effective address 50

Tag ID errors 52

Transfer size errors 53

Unaligned local store address 57

Segmentation faults 57

DMA list element crossing 4 GB boundary . . . 59

DMA race conditions 60

Chapter 5. Using the SPU GNU profiler 63

Chapter 6. Analyzing Cell/B.E. SPUs

with kdump and crash 67

Installation requirements 67

Production system 68

Analysis system 68

Chapter 7. Using SPU code overlays 71

What are overlays 71

How overlays work 71

Restrictions on the use of overlays 72

Planning to use overlays 72

Overview 72

Sizing 72

Scaling considerations 73

Overlay tree structure example 73

Length of an overlay program 74

Segment origin 75

Overlay processing 76

Overlay graph structure example 77

Specification of an SPU overlay program 79

Coding for overlays 80

Migration/Co-Existence/Binary-Compatibility

Considerations 80

Compiler options (spuxlc and GCC) 80

SDK overlay examples 82

Simple overlay example 82

Overview overlay example 85

Large matrix overlay example 86

Using the GNU SPU linker for overlays 88

© Copyright IBM Corp. 2006, 2008 iii

||

||
||

||
|
||

 |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |

 | |

Generating automatic overlay scripts 89

Appendix A. Related documentation . . 91

Appendix B. Accessibility features . . . 93

Notices 95

Trademarks 97

Terms and conditions 97

Glossary 99

Index 109

iv Programmer’s Guide

||

Preface

The IBM Software Development Kit for Multicore Acceleration Version 3.1 (SDK) is

a complete package of tools to enable you to program applications for the Cell

Broadband Engine™ (Cell/B.E.) processor. The SDK is composed of development

tool chains, software libraries and sample source files, and a Linux® kernel, all of

which fully support the capabilities of the Cell/B.E..

v Chapter 1, “SDK technical overview,” on page 1 describes the components of the

SDK

v Chapter 2, “Programming with the SDK,” on page 13 explains how to program

applications for the Cell/B.E. platform

v Chapter 3, “Debugging Cell/B.E. applications,” on page 23 describes how to

debug your applications

v Chapter 4, “Debugging common Direct Memory Access (DMA) errors,” on page

47

v Chapter 5, “Using the SPU GNU profiler,” on page 63 describes how to sue the

SPU GNU profiler tool

v Chapter 6, “Analyzing Cell/B.E. SPUs with kdump and crash,” on page 67

describes a means of debugging kernel data related to SPUs through specific

crash commands, by using a dumped kernel image.

v Chapter 7, “Using SPU code overlays,” on page 71 describes how to use overlays

About this book

This book describes how to use the SDK to write applications. How to install SDK

is described in a separate manual, Software Development Kit for Multicore Acceleration

Installation Guide, and there is also a programming tutorial to help get you started.

What’s new for SDK 3.1

This book includes information about the new functionality delivered with the

SDK, and completely replaces the previous version of this book.

This new information includes:

v Information about sharing of MFC tag identifiers, sharing MFC tag masks, and

interrupt safe MFC command requests, see “SDK programming policies and

conventions” on page 18

v Chapter 4, “Debugging common Direct Memory Access (DMA) errors,” on page

47

v GDB usability enhancements, see “Multi-location breakpoints” on page 37

v For the combined debugger, information about a new facility for symbol

determination, see “Disambiguation of multiply-defined global symbols” on

page 39

v There are now two versions of the gdbserver debugger, see “Debugging

applications remotely” on page 43

v How to generate automatic overlays, see “Generating automatic overlay scripts”

on page 89

v How to use the SPU GNU profiler, see Chapter 5, “Using the SPU GNU

profiler,” on page 63

© Copyright IBM Corp. 2006, 2008 v

|
|

|

|
|
|

|
|

|

|
|
|

|
|

|
|

|
|

v Performance-tool related information has been removed from this book and is

now located in the Performance Tools Guide

Supported operating environments

This topic describes the SDK hardware and software requirements.

Supported hardware requirements

This topic describes the supported hardware requirements.

Cell/B.E. applications can be developed on the following platforms:

v x86

v x86-64

v 64-bit PowerPC® (PPC64)

v IBM BladeCenter QS21

v IBM BladeCenter QS22

Software requirements

This topic describes the SDK software requirements.

The supported languages are:

v C/C++

v Assembler

v Fortran

v ADA (Power Processing Element (PPE) Only)

Note: Although C++ and Fortran are supported, take care when you write code

for the Synergistic Processing Units (SPUs) because many of the C++ and Fortran

libraries are too large for the 256 KB local storage memory available.

Unsupported beta-level environments

This publication contains documentation that may be applied to certain

environments on an ″as-is″ basis. Those environments are not supported by IBM,

but wherever possible, work-arounds to problems are provided in the respective

forums. The following libraries and utilities are provided on an ″as-is″ basis:

v ALF for Hybrid

v DaCS for Hybrid

v Hybrid Performance Tools

v 3D Fast Fourier Transform Library

v SPU Timing

v Security Toolkit Isolation, Crypto Library

v CPC RHEL user tool

v CPC Fedora user tool

v IBM BladeCenter® QS20

Getting support

The SDK is available through Passport Advantage® with full support at:

http://www.ibm.com/software/passportadvantage

vi Programmer’s Guide

|
|

|

http://www.ibm.com/software/passportadvantage

You can locate documentation and other resources on the World Wide Web. Refer

to the following Web sites:

v IBM BladeCenter systems, optional devices, services, and support information at

http://www.ibm.com/bladecenter/

For service information, select Support.

v developerWorks® Cell BE Resource Center at:

http://www.ibm.com/developerworks/power/cell/

To access the Cell BE forum on developerWorks, select Community.

v The Barcelona Supercomputing Center (BSC) Web site at

http://www.bsc.es/projects/deepcomputing/linuxoncell

v There is also support for the Full-System Simulator and XL C/C++ Compiler

through their individual alphaWorks® forums. If in doubt, start with the Cell BE

architecture forum.

v The GNU Project debugger, GDB is supported through many different forums

on the Web, but primarily at the GDB Web site

http://www.gnu.org/software/gdb/gdb.html

This version of the SDK supersedes all previous versions of the SDK.

Related documentation

For a list of documentation referenced in this Programmer’s Guide, see Appendix B.

Related documentation.

Preface vii

http://www.ibm.com/bladecenter/
http://www.ibm.com/developerworks/power/cell/
http://www.bsc.es/projects/deepcomputing/linuxoncell
http://www.gnu.org/software/gdb/gdb.html

viii Programmer’s Guide

Chapter 1. SDK technical overview

This section describes the contents of the SDK, where it is installed on the system,

and how the various components work together.

It covers the following topics:

v “GNU tool chain”

v “IBM XL C/C++ compiler” on page 2

v “Linux kernel” on page 3

v “Libraries and frameworks” on page 3

v “Performance tools” on page 11

v “IBM Eclipse IDE for the SDK” on page 11

v “Overview of the hybrid programming environment” on page 12

GNU tool chain

This topic provides an overview of the GNU tool chain.

The GNU tool chain contains the GNU Compiler Collection compilers for the C,

C++, and Fortran programming languages (gcc, g++, and gfortran) for the PPU

and the SPU. For the PPU it is a replacement for the native GCC compiler on

PowerPC (PPC) platforms and it is a cross-compiler on X86. The GCC compiler for

the PPU is the default and the Makefiles are configured to use it when building the

libraries and samples.

The GCC compiler also contains a separate SPE cross-compiler that supports the

standards defined in the following documents:

v C/C++ Language Extensions for Cell Broadband Engine Architecture V2.6. The GCC

compiler shipped in SDK supports all language extension described in the

specification except for the following:

– The GCC compilers currently do not support alignment of stack variables

greater than 16 bytes as described in section 1.3.1.

– The GCC compilers currently do not support the optional alternate vector

literal format specified in section 1.4.6.

– The GCC compilers currently support mapping between SPU and VMX

intrinsics as defined in section 5 only in C++ code.

– The recommended vector printf format controls as specified in section 8.1.1

due to library restrictions.

– The GCC compiler does not support the optional Altivec style of vector literal

construction using parenthesis (″(″ and ″)″). The standard C method of array

initialization using curly braces (″{″ and ″}″) should be used.

– The C99 complex math library as specified in section 8.1.1 due to library

restrictions

– The GCC compiler currently does not support the Vector Shift Right and

Quadword Shift Right families of the SPU intrinsics (spu_sr, spu_sra, spu

srqw, spu_srqwbyte, spu_srqwbytebc)
v SPU Application Binary Interface (ABI) Specification V1.9

v SPU Instruction Set Architecture V1.2

© Copyright IBM Corp. 2006, 2008 1

|
|
|

|

|
|
|

The associated assembler and linker additionally support the SPU Assembly

Language Specification V1.7. The assembler and linker are common to both the GCC

compiler and the “IBM XL C/C++ compiler.”

GDB support is provided for both PPU and SPU debugging, and the debugger

client can be in the same process or a remote process. GDB also supports combined

(PPU and SPU) debugging.

On a non-PPC system, the install directory for the GNU tool chain is

/opt/cell/toolchain. There is a single bin subdirectory, which contains both PPU

and SPU tools.

On a PPC64 or an IBM BladeCenter QS21, or IBM BladeCenter QS22, both tool

chains are installed into /usr. See “SDK directories” on page 13 for further

information.

IBM XL C/C++ compiler

IBM XL C/C++ for Multicore Acceleration for Linux is an advanced,

high-performance cross-compiler that is tuned for the CBEA.

The XL C/C++ compiler, which is hosted on an x86, IBM PowerPC

technology-based system, or a IBM BladeCenter QS21, or IBM BladeCenter QS22,

generates code for the PPU or SPU. The compiler requires the GCC toolchain for

the CBEA, which provides tools for cross-assembling and cross-linking applications

for both the PPE and SPE.

IBM XL C/C++ supports the revised 2003 International C++ Standard ISO/IEC

14882:2003(E), Programming Languages -- C++ and the ISO/IEC 9899:1999,

Programming Languages -- C standard, also known as C99. The compiler also

supports:

v The C89 Standard and K & R style of programming

v Language extensions for vector programming

v Language extensions for SPU programming

v Numerous GCC C and C++ extensions to help users port their applications from

GCC.

The XL C/C++ compiler available for the SDK supports the languages extensions

as specified in the IBM XL C/C++ Advanced Edition for Multicore Acceleration for

Linux Language Reference.

The XL compiler also contains a separate SPE cross-compiler that supports the

standards defined in the following documents:

v C/C++ Language Extensions for Cell Broadband Engine Architecture V2.6. The XL

compiler shipped in SDK supports all language extension described in the

specification except for the following:

– The XL compilers currently do not support the __builtin_expect_call

builtin function call

– The XL compilers currently support mapping between SPU and VMX

intrinsics as defined in section 5 only in C++ code

– The recommended vector printf format controls as specified in section 8.1.1

due to library restrictions

– The C99 complex math library as specified in section 8.1.1 due to library

restrictions

2 Programmer’s Guide

|
|

|
|

|

– The SPU XL compilers currently do not support the Vector Shift Right and

Quadword Shift Right families of the SPU intrinsics (spu_sr, spu_sra, spu

srqw, spu_srqwbyte, spu_srqwbytebc)
v SPU Application Binary Interface (ABI) Specification Version 1.9

v SPU Instruction Set Architecture Version 1.2

For information about the XL C/C++ compiler invocation commands and a

complete list of options, refer to the IBM XL C/C++ Advanced Edition for Multicore

Acceleration for Linux Programming Guide.

Program optimization is described in IBM XL C/C++ Advanced Edition for Multicore

Acceleration for Linux Programming Guide.

The XL C/C++ for Multicore Acceleration for Linux compiler is installed into

the/opt/ibmcmp/xlc/cbe/<compiler version number> directory. Documentation is

located on the following Web site:

http://publib.boulder.ibm.com/infocenter/cellcomp/v9v111/index.jsp

Linux kernel

For the IBM IBM BladeCenter QS21 and IBM BladeCenter QS22, the kernel is

installed into the /boot directory, yaboot.conf is modified and a reboot is required

to activate this kernel.

The cellsdk install task is documented in the SDK Installation Guide.

Note: The cellsdk uninstall command does not automatically uninstall the

kernel. This avoids leaving the system in an unusable state.

Libraries and frameworks

This topic provides a brief overview of the Cell/B.E. libraries.

The following libraries are described:

v “SPE Runtime Management Library Version 2.3”

v “SIMD math libraries” on page 4

v “Mathematical Acceleration Subsystem (MASS) libraries” on page 4

v “ALF library” on page 5

v “DaCS library” on page 5

SPE Runtime Management Library Version 2.3

The SPE Runtime Management Library (libspe) constitutes the standardized

low-level application programming interface (API) for application access to the

Cell/B.E. SPEs.

This library provides an API to manage SPEs that is neutral with respect to the

underlying operating system and its methods. Implementations of this library can

provide additional functionality that allows for access to operating system or

implementation-dependent aspects of SPE runtime management. These capabilities

are not subject to standardization and their use may lead to non-portable code and

dependencies on certain implemented versions of the library.

Chapter 1. SDK technical overview 3

|
|
|

http://www-306.ibm.com/software/awdtools/xlcpp/library/

The elfspe is a PPE program that allows an SPE program to run directly from a

Linux command prompt without needing a PPE application to create an SPE

thread and wait for it to complete.

For the IBM BladeCenter QS21 and IBM BladeCenter QS22, the SDK installs the

libspe headers, libraries, and binaries into the /usr directory and the standalone

SPE executive, elfspe, is registered with the kernel during boot by commands

added to /etc/rc.d/init.d using the binfmt_misc facility.

For the simulator, the libspe and elfspe binaries and libraries are preinstalled in

the same directories in the system root image and no further action is required at

install time.

SIMD math libraries

The SIMD math library provides short vector versions of the math functions.

The traditional math functions are scalar instructions, and do not take advantage of

the powerful Single Instruction, Multiple Data (SIMD) vector instructions available

in both the PPU and SPU in the Cell/B.E. Architecture. SIMD instructions perform

computations on short vectors of data in parallel, instead of on individual scalar

data elements. They often provide significant increases in program speed because

more computation can be done with fewer instructions.

While the SIMD math library provides short vector versions of math functions, the

MASS library provides long vector versions. These vector versions conform as

closely as possible to the specifications set out by the scalar standards.

The SIMD math library is provided by the SDK as both a linkable library archive

and as a set of inline function headers. The names of the SIMD math functions are

formed from the names of the scalar counterparts by appending a vector type

suffix to the standard scalar function name. For example, the SIMD version of the

absolute value function abs(), which acts on a vector of long integers, is called

absi4(). Inline versions of functions are prefixed with the character ″_″

(underscore), so the inline version of absi4() is called _absi4().

For more information about the SIMD math library, refer to SIMD Math Library

Specification for Cell Broadband Engine Architecture Version 1.1.

Mathematical Acceleration Subsystem (MASS) libraries

The Mathematical Acceleration Subsystem (MASS) consists of libraries of

mathematical intrinsic functions, which are tuned specifically for optimum

performance on the Cell/B.E. processor.

Currently the 32-bit, 64-bit PPU, and SPU libraries are supported. These libraries:

v Include both scalar and vector functions

v Are thread-safe

v Support both 32- and 64-bit compilations

v Offer improved performance over the corresponding standard system library

routines

v Are intended for use in applications where slight differences in accuracy or

handling of exceptional values can be tolerated

You can find information about using these libraries on the MASS Web site:

http://www.ibm.com/software/awdtools/mass

4 Programmer’s Guide

http://www.ibm.com/software/awdtools/mass

ALF library

The ALF provides a programming environment for data and task parallel

applications and libraries.

The ALF API provides library developers with a set of interfaces to simplify library

development on heterogenous multi-core systems. Library developers can use the

provided framework to offload computationally intensive work to the accelerators.

More complex applications can be developed by combining the several function

offload libraries. Application programmers can also choose to implement their

applications directly to the ALF interface.

ALF supports the multiple-program-multiple-data (MPMD) programming module

where multiple programs can be scheduled to run on multiple accelerator elements

at the same time.

The ALF functionality includes:

v Data transfer management

v Parallel task management

v Double buffering

v Dynamic load balancing

With the provided platform-independent API, you can also create descriptions for

multiple compute tasks and define their ordering information execution orders by

defining task dependency. Task parallelism is accomplished by having tasks

without direct or indirect dependencies between them. The ALF runtime provides

an optimal parallel scheduling scheme for the tasks based on given dependencies.

From the application or library programmer’s point of view, ALF consists of the

following two runtime components:

v A host runtime library

v An accelerator runtime library

The host runtime library provides the host APIs to the application. The accelerator

runtime library provides the APIs to the application’s accelerator code, usually the

computational kernel and helper routines. This division of labor enables

programmers to specialize in different parts of a given parallel workload.

The runtime framework handles the underlying task management, data movement,

and error handling, which means that the focus is on the kernel and the data

partitioning, not the direct memory access (DMA) list creation or the lock

management on the work queue.

The ALF APIs are platform-independent and their design is based on the fact that

many applications targeted for Cell/B.E. or multi-core computing follow the

general usage pattern of dividing a set of data into self-contained blocks, creating a

list of data blocks to be computed on the SPE, and then managing the distribution

of that data to the various SPE processes. This type of control and compute process

usage scenario, along with the corresponding work queue definition, are the

fundamental abstractions in ALF.

DaCS library

The DaCS library provides a set of services for handling process-to-process

communication in a heterogeneous multi-core system.

Chapter 1. SDK technical overview 5

In addition to the basic message passing service these include:

v Mailbox services

v Resource reservation

v Process and process group management

v Process and data synchronization

v Remote memory services

v Error handling

The DaCS services are implemented as a set of APIs providing an architecturally

neutral layer for application developers. These APIs are available in both the C and

Fortran programming languages. They structure the processing elements, referred

to as DaCS Elements (DE), into a hierarchical topology. This includes general

purpose elements, referred to as Host Elements (HE), and special processing

elements, referred to as Accelerator Elements (AE). Host elements usually run a

full operating system and submit work to the specialized processes which run in

the Accelerator Elements.

Fast Fourier Transform library

The Fast Fourier Transform (FFT) library handles a wide range of FFTs.

It consists of the following:

v API for the following routines used in single precision:

– FFT Real -> Complex 1D

– FFT Complex-Complex 1D

– FFT Complex -> Real 1D

– FFT Complex-Complex 2D for frequencies (from 1000x1000 to 2500x2500)
The implementation manages sizes up to 10000 and handles multiples of 2, 3,

and 5 as well as powers of those factors, plus one arbitrary factor as well. User

code running on the PPU makes use of the CBE FFT library by calling one of

either 1D or 2D streaming functions.

v Power-of-two-only 2D FFT code for complex-to-complex single and double

precision processing.

Both parts of the library run using a common interface that contains an

initialization and termination step, and an execution step which can process

“one-at-a-time” requests (streaming) or entire arrays of requests (batch).

Monte Carlo libraries

The Monte Carlo libraries are a Cell/B.E. implementation of Random Number

Generator (RNG) algorithms and transforms. The objective of this library is to

provide functions needed to perform Monte Carlo simulations.

The following RNG algorithms are implemented:

v Hardware-based

v Kirkpatrick-Stoll

v Mersenne Twister

v Sobol

The following transforms are provided:

v Box-Mueller

v Moro’s Inversion

6 Programmer’s Guide

|

|

|

|

|

|

|

|

|
|
|
|

|
|

|
|
|

v Polar Method

Basic Linear Algebra Sublibrary

This topic provides a short overview of the Basic Linear Algebra Sublibrary

(BLAS).

The BLAS library is based upon a published standard interface, see the BLAS

Technical Forum Standard document available at

http://www.netlib.org/blas/blast-forum/blas-report.pdf

for commonly-used linear algebra operations in high-performance computing

(HPC) and other scientific domains.

It is widely used as the basis for other high quality linear algebra software, for

example LAPACK and ScaLAPACK. The Linpack (HPL) benchmark largely

depends on a single BLAS routine (DGEMM) for good performance.

The BLAS APIs are available as standard ANSI C and standard FORTRAN 77/90

interfaces. BLAS implementations are also available in open-source (netlib.org).

Based on their functionality, BLAS routines are categorized into the following three

levels:

v Level 1 routines are for scalar and vector operations

v Level 2 routines are for matrix-vector operations

v Level 3 routines are for matrix-matrix operations

BLAS routines can have up to four versions – real single precision, real double

precision, complex single precision and complex double precision, represented by

prefixing S, D, C and Z respectively to the routine name.

The BLAS library in the SDK supports only real single precision (SP) and real

double precision (DP) versions. All SP and DP routines in the three levels of

standard BLAS are supported on the Power Processing Element (PPE). These are

available as PPE APIs and conform to the standard BLAS interface. (Refer to

http://www.netlib.org/blas/blasqr.pdf)

Some of these routines have been optimized using the Synergistic Processing

Elements (SPEs) and these exhibit substantially better performance in comparison

to the corresponding versions implemented solely on the PPE. An SPE interface in

addition to the PPE interface is provided for some of these routines; however, the

SPE interface does not conform to the standard BLAS interface and provides a

restricted version of the standard BLAS interface.

LAPACK library

The LAPACK (Linear Algebra Package) library is based upon a published standard

interface for commonly used linear algebra operations in high performance

computing (HPC) and other scientific domains.

The LAPACK API is available with standard ANSI C and standard FORTRAN 77

interfaces. LAPACK implementations are also available as open source from

http://netlib.org.

Chapter 1. SDK technical overview 7

|

|
|

|
|

|

|
|

|
|
|

|
|
|
|

|

|

|

|
|
|

|
|
|
|
|

|
|
|
|
|
|

|

|
|
|

|
|
|

http://www.netlib.org/blas/blast-forum/blas-report.pdf
http://www.netlib.org/blas/blasqr.pdf
http://netlib.org

Each LAPACK routine has up to four versions, as detailed in the following table:

 Table 1. LAPACK routine precision

Precision Routine name prefix

Real single precision S

real double precision D

complex single precision C

complex double precision Z

The LAPACK library in the SDK supports only real double precision, hereafter

referred to as DP. All DP routines are available as PPE APIs and conform to the

standard LAPACK FORTRAN 77 interface.

The following routines have been optimized to use features of the Synergistic

Processing Elements (SPEs):

v DGETRF - Compute the LU factorization of a general matrix

v DGETRI - Compute the inverse of a general matrix using the LU factorization

v DGEQRF - Compute the QR factorization of a general matrix

v DPOTRF - Compute the Cholesky factorization of a symmetric positive matrix

v DBDSQR - Compute the singular value decomposition of a real bi-diagonal

matrix using the implicit zero-shift QR algorithm

v DSTEQR - Compute the singular value decomposition of a real symmetric

tridiagonal matrix using the implicit QR algorithm

Code examples and example libraries

The example libraries package provides a set of optimized library routines that

greatly reduce the development cost and enhance the performance of Cell/B.E.

programs.

To demonstrate the versatility of the Cell/B.E. architecture, a variety of

application-oriented libraries are included, such as:

v Fast Fourier Transform (FFT)

v Image processing

v Software managed cache

v Game math

v Matrix operation

v Multi-precision math

v Synchronization

v Vector

Additional examples and demos show how you can exploit the on-chip

computational capacity.

Both the binary and the source code are shipped in separate RPMs. The RPM

names are:

v cell-libs

v cell-examples

v cell-demos

v cell-tutorial

8 Programmer’s Guide

|

||

||

||

||

||

||
|
|
|
|

|
|

|

|

|

|

|
|

|
|

For each of these, there is one RPM that has the binaries - already built versions,

that are installed into /opt/cell/sdk/usr, and for each of these, there is one RPM

that has the source in a tar file. For example, cell-demos-source-3.0-1.rpm has

demos_source.tar and this tar file contains all of the source code.

The default installation process installs the binaries and installs the source tar files.

You need to decide into which directory you want to untar those files, either into

/opt/cell/sdk/src, or into a ’sandbox’ directory.

The libraries and examples RPMs have been partitioned into the following

subdirectories.

 Table 2. Subdirectories for the libraries and examples RPM

Subdirectory Description

/opt/cell/sdk/buildutils Contains a README and the make include files (make.env,

make.header, make.footer) that define the SDK build environment.

/opt/cell/sdk/docs Contains all documentation, including information about SDK

libraries and tools.

 /opt/cell/sdk/usr/bin

/opt/cell/sdk/usr/spu/bin

Contains executable programs for that platform. On an x86 system,

this includes the SPU Timing tool. On a PPC system, this also includes

all of the prebuilt binaries for the SDK examples (if installed). In the

SDK build environment (that is, with buildutils/make.footer) the

$SDKBIN_<target> variables point to these directories.

 /opt/cell/sdk/usr/include

/opt/cell/sdk/usr/spu/include

Contains header files for the SDK libraries and examples on a PPC

system. In the SDK build environment (that is, with the

buildutils/make.footer) the $SDKINC_<target> variables point to these

directories.

 /opt/cell/sdk/usr/lib

/opt/cell/sdk/usr/lib64

/opt/cell/sdk/usr/spu/lib

Contains library binary files for the SDK libraries on a PPC system. In

the SDK build environment (that is, with the buildutils/make.footer)

the $SDKLIB_<target> variables point to these directories.

/opt/cell/sdk/src Contains the tar files for the libraries and examples (if installed). The

tar files are unpacked into the subdirectories described in the

following rows of this table. Each directory has a README that

describes their contents and purpose.

/opt/cell/sdk/src/lib Contains a series of libraries and reusable header files. Complete

documentation for all library functions is in the /opt/cell/sdk/docs/
lib/SDK_Example_Library_API_v3.1.pdf file.

Chapter 1. SDK technical overview 9

Table 2. Subdirectories for the libraries and examples RPM (continued)

Subdirectory Description

/opt/cell/sdk/src/examples

The examples directory contains examples of Cell/B.E. programming

techniques. Each program shows a particular technique, or set of

related techniques, in detail. You can review these programs when

you want to perform a specific task, such as double-buffered DMA

transfers to and from a program, performing local operations on an

SPU, or provide access to main memory objects to SPU programs.

Some subdirectories contain multiple programs. The sync subdirectory

has examples of various synchronization techniques, including mutex

operations and atomic operations.

The spulet model is intended to encourage testing and refinement of

programs that need to be ported to the SPUs; it also provides an easy

way to build filters that take advantage of the huge computational

capacity of the SPUs, while reading and writing standard input and

output.

Other samples worth noting are:

v Overlay samples

v SW managed cache samples

/opt/cell/sdk/src/tutorial Contains tutorial code samples.

/opt/cell/sdk/src/demos

The demo directory provides a handful of examples that can be used

to better understand the performance characteristics of the Cell/B.E.

processor. There are sample programs, which contain insights into

how real-world code should run.

Note: Running these examples using the simulator takes much longer

than on the native Cell/B.E.-based hardware. The performance

characteristics in wall-clock time using the simulator are extremely

inaccurate, especially when running on multiple SPUs. You need to

examine the emulator CPU cycle counts instead.

For example, the matrix_mul program lets you perform matrix

multiplications on one or more SPUs. Matrix multiplication is a good

example of a function which the SPUs can accelerate dramatically.

Unlike some of the other example programs, these examples have

been tuned to get the best performance. This makes them harder to

read and understand, but it gives an idea for the type of performance

code that you can write for the Cell/B.E. processor.

/opt/cell/sdk/src/benchmarks The benchmarks directory contains sample benchmarks for various

operations that are commonly performed in Cell/B.E. applications.

The intent of these benchmarks is to guide you in the design,

development, and performance analysis of applications for systems

based on the Cell/B.E. processor. The benchmarks are provided in

source form to allow you to understand in detail the actual operations

that are performed in the benchmark. This also provides you with a

basis for creating your own benchmark codes to characterize

performance for operations that are not currently covered in the

provided set of benchmarks.

/opt/cell/sdk/prototype/src Contains the tar files for examples and demos for various prototype

packages that ship with the SDK. Each has a README that describes

their contents and purpose.

