
Software Development Kit for Multicore Acceleration

Version 3.1

Basic Linear Algebra Subprograms Library

Programmer’s Guide and API Reference

SC33-8426-01

���

Software Development Kit for Multicore Acceleration

Version 3.1

Basic Linear Algebra Subprograms Library

Programmer’s Guide and API Reference

SC33-8426-01

���

Note

Before using this information and the product it supports, read the information in “Notices” on page 75.

Edition notice

This edition applies to version 3, release 1, modification 0, of the IBM Software Development Kit for Multicore

Acceleration (Product number 5724-S84) and to all subsequent releases and modifications until otherwise indicated

in new editions.

This edition replaces SC33-8426-00.

© Copyright International Business Machines Corporation 2007, 2008.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

About this publication v

How to send your comments vi

What is new vi

Part 1. Overview of BLAS 1

Part 2. Installing the BLAS library . . 3

Chapter 1. Package descriptions 5

Part 3. Programming 7

Chapter 2. Basic structure of the BLAS

library 9

Chapter 3. Using the BLAS library (PPE

interface) 11

Input requirements 11

Programming samples 12

Chapter 4. Tuning the BLAS library for

performance 15

Programming tips to achieve maximum

performance 16

Chapter 5. Debugging tips 19

Part 4. SPE and memory

management 21

Chapter 6. Creating SPE threads . . . 23

Chapter 7. Support of user-specified

SPE and memory callbacks 25

Part 5. BLAS API reference 27

Chapter 8. PPE APIs 29

Chapter 9. SPE APIs 31

sscal_spu / dscal_spu 32

scopy_spu / dcopy_spu 33

saxpy_spu / daxpy_spu 34

sdot_spu / ddot_spu 35

isamax_spu / idamax_spu / idamax_edp_spu . . . 36

dasum_spu 37

dnrm2_spu / dnrm2_edp_spu 38

drot_spu 39

sgemv_spu / dgemv_spu 40

dtrsv_spu_lower / dtrsv_spu_upper /

strsv_spu_lower / strsv_spu_upper 42

dger_spu / sger_spu / dger_op_spu / sger_op_spu 43

dsymv_spu_lower 44

strsm_spu 45

sgemm_spu / dgemm_spu / dgemm_64x64 . . . 47

ssyrk_spu / dsyrk_spu / ssyrk_64x64 /

dsyrk_64x64 48

strmm_spu_upper_trans_left /

strmm_spu_upper_left /

dtrmm_spu_upper_trans_left /

dtrmm_spu_upper_left 50

ssyr2k_spu_lower / ssyr2k_64x64_lower /

dsyr2k_spu_lower / dsyr2k_64x64_lower 52

Chapter 10. Additional APIs 53

SPE management APIs 53

spes_info_handle_t 54

spe_info_handle_t 55

BLAS_NUM_SPES_CB 56

BLAS_GET_SPE_INFO_CB 57

BLAS_SPE_SCHEDULE_CB 58

BLAS_SPE_WAIT_CB 59

BLAS_REGISTER_SPE 60

Memory management APIs 63

BLAS_Malloc_CB 64

BLAS_Free_CB 65

BLAS_REGISTER_MEM 66

Part 6. Appendixes 69

Appendix A. Related documentation . . 71

Appendix B. Accessibility features . . . 73

Notices 75

Trademarks 77

Terms and conditions 77

Glossary 79

Index 81

© Copyright IBM Corp. 2007, 2008 iii

||

||
||
||
||

 | |
 | |
 | |
 | |
 | |
 |
 | |
 | |
 | |
 | |
 | |
 |
 | |
 |
 |
 |
 | |
 |
 | |

iv BLAS Programmer’s Guide and API Reference

About this publication

This publication describes in detail how to configure the Basic Linear Algebra

Subprograms (BLAS) library and how to program applications using it on the IBM

Software Development Kit for Multicore Acceleration (SDK). It contains detailed

reference information about the APIs for the library as well as sample applications

showing usage of these APIs.

Who should use this book

The target audience for this document is application programmers using the SDK.

You are expected to have a basic understanding of programming on the Cell

Broadband Engine™ (Cell/B.E.) platform and common terminology used with the

Cell/B.E. platform.

Typographical conventions

The following table explains the typographical conventions used in this document.

 Table 1. Typographical conventions

Typeface Indicates Example

Bold Lowercase commands,

library functions.

void sscal_spu (float *sx,

float sa, int n)

Italics Parameters or variables

whose actual names or

values are to be supplied by

the user. Italics are also used

to introduce new terms.

The following example

shows how a test program,

test_name can be run

Monospace Examples of program code

or command strings.

int main()

Related information

For a list of SDK documentation, see Appendix A, “Related documentation,” on

page 71.

In addition the following documents about BLAS are available from the World

Wide Web:

v Basic Linear Algebra Subprograms Technical (BLAST) Forum Standard, August

2001, see

http://www.netlib.org/blas/blast-forum/blas-report.pdf

v A Set of Level 3 Basic Linear Algebra Subprograms, Jack Dongarra, Jeremy Du

Croz, Iain Duff, Sven Hammarling, August 1998, see

http://www.netlib.org/blas/blas3-paper.ps

v Basic Linear Algebra Subprograms – A quick reference guide, May 1997, see

http://www.netlib.org/blas/blasqr.pdf

© Copyright IBM Corp. 2007, 2008 v

http://www.netlib.org/blas/blast-forum/blas-report.pdf
http://www.netlib.org/blas/blas3-paper.ps
http://www.netlib.org/blas/blasqr.pdf

How to send your comments

Your feedback is important in helping to provide the most accurate and highest

quality information. If you have any comments about this publication, send your

comments using IBM Resource Link™ at http://www.ibm.com/servers/
resourcelink. Click Feedback on the navigation pane. Be sure to include the name

of the book, the form number of the book, and the specific location of the text you

are commenting on (for example, a page number or table number).

What is new

The following routines are new for this release.

PPE APIs

The following routines have been optimized to use SPEs and are available as PPE

APIs:

 BLAS routine level Functionality

Level 1 DASUM

DNRM2

DROT

Level 2 DGBMV

DGER/SGER

DSYMV

DTBMV

DSYR

SGEMV (added support for all parameters)

STRMV

STRSV

Level 3 SSYRK (added support for all parameters)

STRSM (added support for all parameters)

SSYMM

DSYR2K/SSYR2K

STRMM

SPE APIs

The following new SPE interfaces have been added in this release:

 BLAS routine level Functionality

Level 1 v dscal_spu

v dcopy_spu

v daxpy_spu

v ddot_spu

v idamax_spu, idamax_edp_spu

v dasum_spu

v dnrm2_spu, dnrm2_edp_spu

v drot_spu

vi BLAS Programmer’s Guide and API Reference

|

|

|

|
|

|||

||
|
|

||
|
|
|
|
|
|
|

||
|
|
|
|
|

|

|

|||

||

|

|

|

|

|

|

|

http://www.ibm.com/servers/resourcelink
http://www.ibm.com/servers/resourcelink

BLAS routine level Functionality

Level 2 v dgemv_spu

v dtrsv_spu_lower / dtrsv_spu_upper / strsv_spu_lower /

strsv_spu_upper

v dger_spu / sger_spu / dger_op_spu / sger_op_spu

v dsymv_spu_lower

Level 3 v strsm_spu_upper / dtrsm_spu_lower / dtrsm_spu_upper /

dtrsm64x64_lower / dtrsm64x64_upper

v dgemm_spu

v ssyrk_spu / dsyrk_spu / dsyrk_64x64

v strmm_spu_upper_trans_left / strmm_spu_upper_left /

dtrmm_spu_upper_trans_left / dtrmm_spu_upper_left /

v ssyr2k_spu_lower / ssyr2k_64x64_lower / dsyr2k_spu_lower /

dsyr2k_64x64_lower /

About this publication vii

||

||

|
|

|

|

||
|

|

|

|
|

|
|
|

viii BLAS Programmer’s Guide and API Reference

Part 1. Overview of BLAS

The BLAS library is widely used as the basis for other high quality linear algebra

software, for example LAPACK and ScaLAPACK. The Linpack (HPL) benchmark

largely depends on a single BLAS routine (DGEMM) for good performance.

It is based upon a published standard interface, see the BLAS Technical Forum

Standard document available at

http://www.netlib.org/blas/blast-forum/blas-report.pdf

for commonly-used linear algebra operations in high-performance computing

(HPC) and other scientific domains.

The BLAS APIs are available as standard ANSI C and standard FORTRAN 77/90

interfaces. BLAS implementations are also available in open-source (netlib.org).

Based on their functionality, BLAS routines are categorized into the following three

levels:

v Level 1 routines are for scalar and vector operations

v Level 2 routines are for matrix-vector operations

v Level 3 routines are for matrix-matrix operations

BLAS routines can have up to four versions – real single precision, real double

precision, complex single precision and complex double precision, represented by

prefixing S, D, C and Z respectively to the routine name.

The BLAS library in the SDK supports both real and complex routines in single

and double precision. Complex routines have been newly added in this version of

BLAS. However none of the complex routines are optimized using SPEs. All

routines in the three levels of standard BLAS are supported on the Power

Processing Element (PPE). These are available as PPE APIs and conform to the

standard BLAS interface. (Refer to http://www.netlib.org/blas/blasqr.pdf)

Some of the real single precision (SP) and real double precision (DP) routines have

been optimized using the Synergistic Processing Elements (SPEs) and these exhibit

substantially better performance in comparison to the corresponding versions

implemented solely on the PPE. An SPE interface in addition to the PPE interface

is provided for some of these routines; however, the SPE interface does not

conform to the standard BLAS interface and provides a restricted version of the

standard BLAS interface.

The following routines have been optimized to use the SPEs:

v Level 1:

– SSCAL, DSCAL

– SCOPY, DCOPY

– ISAMAX, IDAMAX

– SAXPY, DAXPY

– SDOT, DDOT

– DASUM

– DNRM2

– DROT

© Copyright IBM Corp. 2007, 2008 1

|

|
|
|
|
|
|

|

|

|

|

|

|

|

|

|

|

|

http://www.netlib.org/blas/blast-forum/blas-report.pdf
http://www.netlib.org/blas/blasqr.pdf

v Level 2:

– SGEMV, DGEMV

– STRMV, DTRMV

– STRSV, DTRSV

– DGBMV

– SGER, DGER

– DSYMV

– DTBMV

– DSYR
v Level 3:

– SGEMM, DGEMM

– SSYRK, DSYRK

– STRSM, DTRSM

– STRMM, DTRMM

– SSYMM, DSYMM

– SSYR2K, DSYR2K

2 BLAS Programmer’s Guide and API Reference

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

Part 2. Installing the BLAS library

The following topics describe the BLAS library installation packages.

For information about how to install the BLAS library, refer to the SDK Installation

Guide.

v Chapter 1, “Package descriptions,” on page 5

© Copyright IBM Corp. 2007, 2008 3

4 BLAS Programmer’s Guide and API Reference

Chapter 1. Package descriptions

This topic describes the BLAS installation packages for each of the supported

operating environments.

The BLAS library can be installed on various platforms using the following

packages:

 Table 2. BLAS library installation packages

Package Purpose Platform Contents

blas-3.1-x.ppc.rpm where x

is the build date

Installs BLAS

library

libblas.so.x.y

where x and y are

the major and

minor version

numbers

respectively:

IBM PowerPC

Architecture™ and

 IBM BladeCenter® QS20,

IBM BladeCenter QS21,

IBM BladeCenter QS22.

/usr/lib/libblas.so.x.y: BLAS library.

/usr/lib/libblas.so.x: Soft link to libblas.so.x.y

blas-devel-3.1-x.ppc.rpm Installs

supporting files

such as header

files for

developing

applications using

the BLAS library.

PowerPC Architecture

and

 IBM BladeCenter QS20,

IBM BladeCenter QS21,

IBM BladeCenter QS22.

/usr/include/blas.h: Contains prototypes of all BLAS

Level 1, 2 and 3 functions that have PPE APIs in the

library. PPE APIs refer to Standard BLAS APIs on the

PPE.

/usr/include/blas_callback.h: Contains prototypes of

functions that can be used to register user-specified

SPE thread creation and memory allocation callbacks.

/usr/include/cblas.h: Contains prototypes of all the

C-interface versions of BLAS Level 1, 2 and 3

functions that have a PPE API in the library.

/usr/lib/libblas.so: Soft link to the soft link

libblas.so.x

/usr/spu/include/blas_s.h: Contains prototypes of

selected functions of BLAS Level 1, 2 and 3 that have

an SPE API in the library. These functions have

limited functionality and are not as generic as the

PPE APIs.

/usr/spu/lib/libblas.a: BLAS SPE library.

