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About This Document 

This document describes particular features of the Cell Broadband Engine™ (CBE) Linux® Reference 
Implementation Application Binary Interface (ABI). Thus, it supplements the basic ABI specifications cited in 
“Related Documentation”. If the material in this document differs from the SPU Application Binary Interface 
Specification, the content specified here takes precedence. 

Audience 
This document is intended for system and application programmers who develop language processors and other 
software tools for the Cell Broadband Engine. 

Version History 
This section describes significant changes made to the CBE Linux Reference Implementation ABI Specification 
for each version of the document. 

Version Number & Date Changes 

v 1.2 
August 22, 2007 

Modification corresponding to: 
• LWG_RFC0008 – add opcodes for externally assisted SPE 

library calls 
• LWG_RFC0025 – isolation mode errors and stop-and-signal 

types 
• LWG_RFC0028 – add additional PPE assisted POSIX opcodes 

v. 1.1 
November 27, 2006 

Modifications corresponding to: 
• LWG_RFC0006  - special symbol mangling, the _EAR_ symbol 
• LWG_RFC0007 - .toe section type change 

v. 1.0 
November 9, 2005 

Initial release of this document. 

Related Documentation 
The following documents provide basic specifications that apply to the Cell Broadband Engine: 

PowerPC® Microprocessor Family: The Programming Environments Manual for 64-Bit Microprocessors 

PowerPC Microprocessor Family: The Programming Environments Manual for 32-Bit Microprocessors 

SPU Application Binary Interface Specification 

You can find additional specifications in the Linux Standard Base Specification for the PPC32 and PPC64 
Architectures. For details about the Linux specification, see http://www.linuxbase.org/spec. 

Bit Notation and Typographic Conventions Used in This Document 

Bit Notation 

Standard bit notation is used throughout this document. Bits and bytes are numbered in ascending order from left to 
right. Thus, for a 4-byte word, bit 0 is the most significant bit and bit 31 is the least significant bit, as shown in the 
following figure: 

http://www.linuxbase.org/spec
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MSB = Most significant bit 
LSB = Least significant bit 
 
Notation for bit encoding is as follows: 

• Hexadecimal values are preceded by 0x. For example: 0x0A00. 
• Binary values in sentences appear in single quotation marks. For example: ‘1010’. 

Other Typographic Conventions 

In addition to bit notation, the following typographic conventions are used throughout this document: 

Convention Meaning 

courier Indicates programming code, processing instructions, register names, 
data types, events, file names, and other literals. Also indicates function 
and macro names. This convention is only used where it facilitates 
comprehension, especially in narrative descriptions. 

courier + 
italics

Indicates arguments, parameters, and variables, including variables of 
type const. This convention is only used where it facilitates 
comprehension, especially in narrative descriptions. 

italics (without 
courier)

Indicates emphasis. Except when hyperlinked, book references are in 
italics. When a term is first defined, it is often in italics. 

blue Indicates a hyperlink (color printers or online only). 
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1. Introduction 

This document defines a standard interface that allows compiled objects to be linked and run on the Linux 
Reference Implementation for the Cell Broadband Engine without recompilation or recoding. The purpose of this 
capability is to achieve greater application portability. 
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2. CBEA Embedded SPE Object Format (CESOF) 

The Cell Broadband Engine Architecture (CBEA) Embedded Synergistic Processor Element (SPE) Object Format 
(CESOF) contains three layers. These layers enable an SPE Executable and Linking Format (ELF) executable to 
participate in the program linking and execution with other PowerPC Processor Element (PPE) ELF objects. The 
first layer is a new special section, the table of effective-address (.toe) references section, in the SPE relocatable 
format. The second layer is a segment containing the .toe sections in the SPE executable format. The third layer is 
the CESOF layout and data structure that embeds the SPE executable in a PPE relocatable. This document 
describes how CESOF runtime support can interact with the structures in the CESOF object. 

2.1. The .toe Section in the SPE Relocatable Object 
The CESOF introduces a new special SPE ELF section, the .toe section, in the SPE ELF relocatable object. It 
provides a space to keep the effective-address references (EARs) used by the SPE program. This section plays the 
central role in extending the PPE symbol space into the SPE symbol space. 

Contained in the .toe section is an array of effective-address references from the giving SPE ELF relocatable object. 
Each effective-address reference is a 16-byte structure that can be specified by the following C structure: 

typedef struct elf_toe_entry { 
Elf64_Addr ea_value; 
Elf64_Addr ea_info; /* reserved */ 

} EAR __attribute__ ((aligned(16))); 
 

The EAR structures are quadword (16-byte) aligned for faster load-and-store operations into a preferred slot of an 
SPE register. The structure members are purposely kept the same for both 32-bit and 64-bit PPE runtime 
environments. This allows the ea_value to be handled consistently as a 64-bit value in the SPE program. The 
same SPE binary file can be reused in both 32-bit and 64-bit environments. A programmer still has the option to 
cast the ea_value into a 32-bit effective-address when the SPE program is optimized only for a 32-bit environment. 

The EAR structure has an 8-byte space, ea_info, which is reserved for future use. In particular, the SPE program 
loader can fill in EAR entry-related information for the system runtime environment. 

All the EAR structures in the same SPE object are placed consecutively in an array and placed in this special .toe 
section. This array is usually generated by a compiler or hand-crafted by a programmer using an assembler.  