10 Programmer’s Guide

Table 2. Subdirectories for the libraries and examples RPM (continued)

Subdirectory Description

/opt/cell/sysroot Contains the header files and libraries used during cross-compiling

and contains the compiled results of the libraries and examples on an

x86 system. The compiled libraries and examples (everything under

/opt/cell/sysroot/opt/cell/sdk) can be synched up with the

simulator system root image by using the command:

/opt/cell/cellsdk_sync_simulator.

Performance tools

Support libraries and utilities are provided by the SDK to help you with

development and performance testing your Cell/B.E. applications.

For information about these libraries and tools, please refer to the SDK Performance

Guide and the SDK SPU Runtime Library Extensions Guide.

IBM Eclipse IDE for the SDK

IBM Eclipse IDE for the SDK is built upon the Eclipse and C Development Tools

(CDT) platform. It integrates the GNU tool chain, compilers, the Full-System

Simulator, and other development components to provide a comprehensive,

Eclipse-based development platform that simplifies development.

The key features include the following:

v A C/C++ editor that supports syntax highlighting, a customizable template, and

an outline window view for procedures, variables, declarations, and functions

that appear in source code

v A visual interface for the PPE and SPE combined GDB (GNU debugger)

v Seamless integration of the simulator into Eclipse

v Automatic builder, performance tools, and several other enhancements

v Remote launching, running and debugging on a IBM BladeCenter QS21

v ALF source code templates for programming models within IDE

v An ALF Code Generator to produce an ALF template package with C source

code and a readme.txt file

v A configuration option for both the Local Simulator and Remote Simulator target

environments that allows you to choose between launching a simulation

machine with the Cell/B.E. processor or an enhanced CBEA-compliant processor

with a fully pipelined, double precision SPE processor

v Remote Cell/B.E. and simulator BladeCenter support

v SPU timing integration

v PDT integration

v Automatic makefile generation for both GCC and XLC projects

For information about how to install and remove the IBM Eclipse IDE for the SDK,

see the SDK Installation Guide.

For information about using the IDE, an online tutorial is available. The IDE and

related programs must be installed before you can access the tutorial. The tutorial

is also available as a section in the SDK IDE Tutorial and User’s Guide.

Chapter 1. SDK technical overview 11

|
|

|

Overview of the hybrid programming environment

The Cell Broadband Engine Architecture (CBEA) is an example of a multi-core

hybrid system on a chip.

That is to say, heterogeneous cores integrated on a single processor with an

inherent memory hierarchy. Specifically, the synergistic processing elements (SPEs)

can be thought of as computational accelerators for a more general purpose PPE

core. These concepts of hybrid systems, memory hierarchies and accelerators can

be extended more generally to coupled I/O devices, and examples of those

systems exist today, for example, GPUs in PCIe slots for workstations and

desktops. Similarly, the Cell/B.E. processors is being used in systems as an

accelerator, where computationally intensive workloads well suited for the CBEA

are off-loaded from a more standard processing node. There are many ways to

move data and functions from a host processor to an accelerator processor and vice

versa.

To provide a consistent methodology and set of application programming

interfaces (APIs) for a variety of hybrid systems, including the Cell/B.E. SoC

hybrid system, the SDK has implementations of the Cell/B.E. multi-core data

communication and programming model libraries, Data and Communication

Synchronization (DaCS) and Accelerated Library Framework (ALF), which can be

used on x86/Linux host process systems with Cell/B.E.-based accelerators. A

prototype implementation over sockets is provided so that you can gain experience

with this programming style and focus on how to manage the distribution of

processing and data decomposition. For example, in the case of hybrid

programming when moving data point to point over a network, care must be

taken to maximize the computational work done on accelerator nodes potentially

with asynchronous or overlapping communication, given the potential cost in

communicating input and results.

For more information about the DaCS programming APIs, refer to the Data and

Communication Synchronization Library Programmer’s Guide and API Reference.

For more information about the ALF programming APIs, refer to the Accelerated

Library Framework Programmer’s Guide and API Reference.

12 Programmer’s Guide

|
|

|
|

Chapter 2. Programming with the SDK

This section is a short introduction about programming with the SDK.

It covers the following topics:

v “SDK directories”

v “Specifying the processor architecture”

v “SPU stack analysis” on page 27

v “SDK programming examples and demos” on page 15

v “Using the huge translation lookaside buffer (TLB) to reserve memory” on page

20

v “Developing applications with the SDK” on page 17

v “Performance considerations” on page 20

Refer to the Cell/B.E. Programming Tutorial, and other documentation for more

details.

SDK directories

Because of the cross-compile environment in the SDK, there are several different

system root directories.

Table 3 describes these directories.

 Table 3. System root directories

Directory name Description

Host The system root for the host system is “/”. The SDK is

installed relative to this host system root.

GCC Toolchain The system root for the GCC tool chain depends on the host

platform. For PPC platforms including the IBM BladeCenter

QS21, this directory is the same as the host system root. For

x86 and x86-64 systems this directory is /opt/cell/sysroot.

The tool chain PPU header and library files are stored relative

to the GCC Tool chain system root in directories such as

usr/include and usr/lib. The tool chain SPU header and

library files are stored relative to the GCC Toolchain system

root in directories such as usr/spu/include and usr/spu/lib.

Examples and Libraries The Examples and Libraries system root directory is

/opt/cell/sysroot. When the samples and libraries are

compiled and linked, the resulting header files, libraries and

binaries are placed relative to this directory in directories such

as usr/include, usr/lib, and /opt/cell/sdk/usr/bin. The

libspe library is also installed into this system root.

Specifying the processor architecture

Many of the tools provided in SDK support multiple implementations of the

CBEA.

© Copyright IBM Corp. 2006, 2008 13

These include the Cell/B.E. processor and the PowerXCell 8i processor. The

PowerXCell 8i processor is a CBEA-compliant processor with a fully pipelined,

enhanced double precision SPU.

The processor supports five optional instructions to the SPU Instruction Set

Architecture. These include:

v DFCEQ

v DFCGT

v DFCMEQ

v DFCMEQ

v DFCMGT

Detailed documentation for these instructions is provided in version 1.2 (or later)

of the Synergistic Processor Unit Instruction Set Architecture specification. The

PowerXCell 8i processor also supports improved issue and latency for all double

precision instructions.

The SDK compilers support compilation for either the Cell/B.E. processor or the

PowerXCell 8i processor.

 Table 4. spu-gcc compiler options

Options Description

-march=<cpu type> Generate machine code for the SPU architecture specified by

the CPU type. Supported CPU types are either cell (default)

or celledp, corresponding to the Cell/B.E. processor or

PowerXCell 8i processor, respectively.

-mtune=<cpu type> Schedule instructions according to the pipeline model of the

specified CPU type. Supported CPU types are either cell

(default) or celledp, corresponding to the Cell/B.E. processor

or PowerXCell 8i processor, respectively.

 Table 5. spu-xlc compiler options

Option Description

-qarch=<cpu type> Generate machine code for the SPU architecture specified by

the CPU type. Supported CPU types are either spu (default)

or edp, corresponding to the Cell/B.E. processor or

PowerXCell 8i processor, respectively.

-qtune=<cpu type> Schedule instructions according to the pipeline model of the

specified CPU type. Supported CPU types are either spu

(default) or edp, corresponding to the Cell/B.E. processor or

PowerXCell 8i processor, respectively.

The static timing analysis tool, spu_timing, also supports multiple processor

implementations. The command line option –march=celledp can be used to specify

that the timing analysis be done corresponding to the PowerXCell 8i processors’

enhanced pipeline model. If the architecture is unspecified or invoked with the

command line option –march=cell, then analysis is done corresponding to the

Cell/B.E. processor’s pipeline model.

14 Programmer’s Guide

SDK programming examples and demos

Each of the examples and demos has an associated README.txt file. There is also a

top-level readme in the /opt/cell/sdk/src directory, which introduces the structure

of the example code source tree.

Almost all of the examples run both within the simulator and on the IBM

BladeCenter QS21 and IBM BladeCenter QS22. Some examples include SPU-only

programs that can be run on the simulator in standalone mode.

The source code, which is specific to a given Cell/B.E. processor unit type, is in the

corresponding subdirectory within a given example’s directory:

v ppu for code compiled to run on the PPE

v ppu64 for code specifically compiled for 64-bit ABI on the PPE

v spu for code compiled to run on an SPE

v spu_sim for code compiled to run on an SPE under the system simulator in

standalone environment

Overview of the build environment

In /opt/cell/sdk/buildutils there are some top level Makefiles that control the

build environment for all of the examples.

Most of the directories in the libraries and examples contain a Makefile for that

directory and everything below it. All of the examples have their own Makefile but

the common definitions are in the top level Makefiles.

The build environment Makefiles are documented in /opt/cell/sdk/buildutils/
README_build_env.txt.

Changing the build environment

Environment variables in the /opt/cell/sdk/buildutils/make.* files are used to

determine which compiler is used to build the examples.

Note: These environment variables and scripts ONLY work for Makefile examples

that use the make.footer provided by the SDK. Other Makefiles may not be

affected by these actions.

The /opt/cell/sdk/buildutils/cellsdk_select_compiler script can be used to

switch the compiler. The syntax of this command is:

.../cell/sdk:/opt/cell/sdk/buildutils/cellsdk_select_compiler -?

Usage: cellsdk_select_compiler <gcc | gfortran | gnu | xlc | xlf | xl>

where:

v gcc: set GNU gcc as default c/c++ compiler in make.footer (default)

v gfortran: set GNU gfortran as default fortran compiler in make.footer (default)

v gnu: set both GNU gcc and gfortran as default compilers in make.footer (default)

v xlc: set IBM xlc as default c/c++ compiler in make.footer

v xlf: set IBM xlf as default fortran compiler in make.footer

v xl: set IBM xlc and xlf as default compilers in make.footer

The default is gcc and gfortran.

Chapter 2. Programming with the SDK 15

|
|
|

|
|

|

|
|

|

|

|

|

|

|

|

After you have selected a particular compiler, that same compiler is used for all

future builds, unless it is specifically overwritten by shell environment variables:

v For C/C++: SPU_COMPILER, PPU_COMPILER, PPU32_COMPILER, or

PPU64_COMPILER

v For Fortran: FTN_SPU_COMPILER, FTN_PPU_COMPILER,

FTN_PPU32_COMPILER, or FTN_PPU64_COMPILER

Building and running a specific program

You do not need to build all the example code at once, you can build each

program separately. To start from scratch, issue a make clean using the Makefile in

the /opt/cell/sdk/src directory or anywhere in the path to a specific library or

sample.

If you have performed a make clean at the top level, you need to rebuild the

include files and libraries first before you compile anything else. To do this run a

make in the src/include and src/lib directories.

Note: From SDK 3.0 onwards, the make.footer include file for the Cell/B.E.

example and demo programs is in the subdirectory buildutils under the main SDK

directory /opt/cell/sdk. If you used the example make.footer from previous

versions of the SDK, you may need to modify your Makefile to reference this new

location.

Compiling and linking with the GNU tool chain

This release of the GNU tool chain includes a GCC compiler and utilities that

optimize code for the Cell/B.E. processor.

These are:

v The spu-gcc compiler for creating an SPU binary

v The ppu32-embedspu tool which enables an SPU binary to be linked with a 32-bit

PPU binary into a single 32-bit executable program

v The ppu-gcc compiler for compiling the 64-bit PPU binary and linking it with

the SPU binary.

v The ppu-embedspu tool which enables an SPU binary to be linked with a 64-bit

PPU binary into a single 64-bit executable program

v The ppu32-gcc compiler for compiling the 32-bit PPU binary and linking it with

the SPU binary

The example below shows the steps required to create the executable program

simple which contains SPU code, simple_spu.c, and PPU code, simple.c.

1. Compile and link the SPE executable.

/usr/bin/spu-gcc -g -o simple_spu simple_spu.c

2. Optionally run embedspu to wrap the SPU binary into a CESOF (CBE

Embedded SPE Object Format) linkable file. This contains additional PPE

symbol information.

/usr/bin/ppu32-embedspu simple_spu simple_spu simple_spu-embed.o

3. Compile the PPE side and link it together with the embedded SPU binary.

/usr/bin/ppu32-gcc -g -o simple simple.c simple_spu-embed.o -lspe

4. Or, compile the PPE side and link it directly with the SPU binary. The linker

will invoke embedspu, using the file name of the SPU binary as the name of the

program handle struct.

/usr/bin/ppu32-gcc -g -o simple simple.c simple_spu -lspe

16 Programmer’s Guide

|
|

|
|

|
|

|
|
|
|
|

|
|

|
|

Note:

1. This section only highlights 32-bit ABI compilation. To compile for 64-bit, use

ppu-gcc (instead of ppu32-gcc) and use ppu-embedspu (instead of

ppu32-embedspu).

2. You are strongly advised to use the -g switch as shown in the examples. This

embeds extra debugging information into the code for later use by the GDB

debuggers supplied with the SDK. See Chapter 3, “Debugging Cell/B.E.

applications,” on page 23 for more information.

Customizing the compiler

This topic provides information about the GCC compiler options.

For information about how to use the compiler, refer to the Redbook Programming

the Cell Broadband Engine Architecture: Examples and Best Practices, Chapter 5.2

Compiling and building executables.

 Table 6. GCC compiler options

Compiler option Description

-mdouble=accurate|fast When using -mdouble=fast (default), GCC

will automatically generate double-precision

fused multiply-and-add instructions. When

using -mdouble=accurate, GCC will not do

so.

-mfloat=accurate|fast When using -mfloat=fast (default), GCC

automatically generates single-precision

fused multiply-and-add instructions. When

using -mfloat=accurate, GCC will not do so.

In addition, when using -mfloat=fast, GCC

generates inline code for single-precision

division and square root operations that is

fast, but produces results that are not always

fully accurate. When using -mfloat=accurate,

GCC instead generates calls to library

functions that produce fully accurate results

for those operations.

-mstdmain By default, GCC links against startup code

that assumes the SPU-style main function

interface (which has an unconventional

parameter list). With -mstdmain, GCC will

link your program against startup code that

assumes a C99-style interface to main,

including a local copy of argv strings.

Developing applications with the SDK

This topic describes some best practices in terms of developing applications using

the SDK.

See also developerWorks articles about programming tips and best practices for

writing Cell/B.E. applications at

http://www.ibm.com/developerworks/power/cell/

Chapter 2. Programming with the SDK 17

|
|

|
|
|

||

||

||
|
|
|
|

||
|
|
|
|
|
|
|
|
|
|
|

||
|
|
|
|
|
|
|

|

http://www.redbooks.ibm.com/abstracts/sg247575.html?Open
http://www.redbooks.ibm.com/abstracts/sg247575.html?Open
http://www.ibm.com/developerworks/power/cell/

SDK programming policies and conventions

To ensure interoperability between applications and the SDK software, policies and

conventions have been established for the cooperative sharing of various Memory

Flow Control (MFC) resources.

Sharing SPE tag identifiers

These include the sharing of MFC tag identifiers, sharing MFC tag masks, and

interrupt safe MFC command requests.

The SPE MFC supports 32 tag groups. If multiple pieces of SW inadvertently

utilize the same tag group, then extraneous ordering dependencies or ″wait for

completions″ can result. Therefore, all SDK middleware software utilizes the tag

manager services, mfc_tag_reserve and mfc_multi_tag_reserve, to cooperatively

obtain tag identifiers for its use. See chapter 4 of the C/C++ Language Extensions for

the Cell Broadband Engine Architecture specification for a description of the tag

manager services.

Sharing MFC tag masks

There are two usage strategies for managing MFC tag masks – ″set on use″ and

″save and restore″. The ″set on use″ strategy dictates that every time software tests

for tag group completion, it must set the tag mask. This strategy is generally more

efficient because most applications are double buffered so the tag mask must be set

anyway. The ″save and restore″ strategy dictates that software wishing to test tag

group completion must first save the current tag mask, set the tag mask and test

for tag group completion, and finally restore the original tag mask. This solution is

robust at a minimal cost of the two instructions to save and restore the tag mask.

SDK libraries and middleware software utilize the ″save and restore″ strategy for

its tag mask policy. This allows application developers to utilize either strategy

when checking for DMA completion.

Interrupt safe MFC requests

There are several MFC instruction sequences that must not be interrupted by an

SPE interrupting event handler that also issues the MFC instruction sequence. This

is particularly common when micro-profiling application software using PDT. The

critical MFC instructions sequences include:

v MFC command request (up to 6 channel writes) interrupted by a event handler

that issues also MFC command.

v Test for DMA completion (which consists of a write to the tag status update

channel followed by a read of the tag status channel) interrupted by a handler

which also tests for DMA completion.

v Atomic command sequence (for example, GETLLAR, PUTLLC, followed by a

read of the atomic command status channel) interrupted by a handler that also

issues an atomic sequence.

Applications that perform MFC sequences from within an interrupting event

handler should guard its critical sections using the spu_mfcio.h functions,

mfc_begin_critical_section and mfc_end_critical_section as documented in

chapter 4 of the C/C++ Language Extensions for the Cell Broadband Engine Architecture

specification. The functions disable and restore interrupts, respectively so that all

code executed between these functions is interrupt safe.

18 Programmer’s Guide

|

|
|
|

|

|
|

|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|

|
|
|

|

|
|
|
|

|
|

|
|
|

|
|
|

|
|
|
|
|
|

SDK libraries and middleware software are designed to support interrupt safe

operation. All critical sections are guarded so that applications are free to safely

issue MFC commands from within their interrupt event handler.

Managing a DMA list element crossing 4 GB boundary

This topic describes how to prevent an DMA list element error when constructing

a DMA list on the SPE.

The CBEA specifies that the EAL (the 32-bit low-order effective address) for each

list element in a DMA list must be in the 4 GB aligned area defined by the EAH

(the 32-bit high-order effective address). Although each EAL starting address is in a

single 4 GB area, a list element transfer may cross the 4 GB boundary.

However, in the Cell/B.E. and PowerXCell 8i processors, a DMA list element that

crosses a 4 GB boundary results in a Class0 DMA Alignment Error exception. The

Linux operating system makes no effort to detect or recover from this error.

Therefore, having a list element crossing a 4 GB boundary in a DMA list results in

a bus error at execution time.

Note: This error only occurs for 64-bit applications, 32-bit applications never

encounter a 4 GB boundary crossing.

Programmers need to be aware of this limitation when constructing and executing

DMA list on the SPE. If the DMA list does not cross a 4 GB boundary, no action is

required. There are several strategies one can use to ensure that DMA list elements

do not cross the 4 GB boundary. There are two distinct cases:

v Case #1: The DMA list crosses one or more 4 GB boundaries, but not within a

list element. This requires you to break up the list into n+1 lists, where n is the

number of boundary crossings. 2.

v Case #2: The DMA list crosses one or more 4 GB boundaries within a list

element. To prevent this, you can use one of the following strategies:

– Split the offending 4 GB crossing list elements into two elements and handle

the new enlarged list as prescribed in case #1.

– Remove the 4 GB list elements and issue them using a non-list DMA. The

remaining list elements can be handled as prescribed in case #1.

The overhead for detecting list elements that cross the 4 GB boundary is nontrivial,

especially if you need to check every list element in a DMA list (case #2). For

applications that have control over how and where memory is allocated, you can

allocate memory such that a 4 GB crossing never occurs by using the mmap()

function to map allocations that are less than 4 GB to start at the beginning of a 4

GB region. For allocations that are larger than 4 GB, you can select the allocation

address such that the crossing does not occur within a list element. For example,

for internally allocated matrices, you can pad the allocation such that the crossing

only occurs on a row or tile boundary so that case #2 never happens.

Here is an example of using the mmap() function to allocate memory. In this

example, we are allocating 512 MB of system memory. We are using mmap()

function to ensure that the 512 MB of memory does not straddle the 4 GB

boundary.

#include <stdlib.h>

#include <stdio.h>

#include <sys/mman.h>

Chapter 2. Programming with the SDK 19

|
|
|

|

|
|

|
|
|
|

|
|
|
|
|

|
|

|
|
|
|

|
|
|

|
|

|
|

|
|

|
|
|
|
|
|
|
|
|

|
|
|
|

|
|
|
|

int main()

{

 void* ptr;

 size_t length;

 /* We want to allocate 512MB of memory */

 length = (512 * 1024 * 1024);

 /* Allocate memory for avoiding 4GB boundary crossing */

 ptr = mmap((void *)(0x110000000ULL), length, PROT_READ |

 PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);

 if (ptr == MAP_FAILED) {

 perror ("Failed allocating memory needed\n");

 }

 printf ("beginning of allocation = %p, end of allocation = %p\n",

 ptr, (void*)((unsigned long long)ptr + length));

}

The output of this example shows that the allocated memory does not straddle the

4GB boundary.

$ gcc -m64 -o 4GB_example 4GB_example.c

$./4GB_example

beginning of allocation = 0x110000000, end of allocation = 0x130000000

Performance considerations

This topic describes performance considerations that you should take into account

when you are developing applications:

It covers the following topics:

v “Using NUMA” on page 21

v “Preemptive context switching” on page 22

Using the huge translation lookaside buffer (TLB) to reserve

memory

The SDK supports the huge translation lookaside buffer (TLB) file system, which

allows you to reserve 16 MB huge pages of pinned, contiguous memory. This

feature is particularly useful for some Cell/B.E. applications that operate on large

data sets, such as the FFT16M workload sample.

To configure the IBM BladeCenter QS21 for 20 huge pages (320 MB), run the

following commands:

mkdir -p /huge

echo 20 > /proc/sys/vm/nr_hugepages

mount -t hugetlbfs nodev /huge

If you have difficulties configuring adequate huge pages, it could be that the

memory is fragmented and you need to reboot.

You can add the command sequence shown above to a startup initialization script,

such as /etc/rc.d/rc.sysinit, so that the huge TLB file system is configured

during the system boot.

To verify the large memory allocation, run the command cat /proc/meminfo. The

output is similar to:

20 Programmer’s Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|
|
|

|

MemTotal: 1010168 kB

MemFree: 155276 kB

. . .

HugePages_Total: 20

HugePages_Free: 20

Hugepagesize: 16384 kB

Huge pages are allocated by invoking mmap of a /huge file of the specified size.

For example, the following code sample allocates 32 MB of private huge paged

memory :

int fmem;

 char *mem_file = "/huge/myfile.bin";

 fmem = open(mem_file, O_CREAT | O_RDWR, 0755)) == -1) {

 remove(mem_file);

 ptr = mmap(0, 0x2000000, PROT_READ | PROT_WRITE, MAP_PRIVATE, fmem, 0);

mmap succeeds even if there are insufficient huge pages to satisfy the request. On

first access to a page that can not be backed by huge TLB file system, the

application is ″killed″. That is, the process is terminated and the message ″killed″ is

emitted. You must be ensure that the number of huge pages requested does not

exceed the number available. Furthermore, on an IBM BladeCenter QS20, IBM

BladeCenter QS21, and IBM BladeCenter QS22 the huge pages are equally

distributed across both Non-Uniform Memory Architecture (NUMA) memory

nodes. Applications that restrict memory allocation to a specific node find that the

number of available huge pages for the specific node is half of what is reported in

/proc/meminfo.

Using NUMA

This topic describes how to select an optimal NUMA policy.

The IBM BladeCenter QS20, IBM BladeCenter QS21 and IBM BladeCenter QS22 are

both Non-Uniform Memory Architecture (NUMA) systems, which consist of two

Cell/B.E. processors, each with its own system memory. The two processors are

interconnected thru a FlexIO interface using the fully coherent BIF protocol. The

bandwidth between processor elements or processor elements and memory is

greater if accesses are local and do not have to communicate across the FlexIO. In

addition, the access latency is slightly higher on node 1 (Cell BE 1) as compared to

node 0 (Cell BE 0) regardless of whether they are local or non-local.

To maximize the performance of a single application, you can specify CPU and

memory binding to either reduce FlexIO traffic or exploit the aggregated

bandwidth of the memory available on both nodes. You can specify the Linux

scheduling policy or memory placement either through application-specified

NUMA policy library calls (man numa(3)) or using the numactl command (man

numactl(8)).

For example, the following command invokes a program that allocates all CPUs on

node 0 with a preferred memory allocation on node 0:

numactl --cpunodebind=0 --preferred=0 <program name>

Choosing an optimal NUMA policy depends upon the application’s

communication and data access patterns. However, you should consider the

following general guidelines:

Chapter 2. Programming with the SDK 21

v Choose a NUMA policy compatible with typical system usage patterns. For

example, if the multiple applications are expected to run simultaneously, do not

bind all CPUs to a single node forcing an overcommit scenario that leaves one of

the nodes idle. In this case, it is recommended that you do not constrain the

Linux scheduler with any specific bindings.

v Consider the operating system services when you choose the NUMA policy. For

example, if the application incorporates extensive GbE networking

communications, the TCP stack will consume some PPU resources on node 0 for

eth0. In this case, it may be advisable to bind the application to node 1.

v Avoid over committing CPU resources. Context switching of SPE threads is not

instantaneous and the scheduler quanta for SPE’s threads is relatively large.

Scheduling overhead is minimized if you can avoid over-committing resources.

v Applications that are memory bandwidth-limited should consider allocating

memory on both nodes and exploit the aggregated memory bandwidth. If

possible, partition application data such that CPUs on node 0 primarily access

memory on node 0 only. Likewise, CPUs on node 1 primarily access memory on

node 1 only.

Preemptive context switching

The Linux operating system provides preemptive context switching of virtualized

SPE contexts that each resemble the functionality provided by a physical SPE, but

there are limitations to the degree to which the architected hardware interfaces can

be used in a virtualized environment.

In particular, memory mapped I/O on the problem state register area and MFC

proxy DMA access can only be used while the SPE context is both running in a

thread and not preempted, otherwise the thread trying to perform these operations

blocks until the conditions are met.

This can result in poor performance and deadlocks for programs that overcommit

SPEs and rely on SPE thread communications and synchronization. In this case,

you should avoid running more SPE threads then there are physical SPEs.

22 Programmer’s Guide

Chapter 3. Debugging Cell/B.E. applications

This section describes how to debug Cell/B.E. applications.

It describes the following:

v “Debugging applications” on page 24

v “Debugging in the Cell/B.E. environment” on page 31

v “Debugging applications remotely” on page 43

Overview of GDB

GDB is the standard command-line debugger available as part of the GNU

development environment.

GDB has been modified to allow debugging in a Cell/B.E. processor environment

and this section describes how to debug Cell/B.E. software using the new and

extended features of the GDBs which are supplied with SDK.

Debugging in a Cell/B.E. processor environment is different from debugging in a

multithreaded environment, because threads can run either on the PPE or on the

SPE.

There are three versions of GDB which can be installed on a IBM BladeCenter

QS21:

v gdb which is installed with the Linux operating system for debugging PowerPC

applications. You should NOT use this debugger for Cell/B.E. applications.

v ppu-gdb for debugging PPE code or for debugging combined PPE and SPE code.

This is the combined debugger.

v spu-gdb for debugging SPE code only. This is the standalone debugger.

This section also describes how to run applications under gdbserver. The

gdbserver program allows remote debugging.

GDB for SDK

The GDB program released with SDK replaces previous versions and contains the

following enhancements:

v It is based on GDB 6.8

v It is able to handle both SPE and PPE architecture code within a single thread,

see “Switching architectures within a single thread” on page 33

v When referring to a symbol defined both in PPE code and in one or more SPE

contexts, GDB always resolves to the definition in the current context, see

“Disambiguation of multiply-defined global symbols” on page 39

Compiling and linking applications

The linker embeds all the symbolic and additional information required for the

SPE binary within the PPE binary so it is available for the debugger to access

when the program runs. You should use the -g option when compiling both SPE

and PPE code with GCC or XLC. W The -g option adds debugging information to

the binary which then enables GDB to lookup symbols and show the symbolic

© Copyright IBM Corp. 2006, 2008 23

|

information. When you use the toplevel Makefiles of the SDK, you can specify the

-g option on compilation commands by setting the CC_OPT_LEVEL makefile variable

to -g.

When you use the top level Makefiles of the SDK, you can specify the -g option on

compilation by setting the CC_OPT_LEVEL Makefile variable to -g.

For more information about compiling with GCC, see “Compiling and linking with

the GNU tool chain” on page 16.

Debugging applications

This topic describes how to debug applications but assumes that you are familiar

with the standard features of GDB.