/usr/lib/libblas_xlf.a: Static library providing XLF

compatible interfaces for CDOTU, ZDOTU, CDOTC

and ZDOTC. Only used when compiling applications

with XLF.

blas-3.1-x.ppc64.rpm where

x is the build date

Installs the BLAS

library

libblas.so.x.y

where x and y are

the major and

minor version

numbers

respectively

PowerPC®

Architecture-64 bit and

 IBM BladeCenter QS20,

IBM BladeCenter QS21,

IBM BladeCenter QS22.

/usr/lib64/libblas.so.x.y: BLAS library.

/usr/lib64/libblas.so.x: Soft link to libblas.so.x.y

blas-devel-3.1-x.ppc64.rpm Installs

supporting files

such as header

files for

developing

applications using

the BLAS library.

PowerPC Architecture-64

bit and

 IBM BladeCenter QS20,

IBM BladeCenter QS21,

IBM BladeCenter QS22.

/usr/lib64/libblas.so: Soft link to the soft link

libblas.so.x

/usr/lib64/libblas_xlf.a: Static library providing XLF

compatible interfaces for CDOTU, ZDOTU, CDOTU

and ZDOTC. Only used when compiling applications

with XLF.

© Copyright IBM Corp. 2007, 2008 5

||

||||

|
|
|
|
|
|
|
|
|
|

|
|

|
|
|

|

|

|

||
|
|
|
|
|
|

|
|

|
|
|

|
|
|
|

|
|
|

|
|
|

|
|

|
|
|
|
|

|

|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|

|
|
|

|

|

|

||
|
|
|
|
|
|

|
|

|
|
|

|
|

|
|
|
|

Table 2. BLAS library installation packages (continued)

Package Purpose Platform Contents

blas-cross-devel-3.1-
x.noarch.rpm where x is the

build date

Installs the BLAS

library and

supporting files

such as header

files.

Other platforms, such as

x86 series.

/opt/cell/sysroot/usr/include/blas.h: Contains

prototypes of all BLAS Level 1, 2 and 3 functions

supported in the library with PPE APIs.

/opt/cell/sysroot/usr/include/blas_callback.h:

Contains prototypes of functions that can be used to

register user-specified SPE thread creation and

memory allocation callbacks.

/opt/cell/sysroot/usr/include/cblas.h: Contains

prototypes of all C-interface versions of BLAS level 1,

2 and 3 functions supported in the library with the

PPE APIs.

/opt/cell/sysroot/usr/lib/libblas.so: Soft link to the

soft link libblas.so.x

/opt/cell/sysroot/usr/lib/libblas.so.x: Soft link to

libblas.so.x.y

/opt/cell/sysroot/usr/lib/libblas.so.x.y: BLAS

library.

/opt/cell/sysroot/usr/lib64/libblas.so: Soft link to

the soft link libblas.so.x (64 bit).

/opt/cell/sysroot/usr/lib64/libblas.so.x: Soft link to

the soft link libblas.so.x.y (64 bit).

/opt/cell/sysroot/usr/lib64/libblas.so.x.y: BLAS

library (64 bit).

/opt/cell/sysroot/usr/spu/include/blas_s.h:

Contains prototypes of selected functions of BLAS

Level 1, 2 and 3 that have an SPE API in the library.

These functions have limited functionality and are

not as generic as the PPE APIs.

/opt/cell/sysroot/usr/spu/lib/libblas.a: BLAS SPU

library.

/opt/cell/sysroot/usr/lib/libblas_xlf.a

/opt/cell/sysroot/usr/lib64/libblas_xlf.a: Static

library providing XLF compatible interfaces for

CDOTU, ZDOTU, CDOTC and ZDOTC. Only used

when compiling applications with XLF.

blas-examples-source-3.1-
x.noarch.rpm

Installs BLAS

sample

applications.

/opt/cell/sdk/src/blas-examples-source.tar:

Compressed file of BLAS samples.

6 BLAS Programmer’s Guide and API Reference

|

||||

|
|
|

|
|
|
|
|

|
|
|
|
|

|
|
|
|

|
|
|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|
|
|
|

|
|

|

|
|
|
|

|
|
|
|
|

||
|

|

Part 3. Programming

The topics in this section provide information about programming with the BLAS

library.

The following topics are described:

v Chapter 2, “Basic structure of the BLAS library,” on page 9

v Chapter 3, “Using the BLAS library (PPE interface),” on page 11

v Chapter 4, “Tuning the BLAS library for performance,” on page 15

v Chapter 5, “Debugging tips,” on page 19

© Copyright IBM Corp. 2007, 2008 7

8 BLAS Programmer’s Guide and API Reference

Chapter 2. Basic structure of the BLAS library

The topics in this section describe the BLAS library components.

The BLAS Library has two components:

v Power Processing Element (PPE) interface

v Synergistic Processing Element (SPE) interface

PPE applications can use the standard BLAS PPE APIs (defined by BLAS Technical

Forum Standard, see documents in “Related information” on page v) and the SPE

programs can directly use the SPE APIs.

A detailed description of the SPE interface is provided in Chapter 9, “SPE APIs,”

on page 31.

© Copyright IBM Corp. 2007, 2008 9

10 BLAS Programmer’s Guide and API Reference

Chapter 3. Using the BLAS library (PPE interface)

At the PPE level, the BLAS APIs support two different set of C interfaces to the

BLAS routines.

These are:

v C interface to the legacy BLAS as set out by the BLAS Technical Forum, with

prefix cblas_ appended to the routine name, for example, cblas_dgemm for

DGEMM routine

v FORTRAN-callable C interface with underscore (’_’) suffixed to the routine

name, for example, dgemm_ for DGEMM routine

A PPE application can either use the C interface or the FORTRAN-compatible

(callable) C interface on the PPE provided by the BLAS library. Both these

interfaces conform to the standard BLAS interface, which means that the

FORTRAN interface supports column-major storage only, whereas the C interface

supports both row-major as well as column-major data storage.

The C interface is built on top of FORTRAN-compatible C interface. The PPE

application must include the appropriate header file (blas.h or cblas.h depending

on the interface used) and must be linked with ’-lblas’.

Fortran applications must use the compiler options as shown in Table 3:

 Table 3. Fortran compiler options

Compiler

Compilation

mode Compiler command

ppu-gfortran 32–bit ppu-gfortran –m32 –ff2c myapp.f -lblas

64–bit ppu-gfortran –m64 –ff2c myapp.f –lblas

ppuxlf

Application does not call complex

routines cdotu, zdotu, cdotc, zdotc

32–bit ppuxlf -q32 –qextname myapp.f -lblas

64–bit ppuxlf –q64 –qextname myapp.f -lblas

ppuxlf

Application calls complex routines

cdotu, zdotu, cdotc, zdotc

32–bit ppuxlf -q32 –qextname myapp.f –lblas_xlf –lblas

(-lblas_xlf must be placed before –lblas)

64–bit ppuxlf –q64 –qextname myapp.f –lblas_xlf –lblas

(-lblas_xlf must be placed before –lblas)

The following topics describe the input requirements and a sample application.

Input requirements

The BLAS library requires all the matrices and vectors to be naturally aligned.

The alignment is as follows:

v 4-byte aligned for real single precision

v 8-byte aligned for real double precision and complex single precision

v 16-byte aligned for complex double precision

The library does not support cases where this is not satisfied.

© Copyright IBM Corp. 2007, 2008 11

|

||

|
|
||

|||

||

|

|
|

||

||

|

|
|

||

|

||

|
|

|

Programming samples

The following sample applications demonstrate the usage of the BLAS-PPE library.

The application programs invoke the scopy and sdot routines, using the BLAS-PPE

library.

Example: Using the FORTRAN-compatible C interface

#include <blas.h>

#define BUF_SIZE 32

/********************** MAIN ROUTINE **********************/

int main()

{

 int i,j ;

 int entries_x, entries_y ;

 float sa=0.1;

 float *sx, *sy ;

 int incx=1, incy=2;

 int n = BUF_SIZE;

 double result;

 entries_x = n * incx ;

 entries_y = n * incy ;

 sx = (float *) _malloc_align(entries_x * sizeof(float), 7) ;

 sy = (float *) _malloc_align(entries_y * sizeof(float), 7) ;

 for(i = 0 ; i < entries_x ; i++)

 sx[i] = (float) (i) ;

 j = entries_y - 1 ;

 for(i = 0 ; i < entries_y ; i++,j--)

 sy[i] = (float) (j) ;

 scopy_(&n, sx, &incx, sy, &incy) ;

 result = sdot_(&n, sx, &incx, sy, &incy) ;

 return 0;

}

Example: Using the C interface (cblas_*)

#include <cblas.h>

#define BUF_SIZE 32

/********************** MAIN ROUTINE **********************/

int main()

{

 int i,j ;

 int entries_x, entries_y ;

 float sa=0.1;

 float *sx, *sy ;

 int incx=1, incy=2;

 int n = BUF_SIZE;

 double result;

 entries_x = n * incx ;

 entries_y = n * incy ;

 sx = (float *) _malloc_align(entries_x * sizeof(float), 7) ;

 sy = (float *) _malloc_align(entries_y * sizeof(float), 7) ;

 for(i = 0 ; i < entries_x ; i++)

 sx[i] = (float) (i) ;

 j = entries_y - 1 ;

 for(i = 0 ; i < entries_y ; i++,j--)

 sy[i] = (float) (j) ;

12 BLAS Programmer’s Guide and API Reference

cblas_scopy(n, sx, incx, sy, incy) ;

 result = cblas_sdot(n, sx, incx, sy, incy) ;

 return 0;

}

Chapter 3. Using the BLAS library (PPE interface) 13

14 BLAS Programmer’s Guide and API Reference

Chapter 4. Tuning the BLAS library for performance

The following topics describe BLAS library additional features for customizing the

library. You can use these features to effectively use the available resources and

potentially achieve higher performance.

Swap space

The optimized BLAS level 3 routines use extra space to suitably reorganize the

matrices. It is advisable to use huge pages for storing the input/output matrices as

well as for storing the reorganized matrices in BLAS level 3. To achieve better

performance, it is also beneficial to reuse the allocated space across multiple BLAS

calls, rather than allocate fresh memory space with every call to the routine. This

reuse of allocated space becomes especially useful when operating on small

matrices. To overcome the overhead required for small matrices, a pre-allocated

space, called swap space, is created only once with huge pages (and touched on the

PPE). You can specify the size of swap space with the environment variable

BLAS_SWAP_SIZE. By default no swap space is created.

When any optimized BLAS3 routine is called and if the extra space required for

reorganizing the input matrices is less than the pre-allocated swap space, this swap

space is used by the routine to reorganize the input matrices (instead of allocating

new space).

The idea is to use swap space up to 16 MB (single huge page size), this takes care

of extra space requirement for small matrices. You can achieve considerable

performance improvement for small matrices through the use of swap space.

Memory bandwidth-bound and compute-bound routines

BLAS Level 1 and Level 2 routines are memory bandwidth bound in general on

the Cell/B.E. processor. When the data to be processed by these routines is on the

same Cell/B.E. node, the best performance is generally achieved with four or less

SPEs. The performance of these routines is not expected to improve further by

using more SPEs. The BLAS library internally uses the optimal number of SPEs for

level 1 and 2 routines to achieve the best performance for these routines, even if

more SPEs are available for its use. However, level 3 routines are generally

computation-bound on the Cell/B.E. processor. The performance of these routines

is expected to scale with the number of SPEs used.

Startup costs

There is a one time startup cost due to initialization and setup of memory and

SPEs within the BLAS library. This one time start-up cost is incurred only when an

application invokes an optimized BLAS routine for the first time. Subsequent

invocations of optimized BLAS routines by the same application do not incur this

cost.

Environment variables

There are many environment variables available to customize SPE and memory

management in the BLAS library. However, for full control, you can register and

© Copyright IBM Corp. 2007, 2008 15

use your own SPE and memory callbacks (described in Chapter 10, “Additional

APIs,” on page 53). The following table lists the environment variables:

 Table 4. Environment variables

Variable name Purpose Default value

BLAS_NUMSPES Specifies the number of SPEs to be used per

application. For multi threaded applications,

the SPEs specified by BLAS_NUMSPEs are shared

by all the application threads.

The value of this variable is read only once

inside the BLAS library and then the same

value is used throughout the application

lifetime. Therefore, there is no effect if this

variable is changed partway through an

application during runtime.

8 (SPEs in a single node).

BLAS_USE_HUGEPAGE Specifies if the library should use huge pages

or heap for allocating new space for

reorganizing input matrices in BLAS3

routines. Set the variable to 0 to use heap

instead of the default.

Use huge pages.

BLAS_HUGE_PAGE_SIZE Specifies the huge page size to use, in KB. The

huge page size on the system can be found in

the file /proc/meminfo.

16384 KB (16 MB).

BLAS_HUGE_FILE Specifies the name of the file to be used for

allocating new space using huge pages in

BLAS3 routines.

The filename is /huge/blas_lib.bin

BLAS_SWAP_SIZE Specifies the size of swap space, in KB. Do not use swap space.