Listed below are the values of a typical .toe section header. It is usually generated by an assembler or compiler 
back-end: 

sh_name: index into the .toe in the .shstrtab section 
sh_type: SHT_NOBITS 
sh_flags: SHF_ALLOC 
sh_addr: 0 
sh_offset: the file offset to this section 
sh_size: the number of EAR entries times 16 bytes 
sh_link: SHN_UNDEF 
sh_info: 0 
sh_addralign: 0x10 (16) 
sh_entsize: 0x10 (16) 
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The following C code-segment in an SPE program illustrates a declaration style of EAR entries in a C program, if its 
compiler supports the section attribute. 

2.2. The toe Segment in an SPE Executable Object 
After the SPE objects are linked into the SPE executable image, all .toe sections are collected into a single loadable 
segment as shown in Figure 2-1.  An SPE linker groups all .toe sections consecutively into a loadable segment, 
PT_LOAD, in the SPE executable. There is no gap between the adjacent sections in the segment. From the size of 
the section (that is, the EAR array), the tool can determine the number of EAR entries in this object file. The number 
of EAR entries is only limited by the available physical local store at runtime.  

A .toe section should not exist when there is no effective-address reference. Thus, some linked SPE executables 
might not have a toe segment if one is not needed. When this loadable segment exists, it is aligned to a 128-byte 
boundary for better DMA efficiency by the SPE program loader. No sections of other names can be included in this 
segment. The segment is given a permission of PF_R. 

p_filesz of the segment is zero. p_mmseze is the actual array size allocated for the EAR entries. 

It is a linking error when more than one EAR definition of symbols has the same name. Those SPE relocatable 
objects accessing the same effective-address memory object must share the same EAR entry. Another restriction is 
that a non-EAR symbol must not use the signature “_EAR_”.  

In the final SPE executable, the symbol table section for the EAR variables in the .toe sections must not be stripped 
off. The CESOF wrapping tool needs the symbol information to create additional elements in the wrapping layer. 

The initial values of the EAR entries in the object file are not defined. The SPE loader runtime environment updates the 
resolved values by overwriting the whole segment before the SPE program starts. 

Figure  2-1: SPE toe Segment 

SPE ELF Relocatable Objects 

 

toe segment 

text segment 

data segment 

SPE ELF Executable 

 

.toe section 

.text section 

.data section 

 

.toe section 

.text section 

.data section 

 

.toe section 

.text section 

.data section 

128-byte 
aligned 

 

2.3. Symbol Mangling 
The name of the EAR symbol in the local-store space is mangled from the symbol name of the memory object in the 
effective-address space. The name-mangling scheme establishes the association between two symbols in two 
different symbol spaces referring to the same global memory object. (Note that an EAR symbol contains only 
effective-address information and no type information about the referenced memory object. It cannot be de-
referenced directly back into an object in the local store without additional compiler runtime support. Such support 
involves DMA operations between the effective-address space and the local-store space.) 
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obj_1 __attribute__((section (“.toe”))) = {0}; 

If the compil mbly code can similarly define these 
EAR entries

 
1: 

 .quad 0 
 .quad 0 

The use of t e following SPE DMA operation that copies the 
content of th e into the local store. (Note: An SPE compiler 

 
em_obj_1.ea_value >> 32) & 0xFFFFFFFF, 
ue & 0xFFFFFFFF, 

The values of the ea_value ecutable image. The CESOF 
runtime environment ffective-address values after the SPE executable image is loaded into the 

symbols may 

 making changes to a linker to generate such  

ction 

o this EAR (multiple of 16 bytes) 

 

2.3.1. Special Symbol Mangling 

These symbols establish an association between a symbol in SPE symbol space and a well-known effective 
address in main storage. These symbols do not mangle the name of an EAR symbol in local-storage space to a 
symbol name of a memory object in the effective-address space. 

 

// EAR entry for the global object g_mem_obj_1 
const EAR _EAR_g_mem_
 
// EAR entry for the global object g_mem_obj_2 
onst EAR _EAR_g_mem_obj_2 __attribute__((section (“.toe”))) = {0}; c

er does not support the special section, a separate piece of asse
 as followed: 

.section .toe 

.aligned 4
_EAR_g_mem_obj_

   
   
_EAR_g_mem_obj_2: 
    .quad 0 

 .quad 0    

he effective-address reference symbol is illustrated by th
e global memory object from the effective-address spac

runtime environment can use a similar DMA operation to support the de-referencing of an EAR object in the local 
store.) 

extern EAR _EAR_g_mem_obj_1; 

spu_mfcdma64(ls_buf, (_EAR_g_m
_EAR_g_mem_obj_1.ea_val
size_of_the_actual_global_memory_object, 
0, 
MFC_GET_CMD); 

 fields are not initialized to any value in the SPE ex
 updates the actual e

local store. See Section 2.4.4 CESOF Runtime Support for a description of the updating mechanism. 

Since the mangling algorithm uses the same signature for all the EAR symbols, a tool can distinguish the symbols 
for the effective-address reference from those for the local-store space. It is a restriction that no other 
use names containing this signature. 