The following topics are described:

v “Debugging PPE code”

v “Debugging SPE code”

Debugging PPE code

There are several ways to debug programs designed for the Cell/B.E. processor. If

you have access to Cell/B.E. hardware, you can debug directly using ppu-gdb . You

can also run the application under ppu-gdb inside the simulator. Alternatively, you

can debug remotely as described in “Debugging applications remotely” on page

43.

Whichever method you choose, after you have started the application under

ppu-gdb, you can use the standard GDB commands available to debug the

application. The GDB manual is available at the GNU Web site

http://www.gnu.org/software/gdb/gdb.html

and there are many other resources available on the World Wide Web.

Debugging SPE code

Standalone SPE programs or spulets are self-contained applications that run

entirely on the SPE. Use spu-gdb to launch and debug standalone SPE programs in

the same way as you use ppu-gdb on PPE programs.

Note: You can use either spu-gdb or ppu-gdb to debug SPE only programs. In this

section spu-gdb is used.

The examples in this section use a standalone SPE (spulet) program, simple.c,

whose source code and Makefile are given below:

Source code:

#include <stdio.h>

#include <spu_intrinsics.h>

unsigned int

fibn(unsigned int n)

{

 if (n <= 2)

 return 1;

 return (fibn (n-1) + fibn (n-2));

}

24 Programmer’s Guide

http://www.gnu.org/software/gdb/gdb.html

int

main(int argc, char **argv)

{

 unsigned int c;

 c = fibn (8);

 printf ("c=%d\n", c);

 return 0;

}

Note: Recursive SPE programs are generally not recommended due to the limited

size of local storage. An exception is made here because such a program can be

used to illustrate the backtrace command of GDB.

Makefile:

simple: simple.c

 spu-gcc simple.c -g -o simple

Debugging source level code

Source-level debugging of SPE programs with spu-gdb is similar in nearly all

aspects to source-level debugging for the PPE.

For example, you can:

v Set breakpoints on source lines

v Display variables by name

v Display a stack trace and single-step program execution

The following example illustrates the backtrace output for the simple.c standalone

SPE program.

$ spu-gdb ./simple

GNU gdb 6.8.50.20080526-cvs

Copyright (C) 2008 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later $ spu-gdb ./simple

GNU gdb 6.8.50.20080526-cvs

Copyright (C) 2008 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>

This is free software: you are free to change and redistribute it.

There is NO WARRANTY, to the extent permitted by law. Type "show copying"

and "show warranty" for details.

This GDB was configured as "--host=powerpc64-unknown-linux-gnu --target=spu"...

(gdb) break 8

Breakpoint 1 at 0x194: file simple.c, line 8.

(gdb) break 18

Breakpoint 2 at 0x230: file simple.c, line 18.

(gdb) run

Starting program: /home/brian_horton/tmp/s/simple

Breakpoint 1, fibn (n=2) at simple.c:8

8 return 1;

(gdb) backtrace

#0 fibn (n=2) at simple.c:8

#1 0x000001b0 in fibn (n=3) at simple.c:9

#2 0x000001b0 in fibn (n=4) at simple.c:9

#3 0x000001b0 in fibn (n=5) at simple.c:9

#4 0x000001b0 in fibn (n=6) at simple.c:9

#5 0x000001b0 in fibn (n=7) at simple.c:9

#6 0x000001b0 in fibn (n=8) at simple.c:9

#7 0x0000021c in main (argc=1, argv=0x3ffd0) at simple.c:17

(gdb) delete breakpoint 1

(gdb) continue

Continuing.

Breakpoint 2, main (argc=1, argv=0x3ffd0) at simple.c:18

Chapter 3. Debugging Cell/B.E. applications 25

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

18 printf ("c=%d\n", c);

(gdb) print c

$1 = 21

(gdb)

Debugging assembler level code

The spu-gdb program also supports many of the familiar techniques for debugging

SPE programs at the assembler code level.

For example, you can:

v Display register values

v Examine the contents of memory (which for the SPE means local storage)

v Disassemble sections of the program

v Step through a program at the machine instruction level

The following example illustrates some of these facilities.

$ spu-gdb ./simple

GNU gdb 6.8.50.20080526-cvs

Copyright (C) 2008 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>

This is free software: you are free to change and redistribute it.

There is NO WARRANTY, to the extent permitted by law. Type "show copying"

and "show warranty" for details.

This GDB was configured as "--host=powerpc64-unknown-linux-gnu --target=spu"...

(gdb) br 18

Breakpoint 1 at 0x230: file simple.c, line 18.

(gdb) r

Starting program: /home/brian_horton/tmp/s/simple

Breakpoint 1, main (argc=1, argv=0x3ffd0) at simple.c:18

18 printf ("c=%d\n", c);

(gdb) print c

$1 = 21

(gdb) x /8i $pc

0x230 <main+72>: ila $3,0x8e0 <_fini+32>

0x234 <main+76>: lqd $2,32($1) # 20

0x238 <main+80>: ori $4,$2,0

0x23c <main+84>: brsl $0,0x2d0 <printf> # 2d0

0x240 <main+88>: il $2,0

0x244 <main+92>: ori $3,$2,0

0x248 <main+96>: ai $1,$1,80 # 50

0x24c <main+100>: lqd $0,16($1)

(gdb) nexti

0x00000234 18 printf ("c=%d\n", c);

(gdb) nexti

0x00000238 18 printf ("c=%d\n", c);

(gdb) print $r4

$2 = {uint128 = 0x00000015000000150000001500000015, v2_int64 = {90194313237, 90194313237}, v4_int32 = {

21, 21, 21, 21}, v8_int16 = {0, 21, 0, 21, 0, 21, 0, 21}, v16_int8 = {0, 0, 0, 21, 0, 0, 0, 21, 0,

0, 0, 21, 0, 0, 0, 21}, v2_double = {4.4561911620646097e-313, 4.4561911620646097e-313},

v4_float = {2.94272678e-44, 2.94272678e-44, 2.94272678e-44, 2.94272678e-44}}

(gdb)

How spu-gdb manages SPE registers

Because each SPE register can hold multiple fixed or floating point values of

several different sizes, spu-gdb treats each register as a data structure that can be

accessed with multiple formats.

The spu-gdb ptype command, illustrated in the following example, shows the

mapping used for SPE registers:

(gdb) ptype $r80

type = union __spu_builtin_type_vec128 {

 int128_t uint128;

 int64_t v2_int64[2];

26 Programmer’s Guide

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

int32_t v4_int32[4];

 int16_t v8_int16[8];

 int8_t v16_int8[16];

 double v2_double[2];

 float v4_float[4];

}

To display or update a specific vector element in an SPE register, specify the

appropriate field in the data structure, as shown in the following example:

(gdb) p $r80.uint128

$1 = 0x00018ff000018ff000018ff000018ff0

(gdb) set $r80.v4_int32[2]=0xbaadf00d

(gdb) p $r80.uint128

$2 = 0x00018ff000018ff0baadf00d00018ff0

SPU stack analysis

SPU local store space is limited. Allocating too much stack space limits space

available for code and data. Allocating too little stack space can cause runtime

failures. To help you allocate stack space efficiently, the SPU linker provides an

estimate of maximum stack usage when it is called with the option

--stack-analysis.

The value returned by this command is not guaranteed to be accurate because the

linker analysis does not include dynamic stack allocation such as that done by the

alloca function. The linker also does not handle calls made by function pointers or

recursion and other cycles in the call graph. However, even with these limitations,

the estimate can still be useful. The linker provides detailed information on stack

usage and calls in a linker map file, which can be enabled by passing the

parameter -Map <filename> to the linker. This extra information combined with

known program behavior can help you to improve on the linker’s simple analysis.

For the following simple program, hello.c:

#include <stdio.h>

#include <unistd.h>

int foo (void)

{

 printf (" world\n");

 printf ("brk: %x\n", sbrk(0));

 (void) fgetc (stdin);

 return 0;

}

int main (void)

{

 printf ("Hello");

 return foo ();

}

The command spu-gcc -o hello -O2 -Wl,--stack-analysis,-Map,hello.map

hello.c generates the following output:

$ spu-gcc -o hello -O2 -Wl,--stack-analysis,-Map,hello.map hello.c

Stack size for call graph root nodes.

_start: 0x120

_fini: 0x40

call___do_global_dtors_aux: 0x20

call_frame_dummy: 0x20

__sfp: 0x0

Chapter 3. Debugging Cell/B.E. applications 27

|
|
|
|
|
|
|

__check_init: 0x0

__cleanup: 0xd0

call___do_global_ctors_aux: 0x20

Maximum stack required is 0x120

This output shows that the main entry point _start will require 0x120 bytes of

stack space below __stack. There are also a number of other root nodes that the

linker fails to connect into the call graph. These are either functions called through

function pointers, or unused functions. _fini, registered with atexit() and called

from exit, is an example of the former. All other nodes here are unused.

The hello.map section for stack analysis shows:

my hello.map:

Stack size for functions. Annotations: ’*’ max stack, ’t’ tail call

_exit: 0x0 0x0

__call_exitprocs: 0xd0 0xd0

exit: 0x30 0x100

calls:

_exit

* __call_exitprocs

__sinit: 0x0 0x0

__send_to_ppe: 0x50 0x50

fgetc: 0x40 0x90

calls:

__sinit

* __send_to_ppe

__stack_reg_va: 0x0 0x0

printf: 0x0 0x50

calls:

* __send_to_ppe

__stack_reg_va

sbrk: 0x0 0x0

puts: 0x30 0x80

calls:

* __send_to_ppe

foo: 0x20 0xb0

calls:

* fgetc

printf

sbrk

puts

main: 0x20 0xb0

calls:

*t foo

printf

__register_exitproc: 0x0 0x0

atexit: 0x0 0x0

calls:

t __register_exitproc

_init: 0x0 0x0

__do_global_ctors_aux: 0x30 0x30

_init: 0x0 0x0

frame_dummy: 0x20 0x20

_init: 0x0 0x0

_init: 0x20 0x50

calls:

* __do_global_ctors_aux

frame_dummy

_start: 0x20 0x120

calls:

* exit

main

atexit

_init

28 Programmer’s Guide

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

_fini: 0x0 0x0

__do_global_dtors_aux: 0x20 0x20

_fini: 0x0 0x0

_fini: 0x20 0x40

calls:

* __do_global_dtors_aux

call___do_global_dtors_aux: 0x20 0x20

call_frame_dummy: 0x20 0x20

__sfp: 0x0 0x0

__check_init: 0x0 0x0

calls:

t __sinit

fclose: 0x40 0x90

calls:

__sinit

* __send_to_ppe

__cleanup: 0x40 0xd0

calls:

* fclose

call___do_global_ctors_aux: 0x20 0x20

This analysis shows that in the entry for the main function, main requires 0x20

bytes of stack. The total program requires a total of 0x120 bytes including all called

functions. The function called from main that requires the maximum amount of

stack space is foo, which main calls through thetail function call. Tail calls occur

after the local stack for the caller is deallocated. Therefore, the maximum stack

space allocated for main is the same as the maximum stack space allocated for foo.

The main function also calls the printf function.

If you are uncertain whether the _fini function might require more stack space

than main, trace down from the _start function to the __call_exitprocs function

(where _fini is called) to find the stack requirement for that code path. The stack

size is 0x20 (local stack for _start) plus 0x30 (local stack for exit) plus 0xD0 (local

stack for __call_exitprocs) plus 0x40 (total stack for _fini), or 0x160 bytes.

Therefore, the stack is sufficient for _fini.

If you pass the --emit-stack-syms option to the linker, it will save the stack sizing

information in the executable for use by post-link tools such as FDPRPro. With this

option specified, the linker creates symbols of the form __stack_<function_name>

for global functions, and __stack_<number>_<function_name> for static functions.

The value of these symbols is the total stack size requirement for the

corresponding function.

You can link against these symbols. The following is an example.

extern void __stack__start;

 printf ("Total stack is %ld\n", (long) &__stack__start);

SPE stack debugging

The SPE stack shares local storage with the application’s code and data. Because

local storage is a limited resource and lacks hardware-enabled protection it is

possible to overflow the stack and corrupt the program’s code or data or both. This

often results in hard to debug problems because the effects of the overflow are not

likely to be observed immediately.

Overview of SPE stack debugging:

To understand how to debug stack overflows, it is important to understand how

the SPE local storage is allocated and the stack is managed.

Chapter 3. Debugging Cell/B.E. applications 29

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|

Note: For more information about SPE local storage allocation,see Figure 1.

 The area between the linker symbol that marks the end of the programs code and

data sections, _end, and the top of local storage is dynamic storage. This dynamic

storage is used for two purposes, the stack and the malloc heap. The stack grows

downward (from high addressed memory to low addressed memory), and the

malloc heap grows upward.

The C runtime startup code (crt0) initializes the stack pointer register (register 1)

such that word element 0 contains the current stack pointer and word element 1

contains the number of dynamic storage bytes currently available. The stack

pointer and space available is negatively adjusted when a stack frame is acquired

and positively adjusted when a stack frame is released. The space available is

negatively adjusted, up to the available space, whenever the malloc heap is

enlarged.

Stack overflow checking:

Figure 1. SPE local storage and stack anatomy

30 Programmer’s Guide

During application development it is advisable that you use stack overflow

checking and then disable it when the application is released.

 Because the spu-gcc and spuxlc compilers do not by default emit code to detect

stack overflow, you must include a compile line option:

v The spu-gcc compile line option is -fstack-check

v The spuxlc compile line option is -qcheck=stack

Stack checking introduces additional code to test for stack overflow. The additional

code halts execution conditional on the available space going negative as a result

of acquiring or enlarging a stack frame.

For a standalone SPU program, the occurrence of a halt results in a ″spe_run: Bad

address″ message and exit code of SPE_SPU_HALT (4).

For SPE contexts being run from a PPE program, a stack overflow results in a

stopinfo, stop_reason of SPE_RUNTIME_ERROR with a spe_runtime_error equal to

SPE_SPU_HALT. See the spe_context_run subroutine specification of the SPE Runtime

Management Library for additional details.

Runtime checking space available

To check the amount of space available for both stack and memory anytime during

execution, you only need to inspect the element 1 of the stack pointer register. You

can use the following inline assembly to do this:

int space_available;

asm volatile (“rotqbyi %0, $1, 4” : “=r” (space_available));

Note: It should be noted that the SPE application binary interface (ABI) allows a

functions to access up to 2000 bytes beyond its stack frame without allocating a

new stack frame. Therefore, it is possible that up to 2000 bytes of the available

space can actually be used at the time the register is read. Applications that

attempt to use the current available space for determining how much addition

space the memory heap can be grown should account for this possibility as well as

any additional stack use encountered by further increased call depth.

Stack management strategies:

To reduce the occurrence of stack overflows, you should adopt some stack

management strategies.

 You should consider the following strategies:

v Avoid or reduce memory heap allocations. Because most application’s working

data set exceeds the size of local storage, data must be sequenced into the local

store in blocks. Preallocate block storage as global variables instead of using

automatic or dynamic-allocated memory arrays.

v Avoid recursion. Either eliminate the recursion, or in the case of tail recursion,

transform the recursion into a state array and optionally use a software managed

cache to virtualize the state array.

v Free up local storage space to accommodate a larger stack by using overlays.

Debugging in the Cell/B.E. environment

To debug combined code, that is code containing both PPE and SPE code, you

must use ppu-gdb.

Chapter 3. Debugging Cell/B.E. applications 31

|

|
|
|

|
|

|
|
|
|
|
|
|

Debugging multithreaded code

Typically a simple program contains only one thread. For example, a PPU ″hello

world″ program is run in a process with a single thread and the GDB attaches to

that single thread.

On many operating systems, a single program can have more than one thread. The

ppu-gdb program allows you to debug programs with one or more threads. The

debugger shows all threads while your program runs, but whenever the debugger

runs a debugging command, the user interface shows the single thread involved.

This thread is called the current thread. Debugging commands always show

program information from the point of view of the current thread. For more

information about GDB support for debugging multithreaded programs, see the

sections ’Debugging programs with multiple threads’ and ’Stopping and starting

multi-thread programs’ of the GDB User’s Manual, available at

http://www.gnu.org/software/gdb/gdb.html

The info threads command displays the set of threads that are active for the

program, and the thread command can be used to select the current thread for

debugging.

Note: The source code for the program simple.c used in the examples below

comes with the SDK and can be found at /opt/cell/sdk/src/tutorial/simple

after extracting the tutorial_source.tar tar file in the src directory.

Debugging architecture

This topic provides an overview of debugging architecture.

On the Cell/B.E. processor, a thread can run on either the PPE or on an SPE at any

given point in time. All threads, both the main thread of execution and secondary

threads started using the pthread library, will start execution on the PPE. Execution

can switch from the PPE to an SPE when a thread executes the spe_context_run

function. See the libspe2 manual for details. Conversely, a thread currently

executing on an SPE may switch to use the PPE when executing a library routine

that is implemented via the PPE-assisted call mechanism See the Cell BE Linux

Reference Implementation ABI document for details. When you choose a thread to

debug, the debugger automatically detects the architecture the thread is currently

running on. If the thread is currently running on the PPE, the debugger will use

the PowerPC architecture. If the thread is currently running on an SPE, the

debugger will use the SPE architecture. A thread that is currently executing code

on an SPE may also be referred to as an SPE thread.

To see which architecture the debugger is using, use the show architecture

command.

Example: show architecture

The example below shows the results of the show architecture command at two

different breakpoints in a program. At breakpoint 1 the program is executing in the

original PPE thread, where the show architecture command indicates that

architecture is powerpc:common. The program then spawns an SPE thread which

will execute the SPU code in simple_spu.c. When the debugger detects that the

SPE thread has reached breakpoint 3, it switches to this thread and sets the

architecture to spu:256K For more information about breakpoint 2, see “Setting

pending breakpoints” on page 36.

32 Programmer’s Guide

http://www.gnu.org/software/gdb/gdb.html

[user@localhost simple]$ ppu-gdb ./simple

...

...

...

(gdb) break main

Breakpoint 1 at 0x1801654: file simple.c, line 23.

(gdb) run

Starting program: /home/user/md/simple/simple

[Thread debugging using libthread_db enabled]

[New Thread 4160655360 (LWP 2490)]

[Switching to Thread 4160655360 (LWP 2490)]

Breakpoint 1, main (argc=1, argv=0xfff7a9e4) at simple.c:23

23 int i, status = 0;

(gdb) show architecture

The target architecture is set automatically (currently powerpc:common)

(gdb) break simple_spu.c:5

No source file named simple_spu.c.

Make breakpoint pending on future shared library load? (y or [n]) y

Breakpoint 2 (simple_spu.c:5) pending.

(gdb) continue

Continuing.

Breakpoint 3 at 0x158: file simple_spu.c, line 5.

Pending breakpoint "simple_spu.c:5" resolved

[New Thread 4160390384 (LWP 2495)]

[Switching to Thread 4160390384 (LWP 2495)]

Breakpoint 3, main (id=103079215104) at simple_spu.c:13

13 {

(gdb) show architecture

The target architecture is set automatically (currently spu:256K)

(gdb)

Switching architectures within a single thread

This topic describes the debugger backtrace command.

As described in “Debugging architecture” on page 32, any thread of a combined

Cell/B.E. application is executing either on the PPE or an SPE at the time the

debugger interrupted execution of the process currently being debugged. This

determines the main architecture GDB will use when examining the thread.

However, during the execution history of that thread, execution may have

switched between architectures one or multiple times. When looking at the thread’s

stack backtrace (using the backtrace command), the debugger will reflect those

switches. It will show stack frames belonging to both the PPE and SPE

architectures.

Example: An SPE context is interrupted by the debugger while executing a

PPE-assisted scanf call

(gdb) backtrace

#0 0x0ff1a8e8 in __read_nocancel () from /lib/libc.so.6

#1 0x0feb7e04 in _IO_new_file_underflow (fp=<value optimized out>) at fileops.c:590

#2 0x0feb82c0 in _IO_default_uflow (fp=<value optimized out>) at genops.c:435

#3 0x0feba518 in *__GI___uflow (fp=<value optimized out>) at genops.c:389

#4 0x0fe9b834 in _IO_vfscanf_internal (s=<value optimized out>, format=<value optimized out>,

argptr=<value optimized out>, errp=<value optimized out>) at vfscanf.c:542

#5 0x0fe9f858 in ___vfscanf (s=<value optimized out>, format=<value optimized out>,

argptr=<value optimized out>)

at vfscanf.c:2473

#6 0x0fe18688 in __do_vfscanf (stream=<value optimized out>, format=<value optimized out>,

vlist=<value optimized out>)

at default_c99_handler.c:284

#7 0x0fe1ab38 in default_c99_handler_vscanf (ls=<value optimized out>, opdata=<value optimized out>)

at default_c99_handler.c:1193

Chapter 3. Debugging Cell/B.E. applications 33

#8 0x0fe176b0 in default_c99_handler (base=<value optimized out>, offset=<value optimized out>)

at default_c99_handler.c:1990

#9 0x0fe1f1b8 in handle_library_callback (spe=<value optimized out>, callnum=<value optimized out>,

npc=<value optimized out>) at lib_builtin.c:152

#10 <cross-architecture call>

#11 0x0003fac4 in ?? ()

#12 0x00000360 in scanf (fmt=<value optimized out>) at ../../../../../../src/newlib/libc/machine/spu/scanf.c:74

#13 0x00000170 in main () at test.c:8

When you choose a particular stack frame to examine using the frame, up, or down

commands, the debugger switches its notion of the current architecture as

appropriate for the selected frame. For example, if you use the info registers

command to look at the selected frame’s register contents, the debugger shows the

SPE register set if the selected frame belongs to an SPE context, and the PPE

register set if the selected frame belongs to PPE code.

Example: continued

gdb) frame 7

#7 0x0fe1ab38 in default_c99_handler_vscanf (ls=<value optimized out>,

opdata=<value optimized out>)

at default_c99_handler.c:1193

1193 default_c99_handler.c: No such file or directory.

in default_c99_handler.c

(gdb) show architecture

The target architecture is set automatically (currently powerpc:common)

(gdb) info registers

r0 0x3 3

r1 0xfec2eda0 4274187680

r2 0xfff9ba0 268409760

r3 0x200 512

<...>

(gdb) frame 13

#13 0x00000170 in main () at test.c:8

8 scanf ("%d\n", &x);

(gdb) show architecture

The target architecture is set automatically (currently spu:256K)

(gdb) info registers

r0 {uint128 = 0x00000170000000000000000000000000, v2_int64 = {0x17000000000, 0x0},

v4_int32 = {0x170, 0x0, 0x0, 0x0}, v8_int16 = {0x0, 0x170, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0},

v16_int8 = {0x0, 0x0, 0x1, 0x70, 0x0 <repeats 12 times>}, v2_double = {0x0, 0x0},

v4_float = {0x0, 0x0, 0x0, 0x0}}

r1 {uint128 = 0x0003ffa0000000000000000000000000, v2_int64 = {0x3ffa000000000, 0x0},

v4_int32 = {0x3ffa0, 0x0, 0x0, 0x0}, v8_int16 = {0x3, 0xffa0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0},

v16_int8 = {0x0, 0x3, 0xff, 0xa0, 0x0 <repeats 12 times>}, v2_double = {0x0, 0x0},

v4_float = {0x0, 0x0, 0x0, 0x0}}

<...>

Viewing symbolic and additional information

Compiling with the ’-g’ option adds debugging information to the binary that

enables GDB to lookup symbols and show the symbolic information.

The debugger sees SPE executable programs as shared libraries. The info

sharedlibrary command shows all the shared libraries including the SPE

executables when running SPE threads.

Example: info sharedlibrary

The example below shows the results of the info sharedlibrary command at two

breakpoints on one thread. At breakpoint 1, the thread is running on the PPE, at

breakpoint 3 the thread is running on the SPE. For more information about

breakpoint 2, see “Setting pending breakpoints” on page 36.

34 Programmer’s Guide

(gdb) break main

Breakpoint 1 at 0x1801654: file simple.c, line 23.

(gdb) r

Starting program: /home/user/md/simple/simple

[Thread debugging using libthread_db enabled]

[New Thread 4160655360 (LWP 2528)]

[Switching to Thread 4160655360 (LWP 2528)]

Breakpoint 1, main (argc=1, argv=0xffacb9e4) at simple.c:23

23 int i, status = 0;

(gdb) info sharedlibrary

From To Syms Read Shared Object Library

0x0ffc1980 0x0ffd9af0 Yes /lib/ld.so.1

0x0fe14b40 0x0fe20a00 Yes /usr/lib/libspe.so.1

0x0fe5d340 0x0ff78e30 Yes /lib/libc.so.6

0x0fce47b0 0x0fcf1a40 Yes /lib/libpthread.so.0

0x0f291cc0 0x0f2970e0 Yes /lib/librt.so.1

(gdb) break simple_spu.c:5

No source file named simple_spu.c.

Make breakpoint pending on future shared library load? (y or [n]) y

Breakpoint 2 (simple_spu.c:5) pending.

(gdb) c

Continuing.

Breakpoint 3 at 0x158: file simple_spu.c, line 5.

Pending breakpoint "simple_spu.c:5" resolved

[New Thread 4160390384 (LWP 2531)]

[Switching to Thread 4160390384 (LWP 2531)]

Breakpoint 3, main (id=103079215104) at simple_spu.c:13

13 {

(gdb) info sharedlibrary

From To Syms Read Shared Object Library

0x0ffc1980 0x0ffd9af0 Yes /lib/ld.so.1

0x0fe14b40 0x0fe20a00 Yes /usr/lib/libspe.so.1

0x0fe5d340 0x0ff78e30 Yes /lib/libc.so.6

0x0fce47b0 0x0fcf1a40 Yes /lib/libpthread.so.0

0x0f291cc0 0x0f2970e0 Yes /lib/librt.so.1

0x00000028 0x00000860 Yes simple_spu@0x1801d00 <6>

(gdb)

GDB creates a unique name for each shared library entry representing SPE code.

That name consists of the SPE executable name, followed by the location in PPE

memory where the SPE is mapped (or embedded into the PPE executable image),

and the SPE ID of the SPE thread where the code is loaded.

Using scheduler-locking

Scheduler-locking is a feature of GDB that simplifies multithread debugging by

enabling you to control the behavior of multiple threads when you single-step

through a thread. By default scheduler-locking is off, and this is the recommended

setting.

In the default mode where scheduler-locking is off, single-stepping through one

particular thread does not stop other threads of the application from running, but

allows them to continue to execute. This applies to both threads executing on the

PPE and on the SPE. This may not always be what you expect or want when

debugging multithreaded applications, because those threads executing in the

background may affect global application state asynchronously in ways that can

make it difficult to reliably reproduce the problem you are debugging. If this is a

concern, you can turn scheduler-locking on. In that mode, all other threads remain

stopped while you are debugging one particular thread. A third option is to set

scheduler-locking to step, which stops other threads while you are single-stepping

the current thread, but lets them execute while the current thread is freely running.

Chapter 3. Debugging Cell/B.E. applications 35

However, if scheduler-locking is turned on, there is the potential for deadlocking

where one or more threads cannot continue to run. Consider, for example, an

application consisting of multiple SPE threads that communicate with each other

through a mailbox. If you single-step one thread across an instruction that reads

from the mailbox, and that mailbox happens to be empty at the moment, this

instruction (and thus the debugging session) will block until another thread writes

a message to the mailbox. However, if scheduler-locking is on, that other thread

will remain stopped by the debugger because you are single-stepping. In this

situation none of the threads can continue, and the whole program stalls

indefinitely. This situation cannot occur when scheduler-locking is off, because in

that case all other threads continue to run while the first thread is single-stepped.

You should ensure that you enable scheduler-locking only for applications where

such deadlocks cannot occur.

There are situations where you can safely set scheduler-locking on, but you should

do so only when you are sure there are no deadlocks.

The syntax of the command is:

set scheduler-locking <mode>

where mode has one of the following values:

v off

v on

v step

You can check the scheduler-locking mode with the following command:

show scheduler-locking

Using the combined debugger

Generally speaking, you can use the same procedures to debug code for Cell/B.E.

as you would for PPC code.

However, some existing features of GDB and one new command can help you to

debug in the Cell/B.E. processor multithreaded environment. These features are

described in the following section.