BLAS_SWAP_NUMA_NODE Specifies the NUMA node on which swap

space is allocated.

NUMA node is -1 which indicates

no NUMA binding.

BLAS_SWAP_HUGE_FILE Specifies the name of the file that is used to

allocate swap space using huge pages.

The filename is

/huge/blas_lib_swap.bin

Note: The environment variable BLAS_NUMA_NODE is no longer supported. You can

use the command line NUMA policy tool numactl to achieve the same

functionality.

The following example shows how a test program, test_name, can be run with five

SPEs, using binding on NUMA node 0 and 12 MB of swap space on the same

NUMA node:

env BLAS_NUMSPES=5 numactl --cpunodebind=0 --membind=0

BLAS_SWAP_SIZE=12288 ./test_name

Programming tips to achieve maximum performance

You can use the tips described here to leverage maximum performance from the

BLAS library.

v Make the matrices/vectors 128 byte aligned, because memory access is more

efficient when the data is 128 byte aligned.

v Use huge pages to store vectors and matrices. By default, the library uses this

feature for memory allocation done within the library.

v Use NUMA binding for the application. An application can enable NUMA

binding either using the command line NUMA policy tool numactl or NUMA

policy API libnuma provided on Linux®.

16 BLAS Programmer’s Guide and API Reference

|
|
|
|

|
|
|

|
|
|

v Use the swap space feature, described in Chapter 4, “Tuning the BLAS library

for performance,” on page 15, for matrices smaller than 1024 (1K), with

appropriate NUMA binding.

v The library gives better performance when it processes vectors and matrices of

large sizes. Performance of optimized routines is better when the stride value is

1. Routines that involve matrices show good performance when the leading

dimension, number of rows and columns are a multiple of 64.

v On an IBM BladeCenter QS21 or QS22, which has 16 SPEs, BLAS_NUMSPES can be

set to 16 to get better performance for compute bound routines.

Chapter 4. Tuning the BLAS library for performance 17

|
|

18 BLAS Programmer’s Guide and API Reference

Chapter 5. Debugging tips

You can use the steps described in this topic to debug common errors encountered

in programming with the BLAS library.

v For using huge pages, the library assumes that a file system of type hugetlbfs is

mounted on /huge directory. If the hugetlbfs file system is mounted on some

other directory, you should change the name of the huge page files

appropriately using the environment variables BLAS_HUGE_FILE and

BLAS_SWAP_HUGE_FILE, see “Environment variables” on page 15.

v If the operating system kills the application process or a bus error is received,

check that sufficient memory is available on the system. The optimized BLAS

level 3 routines require additional space. This space is allocated with huge

pages. If there are insufficient huge pages in the system, there is a possibility of

receiving a bus error at the time of execution. You can set the environment

variable BLAS_USE_HUGEPAGE to 0 (see “Environment variables” on page 15) to use

heap for memory allocation instead of huge pages.

v When you use the SPE APIs, make sure the alignment and parameter constraints

are met. The results can be unpredictable if these constraints are not satisfied.

v The BLAS library requires all the matrices and vectors to be naturally aligned,

that is, 4–byte aligned for single precision and 8–byte aligned for double

precision. Cases where this is not satisfied can give unpredictable results

including a bus error.

© Copyright IBM Corp. 2007, 2008 19

20 BLAS Programmer’s Guide and API Reference

Part 4. SPE and memory management

This section describes the mechanisms available in the BLAS library that offer more

control to advanced programmers for management of SPEs and system memory.

The default SPE and Memory management mechanism in the BLAS library can be

partially customized by the use of environment variables. However for more

control, an application can design its own mechanism for managing available SPE

resources and system memory to be used by BLAS routines in the library.

© Copyright IBM Corp. 2007, 2008 21

22 BLAS Programmer’s Guide and API Reference

Chapter 6. Creating SPE threads

When a prebuilt BLAS application binary (executable) is run with the BLAS library,

the library internally manages SPE resources available on the system using the

default SPE management routines.

This is also true for the other BLAS applications that do not intend to manage the

SPEs and want to use the default SPE management provided by the BLAS library.

The sample application in the Chapter 3, “Using the BLAS library (PPE interface),”

on page 11 is an example of this.

For such applications, you can partially control the behavior of BLAS library by

using certain environment variables as described in “Environment variables” on

page 15.

© Copyright IBM Corp. 2007, 2008 23

24 BLAS Programmer’s Guide and API Reference

Chapter 7. Support of user-specified SPE and memory

callbacks

The SPE and memory management mechanism used by the BLAS library can be

customized with the help of user-specified callback routines.

Instead of using default SPE management functions defined in the BLAS library, a

BLAS application can register its own SPE thread management routines (for

example, for creating or destroying SPE threads or both, SPE program loading or

context creation). This is done with the registration function BLAS_REGISTER_SPE

provided by the BLAS library.

The optimized level 3 routines in the library use some extra space for suitably

reorganizing the input matrices. The library uses default memory management

routines to allocate and deallocate this extra space.

Similar to the user-specified SPE management routines, you can also specify

custom memory management routines. Instead of using the default memory

management functions defined in BLAS library, a BLAS application can register its

own memory allocation and deallocation routines for allocating new space for

reorganizing the input matrices. To do this, use the registration function

BLAS_REGISTER_MEM.

Default SPE and memory management routines defined in the BLAS library are

registered when you do not register any routines.

An example of a multi-threaded BLAS application registering its own SPE

management functions is available in the blas-examples/blas_thread/ directory

contained in the BLAS examples compressed file (blas-examples-source.tar), which

is installed with the blas-examples-source RPM.

© Copyright IBM Corp. 2007, 2008 25

|
|

26 BLAS Programmer’s Guide and API Reference

Part 5. BLAS API reference

The BLAS library provides two sets of interfaces.

These are:

v Chapter 8, “PPE APIs,” on page 29

v Chapter 9, “SPE APIs,” on page 31

The PPE interface conforms to the standard BLAS interface. The library also

provides additional functions to customize the library.

© Copyright IBM Corp. 2007, 2008 27

28 BLAS Programmer’s Guide and API Reference

Chapter 8. PPE APIs

The PPE APIs are available for all standard BLAS routines.

The PPE APIs conform to the existing standard interface defined by the BLAS

Technical Forum. The library offers both a C interface and a standard FORTRAN

compatible C interface to BLAS routines at the PPE level. Prototypes of the

routines in C interface can be found in cblas.h and FORTRAN compatible C

interface in blas.h.

Detailed documentation for these routines is available at:

http://www.netlib.org/blas/blast-forum/blas-report.pdf

For further information about BLAS, refer to netlib documentation on:

http://www.netlib.org

© Copyright IBM Corp. 2007, 2008 29

|

http://www.netlib.org/blas/blast-forum/blas-report.pdf
http://www.netlib.org

30 BLAS Programmer’s Guide and API Reference

Chapter 9. SPE APIs

The library provides SPE APIs only for certain routines.

These APIs do not conform to the existing BLAS standard. There are constraints on

the functionality (range of strides, sizes, and so on) supported by these routines.

Prototypes of these routines are listed in blas_s.h. The following sections provide

detailed descriptions of the routines that are part of these APIs. The following table

provides a list of routines that are new for SDK 3.1:

 BLAS routine level Functionality

Level 1 v dscal_spu

v dcopy_spu

v daxpy_spu

v ddot_spu

v idamax_spu, idamax_edp_spu

v dasum_spu

v dnrm2_spu, dnrm2_edp_spu

v drot_spu

Level 2 v dgemv_spu

v dtrsv_spu_lower / dtrsv_spu_upper / strsv_spu_lower /

strsv_spu_upper

v dger_spu / sger_spu / dger_op_spu / sger_op_spu

v dsymv_spu_lower

Level 3 v strsm_spu / strsm_spu_upper / dtrsm_spu_lower /

dtrsm_spu_upper / dtrsm64x64_lower / dtrsm64x64_upper

v dgemm_spu

v ssyrk_spu / dsyrk_spu /dsyrk_64x64

v strmm_spu_upper_trans_left / strmm_spu_upper_left /

dtrmm_spu_upper_trans_left / dtrmm_spu_upper_left

v ssyr2k_spu_lower / ssyr2k_64x64_lower / dsyr2k_spu_lower /

dsyr2k_64x64_lower

© Copyright IBM Corp. 2007, 2008 31

|||

||

|

|

|

|

|

|

|

||

|
|

|

|

||
|

|

|

|
|

|
|
|
|

sscal_spu / dscal_spu

NAME

sscal_spu / dscal_spu - Scales a vector by a constant.

SYNOPSIS

void sscal_spu (float *sx, float sa, int n)

void dscal_spu (double *dx, double da, int n)

 Parameters

sx/dx Pointer to vector of floats/doubles to scale.

sa/da Float/double constant to scale vector elements with.

n Integer storing number of vector elements to scale. (Must be a

multiple of 32 for SP and 16 for DP)

DESCRIPTION

This BLAS 1 routine scales a vector by a constant. The following operation is

performed in scaling:

x ← α x

where x is a vector and α is a constant. Unlike the equivalent PPE API, the SPE

interface is designed for stride 1 only, whereby n consecutive elements, starting

with first element, get scaled. The routine has limitations on the n value and vector

alignment. n value should be a multiple of 16 for DP and 32 for SP. The x vector

must be aligned at a 16–byte boundary.

EXAMPLES

#define len 1024

float buf_x[len] __attribute__ ((aligned (16))) ;

int main()

{

 int size=len, k ;

 float alpha = 0.6476 ;

 for(k=0;<ksize;k++)

 {

 buf_x[k] = (float)k ;

 }

 sscal_spu(buf_x, alpha, size) ;

 return 0 ;

}

32 BLAS Programmer’s Guide and API Reference

|

|

|

|

|
|

|||
||
||
||
|
|

|

|
|

|

|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

scopy_spu / dcopy_spu

NAME

scopy_spu / dcopy_spu - Copies a vector from source to destination.

SYNOPSIS

void scopy_spu (float *sx, float *sy, int n)

void dcopy_spu (double *dx, double *dy, int n)

 Parameters

sx/dx Pointer to source vector of floats/doubles

sy/dy Pointer to destination vector of floats/doubles

n Integer storing number of vector elements to copy

DESCRIPTION

This BLAS 1 routine copies a vector from source to destination. The following

operation is performed in copy:

y ← x

where x and y are vectors. Unlike the equivalent PPE API, this routine supports

only stride 1, whereby n consecutive elements, starting with first element, get

copied. The routine has no limitation on the value of n and vector alignments

EXAMPLES

#define len 1000

int main()

{

 int size=len, k ;

 float buf_x[len] ;

 float buf_y[len] ;

 for(k=0;<ksize;k++)

 {

 buf_x[k] = (float)k ;

 }

 scopy_spu(buf_x, buf_y, size) ;

 return 0 ;

}

Chapter 9. SPE APIs 33

|

|

|

|

|
|

|||
||
||
||
|

|

|
|

|

|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

saxpy_spu / daxpy_spu

NAME

saxpy_spu / daxpy_spu - Scales a source vector and element-wise adds it to the

destination vector.

SYNOPSIS

void saxpy_spu (float *sx, float *sy, float sa, int n)

void daxpy_spu (double *dx, double *dy, double da, int, n)

 Parameters

sx/dx Pointer to source vector (x) of floats/doubles

sy/dy Pointer to destination vector (y) of floats/doubles

sa/da Float/double constant to scale elements of vector x with

n Integer storing number of vector elements to scale and add

DESCRIPTION

This BLAS 1 routine scales a source vector and element-wise adds it to the

destination vector. The following operation is performed in scale and add:

y ← αx + y

where x, y are vectors and α is a constant. Unlike the equivalent PPE API, the SPE

interface is designed for stride 1 only, wherein n consecutive elements, starting

with first element, get operated on. This routine has limitations on the n value and

vector alignment supported. The value of n should be a multiple of 32 for DP and

64 for SP. The x and y vectors must be aligned at a 16 byte boundary.

EXAMPLES

#define len 1024

float buf_x[len] __attribute__ ((aligned (16))) ;

float buf_y[len] __attribute__ ((aligned (16))) ;

int main()

{

 int size=len, k ;

 float alpha = 0.6476 ;

 for(k=0; k<size; k++)

 {

 buf_x[k] = (float)k ;

 buf_y[k] = (float)(k * 0.23) ;

 }

 saxpy_spu(buf_x, buf_y, alpha, size) ;

 return 0 ;

}

34 BLAS Programmer’s Guide and API Reference

|

|

|
|

|

|
|

|||
||
||
||
||
|

|

|
|

|

|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

sdot_spu / ddot_spu

NAME

sdot_spu / ddot_spu - Performs dot product of two vectors.