Below is a typical symbol table entry for an effective-address reference. It is the same as those generated by a 
compiler or an assembler. Rather than

entries, it is simpler and less error-prone to generate assembly code and allow an assembler to generate the se
and its associated symbol table entries. 

st_name:  index “_EAR_<effective_address_obj_name>” in .strtab 
st_value: offset t
st_size: 8 (64-bit value) 
st_info: (STB_GLOBAL | STT_OBJECT) 
st_other: 0 
st_shndx: index to the .toe section 
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3.1.1.  The _EAR_Symbol 

The _EAR_ symbol (without any <effective_address_object_name> suffix) associates this symbol in SPE symbol 
ss of the start of the SPE executable image in main storage. This symbol allows an 

 its 

// EAR entry for the starting address of SPE executable image 
R _EAR_ __attribute__((section (".toe"))) = {0}; 

2.4.
A CESOF object is itself an instance of a PPE ELF relocatable object. It encloses the entire SPE executable image 
as a special ayer to enable the linking and execution process against 
other PPE E

Instead of o directly, the PPE toolchain operates only on the elements in the 
wrapping lay  into a different architectural space. The wrapping layer 
holds the lin  runtime environment later updates the result into the 

 SPE program is executed.  

rapping elements is illustrated in Figure 2-2. The wrapping layer contains 

E toe segment, and a structure, called the SPE program handle, which enables programs to 

2.

space and the effective addre
SPE program, such as a kernel or overlay manager, to operate on a program in which it is linked. 

The following C code-segment in an SPE program illustrates a declaration style of EAR entries in a C program, if
compiler supports the section attribute. 

const EA
 

If the compiler does not support the special section, a separate piece of assembly code can similarly define these 
EAR entries as follows: 

 
 .section .toe 
 .aligned 4 
 _EAR_:   

.quad 0 
   .quad 0 

 CESOF Object Layout 

 section along with an additional wrapping l
LF objects.  

perating on the SPE executable image 
er. This shields the PPE toolchain from linking
king and execution result, whereas the CESOF

SPE executable image before an

The CESOF object layout of the w
additional elements for linking and execution with other PPE ELF objects.  

Figure 2-2 shows three new elements enclosed in a CESOF object: the embedded image of an SPE ELF executable, a 
shadow section for the SP
access the previous two elements. The following sections provide detailed specifications. 
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Figure 2-2: CESOF Layout 
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2.4.1. The Embedded SPE ELF Executable Image 

The SPE executable image is included in a special section called .spe.elf in the CESOF object — a particular 
operating system toolchain is allowed to rename this section to a name (such as  .rodata.speelf) that is 
consistent with the section naming convention of its linker.  We use .spe.elf in this document to refer this special 
section.  To share a single copy of the embedded SPE ELF executable image with several processes in an 
operating system, the section should be linked into a per-system segment when shared (for example, the text 
segment of a shared library). 

However, the CESOF specification also allows the section to be included in any other segment (for example) the 
data segment based on the need of the target operating system. 

For this image, a local symbol is defined that the SPE program handle (see Section 2.4.3) can reference.  This 
image is aligned to a DMA-boundary (128-byte) for efficient DMA operation. 

 
Its section header must contain the following values: 

 
sh_name: index into the “.spe.elf” in .shstrtab section 
sh_type: SHT_PROGBITS 
sh_flags: SHF_ALLOC 
sh_addr: 0 
sh_offset: the file offset to this section 
sh_size: the size of the raw executable image 
sh_link: SHN_UNDEF 
sh_info: 0 
sh_addralign:0x80 (128) 
sh_entsize: 0 
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2.4.2. The Shadow Section for the SPE toe Segment 

A new section is introduced in the wrapping layer to enable the linking and resolution of the effective-address 
references of the embedded SPE executable. Its main function is to shadow the toe segment of the embedded SPE 
executable image so that a PPE linker does not need to directly modify the embedded image. This separation allows 
the embedded SPE executable image to become position-independent and thus sharable by different processes.   

An SPE relocatable object keeps its EAR entries in its .toe section. When the SPE linker links several SPE 
relocatable objects into the SPE executable, it joins all .toe sections into a toe segment. Subsequently, the whole 
SPE executable image is included in the .spe.elf section of a CESOF object. Later, when the CESOF object is 
linked with other PPE relocatable objects, its .spe.elf section should be included in a per-system loadable read-
only segment of a linked PPE executable or PPE shared library.  

In the case of a shared library, the per-system read-only segment is sharable among different processes in the 
operating system. In order to maintain its position independency, constructs similar to a global offset table must be 
used. The shadow section serves a similar purpose for the embedded toe segment. The embedded SPE executable 
image will remain in the per-system read-only segment, whereas the shadow section is mapped to a memory region 
that is private for a specific processor. 

This shadow section is of the same size and alignment as the toe segment of the embedded SPE executable 
image. An effective-address reference entry inside the toe segment has the same space and location offset in the 
shadow section. 

The entries in the shadow sections are undefined PPE symbol references that a PPE linker can resolve in the 
linking process. Because the original symbol names of the EARs used in the SPE executable are mangled with the 
special signature, the wrapping tool demangles the symbol names.  

The demangled symbol names reside in the effective-address symbol space for global memory objects. 

Updating the runtime image with the resolved references is straightforward after both the PPE and SPE images are 
loaded into the system memory and the SPE local-store respectively. Because the shadow section collects all the 
resolved references, a simple DMA operation from the effective address of the resolved shadow section to the local-
store address of the uninitialized SPE toe segment is sufficient to update all the relocated values into the SPE 
runtime environment.  