Setting pending breakpoints

Breakpoints stop programs running when a certain location is reached. You set

breakpoints with the break command, followed by the line number, function name,

or exact address in the program.

You can use breakpoints for both PPE and SPE portions of the code. There are

some instances, however, where GDB must defer insertion of a breakpoint because

the code containing the breakpoint location has not yet been loaded into memory.

This occurs when you wish to set the breakpoint for code that is dynamically

loaded later in the program. If ppu-gdb cannot find the location of the breakpoint it

sets the breakpoint to pending. When the code is loaded, the breakpoint is inserted

and the pending breakpoint deleted.

You can use the set breakpoint command to control the behavior of GDB when it

determines that the code for a breakpoint location is not loaded into memory. The

syntax for this command is:

set breakpoint pending <on off auto>

where:

36 Programmer’s Guide

v on on specifies that GDB should set a pending breakpoint if the code for the

breakpoint location is not loaded.

v off off specifies that GDB should not create pending breakpoints, and break

commands for a breakpoint location that is not loaded result in an error.

v auto auto specifies that GDB should prompt the user to determine if a pending

breakpoint should be set if the code for the breakpoint location is not loaded.

This is the default behavior.

Example: Pending breakpoints

The example below shows the use of pending breakpoints. Breakpoint 1 is a

standard breakpoint set for simple.c, line 23. When the breakpoint is reached,

the program stops running for debugging. After set breakpoint pending is set to

off, GDB cannot set breakpoint 2 (break simple_spu.c:5) and generates the

message No source file named simple_spu.c. After set breakpoint pending is

changed to auto, GDB sets a pending breakpoint for the location simple_spu.c:5.

At the point where GDB can resolve the location, it sets the next breakpoint,

breakpoint 3.

(gdb) break main

Breakpoint 1 at 0x1801654: file simple.c, line 23.

(gdb) r

Starting program: /home/user/md/simple/simple

[Thread debugging using libthread_db enabled]

[New Thread 4160655360 (LWP 2651)]

[Switching to Thread 4160655360 (LWP 2651)]

Breakpoint 1, main (argc=1, argv=0xff95f9e4) at simple.c:23

23 int i, status = 0;

(gdb) off

(gdb) break simple_spu.c:5

No source file named simple_spu.c.

(gdb) set breakpoint pending auto

(gdb) break simple_spu.c:5

No source file named simple_spu.c.

Make breakpoint pending on future shared library load? (y or [n]) y

Breakpoint 2 (simple_spu.c:5) pending.

(gdb) c

Continuing.

Breakpoint 3 at 0x158: file simple_spu.c, line 5.

Pending breakpoint "simple_spu.c:5" resolved

[New Thread 4160390384 (LWP 2656)]

[Switching to Thread 4160390384 (LWP 2656)]

Breakpoint 3, main (id=103079215104) at simple_spu.c:13

13 {

(gdb)

Note: The example above shows one of the ways to use pending breakpoints. For

more information about other options, see the documentation available at

http://www.gnu.org/software/gdb/gdb.html

Multi-location breakpoints

GDB is capable of assigning one or more locations to each breakpoint. Many

applications, especially Cell/B.E.-specific applications, consist of many congeneric

threads (instances of the same source file).

As an example a user sets a breakpoint in a thread. If a new thread is created after

that thread, the available breakpoint is already assigned to a new location in the

Chapter 3. Debugging Cell/B.E. applications 37

|
|
|
|

|
|

http://www.gnu.org/software/gdb/gdb.html

new thread. In previous version of GDB the user had to create a new breakpoint in

the new thread, which appeared as a new and different breakpoint.

The following example illustrates the new behavior introduced with multi-location

breakpoint support in GDB:

(gdb) info threads

[New Thread 0xf6b1f4b0 (LWP 12780)]

 4 Thread 0xf6b1f4b0 (LWP 12780) 0x0fc1ed78 in __lll_lock_wait () from /lib/libpthread.so.0

* 3 Thread 0xf755f4b0 (LWP 12778) main (speid=268568208, argp=0, envp=0) at break_spu_bin.c:12

 2 Thread 0xf7faf4b0 (LWP 12777) main (speid=268566536, argp=0, envp=0) at break_spu_bin.c:30

 1 Thread 0xfff2a40 (LWP 12774) 0x0fc14bd0 in __nptl_create_event () from /lib/libpthread.so.0

(gdb) br break_spu_bin.c:main

Breakpoint 3 at 0x5e0: file break_spu_bin.c, line 12. (2 locations)

(gdb) info breakpoints

Num Type Disp Enb Address What

3 breakpoint keep y <MULTIPLE>

3.1 y 0x000005e0 in main at break_spu_bin.c:12

3.2 y 0x000005e0 in main at break_spu_bin.c:12

(gdb)

GDB recognizes that break_spu_bin.c:main is found in two locations. On that

account a multi-location breakpoint with two locations is created (3.1 and 3.2). The

entry numbered 3 shows that this breakpoint is a multi-location breakpoint.

Whenever a new thread from break_spu_bin.c is created, a new location is added

to that breakpoint:

(gdb) continue

Continuing.

...

Hello World! from SPU

Temporary breakpoint 4 at 0x5e0: file break_spu_bin.c, line 12.

Breakpoint 3, main (speid=268568848, argp=0, envp=0) at break_spu_bin.c:12

12 i = 7;

(gdb) info breakpoints

Num Type Disp Enb Address What

3 breakpoint keep y <MULTIPLE>

 breakpoint already hit 1 time

3.1 y 0x000005e0 in main at break_spu_bin.c:12

3.2 y 0x000005e0 in main at break_spu_bin.c:12

3.3 y 0x000005e0 in main at break_spu_bin.c:12

After continuing the process, a new thread is created from break_spu_bin.c and

with it a new location is added to breakpoint 3.

Using the set spu stop-on-load command

The set spu stop-on-load stops each thread before it starts running on the SPE.

While set spu stop-on-load is in effect, the debugger automatically sets a

temporary breakpoint on the ″main″ function of each new SPE thread immediately

after it is loaded. You can use the set spu stop-on-load command to do this

instead of simply issuing a break main command, because the latter is always

interpreted to set a breakpoint on the ″main″ function of the PPE executable.

Note: The set spu stop-on-load command has no effect in the SPU standalone

debugger spu-gdb. To let an SPU standalone program proceed to its ″main″

function, you can use the start command in spu-gdb.

The syntax of the command is:

set spu stop-on-load <mode>

38 Programmer’s Guide

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

where mode is on or off.

To check the status of spu stop-on-load, use the show spu stop-on-load command.

Example: set spu stop-on-load on

(gdb) break main

Breakpoint 1 at 0x1801654: file simple.c, line 23.

(gdb) r

Starting program: /home/user/md/simple/simple

[Thread debugging using libthread_db enabled]

[New Thread 4160655360 (LWP 3009)]

[Switching to Thread 4160655360 (LWP 3009)]

Breakpoint 1, main (argc=1, argv=0xffc7c9e4) at simple.c:23

23 int i, status = 0;

(gdb) show spu stop-on-load

Stopping for new SPE threads is off.

(gdb) set spu stop-on-load on

(gdb) c

Continuing.

Breakpoint 2 at 0x174: file simple_spu.c, line 16.

[New Thread 4160390384 (LWP 3013)]

Breakpoint 3 at 0x174: file simple_spu.c, line 16.

[Switching to Thread 4160390384 (LWP 3013)]

main (id=25272376) at simple_spu.c:16

16 for (i = 0, n = 0; i<5; i++) {

(gdb) info threads

* 2 Thread 4160390384 (LWP 3013) main (id=25272376) at simple_spu.c:16

 1 Thread 4160655360 (LWP 3009) 0x0ff27428 in mmap () from /lib/libc.so.6

(gdb) c

Continuing.

Hello Cell (0x181a038) n=3

Hello Cell (0x181a038) n=6

Hello Cell (0x181a038) n=9

Hello Cell (0x181a038) n=12

Hello Cell (0x181a038) n=15

[Thread 4160390384 (LWP 3013) exited]

[New Thread 4151739632 (LWP 3015)]

[Switching to Thread 4151739632 (LWP 3015)]

main (id=25272840) at simple_spu.c:16

16 for (i = 0, n = 0; i<5; i++) {

(gdb) info threads

* 3 Thread 4151739632 (LWP 3015) main (id=25272840) at simple_spu.c:16

 1 Thread 4160655360 (LWP 3009) 0x0fe14f38 in load_spe_elf (

 handle=0x181a3d8, ld_buffer=0xf6f29000, ld_info=0xffc7c230)

 at elf_loader.c:224

(gdb)

Disambiguation of multiply-defined global symbols

When debugging a combined Cell/B.E. application consisting of a PPE program

and more or more SPE programs, it can happen that multiple definitions of a

global function or variable with the same name exist.

For example, both the PPE and SPE programs define a global main function. If you

run the same SPE executable simultaneously within multiple SPE contexts, all its

global symbols show multiple instances of definition.

To catch the most common usage cases, GDB uses the following rules when it

looks up a global symbol. If the command is issued while currently debugging

PPE code, the debugger first attempts to look up a definition in the PPE

executable. If none is found, the debugger searches all currently loaded SPE

executables and uses the first definition of a symbol with the given name it finds.

However, when referring to a global symbol from the command line while

Chapter 3. Debugging Cell/B.E. applications 39

currently debugging an SPE context, the debugger first attempts to look up a

definition in that SPE context. If none is found there, the debugger continues to

search the PPE executable and all other currently loaded SPE executables and uses

the first matching definition.

Example:

(gdb) br foo2

Breakpoint 2 at 0x804853f:

file /home/deuling/gdb/dev/gdb/testsuite/gdb.base/solib-symbol-main.c, line 40.

(gdb) delete breakpoints

Delete all breakpoints? (y or n) y

(gdb) br foo

Breakpoint 3 at 0xb7ffd53f:

file /home/deuling/gdb/dev/gdb/testsuite/gdb.base/solib-symbol-lib.c, line 23.

(gdb) continue

Continuing.

Breakpoint 3, foo () at /home/deuling/gdb/dev/gdb/testsuite/gdb.base/solib-symbol-lib.c:23

23 printf ("foo in lib\n");

(gdb) br foo2

Breakpoint 4 at 0xb7ffd569:

file /home/deuling/gdb/dev/gdb/testsuite/gdb.base/solib-symbol-lib.c, line 30.

(gdb) PASS: gdb.base/solib-symbol.exp: foo2 in mdlib

In this example, foo2 is in the main file one time and in the library the other time

depending on where GDB currently stands.

For the current version of the SDK, the combined debugger ppu-gdb introduces a

new facility for symbol determination. A debugged executable can contain symbols

with identical names in different parts of the application. For example, if the

symbol foo exists in the PPU-part and in the SPU-part of a combined binary, the

command set multiple-symbols defaults to all, which means one breakpoint is

set on each symbol found. If set to ask and a multiply-defined symbol such as the

one previously described is found, you are given a choice as to which symbol to

select, and multiple choices are possible. You can set cancel to cancel the symbol

search.

Example: An example GDB session could look like this:

(gdb) set multiple-symbols ask

(gdb) br foo2

[0] cancel

[1] all

[2] foo2 at break.c:76

[3] foo2 at break_spu_bin.c:46

> 2

Breakpoint 3 at 0x100019fc: file break.c, line 76.

(gdb)

Note: The user chose to use the symbol foo2 found in break.c for breakpoint

creation.
(gdb) br foo2

[0] cancel

[1] all

[2] foo2 at break.c:76

[3] foo2 at break_spu_bin.c:46

> 3

Breakpoint 4 at 0x6e4: file break_spu_bin.c, line 46. (2 locations)

(gdb)

40 Programmer’s Guide

|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|

|
|

|
|
|
|
|
|
|
|

Note: The user chose symbol 3 which has two locations. Hence a multi-location

breakpoint was created.
(gdb) br foo2

[0] cancel

[1] all

[2] foo2 at break.c:76

[3] foo2 at break_spu_bin.c:46

> 0

canceled

(gdb)

Note: The user cancelled the selection. No breakpoint is created.
(gdb) br foo2

[0] cancel

[1] all

[2] foo2 at break.c:76

[3] foo2 at break_spu_bin.c:46

> 1

Note: breakpoint 3 also set at pc 0x100019fc.

Breakpoint 5 at 0x100019fc: file break.c, line 76.

Note: breakpoint 4 also set at pc 0x6e4.

Note: breakpoint 4 also set at pc 0x6e4.

Breakpoint 6 at 0x6e4: file break_spu_bin.c, line 46. (2 locations)

warning: Multiple breakpoints were set.

Use the "delete" command to delete unwanted breakpoints.

(gdb)

Note: The user chose to create a breakpoint on all symbols found. Hence there

were two breakpoints created. One multi-location breakpoint at break_spu_bin.c

and a single location breakpoint at break.c.
gdb) br foo2

[0] cancel

[1] all

[2] foo2 at break.c:76

[3] foo2 at break_spu_bin.c:46

> 1 2

Note: breakpoint 3 also set at pc 0x100019fc.

Breakpoint 5 at 0x100019fc: file break.c, line 76.

Note: breakpoint 4 also set at pc 0x6e4.

Note: breakpoint 4 also set at pc 0x6e4.

Breakpoint 6 at 0x6e4: file break_spu_bin.c, line 46. (2 locations)

warning: Multiple breakpoints were set.

Use the "delete" command to delete unwanted breakpoints.

(gdb)

Note: The user chose to create a breakpoint on all symbols found. Hence there

were two breakpoints created. One multi-location breakpoint at break_spu_bin.c

and a single location breakpoint at break.c.

Multiple selections are possible. In this case selecting all is the same as selecting 1

and 2.

New command reference

In addition to the set spu stop-on-load command, the ppu-gdb and spu-gdb

programs offer an extended set of the standard GDB info commands.

These are:

v info spu event

v info spu signal

v info spu mailbox

Chapter 3. Debugging Cell/B.E. applications 41

|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|
|

v info spu dma

v info spu proxydma

If you are working in GDB, you can access help for these new commands. To

access help, type help info spu followed by the info spu subcommand name. This

displays full documentation. Command name abbreviations are allowed if

unambiguous.

Note: For more information about the various output elements, refer to the Cell

Broadband Engine Architecture document available at

http://www.ibm.com/developerworks/power/cell/

info spu event

Displays SPE event facility status. The output is similar to:

(gdb) info spu event

Event Status 0x00000000

Event Mask 0x00000000

info spu signal

Displays SPE signal notification facility status. The output is similar to:

(gdb) info spu signal

Signal 1 not pending (Type Or)

Signal 2 control word 0x30000001 (Type Or)

info spu mailbox

Displays SPE mailbox facility status. Only pending entries are shown. Entries are

displayed in the order of processing, that is, the first data element in the list is the

element that is returned on the next read from the mailbox. The output is similar

to:

(gdb) info spu mailbox

SPU Outbound Mailbox

0x00000000

SPU Outbound Interrupt Mailbox

0x00000000

SPU Inbound Mailbox

0x00000000

0x00000000

0x00000000

0x00000000

info spu dma

Displays MFC DMA status. For each pending DMA command, the opcode, tag,

and class IDs are shown, followed by the current effective address, local store

address, and transfer size (updated as the command is processed). For commands

using a DMA list, the local store address and size of the list is shown. The ″E″

column indicates commands flagged as erroneous by the MFC. If multiple pending

DMA operations are required to execute in a particular sequence due to the use of

barrier, fence, or synchronization commands, they are listed in the order they will

be executed. The output is similar to:

(gdb) info spu dma

Tag-Group Status 0x00000002

Tag-Group Mask 0x00000001 (no query pending)

Stall-and-Notify 0x00000000

Atomic Cmd Status 0x00000000

Opcode Tag TId RId EA LSA Size LstAddr LstSize E

put 0 0 0 0x00000000f77d0080 0x01000 0x04000 *

42 Programmer’s Guide

|
|
|
|

|
|
|
|
|
|
|
|

http://www.ibm.com/developerworks/power/cell/

getb 0 0 0 0x00000000f7be8080 0x01000 0x04000

put 0 0 0 0x00000000f77d4080 0x05000 0x04000 *

getb 1 0 0 0x00000000f7bec080 0x05000 0x04000

info spu proxydma

Displays MFC Proxy-DMA status. The output is similar to:

(gdb) info spu proxydma

Tag-Group Status 0x00000000

Tag-Group Mask 0x00000000 (no query pending)

Opcode Tag TId RId EA LSA Size LstAddr LstSize E

getfs 0 0 0 0xc000000000379100 0x00e00 0x00000

get 0 0 0 0xd000000000243000 0x04000 0x00000

0 0 0 0 0x00000 0x00000

0 0 0 0 0x00000 0x00000

0 0 0 0 0x00000 0x00000

0 0 0 0 0x00000 0x00000

0 0 0 0 0x00000 0x00000

0 0 0 0 0x00000 0x00000

Debugging applications remotely

This topic describes how to use the two versions of gdbserver provided with the

SDK.

These are:

v spu-gdbserver to run a stand-alone spulet. You must use spu-gdb on the client

v ppu-gdbserver to run a 32-bit or 64–bit PPE or combined executable. You must

use ppu-gdb on the client.

Note: In the following section, gdbserver is used as the generic term for both

versions. Similarly GDB is used to refer to the two different debuggers.

This section describes how to set up remote debugging for the Cell/B.E. processor

and the simulator. It covers the following topics:

v “Overview of remote debugging”

v “Using remote debugging” on page 44

v “Starting remote debugging” on page 44

Overview of remote debugging

You can run an application under gdbserver to allow remote hardware and

simulator-based debugging. The application gdbserver is a companion program to

GDB that implements the GDB remote serial protocol. This is used to convert GDB

into a client/server-style application, where gdbserver launches and controls the

application on the target platform, and GDB connects to gdbserver to specify

debugging commands.

The connection between GDB and gdbserver can either be through a traditional

serial line or through TCP/IP. For example, you can run gdbserver on a IBM

BladeCenter QS21 and GDB on an Intel® x86 platform, which then connects to the

gdbserver using TCP/IP.

Remote debugging has significantly improved in this version of the SDK. Previous

versions of the SDK came with two versions of gdbserver, one for 32-bit and one

Chapter 3. Debugging Cell/B.E. applications 43

|
|
|

|

|

|
|

|
|

|
|

for 64-bit PowerPC executables. The version of gdbserver shipped with this version

of the SDK transparently supports both 32-bit and 64-bit executables in a single

version, just like GDB does.

One cause of confusion when debugging remotely with former SDK versions

depended on GDB, which needs exact copies of the target application binary as

well as all shared libraries used by that application on the host system. If those

copies are not available or if they do not match exactly, remote debugging fails.

This situation occurs in certain situations, such as for example, when installing a

service upgrade affecting system libraries.

The combined debugger now offers an improved user experience in remote

debugging. GDB now automatically retrieves the actual versions of the libraries

needed by the executable to be debugged from the host, via an extension to the

remote debugging connection.

Using remote debugging

To use remote debugging, you need a version of the program for the target

platform and network connectivity. The gdbserver program comes packaged with

GDB and is installed with the SDK.

Note: IDEs such as Eclipse do not directly communicate with gdbserver. However,

an IDE can communicate with GDB running on the same host which can then in

turn communicate with gdbserver running on a remote machine.

When using gdbserver to debug applications on a remote target it is mandatory to

provide the same set of libraries (like for example pthread library, C library, libspe,

and so on) on both the host (where GDB runs) and the target (where gdbserver

runs) system.

Note: To connect thru the network to the simulator, you must enable bogusnet

support in the simulator. This creates a special Ethernet device that uses a

″call-thru″ interface to send and receive packets to the host system. See the

simulator documentation for details about how to enable bogusnet.

Further information on the remote debugging of Cell Broadband Engine

applications is available in the DeveloperWorks article at

http://www-128.ibm.com/developerworks/power/library/pa-celldebug/

Starting remote debugging

This topic describes how to start remote debugging.

To start a remote debugging session, do the following:

1. Use gdbserver to launch the application on the target platform (either the IBM

BladeCenter QS21 or inside the Simulator). To do this enter:

<gdbserver version> [ip address] :<port> <application> [arg1 arg2 ...]

where

v <gdbserver version> refers to the version of gdbserver appropriate for the

program you wish to debug

v [ip address] is optional. Default address is localhost.

v :<port> specifies the TCP/IP port to be used for communication with

gdbserver

v <application> is the name of the program to be debugged

44 Programmer’s Guide

|
|
|

|
|
|
|
|
|

|
|
|
|

http://www.ibm.com/developerworks/power/library/pa-celldebug/

v [arg1 arg2 ...] are the command line arguments for the program
An example for ppu-gdbserver using port 2101 for the program myprog which

requires no command line arguments would be:

ppu-gdbserver :2101 myprog

Note: If you use ppu-gdbserver as shown here then you must use ppu-gdb on

the client.

2. Start GDB from the client system (if you are using the simulator this is the host

system of the simulator).

For the simulator this is:

/opt/cell/toolchain/bin/ppu-gdb myprog

For the IBM BladeCenter QS21 this is:

/usr/bin/ppu-gdb myprog

You should have the source and compiled executable version for myprog on the

host system. If your program links to dynamic libraries, GDB attempts to locate

these when it attaches to the program. If you are cross-debugging, you need to

direct GDB to the correct versions of the libraries otherwise it tries to load the

libraries from the host platform. The default path is /opt/cell/sysroot. For

the SDK, issue the following GDB command to connect to the server hosting

the correct version of the libraries:

set solib-absolute-prefix

Note: If you have not installed the libraries in the default directory you must

indicate the path to them. Generally the lib/ and lib64/ directories are under

/opt/cell/sysroot/.

3. At the GDB prompt, connect to the server with the command:

target remote 172.20.0.2:2101

where 172.20.0.2 is the IP address of the Cell system that is running gdbserver,

and the :2101 parameter is the TCP/IP port parameter that was used start

gdbserver. If you are running the client on the same machine then the IP

address can be omitted. If you are using the simulator, the IP address is

generally fixed at 172.20.0.2 To verify this, enter the ifconfig command in the

console window of the simulator.

If gdbserver is running on the simulator, you can use a symbolic host name for

the simulator, for example:

target remote systemsim:2101

To do this, edit the host system’s /etc/hosts as follows:

Do not remove the following line, or various programs

that require network functionality will fail.

127.0.0.1 localhost.localdomain localhost

172.20.0.2 systemsim

The following shows an example of myprog

 8 {

 9 char *needle, *haystack;

 10 int count = 0;

 11

 12 if (argc < 3) {

 13 return 0;

 14 }

 15

 16 needle = argv[1];

 17 haystack = argv[2];

 18

Chapter 3. Debugging Cell/B.E. applications 45

B+>19 while (*haystack != ’\0’) 20 {

 21 int i = 0;

 22 while (needle[i] != ’\0’ && haystack[i] != ’\0’ && needle[i])

 23 i++

 24 }

 25 if (needle[i] == ’\0’) {

 26 count++;

 27 }

 28 haystack++;

 29 }

 30

 31 return count;

 32 }

remote Thread 42000 In: main Line: 19 PC 0x18004c8

Type "how copying" to see conditions.

There is absolutely no warranty for GDB. Type "show warranty" for details.

This GDB was configured as "--host=i686-pc-linux-gnu --target=powerpc64-linux"....

(gdb) target remote 172.20.0.2:2101

Remote debugging using 172.20.0.2:2101

0xf7ff80f0 in ?? ()

(gdb) b 19

Breakpoint 1 at 0x18004c8: file myprog.c, line 19.

(gdb) c

Continuing.

Breakpoint 1, main (argc=3, argv=0xffab6b74) at myprog.c:19

(gdb)

46 Programmer’s Guide

Chapter 4. Debugging common Direct Memory Access (DMA)

errors

This topic describes possible DMA errors and uses examples to describe how to

debug these errors.

The Cell/B.E. is a multiprocessor system on a chip that is not a traditional

shared-memory multiprocessor. The system consists of a PowerPC Processing

Element (PPE) which accesses main storage, and eight Synergistic Processing

Elements (SPEs) which access their own private local storage. To access main

storage, the SPEs utilize direct memory access (DMA) commands which transfer

data between main storage and their private local memory. This distributed storage

organization enables high performance, but it requires the SPE programmer to

explicitly handle DMA transfers between main storage and local storage. Errors

during these DMA transfers can be difficult to detect and debug. This article

provides techniques for handling common problems with SPE-initiated DMA

transfers.

DMA errors

All DMA transactions on the Cell/B.E. must follow certain guidelines.

Due to the dynamic nature of DMA processing, a command parameter that does

not adhere to the guidelines may not cause an error during compilation. Instead,

during runtime, the MFC command queue processing will be suspended and an

interrupt will be raised to the PPE. The application is usually terminated with

either a Bus Error (SIGBUS) or a Segmentation Fault (SEGSEGV). Partial DMA

transfer may be performed before the Memory Flow Controller (MFC) encounters

an invalid parameter in a DMA command and raises an interrupt to the PPE.

Bus errors

The following table shows common DMA command errors which are detected by

hardware and cause bus errors.

 Table 7. Common DMA command errors that cause bus error

Error type Description

DMA size errors

Bad transfer size Transfer size is not 0, 1, 2, 4, or 8 bytes or a multiple of

16 bytes

Transfer size is too big Transfer size that is greater than 16 KB

List transfer size is too big List element with size that is greater than 16 KB

DMA Alignment Errors

Local storage address alignment Target and source addresses are not naturally aligned for

sizes less than 16 bytes or are not aligned on 16-byte

boundary for sizes >= 16 bytes

Main storage address alignment

List address alignment DMA list is not stored in SPE local store on an 8-byte

boundary

Tag ID Errors

© Copyright IBM Corp. 2006, 2008 47

|

|

|

|
|

|
|
|
|
|
|
|
|
|
|
|

|
|

|

|
|
|
|
|
|
|

|

|
|

||

||

|

||
|

||

||

|

||
|
||

||
|

|

Table 7. Common DMA command errors that cause bus error (continued)

Error type Description

Invalid Tag ID Tag id is not between 0 and 31 inclusive

Other Errors

List element crosses a 4 GB

boundary

For 64-bit applications, list elements cannot cross a 4 GB

boundary. 32-bit application does not have to worry

about this.

Segmentation Violations

The following table shows common DMA command errors which are not detected

by the hardware and cause a Segmentation violation. Segmentation faults that

occur on the SPE are always caused by DMA transfers to and/or from bad

effective addresses.

 Table 8. Common DMA command errors that cause a segmentation violation

Error type Description

Invalid target effective address A DMA PUT command with a target effective address

which can not be accessed, for example, an address of

storage that was not allocated

Invalid source effective address A DMA GET command with a source effective address

which can not be accessed, for example, address of

storage that was not allocated

Using ppu-gdb to debug DMA errors

This section provides information about how to debug Cell/B.E. applications using

the ppu-gdb and spu-gdb debuggers.

GDB command ″info spu dma″

This command is one of the extended commands that GDB offers to help

debugging Cell/B.E. applications. It displays MFC DMA status. For each pending

DMA command, the opcode, tag, and class IDs are shown, followed by the current

effective address, local store address, and transfer size (updated as the command is

processed). For commands using a DMA list, the local store address and size of the

list is shown. The ″E″ column indicates commands flagged as erroneous by the

MFC. The output is similar to:

(gdb) info spu dma

Tag-Group Status 0x00000002

Tag-Group Mask 0x00000001 (’any’ query pending)

Stall-and-Notify 0x00000000

Atomic Cmd Status 0x00000000

Opcode Tag TId RId EA LSA Size LstAddr LstSize E

put 0 0 0 0x00000000f77d0080 0x01000 0x04000 *

getb 0 0 0 0x00000000f7be8080 0x01000 0x04000

put 0 0 0 0x00000000f77d4080 0x05000 0x04000 *

getb 1 0 0 0x00000000f7bec080 0x05000 0x04000

The following table provides detailed description for each of the fields displayed

using the info spu dma command:

48 Programmer’s Guide

|

||

||

|

|
|
|
|
|
|

|

|
|
|
|

||

||

||
|
|

||
|
|
|

|
|

|
|

|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|

|
|

Table 9. Description of fields

Field Description

Tag-Group Status Displays the current tag-group status.