SYNOPSIS

float sdot_spu (float *sx, float *sy, int n)

double ddot_spu (double *dx, double *dy, int n)

 Parameters

sx/dx Pointer to first vector (x) of floats/doubles

sy/dy Pointer to second vector (y) of floats/doubles

n Integer storing number of vector elements

DESCRIPTION

This BLAS 1 routine performs dot product of two vectors. The following operation

is performed in dot product:

result ← x . y

where x and y are vectors. Unlike the equivalent PPE API, the SPE interface is

designed for stride 1 only, whereby n consecutive elements, starting with first

element, get operated on. This routine has limitations on the n value and vector

alignment. n value should be a multiple of 16 for DP and 32 for SP. The x and y

vector must be aligned at a 16 byte boundary.

RETURN VALUE

 float/double Dot product of the two vectors

EXAMPLES

#define len 1024

float buf_x[len] __attribute__ ((aligned (16))) ;

float buf_y[len] __attribute__ ((aligned (16))) ;

int main()

{

 int size = len, k ;

 float sum = 0.0 ;

 for(k=0;<ksize;k++)

 {

 buf_x[k] = (float) k;

 buf_y[k] = buf_x[k];

 }

 sum = sdot_spu(buf_x, buf_y, size) ;

 return 0 ;

}

Chapter 9. SPE APIs 35

|

|

|

|

|
|

|||
||
||
||
|

|

|
|

|

|
|
|
|
|

|

|||
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

isamax_spu / idamax_spu / idamax_edp_spu

NAME

isamax_spu / idamax_spu / idamax_edp_spu - Determines the (first occurring)

index of the largest element in a vector.

SYNOPSIS

int isamax_spu (float *sx, int n)

int idamax_spu (double *dx, int n)

int idamax_edp_spu (double *dx, int n)

 Parameters

sx/dx Pointer to vector (x) of floats/doubles

n Integer storing number of vector elements

DESCRIPTION

This BLAS 1 routine determines the (first occurring) index of the largest element in

a vector. The following operation is performed in vector max index:

result ← 1st k s.t. x[k] = max(x[i])

where x is a vector. The routine is designed for stride 1 only, wherein n

consecutive elements, starting with first element, get operated on. This routine has

limitations on the n value and vector alignment. n value should be a multiple of 32

for both SP and DP. The x vector must be aligned at a 16 byte boundary.

idamax_edp_spu is optimized exclusively for PowerXCell 8i processor with

enhanced double precision support (eDP) (for example, in an IBM BladeCenter

QS22) and cannot be used with previous Cell/B.E. processors without eDP support

(for example, in an IBM BladeCenter QS21). The idamax_spu routine is compatible

with both the processors.

RETURN VALUE

 int Index of (first occurring) largest element. (Indices start with 0.)

EXAMPLES

#define len 1024

float buf_x[len] __attribute__ ((aligned (16))) ;

int main()

{

 int size=len, k ;

 int index ;

 for(k=0;<ksize;k++)

 {

 buf_x[k] = (float) k;

 }

 index = isamax_spu(buf_x, size) ;

 return 0 ;

}

36 BLAS Programmer’s Guide and API Reference

|

|

|
|

|

|
|
|

|||
||
||
|

|

|
|

|

|
|
|
|

|
|
|
|
|

|

|||
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

dasum_spu

NAME

dasum_spu - Returns the sum of the absolute elements in a vector.

SYNOPSIS

double dasum_spu (double *dx, int n)

 Parameters

dx Pointer to vector of doubles to be summed up

n Integer storing number of vector elements to be summed up

(must be a multiple of 64)

DESCRIPTION

This BLAS 1 routine returns the sum of the absolute elements in a vector.

The routine performs:

result ← ∑|xi|

The SPE routine is designed for stride 1 only, wherein n consecutive elements,

starting with first element, get summed up. The x vector must be aligned at a 16

byte boundary.

RETURN VALUE

 The absolute sum of elements in the vector.

Chapter 9. SPE APIs 37

|

|

|

|

|

|||
||
||
|
|

|

|

|

|

|
|
|

|

|||
|

|

dnrm2_spu / dnrm2_edp_spu

NAME

dnrm2_spu / dnrm2_edp_spu - Returns the euclidean norm of a vector.

SYNOPSIS

double dnrm2_spu (int n, double *dx)

double dnrm2_edp_spu (int n, double *dx)

 Parameters

n Pointer to integer storing number of vector elements to be

operated on (must be a multiple of 32).

dx Pointer to vector x to be normalised.

DESCRIPTION

This BLAS 1 routine returns the euclidean norm of a vector.

The routine performs:

result ← '(x.x’)

where x and x’ is the vector and its transpose.

The SPE routine is designed for stride 1 only, wherein n consecutive elements,

starting with first element, get operated on. The x vector must be aligned at a

16–byte boundary.

dnrm2_edp_spu is optimised exclusively for PowerXCell 8i processor with

enhanced double precision support (eDP) (for example, in an IBM BladeCenter

QS22) and cannot be used with previous Cell/B.E. processors without eDP support

(for example, in an IBM BladeCenter QS21). The dnrm2_spu routine is compatible

with both the processors.

38 BLAS Programmer’s Guide and API Reference

|

|

|

|

|
|

|||
||
|
||
|

|

|

|

|

|

|
|
|

|
|
|
|
|

|

drot_spu

NAME

drot_spu - Applies a real plane rotation to real vectors.

SYNOPSIS

void drot_spu (int n, double *dx, double *dy, double c, double s)

 Parameters

n Integer storing number of vector elements to be rotated (must

be a multiple of 16)

dx Pointer to vector x to be rotated.

dy Pointer to vector y to be rotated.

c Double storing cosine of the angle of rotation.

s Double storing sine of the angle of rotation.

DESCRIPTION

This BLAS 1 routine applies a real plane rotation to real vectors. The plane rotation

is applied to n points, where the points to be rotated are contained in vectors x and

y, and where the cosine and sine of the angle of rotation are c and s, respectively.

The operation is as follows:

 where xi

and yi

is the index of each element to be operated on.

The SPE routine is designed for stride 1 only, wherein n consecutive elements,

starting with first element, get operated on. The x and y vectors must be aligned at

a 16 byte boundary.

Chapter 9. SPE APIs 39

|

|

|

|

|

|

|

|||
||
|
||
||
||
||
|

|

|
|
|
|
|

|

|
|
|

|

sgemv_spu / dgemv_spu

NAME

sgemv_spu / dgemv_spu - Multiplies a matrix and a vector, adding the result to a

resultant vector.

SYNOPSIS

void sgemv_spu (int m, int n, float alpha, float *a, float *x, float *y)

void dgemv_spu (int m, int n, double alpha, double *a, double *x, double *y)

 Parameters

m Integer specifying number of rows in matrix A

n Integer specifying number of columns in matrix A

alpha Float/double storing constant to scale the matrix product AX

a Pointer to matrix A

x Pointer to vector X

y Pointer to vector Y

DESCRIPTION

This BLAS 2 routine multiplies a matrix and a vector, adding the result to a

resultant vector with suitable scaling. The routines sgemv_spu and dgemv_spu

perform the following operation:

y ← α A x + y

where x and y are vectors, A is a matrix and α is a scalar.

Unlike equivalent PPE interface, the SPE interface for this routine only supports

stride (increment) of one for vectors x and y. m must be a multiple of 32 for both

SP and DP. n must be a multiple of 8 for both SP and DP. All the input vectors and

matrix must be 16-byte aligned. Matrix A must be stored in column major order.

EXAMPLES

#define M 512

#define N 32

float Y[M] __attribute__ ((aligned (16))) ;

float A[M*N] __attribute__ ((aligned (16))) ;

float X[N] __attribute__ ((aligned (16))) ;

int main()

{

 int k ;

 float alpha = 1.2;

 for(k = 0; k < M; k++)

 Y[k] = (float) k;

 for(k = 0; k < M*N; k++)

 A[k] = (float) k;

 for(k = 0; k < N; k++)

 X[k] = (float) k;

40 BLAS Programmer’s Guide and API Reference

|

|

|
|

|

|
|

|||
||
||
||
||
||
||
|

|

|
|
|

|

|

|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

sgemv_spu(M, N, alpha, A, X, Y);

 return 0;

}

Chapter 9. SPE APIs 41

|
|
|
|

|

dtrsv_spu_lower / dtrsv_spu_upper / strsv_spu_lower /

strsv_spu_upper

NAME

dtrsv_spu_lower / dtrsv_spu_upper / strsv_spu_lower / strsv_spu_upper - Solves

systems of triangular equations involving a triangular matrix and a vector.

SYNOPSIS

void dtrsv_spu_lower (unsigned int n, double *a, int lda, double *x)

void dtrsv_spu_upper (unsigned int n, double *a, int lda, double *x)

void strsv_spu_lower (unsigned int n, float *a, int lda, float *x)

void strsv_spu_upper (unsigned int n, float *a, int lda, float *x)

 Parameters

n Integer specifying order of matrix A (must be a multiple of 16)

a Pointer to matrix A

lda Integer specifying leading dimension of the first dimension of

matrix A, must be greater than or equal to max(1, n). It must

be a multiple of 2 for double precision and a multiple of 4 for

single precision (so that the next column of matrix A starts

from a 16 byte aligned address).

x Pointer to vector x (only stride/increment of one supported for

vector x)

DESCRIPTION

This BLAS 2 routine solves systems of triangular equations involving a triangular

matrix and a vector.

The routine performs:

x = A-1 x

where for:

dtrsv_spu_lower/strsv_spu_lower

A is a lower triangular matrix and x is a vector

dtrsv_spu_upper/strsv_spu_upper

A is an upper triangular matrix and x is a vector

The input vectors and matrices must be 16-byte aligned. Matrix A must be stored

in column major order. The triangular part of the matrix A must not contain any

NaN or Infinity values.

42 BLAS Programmer’s Guide and API Reference

|

|

|

|
|

|

|
|
|
|

|||
||
||
||
|
|
|
|
||
|
|

|

|
|

|

|

|

|
|

|
|

|
|
|

|

dger_spu / sger_spu / dger_op_spu / sger_op_spu

NAME

dger_spu / sger_spu / dger_op_spu / sger_op_spu - Computes the outer product of

two vectors with suitable scaling.

SYNOPSIS

void dger_spu (unsigned int P, unsigned int Q, double alpha,

double *x, double *y, double *A, unsigned int lda, double beta) void sger_spu (unsigned int P, unsigned int Q, float alpha,

float *x, float *y, float *A, unsigned int lda, float beta)

void dger_op_spu (unsigned int P, unsigned int Q, double alpha,

double *x, double *y, double *A, unsigned int lda)

void sger_op_spu (unsigned int P, unsigned int Q, float alpha,

float *x, float *y, float *A, unsigned int lda)

 Parameters

P Unsigned integer specifying number of rows of matrix A

Q Unsigned integer specifying number of columns of matrix A

alpha Scalar constant

x Pointer to a block of vector X

y Pointer to a block of vector Y

A Pointer to a block of matrix A

lda Unsigned integer specifying leading dimension of the first

dimension of the block of matrix A. lda must be >= max(1,P)

beta Scalar constant

DESCRIPTION

These routines compute the outer product of two vectors with suitable scaling.

Routines dger_spu and sger_spu performs the following operation

A ← α.x.yT + β.A

where A is a column-major regular matrix of dimension PxQ and leading

dimension of lda. x and y are vectors of size P and Q, respectively and stride 1. α

and β are scalar constants. Vectors x and y and matrix A are 16-byte aligned.

Routines dger_op_spu and sger_op_spu performs the following operation where it

does not fetches matrix A

A ← α.x.yT

Unlike equivalent PPE interface, the SPE interface for this routine only supports

stride (increment) of one for vectors x and y. P, Q and lda must be a multiple of 4

for SP and 2 for DP. lda must also be >= max(1,P). All the input vectors and

matrix must be 16-byte aligned and matrix A must be stored in column major

order.

Chapter 9. SPE APIs 43

|

|

|
|

|

|
|
|
|
|
|
|

|||
||
||
||
||
||
||
||
|
||
|

|

|
|

|

|
|
|

|
|

|

|
|
|
|
|

|

dsymv_spu_lower

NAME

dsymv_spu_lower - Multiplies a symmetric matrix and a vector, adding the result

to a resultant vector with suitable scaling.

SYNOPSIS

void dsymv_spu_lower (unsigned int n, double alpha, double *a, int lda, double

*x, double *y)

 Parameters

n Integer specifying order of matrix A (must be a multiple of 16).

alpha Double storing constant to scale the matrix-vector product Ax.

a Pointer to matrix A.

lda Integer specifying leading dimension of the first dimension of

matrix A (must be >= max(1,n) and multiple of 2 (so that the

next column of matrix A starts from a 16-byte aligned address).

x Pointer to vector X.

y Pointer to vector Y.

DESCRIPTION

The routine dsymv_spu_lower performs the following:

y ← α A x + y

Where A is symmetric matrix and only lower triangular elements of A need to be

referenced. Vectors and matrices must be 16 byte aligned and matrices must be in

column major order.