 

This shadow section may be included as a .data or .data.spetoe section depending on its linker naming 
convention and should be mapped into a per-process space. Like the shadowed toe segment, this section is aligned to 
a DMA boundary for optimal DMA efficiency.  Its section header contains the following values: 

 
sh_name: index into the “.data” in .shstrtab section 
sh_type: SHT_PROGBITS 
sh_flags: SHF_ALLOC 
sh_addr: 0 
sh_offset: the file offset to this section 
sh_size: the size of the embedded toe segment 
sh_link: SHN_UNDEF 
sh_info: 0 
sh_addralign:0x80 (128) 
sh_entsize: 0x10 (16) 

For each SPE EAR entry in the toe segment, a wrapping tool must create a corresponding undefined symbol in the 
shadow section with the symbol name properly demangled. In the case of big-endian, the relocation entry offset is 
different between the 64-bit and 32-bit environments as shown in Figure 2-3. A wrapping tool must properly handle 
such differences. 
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Figure 2-3: 64-Bit Environment versus 32-Bit Environment 
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Instead of providing an exact specification of the relocation entries for the shadow section, it is clearer to illustrate it 
by using the following assembly code.  

The SPE .toe segment can be defined in the SPE assembly code in this manner: 

.section .toe, “a”, @progbits 

.align 4 
_EAR_symbol_name_1:  

.quad 0 // EAR entry 

.quad 0 
_EAR_symbol_name_2:  

.quad 0 // EAR entry 

.quad 0 
… … 

Below is the PPE assembly code of the shadow section for a 64-bit PPE environment. 

.section .data, “a”, @progbits 

.align 7 

.extern symbol_name_1 // de-mangled symbol name 
.quad symbol_name_1 
.quad 0 
 
.extern symbol_name_2 
.quad symbol_name_2 
.quad 0 

… … 

Below is the shadow section for a 32-bit PPE (big-endian) environment. 

.section .data, “a”, @nobits 

.align 7 

.extern symbol_name_1 
.int 0 // offset for 32-bit env. 
.int symbol_name_1 
.quad 0 

.extern symbol_name_2 
.int 0 
.int symbol_name_2 
.quad 0 

… … 

If a wrapping tool generates the assembly code above, then a PPE assembler can generate directly the proper 
relocation entries. 
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2.4.3. The SPE Program Handle Structure 

A handle structure is defined in the CESOF object to allow a PPE programmer to access the SPE program image. It 
also allows the supporting runtime environment to locate the embedded SPE executable image and the resolved 
shadowed toe segment. If the CESOF object is linked as shared, the actual content of the handle structure will be 
relocated only after a process image is properly mapped in the effective-address space. Two symbols, local to each 
CESOF object, are defined for the embedded SPE executable image and the shadow section respectively: 
_spe_elf_image and _spe_toe_shadow.  

Here is the structure of the SPE program handle in both 32-bit and 64-bit environments: 

32-bit environment: 

typedef struct spe_program_handle { 
 int handle_size; // size of(spe_program_handle_t) 

void* elf_image;  // pointer to the embedded SPE image 
void* toe_shadow;  // pointer to the shadowed toe 

} spe_program_handle_t; 
 
         64-bit environment:  
  

typedef struct spe_program_handle { 
   int  handle_size; 
   int  padding; 
   void*  elf_image; 
   void*  toe_shadow; 

} spe_program_handle_t; 
 

The 32-bit handle is 4-byte aligned, and the 64-bit handle is 8-byte aligned. 
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A 32-bit wrapping tool generates the following code to construct the handle structure: 

.global spe_program_handle 
 
.align 2  
_spe_program_handle: 

.int  12 
 
.int  _spe_elf_image 
.int  _spe_toe_shadow 

 
.section .spe.elf, “a”, @progbits 
.align 7 
_spe_elf_image: 

.incbin  “spe_executable_name” 
 
.section .data, “a”, @progbits 
.align 7 
_spe_toe_shadow: 
.extern symbol_name_1 

.int  0 // offset for 32-bit env. 

.int  symbol_name_1 

.quad  0 
.extern symbol_name_2 

.int  0 

.int  symbol_name_2 

.quad  0 
… … 

The CESOF does not specify the symbol name associated with the SPE program. A programmer can specify the 
symbol name by using the wrapping tool. 

A 64-bit layout can be similarly illustrated: 

.global spe_program_handle 
 
.align 3 
_spe_program_handle: 

.int 24 

.int   0 

.quad _spe_elf_image 

.quad _spe_toe_shadow 
 
.section .spe.elf, “a”, @progbits 
.align 7 
_spe_elf_image:  
 .incbin “spe_executable_name” 
 
.section .data, “a”, @progbits 
.align 7 
_spe_toe_shadow: 
.extern symbol_name_1 

.quad  symbol_name_1 

.quad  0 
.extern symbol_name_2 

.quad  symbol_name_2 

.quad  0 
… … 
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2.5. CESOF Runtime Support 
Several CESOF runtime supports carry out the proper relocation and execution of CESOF objects.  The runtime 
supports use the SPE program handle to obtain the needed information for the embedded SPE executable. 