Tag-Group Mask Displays the tag-group query mask (MFC_WrTagMask

channel). The statement in parenthesis indicates whether a tag

status query is currently pending or not. This should read

either ″no query pending″, ″’any’ query pending″, or ″’all’

query pending″.

Stall-and-Notify Displays the content of the MFC Read List Stall-and-Notify Tag

Status (MFC_RdListStallStat) channel. List elements for a list

command contian a stall-and-notify flag. If the flag is set on a

list element, the MFC stops executing the list command after

completing the transfer requested by this element. The flag sets

the bit corresponding to the tag group of the list command in

this channel.

Atomic Cmd Status Displays the content of the MFC Read Atomic Command

Status channel (MFC_RdAtomicStat). This channel contains the

status of the last-completed immediate atomic update DMA

command.

Opcode Displays the opcode for the DMA transfer. If the opcode is

invalid, the actual input value is displayed and the ″E″ bit is

marked.

Tag Displays the tag group id for the DMA transfer. This field is a

5-bit field, which means that it does not show values outside

the 0-31 range. If the tag id is invalid, the ″E″ bit is marked.

TId Displays the Transfer Class ID. Generally set to 0.

Rid Displays the Replacement Class ID. Generally set to 0.

EA Displays the effective address of the DMA transfer. If an

effective address is misaligned, this field will show the actual

misaligned address and the ″E″ bit will be marked.

LSA Displays the local store address of the DMA transfer. If a local

store address is misaligned, this field will not show the actual

misaligned address since the hardware does not retain the four

least significant bits of the local store address. However, the

″E″ bit will be marked.

Size Displays the size of the DMA transfer. If the command is one

of the DMA list commands, this field displays the size of the

current DMA list entry. If a given size is invalid (see Table 7 on

page 47), this field will not necessarily show the invalid size.

Instead it shows the number of bytes yet to be transferred

when the interrupt is raised.

LstAddr Displays the local store address of the DMA list if the

command is one of the DMA list commands. If partial transfers

have been done, this field displays the local store address of

the current DMA list entry.

LstSize Displays the size (in bytes) of the DMA list if the command is

one of the DMA list commands. If partial transfers have been

done, this field displays the size (in bytes) of the list entries

that have not been processed. Note that the size of each list

entry is 8 bytes.

E Displays a ″*″ if there is an error in the DMA transfer that has

been detected by the hardware.

Chapter 4. Debugging common Direct Memory Access (DMA) errors 49

||

||

||

||
|
|
|
|

||
|
|
|
|
|
|

||
|
|
|

||
|
|

||
|
|

||

||

||
|
|

||
|
|
|
|

||
|
|
|
|
|

||
|
|
|

||
|
|
|
|

||
|
|

Examples

This section shows how to debug some common DMA errors on Cell/B.E with

example programs that intentionally contain errors.

Some of the examples are a little bit contrived since the errors are fairly easy to

spot. However, the general approach used to debug DMA problems on Cell/B.E.

should still apply to most ″real-world″ scenarios.

The examples are modified versions of an example that does single buffering using

a DMA list command. It gathers data from main storage to SPE local storage,

processes the data, and scatters the data back to main storage using DMA lists. The

complete listing for the modified examples can be found in the directory:

/opt/cell/sdk/src/examples/dma_errors/no_error

Unaligned effective address

The first version of the example, unaligned_ea_error, contains a DMA transfer with

an unaligned effective address.

A complete listing of the code for this example can be found in the directory:

/opt/cell/sdk/src/examples/dma_errors/unaligned_ea_error

When the example is compiled and run, the output should be:

Listing 1

$./dma_error

Bus error

A bus error can be caused by many different error conditions as shown in the table

above, but which one? The first step is to recompile the program with the -g and

-O0 flags so the program can be debugged more easily using the combined gdb

debugger. Next run the newly recompiled program using ppu-gdb, and you should

get the following output:

Listing 2

$ ppu-gdb dma_error

GNU gdb 6.8.50.20080526-cvs

Copyright (C) 2008 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>

This is free software: you are free to change and redistribute it.

There is NO WARRANTY, to the extent permitted by law. Type "show copying"

and "show warranty" for details.

This GDB was configured as "powerpc64-linux"...

(gdb) r

Starting program: /opt/cell/sdk/src/examples/dma_errors/unaligned_ea_error/dma_error

[Thread debugging using libthread_db enabled]

[New Thread 0x400012af230 (LWP 16671)]

Program received signal SIGBUS, Bus error.

[Switching to Thread 0x400012af230 (LWP 16671)]

0x000004ac in main (speid=268566544, argp=268566656, envp=0) at dma_error_spu.c:147

147 mfc_read_tag_status_all ();

The output shows that the program stopped in the SPU thread. To verify the error

occurred in the SPU run the command show architecture to show the current

architecture:

Listing 3

50 Programmer’s Guide

|
|

|
|

|
|
|

|
|
|
|

|

|

|
|

|

|

|

|

|
|

|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|

(gdb) show architecture

The target architecture is set automatically (currently spu:256K)

In Listing 2 the architecture is spu:256K showing that it is definitely the SPU. Now

looking more closely at the SPU program in Listing 1 the gdb output shows the

program error occurred within a DMA transfer when it stopped on the

mfc_read_tag_status_all line.

Use the gdb info spu dma command to examine all in-flight DMA transfers.

Listing 4

(gdb) info spu dma

Tag-Group Status 0x00000000

Tag-Group Mask 0x00000001 (undefined query type)

Stall-and-Notify 0x00000000

Atomic Cmd Status 0x00000000

Opcode Tag TId RId EA LSA Size LstAddr LstSize E

get 0 0 0 0x0000000010020088 0x21380 0x00020 *

In Listing 4 programmers can scan the shown parameters for effective addresses

that are not aligned properly. The local store addresses cannot be examined for

alignment errors using the same method since the hardware does not retain the

four least significant bits of the local store addresses. The alignment rules and

guidelines for DMA commands on the Cell/B.E. are as follow:

v Source and destination addresses must have the same 4 least significant bits

v For transfer sizes less than 16 bytes, address must be naturally aligned (bits 28

through 31 must provide natural alignment based on the transfer size)

v For transfer sizes of 16 bytes or greater, address must be aligned to at least a

16-byte boundary. In hexadecimal, the address must end with a ’0’.

v Peak performance is achieved when both source and destination addresses are

aligned on a 128-byte boundary (bits 25 through 31 are ’0’). In hexadecimal, the

address must end with a ’80’ or ’00’.

Listing 4 shows a DMA with effective address of 0x10020088. This address is not

aligned to a 16-byte boundary and thus caused the observed bus error. At this

point, it might be useful to step through the program to detect the actual DMA

that causes the Bus error and examine the effective address in that DMA. From

Listing 1, we know that the SPE program stopped at line 147 in the SPE

dma_error_spu.c file. We can try to set a break point at line 140 and start stepping

through the program.

Listing 5

$ ppu-gdb dma_error

GNU gdb 6.8.50.20080526-cvs

Copyright (C) 2008 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>

This is free software: you are free to change and redistribute it.

There is NO WARRANTY, to the extent permitted by law. Type "show copying"

and "show warranty" for details.

This GDB was configured as "powerpc64-linux"...

(gdb) break dma_error_spu.c:140

No source file named dma_error_spu.c.

Make breakpoint pending on future shared library load? (y or [n]) y

Breakpoint 1 (dma_error_spu.c:140) pending.

(gdb) r

Starting program: /opt/cell/sdk/src/examples/dma_errors/unaligned_ea_error/dma_error

[Thread debugging using libthread_db enabled]

Chapter 4. Debugging common Direct Memory Access (DMA) errors 51

|
|

|
|
|
|

|

|

|
|
|
|
|
|
|
|

|
|
|
|
|

|

|
|

|
|

|
|
|

|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

[New Thread 0x400012af230 (LWP 18864)]

[Switching to Thread 0x400012af230 (LWP 18864)]

Breakpoint 1, main (speid=268566544, argp=268566656, envp=0) at dma_error_spu.c:143

143 mfc_get (&control_block, argp + 8, sizeof (control_block_t), tag, 0, 0);

gdb) print /x argp

$2 = 0x10020080

(gdb) c

Continuing.

Program received signal SIGBUS, Bus error.

0x00000528 in main (speid=268566544, argp=268566656, envp=0) at dma_error_spu.c:147

147 mfc_read_tag_status_all ();

From Listing 5, we can see that the bus error probably happened because of the

DMA transfer (mfc_get) on line 143 in the dma_error_spu.c file. Examine the

effective address value (argp + 8) by printing out the argp symbol. Since argp has a

value of 0x10020080, argp + 8 is definitely a misaligned effective address for the

DMA command. Changing the effective address parameter to just argp should fix

the bus error.

Tag ID errors

All DMA commands except getllar, putllc, and putlluc can be tagged with a

5-bit tag group ID (which defines up to 32 IDs). Programs can use this identifier to

check for, or wait on the completion of all queued DMA commands in one or more

tag groups. Valid tag group IDs can be any value between 0 and 31 inclusive. Tag

group IDs which are not in this range trigger the MFC unit to raise an interrupt to

the PPE resulting in the program getting a ″Bus error″.

Use of the tag manager to reserve and release tag IDs is encouraged to ensure

valid DMA tag Ids and to facilitate cooperative use of tag IDs among multiple

software components. More information about the tag manager can be found in the

C/C++ Language Extensions for Cell Broadband Engine Architecture.

The following example contains a DMA transfer with a bad tag group ID, and

shows how to walk through a gdb debugging session to detect this problem.

Complete listing of the code for this example can be found in the directory:

/opt/cell/sdk/src/examples/dma_errors/bad_tag_id_error

The info spu dma command can be used to detect whether a DMA error has

occurred. The DMA transfers shown with the ″E″ bit marked need to be examined

more closely. The field Tag in the info spu dma output is a 5-bit field, meaning this

field does not show when a tag ID is out of range. The recommended way to

detect an invalid tag group ID is to examine the inputs to the DMA command

immediately preceding the command which issues the DMA request. Examining

the inputs requires setting a breakpoint in the SPU source code and printing out

the values of the DMA parameters. The following listing shows an example gdb

session:

Listing 1

$ ppu-gdb dma_error

GNU gdb 6.8.50.20080526-cvs

Copyright (C) 2008 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>

This is free software: you are free to change and redistribute it.

There is NO WARRANTY, to the extent permitted by law. Type "show copying"

52 Programmer’s Guide

|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

|

|
|
|
|
|
|

|
|
|
|

|
|

|

|

|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|

and "show warranty" for details.

This GDB was configured as "powerpc64-linux"...

(gdb) break dma_error_spu.c:145

No source file named dma_error_spu.c.

Make breakpoint pending on future shared library load? (y or [n]) y

Breakpoint 1 (dma_error_spu.c:145) pending.

(gdb) r

Starting program: /opt/cell/sdk/src/examples/dma_errors/bad_tag_id_error/dma_error

[Thread debugging using libthread_db enabled]

[New Thread 0x400012af230 (LWP 8766)]

[Switching to Thread 0x400012af230 (LWP 8766)]

Breakpoint 1, main (speid=268566544, argp=268566656, envp=0) at dma_error_spu.c:146

146 mfc_get (&control_block, argp, sizeof (control_block_t), tag, 0, 0);

(gdb) print tag

$4 = 32

In Listing 1 a breakpoint is set to stop at line 145 in the SPU source code, which is

before the line where the first DMA transfer is issued. The program is then run

using the r command. When the breakpoint is hit, the tag ID is displayed using

the print tag command. Note tag is the name of the variable containing the tag

ID in this example. The tag ID is 32, which is out of the acceptable range of 0 to 31

inclusive. Changing the tag ID to 0, and recompiling the program enables it to run

to completion.

Transfer size errors

The another version of the example, bad_dma_size_error, contains a DMA transfer

with an illegal size.

The control block data structure, control_block_t, defined in dma_error.h is not

padded to be a multiple of 16 bytes. The size of the control block data structure is

only 24 bytes.

The complete listing of the code for this example can be found in:

/opt/cell/sdk/src/examples/dma_errors/bad_dma_size_error

Use the gdb info spu dma command to examine all in-flight DMA transfers.

Listing 1

$ ppu-gdb dma_error

GNU gdb 6.8.50.20080526-cvs

Copyright (C) 2008 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>

This is free software: you are free to change and redistribute it.

There is NO WARRANTY, to the extent permitted by law. Type "show copying"

and "show warranty" for details.

This GDB was configured as "powerpc64-linux"...

(gdb) r

Starting program: /opt/cell/sdk/src/examples/dma_errors/bad_dma_size_error/dma_error

[Thread debugging using libthread_db enabled]

[New Thread 0x400012af230 (LWP 12328)]

Program received signal SIGBUS, Bus error.

[Switching to Thread 0x400012af230 (LWP 12328)]

0x000004f0 in main (speid=268566544, argp=268566656, envp=0) at dma_error_spu.c:147

147 mfc_read_tag_status_all ();

(gdb) info spu dma

Tag-Group Status 0x00000000

Tag-Group Mask 0x00000001 (undefined query type)

Stall-and-Notify 0x00000000

Chapter 4. Debugging common Direct Memory Access (DMA) errors 53

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|

|
|

|
|
|

|

|

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Atomic Cmd Status 0x00000000

Opcode Tag TId RId EA LSA Size LstAddr LstSize E

get 0 0 0 0x0000000010020080 0x21280 0x00008 *

Reviewing the output in Listing 1 shows that there is one pending DMA transfer.

The ″E″ bit is on indicating there is a DMA transfer error that has been detected by

the hardware. Use the Bus Error table above and check each condition. Following

the steps shown in the unaligned effective address example, we can se see that the

EA is properly aligned since the low effective address ends in 0x80.

The size of the DMA transfer, however, is reported as 8 (Listing 1). At first, this

appears to be valid, but it is not necessarily the size specified in the DMA

command. What is reported here is actually the number of bytes yet to be

transferred when the interrupt is raised.

Use the info symbol ... command to determine the symbol closest to the LSA

specified in the output from Listing 1.

Listing 2

(gdb) info symbol 0x21280

control_block in section .bss

(gdb) print &control_block

$1 = (control_block_t *) 0x21280

Listing 2 the gdb output shows that the LSA of 0x21280 is the local address of the

variable control_block in this DMA transfer. We can use gdb to take a closer look

at the DMA transfer that fetches the content of the control block from main

memory. Because Listing 2 shows that the program breaks around line 147. Set a

breakpoint to stop at line 140 and step through the program.

Listing 3

$ ppu-gdb dma_error

GNU gdb 6.8.50.20080526-cvs

Copyright (C) 2008 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>

This is free software: you are free to change and redistribute it.

There is NO WARRANTY, to the extent permitted by law. Type "show copying"

and "show warranty" for details.

This GDB was configured as "powerpc64-linux"...

(gdb) break dma_error_spu.c:140

No source file named dma_error_spu.c.

Make breakpoint pending on future shared library load? (y or [n]) y

Breakpoint 1 (dma_error_spu.c:140) pending.

(gdb) r

Starting program: /opt/cell/sdk/src/examples/dma_errors/bad_dma_size_error/dma_error

[Thread debugging using libthread_db enabled]

[New Thread 0x400012af230 (LWP 12169)]

[Switching to Thread 0x400012af230 (LWP 12169)]

Breakpoint 1, main (speid=268566544, argp=268566656, envp=0) at dma_error_spu.c:143

143 mfc_get (&control_block, argp, sizeof (control_block_t), tag, 0, 0);

(gdb) print tag

$1 = 0

(gdb) print /x &control_block

$3 = 0x21280

The output in Listing 3 shows that the tag id is 0 which is in the right range

(between 0 and 31). The target local storage address (address of the control_block

variable) is properly aligned since it ends in 0x80.

54 Programmer’s Guide

|
|
|
|

|
|
|
|
|

|
|
|
|

|
|

|

|
|
|
|

|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

Next, query for the size of this data structure.

Listing 4

(gdb) print sizeof(control_block)

$1 = 24

In Listing 4 since the size of the control block is 24, one of two things has

happened. Either the size of the DMA request was set to 24 bytes, which is an

error since 24 is not a multiple of 16, or the DMA request size was set to 32 bytes,

which is an error because the block is only 24 bytes in size.

In this example, the request size was set to 24. To fix this error, pad the data

structure to be a multiple of 16 byte adding two integers at the end of the control

block structure. The new data structure in dma_error.h becomes:

Listing 5

typedef struct _control_block

{

 unsigned long long in_addr; //beginning address of the input array

 unsigned long long out_addr; //beginning address of the output array

 unsigned int num_elements_per_spe; //number of elmts assigned to this spe

 unsigned int id; //spe id

 unsigned int pad[2]; //pad this data structure to be multiple of 16

} control_block_t;

The DMA transfer size should now be 32 bytes. After the code is recompiled with

these modifications the example runs successfully.

Setting a breakpoint to detect errors in the DMA command can only be done easily

for programs with few DMA transfers. For DMA transfers in loops with thousands

or more iterations, this technique is not very practical since it requires the

programmer to look at the parameters for thousands or more DMA transfers. In

these cases, the programmer is recommended to learn as much from the output of

info spu dma as possible. If errors are not readily detected from such output, the

programmer can use gdb to look at the code listing before and after the Bus error

to determine the DMA transfer that caused the Bus error. Once the DMA command

that caused the Bus error is detected, one can look at the inputs for the specific

DMA command to find the invalid parameter. The following example shows a

DMA list transfer with one of the list elements containing an invalid transfer size.

The invalid DMA list command is in a loop with 32 iterations.

The complete listing of the code for this example can be found in:

/opt/cell/sdk/src/examples/dma_errors/bad_dma_size_loop_error

Listing 6

$ ppu-gdb dma_error

GNU gdb 6.8.50.20080526-cvs

Copyright (C) 2008 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>

This is free software: you are free to change and redistribute it.

There is NO WARRANTY, to the extent permitted by law. Type "show copying"

and "show warranty" for details.

This GDB was configured as "powerpc64-linux"...

(gdb) r

Starting program: /opt/cell/sdk/src/examples/dma_errors/bad_dma_size_loop_error/dma_error

[Thread debugging using libthread_db enabled]

[New Thread 0x400012af230 (LWP 11930)]

Program received signal SIGBUS, Bus error.

Chapter 4. Debugging common Direct Memory Access (DMA) errors 55

|

|

|
|

|
|
|
|

|
|
|

|

|
|
|
|
|
|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|

|

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|

[Switching to Thread 0x400012af230 (LWP 11930)]

0x000008a4 in main (speid=268566544, argp=268566656, envp=0) at dma_error_spu.c:210

210 mfc_read_tag_status_all ();

(gdb) info spu dma

Tag-Group Status 0x00000001

Tag-Group Mask 0x00000001 (’all’ query pending)

Stall-and-Notify 0x00000000

Atomic Cmd Status 0x00000000

Opcode Tag TId RId EA LSA Size LstAddr LstSize E

getl 0 0 0 0x000004000044f080 0x20500 0x00001 0x21618 0x00008 *

Listing 6 shows that the program stopped at line 210 in the dma_error_spu.c file.

The output of the info spu dma command indicates that the Bus error was caused

by a DMA list transfer. Looking at the parameters in the command, we can see that

the size displayed is 1, which is a suspicious value for this parameter. Furthermore,

the list size (LstSize) parameter is shown as 0x00008, which means the offending

DMA list element is probably at the end of the list. We can now take a closer look

at the code to determine the actual invalid DMA command.

Listing 7

(gdb) list

205 /* issue a DMA get list command to gather the NUM_LIST_ELEMENT chunks of data from system memory */

206 mfc_getl (local_buffer, in_addr, dma_list, NUM_LIST_ELEMENTS * sizeof(mfc_list_element_t), tag, 0, 0);

207

208 /* wait for the DMA get list command to complete */

209 mfc_write_tag_mask (1 << tag);

210 mfc_read_tag_status_all ();

211

212 /* invoke process_data to work on the EA, the tag-id and the transfer size as

 potential invalid DMA parameters (Listing 17). The data that’s just been moved

 into local store*/

213 process_data_simd (local_buffer, CHUNK_SIZE * NUM_LIST_ELEMENTS);

214

Listing 7 shows the source code listing centered around line 210, which is the

stopping point of the SPU program. The DMA list command on line 206 seems to

be the DMA that caused the Bus Error. Examining the dma_list parameter shows

the following:

Listing 8

(gdb) print i

$1 = 992

(gdb) print dma_list

$2 = {{notify = 0, reserved = 0, size = 4096, eal = 4391040}, {notify = 0, reserved = 0, size = 4096,

 eal = 4395136}, {notify = 0, reserved = 0, size = 4096, eal = 4399232}, {notify = 0, reserved = 0,

 size = 4096, eal = 4403328}, {notify = 0, reserved = 0, size = 4096, eal = 4407424}, {notify = 0,

 reserved = 0, size = 4096, eal = 4411520}, {notify = 0, reserved = 0, size = 4096, eal = 4415616}, {

 notify = 0, reserved = 0, size = 4096, eal = 4419712}, {notify = 0, reserved = 0, size = 4096,

 eal = 4423808}, {notify = 0, reserved = 0, size = 4096, eal = 4427904}, {notify = 0, reserved = 0,

 size = 4096, eal = 4432000}, {notify = 0, reserved = 0, size = 4096, eal = 4436096}, {notify = 0,

 reserved = 0, size = 4096, eal = 4440192}, {notify = 0, reserved = 0, size = 4096, eal = 4444288}, {

 notify = 0, reserved = 0, size = 4096, eal = 4448384}, {notify = 0, reserved = 0, size = 4096,

 eal = 4452480}, {notify = 0, reserved = 0, size = 4096, eal = 4456576}, {notify = 0, reserved = 0,

 size = 4096, eal = 4460672}, {notify = 0, reserved = 0, size = 4096, eal = 4464768}, {notify = 0,

 reserved = 0, size = 4096, eal = 4468864}, {notify = 0, reserved = 0, size = 4096, eal = 4472960}, {

 notify = 0, reserved = 0, size = 4096, eal = 4477056}, {notify = 0, reserved = 0, size = 4096,

 eal = 4481152}, {notify = 0, reserved = 0, size = 4096, eal = 4485248}, {notify = 0, reserved = 0,

 size = 4096, eal = 4489344}, {notify = 0, reserved = 0, size = 4096, eal = 4493440}, {notify = 0,

 reserved = 0, size = 4096, eal = 4497536}, {notify = 0, reserved = 0, size = 4096, eal = 4501632}, {

 notify = 0, reserved = 0, size = 4096, eal = 4505728}, {notify = 0, reserved = 0, size = 4096,

 eal = 4509824}, {notify = 0, reserved = 0, size = 4096, eal = 4513920}, {notify = 0, reserved = 0,

 size = 4097, eal = 4518016}}

Listing 8 shows the content of the dma_list parameter. A close look at the content

of the list elements at the end of the list confirms our suspicion. The last list

56 Programmer’s Guide

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

element has a size of 4097, which is not a valid value for a DMA transfer.

Changing the size of the last list element to a multiple of 16 bytes should fix the

bus error.

Unaligned local store address

Unaligned local store address can be detected by using gdb in a similar manner to

the techniques in the previous example.

The following example contains a DMA transfer with a misaligned SPE local store

address. Complete listing of the code for this example can be found in the

directory:

/opt/cell/sdk/src/examples/dma_errors/unaligned_lsa_error

Once the program execution breaks due to a bus error, the command info spu dma

can be used to determine if any of the DMA commands has an error. The DMA

transfers shown with the ″E″ bit turned on need to be examined more closely.

The following gdb output shows the result of running the example and the

command info spu dma:

Listing 1

(gdb dma_error

#2 <cross-architecture call>

#3 0x000000800bdeff00 in .syscall () from /lib64/libc.so.6

#4 0x000004000003567c in ._base_spe_context_run () from /usr/lib64/libspe2.so.2

#5 0x0000040000029e24 in .spe_context_run () from /usr/lib64/libspe2.so.2

#6 0x0000000010000c1c in ppu_pthread_function (argp=0xfffffc8ea38) at dma_error.c:69

#7 0x000000800c00bcf0 in .start_thread () from /lib64/libpthread.so.0

#8 0x000000800bdf49fc in .__clone () from /lib64/libc.so.6

From Listing 1, it is not apparent which of the four DMA parameters (tag id,

effective address, local store address, and size) misbehave.

Listing 2

(gdb) r

Starting program: /opt/cell/sdk/src/examples/dma_errors/unaligned_lsa_error/dma_error

[Thread debugging using libthread_db enabled]

[New Thread 0x400012af230 (LWP 12581)]

[Switching to Thread 0x400012af230 (LWP 12581)]

Breakpoint 1, main (speid=268566544, argp=268566656, envp=0) at dma_error_spu.c:140

140 if (tag == MFC_TAG_INVALID)

(gdb) step 1

148 mfc_get (&control_block_data[4], argp, sizeof (control_block_t), tag, 0, 0);

(gdb) print tag

$1 = 0

(gdb) print sizeof(control_block_t)

$2 = 32

(gdb) print /x &control_block_data[4]

$4 = 0x21304

Following the steps shown in the previous examples, we can quickly eliminate the

EA, the tag-id and the transfer size as potential invalid DMA parameters (Listing

2). The local store address (&control_block_data[4]), however, ends with 0x04. This

address is not aligned on a 16-byte boundary. This is the cause of the bus error.

Segmentation faults

Segmentation faults can be caused by DMA transfers to or from bad effective

addresses.

Chapter 4. Debugging common Direct Memory Access (DMA) errors 57

|
|
|

|

|
|

|
|
|

|

|
|
|

|
|

|
|
|
|
|
|
|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

|

|
|

Debugging segmentation faults caused by invalid effective addresses is similar to

the techniques used to debug segmentation faults in other types of code.

The following example demonstrates a gdb debugging session to resolve a

segmentation violation resulting from a bad effective address in a DMA list

element.

Complete listing of the code for this example can be found in the directory:

/opt/cell/sdk/src/examples/dma_errors/bad_eal_in_dma_list_error

The example session within gdb begins as follows:

Listing 1

$ ppu-gdb dma_error

GNU gdb 6.8.50.20080526-cvs

Copyright (C) 2008 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>

This is free software: you are free to change and redistribute it.

There is NO WARRANTY, to the extent permitted by law. Type "show copying"

and "show warranty" for details.

This GDB was configured as "powerpc64-linux"...

(gdb) r

Starting program: /opt/cell/sdk/src/examples/dma_errors/bad_eal_in_dma_list_error/dma_error

[Thread debugging using libthread_db enabled]

[New Thread 0x40000aef230 (LWP 11714)]

Program received signal SIGSEGV, Segmentation fault.