44 BLAS Programmer’s Guide and API Reference

|

|

|
|

|

|
|

|||
||
||
||
||
|
|
||
||
|

|

|

|

|
|
|

|

strsm_spu

NAME

strsm_spu / strsm_spu_upper / strsm_64x64 /

dtrsm_spu_lower / dtrsm_spu_upper /

dtrsm64x64_lower / dtrsm64x64_upper -

Solves a system of equations involving a triangular matrix with multiple right

hand sides.

SYNOPSIS

void strsm_spu (int m, int n, float *a, float *b)

void strsm_spu_upper (unsigned int m, unsigned int n, float *a, float *b,

unsigned int lda, unsigned int ldb)

void strsm_64x64 (float *a, float *b)

void dtrsm_spu_lower (unsigned int m, unsigned int n, double *a, double *b,

unsigned int lda, unsigned int ldb)

void dtrsm_spu_upper (unsigned int m, unsigned int n, double *a, double *b,

unsigned int lda, unsigned int ldb)

void dtrsm64x64_lower (double *a, double *b)

void dtrsm64x64_upper (double *a, double *b)

 Parameters

m Integer specifying number of columns of matrix B in case of

strsm_spu and number of rows in case of other routines.

n Integer specifying number of rows of matrix B in case of

strsm_spu and number of columns in case of other routines.

a Pointer to matrix A

b Pointer to matrix B

lda Integer specifying leading dimension for matrix A. It must be

greater than or equal to max(1, m), and a multiple of 2 for DP

and 4 for SP

ldb Integer specifying leading dimension for matrix B. It must be

greater than or equal to max(1, n), and a multiple of 2 for DP

and 4 for SP

DESCRIPTION

This BLAS 3 routine solves a system of equations involving a triangular matrix

with multiple right hand sides. It solves the following equation and the result is

updated in matrix B:

B ← A-1B

where for:

strsm_spu

A is lower triangular n x n matrix and B is a n x m regular matrix. m must

be a multiple of 8, n must be a multiple of 4.

strsm_64x64

A is lower triangular 64 x 64 matrix and B is a 64 x 64 regular matrix.

strsm_spu_upper / dtrsm_spu_upper

A is the upper triangular m x m matrix and B is a m x n regular matrix.

Both m and n must be a multiple of 16.

Chapter 9. SPE APIs 45

|

|

|
|
|

|
|

|

|
|
|
|
|
|
|
|
|
|

|||
||
|
||
|
||
||
||
|
|
||
|
|
|

|

|
|
|

|

|

|
|
|

|
|

|
|
|

dtrsm_spu_lower

A is the lower triangular m x m matrix and B is a m x n regular matrix.

Both m and n must be a multiple of 16.

dtrsm64x64_lower

A is the lower 64 x 64 triangular matrix and B is a 64 x 64 regular matrix.

dtrsm64x64_upper

A is the upper 64 x 64 triangular matrix and B is a 64 x 64 regular matrix.

Matrices A and B must be aligned at a 16–byte boundary and must be stored in

row-major order. The triangular part of the matrix A must not contain any NaN or

Infinity values.

EXAMPLES

#define MY_M 32

#define MY_N 32

float myA[MY_N * MY_N] __attribute__((aligned (16))) ;

float myB[MY_N * MY_M] __attribute__((aligned (16))) ;

int main()

{

 int i,j,k ;

 for(i = 0 ; i < MY_N ; i++)

 {

 for(j = 0; j <= i ; j++)

 myA[(MY_N * i) + j] = (float)(i + 1) ;

 for(j = i+1; j < MY_N ; j++)

 myA[(MY_N * i) + j] = 0 ;

 }

 for(i = 0 ; i < MY_N ; i++)

 for(j = 0 ; j < MY_M ; j++)

 myB[(MY_M * i) + j] = (float)(i+1)*(j +1);

 strsm_spu(MY_M, MY_N, myA, myB) ;

 return 0;

}

46 BLAS Programmer’s Guide and API Reference

|
|
|

|
|

|
|

|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

sgemm_spu / dgemm_spu / dgemm_64x64

NAME

sgemm_spu / dgemm_spu / dgemm_64x64 - Multiplies two matrices, A and B and

adds the result to the resultant matrix C.

SYNOPSIS

void sgemm_spu (int m, int n, int k, float *a, float *b, float *c)

void dgemm_spu (int m, int n, int k, double *a, double *b, double *c)

void dgemm_64x64 (double *c, double *a, double *b)

 Parameters

m Integer specifying number of rows in matrices A and C (must

be a multiple of 4 for SP, and 16 for DP)

n Integer specifying number of columns in matrices B and C

(must be a multiple of 16 for both SP and DP)

k Integer specifying number of columns in matrix A and rows in

matrix B (must be a multiple of 4 for SP and 16 for DP)

a Pointer to matrix A

b Pointer to matrix B

c Pointer to matrix C

DESCRIPTION

This BLAS 3 routine multiplies two matrices, A and B and adds the result to the

resultant matrix C, after suitable scaling. The following operation is performed:

C ← A B + C

where A, B, and C are matrices. The matrices must be 16-byte aligned and stored

in row major order. For dgemm_64x64, the matrices must be of dimensions 64x64

EXAMPLES

#define M 64

#define N 16

#define K 32

float A[M * K] __attribute__((aligned (16))) ;

float B[K * N] __attribute__((aligned (16))) ;

float C[M * N] __attribute__((aligned (16))) ;

int main()

{

 int i, j;

 for(i = 0 ; i < M ; i++)

 for(j = 0; j < N ; j++)

 C[(N * i) + j] = (float) i ;

 /* Similar code to fill in other

 matrix arrays */

 sgemm_spu(M, N, K, A, B, C) ;

 return 0;

}

Chapter 9. SPE APIs 47

|

|

|
|

|

|
|
|

|||
||
|
||
|
||
|
||
||
||
|

|

|
|

|

|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

ssyrk_spu / dsyrk_spu / ssyrk_64x64 / dsyrk_64x64

NAME

ssyrk_spu / dsyrk_spu / ssyrk_64x64 / dsyrk_64x64 - Performs a rank-k update to

a symmetric matrix A.

SYNOPSIS

void ssyrk_spu (float *blkA, float *blkC, float Alpha, unsigned int N,

unsigned int K, unsigned int lda, unsigned int ldc)

void dsyrk_spu (double *blkA, double *blkC, double Alpha, unsigned int N,

unsigned int K, unsigned int lda, unsigned int ldc)

void ssyrk_64x64(float *blkA, float *blkC, float *Alpha)

void dsyrk_64x64(double *blkA, double *blkC, double Alpha)

 Parameters

N Integer specifying order of matrix C (must be a multiple of 16)

K Integer specifying number of columns in matrix A (must be a

multiple of 16)

blkA Pointer to matrix A

blkC Pointer to matrix C

Alpha Double scalar value to scale matrix product A.AT

lda Integer specifying leading dimension for matrix A (lda is

greater than or equal to K and multiple of 2 for DP or 4 for SP)

ldc Integer specifying leading dimension for matrix C (ldc is

greater than or equal to N and multiple of 2 for DP or 4 for

SP)

DESCRIPTION

The routine performs:

C ← α A A

T + C

where only the lower triangular elements of matrix C are updated (the remaining

elements remain unchanged). For ssyrk_64x64 and dsyrk_64x64, the matrices must

be of size 64 x 64.

The matrices must be 16-byte aligned and stored in row major order.

EXAMPLES

#define MY_M 64

#define MY_N 64

float myA[MY_M * MY_N] __attribute__((aligned (16)));

float myC[MY_M * MY_M] __attribute__((aligned (16)));

int main()

{

 int i,j ;

 float alpha = 2.0;

 for(i = 0 ; i < MY_M ; i++)

 for(j = 0; j < MY_N ; j++)

 myA[(MY_N * i) + j] = (float)i ;

48 BLAS Programmer’s Guide and API Reference

|
|

|

|
|

|

|
|
|
|
|
|
|
|

|||
||
||
|
||
||
||
||
|
||
|
|
|

|

|

|

|
|
|

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

for(i = 0 ; i < MY_M ; i++)

 for(j = 0 ; j < MY_M ; j++)

 myC[(MY_M * i) + j] = (float)i ;

 ssyrk_64x64(myA, myC , &alpha) ;

 return 0;

}

Chapter 9. SPE APIs 49

|
|
|
|
|
|
|
|

|

strmm_spu_upper_trans_left / strmm_spu_upper_left /

dtrmm_spu_upper_trans_left / dtrmm_spu_upper_left

NAME

strmm_spu_upper_trans_left / strmm_spu_upper_left /

dtrmm_spu_upper_trans_left / dtrmm_spu_upper_left

strmm_64x64_upper_trans_left / dtrmm_64x64_upper_trans_left

strmm_64x64_upper_left / dtrmm_64x64_upper_left -

Computes the product of two matrices A and B where A is a triangular matrix.

SYNOPSIS

void strmm_spu_upper_trans_left (int m, int n, float *a, float *b)

void strmm_spu_upper_left (int m, int n, float *a, float *b)

void dtrmm_spu_upper_trans_left (int m, int n, double *a, double *b)

void dtrmm_spu_upper_left (int m, int n, double *a, double *b)

void strmm_64x64_upper_trans_left (float *a, float *b)

void strmm_64x64_upper_left (float *a, float *b)

void dtrmm_64x64_upper_trans_left (double *a, double *b)

void dtrmm_64x64_upper_left (double *a, double *b)

 Parameters

m Integer specifying number of rows of matrix B (must be a

multiple of 16)

n Integer specifying number of columns of matrix B (must be a

multiple of 16)

a Pointer to matrix A

b Pointer to matrix B

DESCRIPTION

This BLAS 3 routine computes the product of two matrices A and B where A is a

triangular matrix. The matrix B is updated with the result.

The routines strmm_spu_upper_trans_left and dtrmm_spu_upper_trans_left

perform:

B ← AT B

where A is an upper triangular matrix.

The routine strmm_spu_upper_left and dtrmm_spu_upper_left performs:

B ← AB

where A is an upper triangular matrix.

The routines strmm_64x64_upper_trans_left and dtrmm_64x64_upper_trans_left

perform:

B ← AT B

where A is an upper triangular 64 x 64 matrix.

The routine strmm_64x64_upper_left and dtrmm_64x64_upper_left performs:

B ← AB

50 BLAS Programmer’s Guide and API Reference

|

|

|

|
|
|
|
|

|

|
|
|
|
|
|
|
|

|||
||
|
||
|
||
||
|

|

|
|

|
|

|

|

|

|

|

|
|

|

|

|

|

where A is an upper triangular 64 x 64 matrix.

The matrices must be 16-byte aligned and stored in row major order.

Chapter 9. SPE APIs 51

|

|

|

ssyr2k_spu_lower / ssyr2k_64x64_lower / dsyr2k_spu_lower /

dsyr2k_64x64_lower

NAME

ssyr2k_spu_lower / ssyrk2k_64x64_lower / dsyr2k_spu_lower /

dsyr2k_64x64_lower - Performs one of the rank-2k updates to a symmetric matrix.

SYNOPSIS

void ssyr2k_spu_lower(unsigned int n, unsigned int k, float *A, float* B, float *C)

void ssyr2k_64x64_lower(float *A, float *B, float *C)

void dsyr2k_spu_lower(unsigned int n, unsigned int k, double *A, double* B, double *C)

void dsyr2k_64x64_lower(double *A, double* B, double *C)

 Parameters

n Integer specifying order of matrix C (must be a multiple of 16)

k Integer specifying number of columns of matrices A and B

(must be a multiple of 16)

A Pointer to matrix A

B Pointer to matrix B

C Pointer to matrix C

DESCRIPTION

This BLAS 3 routine performs the following rank-2k updates to a symmetric matrix

C = A B’ + B A’ + C

where C is a symmetric matrix and A, B are normal matrices.

The matrices must be 16–byte aligned and stored in row major order.

52 BLAS Programmer’s Guide and API Reference

|

|

|

|
|

|

|
|
|
|

|||
||
||
|
||
||
||
|

|

|

|

|

|

|

Chapter 10. Additional APIs

This topic describes the additional BLAS APIs that can be used to customize the

library.

The default SPE and memory management mechanism in the BLAS library can be

partially customized by the use of environment variables as discussed previously.

However, for more control over the use of available SPE resources and memory

allocation/de-allocation strategy, an application can design its own mechanism for

managing available SPE resources and allocating memory to be used by BLAS

routines in the library.

The library provides some additional APIs that can be used to customize the

library. These additional APIs can be used for the registration of custom SPE and

memory management callbacks. The additional APIs can be divided into two parts:

SPE management APIs for customizing the use of SPE resources and memory

management APIs for customizing memory allocation/de-allocation mechanism

used in the BLAS library.

Data types and prototypes of functions provided by these APIs are listed in the

blas_callback.h file, which is installed with the blas-devel RPM.