Loading the embedded SPE executable image into the system memory 

Because the embedded SPE executable image is grouped in the loadable segment together with other PPE code or 
data sections, loading the SPE executable image into the system memory is a direct result of loading the PPE 
segments. 

In the case where a CESOF object is linked in a shared library, the operating system loads only one copy of the per-
system segment image in the shared library into the system memory. Hence, the embedded SPE executable image 
appears only once in the system memory.  

Locating the SPE executable image 

After the SPE executable image is mapped into the system memory, the CESOF runtime environment accesses the 
image through the SPE program handle structure. The structure contains two pointers pointing to the embedded 
SPE executable image and the shadow section of its toe segment. Depending on the operating system 
environment, the pointers in the handle structure can either be a 32-bit or a 64-bit pointer value. The structure is 
included here again. 

Typedef struct spe_program_handle { 
 int handle_size; // sizeof(spe_program_handle_t) 

void* elf_image;  // pointer to the embedded SPE image 
void* toe_shadow;  // pointer to the shadowed toe 

} spe_program_handle_t; 
 

A symbol is defined for this handle structure by the wrapping tool and is passed on to the CESOF runtime 
environment by the programmer. Here is an example of its application: 

extern spe_program_handle_t spe_foo_handle; 
… 
spe_pid = spe_create_thread(0, &spe_foo_handle, 0, NULL, -1, 0); 
… 

Loading the SPE executable image 

The SPE executable image is an ELF executable object. Its ELF header provides the information for all the SPE 
segments. The SPE loader uses the information to load the segments from the system memory into the local store 
of the SPE. 

The segments can be copied into the local store by using the proper DMA operations. The DMA operations can be 
initiated either by the PPE runtime environment or by a bootstrapping loader on the SPE. In either case, parsing the 
ELF header of the SPE executable image is necessary. 

The segments of the SPE executable image are aligned to DMA boundaries; this enables DMA operations to efficiently 
copy the needed image to the SPE local-store space. 

Loading the resolved toe segment of an SPE executable image 

When the SPE loader copies the segments of the SPE executable into the local store, it does not copy the SPE toe 
segment from the executable because the segment is not relocated by the PPE linker. Instead, the loader loads the 
shadow section of the CESOF object whose entries are properly relocated by the PPE linker. The shadow section 
should be mapped to a memory region that is private for a specific processor. 

The system memory location of this shadow section is obtained from its SPE program handle. Its size and target 
local-store address are obtained from the ELF header of the SPE executable image. 

Once the shadow section for the toe segment is copied into the local store, the SPE program is ready for execution 
with the properly relocated effective-address references.  It does not matter if the CESOF object is statically or 
dynamically linked; this loading mechanism works in both cases. 
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3.  SPE Execution Environment 

This chapter specifies the low-level system information and the conventions adopted in the SPE execution environment 
that is made available to Synergistic Processor Element (SPE) programs by the operating system. 

3.1. SPE Program Initialization 
This section describes the machine state that the SPE loader creates for the SPE program execution, including 
argument passing, register usage, and stack frame layout. Although this section does not describe C program 
initialization, it gives the information necessary to implement the call to the entry point of the SPE program. 

3.1.1. Standard Environment 

Programming language systems use the initial program state to establish a standard environment for their 
application programs. For example, the C interface for the SPE’s entry point is conventionally declared as follows: 

extern int  
main(unsigned long long spe_id, unsigned long long param,  
     unsigned long long env); 

In this declaration, spe_id is a unique SPE task identifier, param is a system memory address to application 
parameters, and env is a system memory address of runtime environment information. 

3.1.2. Registers 

When the SPE program is first entered, the contents of registers other than those listed below are unspecified. For 
security purposes, unspecified registers may be cleared when loading SPE programs of a different process or 
execution domain. However, a program that requires registers to have specific values must set them explicitly during 
process initialization. The program should not rely on the loader to set any register other than those shown in Table 
3-1. 

Table 3-1: Initial SPE Register Contents 

Register Contents 

1 Top of the stack, as specified in the Program Initialization section of SPU Application 
Binary Interface Specification, version 1.3 

2 Runtime stack size. This 32-bit unsigned integer is typically saved by the startup 
code in crt0 and used to check runtime stack overflow. 

3 SPE task identifier. This is a 64-bit unsigned integer. 
4 System memory pointer. This is a 64-bit pointer to application-defined program 

parameters. 
5 System memory pointer. This is a 64-bit pointer to the SPE task environment 

structure. The contents of the structure are implementation defined. 
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3.2. SPE Stop-and-Signal Signal Types 
The stop instruction contains a 14-bit signal type. When executed, this value is written to bits 0 to 13 in the SPU 
Status register. These bits are used to specify why a program stopped. The signal types are partitioned as follows: 

• Signal types with the most significant bit of ‘0’ are reserved for application use.  

• Signal types with the most significant bit of ‘1’ are reserved for runtime or privileged services. 

Table 3-2 describes the reserved signal types. 

Table 3-2: Reserved Signal Types 

Signal Type Description 

0x0000 Data executed as an instruction. 
0x2000 - 0x20FF Return from main or exit. Return or exit status is encoded in the least 

significant byte of the stop and signal types.  
exit(EXIT_SUCCESS) == 0x2000.  
exit(EXIT_FAILURE) == 0x2001. 