[Switching to Thread 0x40000aef230 (LWP 11714)]

0x000006d4 in main (speid=268566544, argp=268566656, envp=0) at dma_error_spu.c:181

181 mfc_read_tag_status_all ();

The program is loaded and started with the r command. When the segmentation

fault occurs gdb stops execution. Next a standard backtrace command is issued

using the bt command to display the stack frames which led to the segmentation

fault:

Listing 2

(gdb) bt

#0 0x000006d4 in main (speid=268566544, argp=268566656, envp=0) at dma_error_spu.c:181

#1 0x0000008c in _start () from dma_error_spu@0x10001780 <5>

#2 <cross-architecture call>

#3 0x000000800bdeff00 in .syscall () from /lib64/libc.so.6

#4 0x000004000003567c in ._base_spe_context_run () from /usr/lib64/libspe2.so.2

#5 0x0000040000029e24 in .spe_context_run () from /usr/lib64/libspe2.so.2

#6 0x0000000010000c1c in ppu_pthread_function (argp=0xfffffc8ea38) at dma_error.c:69

#7 0x000000800c00bcf0 in .start_thread () from /lib64/libpthread.so.0

#8 0x000000800bdf49fc in .__clone () from /lib64/libc.so.6

Listing 2 does not show any obvious problems, so the info spu dma command is

issued to see if there is any error in the DMA commands:

Listing 3

(gdb) info spu dma

Tag-Group Status 0x00000001

Tag-Group Mask 0x00000001 (undefined query type)

Stall-and-Notify 0x00000000

Atomic Cmd Status 0x00000000

Opcode Tag TId RId EA LSA Size LstAddr LstSize E

getl 0 0 0 0x0000040000000000 0x09300 0x01000 0x11360 0x00040

There is only one outstanding DMA list transfer shown in the output, and the ″E″

bit is not turned on. This indicates all the input parameters to the DMA command

58 Programmer’s Guide

|
|

|
|
|

|

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

|

|
|
|
|
|
|
|
|
|
|

|
|

|

|
|
|
|
|
|
|
|

|
|

are valid, and checks for transfer size, alignment, and list element crossing 4 GB

boundary problems are not needed. The size of this DMA list transfer (LstSize) is

shown as 0x40 bytes (64 bytes). Examining the source code shows the DMA list has

a total size of 128 bytes (16 entries * 8 bytes/entries). These two facts mean half of

the DMA list has been processed successfully and the problem occurs in the second

half of the DMA list. Using this clue a closer look at the DMA list is done:

Listing 4

(gdb) print /x dma_list

$1 = {{notify = 0x0, reserved = 0x0, size = 0x1000, eal = 0x50080},

{notify = 0x0, reserved = 0x0, size = 0x1000, eal = 0x51080},

{notify = 0x0, reserved = 0x0, size = 0x1000, eal = 0x52080},

{notify = 0x0, reserved = 0x0, size = 0x1000, eal = 0x53080},

{notify = 0x0, reserved = 0x0, size = 0x1000, eal = 0x54080},

{notify = 0x0, reserved = 0x0, size = 0x1000, eal = 0x55080},

{notify = 0x0, reserved = 0x0, size = 0x1000, eal = 0x56080},

{notify = 0x0, reserved = 0x0, size = 0x1000, eal = 0x57080},

{notify = 0x0, reserved = 0x0, size = 0x1000, eal = 0x0},

{notify = 0x0, reserved = 0x0, size = 0x1000, eal = 0x59080},

{notify = 0x0, reserved = 0x0, size = 0x1000, eal = 0x5a080},

{notify = 0x0, reserved = 0x0, size = 0x1000, eal = 0x5b080},

{notify = 0x0, reserved = 0x0, size = 0x1000, eal = 0x5c080},

{notify = 0x0, reserved = 0x0, size = 0x1000, eal = 0x5d080},

{notify = 0x0, reserved = 0x0, size = 0x1000, eal = 0x5e080},

{notify = 0x0, reserved = 0x0, size = 0x1000, eal = 0x5f080}}

The gdb output shows the EAL of the 9th DMA list entry as 0. This caused the

segmentation violation. Looking through the code it reveals that the fill_dma_list

function (lines 112 to 115) sets the EAL of the 9th entry to 0. Removing this part of

the code, recompiling the program, and the program runs successfully.

The example here is a little contrived since it purposely sets the EAL of a specific

DMA list element to an invalid value; however, the general approach used to

debug a segmentation fault should still apply to most ″real-world″ scenarios.

DMA list element crossing 4 GB boundary

The CBEA specifies that the EAL (the 32-bit low-order effective address) for each

list element in a DMA list must be in the 4 GB aligned area defined by the EAH

(the 32-bit high-order effective address). Although each EAL starting address is in a

single 4 GB area, a list element transfer may cross the 4 GB boundary.

However, in the Cell/B.E. and PowerXCell 8i processors, a DMA list element that

crosses a 4 GB boundary will result in a Class0 DMA Alignment Error exception.

The Linux operating system makes no effort to detect or recover from this error.

Therefore, having a list element crossing a 4 GB boundary in a DMA list results in

a bus error at execution time.

A complete listing of the code for this example can be found in the directory:

/opt/cell/sdk/src/examples/dma_errors/4GB_crossing_error

In the following example, the code is run under gdb. After the program execution

breaks due to the ″Bus error″, the info spu dma command is issued. The output

from gdb is presented as follows:

Listing 1

Chapter 4. Debugging common Direct Memory Access (DMA) errors 59

|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

|
|
|

|

|
|
|
|

|
|
|
|
|

|

|

|
|
|

|

$ ppu-gdb dma_error

GNU gdb 6.8.50.20080526-cvs

Copyright (C) 2008 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>

This is free software: you are free to change and redistribute it.

There is NO WARRANTY, to the extent permitted by law. Type "show copying"

and "show warranty" for details.

This GDB was configured as "powerpc64-linux"...

(gdb) r

Starting program: /opt/cell/sdk/src/examples/dma_errors/4GB_crossing_error/dma_error

[Thread debugging using libthread_db enabled]

[New Thread 0x40000e9f230 (LWP 865)]

Program received signal SIGBUS, Bus error.

[Switching to Thread 0x40000e9f230 (LWP 865)]

0x00000694 in main (speid=268566544, argp=268566656, envp=0) at dma_error_spu.c:176

176 mfc_read_tag_status_all ();

(gdb) info spu dma

Tag-Group Status 0x00000001

Tag-Group Mask 0x00000001 (undefined query type)

Stall-and-Notify 0x00000000

Atomic Cmd Status 0x00000000

Opcode Tag TId RId EA LSA Size LstAddr LstSize E

getl 0 0 0 0x00000001fffff080 0x08280 0x01000 0x092d8 0x00008 *

(gdb) info symbol 0x08280

local_buffer + 28672 in section .bss

(gdb) info symbol 0x092d8

dma_list + 56 in section .bss

The output shows an error in the DMA get list command. Looking up the symbols

associated with the LSA and the LstAddr using the info symbol command, shows

partial transfers have been completed and the LSA and LstAddr are not the same as

the original LSA and LstAddr in the MFC command.

The next step is to take a closer look at the actual DMA list, as follows:

Listing 2

(gdb) print /x dma_list

$1 = {{notify = 0x0, reserved = 0x0, size = 0x1000, eal = 0xffff8080}, {notify = 0x0, reserved = 0x0, size = 0x1000, eal = 0xffff9080}, {

 notify = 0x0, reserved = 0x0, size = 0x1000, eal = 0xffffa080}, {notify = 0x0, reserved = 0x0, size = 0x1000, eal = 0xffffb080}, {

 notify = 0x0, reserved = 0x0, size = 0x1000, eal = 0xffffc080}, {notify = 0x0, reserved = 0x0, size = 0x1000, eal = 0xffffd080}, {

 notify = 0x0, reserved = 0x0, size = 0x1000, eal = 0xffffe080}, {notify = 0x0, reserved = 0x0, size = 0x1000, eal = 0xfffff080}}

Listing 2 shows the content of the current DMA list. The last DMA entry has an

EAL of 0xfffff080 and a size of 0x1000. This means the list entry actually crosses

the 4 GB boundary. Changing either the allocation of the original input data or

issuing another individual DMA transfer for the last DMA list entry should fix the

problem. For more information explaining the limitations of DMA list elements

crossing 4 GB boundaries, refer to “Managing a DMA list element crossing 4 GB

boundary” on page 19

DMA race conditions

Debugging race conditions caused by DMA transfers on Cell/B.E. is a difficult

task. The SDK provides some utilities to aid in finding them.

The race check library provides a set of routines, which support the software

detection of frequently encountered race conditions involving local store data

transfers and SPE local storage accesses. These race conditions occur as a result of

the indeterminate ordering of the transactions performed on the local store

60 Programmer’s Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

|

|
|
|
|
|
|

|
|
|
|
|
|
|

|
|

|
|

|
|
|
|

memory. For complete documentation on how to use the race check library to

detect race conditions, refer to the Cell Broadband Engine SDK Example Libraries

version 3.1.

An example demonstrating the use of the race check library can be found in the

directory:

/opt/cell/sdk/src/examples/race_check

Programmers can also use the IBM Full System Simulator for the Cell Broadband

Engine

http://www.alphaworks.ibm.com/tech/cellsystemsim

to detect potential race conditions in SPU programs.

Chapter 4. Debugging common Direct Memory Access (DMA) errors 61

|
|
|

|
|

|

|
|

|

|

http://www.alphaworks.ibm.com/tech/cellsystemsim

62 Programmer’s Guide

Chapter 5. Using the SPU GNU profiler

You use profiling to find out which parts of your program are traversed the most.

Profiling helps to identify the hot spots and can be used to optimize the

application performance.

Several forms of output are available from the analysis from the gprof info page,

for more information, refer to:

http://sourceware.org/binutils/docs/gprof/Introduction.html#I

The call graph shows, for each function, which functions called it, which other

functions it called, and how many times. It also estimates how much time was

spent in the subroutines of each function. This can suggest places where you can

try to eliminate function calls that are very time-consuming.

Usage and toolchain flow

The following diagram shows the toolchain flow for SPU-Gprof usage:

v If the code gets compiled and linked with the -pg flag it is enriched by the

compiler to collect profiling data. The linker automatically links a certain

gcrt[1,2].o to the binary that manages profiling during runtime.

v When the binary is executed profiling data is being collected. The gmon.out file

is written before the program exits.

v The spu-gprof tool reads the gmon.out and the binary files to generate the

profiling report.

How the SPU GNU profiler works

The gcrt[1,2] calls a function that initializes the profiler. It sets up the timer and

data structures needed for profiling. It also registers the a cleanup function at exit

that writes the gmon.out file.

© Copyright IBM Corp. 2006, 2008 63

|

|

|

|

|
|
|

|
|

|

|
|
|
|

|

|
|

|
|
|

|
|

|
|

|

|
|
|

http://sourceware.org/binutils/docs/gprof/Introduction.html#I

The flat profile is based on a histogram that is created using a sampling

mechanism. The sampling collects the content of the program count register using

SPU timers. The Histogram data is directly written into the gmon.out file.

For the callgraph profile, the profiler needs to know what functions are called,

from where, and how often. The compiler generates a particular prologue that

causes every function to call _mcount which is implemented in newlib. Its major

task is to extract the address of the function just entered and the address of the

caller of that function and then call the ordinary C function __mcount_internal that

handles the call graph and counts the calls. The collected data is stored in the PPU

memory using the EA cache management and gets written into the gmon.out file

when the program ends.

A simple spulet test

The following shows a simple spulet test:

1. Create SPU code:

echo ’int main(){ return 0;}’ > test.c

2. Compile and link the code using the -pg switch:

spu-gcc -pg test.c -o test

3. Run the spulet (this collects profiling data and create the gmon.out file):

./test

4. Run the profiler to view the results:

spu-gprof -b ./test

The result looks similar to this:

Flat profile:

Each sample counts as 0.01 seconds.

no time accumulated

 % cumulative self self total

 time seconds seconds calls Ts/call Ts/call name

 0.00 0.00 0.00 1 0.00 0.00 main

 Call graph

granularity: each sample hit covers 4 byte(s) no time propagated

index % time self children called name

 0.00 0.00 1/1 _start [70]

[1] 0.0 0.00 0.00 1 main [1]

--

Index by function name

 [1] main

Limitations

v The support for binaries that are using overlays is not implemented. That would

require major changes to the gprof tool of the binutils package.

v Since profiling increases the size of the binary there is a small window where it

could not fit into the local store.

v SPE programs that install their own first level interrupt handlers are not

supported. This is because the profiler uses the SPU Timer Library that installs

its own interrupt handler. The limitation is inherited from the SPU Timer

Library. The SPE can still use interrupts by using the infrastructure provided by

64 Programmer’s Guide

|
|
|

|
|
|
|
|
|
|
|

|

|

|

|

|

|

|

|

|

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|

|
|

|
|
|
|

the SPU Timer Library. For more information about the SPU Timer Library, refer

the SDK SPU Runtime Library Extensions Programmer’s Guide and API Reference.

v The profiler needs one timer for its sampling mechanism there are only

SPU_TIMER_NTIMERS -1 left for the users code.

v The sampling statistic could be influenced if user code suspends the profilers

sampling mechanism i.e. using spu_clock_stop().

v Gprof does not support profiling of multiple threads:

– It’s not possible to profile multiple SPE programs that run at the same time

– If the PPE binary is being profiled using Gprof, the SPE program cannot be

profiled
v The profiler uses the software managed cache for its profiling data (see section

3). That might have implications to programs that already use the software

managed cache. The user should employ existing compiler options like

-mcache-size= to tune cache usage by the profiling infrastructure.

v The newlibs profiler currently expects 32 bit PPU addresses. If you are

embedding an SPU binary into a PPU binary you need to compile, embed, and

link using the -m32 switch.

Further information

v http://www.gnu.org/software/binutils/

v http://sourceware.org/binutils/docs/gprof/index.html

v There are man and info pages for gprof

Chapter 5. Using the SPU GNU profiler 65

|
|

|
|

|
|

|

|

|
|

|
|
|
|

|
|
|

|

|

|

|

|

http://www.gnu.org/software/binutils/
http://sourceware.org/binutils/docs/gprof/index.html

66 Programmer’s Guide

Chapter 6. Analyzing Cell/B.E. SPUs with kdump and crash

The SDK provides a means of debugging kernel data related to SPUs through

specific crash commands, by using a dumped kernel image.

This functionality is based on the use of kdump, and the documentation can be

found in the Documentation/kdump/kdump.txt file from the Linux kernel sources.

The solution is composed of two environments:

v The production system, which runs the kernel where problems can occur

v The analysis system, where the information (dump file) captured by the

production system is analyzed and the possible problems are identified

Installation requirements

This topic describes the supported hardware and software.

The production system must be Cell/B.E. hardware. Otherwise, SPU-specific data

that is used by crash is not available in the dump file. The analysis system can be

any PowerPC hardware, either 32 or 64-bit.

To make use of the SPU crash commands, you need the following SDK packages:

v Production system:

– kexec-tools – tool used for dump capture kernel warm boot

– kernel – kernel image that starts dump capture kernel when a crash event

occurs

– kernel-kdump – dump capture kernel image

– busybox-kdump – customized initrd for booting the dump capture kernel

which uses the minimum of memory:
v Analysis system

– crash – crash tool for analyzing dump files

– crash-spu-commands – SPU-specific commands for crash tool

– kernel-debuginfo – provides a kernel image with debug information

The kernel-debuginfo package is available for for PPC64 architecture. If the

analysis system is a 32-bit system, it must be installed in a PPC64 or Cell/B.E.

BladeCenter and the /usr/lib/debug/lib/modules-<version>-<release>/vmlinux

file must be copied to the analysis system.

You must install all these packages manually. The package crash-spu-commands

installs crash if necessary. The following is an example of how to install the

analysis system packages using yum:

yum install crash-spu-commands kernel-debuginfo

For the production system, you can use a package manager such as yum to install

the packages kernel, kexec-tools, kernel-kdump and busybox-kdump as follows:

yum install kernel kexec-tools kernel-kdump busybox-kdump

© Copyright IBM Corp. 2006, 2008 67

busybox-kdump is an optional package, which is recommended for the production

system because it provides a custom initrd that allows to boot a dump capture

kernel using the minimum amount of memory required to save a dump file.

Production system

The production system runs the kernel image included with the SDK kernel

package.

The following additional steps are required to configure the production system:

1. Reserve at boot-time the memory necessary for booting the second (dump

capture) kernel, that is provided by kernel-kdump package

2. Load the dump capture kernel into the reserved memory

The optional package busybox-kdump provides a custom initrd that runs with 48

MB of reserved memory instead of 128 MB, the minimum amount of reserved

memory if default initrd is used. This value can be greater than 200 MB, it

depends on how many system services are initialized by the system.

To reserve the memory, add the crashkernel=<X>@32M parameter to the kernel boot,

where <X> is the number in megabytes to be reserved. In yaboot.conf, the

″append″ line for the busybox case looks like this:

append="console=hvc0 root=LABEL=/ crashkernel=48M@32M”

After the system has started with the crashkernel parameter, you need to load the

dump capture kernel image to the reserved memory. To do this, use the kexec

command from the kexec-tools package, as follows:

Using busybox (crashkernel=44M@32M):

kexec -p /boot/vmlinux-2.6.22.5-bsckdump \

--initrd=/usr/share/busybox/root_initrd/bin/busybox

Using default initrd (crashkernel=xM@32M, where x >= 128):

kexec -p /boot/vmlinux-2.6.22.5-bsckdump \

--initrd=/boot/initrd-2.6.22.5-bsckdump.img

Do not use --append with maxcpus parameter,

as it is known not to work with Cell/B.E. Architecture.

Maybe it can be used to change the root partition

where dump kernel will boot, through root parameter.

After running the above command, any future kernel panic event automatically

triggers the boot of the dump capture kernel. You can also trigger the dump

capture kernel through the use of the ″Magic SysRq key″ functionality (press

Alt+SysRq+C, or echo ’c’ to /proc/sysrq-trigger). You might want to do this to

capture kernel dump data in the event of a system hang.

After the dump capture kernel has booted, the only task you need to do is to copy

the dump file from /proc/vmcore to a persistent storage media. To avoid problems

during the dump capture, it is recommended that you define a place to save the

dump, which has a size which is about the amount of memory:

cp /proc/vmcore <vmcore_path>

Analysis system

The SPU-commands extension for crash provides commands that format and show

data about the state of SPUs at the time of the system crash or hang.

68 Programmer’s Guide

Two parameters are necessary to run crash successfully, these are the production

system kernel image compiled with debug info and the kernel dump file. The first

is provided by kernel-debuginfo package, in the /usr/lib/debug/lib/modules/
<version>-<release>/ directory. The dump file is provided by the dump capture

kernel through /proc/vmcore (see previous section).

The order in which the parameters are invoked is not important. For example:

crash /usr/lib/debug/boot/vmlinux-<version>-<release>

<vmcore_path>

If the above files are consistent with each other (<vmcore_path> is generated by a

version <version>-<release> kernel), and a crash prompt is provided.

First of all, it is necessary to load the spufs module symbols. This is done by the

following command:

crash> mod -s spufs

To use crash SPU-specific commands, use the extend command to load the spu.so

file:

Note: It is located in the lib64 directory.

crash> extend /usr/lib/crash/extensions/spu.so

When you load the extension, three SPU-specific commands are made available:

v spus

v spurq

v spuctx

These commands are described in the following paragraphs.

You can use the command spus to see which SPE contexts were running at the

time of the system crash as shown in the following example:

crash> spus

NODE 0:

ID SPUADDR SPUSTATUS CTXADDR CTXSTATE PID

 0 c000000001fac880 RUNNING c00000003dcbdd80 RUNNABLE 1524

 1 c000000001faca80 RUNNING c00000003bf34e00 RUNNABLE 1528

 2 c000000001facc80 RUNNING c00000003bf30e00 RUNNABLE 1525

 3 c000000001face80 RUNNING c000000039421d00 RUNNABLE 1533

 4 c00000003ee29080 RUNNING c00000003dec3e80 RUNNABLE 1534

 5 c00000003ee28e80 RUNNING c00000003bf32e00 RUNNABLE 1526

 6 c00000003ee28c80 STOPPED c000000039e5e700 SAVED 1522

 7 c00000003ee2e080 RUNNING c00000003dec4e80 RUNNABLE 1538

NODE 1:

ID SPUADDR SPUSTATUS CTXADDR CTXSTATE PID

 8 c00000003ee2de80 RUNNING c00000003dcbed80 RUNNABLE 1529

 9 c00000003ee2dc80 RUNNING c00000003bf39e00 RUNNABLE 1535

10 c00000003ee2da80 RUNNING c00000003bf3be00 RUNNABLE 1521

11 c000000001fad080 RUNNING c000000039420d00 RUNNABLE 1532

12 c000000001fad280 RUNNING c00000003bf3ee00 RUNNABLE 1536

13 c000000001fad480 RUNNING c00000003dec2e80 RUNNABLE 1539

14 c000000001fad680 RUNNING c00000003bf3ce00 RUNNABLE 1537

15 c000000001fad880 RUNNING c00000003dec6e80 RUNNABLE 1540

The command spuctx shows context information. The command syntax is:

spuctx [ID | PID | ADDR

Chapter 6. Analyzing Cell/B.E. SPUs with kdump and crash 69

For example:

crash> spuctx c00000003dcbdd80 1529

Dumping context fields for spu_context c00000003dcbdd80:

 state = 0

 prio = 120

 local_store = 0xc000000039055840

 rq = 0xc00000003dcbe720

 node = 0

 number = 0

 pid = 1524

 name = spe

 slb_replace = 0x0

 mm = 0xc0000000005dd700

 timestamp = 0x10000566f

 class_0_pending = 0

 problem = 0xd000080080210000

 priv2 = 0xd000080080230000

 flags = 0x0

 saved_mfc_sr1_RW = 0x3b

 saved_mfc_dar = 0xd000000000093000

 saved_mfc_dsisr = 0x0

 saved_spu_runcntl_RW = 0x1

 saved_spu_status_R = 0x1

 saved_spu_npc_RW = 0x0

Dumping context fields for spu_context c00000003dcbed80:

 state = 0

 prio = 120

 local_store = 0xc00000003905a840

 rq = 0xc00000003dcbf720

 node = 1

 number = 8

 pid = 1529

 name = spe

 slb_replace = 0x0

 mm = 0xc0000000005d1300

 timestamp = 0x10000566f

 class_0_pending = 0

 problem = 0xd000080080690000

 priv2 = 0xd0000800806b0000

 flags = 0x0

 saved_mfc_sr1_RW = 0x3b

 saved_mfc_dar = 0xd0000000000f3000

 saved_mfc_dsisr = 0x0

 saved_spu_runcntl_RW = 0x1

 saved_spu_status_R = 0x1

 saved_spu_npc_RW = 0x0

You can use the command spurq to visualize all the SPU contexts that were on the

SPU run-queue

crash> spurq

PRIO[120]:

c000000000fd7380

c00000003bf31e00

c000000039422d00

c00000000181eb80

70 Programmer’s Guide

Chapter 7. Using SPU code overlays

This section describes how to use the overlay facility to overcome the physical

limitations on code and data size in the SPU.

What are overlays

Optimally a complete SPU program is loaded into the local storage of the SPU

before it is executed. This is the most efficient method of execution. However,

when the sum of the code and data lengths of the program exceeds the local

storage size it is necessary to use overlays. (For the IBM BladeCenter QS21 and

IBM BladeCenter QS22 the storage size is 256 KB.) Overlays may be used in other

circumstances; for example performance might be improved if the size of data

areas can be increased by moving rarely used functions to overlays.

An overlay is a program segment which is not loaded into SPU local storage

before the main program begins to execute, but is instead left in Cell main storage

until it is required. When the SPU program calls code in an overlay segment, this

segment is transferred to local storage where it can be executed. This transfer will

usually overwrite another overlay segment which is not immediately required by

the program.

In an overlay structure the local storage is divided into a root segment, which is

always in storage, and one or more overlay regions, where overlay segments are

loaded when needed. Any given overlay segment will always be loaded into the

same region. A region may contain more than one overlay segment, but a segment

will never cross a region boundary.

(A segment is the smallest unit which can be loaded as one logical entity during

execution. Segments contain program sections such as functions and data areas.)

The overlay feature is supported for Cell SPU programming (but not for PPU

programming) on a native IBM BladeCenter QS21 and IBM BladeCenter QS22 or

on the simulator hosted on an x86 or PowerPC machine.

How overlays work

The code size problem can be addressed through the generation of overlays by the

linker. Two or more code segments can be mapped to the same physical address in

local storage. The linker also generates call stubs and associated tables for overlay

management. Instructions to call functions in overlay segments are replaced by

branches to these call stubs, which load the function code to be called, if necessary,

and then branch to the function.

In most cases all that is needed to convert an ordinary program to an overlay

program is the addition of a linker script to structure the module. In the script you

specify which segments of the program can be overlaid. The linker then prepares

the required segments so that they may be loaded when needed during execution

of the program, and also adds supporting code from the overlay manager library.

At execution time when a call is made from an executing segment to another

segment the system determines from the overlay tables whether the requested

© Copyright IBM Corp. 2006, 2008 71

segment is already in local storage. If not this segment is loaded dynamically (this

is carried out by a DMA command), and may overlay another segment which had

been loaded previously.

Restrictions on the use of overlays

When using overlays you must consider the scope of data very carefully. It is a

widespread practice to group together code sections and the data sections used by

them. If these are located in an overlay region the data can only be used

transiently - overlay sections are not ’swapped out’ (written back to Cell BE main

storage) as on other platforms but are replaced entirely by other overlays.

Ideally all data sections are kept in the root segment which is never overlaid. If the

data size is too large for this then sections for transient data may be included in

overlay regions, but the implications of this must be carefully considered.

Planning to use overlays

The overlay structure should be considered at the program planning stage, as soon

as code sizes can be estimated. The planning needs to include the number of

overlay regions that are required; the number of segments which will be overlaid

into each region; and the number of functions within each segment. At this stage it

is better to overestimate the number of segments required than to underestimate

them. It is easier to combine segments later than to break up oversize segments

after they are coded.

Overview

The structure of an overlay SPU program module depends on the relationships

between the segments within the module.

Two segments which do not have to be in storage at the same time may share an

address range. These segments can be assigned the same load addresses, as they

are loaded only when called. For example, segments that handle error conditions

or unusual data are used infrequently and need not occupy storage until they are

required.

Program sections which are required at any time are grouped into a special

segment called the root segment. This segment remains in storage throughout the

execution of an program.

Some overlay segments may be called by several other overlay segments. This can

be optimized by placing the called and calling segments in separate regions.

To design an overlay structure you should start by identifying the code sections or

stubs which receive control at the beginning of execution, and also any code

sections which should always remain in storage. These together form the root

segment. The rest of the structure is developed by checking the links between the

remaining sections and analyzing these to determine which sections can share the

same local storage locations at different times during execution.

Sizing

Because the minimum indivisible code unit is at the function level, the minimum

size of the overlay region is the size of the largest overlaid function. If this function

is so large that the generated SPU program does not fit in local storage then a

72 Programmer’s Guide

warning is issued by the linker. The user must address this problem by splitting

the function into two or more smaller functions.

Scaling considerations

Even with overlays there are limits on how large an SPE executable can become.

An infrastructure of manager code, tables, and stubs is required to support

overlays and this infrastructure itself cannot reside in an overlay. For a program

with s overlay segments in r regions, making cross-segment calls to f functions, this

infrastructure requires the following amounts of local storage:

v manager: about 400 bytes

v tables: s * 16 + r * 4 bytes

v stubs: f * 16 bytes.

This allows a maximum available code size of about 512 megabytes, split into 4096

overlay sections of 128 kilobytes each. (This assumes a single entry point into each

section and no global data segment or stack.)

Except for the local storage memory requirements described above, this design

does not impose any limitations on the numbers of overlay segments or regions

supported.

Overlay tree structure example

Suppose that a program contains seven sections which are labelled SA through SG,

and that the total length of these exceeds the amount of local storage available.

Before the program is restructured it must be analyzed to find the optimum

overlay design.

The relationship between segments can be shown with a tree structure. This

graphically shows how segments can use local storage at different times. It does

not imply the order of execution (although the root segment is always the first to

receive control). Figure 2 shows the tree structure for this program. The structure

includes five segments:

 The position of the segments in an overlay tree structure does not imply the

sequence in which the segments are executed; in particular sections in the root

Figure 2. Overlay tree structure

Chapter 7. Using SPU code overlays 73

|

|

segment may be called from any segment. A segment can be loaded and overlaid

as many times as the logic of the program requires.

Length of an overlay program

For purposes of illustration, assume the sections in the example program have the

following lengths:

 Table 10. example program lengths

Section Length (in bytes)

SA 30,000

SB 20,000

SC 60,000

SD 40,000

SE 30,000

SF 60,000

SG 80,000

If the program did not use overlays it would require 320 KB of local storage; the

sum of all sections. With overlays, however, the storage needed for the program is

the sum of all overlay regions, where the size of each region is the size of its

largest segment. In this structure the maximum is formed by segments 0, 4, and 2;

these being the largest segments in regions 0, 1, and 2. The sum of the regions is

then 200 KB, as shown in Figure 3.

Note: The sum of all regions is not the minimum requirement for an overlay

program. When a program uses overlays, extra programming and tables are used

and their storage requirements must also be considered. The storage required by

these is described in “Scaling considerations” on page 73.