SPE management APIs

These APIs can be used to register user-defined SPE management routines.

Registered routines are then used inside the BLAS library for creating SPE threads,

loading and running SPE programs, destroying SPE threads and so on. These

registered routines override the default SPE management mechanism inside the

BLAS library.

The following data types and functions are provided as part of these APIs:

v “spes_info_handle_t” on page 54

v “spe_info_handle_t” on page 55

v “BLAS_NUM_SPES_CB” on page 56

v “BLAS_GET_SPE_INFO_CB” on page 57

v “BLAS_SPE_SCHEDULE_CB” on page 58

v “BLAS_SPE_WAIT_CB” on page 59

v “BLAS_REGISTER_SPE” on page 60

© Copyright IBM Corp. 2007, 2008 53

spes_info_handle_t

NAME

spes_info_handle_t - Handle to access information about all the SPEs that are used

by the BLAS library.

DESCRIPTION

A simple typedef to void. Used as a handle to access information about all the

SPEs that are used by BLAS library.

You provide a pointer to spes_info_handle_t when registering SPE callback

routines. spes_info_handle_t* is used as a pointer to user-defined data structure

that contains information about all the SPEs to be used in BLAS library. The BLAS

library passes the provided spes_info_handle_t* to registered callback routines.

EXAMPLES

You can define the following structure to store the information about the SPEs:

/* Data structure to store information about a single SPE */

typedef struct {

 spe_context_ptr_t spe_ctxt ;

 pthread_t pts ;

 spe_program_handle_t *spe_ph ;

 unsigned int entry ;

 unsigned int runflags ;

 void *argp ;

 void *envp ;

} blas_spe_info ;

/* Data structure to store information about multiple SPEs */

typedef struct {

 int num_spes ;

 blas_spe_info spe[16] ;

} blas_spes_info ;

/* Define a variable that will store information about all

 the SPEs to be used in BLAS library */

blas_spes_info si_user;

/* Get a pointer of type spes_info_handle_t* that can be

 used to access information about all the SPEs */

spes_info_handle_t *spes_info = (spes_info_handle_t*)(&si_user);

/* Using spes_info, get a pointer of type spe_info_handle_t*

 that can be used to access information about a single SPE

 with index spe_index in the list of all SPEs */

spe_info_handle_t *single_spe_info =

(spe_info_handle_t*)(&spes_info->spe[spe_index]);

/* spes_info will be passed to BLAS library when registering

 SPE callback routines */

blas_register_spe(spes_info, <SPE callback routines>);

SEE ALSO

“spe_info_handle_t” on page 55

54 BLAS Programmer’s Guide and API Reference

spe_info_handle_t

NAME

spe_info_handle_t - Handle to access information about a single SPE.

DESCRIPTION

A simple typedef to void. Used as a handle to access information about a single

SPE in the pool of multiple SPEs that is used by BLAS library.

EXAMPLES

You can define the following structure to store the information about the SPEs:

/* Data structure to store information about a single SPE */

typedef struct {

 spe_context_ptr_t spe_ctxt ;

 pthread_t pts ;

 spe_program_handle_t *spe_ph ;

 unsigned int entry ;

 unsigned int runflags ;

 void *argp ;

 void *envp ;

} blas_spe_info ;

/* Data structure to store information about multiple SPEs */

typedef struct {

 int num_spes ;

 blas_spe_info spe[16] ;

} blas_spes_info ;

/* Define a variable that will store information about all

 the SPEs to be used in BLAS library */

blas_spes_info si_user;

/* Get a pointer of type spes_info_handle_t* that can be

 used to access information about all the SPEs */

spes_info_handle_t *spes_info = (spes_info_handle_t*)(&si_user);

/* Using spes_info, get a pointer of type spe_info_handle_t*

 that can be used to access information about a single SPE

 with index spe_index in the list of all SPEs */

spe_info_handle_t *single_spe_info =

(spe_info_handle_t*)(&spes_info->spe[spe_index]);

/* spes_info will be passed to BLAS library when registering

 SPE callback routines */

blas_register_spe(spes_info, <SPE callback routines>);

SEE ALSO

“spes_info_handle_t” on page 54

Chapter 10. Additional APIs 55

BLAS_NUM_SPES_CB

NAME

BLAS_NUM_SPES_CB - Obtains the maximum number of SPEs that are available

to the BLAS library.

SYNOPSIS

int (*BLAS_NUM_SPES_CB) (spes_info_handle_t *spes_info);

 Parameters

spes_info A pointer passed to the BLAS library when this callback is

registered. The BLAS library passes this pointer to the callback

while invoking it.

DESCRIPTION

This is a callback function prototype that is registered to obtain the maximum

number of SPEs that are available to the BLAS library.

RETURN VALUE

 int Maximum number of SPEs that are available to the BLAS

library for use.

EXAMPLES

int get_num_spes_user(spes_info_handle_t* spes_ptr)

{

 blas_spes_info *spes = (blas_spes_info*) spes_ptr;

 return spes->num_spes;

}

/* Register user-defined callback function */

blas_register_spe(spes_info /* spes_info_handle_t* */,

 get_num_spes_user,

 <Other SPE callback routines>);

56 BLAS Programmer’s Guide and API Reference

BLAS_GET_SPE_INFO_CB

NAME

BLAS_GET_SPE_INFO_CB - Obtains the information about a single SPE from the

pool of SPEs used inside the BLAS library.

SYNOPSIS

spe_info_handle_t*

(*BLAS_GET_SPE_INFO_CB) (spes_info_handle_t *spes_info, int index);

 Parameters

spes_info A pointer passed to the BLAS library when this callback is

registered. The BLAS library passes this pointer to the callback

while invoking it. This pointer points to private user data

containing information about all the SPEs that user wants to

use in the BLAS library.

index Index of the SPE that identifies a single SPE in the data

pointed to by spes_info. The BLAS library first invokes the

registered callback routine of type BLAS_NUM_SPES_CB to

get the total number of SPEs (num_spes) and then pass index

in the range of 0 to (num_spes-1) to this callback.

DESCRIPTION

This is a callback function prototype that is registered to obtain the information

about a single SPE from the pool of SPEs used inside the BLAS library.

This single SPE information is used when loading and running the SPE program to

this SPE.

RETURN VALUE

 spe_info_handle_t* Pointer to a private user data containing information about a

single SPE.

EXAMPLES

spe_info_handle_t*

get_spe_info_user(spes_info_handle_t *spes_ptr, int index)

{

 blas_spes_info *spes = (blas_spes_info*) spes_ptr;

 return (spe_info_handle_t*) (&spes->spe[index]);

}

/* Register user-defined callback function */

blas_register_spe(spes_info /* spes_info_handle_t* */,

 get_spe_info_user,

 <Other SPE callback routines>);

Chapter 10. Additional APIs 57

BLAS_SPE_SCHEDULE_CB

NAME

BLAS_SPE_SCHEDULE_CB - Schedules a given SPE main program to be loaded

and run on a single SPE.

SYNOPSIS

void

(*BLAS_SPE_SCHEDULE_CB) (spe_info_handle_t *single_spe_info,

 spe_program_handle_t *spe_program,

 unsigned int runflags,

 void *argp, void *envp);

 Parameters

single_spe_info Pointer to private user data containing information about a

single SPE. The BLAS library obtains this pointer internally by

invoking the registered callback routine of type

BLAS_GET_SPE_INFO_CB. The returned pointer is then

passed to this callback.

spe_program A valid address of a mapped SPE main program. SPE program

pointed to by spe_program is loaded to the local store of the

SPE identified by single_spe_info.

runflags A bitmask that can be used to request certain specific behavior

while executing the spe_program on the SPE identified by

single_spe_info. Zero is passed for this currently.

argp A pointer to BLAS routine specific data.

envp Pointer to environment specific data of SPE program. NULL is

passed for this currently.

DESCRIPTION

This is a callback function prototype that is registered to schedule a given SPE

main program to be loaded and run on a single SPE.

EXAMPLES

void spe_schedule_user(spe_info_handle_t* spe_ptr,

 spe_program_handle_t *spe_ph,

 unsigned int runflags,

void *argp, void *envp)

{

 blas_spe_info *spe = (blas_spe_info*) spe_ptr;

 /* Code to launch SPEs with specified parameters */

}

/* Register user-defined callback function */

blas_register_spe(spes_info /* spes_info_handle_t* */,

 spe_schedule_user,

 <Other SPE callback routines>);

58 BLAS Programmer’s Guide and API Reference

BLAS_SPE_WAIT_CB

NAME

BLAS_SPE_WAIT_CB - Waits for the completion of a running SPE program on a

single SPE.

SYNOPSIS

void (*BLAS_SPE_WAIT_CB) (spe_info_handle_t *single_spe_info);

 Parameters

single_spe_info Pointer to a private user data containing information about a

single SPE. The BLAS library obtains this pointer internally by

invoking the registered callback routine of type

BLAS_GET_SPE_INFO_CB. The returned pointer is then

passed to this callback.

DESCRIPTION

This is a callback function prototype that is registered to wait for the completion of

a running SPE program on a single SPE, that is, until the SPE is finished executing

the SPE program and is available for reuse.

For a particular SPE, the BLAS routine first invokes callback of type

BLAS_SPE_SCHEDULE_CB for scheduling an SPE program to be loaded and run,

followed by invoking callback of type BLAS_SPE_WAIT_CB to wait until the SPE

is done.

EXAMPLES

void spe_wait_job_user(spe_info_handle_t* spe_ptr)

{

 blas_spe_info *spe = (blas_spe_info*) spe_ptr;

 /* Code to wait until completion of SPE program

 is indicated.

 */

}

/* Register user-defined callback function */

blas_register_spe(spes_info /* spes_info_handle_t* */,

 spe_wait_job_user,

 <Other SPE callback routines>);

Chapter 10. Additional APIs 59

BLAS_REGISTER_SPE

NAME

BLAS_REGISTER_SPE - Registers the custom SPE management callback routines

to manage SPEs instead of using default SPE management routines.

SYNOPSIS

void

blas_register_spe(spes_info_handle_t *spes_info,

 BLAS_SPE_SCHEDULE_CB spe_schedule_function,

 BLAS_SPE_WAIT_CB spe_wait_function,

 BLAS_NUM_SPES_CB num_spes_function,

 BLAS_GET_SPE_INFO_CB get_spe_info_function);

 Parameters

spes_info Pointer to a private user data containing information about

a single SPE. The BLAS library obtains this pointer

internally by invoking the registered callback routine of

type BLAS_GET_SPE_INFO_CB. The returned pointer is

then passed to this callback.

spe_schedule_function A pointer to user-defined function for scheduling an SPE

program to be loaded and run on a single SPE.

spe_wait_function A pointer to user-defined function to be used for waiting

on a single SPE to finish execution.

num_spes_function A pointer to user-defined function to be used for obtaining

number of SPEs that is used.

get_spe_info_function A pointer to user-defined function to be used for getting

the information about a single SPE.

DESCRIPTION

This function registers the user-specified SPE callback routines to be used by BLAS

library for managing SPEs instead of using default SPE management routines.

None of the input parameters to this function can be NULL. If any of the input

parameters is NULL, the function simply return without performing any

registration. A warning is displayed to standard output in this case.

Call this function only once to register the custom SPE callback routines. In case

SPE callback registration has already been done before, the function terminates the

application by calling abort().

EXAMPLES

For an example of this function, see the sample application blas-examples/
blas_thread/, contained in the BLAS examples compressed file

(blas-examples-source.tar), which is installed with the blas-examples-source RPM.

The following code outlines the basic structure of this sample application:

#include <blas.h>

#include <blas_callback.h>

typedef struct {

 spe_context_ptr_t spe_ctxt ;

 pthread_t pts ;

 pthread_mutex_t m ;

 pthread_cond_t c ;

60 BLAS Programmer’s Guide and API Reference

|
|
|
|

|
|
|
|
|
|
|
|

spe_program_handle_t *spe_ph ;

 unsigned int entry ;

 unsigned int runflags ;

 void *argp ;

 void *envp ;

 spe_stop_info_t *stopinfo ;

 unsigned int scheduled ;

 unsigned int processed ;

} blas_spe_info ;

typedef struct {

 int num_spes ;

 blas_spe_info spe[16] ;

} blas_spes_info ;

blas_spes_info si_user;

int init_spes_user()

{

 int i ;

 void *blas_thread(void *) ;

 char *ns = getenv("BLAS_NUMSPES") ;

 si_user.num_spes = (ns) ? atoi(ns) : MAX_SPES ;

 for (i = 0 ; i < si_user.num_spes ; i++)

 {

 si_user.spe[i].spe_ctxt = spe_context_create(0, NULL) ;

 /* Code to initialize other fields of

 si_user.spe[i]

 */

 pthread_create(&si_user.spe[i].pts, NULL,

 blas_thread, &si_user.spe[i]) ;

 }

 return 0 ;

}

int cleanup_spes_user()

{

 int i ;

 for (i = 0 ; i < si_user.num_spes ; i++)

 {

 /* Cleanup code */

 pthread_join(si_user.spe[i].pts, NULL) ;

 /* Cleanup code */

 }

 return 0 ;

}

spes_info_handle_t* get_spes_info_user()

{

 return (spes_info_handle_t*) (&si_user) ;

}

spe_info_handle_t*

get_spe_info_user(spes_info_handle_t *spes_ptr, int index)

{

 blas_spes_info *spes = (blas_spes_info*) spes_ptr;

 return (spe_info_handle_t*) (&spes->spe[index]);

}

int get_num_spes_user(spes_info_handle_t* spes_ptr)

{

 blas_spes_info *spes = (blas_spes_info*) spes_ptr;

Chapter 10. Additional APIs 61

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

return spes->num_spes;

}

void *blas_thread(void *spe_ptr)

{

 blas_spe_info *spe = (blas_spe_info *) spe_ptr ;

 while(1)

 {

 /* Wait on condition until some SPE program

 is available for running.