0x2100 - 0x21FF Externally assisted PPE library calls. See Section 3.3.2 “Standardized 
Library Classes and Call Opcodes” for additional details. 

0x2200 – 0x220F SPE isolation mode errors. 
0x3FFE Stack overflow detected. 
0x3FFF Debugger breakpoint. 

 

3.3. Externally Assisted SPE Library Calls 
Externally assisted SPE library calls are those functions that cannot be fully serviced by the SPE and require the 
PowerPC Processor Unit (PPU) to assist in their execution since the operating system runs in the PPE. The calls 
are referred to as assisted calls throughout the remainder of the document. 

3.3.1. Performing an Assisted Call 

To perform an assisted call, the SPE must: 

• Construct a local-store memory image as the union of the input and output parameters. 

• Copy all input parameters from the registers or the stack into the input/output memory image.  Each 
parameter is padded to a quadword boundary. For example, consider function copy. 
 
    void * copy(void * dest, void * src, size_t n) 
 
The parameter image would be: 

          
0 void * dest pad pad pad 

16 void * src pad pad pad 
32 size_t n pad pad pad 
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• Combine the pointer to the local-store input/output memory image with the specific library function opcode 
to form a 32-bit message. Table 3-3 shows the bit layout for the standard assisted call messages. 

Table 3-3: 32-Bit Assisted Call Message 

 

0      7 8                        31 
opcode local store pointer to input/output image 

• Operating-system-dependent system call messages are free to define a different allocation of opcode bits 
and local-store pointer bits to support a larger set of opcodes. For example, the opcode could be defined to 
be 12 bits with a 20-bit local-store pointer as shown in Table 3-4. 

 
Table 3-4: Operating-System-Dependent syscall Message 

 

0       11 12                      31 
opcode local store pointer to input/output image 

• Place the message into the local-store memory immediately following a stop instruction. The signal type of 
the stop instruction is chosen according the classification of the library function being performed. 

• Signal the PPE to perform the library function on behalf of the SPE by executing the stop and signal 
instruction. 

To service the assisted call, the PPE must: 

•    Get the assisted call message from the 32-bit local-store word pointed to by the SPE's next program 
counter (NPC).  Remember to strip off the least significant bit, the Interrupt Enable bit, of the NPC when 
determining the address of the assisted call message.

• Increment the NPC by 4 bytes. 

• Dispatch control to the indicated assisted call handler based upon the stop and signal type and opcode 
specified by the message. 

• Get the assisted call parameters from the local-store memory image pointed to by the pointer contained 
within the assisted call message. 

• Perform the requested assisted library call. 

• Place all return values into the local-store memory image pointed to by the pointer contained within the 
assisted call message. Assisted calls that generate errors, that by standard set the error return value, errno, 
return the value of errno in word element 3 of the quadword return value. 

• Resume SPE execution at the new NPC.  

To complete the assisted call, the SPE must: 

•    Get the return values from the memory image and place them into the return registers in accordance with 
the SPU Application Binary Interface Specification.  

• If the assisted call is specified to set errno, the return value is tested to determine if an error occurred. If so, 
word element 3 of the return value's quadword is written to the local store's errno variable. 

           
Here is an example that shows how to implement the SPE fopen external assisted call. 

  
extern FILE * fopen(const char *path, const char *mode); 
 # Position independent fopen assisted call 
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  .extern errno   # assumed aligned on 3rd word element 
  .text 
             .align 2 

.global fopen 
 fopen: 
        # Place input parameters onto the stack to form the 
  # local store memory image. 
  stqd    $3, -32($sp) 
  stqd    $4, -16($sp) 
 
  # Construct a message consisting of the 8-bit opcode 
  # and 24-bit local store pointer to the input  
  # parameters and place it following the stop and signal 
  # instruction. 
  ila     $2, 0x3FFFF     # address mask 
  ilhu    $3, FOPEN_CMD << 8 
  ai      $4, $sp, -32    # parameter pointer 
  selb    $3, $3, $4, $2  # combine command & address ptr                 
  brsl    $2, next        # inst addr for pic addressing 
 next:                            
  lqr     $4, message 
  cwd     $2, message-next($2) 
  shufb   $3, $3, $4, $2  # insert msg into inst qword 
  stqr    $3, message     # store cmd/ptr into msg word 
 
  dsync 
 
  # Notify the PPE to perform the assisted call request 
  # by issuing a stop and signal with a signal code of  
  # 0x2100 (C99 class) 
  stop    0x2100 
 
 message: 
  .word   0 
                         
  # Fetch returns value from local store memory image 
  # and return in R3. If the return value is 0, then 
  # store the return errno into the local errno variable 
  lqd     $3, -32($sp) 
  lqa     $4, errno 
  ceqi    $5, $3, 0 
  rotqmbyi $5, $5, -12 
  selb    $4, $4, $3, $5 
  stqa    $4, errno 
  bi      $0              # return to caller 

 

Here are two C-language examples that show how implement the SPE external assisted calls for fopen (fixed-
length argument list) and vfprintf (variable-length argument list). 