Figure 3. Length of an overlay module

74 Programmer’s Guide

Segment origin

The linker typically assigns the origin of the root segment (the origin of the

program) to address 0x80. The relative origin of each segment is determined by the

length of all previously defined regions. For example, the origin of segments 2 and

3 is equal to the root origin plus 80 KB (the length of region 1 and segment 4) plus

50 KB (the length of the root segment), or 0x80 plus 130 KB. The origins of all the

segments are as follows:

 Table 11. Segment origins

Segment Origin

0 0x80 + 0

1 0x80 + 50,000

2 0x80 + 130,000

3 0x80 + 130,000

4 0x80 + 50,000

The segment origin is also called the load point, because it is the relative location

where the segment is loaded. Figure 4 shows the segment origin for each segment

and the way storage is used by the example program. The vertical bars indicate

segment origin; two segments with the same origin can use the same storage area.

This figure also shows that the longest path is that for segments 0, 4, and 2.

Figure 4. Segment origin and use of storage

Chapter 7. Using SPU code overlays 75

Overlay processing

The overlay processing is initiated when a section in local storage calls a section

not in storage.

The function which determines when an overlay is to occur is the overlay manager.

This checks which segment the called section is in and, if necessary, loads the

segment. When a segment is loaded it overlays any segment in storage with the

same relative origin. No overlay occurs if one sectioncalls another section which is

in a segment already in storage (in another region or in the root segment).

The overlay manager uses special stubs and tables to determine when an overlay is

necessary. These stubs and tables are generated by the linker and are part of the

output program module. The special stubs are used for each inter-segment call.

The tables generated are the overlay segment table and the overlay region table.

Figure 5 shows the location of the call stubs and the segment and region tables in

the root segment in the example program.

 The size of these tables must be considered when planning the use of local storage.

Call stubs

Stubs are needed to transfer control between overlay segments. Stubs are short

code sequences that specify the segment and destination address via reserved

registers, and branch to the overlay manager. Any function in an overlay segment

that has its address taken, and a function or case table destination in an overlay

segment called from the root segment, requires one stub in the root segment. A

function or case table destination in an overlay segment, called from another

overlay segment, but not having its address taken, requires one stub in each caller

segment. No stub is needed for control transfers within a segment.

Segment and region tables

Each overlay program contains one overlay segment table and one overlay region

table. These tables are in the root segment. The segment table contains static

(read-only) information about the relationship of the segments and regions in the

Figure 5. Location of stubs and tables in an overlay program

76 Programmer’s Guide

|
|
|
|
|
|
|
|

program. During execution the region table contains dynamic (read-write) control

information such as which segments are loaded into each region.

Overlay graph structure example

If the same section is used by several segments it is usually desirable to place that

section in the root segment. However, the root segment can get so large that the

benefits of overlay are lost. If some of the sections in the root segment could

overlay each other then the program might be described as an overlay graph

structure (as opposed to an overlay tree structure) and it should use multiple

regions.

With multiple regions each segment has access to both the root segment and other

overlay segments in other regions. Therefore regions are independent of each other.

Figure 6 shows the relationship between the sections in the example program and

two new sections: SH and SI. The two new sections are each used by two other

sections in different segments. Placing SH and SI in the root segment makes the

root segment larger than necessary, because SH and SI can overlay each other. The

two sections cannot be duplicated in two paths.

 However, if the two sections are placed in another region they can be in local

storage when needed, regardless of the segments executed in the other regions.

Figure 7 on page 78 shows the sections in a four-region structure. Either segment

in region 3 can be in local storage regardless of the segments being executed in

regions 0, 1, or 2. Segments in region 3 can cause segments in region 0, 1 or 2 to be

loaded without being overlaid themselves.

Figure 6. Overlay graph structure

Chapter 7. Using SPU code overlays 77

The relative origin of region 3 is determined by the length of the preceding regions

(200 KB). Region 3, therefore, begins at the origin plus 200 KB.

The local storage required for the program is determined by adding the lengths of

the longest segment in each region. In Figure 7 if SH is 40 KB and SI is 30 KB the

storage required is 240 KB plus the storage required by the overlay manager, its

call stubs and its overlay tables. Figure 8 on page 79 shows the segment origin for

each segment and the way storage is used by the example program.

Figure 7. Overlay graph using multiple regions

78 Programmer’s Guide

Specification of an SPU overlay program

Once you have designed an overlay structure, the program must be arranged into

that structure. You must indicate to the linker the relative positions of the

segments, the regions, and the sections in each segment, by using OVERLAY

statements. Positioning is accomplished as follows:

Regions

Are defined by each OVERLAY statement. Each OVERLAY statement begins a

new region.

Segments

Are defined within an OVERLAY statement. Each segment statement within

an overlay statement defines a new segment. In addition, it provides a

means to equate each load point with a unique symbolic name.

Sections

Are positioned in the segment specified by the segment statement with

which they are associated.

 The input sequence of control statements and sections should reflect the sequence

of the segments in the overlay structure (for example the graph in Figure 7 on page

78), region by region, from top to bottom and from left to right. This sequence is

illustrated in later examples.

The origin of every region is specified with an OVERLAY statement. Each OVERLAY

statement defines a load point at the end of the previous region. That load point is

logically assigned a relative address at the quadword boundary that follows the

last byte of the largest segment in the preceding region. Subsequent segments

defined in the same region have their origin at the same load point.

Figure 8. Overlay graph segment origin and use of storage

Chapter 7. Using SPU code overlays 79

In the example overlay tree program, two load points are assigned to the origins of

the two OVERLAY statements and their regions, as shown in Figure 2 on page 73.

Segments 1 and 4 are at the first load point; segments 2 and 3 are at the second

load point.

The following sequence of linker script statements results in the structure in

Figure 3 on page 74.

OVERLAY {

 .segment1 {./sc.o(.text)}

 .segment4 {./sg.o(.text)}

}

OVERLAY {

 .segment2 {./sd.o(.text) ./se.o(.text)}

 .segment3 {./sf.o(.text)}

}

Note: By implication sections SA and SB are associated with the root segment

because they are not specified in the OVERLAY statements.

In the example overlay graph program, as shown in Figure 6 on page 77, one more

load point is assigned to the origin of the last OVERLAY statement and its region.

Segments 5 and 6 are at the third load point.

The following linker script statements add to the sequence for the overlay tree

program creating the structure shown in Figure 7 on page 78:

.

.

.

OVERLAY {

 .segment5 {./si.o(.text)}

 .segment6 {./sh.o(.text)}

}

Coding for overlays

Migration/Co-Existence/Binary-Compatibility Considerations

This feature will work with both IPA and non-IPA code, though the partitioning

algorithm will generate better overlays with IPA code.

Compiler options (spuxlc and GCC)

This section describes which compiler options you must use when you construct

overlays.

XLC compiler options

Note: Not applicable for the GCC.

 Table 12. Compiler options

Option Description

-qipa=overlay Specifies that the compiler should

automatically create code overlays. The

-qipa=partition={small|medium|large}

option is used to control the size of the

overlay buffer. The overlay buffer will be

placed after the text segment of the linker

script.

80 Programmer’s Guide

Table 12. Compiler options (continued)

Option Description

-qipa=nooverlay Specifies that the compiler should not

automatically create code overlays. This is

the default behavior for the dual source

compiler.

-qipa=overlayproc=<names_list> Specifies a comma-separated list of functions

that should be in the same overlay. Multiple

overlayproc suboptions may be present to

specify multiple overlay groups. If a

procedure is listed in multiple groups, it will

be cloned for each group referencing it. C++

function names must be mangled.

-qipa=nooverlayproc= <names_list> Specifies a comma-separated list of functions

that should not be overlaid. These are

always be resident in the local store. C++

function names must be mangled.

Examples:

Compile and link without overlays.

spuxlc foo.c bar.c

spuxlc foo.c bar.c -qipa=nooverlay

Compile and link with automatic overlays.

spuxlc foo.c bar.c -qipa=overlay

Compile and link with automatic overlays and ensure that foo and bar are

in the same overlay. The main function is always resident.

spuxlc foo.c bar.c -qipa=overlay:overlayproc=foo,bar:nooverlayproc=main

Compile and link with automatic overlays and a custom linker script.

spuxlc foo.c bar.c -qipa=overlay -Wl,-Tmyldscript

GCC compiler options

The following are the GCC compiler options.

 Table 13. GCC compiler options

Option Description

-ffunction-sections Place each function or data item into its own

section in the output file. The name of the

function or the name of the data item

determines the section’s name in the output

file.

-fpartition-functions-into-sections=<bytes> Partition a function into sections according

to a threshold which indicates the maximum

number of bytes each section can contain.

This option can be used when a single

function’s body can not fully fit into the

local store and thus using the above

-ffunction-sections option will not be

sufficient to construct the overlaid program.

Examples:

Chapter 7. Using SPU code overlays 81

|
|
|
|
|
|
|
|
|
|
|
|
|

|

|

||

||

||
|
|
|
|

||
|
|
|
|
|
|
|
|

|

Compile and link without overlays

spu-gcc bar.c

Compile and link with custom linker script.

spu-gcc bar.c -ffunction-sections -Wl,-T,linker.script

spu-gcc bar.c -fpartition-functions-into-sections=1000 -Wl,-T,linker.script

Compile and link with automatic overlays support.

spu-gcc bar.c -ffunction-sections -Wl,--auto-overlay

spu-gcc bar.c -fpartition-functions-into-sections=1000 -Wl,--auto-overlay

SDK overlay examples

Three examples are considered:

1. a very simple overlay program: “Simple overlay example”;

2. the example used in the overview above: “Overview overlay example” on page

85;

3. and a ″large matrix″ example: “Large matrix overlay example” on page 86.

These examples can be found in the cell-examples RPMs included in the SDK.

Simple overlay example

This example consists of a single PPU program named driver which creates an

SPU thread and launches an embedded SPU main program named spu_main. The

SPU program calls four functions: o1_test1, o1_test2, o2_test1, and o2_test2. The

first two functions are defined in a single compilation unit, olay1/test.c, and the

second two functions are similarly defined in olay2/test.c. See the calling

diagram in Figure 9. Upon completion of the SPU thread the driver returns a value

from the SPU program to the PPU program.

 The SPU program is organized as an overlay program with two regions and three

segments. The first region is the non-overlay region containing the root segment

(segment 0). This root segment contains the spu_main function along with overlay

support programming and tables (not shown). The second region is an overlay

region and contains segments 1 and 2. In segment 1 are the code sections of

functions o1_test1 and o1_test2, and in segment 2 are the code sections of

functions o2_test1 and o2_test2, as shown in Figure 10 on page 83.

Figure 9. Simple overlay program call graph

82 Programmer’s Guide

|
|
|
|
|
|
|
|
|
|

Combining these figures yields the following diagram showing the structure of the

SPU program.

 The physical view of this example (Figure 12 on page 84) shows one region

containing the non-overlay root segment, and a second region containing one of

two overlay segments. Because the functions in these two overlay segments are

quite similar their lengths happen to be the same.

Figure 10. Simple overlay program regions, segments and sections

Figure 11. Simple overlay program logical structure

Chapter 7. Using SPU code overlays 83

The spu_main program calls its sub-functions multiple times. Specifically the

spu_main program first calls two functions, o1_test1 and o1_test2, passing in an

integer value (101 and 102 respectively) and upon return it expects an integer

result (1 and 2 respectively). Next spu_main calls the two other functions, o2_test1

and o2_test2 passing in an integer value (201 and 202 respectively) and upon

return it expects an integer result (11 and 12 respectively). Finally spu_main calls

again the first two functions, o1_test1 and o1_test2 passing in an integer value

(301 and 302 respectively) and upon return it expects an integer result (1 and 2

respectively). Between each pair of calls, the overlay manager loads the

appropriate segment into the appropriate region. In this case, for the first pair it

loads segment 1 into region 1 then for the second pair it loads segment 2 into

region 1, and for the last pair it reloads segment 1 back into region 1. See Figure 13

on page 85.

Figure 12. Simple overlay program physical structure

84 Programmer’s Guide

The linker flags used are:

LDFLAGS = -Wl,-T,linker.script

The linker script is:

Note: To simplify the linker scripts only the affected statements are shown in this

and the following examples.
SECTIONS

{OVERLAY :

{.segment1 {olay1/*.o(.text)}

.segment2 {olay2/*.o(.text)}

}

}

INSERT AFTER .text;

Overview overlay example

The overview overlay program is an adaptation of the program described in

“Overlay graph structure example” on page 77. The structure is the same as that

shown in Figure 7 on page 78 but the sizes of each segment are different. Each

function is defined in its own compilation unit; a distinct file with a name the

same as the function name.

The example consists of a single SPU main program. The main program calls the SA

function which in turn calls the SB function. These three functions are all located in

the root segment (segment 0) and cannot be overlaid.

The SB function calls the SC and SG functions. These are in two segments which are

both located in region 1 and overlay each other.

SC calls SD and SF. SD in turn calls SE. The SD and SE functions are in segment 2

and the SF function is in segment 3. These two segments are both located in region

2 and overlay each other.

Figure 13. Example overlay program interaction diagram

Chapter 7. Using SPU code overlays 85

|

|
|

|
|
|
|
|
|
|

The SF and SG functions call the SH and SI functions. SI is in segment 6, and SH is

in segment 5. These two segments are both located in region 3 and overlay each

other.

The physical view of this example (Figure 8 on page 79) shows the four regions;

one region containing a single non-overlay root segment and three regions

containing six overlay segments.

The linker flags used are:

LDFLAGS = -Wl,-T,linker.script

The linker script is:

SECTIONS

{OVERLAY :

{

.segment1 {sc.o(.text)}

.segment4 {sg.o(.text) }

}

OVERLAY :

{

.segment2 {sd.o(.text) se.o(.text)}

.segment3 {sf.o(.text)}

}

OVERLAY :

{

.segment5 {sh.o(.text)}

.segment6 {si.o(.text)}

}

}

INSERT AFTER .text;

Large matrix overlay example

The large matrix overlay program consists of a single monolithic non-overlay SPU

standalone program. This new example takes the existing program and converts it

to an overlay program by providing a linker script. No changes (such as

re-compilation) are made to the current library or to the test case code.

The updated example consists of a single standalone SPU program, large_matrix,

which calls test functions test_index_max_abs_vec and test_solve_linear_system

amongst others. These functions are defined in the single compilation unit

large_matrix.c. A simplified structure is shown in Figure 14 on page 87 (some

functions, and some calls within a region, have been omitted for clarity). If the test

completes successfully the function returns a zero value; in other cases it returns a

non-zero value.

86 Programmer’s Guide

|
|

|
|

The physical view of this example in Figure 15 shows three regions; one containing

a single non-overlay root segment, and two containing twelve overlay segments.

This assumes the archive library directory, /opt/cell/sdk/usr/lib, and the archive

library, liblarge_matrix.a, are specified to the SPU linker.

The linker flags used are:

LDFLAGS = -Wl,-T,linker.script

Figure 14. Large matrix overlay program call graph

Figure 15. Large matrix program physical structure

Chapter 7. Using SPU code overlays 87

Note: this is a subset of all the functions in the large_matrix library. Only those

needed by the test case driver, large_matrix.c, are used in this example.

The linker script is:

SECTIONS

{OVERLAY :

{

.segment01 {scale_vector.o*(.text)}

.segment02 {scale_matrix_col.o*(.text)}

.segment03 {swap_vectors.o*(.text)}

.segment04 {swap_matrix_rows.o*(.text)}

.segment05 {index_max_abs_vec.o*(.text)}

.segment06 {solve_triangular.o*(.text)}

.segment07 {transpose_matrix.o*(.text)}

.segment08 {nmsub_matrix_matrix.o*(.text)}

.segment09 {nmsub_vector_vector.o*(.text)}

.segment10 {index_max_abs_col.o*(.text)}

}

OVERLAY :

{

.segment11 {madd_number_vector.o*(.text)}

.segment12 {nmsub_number_vector.o*(.text)}

}

}INSERT AFTER .text;

Using the GNU SPU linker for overlays

The GNU SPU linker takes object files, object libraries, linker scripts, and

command line options as its inputs and produces a fully or partially linked object

file as its output. It is natural to control generation of overlays via a linker script as

this allows maximum flexibility in specifying overlay regions and in mapping

input files and functions to overlay segments. The linker has been enhanced so

that one or more overlay regions may be created by simply inserting multiple

OVERLAY statements in a standard script; no modification of the subsequent output

section specifications, such as setting the load address, is necessary. (It is also

possible to generate overlay regions without using OVERLAY statements by defining

loadable output sections with overlapping virtual memory address (VMA) ranges.)

On detection of overlays the linker automatically generates the data structures

used to manage them, and scans all non-debug relocations for calls to addresses

which map to overlay segments. Any such call, apart from those used in branch

instructions within the same section, causes the linker to generate an overlay call

stub for that address and to remap the call to branch to that stub. At execution

time these stubs call an overlay manager function which loads the overlay segment

into storage, if necessary, before branching to the final destination.

If the linker command option: –extra-overlay-stubs is specified then the linker

generates call stubs for all calls within an overlay segment, even if the target does

not lie within an overlay segment (for example if it is in the root segment). Note

that a non-branch instruction referencing a function symbol in the same section

will also cause a stub to be generated; this ensures that function addresses which

escape via pointers are always remapped to a stub as well.

The management data structures generated include two overlay tables in a .ovtab

section. The first of these is a table with one entry per overlay segment. This table

is read-write to the overlay manager. The low bit of size is set when a segment is

loaded, and cleared when a segment is evicted. It has the format:

88 Programmer’s Guide

|

|
|

|

|
|
|

struct {

 u32 vma; // SPU local store address that the section is loaded to.

 u32 size; // Size of the overlay in bytes.

 u32 offset; // Offset in SPE executable where the section can be found.

 u32 buf; // One-origin index into the _ovly_buf_table.

} _ovly_table[];

The second table has one entry per overlay region. This table is read-write to the

overlay manager, and changes to reflect the current overlay mapping state. The

format is:

struct {

 u32 mapped; // One-origin index into _ovly_table for the

 // currently loaded overlay. 0 if none.

} _ovly_buf_table[];

Note: These tables and the overlay manager itself must reside in the root

(non-overlay) segment.

Whenever the overlay manager loads an segment into a region it updates the

mapped field in the _ovly_buf_table entry for the region with the index of the

segment entry in the _ovly_buf table.

The overlay manager may be provided by the user as a library containing the

entries __ovly_load and __ovly_return. (It is an error for the user to provide

__ovly_return without also providing __ovly_load.) If these entries are not

provided the linker will use a built-in overlay manager.

Generating automatic overlay scripts

If given the --auto-overlay command option, the GNU SPU linker generates an

overlay script automatically when a program does not fit in local store. The

overlays so generated use a simple single region overlay buffer, but the linker does

attempt to group input files and sections intelligently by considering the program

call graph.

Better grouping is possible if you compile using the compiler’s -ffunction-sections

option. If you specify an output file for the generated script, for example,

--auto-overlay=link.script, then the linker generates the script and then exits, unless

you also specify --auto-relink, in which case the linker re-invokes itself using the

generated script. If you do not specify an output file for the generated script,

--auto-relink is assumed.

The linker allocates as large an overlay buffer as possible after allowing for data,

stack and certain program text that must be in non-overlay memory, such as the

overlay manager. Stack size is estimated (as for --stack-analysis) and a zero heap

assumed. You can modify this behavior with a number of options:

--fixed-space=bytes

This option can be used to increase the size for non-overlay code and data.

If the value given exceeds the minimum needed, then the linker places

functions that are called from many places (typically library functions), into

this area.

--reserved-space=bytes

This option specifies the size needed for stack and heap, overriding the

linker’s estimate. Do not forget to allocate space for access below the stack

pointer. The current built-in overlay manager uses 64 bytes below sp.

Other code may use up to 2000 bytes according to the SPU ABI.

Chapter 7. Using SPU code overlays 89

|
|

|
|
|
|

|

|
|
|
|
|

|
|
|
|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|
|

--extra-stack-space=bytes

This option specifies the space allocated for access below the stack pointer,

to be added to the linker’s stack estimate.

--overlay-rodata

This option specifies that a function’s read-only data should be placed

along with the function’s code in overlays. This is a dangerous option since

this data may be accessed via pointers passed to other functions.

90 Programmer’s Guide

|
|
|

|
|
|
|

Appendix A. Related documentation

This topic helps you find related information.

Document location

Links to documentation for the SDK are provided on the IBM® developerWorks

Web site located at:

http://www.ibm.com/developerworks/power/cell/

Click the Docs tab.

The following documents are available, organized by category:

Architecture

v Cell Broadband Engine Architecture

v Cell Broadband Engine Registers

v SPU Instruction Set Architecture

Standards

v C/C++ Language Extensions for Cell Broadband Engine Architecture

v Cell Broadband Engine Linux Reference Implementation Application Binary Interface

Specification

v SIMD Math Library Specification for Cell Broadband Engine Architecture

v SPU Application Binary Interface Specification

v SPU Assembly Language Specification

Programming

v Cell Broadband Engine Programmer’s Guide

v Cell Broadband Engine Programming Handbook

v Cell Broadband Engine Programming Tutorial

Library

v Accelerated Library Framework for Cell Broadband Engine Programmer’s Guide and

API Reference

v Basic Linear Algebra Subprograms Programmer’s Guide and API Reference

v Data Communication and Synchronization for Cell Broadband Engine Programmer’s

Guide and API Reference

v Example Library API Reference

v Fast Fourier Transform Library Programmer’s Guide and API Reference

v LAPACK (Linear Algebra Package) Programmer’s Guide and API Reference

v Mathematical Acceleration Subsystem (MASS)

v Monte Carlo Library Programmer’s Guide and API Reference

v SDK 3.0 SIMD Math Library API Reference

v SPE Runtime Management Library

v SPE Runtime Management Library Version 1 to Version 2 Migration Guide

v SPU Runtime Extensions Library Programmer’s Guide and API Reference

© Copyright IBM Corp. 2006, 2008 91

http://www.ibm.com/developerworks/power/cell/

v Three dimensional FFT Prototype Library Programmer’s Guide and API Reference

Installation

v SDK for Multicore Acceleration Version 3.1 Installation Guide

Tools

v Getting Started - XL C/C++ for Multicore Acceleration for Linux

v Compiler Reference - XL C/C++ for Multicore Acceleration for Linux

v Language Reference - XL C/C++ for Multicore Acceleration for Linux

v Programming Guide - XL C/C++ for Multicore Acceleration for Linux

v Installation Guide - XL C/C++ for Multicore Acceleration for Linux

v Getting Started - XL Fortran for Multicore Acceleration for Linux

v Compiler Reference - XL Fortran for Multicore Acceleration for Linux

v Language Reference - XL Fortran for Multicore Acceleration for Linux

v Optimization and Programming Guide - XL Fortran for Multicore Acceleration for

Linux

v Installation Guide - XL Fortran for Multicore Acceleration for Linux

v Performance Analysis with the IBM Full-System Simulator

v IBM Full-System Simulator User’s Guide

v IBM Visual Performance Analyzer User’s Guide

IBM PowerPC Base

v IBM PowerPC Architecture™ Book

– Book I: PowerPC User Instruction Set Architecture

– Book II: PowerPC Virtual Environment Architecture

– Book III: PowerPC Operating Environment Architecture

v IBM PowerPC Microprocessor Family: Vector/SIMD Multimedia Extension Technology

Programming Environments Manual

92 Programmer’s Guide

Appendix B. Accessibility features

Accessibility features help users who have a physical disability, such as restricted

mobility or limited vision, to use information technology products successfully.

The following list includes the major accessibility features:

v Keyboard-only operation

v Interfaces that are commonly used by screen readers

v Keys that are tactilely discernible and do not activate just by touching them

v Industry-standard devices for ports and connectors

v The attachment of alternative input and output devices

IBM and accessibility

See the IBM Accessibility Center at http://www.ibm.com/able/ for more

information about the commitment that IBM has to accessibility.

© Copyright IBM Corp. 2006, 2008 93

http://www.ibm.com/able/

94 Programmer’s Guide

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in

other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not grant you

any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION ″AS IS″ WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore, this statement may not apply

to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 2006, 2008 95

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact:

IBM Corporation

Software Interoperability Coordinator, Department 49XA

3605 Highway 52 N

Rochester, MN 55901

U.S.A.

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this document and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement or any equivalent agreement

between us.

Any performance data contained herein was determined in a controlled

environment. Therefore, the results obtained in other operating environments may

vary significantly. Some measurements may have been made on development-level

systems and there is no guarantee that these measurements will be the same on

generally available systems. Furthermore, some measurements may have been

estimated through extrapolation. Actual results may vary. Users of this document

should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of

performance, compatibility or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the

suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or

withdrawal without notice, and represent goals and objectives only.

All IBM prices shown are IBM’s suggested retail prices, are current and are subject

to change without notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to

change before the products described become available.

This information contains examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious and any similarity to the names and addresses used by an actual business

enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which

illustrate programming techniques on various operating platforms. You may copy,

96 Programmer’s Guide

modify, and distribute these sample programs in any form without payment to

IBM, for the purposes of developing, using, marketing or distributing application

programs conforming to the application programming interface for the operating

platform for which the sample programs are written. These examples have not

been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or

imply reliability, serviceability, or function of these programs.

Each copy or any portion of these sample programs or any derivative work, must

include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.

Sample Programs. © Copyright IBM Corp. _enter the year or years_. All rights

reserved.

If you are viewing this information softcopy, the photographs and color

illustrations may not appear.

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of

International Business Machines Corporation in the United States, other countries,

or both. These and other IBM trademarked terms are marked on their first

occurrence in this information with the appropriate symbol (® or

™), indicating US

registered or common law trademarks owned by IBM at the time this information

was published. Such trademarks may also be registered or common law

trademarks in other countries. A complete and current list of IBM trademarks is

available on the Web at http://www.ibm.com/legal/copytrade.shtml.

Cell Broadband Engine is a trademark of Sony Computer Entertainment, Inc., in

the United States, other countries, or both and is used under license therefrom.

Intel, MMX, and Pentium® are trademarks of Intel Corporation in the United

States, other countries, or both.

Linux is a trademark of Linus Torvalds in the United States, other countries, or

both.

UNIX® is a registered trademark of The Open Group in the United States and

other countries.

Red Hat, the Red Hat “Shadow Man” logo, and all Red Hat-based trademarks and

logos are trademarks or registered trademarks of Red Hat, Inc., in the United

States and other countries.

XDR is a trademark of Rambus Inc. in the United States and other countries.

Other company, product, or service names may be trademarks or service marks of

others.

Terms and conditions

Permissions for the use of these publications is granted subject to the following

terms and conditions.

Personal Use: You may reproduce these publications for your personal,

noncommercial use provided that all proprietary notices are preserved. You may

Notices 97

http://www.ibm.com/legal/copytrade.shtml

not distribute, display or make derivative works of these publications, or any

portion thereof, without the express consent of the manufacturer.

Commercial Use: You may reproduce, distribute and display these publications

solely within your enterprise provided that all proprietary notices are preserved.

You may not make derivative works of these publications, or reproduce, distribute

or display these publications or any portion thereof outside your enterprise,

without the express consent of the manufacturer.

Except as expressly granted in this permission, no other permissions, licenses or

rights are granted, either express or implied, to the publications or any data,

software or other intellectual property contained therein.

The manufacturer reserves the right to withdraw the permissions granted herein

whenever, in its discretion, the use of the publications is detrimental to its interest

or, as determined by the manufacturer, the above instructions are not being

properly followed.

You may not download, export or re-export this information except in full

compliance with all applicable laws and regulations, including all United States

export laws and regulations.

THE MANUFACTURER MAKES NO GUARANTEE ABOUT THE CONTENT OF

THESE PUBLICATIONS. THESE PUBLICATIONS ARE PROVIDED ″AS-IS″ AND

WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,

INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF

MERCHANTABILITY, NON-INFRINGEMENT, AND FITNESS FOR A

PARTICULAR PURPOSE.

98 Programmer’s Guide

Glossary

ABI

Application Binary Interface. This is the standard

that a program follows to ensure that code

generated by different compilers (and perhaps

linking with various, third-party libraries) run

correctly on the Cell BE. The ABI defines data

types, register use, calling conventions and object

formats.