 */

 /* Come out of the infinite while loop

 and exit if NULL spe program is passed.

 */

 spe_program_load(spe->spe_ctxt, spe->spe_ph) ;

 spe_context_run(spe->spe_ctxt, &spe>entry,

 spe->runflags,

 spe->argp, spe->envp, NULL) ;

 /* Code to indicate the completion of SPE

 program.

 */

}

 return NULL ;

}

void spe_wait_job_user(spe_info_handle_t* spe_ptr)

{

 blas_spe_info *spe = (blas_spe_info*) spe_ptr;

 /* Code to wait until completion of SPE program

 is indicated.

 */

}

void spe_schedule_user(spe_info_handle_t* spe_ptr,

 spe_program_handle_t *spe_ph,

 unsigned int runflags,

 void *argp, void *envp)

{

 blas_spe_info *spe = (blas_spe_info*) spe_ptr;

 /* Some code here */

 spe->entry = SPE_DEFAULT_ENTRY ;

 spe->spe_ph = spe_ph ;

 spe->runflags = runflags ;

 spe->argp = argp ;

 spe->envp = envp ;

 /* Code to Signal SPE thread indicating that an SPE

 program is available for running.

 */

}

int main()

{

/* Some code here */

 blas_register_spe(get_spes_info_user(), spe_schedule_user,

 spe_wait_job_user, get_num_spes_user,

 get_spe_info_user);

 init_spes_user();

62 BLAS Programmer’s Guide and API Reference

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

/* Invoke blas routines */

 scopy_(...);

 sgemm_(...);

 ...

 cleanup_spes_user();

 return 0;

}

SEE ALSO

See example code in “Memory management APIs.”

Memory management APIs

These APIs can be used to register user-specified custom memory management

routines. Registered routines are then used inside the BLAS library for allocating

and de-allocating memory overriding default memory management routines.

The following functions are provided with these APIs:

v “BLAS_Malloc_CB” on page 64

v “BLAS_Free_CB” on page 65

v “BLAS_REGISTER_MEM” on page 66

Chapter 10. Additional APIs 63

|
|
|
|
|
|
|
|
|

|

BLAS_Malloc_CB

NAME

BLAS_Malloc_CB - Allocates aligned memory space.

SYNOPSIS

void* (*BLAS_Malloc_CB) (size_t size);

 Parameters

size Memory size in bytes to be allocated

DESCRIPTION

This is a callback function prototype that can be registered to allocate aligned

memory space.

RETURN VALUE

 void* Pointer to allocated aligned memory. Allocated memory space

must be aligned to 128-byte boundary. This pointer must be

NULL if request fails.

64 BLAS Programmer’s Guide and API Reference

BLAS_Free_CB

NAME

BLAS_Free_CB - De-allocates memory space.

SYNOPSIS

void (*BLAS_Free_CB) (void* ptr);

 Parameters

ptr Pointer to a memory space that needs to be released. This

pointer is returned by a previous call to memory allocation

callback routine of type BLAS_Malloc_CB.

DESCRIPTION

This is a callback function prototype that can be registered to de-allocate memory.

Chapter 10. Additional APIs 65

BLAS_REGISTER_MEM

NAME

BLAS_REGISTER_MEM - Registers the user-specified memory callback routines.

SYNOPSIS

void blas_register_mem(BLAS_Malloc_CB malloc_function,

 BLAS_Free_CB free_function);

 Parameters

malloc_function A pointer to user-defined function used to allocate 128-byte

aligned memory.

free_function A pointer to user-defined function used to de-allocate memory.

DESCRIPTION

This function registers the user-specified Memory callback routines to be used by

the BLAS library for allocating and de-allocating memory instead of using the

default memory management routines.

EXAMPLES

#include <stddef.h>

#include <stdint.h>

#include <blas.h>

#include <blas_callback.h>

/* For allocating aligned memory from heap */

#include <malloc_align.h>

#include <free_align.h>

/* User defined memory allocation routines. These routines

 MUST return 128-byte aligned memory.

*/

void* malloc_user(size_t size)

{

 return _malloc_align(size, 7);

}

void free_user(void *ptr)

{

 _free_align(ptr);

}

int main()

{

 /* Some code here */

 blas_register_mem(malloc_user, free_user);

 /* Invoke blas routines.

 BLAS level 3 routines like sgemm will now use registered

 routines malloc_user/free_user for allocation/de-

 allocation of 128-byte aligned memory

 */

 sgemm_(...);

 sgemv_(...);

 ...

 return 0;

}

66 BLAS Programmer’s Guide and API Reference

SEE ALSO

See the sample application blas-examples/blas_thread/ contained in the BLAS

examples compressed file (blas-examples-source.tar), which is installed with the

blas-examples-source RPM.

Chapter 10. Additional APIs 67

|
|
|

68 BLAS Programmer’s Guide and API Reference

Part 6. Appendixes

© Copyright IBM Corp. 2007, 2008 69

70 BLAS Programmer’s Guide and API Reference

Appendix A. Related documentation

This topic helps you find related information.

Document location

Links to documentation for the SDK are provided on the IBM® developerWorks®

Web site located at:

http://www.ibm.com/developerworks/power/cell/

Click the Docs tab.

The following documents are available, organized by category:

Architecture

v Cell Broadband Engine Architecture

v Cell Broadband Engine Registers

v SPU Instruction Set Architecture

Standards

v C/C++ Language Extensions for Cell Broadband Engine Architecture

v Cell Broadband Engine Linux Reference Implementation Application Binary Interface

Specification

v SIMD Math Library Specification for Cell Broadband Engine Architecture

v SPU Application Binary Interface Specification

v SPU Assembly Language Specification

Programming

v Cell Broadband Engine Programmer’s Guide

v Cell Broadband Engine Programming Handbook

v Cell Broadband Engine Programming Tutorial

Library

v Accelerated Library Framework for Cell Broadband Engine Programmer’s Guide and

API Reference

v Basic Linear Algebra Subprograms Programmer’s Guide and API Reference

v Data Communication and Synchronization for Cell Broadband Engine Programmer’s

Guide and API Reference

v Example Library API Reference

v Fast Fourier Transform Library Programmer’s Guide and API Reference

v LAPACK (Linear Algebra Package) Programmer’s Guide and API Reference

v Mathematical Acceleration Subsystem (MASS)

v Monte Carlo Library Programmer’s Guide and API Reference

v SDK 3.0 SIMD Math Library API Reference

v SPE Runtime Management Library

v SPE Runtime Management Library Version 1 to Version 2 Migration Guide

v SPU Runtime Extensions Library Programmer’s Guide and API Reference

© Copyright IBM Corp. 2007, 2008 71

http://www.ibm.com/developerworks/power/cell/

v Three dimensional FFT Prototype Library Programmer’s Guide and API Reference

Installation

v SDK for Multicore Acceleration Version 3.1 Installation Guide

Tools

v Getting Started - XL C/C++ for Multicore Acceleration for Linux

v Compiler Reference - XL C/C++ for Multicore Acceleration for Linux

v Language Reference - XL C/C++ for Multicore Acceleration for Linux

v Programming Guide - XL C/C++ for Multicore Acceleration for Linux

v Installation Guide - XL C/C++ for Multicore Acceleration for Linux

v Getting Started - XL Fortran for Multicore Acceleration for Linux

v Compiler Reference - XL Fortran for Multicore Acceleration for Linux

v Language Reference - XL Fortran for Multicore Acceleration for Linux

v Optimization and Programming Guide - XL Fortran for Multicore Acceleration for

Linux

v Installation Guide - XL Fortran for Multicore Acceleration for Linux

v Performance Analysis with the IBM Full-System Simulator

v IBM Full-System Simulator User’s Guide

v IBM Visual Performance Analyzer User’s Guide

IBM PowerPC Base

v IBM PowerPC Architecture Book

– Book I: PowerPC User Instruction Set Architecture

– Book II: PowerPC Virtual Environment Architecture

– Book III: PowerPC Operating Environment Architecture

v IBM PowerPC Microprocessor Family: Vector/SIMD Multimedia Extension Technology

Programming Environments Manual

72 BLAS Programmer’s Guide and API Reference

Appendix B. Accessibility features

Accessibility features help users who have a physical disability, such as restricted

mobility or limited vision, to use information technology products successfully.

The following list includes the major accessibility features:

v Keyboard-only operation

v Interfaces that are commonly used by screen readers

v Keys that are tactilely discernible and do not activate just by touching them

v Industry-standard devices for ports and connectors

v The attachment of alternative input and output devices

IBM and accessibility

See the IBM Accessibility Center at http://www.ibm.com/able/ for more

information about the commitment that IBM has to accessibility.

© Copyright IBM Corp. 2007, 2008 73

http://www.ibm.com/able/

74 BLAS Programmer’s Guide and API Reference

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in

other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not grant you

any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing 2-31 Roppongi 3-chome, Minato-ku

Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore, this statement may not apply

to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 2007, 2008 75

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact:

IBM Corporation

Software Interoperability Coordinator, Department 49XA

3605 Highway 52 N

Rochester, MN 55901

U.S.A.

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this information and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement, or any equivalent agreement

between us.

Any performance data contained herein was determined in a controlled

environment. Therefore, the results obtained in other operating environments may

vary significantly. Some measurements may have been made on development-level

systems and there is no guarantee that these measurements will be the same on

generally available systems. Furthermore, some measurements may have been

estimated through extrapolation. Actual results may vary. Users of this document

should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of

performance, compatibility or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the

suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or

withdrawal without notice, and represent goals and objectives only.

All IBM prices shown are IBM’s suggested retail prices, are current and are subject

to change without notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to

change before the products described become available.

This information contains examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious and any similarity to the names and addresses used by an actual business

enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which

illustrate programming techniques on various operating platforms. You may copy,

modify, and distribute these sample programs in any form without payment to

IBM, for the purposes of developing, using, marketing or distributing application

programs conforming to the application programming interface for the operating

76 BLAS Programmer’s Guide and API Reference

platform for which the sample programs are written. These examples have not

been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or

imply reliability, serviceability, or function of these programs.

Each copy or any portion of these sample programs or any derivative work, must

include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.

Sample Programs. © Copyright IBM Corp. _enter the year or years_. All rights

reserved.

If you are viewing this information in softcopy, the photographs and color

illustrations may not appear.

Trademarks

IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of

International Business Machines Corporation in the United States, other countries,

or both. These and other IBM trademarked terms are marked on their first

occurrence in this information with the appropriate symbol (® or

™), indicating US

registered or common law trademarks owned by IBM at the time this information

was published. Such trademarks may also be registered or common law

trademarks in other countries. A complete and current list of IBM trademarks is

available on the Web at http://www.ibm.com/legal/copytrade.shtml.

Adobe®, Acrobat, Portable Document Format (PDF), and PostScript® are either

registered trademarks or trademarks of Adobe Systems Incorporated in the United

States, other countries, or both.

Cell Broadband Engine is a trademark of Sony Computer Entertainment, Inc., in

the United States, other countries, or both and is used under license therefrom.

Linux is a trademark of Linus Torvalds in the United States, other countries, or

both.

Other company, product or service names may be trademarks or service marks of

others.

Terms and conditions

Permissions for the use of these publications is granted subject to the following

terms and conditions.

Personal Use: You may reproduce these publications for your personal,

noncommercial use provided that all proprietary notices are preserved. You may

not distribute, display or make derivative works of these publications, or any

portion thereof, without the express consent of the manufacturer.

Commercial Use: You may reproduce, distribute and display these publications

solely within your enterprise provided that all proprietary notices are preserved.

You may not make derivative works of these publications, or reproduce, distribute

or display these publications or any portion thereof outside your enterprise,

without the express consent of the manufacturer.

Notices 77

http://www.ibm.com/legal/copytrade.shtml

Except as expressly granted in this permission, no other permissions, licenses or

rights are granted, either express or implied, to the publications or any data,

software or other intellectual property contained therein.