#define SPE_C99_SIGNALCODE  0x2100 
#define SPE_C99_FOPEN  10 
#define SPE_C99_VFPRINTF  35 
 
void __send_to_ppe(unsigned int signalcode, unsigned int opcode, void *data)  
{ 
  unsigned int combined = ((opcode << 24) | (data & 0x00FFFFFF))); 
  vector unsigned int stopfunc = { 
    signalcode,  /* stop */ 
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    combined,   /* call message */ 
    0x4020007F  /* nop */ 
    0x35000000  /* bi $0 */ 
  } 
  void (*f)(void) = (void *)&stopfunc; 
  asm(“sync”); 
  f(); 
  errno = ((unsigned int *)data[3]; 
) 
 
typedef struct { 
  char *fp; 
  unsigned int pad0[3]; 
  char *mode; 
  unsigned int pad1[3]; 
} c99_fopen_t; 
 
FILE *fopen(const char *file, const char *mode) 
{ 
  FILE **ret; 
  c99_fopen_t args; 
  args.fp = file; 
  args.mode = mode; 
  ret = (FILE **) &args; 
  __send_to_ppe(SPE_C99_SIGNALCODE, SPE_C99_FOPEN, &args); 
  return *ret; 
} 
            
typedef struct { 
  FILE *fp; 
  unsigned int pad0[3]; 
  char *fmt; 
  unsigned int pad1[3]; 
  va_list ap; 
 } c99_vfprintf_t; 
            
 int vfprintf(FILE * fp, const char *fmt0, va_list ap) 
 { 
   int *ret; 
   c99_vfprintf_t args; 
   ret = (int *) &args; 
   args.fp = fp; 
   args.fmt = (char *) fmt0; 
   va_copy(args.ap, ap); 
   __send_to_ppe(SPE_C99_SIGNALCODE, SPE_C99_VFPRINTF, &args); 
   return *ret; 
 } 
            

 This fprintf function is illustrative of how to implement functions with variable arguments.  

 
 int fprintf(FILE * f, const char *fmt, ...) 
 { 
   int ret; 
   va_list fprintf_list; 
   va_start(fprintf_list, fmt); 
   ret = vfprintf(f, fmt, fprintf_list); 
   va_end(fprintf_list); 
   return ret; 
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 } 

3.3.2. Standardized Library Classes and Call Opcodes 

The assisted library calls are classified according to the standard in which they are specified.  Each class is 
assigned a unique stop and signal type. 

Table 3-5: Library Classes 

Stop type Standard  

0x2100 ISO/IEC C Standard 9899:1999 (C99) 
0x2101 POSIX.1 (IEEE Standard 1003.1) 
0x2102 POSIX.1b  
0x2103 Operating-System-Dependent system calls 

 

The opcodes for each library class are assigned and registered as needed. The registry of opcodes is done through 
this specification and additions to the registry require a request-for-change (RFC). If an unregistered opcode is 
called, the SPE program is stopped, see the SPE Runtime Management Library chapter on PPE-assisted library 
facilities for details on the handling of unregistered callbacks. 

Table 3-6: Registered ISO/IEC C Standard 9899:1999 (C99) opcodes 

Opcode Function Prototype 

1 void clearerr(FILE *stream) 
2 int fclose(FILE *stream) 
3 int feof(FILE *stream) 
4 int ferror(FILE *stream) 
5 int fflush(FILE *stream) 
6 int fgetc(FILE *stream) 
7 int fgetpos(FILE *stream, fpos_t *pos) 
8 char *fgets(char *s, int size, FILE *stream) 
9 int fileno(FILE *stream) 

10 FILE *fopen(const char *path, const char *mode) 
11 int fputc(int c, FILE *stream) 
12 int fputc(int c, FILE *stream) 
13 size_t fread(void *ptr, size_t size, size_t nmemb, FILE *stream) 
14 FILE *freopen(const char *path, const char *mode, FILE *stream) 
15 int fseek(FILE *stream, long offset, int whence) 
16 int fsetpos(FILE *stream, fpos_t *pos) 
17 long ftell(FILE *stream) 
18 size_t fwrite(const void  *ptr,  size_t  size,  size_t  nmemb,  FILE *stream) 
19 int getc(FILE *stream) 
20 int getchar(void) 
21 char *gets(char *s) 
22 void perror(const char *s) 
23 int putc(int c, FILE *stream) 
24 int putchar(int c) 
25 int puts(const char *s) 
26 int remove(const char *pathname) 
27 int rename(const char *oldpath, const char *newpath) 
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Opcode Function Prototype 

28 void rewind(FILE *stream) 
29 void setbuf(FILE *stream, char *buf) 
30 int setvbuf(FILE *stream, char *buf, int mode , size_t size) 
31 int system(const char *command) 
32 FILE *tmpfile (void) 
33 char *tmpnam(char *s) 
34 int ungetc(int c, FILE *stream) 
35 int vfprintf(FILE *stream, const char *format, va_list ap) 
36 int vfscanf(FILE *stream, const char *format, va_list ap) 
37 int vprintf(const char *format, va_list ap) 
38 int vscanf(const char *format, va_list ap) 
39 int vsnprintf(char *str, size_t size, const char *format, va_list ap) 
40 int vsprintf(char *str, const char *format, va_list ap) 
41 int vsscanf(const char *str, const char *format, va_list ap) 

 

Note:  All pointers are SPU local addresses, and FILE * are unsigned ints. The definition of the data structures and 
types are specific to the SPU ABI and should not be assumed to match the ABI that is used by the host operating 
system. 