ALF

Accelerated Library Framework. This an API that

provides a set of services to help programmers

solving data parallel problems on a hybrid

system. ALF supports the multiple-program-
multiple-data (MPMD) programming style where

multiple programs can be scheduled to run on

multiple accelerator elements at the same time.

ALF offers programmers an interface to partition

data across a set of parallel processes without

requiring architecturally-dependent code.

API

Application Program Interface.

atomic operation

A set of operations, such as read-write, that are

performed as an uninterrupted unit.

Auto-SIMDize

To automatically transform scaler code to vector

code.

Barcelona Supercomputing

Center

Spanish National Supercomputing Center,

supporting Bladecenter and Linux on cell.

BE

Broadband Engine.

Broadband Engine

See CBEA.

BSC

See Barcelona Supercomputing Center.

C++

C++ is an object-orientated programming

language, derived from C.

cache

High-speed memory close to a processor. A cache

usually contains recently-accessed data or

instructions, but certain cache-control instructions

can lock, evict, or otherwise modify the caching

of data or instructions.

call stub

A small piece of code used as a link to other code

which is not immediately accessible.

Cell BE processor

The Cell BE processor is a multi-core broadband

processor based on IBM’s Power Architecture.

CBEA

Cell Broadband Engine Architecture. A new

architecture that extends the 64-bit PowerPC

Architecture. The CBEA and the Cell Broadband

Engine are the result of a collaboration between

Sony, Toshiba, and IBM, known as STI, formally

started in early 2001.

Cell Broadband Engine processor

See Cell BE.

code section

A self-contained area of code, in particular one

which may be used in an overlay segment.

© Copyright IBM Corp. 2006, 2008 99

coherence

Refers to memory and cache coherence. The

correct ordering of stores to a memory address,

and the enforcement of any required cache

writebacks during accesses to that memory

address. Cache coherence is implemented by a

hardware snoop (or inquire) method, which

compares the memory addresses of a load request

with all cached copies of the data at that address.

If a cache contains a modified copy of the

requested data, the modified data is written back

to memory before the pending load request is

serviced.

compiler

A programme that translates a high-level

programming language, such as C++, into

executable code.

computational kernel

Part of the accelerator code that does stateless

computation task on one piece of input data and

generates corresponding output results.

compute task

An accelerator execution image that consists of a

compute kernel linked with the accelerated

library framework accelerator runtime library.

CPC

A tool for setting up and using the hardware

performance counters in the Cell BE processor.

CPI

Cycles per instruction. Average number of clock

cycles taken to perform one CPU instruction.

CPL

Common Public License.

cycle

Unless otherwise specified, one tick of the PPE

clock.

Cycle-accurate simulation

See Performance simulation.

DaCS

The Data Communication and Synchronization

(DaCS) library provides functions that focus on

process management, data movement, data

synchronization, process synchronization, and

error handling for processes within a hybrid

system.

DaCS Element

A general or special purpose processing element

in a topology. This refers specifically to the

physical unit in the topology. A DE can serve as a

Host or an Accelerator.

DE

See DaCS element.

DMA

Direct Memory Access. A technique for using a

special-purpose controller to generate the source

and destination addresses for a memory or I/O

transfer.

DMA command

A type of MFC command that transfers or

controls the transfer of a memory location

containing data or instructions. See MFC.

DMA list

A sequence of transfer elements (or list entries)

that, together with an initiating DMA-list

command, specify a sequence of DMA transfers

between a single area of LS and discontinuous

areas in main storage. Such lists are stored in an

SPE’s LS, and the sequence of transfers is initiated

with a DMA-list command such as getl or putl.

DMA-list commands can only be issued by

programs running on an SPE, but the PPE or

other devices can create and store the lists in an

SPE’s LS. DMA lists can be used to implement

scatter-gather functions between main storage and

the LS.

dual-issue

Issuing two instructions at once, under certain

conditions. See fetch group.

100 Programmer’s Guide

EA

See Effective address.

ECC

Error-Correcting Code.

effective address

An address generated or used by a program to

reference memory. A memory-management unit

translates an effective address (EA) to a virtual

address (VA), which it then translates to a real

address (RA) that accesses real (physical) memory.

The maximum size of the effective address space

is 264 bytes.

ELF

Executable and Linking Format. The standard

object format for many UNIX operating systems,

including Linux. Originally defined by AT&T and

placed in public domain. Compilers generate ELF

files. Linkers link to files with ELF files in

libraries. Systems run ELF files.

elfspe

The SPE that allows an SPE program to run

directly from a Linux command prompt without

needing a PPE application to create an SPE thread

and wait for it to complete.

ext3

Extended file system 3. One of the file system

options available for Linux partitions.

FDPR-Pro

Feedback Directed Program Restructuring. A

feedback-based post-link optimization tool.

Fedora

Fedora is an operating system built from open

source and free software. Fedora is free for

anyone to use, modify, or distribute. For more

information about Fedora and the Fedora Project,

see the following Web site: http://
fedoraproject.org/.

fence

An option for a barrier ordering command that

causes the processor to wait for completion of all

MFC commands before starting any commands

queued after the fence command. It does not

apply to these immediate commands: getllar,

putllc, and putlluc.

FFT

Fast Fourier Transform.

firmware

A set of instructions contained in ROM usually

used to enable peripheral devices at boot.

FSF

Free Software Foundation. Organization

promoting the use of open-source software such

as Linux.

FSS

IBM Full-System Simulator. IBM’s tool which

simulates the cell processor environment on other

host computers.

GCC

GNU C compiler

GDB

GNU application debugger. A modified version of

gdb, ppu-gdb, can be used to debug a Cell

Broadband Engine program. The PPE component

runs first and uses system calls, hidden by the

SPU programming library, to move the SPU

component of the Cell Broadband Engine

program into the local store of the SPU and start

it running. A modified version of gdb, spu-gdb,

can be used to debug code executing on SPEs.

GNU

GNU is Not Unix. A project to develop free

Unix-like operating systems such as Linux.

GPL

GNU General Public License. Guarantees freedom

to share, change and distribute free software.

Glossary 101

http://fedoraproject.org/
http://fedoraproject.org/

graph structure

A program design in which each child segment is

linked to one or more parent segments.

group

A group construct specifies a collection of DaCS

DEs and processes in a system.

guarded

Prevented from responding to speculative loads

and instruction fetches. The operating system

typically implements guarding, for example, on

all I/O devices.

GUI

Graphical User Interface. User interface for

interacting with a computer which employs

graphical images and widgets in addition to text

to represent the information and actions available

to the user. Usually the actions are performed

through direct manipulation of the graphical

elements.

handle

A handle is an abstraction of a data object;

usually a pointer to a structure.

host

A general purpose processing element in a hybrid

system. A host can have multiple accelerators

attached to it. This is often referred to as the

master node in a cluster collective.

HTTP

Hypertext Transfer Protocol. A method used to

transfer or convey information on the World Wide

Web.

Hybrid

A module comprised of two Cell BE cards

connected via an AMD Opteron processor.

IDE

Integrated Development Environment. Integrates

the Cell/B.E. GNU tool chain, compilers, the

Full-System Simulator, and other development

components to provide a comprehensive,

Eclipse-based development platform that

simplifies Cell/B.E. development.

IDL

Interface definition language. Not the same as

CORBA IDL

ILAR

IBM International License Agreement for early

release of programs.

initrd

A command file read at boot

interrupt

A change in machine state in response to an

exception. See exception.

intrinsic

A C-language command, in the form of a function

call, that is a convenient substitute for one or

more inline assembly-language instructions.

Intrinsics make the underlying ISA accessible

from the C and C++ programming languages.

ISO image

Commonly a disk image which can be burnt to

CD. Technically it is a disk image of and ISO 9660

file system.

K&R programming

A reference to a well-known book on

programming written by Dennis Kernighan and

Brian Ritchie.

102 Programmer’s Guide

kernel

The core of an operating which provides services

for other parts of the operating system and

provides multitasking. In Linux or UNIX

operating system, the kernel can easily be rebuilt

to incorporate enhancements which then become

operating-system wide.

L1

Level-1 cache memory. The closest cache to a

processor, measured in access time.

L2

Level-2 cache memory. The second-closest cache

to a processor, measured in access time. A L2

cache is typically larger than a L1 cache.

LA

Local address. A local store address of a DMA

list. It is used as a parameter in a MFC command.

latency

The time between when a function (or

instruction) is called and when it returns.

Programmers often optimize code so that

functions return as quickly as possible; this is

referred to as the low-latency approach to

optimization. Low-latency designs often leave the

processor data-starved, and performance can

suffer.

LGPL

Lesser General Public License. Similar to the GPL,

but does less to protect the user’s freedom.

libspe

A SPU-thread runtime management library.

list element

Same as transfer element. See DMA list.

lnop

A NOP (no-operation instruction) in a SPU’s odd

pipeline. It can be inserted in code to align for

dual issue of subsequent instructions.

loop unrolling

A programming optimization that increases the

step of a loop, and duplicates the expressions

within a loop to reflect the increase in the step.

This can improve instruction scheduling and

memory access time.

LS

See local store.

LSA

Local Store Address. An address in the local store

of a SPU through which programs running in the

SPU, and DMA transfers managed by the MFC,

access the local store.

main memory

See main storage.

main storage

The effective-address (EA) space. It consists

physically of real memory (whatever is external to

the memory-interface controller, including both

volatile and nonvolatile memory), SPU LSs,

memory-mapped registers and arrays,

memory-mapped I/O devices (all I/O is

memory-mapped), and pages of virtual memory

that reside on disk. It does not include caches or

execution-unit register files. See also local store.

Makefile

A descriptive file used by the makecommand in

which the user specifies: (a) target program or

library, (b) rules about how the target is to be

built, (c) dependencies which, if updated, require

that the target be rebuilt.

mailbox

A queue in a SPE’s MFC for exchanging 32-bit

messages between the SPE and the PPE or other

devices. Two mailboxes (the SPU Write Outbound

Mailbox and SPU Write Outbound Interrupt

Mailbox) are provided for sending messages from

the SPE. One mailbox (the SPU Read Inbound

Mailbox) is provided for sending messages to the

SPE.

Glossary 103

main thread

The main thread of the application. In many

cases, Cell BE architecture programs are

multi-threaded using multiple SPEs running

concurrently. A typical scenario is that the

application consists of a main thread that creates

as many SPE threads as needed and the

application organizes them.

Mambo

Pre-release name of the IBM Full-System

Simulator, see FSS

MASS

MASS and MASS/V libraries contain optimized

scalar and vector math library operations.

MFC

Memory Flow Controller. Part of an SPE which

provides two main functions: it moves data via

DMA between the SPE’s local store (LS) and main

storage, and it synchronizes the SPU with the rest

of the processing units in the system.

MFC proxy commands

MFC commands issued using the MMIO interface.

MPMD

Multiple Program Multiple Data. Parallel

programming model with several distinct

executable programs operating on different sets of

data.

MT

See multithreading.

multithreading

Simultaneous execution of more than one

program thread. It is implemented by sharing one

software process and one set of execution

resources but duplicating the architectural state

(registers, program counter, flags and associated

items) of each thread.

NaN

Not-a-Number. A special string of bits encoded

according to the IEEE 754 Floating-Point

Standard. A NaN is the proper result for certain

arithmetic operations; for example, zero divided

by zero = NaN. There are two types of NaNs,

quiet NaNs and signaling NaNs. Signaling NaNs

raise a floating-point exception when they are

generated.

netboot

Command to boot a device from another on the

same network. Requires a TFTP server.

node

A node is a functional unit in the system

topology, consisting of one host together with all

the accelerators connected as children in the

topology (this includes any children of

accelerators).

NUMA

Non-uniform memory access. In a

multiprocessing system such as the Cell/B.E.,

memory is configured so that it can be shared

locally, thus giving performance benefits.

Oprofile

A tool for profiling user and kernel level code. It

uses the hardware performance counters to

sample the program counter every N events.

overlay region

An area of storage, with a fixed address range,

into which overlay segments are loaded. A region

only contains one segment at any time.

overlay

Code that is dynamically loaded and executed by

a running SPU program.

page table

A table that maps virtual addresses (VAs) to real

addresses (RA) and contains related protection

parameters and other information about memory

locations.

104 Programmer’s Guide

parent

The parent of a DE is the DE that resides

immediately above it in the topology tree.

PDF

Portable document format.

Performance simulation

Simulation by the IBM Full System Simulator for

the Cell Broadband Engine in which both the

functional behavior of operations and the time

required to perform the operations is simulated.

Also called cycle-accurate simulation.

PERL

Practical extraction and reporting language. A

scripting programming language.

pipelining

A technique that breaks operations, such as

instruction processing or bus transactions, into

smaller stages so that a subsequent stage in the

pipeline can begin before the previous stage has

completed.

plugin

Code that is dynamically loaded and executed by

running an SPU program. Plugins facilitate code

overlays.

PPC-64

64 bit implementation of the PowerPC Architecture.

PPC

See Power PC.

PPE

PowerPC Processor Element. The general-purpose

processor in the Cell.

PPSS

PowerPC Processor Storage Subsystem. Part of

the PPE. It operates at half the frequency of the

PPU and includes an L2 cache and a Bus Interface

Unit (BIU).

PPU

PowerPC Processor Unit. The part of the PPE that

includes the execution units, memory-
management unit, and L1 cache.

program section

See code section.

proxy

Allows many network devices to connect to the

internet using a single IP address. Usually a

single server, often acting as a firewall, connects

to the internet behind which other network

devices connect using the IP address of that

server.

region

See overlay region.

root segment

Code that is always in storage when a SPU

program runs. The root segment contains overlay

control sections and may also contain code

sections and data areas.

RPM

Originally an acronym for Red Hat Package

Manager, and RPM file is a packaging format for

one or more files used by many Linux systems

when installing software programs.

Sandbox

Safe place for running programs or script without

affecting other users or programs.

SDK

Software development toolkit for Multicore

Acceleration. A complete package of tools for

application development.

section

See code section.

segment

See overlay segment and root segment.

Glossary 105

SFP

SPU Floating-Point Unit. This handles

single-precision and double-precision

floating-point operations.

signal

Information sent on a signal-notification channel.

These channels are inbound registers (to a SPE).

They can be used by the PPE or other processor

to send information to a SPE. Each SPE has two

32-bit signal-notification registers, each of which

has a corresponding memory-mapped I/O

(MMIO) register into which the signal-notification

data is written by the sending processor. Unlike

mailboxes, they can be configured for either

one-to-one or many-to-one signalling. These

signals are unrelated to UNIX signals. See channel

and mailbox.

signal notification

See signal.

SIMD

Single Instruction Multiple Data. Processing in

which a single instruction operates on multiple

data elements that make up a vector data-type.

Also known as vector processing. This style of

programming implements data-level parallelism.

SIMDize

To transform scaler code to vector code.

SMP

Symmetric Multiprocessing. This is a

multiprocessor computer architecture where two

or more identical processors are connected to a

single shared main memory.

SPE

Synergistic Processor Element. Extends the

PowerPC 64 architecture by acting as cooperative

offload processors (synergistic processors), with

the direct memory access (DMA) and

synchronization mechanisms to communicate

with them (memory flow control), and with

enhancements for real-time management. There

are 8 SPEs on each cell processor.

SPE thread

A thread scheduled and run on a SPE. A program

has one or more SPE threads. Each such thread

has its own SPU local store (LS), 128 x 128-bit

register file, program counter, and MFC

Command Queues, and it can communicate with

other execution units (or with effective-address

memory through the MFC channel interface).

specific intrinsic

A type of C and C++ language extension that

maps one-to-one with a single SPU assembly

instruction. All SPU specific intrinsics are named

by prefacing the SPU assembly instruction with

si_.

splat

To replicate, as when a single scalar value is

replicated across all elements of an SIMD vector.

SPMD

Single Program Multiple Data. A common style of

parallel computing. All processes use the same

program, but each has its own data.

SPU

Synergistic Processor Unit. The part of an SPE

that executes instructions from its local store (LS).

spulet

1) A standalone SPU program that is managed by

a PPE executive. 2) A programming model that

allows legacy C programs to be compiled and run

on an SPE directly from the Linux command

prompt.

stub

See methodstub.

synchronization

The order in which storage accesses are

performed.

System X

This is a project-neutral description of the

supervising system for a node.

106 Programmer’s Guide

tag group

A group of DMA commands. Each DMA

command is tagged with a 5-bit tag group

identifier. Software can use this identifier to check

or wait on the completion of all queued

commands in one or more tag groups. All DMA

commands except getllar, putllc, and putlluc

are associated with a tag group.

Tcl

Tool Command Language. An interpreted script

language used to develop GUIs, application

prototypes, Common Gateway Interface (CGI)

scripts, and other scripts. Used as the command

language for the Full System Simulator.

TFTP

Trivial File Transfer Protocol. Similar to, but

simpler than the Transfer Protocol (FTP) but less

capable. Uses UDP as its transport mechanism.

thread

A sequence of instructions executed within the

global context (shared memory space and other

global resources) of a process that has created

(spawned) the thread. Multiple threads (including

multiple instances of the same sequence of

instructions) can run simultaneously if each

thread has its own architectural state (registers,

program counter, flags, and other program-visible

state). Each SPE can support only a single thread

at any one time. Multiple SPEs can

simultaneously support multiple threads. The PPE

supports two threads at any one time, without the

need for software to create the threads. It does

this by duplicating the architectural state. A

thread is typically created by the pthreads library.

TLB

Translation Lookaside Buffer. An on-chip cache

that translates virtual addresses (VAs) to real

addresses (RAs). A TLB caches page-table entries

for the most recently accessed pages, thereby

eliminating the necessity to access the page table

from memory during load/store operations.

tree structure

A program design in which each child segment is

linked to a single parent segment.

TS

The transfer size parameter in an MFC command.

UDP

User Datagram Protocol. Transports data as a

connectionless protocol, i.e. without

acknowledgement or receipt. Fast but fragile.

user mode

The mode in which problem state software runs.

vector

An instruction operand containing a set of data

elements packed into a one-dimensional array.

The elements can be fixed-point or floating-point

values. Most Vector/SIMD Multimedia Extension

and SPU SIMD instructions operate on vector

operands. Vectors are also called SIMD operands

or packed operands.

virtual memory

The address space created using the memory

management facilities of a processor.

virtual storage

See virtual memory.

VMA

Virtual memory address. See virtual memory.

work block

A basic unit of data to be managed by the

framework. It consists of one piece of the

partitioned data, the corresponding output buffer,

and related parameters. A work block is

associated with a task. A task can have as many

work blocks as necessary.

workload

A set of code samples in the SDK that

characterizes the performance of the architecture,

algorithms, libraries, tools, and compilers.

Glossary 107

work queue

An internal data structure of the accelerated

library framework that holds the lists of work

blocks to be processed by the active instances of

the compute task.

x86

Generic name for Intel-based processors.

XDR

Rambus Extreme Data Rate DRAM memory

technology.

XLC

The IBM optimizing C/C++ compiler.

yaboot

Linux utility which is a boot loader for

PowerPC-based hardware.

108 Programmer’s Guide

Index

Special characters
__ovly_load 89

_ovly_debug_event 89

–extra-overlay-stubs
linker command 88

Numerics
4 GB example 59

A
address

load 72

ALF library 5

archive library 87

directory 87

B
best practices 17

BLAS 7

bogusnet support 44

breakpoints
multi-location 37

setting pending 36

build environment 15

busybox-kdump 67

C
call stub 71, 76, 88

code samples
subdirectories 8

combined debugger 36

command
linker 86, 88

set multiple-symbols 39

spuctx 69

spurq 70

spus 69

compiler 17

changing the default 15

GNU tool chain 16

overlay programs 80

shell environment variable 15

XL C/C++ 2

context switching
SPE 22

control statement
linker 79

crash 67

installing 67

crash-spu-commands 67

crashkernel parameter 68

D
DaCS library 6

data
transient 72

debugging
architecture 32

commands 41

compiling with GCC 23

compiling with XLC 23

GDB 23

GDB overview 23

info spu dma 42

info spu event 42

info spu mailbox 42

info spu proxydma 43

info spu signal 42

multithreaded code 32

pending breakpoints 36

PPE code 24

remote overview 43

remotely 43

scheduler-locking 35

set stop-on-load 38

source level 25

SPE code 24

SPE registers 26

SPE stack 29

SPU-related kernel data 67

stack
debugging overflows 30

stack overflows 30

starting remote 44

using remote debugger 44

using the combined debugger 36

demos
directory 15

directory
archive library 87

code samples 8

demos 15

libraries 8

programming example 15

system root 13

disambiguation
global symbols 39

DMA 19, 59, 72

documentation 91

E
elfspe 4

example
large matrix overlay 86

overlay graph structure 77

overview overlay 85

simple overlay 82

F
Fast Fourier Transform 6

FFT library 6

flags
linker 85, 86, 87

function 72

G
GCC compiler 1

GDB
overview 23

GNU SPU linker 88

GNU tool chain 1

compiling 16

linking 16

H
hardware

supported vi

hybrid
overview 12

I
IDE 11

info spu dma 42

info spu event 42

info spu mailbox 42

info spu proxydma 43

info spu signal 42

installing
crash 67

kdump 67

Integrated Development

Environment 11

K
kdump 67

installing 67

kernel 3

kernel-debuginfo 67

kernel-kdump 67

kexec-tools 67

L
languages

ADA vi

Assembler vi

Fortran vi

LAPACK 7

length of an overlay program 74

libraries
ALF 5

BLAS 7

© Copyright IBM Corp. 2006, 2008 109

libraries (continued)
Cell/B.E- library 3

DaCS 6

FFT 6

LAPACK 7

libspe version 2.3 3

MASS 4

monte carlo 6

performance support 11

SIMD math library 4

subdirectories 8

library
archive 87

overlay manager 71

libspe
version 2.3 3

linker 71, 76, 87

command 88

commands 86

control statement 79

flags 85, 86, 87

GNU 88

OVERLAY statement 88

script 86

linker command
–extra-overlay-stubs 88

linker statement 80

OVERLAY 79

Linux
kernel 3

load address 72

load point 75, 79, 80

lookaside buffer 20

M
makefile

for examples 15

manager
overlay 76, 78, 89

MASS library 4

Monte Carlo libraries 6

multiply-defined global symbols 39

N
native debugging

setting up 43

NUMA 21

O
origin

segment 75, 76, 78

overlay 71

automatic generation 89

graph structure example 77

large matrix example 86

manager 76, 78, 84, 89

manager library 71

manager user 89

overview example 85

processing 76

program length 74

region 72, 77, 84, 85, 87, 88

region size 72

overlay (continued)
region table 76, 89

restriction 72

segment 71, 77, 84, 85, 87, 88

segment table 76, 88

simple example 82

SPU program specification 79

table 71, 88

tree structure example 73

OVERLAY
linker statement 80

statement 88

overlays
compiler options 80

P
performance

considerations 20

NUMA 20, 21

preemptive context switching 22

SPE 22

support libraries 11

platforms vi

PowerXCell 8i 14

ppu-gdb 24

processor 14

architecture 14

compiler support 14

PowerXCell 8i 14

programming example
compiler 15

directory 15

running 16

programming languages
supported vi

programs
debugging 24

R
readme 15

region 76, 79, 82, 83

overlay 72, 76, 77, 84, 85, 87, 88

overlay table 76, 89

remote debugging
setting up 43

requirements vi

hardware vi

root segment 72, 76, 77, 80, 83, 85, 87, 88

address 75

S
scheduler-locking 35

script
linker 86, 88

SDK
overlay examples 82

overview 1

SDK documentation 91

section 79

segment 79, 82

overlay 71, 77, 83, 84, 85, 87, 88

overlay table 76, 88

root 72, 76, 77, 80, 83, 85, 87, 88

segment origin 75, 76, 78

set multiple_symbols 39

set stop-on-load 38

setting up
native debugging 43

remote debugging 43

SIMD math library 4

SPE
preemptive context switching 22

registers 26

stack debugging 29

SPE executable
size 73

SPE Runtime Management Library
version 2.3 3

specification
SPU overlay program 79

SPU
debugging related kernel data 67

overlay program specification 79

stack analysis 27

thread 82

SPU GNU profiler 63

spu_main 82, 84, 85

spu-gdb 24

SPE registers 26

spuctx command 69

spurq command 70

spus command 69

stack
analysis 27

debugging 29

managing 31

overflow 31

statement
OVERLAY 88

support libraries 11

switching architectures 33

symbols
multiply-defined 39

system root
directory 13

T
table

overlay 71, 88

overlay region 76, 89

overlay segment 76, 88

thread
SPU 82

TLB file system
configuring 20

trademarks 97

transient data 72

U
user overlay manager 89

V
virtual memory address (VMA) 88

110 Programmer’s Guide

X
XL C/C++ compiler 2

Index 111

112 Programmer’s Guide

����

Printed in USA

SC33-8325-03

	Contents
	Preface
	About this book
	What's new for SDK 3.1
	Supported operating environments
	Supported hardware requirements
	Software requirements
	Unsupported beta-level environments

	Getting support
	Related documentation

	Chapter 1. SDK technical overview
	GNU tool chain
	IBM XL C/C++ compiler
	Linux kernel
	Libraries and frameworks
	SPE Runtime Management Library Version 2.3
	SIMD math libraries
	Mathematical Acceleration Subsystem (MASS) libraries
	ALF library
	DaCS library
	Fast Fourier Transform library
	Monte Carlo libraries
	Basic Linear Algebra Sublibrary
	LAPACK library

	Code examples and example libraries
	Performance tools
	IBM Eclipse IDE for the SDK
	Overview of the hybrid programming environment

	Chapter 2. Programming with the SDK
	SDK directories
	Specifying the processor architecture
	SDK programming examples and demos
	Overview of the build environment
	Changing the build environment
	Building and running a specific program
	Compiling and linking with the GNU tool chain
	Customizing the compiler

	Developing applications with the SDK
	SDK programming policies and conventions

	Managing a DMA list element crossing 4 GB boundary
	Performance considerations
	Using the huge translation lookaside buffer (TLB) to reserve memory
	Using NUMA
	Preemptive context switching

	Chapter 3. Debugging Cell/B.E. applications
	Overview of GDB
	GDB for SDK
	Compiling and linking applications

	Debugging applications
	Debugging PPE code
	Debugging SPE code
	Debugging source level code
	Debugging assembler level code
	How spu-gdb manages SPE registers
	SPU stack analysis
	SPE stack debugging

	Debugging in the Cell/B.E. environment
	Debugging multithreaded code
	Debugging architecture
	Switching architectures within a single thread
	Viewing symbolic and additional information
	Using scheduler-locking

	Using the combined debugger
	Setting pending breakpoints
	Multi-location breakpoints
	Using the set spu stop-on-load command
	Disambiguation of multiply-defined global symbols

	New command reference
	info spu event
	info spu signal
	info spu mailbox
	info spu dma
	info spu proxydma

	Debugging applications remotely
	Overview of remote debugging
	Using remote debugging
	Starting remote debugging

	Chapter 4. Debugging common Direct Memory Access (DMA) errors
	DMA errors
	Using ppu-gdb to debug DMA errors
	Examples
	Unaligned effective address
	Tag ID errors
	Transfer size errors
	Unaligned local store address
	Segmentation faults
	DMA list element crossing 4 GB boundary

	DMA race conditions

	Chapter 5. Using the SPU GNU profiler
	Chapter 6. Analyzing Cell/B.E. SPUs with kdump and crash
	Installation requirements
	Production system
	Analysis system

	Chapter 7. Using SPU code overlays
	What are overlays
	How overlays work
	Restrictions on the use of overlays
	Planning to use overlays
	Overview
	Sizing
	Scaling considerations
	Overlay tree structure example
	Length of an overlay program
	Segment origin
	Overlay processing
	Call stubs
	Segment and region tables

	Overlay graph structure example

	Specification of an SPU overlay program
	Coding for overlays
	Migration/Co-Existence/Binary-Compatibility Considerations
	Compiler options (spuxlc and GCC)

	SDK overlay examples
	Simple overlay example
	Overview overlay example
	Large matrix overlay example

	Using the GNU SPU linker for overlays
	Generating automatic overlay scripts

	Appendix A. Related documentation
	Appendix B. Accessibility features
	Notices
	Trademarks
	Terms and conditions

	Glossary
	Index