The manufacturer reserves the right to withdraw the permissions granted herein

whenever, in its discretion, the use of the publications is detrimental to its interest

or, as determined by the manufacturer, the above instructions are not being

properly followed.

You may not download, export or re-export this information except in full

compliance with all applicable laws and regulations, including all United States

export laws and regulations.

THE MANUFACTURER MAKES NO GUARANTEE ABOUT THE CONTENT OF

THESE PUBLICATIONS. THESE PUBLICATIONS ARE PROVIDED ″AS-IS″ AND

WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,

INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF

MERCHANTABILITY, NON-INFRINGEMENT, AND FITNESS FOR A

PARTICULAR PURPOSE.

78 BLAS Programmer’s Guide and API Reference

Glossary

API

Application Program Interface.

BLAS

Basic Linear Algebra Subprograms. A collection of

subprograms for basic linear algebra operations,

such as vector-vector operations (level 1 BLAS),

matrix-vector operations (level 2 BLAS) and

matrix-matrix operations (level 3 BLAS).

Broadband Engine

See CBEA.

Cholesky

The Cholesky factorization is named after

André-Louis Cholesky. Cholesky found out that a

symmetric positive-definite matrix can be

decomposed into a lower triangular matrix and

the transpose of the lower triangular matrix. The

lower triangular matrix is the Cholesky triangle of

the original, positive-definite matrix.

C++

C++ is an object-orientated programming

language, derived from C.

CBEA

Cell Broadband Engine Architecture. A new

architecture that extends the 64-bit PowerPC

Architecture. The CBEA and the Cell Broadband

Engine are the result of a collaboration between

Sony, Toshiba, and IBM, known as STI, formally

started in early 2001.

Cell/B.E. processor

The Cell/B.E. processor is a multi-core broadband

processor based on IBM’s Power Architecture.

Cell Broadband Engine processor

See Cell/B.E processor.

compiler

A programme that translates a high-level

programming language, such as C++, into

executable code.

FORTRAN

FORmula TRANslator). A high-level

programming language for problems that can be

expressed algebraically.

handle

A handle is an abstraction of a data object;

usually a pointer to a structure.

LAPACK

Linear Algebra PACKage. These are routines for

solving systems of simultaneous linear equations,

least-squares solutions of linear systems of

equations, eigenvalue problems, and singular

value problems.

LU factorization

In linear algebra, the LU factorization is a matrix

decomposition, which writes a matrix as the

product of a lower and upper triangular matrix.

PDF

Portable document format.

PPE

PowerPC Processor Element. The general-purpose

processor in the Cell.

PPU

PowerPC Processor Unit. The part of the PPE that

includes the execution units, memory-
management unit, and L1 cache.

process

A process is a standard UNIX-type process with a

separate address space.

© Copyright IBM Corp. 2007, 2008 79

program section

See code section.

ScaLAPACK

Scalable LAPACK. is a library of parallelized

Linear Algebra routines. See “LAPACK” on page

79.

SDK

Software development toolkit for Multicore

Acceleration. A complete package of tools for

application development.

section

See code section.

SIMD

Single Instruction Multiple Data. Processing in

which a single instruction operates on multiple

data elements that make up a vector data-type.

Also known as vector processing. This style of

programming implements data-level parallelism.

SPE

Synergistic Processor Element. Extends the

PowerPC 64 architecture by acting as cooperative

offload processors (synergistic processors), with

the direct memory access (DMA) and

synchronization mechanisms to communicate

with them (memory flow control), and with

enhancements for real-time management. There

are 8 SPEs on each cell processor.

SPU

Synergistic Processor Unit. The part of an SPE

that executes instructions from its local store (LS).

thread

A sequence of instructions executed within the

global context (shared memory space and other

global resources) of a process that has created

(spawned) the thread. Multiple threads (including

multiple instances of the same sequence of

instructions) can run simultaneously if each

thread has its own architectural state (registers,

program counter, flags, and other program-visible

state). Each SPE can support only a single thread

at any one time. Multiple SPEs can

simultaneously support multiple threads. The PPE

supports two threads at any one time, without the

need for software to create the threads. It does

this by duplicating the architectural state. A

thread is typically created by the pthreads library.

vector

An instruction operand containing a set of data

elements packed into a one-dimensional array.

The elements can be fixed-point or floating-point

values. Most Vector/SIMD Multimedia Extension

and SPU SIMD instructions operate on vector

operands. Vectors are also called SIMD operands

or packed operands.

80 BLAS Programmer’s Guide and API Reference

Index

A
API 27, 53

BLAS_Free_CB 65

BLAS_GET_SPE_INFO_CB 57

BLAS_Malloc_CB 64

BLAS_NUM_SPES_CB 56

BLAS_REGISTER_MEM 66

BLAS_REGISTER_SPE 60

BLAS_SPE_SCHEDULE_CB 58

BLAS_SPE_WAIT_CB 59

dasum_spu 37

daxpy_spu 34

dcopy_spu 33

ddot_spu 35

dgemm_64x64 47

dgemm_spu 47

dgemv_spu 40

dger_op_spu 43

dger_spu 43

dnrm2_edp_spu 38

dnrm2_spu 38

drot_spu 39

dscal_spu 32

dsymv_spu_lower 44

dsyr2k_64x64_lower 52

dsyr2k_spu_lower 52

dsyrk_64x64 48

dsyrk_spu 48

dtrmm_spu_upper_left 50

dtrmm_spu_upper_trans_left 50

dtrsm_spu_lower 45

dtrsm_spu_upper 45

dtrsv_spu_lower 42

dtrsv_spu_upper 42

for managing SPEs 53

idamax_edp_spu 36

idamax_spu 36

isamax_spu 36

memory management 63

new for this release vi

PPE 1

saxpy_spu 34

scopy_spu 33

sdot_spu 35

sgemm_spu 47

sgemv_spu 40

sger_op_spu 43

sger_spu 43

spe_info_handle_t 55

spes_info_handle_t 54

sscal_spu 32

ssyr2k_64x64_lower 52

ssyr2k_spu_lower 52

ssyrk_64x64 48

ssyrk_spu 48

strmm_spu_upper_left 50

strmm_spu_upper_trans_left 50

strsm_spu 45

strsm_spu_upper 45

strsv_spu_lower 42

strsv_spu_upper 42

B
bandwidth

memory 15

BLAS documentation v

blas_callback.h 53

BLAS_Free_CB 65

BLAS_GET_SPE_INFO_CB 57

BLAS_HUGE_FILE 16, 19

BLAS_HUGE_PAGE_SIZE 16

BLAS_Malloc_CB 64

BLAS_NOMA_NODE
performance 16

tips 16

BLAS_NUM_SPES_CB 56

BLAS_NUMSPES 16

BLAS_REGISTER_MEM 66

BLAS_REGISTER_MEM() 25

BLAS_REGISTER_SPE 60

BLAS_REGISTER_SPE() 25

blas_s.h 31

BLAS_SPE_SCHEDULE_CB 58

BLAS_SPE_WAIT_CB 59

BLAS_SWAP_HUGE_FILE 16, 19

BLAS_SWAP_NUMA_NODE 16

BLAS_SWAP_SIZE 16

BLAS_USE_HUGEPAGE 16

blas-3.1-x.ppc.rpm 5

blas-3.1-x.ppc64.rpm 5

blas-devel RPM 53

blas-devel-3.1-x.ppc64.rpm 5

blas.h 29

C
C interface 11

example application 12

cblas.h 29

Cell/B.E. applications 19

debugging 19

huge pages 19

programming 21

Cholesky 1

compute-bound routine 15

customizing 15

memory management 25

D
dasum_spu 37

daxpy_spu 34

dcopy_spu 33

ddot_spu 35

debugging
Cell/B.E. applications 19

dgemm_64x64 47

dgemm_spu 47

dgemv_spu 40

dger_op_spu 43

dger_spu 43

dnrm2_edp_spu 38

dnrm2_spu 38

documentation 71

BLAS-related v

drot_spu 39

dscal_spu 32

dsymv_spu_lower 44

dsyr2k_64x64_lower 52

dsyr2k_spu_lower 52

dsyrk_64x64 48

dsyrk_spu 48

dtrmm_spu_upper_left 50

dtrmm_spu_upper_trans_left 50

dtrsm_spu_lower 45

dtrsm_spu_upper 45

dtrsv_spu_lower 42

dtrsv_spu_upper 42

E
environment variables 15

example
C interface 12

FORTRAN 12

PPE interface 12

F
FORTRAN

C interface 11

example application 12

H
header file 11

HPC 1

HPL 1

huge pages 15, 19

hugetlbfs file system 19

I
idamax_edp_spu 36

idamax_spu 36

installing
packages 5

isamax_spu 36

L
LAPACK 1

LAS_USE_HUGEPAGE 19

libnuma 16

library structure
PPE interface 9

SPE interface 9

Linpack benchmark 1

© Copyright IBM Corp. 2007, 2008 81

M
memory

bandwidth 15

callback 25

custom management 25

default management 25

management API 63

N
NUMA

binding 16

policy API libnuma 16

policy tool numactl 16

numactl 16

O
optimizing 15

overview 1

P
packages

blas-3.1-x.ppc.rpm 5

blas-3.1-x.ppc64.rpm 5

blas-devel-3.1-x.ppc64.rpm 5

performance
considerations 15

optimizing BLAS 16

tips to improve 16

PPE
API 1, 29

BLAS library example 12

C interfaces supported 11

input requirements 11

interface 9

R
restrictions 11

routine
real double precision (DP) 1

real single precision (SP) 1

RPM
blas-devel 53

S
sample application 12

saxpy_spu 34

ScaLAPACK 1

scopy_spu 33

SDK documentation 71

sdot_spu 35

sgemm_spu 47

sgemv_spu 40

sger_op_spu 43

sger_spu 43

SP routine 1

SPE
API 31

APIs for managing 53

creating threads 23

SPE (continued)
interface 9

thread management routine 25

spe_info_handle_t 55

spes_info_handle_t 54

sscal_spu 32

ssyr2k_64x64_lower 52

ssyr2k_spu_lower 52

ssyrk_64x64 48

ssyrk_spu 48

startup costs 15

strmm_spu_upper_left 50

strmm_spu_upper_trans_left 50

strsm_spu 45

strsm_spu_upper 45

strsv_spu_lower 42

strsv_spu_upper 42

swap space 15

T
thread

creating 23

management routine for SPE 25

SPE 23

82 BLAS Programmer’s Guide and API Reference

����

Printed in USA

SC33-8426-01

	Contents
	About this publication
	How to send your comments
	What is new

	Part 1. Overview of BLAS
	Part 2. Installing the BLAS library
	Chapter 1. Package descriptions
	Part 3. Programming
	Chapter 2. Basic structure of the BLAS library
	Chapter 3. Using the BLAS library (PPE interface)
	Input requirements
	Programming samples

	Chapter 4. Tuning the BLAS library for performance
	Programming tips to achieve maximum performance

	Chapter 5. Debugging tips
	Part 4. SPE and memory management
	Chapter 6. Creating SPE threads
	Chapter 7. Support of user-specified SPE and memory callbacks
	Part 5. BLAS API reference
	Chapter 8. PPE APIs
	Chapter 9. SPE APIs
	sscal_spu / dscal_spu
	scopy_spu / dcopy_spu
	saxpy_spu / daxpy_spu
	sdot_spu / ddot_spu
	isamax_spu / idamax_spu / idamax_edp_spu
	dasum_spu
	dnrm2_spu / dnrm2_edp_spu
	drot_spu
	sgemv_spu / dgemv_spu
	dtrsv_spu_lower / dtrsv_spu_upper / strsv_spu_lower / strsv_spu_upper
	dger_spu / sger_spu / dger_op_spu / sger_op_spu
	dsymv_spu_lower
	strsm_spu
	sgemm_spu / dgemm_spu / dgemm_64x64
	ssyrk_spu / dsyrk_spu / ssyrk_64x64 / dsyrk_64x64
	strmm_spu_upper_trans_left / strmm_spu_upper_left / dtrmm_spu_upper_trans_left / dtrmm_spu_upper_left
	ssyr2k_spu_lower / ssyr2k_64x64_lower / dsyr2k_spu_lower / dsyr2k_64x64_lower

	Chapter 10. Additional APIs
	SPE management APIs
	spes_info_handle_t
	spe_info_handle_t
	BLAS_NUM_SPES_CB
	BLAS_GET_SPE_INFO_CB
	BLAS_SPE_SCHEDULE_CB
	BLAS_SPE_WAIT_CB
	BLAS_REGISTER_SPE

	Memory management APIs
	BLAS_Malloc_CB
	BLAS_Free_CB
	BLAS_REGISTER_MEM

	Part 6. Appendixes
	Appendix A. Related documentation
	Appendix B. Accessibility features
	Notices
	Trademarks
	Terms and conditions

	Glossary
	Index