Table 3-7: Registered POSIX.1 (IEEE Standard 1003.1) opcodes 

Opcode Function Prototype 

1 int adjtimex(struct timex *buf) 
2 int close(int fd) 
3 int creat(const char *pathname, mode_t mode) 
4 int fstat(int filedes, struct stat *buf) 
5 key_t ftok(const char *pathname, int proj_id) 
6 int getpagesize(void) 
7 int gettimeofday(struct timeval *tv, struct timezone *tz) 
8 int kill(pid_t pid, int sig) 
9 off_t lseek(int fildes, off_t offset, int whence) 

10 int lstat(const char *path, struct stat *buf) 
11 void *<1>mmap(void  *start<1>, size_t length, int prot, int flags, int fd, off_t offset) 
12 void *<1>mremap(void  *old_address<1>,  size_t old_size , size_t new_size, unsigned long 

flags) 
13 int msync(void *start<1>, size_t length, int flags) 
14 int munmap(void *start<1>, size_t length) 
15 int open(const char *pathname, int flags, mode_t mode) 
16 ssize_t read(int fd, void *buf, size_t count) 
17 void *shmat(int shmid, const void *shmaddr<1>, int shmflg) 
18 int shmctl(int shmid, int cmd, struct shmid_ds *buf) 
19 int shmdt(const void *shmaddr<1>) 
20 int shmget(key_t key, size_t size, int shmflg) 
21 int shm_open(const char *name, int oflag, mode_t mode) 
22 int shm_unlink(const char *name) 
23 int stat(const char *path, struct stat *buf) 
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Opcode Function Prototype 

24 int unlink(const char *pathname) 
25 pid_t wait(int *status) 
26 pid_t waitpid(pid_t pid, int *status, int options) 
27 ssize_t write(int fd, const void *buf, size_t count) 
28 int ftruncate(int fd, off_t length) 
29 int access(const char *pathname, int mode) 
30 int dup(int oldfd) 
31 time_t time(time_t *t) 
32 int nanosleep(const struct timespec *req, struct timespec *rem) 
33 int chdir(const char *path) 
34 int fchdir(int fd) 
35 int mkdir(const char *pathname, mode_t mode) 
36 int mknod(const char *pathname, mode_t mode, dev_t dev) 
37 int rmdir(const char *pathname) 
38 int chmod(const char *path, mode_t mode) 
39 int fchmod(int fildes, mode_t mode) 
40 int chown(const char *path, uid_t owner, gid_t group) 
41 int fchown(int fd, uid_t owner, gid_t group) 
42 int lchown(const char *path, uid_t owner, gid_t group) 
43 char *getcwd(char *buf, size_t size) 
44 int link(const char *oldpath, const char *newpath) 
45 int symlink(const char *oldpath, const char *newpath) 
46 ssize_t readlink(const char *path, char *buf, size_t bufsiz) 
47 void sync(void) 
48 int fsync(int fd) 
49 int fdatasync(int fd) 
50 int dup2(int oldfd, int newfd) 
51 int lockf(int fd, int cmd, off_t len) 
52 int truncate(const char *path, off_t length) 
53 int mkstemp(char *template) 
54 char *mktemp(char *template) 
55 DIR *<1>opendir(const char *name) 
56 int closedir(DIR *<1>dir) 
57 struct dirent *readdir(DIR *<1>dir); 
58 void rewinddir(DIR *<1>dir) 
59 void seekdir(DIR *<1>dir, off_t offset) 
60 off_t telldir(DIR *<1>dir) 
61 int sched_yield(void) 

 

Note: All pointers are SPU local addresses unless otherwise designated. The definition of the data structures and 
types are specific to the SPU ABI and should not be assumed to match the ABI that is used by the host operating 
system. Pointers marked by the superscript <1> are 64-bit main storage effective address. 
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Table 3-8: Registered POSIX.1b  opcodes 

Opcode Function Prototype 

 

Table 3-9: Registered Operating-System-Dependent system calls opcodes 

Opcode Function Prototype 

 

3.3.3. Pointer Parameters 

Pointer parameters can be either local-store pointers (32-bits) or effective-address (EA) pointers (64-bits). The 
opcode registry shall specify the type of pointer for each opcode that contains pointer parameters. Therefore, it is 
possible that two versions of assisted calls will be provided—one with local-store pointer parameters, and one with 
EA pointer parameters. 

3.3.4. Debugger Considerations 

Since assisted library calls introduce data within the SPE's instruction sequence, special accommodations must be 
made within debuggers in order to successfully support single stepping.  

Debugger single step is typically implemented by replacing the next instruction with a stopd instruction. The next 
instruction depends upon the current instruction and the state of the registers. 

For example, if the current instruction is the conditional branch instruction, brz, then the next instruction can be 
either the next sequential instruction (PC+4) or the instruction of the branch address specified by the instruction, 
depending upon the value of the specified register. Therefore, debuggers must be aware of the current instruction in 
order to determine the next instruction in which to place the next stopd instruction. 

Externally assisted library calls introduce additional instructions that debuggers must be aware of in order to 
correctly predict the next instruction. If the current instruction is a stop and signal instruction with a type of 
0x2100 through 0x21FF, then the next instruction is PC+8, not the next sequential instruction, PC+4. 
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